
Chapter 5
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�

)

Godcreatedspectral factorizations;therestis madebyman.

— FrankCallier, in a discussionof theimportanceof spectralfactor-
izations,indefiniteinnerspacesandRiccatiequations,MTNS’98.

This chaptertreatsthe spectralfactorization(or canonicalfactorization)of
MTI maps.Spectralfactorizationwill beusedin laterchaptersfor thesolutionof
severalcontrolproblems.

In Section5.1,we apply theearly factorizationtheoryof IsraelGohberg and
Yuri Leiterer(notbeingaprophet,wecannotreferdirectlyto [God]) to MTIL1

and
MTId � TZ in continuoustime andto � 1 in discretetime. In Section5.2, we adopt
severalMTId factorizationresultsto oursettingandshow thatthefactorizationof
MTI mapscanbereducedto thatof MTIL1

andMTId maps.We thusobtainboth
positiveandindefinitespectralfactorizationresultsfor severalMTI classes.

We alsostatea few other resultsconcerningthe spectralfactorizationof TI
maps. By H, U andY we againdenoteHilbert spacesof arbitrarydimensions.
(Theresultsbasedon [GL73a]couldbemodifiedfor arbitraryBanachspaces.)

Also Section6.4containsrelatedresults,but we havechosenits currentplace
sincethatsectionis aprerequisitefor Sections6.6–6.7andChapter7.
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136CHAPTER5. SPECTRALFACTORIZATION ( , J S )

5.1 Auxiliary spectral factorization results

Grief cantakecareof itself; but to get thefull valueof a joy youmust
havesomebodyto divideit with.

— Mark Twain (1835–1910)

In this sectionwe apply the spectralfactorizationtheory of Gohberg and
Leitererto MTIL1

(Theorem5.1.2), � 1 (Theorem5.1.3)andMTId � TZ (Corollary
5.1.4).In Section5.2,we shall thenrefinetheseandotherresultsto cover further
classesandto providemoreinformationon thefactors.

Firstwedefineaspectralfactorization:

Definition 5.1.1(SpF) A factorization 	�

����� is a spectralfactorizationof	�� TI � U � if ��������� TIC � U � .
For dimU � ∞, this could be rephrasedin the familiar form “if ������� �� H∞ � C ! ;Cn " n � and �	#
 ��$� �� a.e.on iR, then �	%
 ��$� �� is aspectral factorization

of �	 ” ( � L∞ � C ! ;Cn " n � ), by Theorems2.1.2and3.3.1.
Even for a generalU , the identity 	&
'����� can be written as “ �	(
 ��$�)��

on iR” when 	*������� � MTI, but for general	+� TI we must be satisfiedwith
the equality “ �	,
 �� �)�� in L∞

strong� iR; -.� U ��� ”, which neednot imply pointwise

equalityanywhere(for separableU an equivalentformulationis that “ �	/
0�� � ��
a.e.on iR”); seeTheorem3.1.3for details. However, in this chapterwe mainly
studyMTI maps,for whichwehavecontinuityandpointwiseequalityeverywhere
on iR regardlessof U .

As thefirst spectralfactorizationresult,weapplyTheorem5.1.6to theWiener
class:

Theorem 5.1.2(MTICL1
MTICL1
MTICL1

spectral factorization) Let 	�� MTIL1 � U � , i.e., �	�

E 1 f̂ , whereE �2-.� U � and f � L1 � R; -.� U ��� .

Then the Toeplitz operator π ! 	 π ! is invertible iff 	 has a factorization	�
3�$�4� with �������5� MTICL1
.

If, in addition, 	
� MTIL1 � 687 � U � (i.e., f � L1 � R; -:9;� U �<� ), then �����=�� MTICL1 � 6>7 .
Proof: By Lemma5.1.7,we mayapplyTheorem5.1.6to obtaintheabove

factorizationsin thesamewayasin theproofof Theorem5.1.3.

Note that E 1 f � MTIL1 � 687 � U � implies that P0? ��� E 1 �f �A@ φ ? 1Cayley �B
C
π ? f @ φ ? 1Cayley �2D ∞, andthatP! ��� E 1 �f �E@ φ ? 1Cayley � canbeseento beaFredholm
operatorasin theproof of Theorem5.1.3(alternatively, it follows easilyfrom
the fact that E must be invertible, by, e.g., Proposition6.3.1(c)). Seealso
Lemma5.1.5. The parametrizationof all factorsis given in Lemma6.4.5(i).F
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Next we applyTheorem5.1.6to thediscreteWienerclass �� 1. We will usethe
following notation(asin Theorem4.1.1andin Section13.1):

� 1 : 
G� 1 � Z; -.� U �<� : 
+HI� a j � j J Z KK a j �L-.� U � and MN� a j � j J Z M�O 1 : 
 ∑
j J Z M a j M 6QP U R � ∞ SE�

� 1687 : 
+H a �T� 1 KK a j �2-:9;� U � Y � for all j U
 0 SE�
� 1V : 
+H a �T� 1 KK a j 
 0 for all W j � 0 SE�

� 1687X� V : 
+H a �T� 1687 KK a j 
 0 for all W j � 0 SEY
(5.1)

Weequipthesespaceswith convolutionmultiplication

� a j � j J Z Z � bk � k J Z : 
\[ ∑
j

a jbn ? j ] n J Z Y (5.2)

As in Section13.1,onecanverifiesthat � 1 with convolution multiplication is a
Banachalgebra,andthefive otherclassesdefinedabove areclosedsubalgebras.
TheZ-transformof a 
^� a j � j J Z �T� 1 is

�a : 
 ∑
j J Z a jz

j �L9;� D �`_ H∞ � D �4� (5.3)

and
C
a Z b 
 �a�b. The class �� 1 (obviously isomorphicto the Banachalgebra� 1)

is sometimescalled the discreteWiener class. The canonicalprojectionπ ! :� 2 � Z;U �bacd� 2 � N;U � obviously satisfieseπ ! ∑ j J Z zjx j : 
 ∑ j J N zjx j . Recallfrom
LemmaD.1.15thatL2 � ∂D;U �f
�H ∑ j J Z zjx j KK ∑ M zj M 2U � ∞ S andthatH2 � D;U �g
eπ !ih L2 � dD;U �kj .
Theorem 5.1.3(Discrete � 1� 1� 1 spectral factorization) Let 	l�/� 1 � Z; -.� U ��� , i.e.,�	5
 ∑∞

j m ? ∞ zjE j , where E j �n-.� U � for all j and∑ j M E j Mi� ∞.

