Chapter 5

Spectral Factorization (E = Y*X,
D*ID = X*SX)

Godcreatedspectal factorizations;therestis madeby man.

— FrankCallier, in a discussiorof theimportanceof spectralfactor
izations,indefiniteinnerspacesndRiccatiequationsMTNS’98.

This chaptertreatsthe spectralfactorization(or canonicalfactorization)of
MTI maps.Spectrafactorizationwill beusedin laterchapterdor the solutionof
severalcontrolproblems.

In Section5.1, we apply the early factorizationtheory of IsraelGohbeg and
Yuri Leiterer(notbeingaprophetwe cannotreferdirectlyto [God]) to MTI L* and
MTlg 1z in continuoustime andto ¢ in discretetime. In Section5.2, we adopt
severalMTI 4 factorizatiorresultsto our settingandshow thatthefactorizationof
MTI mapscanbereducedo thatof MTI L* and MTI4 maps.We thusobtainboth
positive andindefinitespectrafactorizationresultsfor severalMTI classes.

We also statea few otherresultsconcerningthe spectralfactorizationof Tl
maps. By H, U andY we againdenoteHilbert spacesf arbitrary dimensions.
(Theresultsbasedn [GL73a] could be modifiedfor arbitraryBanachspaces.)

Also Section6.4 containsrelatedresults but we have choserits currentplace
sincethatsectionis a prerequisitdor Sections$.6—6.7andChapter7.
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5.1 Auxiliary spectralfactorization results

Grief cantake care of itself; but to get thefull valueof a joy youmust
havesomebodyo divideit with.

— Mark Twain (1835-1910)

In this sectionwe apply the spectralfactorizationtheory of Gohbeg and
Leitererto MTIL" (Theorem5.1.2),41 (Theorem5.1.3)and MTlq4 1z (Corollary
5.1.4).In Section5.2,we shallthenrefinetheseandotherresultsto cover further
classesndto provide moreinformationonthefactors.

Firstwe definea spectraffactorization:

Definition 5.1.1(SpF) A factorization E = Y*X is a spectralfactorizationof
EcTI(U)ifX)Y € GTIC(U).

For dimU < oo, this could be rephrasedn the familiar form “if X,? €
GH®(C*+;C™" andE = ¥*X a.e.oniR, thenE = Y*X is aspectal factorization
of E” (€ L®(C*;C™M), by Theorems2.1.2and3.3.1.

Even for a generalU, the identity E = Y*X can be written as ‘B = X
oniR” whenE,X,Y € MTI, but for generalE € Tl we mustbe satisfiedwith
the equality“]ﬁ = ¥*X in Lg"tmng(iR; B(U))", which neednot imply pointwise
equalityanywhere(for separablé) anequialentformulationis that “E =X
a.e.oniR”); seeTheorem3.1.3for details. However, in this chapterwe mainly
studyMTI mapsfor whichwe have continuityandpointwiseequalityeverywhere
oniR regardlesof U.

As thefirst spectraFactorizatiorresult,we apply Theorenb.1.6to the Wiener
class:

Theorem 5.1.2(MTIC'-1 spectral factorization) Let E € MTI L1(U), ie, E=
E+ f,wheeE e B(U) and f € LY(R;B(U)).

Then the Toeplitz operator 1. ETt. is invertible iff E has a factorization
E=Y*XwithX,Y € GMTICL',

If, in addition, E € MTI*Z2C(U) (e, f € LY(R;BC(U))), thenX,Y €
GMTICL3C,

Proof: By Lemmab.1.7,we may apply Theoremb.1.6to obtainthe above
factorizationsn thesameway asin the proof of Theorem5.1.3.

Note that E + f € MTIL"3C(U) implies that PO((E + f) o (Pééylw) =

mf o(paéylgl € €, andthatP, ((E + f) O(PE;yley) canbeseerto beaFredholm
operatorasin the proof of Theoremb.1.3(alternatvely, it follows easilyfrom
the fact that E must be invertible, by, e.g., Proposition6.3.1(c)). Seealso
Lemmab.1.5. The parametrizatiorof all factorsis givenin Lemma6.4.5(i).
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Next we apply Theoremb.1.6to thediscreteWenerclass/t. We will usethe
following notation(asin Theorem4.1.1andin Section13.1):

thi=15Z;8(V)) == {(aj)jez |aj € B(U) and||(a))jezllp == Z 1ajll ) < e},
j

Q;C'—{aeli |aj € BC(U,Y) forall j+#0},
'={ae(*|aj=0 forall +j<0},
E%i _{aeé claj=0 forall +j<0}.

