Links:
Click the chapter name for .pdf
 (except where "(html)" is specified), "ps" for .ps (PostScript).
Notation:
oo = infinity,
^ = Laplace/Fourier transform,
-> = "is mapped to".
Structure:
The last number on most rows is the page number
 (to which you should add 0-5; all page numbers in the thesis
  outside the contents are correct).
The printed version of the book is in three volumes.
The book consists of parts I--IV, Appendices A--F
 and some supplements.
Abstract, contents, figures, preface, ... 
   (ps)  -1
Abstract, keywords  (html)   
(pdf) 
   (ps)  2
Preface  (html)    
(pdf) 
   (ps)  9
1  Introduction 
   (ps)  11
     1.1  On the contributions of this book   12 
      1.2  A summary of this book  15 
      1.3  Conventions  43 
2  TI and MTI Operators 
   (ps)  47
     2.1 Time-invariant operators (TI) 48
     2.2  GTIC  --  invertibility  55 
     2.3 Static operators  63 
     2.4 The signature operator S  65 
     2.5 Losslessness  68 
     2.6 MTI and its subclasses (measure convolutions)  71 
3  Transfer Functions
 () 
   (ps)  79
     3.1 Transfer functions of TI
 (Lap TI = Loostrong)  80 
     3.2 
 Lap TI = Loostrong for Banach spaces
 (Fourier multipliers)  90 
     3.3 
H2 and Hoo boundary functions
 in L2 and Loostrong  99 
4 Corona Theorems and Inverses (ps) 115
5  Spectral Factorization 
(E=Y*X) 
  (ps)  133
     5.1 Auxiliary spectral factorization results  133 
     5.2 
MTI spectral factorization (E,X,Y in MTI)  140 
6  Well-Posed Linear Systems (WPLS) 
   (ps)  151
     6.1 WPLS theory  153 
     6.2 Regularity (^D(+oo) exists)  166 
     6.3 Further regularity and compatibility  180 
     6.4 Spectral and coprime factorizations (D=NM-1)  202 
     6.5 Further coprimeness and factorizations  210 
     6.6 Feedback and Stabilization  219 
     6.7 Further feedback results  244 
     6.8 Systems with ABu0 in Lp([0,1];H)  263 
     6.9 Bounded B, bounded C, PS-systems  272 
7  Dynamic Stabilization 
   (ps)  279
     7.1 Dynamic feedback (DF) stabilization   280 
     7.2 DF-stabilization with internal loop  291 
     7.3 DPF-stabilization
 (Fl(D , Q ))  314 
8  Optimal Control
 (d/duJ=0) 
   (ps)  349
     8.1 Abstract J-critical control
 (Jyycrit  _|_ Δy )  351 
     8.2 Abstract J-coercivity
 (J -> [u Du])
  356 
     8.3 J-critical control for WPLSs   361 
     8.4 J-coercivity and factorizations  377 
     8.5 Problems on a finite time interval  392 
     8.6 Extended linear systems (ELS)  395
9  Riccati Equations (ARE) and J-Critical Control 
   (ps)  401
     9.1 The Riccati Equation: A summary for
 Uout   
(r.c.f. <=> CARE)  404 
     9.2 Riccati equations when  ABu0 in L¹  417 
     9.3 Proofs for Section   9.2     432 
     9.4 Analytic semigroups  438 
     9.5 Parabolic problems and CAREs  443 
     9.6 Parabolic problems: proofs  450 
     9.7 Riccati equations on  Dom(Acrit)  452 
     9.8 Algebraic and integral Riccati equations
(CARE <=> IARE)  465 
     9.9 J-Critical control <=>  Riccati Equation  481 
     9.10 Proofs for Section   9.9:
 Crit <=> eIARE  500 
     9.11 Proofs for Section   9.8:
 eCARE <=> eIARE  507 
     9.12 Further eIARE and eCARE results  517 
     9.13 Examples of Riccati equations  525 
     9.14 (J,*)-critical factorization
 (D=NM-1)  534 
     9.15 H²-factorization when dim U < infty   539 
10  Quadratic Minimization
 (min J) 
   (ps)  543
     10.1 Minimizing 
 /0oo ||y||²+||u||²  (LQR)
  545 
     10.2 General minimization (LQR)  553 
     10.3 Standard assumptions  568 
     10.4 The  H² problem  580 
     10.5 Real lemmas  587 
     10.6 Positive Popov operators
 (ε I < D*JD = X*X)  592 
     10.7 Positive Riccati equations
 (J(0,u) >= 0)  601 
11    Hoo Full-Information Control Problem
  (||z||2 =< γ||w||2)
 