Thenthe Toeplitz operator eπ ! �	 eπ ! �o-.� H2 � D;U ��� is invertible iff �	 has a
spectral factorization �	p
 �	 ? �	 ! with 	 ! �p�i� 1! and 	 ? �o�q� 1? . If, in addition,	G�r� 1687 (i.e., E j �L-:9;� U � for j U
 0), then �	 ! �5�i� 1687>� ! and �	 ? �5�q� 1687X� ? .

Proof: 1steπ ! �	;eπ ! is invertibleiff �	 hasa spectral factorization:
Thefirst claim follows from (a) and(c) of Theorem5.1.6,assoonaswe have
verifiedtheassumptionsof theTheorem.

Oneeasilyverifiesthatassumptions(1) and(2) of Theorem5.1.6hold (for

both �� 1 and
C� 16>7 ), wherewehavesetP! ∑∞

j m ? ∞ zjE j : 
 ∑∞
j m 0zjE j .

(3a) One easily deducesfrom [HP, p. 97], that the Laurent seriesof a
holomorphic(around∂D) functionconvergesabsolutelyon∂D. Conversely, the
holomorphicfunction∑ j J Z r

?Qu j uE jzj convergesto �	 in �� 1, asr c 1 v . Finally,�� 1 (equivalently, � 1 as a convolution algebra)is inverseclosedby Theorem
4.1.1(d).

(a) If eπ ! �	 eπ ! is invertible, then it is a Fredholm operator, hencethe
assumptionsof (a) aresatisfiedin this case,andtheconversefollows from the
implication(i) w (ii) of (c).
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2s The case 	���� 1687 : Below we show that the assumptionsof (b) are

satisfied,sothattheform of �	 V follows from (b).
Assumptions(1) and(2) werehandledabove.
Becausezn �.x(� ∂D � for n � Z, theassumption(3b) is satisfied.Similarly,

we seethat P0? �	 is in D ∞ when �	,�2� 1687 , so it only remainsto be shown that

P! �	B� z� is aFredholmoperatorfor all z � D.
Theinvertibility of eπ ! �	 eπ ! impliestheinvertibility of �	 on ∂D, by Lemma

5.1.5;in particular, �	;� 1�y�5��-.� U � .
But �	:� z�i
 E0 1 �z � z� , where �z � z� : 
 ∑ j {m 0E jzj �5-:9;� U � for all z � D,

hence�	;� z�|
 �	;� 1�E1 �z � z�}v �z � 1�~����-.� U �E1�-:9;� U � , and ��-L1�-:9 operators
areFredholmoperators,by LemmaA.3.4(B4).

Finally, �	�� �	 ? � �	 ? 1? �r� 1687 impliesthat �	 ! � �	 ? 1! �T� 1687 .
F

Dueto isomorphism,theabove is equivalentto thefollowing:

Corollary 5.1.4(MTId � TZMTId � TZMTId � TZ spectral factorization) Let T � R, and let 	��
MTId � TZ , i.e., 	^
 ∑k J Z E jδ jT , where E j �,-.� U � for all j and M�	$M MTI : 

∑ j M E j Mi� ∞.

Then the Toeplitz operator π ! 	 π ! �G-.� L2 � R ! ;U ��� is invertible iff 	 has
a spectral factorization 	3
�� � � with ��������� MTICd � TZ � U � . If, in addition,	�� MTI 687d � TZ (i.e., E j �L-:9;� U � for j U
 0), then �������p� MTIC 6>7d � TZ � U � .

Proof: This is Theorem 5.1.3 rephrasedaccording to the isomor-
phism stated in Theorem 13.4.5 (note that � �geπ ! � E j � j J Z eπ ! 
 π ! 	 π ! ,� � h � 1! j�
 MTICd � TZ , and � � h � 1? jI
�H�� � KK �&� MTICd � TZ S ). F
Therestof this sectionsconsistsonly of resultsthatareneededfor theproofs

of theaboveresults.
Westarttheproofswith anauxiliary lemma:

Lemma 5.1.5 Let �	d��9;� ∂D; -.� H �<� and set �z : 
 �	�@ φCayley ��9;� iR �H ∞ S ; -.� H ��� . Then eπ ! �	;eπ ! is invertible iff eπ ! �z eπ ! is invertible. Moreover, ifeπ ! �	 eπ ! is invertible, then �	��5��9;� ∂D; -.� H ��� .
Proof: The equivalencefollows from Theorem13.2.3(a1)&(b1)&(c). Ifeπ ! �	;eπ ! is invertible on H2 � D;H � , then �	 is invertible on L2 � ∂D;H � , by

discretizedLemma 6.4.6, hencethen �	 is invertible in L∞
strong� ∂D;H � , by

Theorem3.1.3(a1),hencein 9;� ∂D; -.� H ��� , by TheoremF.1.9(s4)(appliedto
Q : 
 h 0 � 2π � ). F
The following “raw result” from [GL-Crit] and[GL73a] is the basisfor the

above factorizationresults:

Theorem 5.1.6 LetH bea Hilbert space. Let x(� ∂D � bethesetof rationalscalar
functionswith polesoutside∂D. Let D��39;� ∂D; -.� H �<� bea Banach algebra with
a norm Mf��M�� s.t.