(5.1)
We equipthesespacesvith cornvolution multiplication

(@) jez * (Bkez = (Y @jbn-j) 1z (5.2)
J

As in Section13.1, onecanverifiesthat #1 with convolution multiplicationis a
Banachalgebra,andthe five otherclasseslefinedabove are closedsubalgebras.
TheZ-transformof a= (a;)jez € £*is

a:=Y az e c(D)nH(D), (5.3)
2"

andaxb = ab. The class/l (obviously isomorphicto the Banachalgebras?)
is sometimescalled the discreteWiener class. The canonicalprojectionTt :

¢(Z;U) — #2(N;U) obviously satisfiesTt 5 jc ZIxj ‘= ¥ jenZX;. Recallfrom
LemmaD.1.15thatL2(0D;U) = {5 jez Z%j | 3 [1zj[|3 < o} andthatH?(D;U) =
mtH[L2(dD;U)].

Theorem 5.1.3(Discrete£! spectral factorization) Let E € ¢1(Z; B(U)), i
E= z]:_mz Ej, wheeE;j € fB( )for all jandy; ||Ej|| < co.

Thenthe Toeplitz opertor TR € QB(Hz(D U)) is invertible iff E hasa
spectal factorizationE = E_E, withE, € g£+ andE_ € gel If, in addition,
E € 45 (i.e, Ej € BC(U) for j #0), thenE, € g£@6+ andE € G/L e

Proof: 1° TFETt is invertibleiff E hasa spectal factorization:
Thefirst claim follows from (a) and(c) of Theorem5.1.6,assoonaswe have
verifiedtheassumptionsf the Theorem.

OneeasM/erifiesthatassumption$1) and(2) of Theoremb.1.6hold (for
both /! and¢%, ), wherewe have setPy 35, ZIEj == 3%, ZE;.

(3a) One easily deducesfrom [HP, p. 97], that the Laurent seriesof a
holomorphigaroundoD) functloncomergesabsolutelwnaD Corverselythe
holomorphlcfunctlon Yiez'l |J|E,zJ corvergesto Ein 121 asr — 1—. Finally,

A (equivalently, ¢! asa corvolution algebra)is inverseclosedby Theorem
4.11(d).

@) If TRt is invertible, then it is a Fredholm operator hencethe
assumption®f (a) aresatisfiedin this caseandthe corversefollows from the
implication (i)=(ii) of (c).



2° The caseE € E%c: Below we shawv that the assumptionf (b) are
satisfied sothattheform of E. follows from (b).

Assumptiong1) and(2) werehandledabove.

Because" € R(0D) for n€ Z, theassumptior(3b) is satisfied.Similarly,
we seethat P°E is in €. whenE € £% ., soit only remainsto be shawn that
P+E(z) isa Fredholmoperatorfor allzeD.

Theinvertibility of R impliestheinvertibility of E onaD, by Lemma
5.1.5;in partlcular]E( 1) € GB).

But E(2) = Eo+ F(2), whereF(2) := ¥ ,,EjZ € BC(U) for all z€ D,
hencek(z) = E(1) + F(z) - F(1) € GB(U)+BC(U), andGB+ BC operators
areFredhoImoperatorsby LemmaA.3.4(B4).

Finally, E,E_,E~* € ¢} - impliesthatE, ,E;* € £} . 0

Duetoisomorphismtheabove is equialentto thefollowing:

Corollary 5.1.4(MTlq Tz spectralfactorization) Let T € R, and let E €
MT|d7Tz, e, E = D kez EjéjT, whee Ej € @(U) for all j and ||E|||\/|T| =
> lIE;j < .