   (ps)  607
     11.1 The  Hoo  Full-Info Control Problem (FICP)  608 
     11.2 The  Hoo  FICP: proofs  625 
     11.3 The  Hoo  FICP: stable case  649 
     11.4 Minimax J-coercivity  665 
     11.5 The discrete-time  Hoo ficp   669 
     11.6 The  Hoo  ficp: proofs  673 
     11.7 The abstract  Hoo  FICP  676 
     11.8 The Nehari problem  680 
     11.9 The proofs for Section   11.8     682 
12    Hoo  Four-Block Problem
 (||Fl(D , Q )|| < γ) 
   (ps)  685
     12.1 The standard  Hoo  problem ( Hoo  4BP)  686 
     12.2 The discrete-time  Hoo  problem ( Hoo  4bp)  705 
     12.3 The frequency-space (I/O)  Hoo  4BP  709 
     12.4 Proofs for Section   12.3     719 
     12.5 Proofs for Section    12.1   --    PX, PY, PZ  733 
     12.6 Proofs for Section    12.2    --    4bp  PX, PY, PZ  758 
13  Discrete-Time Maps and Systems
 (ti & wpls) 
   (ps)  777
     13.1 Discrete-time I/O maps (tic)  779 
     13.2 The Cayley transform  787 
     13.3 Discrete-time systems (wpls(U,H,Y))  792 
     13.4 Time discretization
 (ΔS:   WPLS -> wpls)  805 
14  Riccati Equations (DARE) 
   (ps)  815
     14.1 Discrete-time Riccati equations (DARE)  815 
     14.2 DARE --- further results  820 
     14.3 Spectral and coprime factorizations  829 
15  Quadratic Minimization 
   (ps)  833
     15.1 J-critical control and minimization  833 
     15.2 Standard assumptions in discrete time  839 
     15.3 Positive DAREs  842 
     15.4 Real lemmas  843 
     15.5 Riccati inequalities and the maximal solution  846 
Conclusions (ps) 851
A Algebraic and Functional Analytic Results (ps) 853
| A.1 Algebraic auxiliary results (Inverse( | 
  | 
) = ( | 
  | 
)) 854 | ||||||||
|     A.2 Topological spaces  863 
 A.3 Hilbert and Banach spaces 865 A.4 C0-Semigroups 896  | 
B  Integration and Differentiation in Banach Spaces 
   (ps)  903
     B.1 The Lebesgue integral and   Lp(R;[0,+oo)) spaces  904 
     B.2 Bochner measurability (L(Q;B))  906 
     B.3 Lebesgue spaces (Lp(Q,μ;B))  912 
     B.4 The Bochner integral (/Q: L¹(Q;B) -> B)  922 
     B.5 Differentiation of integrals  937 
     B.6 Vector-valued distributions  D '(Ω;B)  943 
     B.7 Sobolev spaces   Wk,p(Ω;B)  945 
C Almost Periodic Functions (AP) (ps) 953
D Laplace and Fourier Transforms (Lap u = ^u) (ps) 957
E  Interpolation Theorems 
  (ps)   983
     E.1 Interpolation theorems
 (Lp1 +  Lp2  -->   Lq1 +  Lq2)  983 
F   
  Lpstrong,   Lpweak
 and Integration 
  (ps)   993
     F.1 
  Lpstrong,   Lpweak  993 
     F.2 Strong and weak integration  1007 
     F.3 Weak Laplace transform  1013 
References (ps) 1020
  
Notation   
 (ps)  1033
     
Glossary 1044
     
Abbreviations 1045
     
Acronyms 1046