5.1. AUXILIAR Y SPECTRALFACTORIZATION RESULTS 139

(1) sup∂D M��	;������M 6~P H Rf� c M��	�M � for all �	��LD for somec � 0, and

(2) D is the direct sum D|!%��D ?0 , where D|!,
�DT_ H∞ � D; -;� , D ? 
�D�_
H∞ � Dc

; -;� , and D ?0 
+H f �LD ? KK f � ∞ �g
 0 S .
LetP! : D.c�D ! andPo? : 
 I v P! : D�c�D ?0 bethecorrespondingprojections.

Let �	��5��D . Thenwehavethefollowing:

(a) Let functionsholomorphicon a neighborhoodof ∂D be a densesubsetofD , and let D be inverseclosedin 9 (i.e., if �	+��D�_���9;� ∂D; -.� H ��� , then�	 ? 1 �LD ).
Then eπ ! �	;eπ ! is a Fredholmoperator on H2 � D;H � iff �	 hasa factorization
of theform

�	�
(�	 ? G �	 ! � �	 ! �5��D ! �~�	 ? ����D ? � G � z�g
 P0 1 n

∑
j m 1

zκ j Pj � (5.4)

where n � N, Pj ( j 
 1 ��Y�Y�Y�� n) are disjoint one-dimensionalprojections,
P0 
 I v ∑ j Pj , andκ j � Z �*H 0 S ,

(b) Let therational functions∑n
j m 1 r jTj (r j ��x(� ∂D �4� Tj �#-.� H � for all j) be

a densesubsetof D .
Let P! �	:� z� bea Fredholmoperator for all z � D, and let Po? �	3�#D ∞. Then�	 hasthefactorization(5.4)with �	 ? v I ���	 ? 1? v I �LD ?∞ : 
&D ∞ _ H∞ � Dc

; -;� .
Here theset D ∞ is theclosure (in D ) of rational -:9 -valuedoperators

n

∑
j m 1

r jTj � r j ��x(� ∂D �4� Tj �L-:9 for all j Y (5.5)

(c)Letall theassumptionsof (a) or thoseof (b) besatisfied,andlet �	%
G�	 ? G �	 !
betheresultingfactorization.Thenthefollowing areequivalent:

(i) G 
 I ,

(ii) eπ ! �	 eπ ! is invertibleon H2 � D;H � ,
(iii) eπ ! � �	�@ φCayley � eπ ! is invertibleon   ¡ π ! L2 � R;H � .

Moreover, if (i) holds and we set �� : 
 �	 ! @ φCayley, ��¢� s� : 
d� �	 ? @
φCayley ����v s̄��� , then �������'� H∞ � C ! ; -.� H ��� , ��$�)���

�	#@ φCayley on iR, and

all spectral factorizationsof �	 aregivenby �	�
�� �	 ? T ��� T �	 ! � , T ����-.� U �
(i.e., �	�@ φCayley 
�� T ��:����� T ��:� ).

We remarkthat the original resultsin [GL73a] and[GL-Crit] aregiven in a
moreabstractandgeneralform.

Do notmix eπ ! �	 with P! �	 ((therestrictionof) P! is anoperatoron
C
MTI, i.e.,

it operatres�	 , whereaseπ ! is anoperatoron H2 (soare �	 andP! �	 too)).
If H is finite-dimensional,thenit is possibleto formulatethetheoremwithout

a referenceto Fredholmoperators;seeTheoremsII.3.1 andII.4.1 of [CG81].
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Proof: (a) This is Theorem2 of [GL-Crit] (use(13.29)andnotethat “PA”
in [GL-Crit] refersto composition,i.e., PAu : 
 P � Au� , asstatedon p. 102 of
[GL72]; P doesnotoperatedirectlyon A).

(b) This is Theorem2.1,p. 40,of [GL73a] (cf. pp.38–39of [GL73a]).
(c) 1s By Lemma5.1.5,(ii) and(iii) areequivalent.Because�	 ? @ φCayley �

H∞ � C ? ; -.� H ��� , we have ��+��� H∞ � C ! ; -.� H �<� ; clearly ��+��� H∞ � C ! ; -.� H ���
too. If (i) holds,then � �	¢@ φCayley ��� ir �X
 ��.��v ir � ����¢� ir �X
 ��¢� ir � ����¢� ir � for r � R,
andtheuniquenessclaim follows from Lemma6.4.5(a).

Thus,only (i) £ (iii) is left to beproved.
2s “(i) £ (iii)”: Set �¤ : 
 D @ φCayley �T9;� iR ��H ∞ S ; -.� H �<� . Then

¤ � TI � H � ,��������� TIC � H � , and
z 
/��� ¤ � .

Becauseπ ! � π ! 
�� π ! andπ ! �$� π ! 
 π ! �$� areinvertibleon π ! L2 (the
inversesareπ ! � ? 1π ! andπ ! � ? � π ! ), theequation

π ! z π ! 
 π ! � � ¤ � π ! 
 π ! � � π ! ¤ π ! � π ! (5.6)

implies that π ! ¤ π ! is invertible if f π ! z π ! is. By Lemma5.1.5,this canbe
paraphrasedas“ eπ ! G eπ ! is invertible on H2 � D;H � if f eπ ! �	;eπ ! is”. Of course,
G 
 I is sufficient,sowestudythenecessity:

Let eπ ! G eπ ! be invertible. If u j 
 Pju j � H and κ j � 0, then

u : 
 1u j U� eπ ! G eπ ! H2, becausePj eπ ! G eπ ! 
 eπ ! sκ
j eπ ! Pj ; similarly no κ j canbe

negative,hencen 
 0 andG 
 P0 
 I .
F

(The proofsin [GL-Crit] and[GL73a] go asfollows: first it is assumedthat	 is holomorphicaroundthe unit circle, then this is appliedto “rational finite-
dimensional	 ’s”, thenthedensityof suchoperatorsin MTIL1

is combinedwith
thefactthatany elementneartheidentity hasa spectralfactorization.)