Thenthe Toeplitz opertor 1, Em, € B(L?(R,;U)) is invertible iff E has
a spectal factorizationE = Y*X with XY € GMTICqy1z(U). If, in addition,
E e MTIdTZ (e, Ej € BC(U) for j #0), thenX)Y € gMTICdTZ(U)

Proof: This is Theorem 5.1.3 rephrasedaccording to_ the isomor
phism stated in Theorem 13.4.5 (note that ITﬁ( )Jezrﬁ T Em,,
1[¢1] =MTICq 1z, andI[f*] = {Y*|Y € MTICq7z}). O

Therestof this sectionsconsistonly of resultsthatareneededor the proofs
of theabove results.
We startthe proofswith anauxiliary lemma:

Lemmab5.1.5Let E € C(0D;B(H)) and set F := Eo Pcayly € C(IRU
{0} B(H)). ThenTttEmtt is invertible iff 7T, FfT; is invertible Moreover, if
TR isinvertible then e GC(0D; B(H)).

Proof: The equivalencefollows from Theorem13.2.3(al)&(b1)&(c). If
TR is invertible on H2(D;H), then E is invertible on L2(dD;H), by
discretizedLemma 6.4.6, hencethen E is invertible in LgtronddD;H), by
Theorem3.1.3(al),hencein C(0D;B(H)), by TheoremF.1.9(s4)(appliedto
Q:= [Oa ZT[)) O

The following “raw result” from [GL-Crit] and[GL73a] is the basisfor the
above factorizatiorresults:

Theorem5.1.6 LetH bea Hilbert space Let R (0D) bethesetof rational scalar
functionswith polesoutsidedD. Let& C C(dD; B(H)) bea Banad algebra with
anorm||-||e S.t.



(1) supp |[E() || sy < c||E||¢ for all E € ¢ for somec > 0, and

(2) ¢is the direct sume¢* @ ¢, whele ¢t =¢NH*D;B), € =¢€N
H*(D; B), and€y = {f € ¢ | f(w) = 0}.

LetP, : € — ¢ andP® :=1 - P, : € — ¢ bethecorrespondingrojections.
LetE € G<. Thenwehavethefollowing:

(a) Let functionsholomorphicon a neighborhoodf 0D be a densesubsetof
¢, and let ¢ be inverse closedin C (i.e., if E € €N GC(dD; B(H)), then
E-1ee).

Thentt Emt* is a Fredholmoperator on H2(D; H) iff E hasa factorization
of theform

n
E=E GE,, E; € G¢T,E € G¢,G(2) =P+ > 2P, (5.4)
=1

whee ne N, P; (j = 1,...,n) are disjoint one-dimensionaprojections,
Po=1-73;Pj,andk; € Z\ {0},

(b) Lettherational functionsszlroj (rj € R(0D), T; € B(H) for all j) be
adensesubsebdf €.
Let P, E(z) bea Fredholmoperator for all ze D, andlet P°E € ¢.,. Then
E hasthefactorization(5.4)with E_ — I, E-1 — | € €5 := €¢.,NH(D"; B).
Here thesetd,, is theclosue (in €) of rational BC-valuedoperators

n
> 1T, rj € R(0D), Tj € BC forall j. (5.5)
=1

(c) Letall theassumptionsf (a) or thoseof (b) besatisfied andletE =F_ Gf[ir
betheresultingfactorization. Thenthe following are equivalent:

(i)G=1I,
(i) T ETTt is invertibleon H2(D; H),
(iii) 705 (B o @cayle)) T isinvertibleon £, L2(R; H).

Moreover, if (i) holds and we set X = ]EJr © Qcayley, EA{( S) = (IE_
Pcayly) (—5)*, thenX, Y € H°°(C+ B(H)), ¥*X = ]Eo(pCaw@, oniR, and
all spectal factorizationsof E are givenby E = (]E_T)(T]E+), TeGBU)
(i.e., EoQeayly = (TY)*(TX)).

We remarkthat the original resultsin [GL73a] and[GL-Crit] aregivenin a
moreabstracandgeneralform

Do notmix TtF & with P+]E ((therestrictionof) P, is an operatomn MTI, i.e.,
it operatreﬂ whereagtt is an operatoron H? (so arel and P+]E to0)).

If H is finite-dimensionalthenit is possibleto formulatethe theoremwithout
areferencdo FredholmoperatorsseeTheoremdl.3.1 andll.4.1 of [CG81].