Theabovetheoremcanbeappliedto theWienerclass:

Lemma 5.1.7 TheclassD : 
�H �	¢@ φ ? 1Cayley KK 	�� MTIL1 � U ��S with M �	�@ φ ? 1Cayley M � : 
M�	tM
MTI L1 satisfiestheassumptionsof (1), (2), (a) and(b) (on D ) of Theorem5.1.6

whenwedefinetheprojectionP! �2-.��DA��D|!b� by

P! : � E 1 �f �`@ φ ? 1Cayley ac E 1 Cπ ! f @ φ ? 1Cayley (5.7)

for E �p-.� U ��� f � L1 � R;U � (i.e., for E 1 �f �^¥MTIL1 � U � ). Moreover, in this

case, D ∞ correspondsto maps	�� MTIL1 � 687 � U � whosefeedthroughoperator is
compact.

Proof: We remarkthat now D denotesthe Cayley transformsof functions

in ¥MTIL1
, with their originalnorm,exactly asin [GL73a,Theorem4.3].

Conditions(1) and(2) canbeprovedasin [CG81,pp.62–63](which treats
thecaseB 
 C).

(a)Thefunctionsholomorphiconaneighborhoodof ∂D arecontainedin D ,
by LemmaD.1.23. The densityfollows from that the rationalfunctions(case
(b) below). Inverse-closednesswasshown in Theorem4.1.1(a)(usetheCayley
transform).
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(N.B. Although [GL73a, p. 44] suggeststhat the strongly measurable
(sil’no izmerimyj) Wiener class would do, this strong measurabilitymust
meanBochnermeasurability(with respectto theuniform operatornorm),not
measurabilitywith respectto thestrongtopology, because(in (b)) theclosure
of theFourierinversetransformsof rationalfunctions(with polesoff R �TH ∞ S )
is L1 � R;B� , notL1

strong� R;B� ; asimilar remarkappliesto (a).)

(b) 1s To show thattherationalfunctionsaredensein ¥MTIL1 � B� , we work
asfollows:

Now for �	�
 E 1 �f ��¥MTIL1 � B� we may replace �f by ∑n
k m 1Tkχ̂Ek

, with
Tk �o-.� B� for all k, by the densityof simple functionsin L1 (seeTheorem
B.3.11(a1)),andthenreplaceeachχ̂Ek

by somerational function, by [CG81,

pp.62–63],to endupwith a rationalfunctioncloseto �	 , asrequired.
2sLD ∞: If E �G-:9;� U � and f � L1 � R; -:9;� U ��� , then the above approx-

imation provides (use Theorem B.3.11(a1) with B : 
¦-:9;� U � ) a rational
function of form (5.5); conversely, if �	�@ φCayley is of the form (5.5), then�	Lv E ��  ¡ L1 � R; -:9;� U ��� , by LemmaD.1.23.

F

Notes
During the third quarterof the last century, Budjanu,Gohberg and several

othersdevelopedanextensive theoryon the factorizationof MTIL1
mapsandof

mapsin certainother TI classesfor the purposesof singular integral equation
theory. Some of the articles (mainly in Russian)also treat a more general
factorizationwhereπ ! 	 π ! and � neednotbeinvertible(andtheword “spectral”
or “canonical”is dropped).

Soonthistheorybecamepopularalsoamidstcontroltheorists,andtodaymany
articlesin theinfinite-dimensionalcontroltheoryarebasedprincipallyonspectral
factorization.Also thefactorizationtheoryis still beingrapidlydeveloped.

In casedimU � ∞, the most important resultscan be found in English in
the book [CG81]; a somewhat more up-to-datebook on the subject is [LS].
Both booksalsocontainthecase(“generalizedspectralfactorization”)wherethe
discrete-time( § -transformed)factorsareallowedto bein � H2 over theunit disc
insteadof � H∞ (cf. Example8.4.13).Thesebooksalsohave extensive reference
lists.

Theapplicationsof this theorygivenin thissectionareratherstraightforward,
andmostof themhavefinite-dimensionalanalogiesin theliterature.
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5.2 MTI spectral factorization ( ¨,©�ª«©�¬ ­ MTI )

Each Man is in hisSpectre’s power
Until thearrival of thathour,
WhenhisHumanityawake,
AndcasthisSpectre into theLake.

— William Blake (1757–1827)

Thepurposeof this sectionis to establishpart“(II) £ (III)” of theequivalence
on page21 for several systemsandproblems. We build up a seriesof lemmas
on MTI endingup with two existencetheoremson spectralfactorization,bothof
which coverseveralMTI subclasses(andTI in thepositivecase).

Our strategy is the following: We first show that if a map 	,� MTI � U � has
an invertible Toeplitz operator π ! 	 π ! (on L2 � R ! ;U � ), then also the discrete
(atomic) part of the maphasan invertible Toeplitz operator(Lemma5.2.3(b)).
Thenwe adoptseveralMTId factorizationresultsto our settingandshow thatby
factorizingfirst the discretepart of a MTI mapusingtheseresultsandthenthe
“remainderMTIL1

part” by usingtheresultsof Section5.1,oneobtainsaspectral
factorizationof theoriginalmap(Theorems5.2.7and5.2.8).

Westartby listing somebasicfactsonspectralfactorization:

Lemma 5.2.1(SpectralFactorization) Let 	o� TI � U � .
(a) Then 	,® 0 iff 	 has the spectral factorization 	,
������ for some �0�� TIC � U � .

If this is thecase, thenall spectral factorizationsof form 	�
/¯ � ¯ aregiven
by 	5
^� L �°����� L �°� , whereL �5��-.� U � is unitary.

Assumenow that 	�� TI � U � hasa spectral factorization 	/
&�$�4� for some�������5� TIC � U � . Thenwehavethefollowing:

(b) TheToeplitzoperator π ! 	 π ! is invertibleon π ! L2, andπ ! � ? 1π ! � ? � π !
is its inverse.

(c) If 	�� TI ? ω _ TIω for someω � 0, then �����^��� TICexp � U �I_ TIC ? ω � U � .
(d) If 	±
/	 � , then �/
3� � Sfor someS 
 S� �5��-.� U � ; thus,then 	�
/� � S� .