Proof: (a) Thisis Theorem2 of [GL-Crit] (use(13.29)andnotethat”PA”
in [GL-Crit] refersto composition,i.e., PAu := P(Au), asstatedon p. 102 of
[GL72]; P doesnotoperatadirectlyon A).

(b) Thisis Theorem2.1,p. 40, of [GL73a] (cf. pp. 38—-390f [GL73a]).

(c) 1° By Lemmab.1.5,(ii) and(iii) areequialent.BecauséE_ o Qcayie €
H®(C~;B(H)), we have Y € GH(C™; ;B(H)); cIearIyXe GH=(C*;B(H))
too. If (i) holds then(]Eo(pCay@,)(lr) Y( |r)*X(|r) (|r)*X(|r) forr e R,
andtheuniquenesslaimfollows from Lemma6.4.5(a).

Thus,only (i)<«(iii)_is left to be proved.

2° (i) < (iii)": SetG :=Do@caylg € C(IRU{»};B(H)). ThenG € TI(H),
X,Y € GTIC(H), andF = Y*GX.

Becauset X1, = X, andm, Y 1, = 1t Y* areinvertibleon 1t L2 (the
inversesaret, X~ 11, andm, Y*m.), theequation

L Fn = Y GXmy = m Y G Xy (5.6)
implies thatn+(Gn+ |s invertible iff T, Frt. is. By Lemmas.1.5, this canbe
paraphrasedLs“1T+GTr+ is invertible on H?(D; H) iff TR is”. Of course,
G=lis S;liﬂ:IC/lgnt sowe studythe necessity:

Let m"Grt™ be invertible. If uj = Pjuj € H and k; > 0, then

u:=1lu;j ¢ TG H2, bec:ausePJTﬁGnJr Tr+§‘n+P,, similarly nok;j canbe
negative,hencen=0andG =Py =1. 0

(The proofsin [GL-Crit] and[GL73a] go asfollows: first it is assumedhat
E is holomorphicaroundthe unit circle, thenthis is appliedto “rational finite-
dimensionalE’'s”, thenthe densityof suchoperatorsn MTI L* is combinedwith
thefactthatany elemenmneartheidentity hasa spectrafactorization.)
Theabove theoremcanbe appliedto the Wienerclass:

Lemma5.1.7 Theclasse := {Eo gl o | E € MTIV (U)} with [[Eo gl lle =
||]E||NITI .1 satisfiegheassumptionsf (1), (2), (a) and(b) (on €) of Theoem5.1.6
whenwe definethe projectionP,. € B(¢&,&") by

Pr:(E+F)oqehy — E+TLfoqcl g (5.7)
for E € B(U), f € LYR;U) (i.e, for E+f e MTI'—l(U)). Moreover, in this
case €, correspondgo mapsk € MTI I-lvrBC(U) whosefeedthoughopemtor is
compact.

Proof: We remarkthatnow ¢ denoteghe Cayley transformsof functions

—

in MTIL", with their originalnorm,exactly asin [GL73a, Theorem4.3].

Conditions(1) and(2) canbeprovedasin [CG81,pp. 62—63](whichtreats
thecaseB = C).

(a) Thefunctionsholomorphiconaneighborhooaf dD arecontainedn €,
by LemmaD.1.23. The densityfollows from thatthe rationalfunctions(case
(b) belaw). Inverse-closednesgasshovn in Theorend.1.1(a)(usethe Cayley
transform).



(N.B. Although [GL73a, p. 44] suggeststhat the strongly measurable
(sil'no izmerimy) Wiener class would do, this strong measurabilitymust
meanBochnermeasurability(with respecto the uniform operatomorm), not
measurabilitywith respecto the strongtopology becausdin (b)) the closure
of the Fourierinversetransformsof rationalfunctions(with polesoff RU {e})
is L1(R; B), notLgyong R; B); asimilar remarkappliesto (a).)

o ——

(b) 1° To shaw thattherationalfunctionsaredensen MTI '-l(B), we work
asfollows: -

Now for E = E+ f € MTI Ll(B) we may replacef by Y k=1 TkXg,» With
Tk € B(B) for all k, by the densityof simple functionsin L* (seeTheorem
B.3.11(al)),andthen replaceeach)A(Ek by somerational function, by [CG81,

pp.62—63],to endup with arationalfunctioncloseto E, asrequired.

2 ¢ If E € BC(U) and f € LY(R;BC(U)), thenthe above approx-
imation provides (use TheoremB.3.11(al)with B := BC(U)) a rational
function of form (5.5); corversely if Eo Qcaylg IS Of the form (5.5), then

E—E € £LY(R; BC(U)), by LemmaD.1.23. 0

Notes

During the third quarterof the last century Budjanu, Gohbeg and several
othersdevelopedan extensve theoryon the factorizationof MTI Lt mapsand of
mapsin certainother Tl classedor the purposesof singularintegral equation
theory Someof the articles (mainly in Russian)also treat a more general
factorizatiorwherert, Er,. andY neednotbeinvertible (andtheword “spectral”
or “canonical’is dropped).

Soonthistheorybecamepopularalsoamidstcontroltheoristsandtodaymary
articlesin theinfinite-dimensionatontroltheoryarebasedorincipally on spectral
factorization.Also thefactorizationtheoryis still beingrapidly developed.

In casedimU < o, the mostimportantresultscan be found in Englishin
the book [CG81]; a somavhat more up-to-datebook on the subjectis [LS].
Both booksalsocontainthe case(“generalizedspectralffactorization”)wherethe
discrete-timeg Z-transformedfactorsareallowedto bein GH? overthe unit disc
insteadof GH” (cf. Example8.4.13). Thesebooksalsohave extensie reference
lists.

Theapplicationf thistheorygivenin this sectionareratherstraightforvard,
andmostof themhave finite-dimensionahlnalogiesn theliterature.



5.2 MTI spectralfactorization (E,Y,X € MTI)

Ead Manis in his Specte’s power
Until thearrival of thathour,
Whenhis Humanityawale,
Andcasthis Specte into the Lake.

— William Blake (1757-1827)

The purposeof this sectionis to establistpart“(ll) < (111)” of theequivalence
on page21l for several systemsand problems. We build up a seriesof lemmas
on MTI endingup with two existencetheoremson spectrafactorization poth of
which cover severalMTI subclasse@ndTI in the positive case).

Our stratey is the following: We first shav thatif a mapE € MTI(U) has
an invertible Toeplitz opertor T, Ert, (on L?(R,;U)), then also the discrete
(atomic) part of the map hasan invertible Toeplitz operator(Lemma5.2.3(b)).
Thenwe adoptseveral M Tl 4 factorizationresultsto our settingandshow thatby
factorizingfirst the discretepart of a MTI map usingtheseresultsandthenthe
“remaindeMTIL" part” by usingtheresultsof Section5.1,o0neobtainsa spectral
factorizationof the original map(Theorems.2.7and5.2.8).

We startby listing somebasicfactson spectrafactorization:

Lemma 5.2.1(Spectral Factorization) LetE € TI(U).

(@) ThenE > 0 iff E hasthe spectal factorizationE = X*X for someX €
GTIC(U).
If thisis thecase thenall spectal factorizationsof formE = Z*Z are given
byE = (LX)* (LX), whee L € GB(U) is unitary.

Assumenowthat E € TI(U) hasa spectal factorizationE = Y*X for some
X,Y € GTIC(U). Thenwehavethefollowing:

(b) The Toeplitzopertor 11, Em, is invertibleon rt, L2, and . X~ Y—* iy
isits inverse

(C)If E € TI_,NTlg, for somew > 0, thenY, X € GTICep(U)NTIC_(U).

(d) If E=E*, thenY = X*Sfor someS= S' € GB(U); thus,thenE = X*SX.
If, in addition,E € Tl,(U) for somew # 0, thenX € GTICgp(U).

(e) The map EY := AEA € TI(U) has the co-spectralfactorization B4 =
Xd (Yd)*
(obviouslyX?, Y4 € GTIC(U)).

(f) All spectal factorizationsof E are given by E = (L7*Y)*(LX), whee
L e GBU).