If, in addition, 	G� TIω � U � for someω U
 0, then �,�p� TICexp � U � .
(e) The map 	 d : 
 R	 R� TI � U � has the co-spectralfactorization 	 d 
� d �²� d �<�

(obviously, � d ��� d �5� TIC � U � ).
(f) All spectral factorizationsof 	 are given by 	�
³� L ? �´�����)� L �°� , where

L �p��-.� U � .
Theorems5.2.7 and 5.2.8 below list classesthat are closedw.r.t. spectral

factorizationandfor which the converseof (b) holds(i.e., the Toeplitz operator
π ! 	 π ! is invertibleif f 	 hasaspectralfactorization).
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The uniquenessresult in (f) saysthat X : 
0��¢�µ1 ∞ �q�G��-.� U � canbe chosen
arbitrarily, andit determines� , � andY 
 EX

? 1 �G�t-.� U � (we have E � X � Y ���-.� U � , by Proposition6.3.1(a3)).
Proof: (Part of this is givenin Lemma4.3of [S98c].)
(a)This is Lemma4.3(iv) of [S98c],but its proofneedsclarificationfor the

unseparablecase:useTheorem3.7, p. 54 andTheorem3.4, p. 50 of [RR] to
obtain 	5
�¯$��¯ , whereRan�¶¯$�|
 L2 � R;U2 � for someclosedU2 � U (because¯ is coercive and“outer”), find E ����-.� U2 � U � (suchanE exists,by Lemma
2.2.1(c4))andset � : 
 E ¯ .

(We would obtainanalternative,control-theoreticproof of (a) (with · � J ·
in placeof 	 , ·,� TIC) asin Theorem14.3.2.)

(b) Using the fact that π ! � ? � π ! 
 π ! � ? � etc. (by causality),oneeasily
verifiesthat π ! � ? 1π ! � ? � π ! is the inverseof π ! � � � π ! on π ! L2 (i.e., that
theirproductis π ! ).

(c) Because�G
o� ? � 	p� TI ? ω, wehave � ? 1 � TI ? ε ¸º¹ 0 for someε »E� 0, by
Lemma2.2.7,hence�3��� TI ? ε _ TI ? ω _ TIC 
^� TIC ? ε � U � Y �)_ TIC ? ω � U � Y �
for someε � 0. Thesameholdsfor � , because�3
/� ? ��	b� .

(d) Now 	G
,�$���,
&	b��
(�°��� , hence�(
 S� for someS �/��-.� U � , by
(f). The latter claim is obtainedfrom Proposition5.2.2(because	(� TIω w	b��� TI ? ω).

(e) Obviously 	 d 

�����'w 	�

� d �²� d ��� , and, by Lemma 2.2.3, �¼�� TIC £�� d �p� TIC.
(f) Let 	,
����0 � 0 also be a spectralfactorization. Then L : 
^� ? �0 ���:
� 0 � ? 1 � TIC and L �:

�q� ? 10 � TIC, henceL �/-.� U � , by Lemma 2.1.7.

Obviously, L 
/� 0 � ? 1 is invertible.
F

In part(c) above,westatedthatthespectralfactorizationof an“exponentially
stable”mapis exponentiallystable.Below we shallprove this claim andthefact
thatthesameholdswith MTI or somethinganalogousin placeof TI:

Proposition 5.2.2(Exponentially stableSpF) Let ½0� TI beinverse-closedand
adjoint-closed(cf. Theorem4.1.1andLemma4.1.3),andset �½ : 
p½�_ TIC and

½ r : 
(H er ¾ 	 e? r ¾ KK 	��¢½nSE� �½ r : 
(H er ¾ · e
? r ¾ KK ·&� �½nSE� r � R Y (5.8)

Assumethat ω � 0, 	��r½ ? ω � U �¿_B½ ω � U � (e.g., 	o
&	b�B�T½ ? ω � U � ), and 	 has
thespectral factorization	5
3�$�4� , where �����^�p� �½�� U � .

Then�����+��� �½ ? ε � U � Y �E_ �½ ? ω � U � Y � for someε � 0; in particular, � V 1 and� V 1 areexponentiallystable.

In particular, if 	3
(	b��� MTI is “exponentiallyMTI”, i.e., 	(� MTI ? ε for
someε � 0, thenits (possible)spectralfactorsare“exponentiallyMTI”.

Proof: Because�^
^� ? ��	+�L½ ? ω (recall that H z � KK z �n½ ω SB
(½ ? ω, by
Lemma4.1.3(b)),we have � ? 1 �T½ ? ε for someε � 0, by Lemma2.2.7. But½ r _ �½�� �½ r for r � R, hence � �^� �½ ? ε � U � Y �g_ �½ ? ω � U � Y � . Similarly,�/
/� ? ��	b���p� �½ ? ε � U � Y �`_ �½ ? ω � U � Y � . F
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Now we turn our attentionto MTI maps. Our first task is to show that the
invertibility of theToeplitzoperatorof 	�� MTI impliesthatof its discretepart:

Lemma 5.2.3(MTI Toeplitz) For 	0� MTI ( 
 MTId 1 L1 Z ) we write 	 d : 

Π �À	b� for thediscretepart (of theform ∑∞

k m 1Lkδ �k�4v tk � Z )
Let 	G� MTI � U � Y � .

(a) If 	o�p� TI then 	 d �5� MTId.

(b) If 	+� MTI � U � Y � and π ! 	 π ! �,��-.� L2 � , then π ! 	 dπ ! �,�t-.� L2 � (and	i�²	 d ��� TI)

(c) If 	�� MTI � U � and 	�Á 0, then 	 d Á 0.

Proof: (a)This is containedin Theorem4.1.1.
(b) We will prove that if the Toeplitz operatorT Â : 
 π ! 	 π ! of 	�� MTI

is coercive, i.e., M T Â u MtÁ εu for all u � π ! L2, thenso is T Â d (with the same
ε � 0).

Claim (b) follows from this, becauseT is invertible if f T and T � are
coercive, by Lemma A.3.1(c3). (The last two claims follow from (a) and
Lemma2.2.2(a1).)

Define
z � MTId and f � L1 by

z
: 
+	 d and f Z : 
�	�v z (so that 	�
z

u 1 f Z u for all u � L2).
Let δ � 0 be arbitrary. Let u � L2 � R ! ;U � be otherwisearbitrary butM u M 2 
 1. By LemmaD.1.11(b),thereis Tδ � 0 s.t.

T � Tδ 
gw M �f ���º� �u �k�4v iT ��M 2 � δ Y (5.9)

Because�z � i ��� is almostperiodic,by LemmaC.1.2(h2),thereis T � Tδ s.t.MÃ�z � it �Evr�z � i � t v T ����MA� δ for all t � R. Therefore(recallthat eπ ! �u : 
 Cπ ! u, henceM eπ ! M~
^M π ! MA
 1; notealsothat M eiT ¾ u M 2 
�M u M 2 
 1 and  ¡ � eiT ¾ u�>
 �u �k��v iT � )
M π ! z u M 2 
 M π ! eiT ¾ z u M 2 
 M eπ !   ¡ � eiT ¾ z u��M 2


 M eπ !
C� z u�Ä����v iT ��M 2 
 M eπ ! �z ����v iT � �u ����v iT ��M 2

Á M eπ ! �z �u ���4v iT ��M 2 v�M eπ ! h �z ����v iT �8vn�z j �u ����v iT ��M 2
Á M eπ ! �z �u ���4v iT ��M 2 v�M δ �u M 2 Á M eπ ! �	 �u ����v iT ��M 2 vGM eπ ! �f �u ���4v iT ��M 2 v δ

Á M eπ ! �	 �u �k�4v iT ��M 2 v δ v δ 
 M π ! 	 eiT ¾ u M 2 v 2δ

 M π ! 	 π ! eiT ¾ u M 2 v 2δ 
 ε v 2δ Y

Becauseδ � 0 wasarbitrary, M π ! z u M 2 Á ε 
 ε M u M 2.
(c) To obtaina contradiction,assumethat 	G� MTI � U � , 	GÁ 0 and 	 d UÁ 0.

Then �	oÁ 0 on iR but thereis u0 � U s.t.g : 
GÅ u0 �k�	 d �k��� u0Æ U satisfiesg � ir0 �iUÁ 0
for somer0 � R.

Set δ : 
 d � g � ir0 �4� h 0 ��1 ∞ ��� 0. Let f � L1 � R; -.� U ��� be the one for which	p
�	 d 1 f Z . By LemmaD.1.11(b),thereis Tδ ��Ç r0 Ç s.t. M �f � ir ��M 6QP U R � δ forÇ r Ç�� Tδ.
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Because�	 d � i ��� is almostperiodic,by LemmaC.1.2(h2),thereis T � 2Tδ
s.t. M��	 d � it �>vn�	 d � i � t v T ����M*� δ È 2 for all t � R. Thenthedistancefrom

Å u0 �k�	;� ir0 1 T � u0Æ 
 g � ir0 1 T �I1�Å u0 � �f � ir0 1 T � u0Æ (5.10)

to h 0 ��1 ∞ � is greaterthanδ v δ È 2 � 0, acontradiction,asrequired.
F

Next westatethespectralfactorizationresultsof Yuri Karlovich [Karlovich91]
andothersfor matrix-valuedatomicmeasures:

Lemma 5.2.4 Let 	5
 MTId � Cn � . Then	 hasa spectral factorization	5
�� � �
with �������p� MTICd � Cn � iff π ! 	 π ! �p��� π ! L2 � .

Moreover, if suppd �É	b��� S, whereS 
 S v S � R, thensuppd �À���4� suppd �²�$�*�
S.

In particular, if theatomsof �	 areatpointsnT, n � Z for someT � 0, thenso
arethoseof � .

(Note from Lemma5.2.1(f) that the factorizationis uniquemoduloa multi-
plicativeconstant.)

Proof: The first claim is a rephrasementof the equivalence“4) £ 6)” of
Theorem7 of [Karlovich93] (use the fact that 	 π ! 1 π ? is invertible on
L2 � R;Cn � if f π ! 	 π ! is invertibleonL2 � R ! ;Cn � , by LemmaA.1.1(b1)&(b2)).

TheS-claim follows from [RSW, Theorem6.1].
F

Weshallusethefollowing lemmain thepositivecase:

Lemma 5.2.5(MTIdMTIdMTId SpF when M I v�	$M;� 1M I v2	tM�� 1M I v�	tM;� 1) Assumethat 	«� MTId � U � andM I v�	tM TI P U R � 1. Then	�
3�$�4� for some���¶���5� MTICd � U � .
Moreover, if suppd �É	b��� S, whereS 
 S v S � R, thensuppd �À���4� suppd �²�$�*�

S.

Proof: 1sG	l
Ê�$��� for some ��������� MTICd � U � : Condition M I v	$M TI P U R � 1 is equivalentto conditionsupt J R M I v �	:� it ��M 6QP U R � 1, by Theorem
3.1.3(d)andTheorem2.6.4(e1).

By TheoremI of [BR], it followsthat 	#
p�$�4� for some�����&� MTICd � U � .
2s suppd �²�°�4� suppd �²����� S: Assumethat suppd �À	b��� S and S 
 S v

S � R. We shall examine the proof of Theorem I so as to show that
suppd �²�°�4� suppd �À�$�i� S. (NotethattheFouriertransformof [BR] hasanextra
reflection;this is just amatterof notation.)