Theoremsb.2.7 and 5.2.8 below list classesthat are closedw.r.t. spectral
factorizationandfor which the corverseof (b) holds(i.e., the Toeplitz operator
. Emy isinvertibleiff E hasa spectrafactorization).
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The uniquenessesultin (f) saysthat X := X(+») € GB(U) canbe chosen
arbitrarily, andit determinesX, Y andY = EX~1 ¢ GB(U) (we hare E,X,Y €
GB(U), by Proposition6.3.1(a3)).

Proof: (Partof thisis givenin Lemma4.3 of [S98c].)

(a) Thisis Lemmad4.3(v) of [S98c], but its proof need<larificationfor the
unseparablease:useTheorem3.7, p. 54 and Theorem3.4, p. 50 of [RR] to
obtainE = Z*Z, whereRan(Z) = L?(R;U,) for someclosedU, c U (because
Z is coercie and“outer”), find E € GB(U2,U) (suchanE exists, by Lemma
2.2.1(c4))andsetX ;= EZ.

(We would obtainan alternatve, control-theoretigroof of (a) (with D*JD
in placeof E, D € TIC) asin Theoreml14.3.2.)

(b) Usingthefactthat . Y- "1, = 11, Y™ * etc. (by causality),one easily
verifiesthat i, X~11t, Y *m, is the inverseof 1, Y*Xm, onm,.L? (i.e., that
their productis 1t;.).

(c)Becaus&X =Y *E € Tl_,, wehave X1 € Tl_g o for somee’ > 0, by
Lemma2.2.7,henceX € GTI_¢NTI_oNTIC = GTIC_¢(U,Y)NTIC_,(U,Y)
for somee > 0. Thesameholdsfor Y, becaus&y = X~ *E*.

(d) Now E = Y*X = E* = X*Y, henceY = SX for someSe GB(U), by
(). The latter claim is obtainedfrom Proposition5.2.2 (becausek € Tl =
Ef € Tl_g).

(e) Obviously E¢ = Y*X = E = X9(Y?%)*, and, by Lemma2.2.3,X ¢
GTIC & X9 € GTIC.

() Let E = Y§Xo also be a spectralfactorization. ThenL := Y, *Y* =
XoX~! € TIC andL* = YY,* € TIC, henceL € B(U), by Lemma2.1.7.
Obviously, L = XoX~1 isinvertible. N

In part(c) above, we statedthatthe spectrafactorizationof an“exponentially
stable”mapis exponentiallystable.Below we shall prove this claim andthe fact
thatthe sameholdswith MTI or somethinganalogousn placeof TI:

Proposition 5.2.2(Exponentially stable SpF) Let4 C Tl beinverse-closednd
adjoint-closedcf. Theoem4.1.1andLemma4.1.3),andset4 := 4N TIC and

A4 ={dEe " |Eca}, A4 :={¢De"|Dea}, reR. (5.8)

Assumehatw>0,E € 4 _,(U)NA4,WU) (eg,E=E" € 4 ,,(U)), andE has
the spectal factorizationE = Y*X, whee Y,X € G4(U).

ThenY,X € GA_¢(U,Y)NA_,(U,Y) for somee > 0; in particular, X** and
Y+1 are exponentiallystable

In particular if E =E* € MTI is “exponentiallyMTI”, i.e.,E € MTI _¢ for
someg > 0, thenits (possible)spectrafactorsare“exponentiallyMTI”.

Proof: Because&X = Y *E € 4_, (recall that {F* \IF € Ay} = A, by
Lemma4.1.3(b)),we have X! € 4_, for somee > 0, by Lemma2.2.7. But
4NAC A forr € R, henceX € GA_¢(U,Y) N A_¢,(U,Y). Similarly,
Y=X*E* € GA_¢U,Y)NA_,(U,Y). O



Now we turn our attentionto MTI maps. Our first taskis to showv that the
invertibility of the Toeplitzoperatorof E € MTI impliesthatof its discretepart:

Lemma5.2.3(MTI Toeplitz) For E € MTI (= MTlg+ L) we write Eq :=
M(E) for thediscretepart (of theform i’ ; Lid(- —ti)*)
LetE € MTI(U,Y).

(@) If E € GTI thenEq € GMTl .

(b) If E € MTI(U,Y) and i, Ert; € GB(L?), thentt, Egmt, € GB(L?) (and
E,Eq € GTI)

(c)If E€ MTI(U) andE > 0O, thenEy > 0.