By LemmaC.1.2(f5),wehave M A v I M 6QP APR � M A v I M ∞ � 1. FromLemma
C.1.2(f4)weobserve that M Π Ë 0 � ! ∞ R M 6QP APR � 1. Consequently,

� ! φ : 
 ∑
k J N � Π Ë 0 � ! ∞ R � I v A� Π Ë 0 � ! ∞ R � kφ (5.11)

convergesin AP � R;U � , for all φ � U , whereAP denotestheBesicovich space
(seeLemmaC.1.2(f4)).Sincetheatomsof � Π Ë 0 � ! ∞ R � I v A� Π Ë 0 � ! ∞ R � k belongto
S �¢H 0 Si
 S, for eachk � N, alsotheatomsof � ! φ belongto S. Becauseφ � U
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wasarbitrary, theatomsof � ! belongto S. By p. 18 of [BR], � ! � ¥MTICd,
hence� ! � ¥MTICd � S,

By analogousproofs,oneshows that � ! � ¥MTICd �S and � ? � ¥MTICd �S � .
FromtheformulaA 
�� I 1L� ? �k� ! of p. 51of [GL-Identity] (which is thebasis
of theproofof [BR]), weobservethat � ! 
p� , I 1�� ? 
p�$� , where	#
o����� is
aspectralfactorizationof 	 . Thiscompletestheproof (recallLemma5.2.1(f)).F
Indeed,thepositivecaseis obtainedasa corollary:

Corollary 5.2.6 Let 	�� MTId � U � . Then 	�® 0 £ 	(

����� for some ���� MTICd � U � .
Moreover, if suppd �À	b��� S, whereS 
 S v S � R, thensuppd �²�°�4� suppd �À�$�q�

S.

Proof: Set
z

: 
o	bÈXM�	�M TI � MTId � U � . ThenI Á z ® 0, henceM I v z M�� 1,
by LemmaA.3.1(b9). By Lemma5.2.5, it follows that

z 
^�$��¯ for some���µ¯&� MTICd � S. UseLemma5.2.1(a)&(f) to observe that
z 
 ��°� �� for some��,� MTICd � S. Set � : 
0M�	$M 1Ì 2TI ��&� MTICd � S.

F
Now wecancombinetheaboveresultsto two theorems:

Theorem 5.2.7(MTI spectral factorization) Let S 
 S v S � R, and let either
(1.) or (2.) hold,where

(1.) ½ is oneof theclassesMTIL1
, MTIL1 � 687 , MTITZ , MTI 6>7TZ , MTId � TZ , and

MTI 687d � TZ ;

(2.) dimU � ∞ and ½ is oneof theclassesMTI , MTId, MTIS, andMTId � S.

Let 	��%½�� U � , and set �½ : 
�½�_ TIC. Thenthe Toeplitz operator T Â : 

π ! 	 π ! �n-.� L2 � R ! ;U ��� is invertibleiff 	 hasa spectral factorization

	�
3� � ��� where �������p� �½�� U �4Y (5.12)

Let 	 , � and � beasabove. Then	 d 
3���d � d is alsoa spectral factorization
(in MTId), where �µ� d denotesthediscretepart. Moreover, if suppd �É	b��� S, then
suppd �À���°� Sandsuppd �À�$�i� S.

If, in addition, ω � 0 and 	 �G½ ? ω _n½ ω, then �;�¶�Í�l� �½ ? ε � U � Y �b_�½ ? ω � U � Y � for someε � 0; in particular, � V 1 and � V 1 areexponentiallystable.

If we merely know that 	0� TI, then it is no longer guaranteedthat the
“canonicalfactors” � and � arestable,seethenotesonp. 148for details.

However, positive results can be given also for certain other cases,see
Theorems5.2.8and9.2.14.

Proof: 1s Thediscretepart 	 d 
GÎ � ¯ :
If (5.12)holds,thenT

? 1Â 
 T ÏgÐ 1T ÑQÐ 1, so assumethat T Â is invertible. Then
so is T Â d , by Lemma5.2.3(b),sowe canfactor 	 d as Î � ¯ , Î(�µ¯(�o� MTICd

( ¯;�¶Î �5� MTIC 687d , if ½'
 MTIL1 � 6>7 , ½'
 MTI 687TZ , or ½'
 MTI 687d � TZ , because
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in thosecases	 d � MTI 687d ) by Corollary5.1.4in case(1.) andby Lemma5.2.4
in case(2.).

Moreover, if suppd �É	b�T� S, then suppd �¶¯$��� suppd �ÀÎ/�T� S, by Lemma
5.2.4 in case(2.); in case(1.) either S 
ÊH 0 S , in which case 	*�µ¯��¶Î �-.� U � , or S containsa set of the form T » Z for someT » � 0, in which case
suppd �¶¯$�4� suppd �ÉÎ/��� T » Z � S, by Corollary5.1.4.

If 	±v#	 d 
 0, thenwe can take � : 
�¯;�Ò� : 
+Î to obtain the required
result,but in thegeneralcaseweproceedasfollows.

2s Theabsolutelycontinuouspart 	 ac : 
/	�v�	 d:
BecauseL1 Z is anidealof MTI, and 	 ac � L1 Z , wehave Î ? ��	 ac̄

? 1 
 g Z for
someg � L1, hence

Î ? � �À	 d 1%	 ac ��¯ ? 1 
 I 1 g (5.13)

canbe factorizedas Ó ��Ô with Ói� Ô �/� MTICL1
(with Ói� Ô �/� MTICL1 � 6>7 , if

( 	 ac andhence)g Z � L1 � R; -:9;� U ��� Z ), by Theorem5.1.2andthe invertibility
of T Õ�Ð�Ö Â�× Ð 1, which follows from Lemma2.2.2(b).

Thus, we have 	�
l� � � , where � : 
\ÓQÎ ��� MTIC and � : 
 Ô ¯,�� MTIC. Moreover, � d 
�Ó d Î d 
/Î d 
/Î and � d 
 Ô d̄ d 
�¯ d 
�¯ , hence	 d 
/� �d � d.
Thelastparagraphof thetheoremfollows from Proposition5.2.2.

F
TheassumptionthattheinputspaceU mustbefinite-dimensional,is probably

superfluouseven in case(2.); there may be expectedresults in this direction
in the nearfuture. We have written this work basedmore on hypotheses(see
Hypothesis8.4.7)thanonclasses,in orderfor thereaderto easilyincorporateany
new factorizationresultsto this work.

In theuniformly positivecase(whichcanbeusedfor minimizationproblems,
positive andboundedreal lemmasandanalogous),we do not needany dimen-
sionalityrestrictions:

Theorem 5.2.8(PositiveMTI SpF) LetU bea Hilbert space, let S 
 S v S � R,
andlet ½ beoneof theclassesTI, MTI , MTId, MTIS, MTId � S, MTIL1

, MTIL1 � 687 ,
MTITZ , MTI 687TZ , MTId � TZ , andMTI 6>7d � TZ .

Let 	^�#½�� U � , and set �½ : 
�½�_ TIC. Then 	+® 0 iff 	 has a spectral
factorization 	±
3� � ��� where �&�5� �½�� U �4Y (5.14)

Let 	 and � be as above. Then 	 d 
+�°�d � d is also a spectral factorization
(in MTId), where � d denotesthe discretepart. Moreover, if suppd �À	b�B� S, then
suppd �²�°�i� S.

If, in addition, ω � 0 and 	���½ ? ω, then ���/� �½ ? ε � U � Y �¿_ �½ ? ω � U � Y � for
someε � 0.

If 	3Á 0, then 	o® 0 if f 	 is invertible;equivalently, if f π ! 	 π ! is invertible
(by LemmaA.3.1(b1)andLemma2.2.2(d)).

Proof: 1s If (5.14)holds,then, 	�® 0, by, e.g.,Lemma5.2.1(a).
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2s Let 	/® 0. Thenπ ! 	 π ! ® 0, by Lemma2.2.2(d),hencethe claims
follow from Theorem5.2.7 (because	�
l�°� S� , by Lemma 5.2.1(d), and
clearly S ® 0, so 	'
Ø� S1Ì 2 ���<��� S1Ì 2 �°� , ��� �½ ) when we note that the
assumptiondimU � ∞ in the proof of Theorem5.2.7canbe removed in this
positivecase,by using,in case(2.),Corollary5.2.6insteadof Lemma5.2.4and
Lemma5.2.3(c)insteadof (b).

3s The exponential(measure)stability is obtainedas in Theorem5.2.7.F

We have presentedour spectralfactorizationresultsfor severalsubclassesof
MTI in orderto getmorespecificinformationon thesmoothnessof thespectral
factors.Forexample,theuniformhalf-plane-regularityof MTICL1

mapsallowsus
to evensimplify theRiccatiequations,providedthat thePopov operatorbelongs
to MTIL1

.

Notes
Exceptfor (e) and the TICexp claims,Lemma5.2.1 is containedin Lemma

4.3of [S98c].Proposition5.2.2wasestablishedin thefinite-dimensionalpositive
MTITZ casein Lemma3.3of [Winkin], by usinganalyticextensions.

For finite-dimensionalU , most of Theorem5.2.8 (for MTIL1
, MTId and

MTITZ) is containedin Theorem3.1Mof [Winkin] (andin [CW99]). AlsoLemma
5.2.3(c)andour strategy to startwith a factorizationof thediscretepartarefrom
[Winkin]. (ThespaceU is assumedto befinite-dimensionaland 	 is assumedto
beuniformly positiveeverywherein [Winkin].)

As obvious from the proof, Lemma5.2.4 is essentiallycontainedin [RSW]
(originating in [Karlovich91] and the joint articlesof Yuri Karlovich and Ilya
Spitkovsky et al.).

Lemma5.2.5 and Corollary 5.2.6 are essentiallycontainedin [BR] except
for the claims on S. Our proofs usethe ideasof the proof of Theorem6.1 of
[RSW]. The exact assumptionin [BR] is “ ÇÙÅ �	 u0 � u0Æ ÇEÁ ε M u0 M 2U ”, henceslightly
more generalthan “ 	�® 0” (but doesnot allow for, e.g., 	�
ÛÚ I 0

0 ? I Ü ). See
[Karlovich93] (particularly Theorems14 and 15) for similar (not analogous)
factorizationresultsfor [semi-]almostperiodic functions(with valuesin Cn " n),
for further equivalent conditionsand for factorizationsof functionswith non-
invertibleToeplitzoperators.

For any 	�� TI s.t. 	�Á 0, theinvertibility of theToeplitzoperatoris equivalent
to the existenceof a spectralfactorization,by Theorem5.2.8. For a general	+� TI s.t. π ! 	 π ! is invertible, we needan extra assumption,as in Theorems
5.2.7,Theorem9.2.14or 9.14.4.

Indeed,for a general	3� TI � Cn � s.t. π ! 	 π ! is invertible,we only know the
existenceof a “Generalizedcanonicalfactorization”(seeSection9.15,[CG81]or
[LS]) where�	L
 ���� �� a.e.on iR andtheCayley transformsof ���� ��p� H � C ! ;Cn " n �
areinvertiblein H2 over theunit disc. By Example8.4.13,these(uniquemodulo
a multiplicativeconstant)generalizedfactorsneednot bewell-posed(i.e., �� and�� maybeunboundedat infinity) unlessn 
 1.

In and below Theorem9.14.6,we extend the above resultson generalized
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canonicalfactorizationfor infinite-dimensionalU (assumingthat 	 is theToeplitz
operatorcorrespondingto somecostfunction;this is theonly casefor whichsuch
factorizationsareneededin controltheory). In this weaker result, ��¢� �̄º��� and �� ? 1
areonly known to beH2

strongover theunit disc(H2
strong� D; -.� U ��� ).

Obviously, the Cayley transform makes spectral factorization of
H∞ � C ! ; -.� U �<� mapsequivalent to the spectralfactorizationof H∞ � D; -.� U �<�
maps.Unlike in continuoustime, thegeneralizeddiscrete-timecanonicalfactors
are always well-posed,by Theorem9.14.6, but still not necessarilystable,as
notedin Example8.4.13.Seealsothenotesonpp.141and543.



150CHAPTER5. SPECTRALFACTORIZATION ( , J S )