Proof: (a) Thisis containedn Theorem#4.1.1.

(b) We will prove thatif the Toeplitz operatorTg, := 1. Em,. of E € MTI
is coercie, i.e., | Tgul| > eu for all u € ;L2 thensois Ty, (with the same
€>0).

Claim (b) follows from this, becauseT is invertible iff T and T* are
coercve, by LemmaA.3.1(c3). (The last two claims follow from (a) and
Lemma2.2.2(al).)

DefineF € MTlgandf € L by F:= E4 and f* := E—F (sothatE =
Fu+ f uforallue L?).

Let & > O be arbitrary Let u € L?(R;;U) be otherwisearbitrary but
||ul|2 = 1. By LemmaD.1.11(b),thereis Ts > 0 s.t.

T>Ts = |F()A-—iT)|2< 8. (5.9)
Becausd?“(i-) is almostperiodic,by LemmacC.1.2(h2)thereis T > Tj s.t.

|IF(it) —F(i(t—T))|| < dforallt € R. Thereforg(recallthatft, 0:= T, U, hence
||1{[‘T‘|| = ||T[-‘r|| = 1; nOtea|SOthat||e'T'u||2 = ||U||2 =1 andf/(elT-u) _ G( N |T))

I Fullz = [r.e" Full = [Tz R,
= |5 (FU) (-~ iT)|l2 = R —iT)a¢—iT)|l2
> | TGFG(-—iT)|l2— [T [F(- — iT) - FJa(- —iT)|l2
> | TGFG(-—iT)|2— |80l > ||TGEG(-—iT)|]2— |G fa( —iT)|2—3
> ||TGEG(-—iT)|2—8-8 = [mEe" ul2—25
= ||mEmn. e ull,—25 = £-20.

Because > 0 wasarbitrary ||t Ful|2 > € = g]|u]|2.

(c) To obtaina contradictionassumehatE € MTI(U), E > 0 andEq # O.
ThenE > 0 oniR butthereis ug € U s.t.g:= (uo,]fld(-)uo)U satisfieg(irg) # 0
for somerg € R.

Setd := d(g(irg),[0,+))0. Let f € L}(R;B(U)) be the one for which
E =Eq + fx. By LemmaD.1.11(b),thereis Ts > |ro| S.t. || fA(ir)||r_,;(U) < o for
|r| > Ts.



Becauséﬁd(i-) is almostperiodic,by LemmacC.1.2(h2),thereis T > 2Ty
s.t.||Eq(it) —Eq(i(t—T))|| < &/2for all t € R. Thenthedistancefrom

(U, E(iro+T)ug) = g(iro+T) + (U, f(iro+T)ug) (5.10)
to [0, +) is greaterthand— &/2 > 0, acontradictionasrequired. m

Next we statethespectrafactorizatiorresultsof Yuri Karlovich [Karlovich91]
andothersfor matrix-valuedatomicmeasures:

Lemmab5.2.4 LetE = MTI4(C"). ThenE hasa spectal factorizationE = Y*X
with Y, X € GMTIC4(C") iff i, Em, € G(m,L2).

Moreover, if suppy(E) C S, wheleS=S—SC R, thensupp(X),supp(Y) C
S.

In particular if theatomsof E areat pointsnT, n € Z for someT > 0, thenso
arethoseof X.

(Note from Lemma5.2.1(f) that the factorizationis uniguemodulo a multi-
plicative constant.)

Proof: The first claim is a rephrasementf the equivalence“4)<6)” of
Theorem7 of [Karlovich93] (use the fact that Erty + 1 is invertible on
L2(R;C") iff T, Em, isinvertibleonL2(R,;C"), by LemmaA.1.1(b1)&(b2)).

The S-claimfollows from [RSW, Theorem6.1]. O

We shallusethefollowing lemmain the positive case:

Lemma5.2.5(MTlgq SpFwhen||l —E|| < 1) Assumethat E € MTI4(U) and
Il = Elltiuy < 1. ThenE = Y*X for someX, Y € GMTICq4(U).

Moreover, if supp(E) C S, whee S=S—SC R, thensupp(X),supp(Y) C
S

Proof: 1° E = Y*X for someX,Y € GMTICy4(U): Condition ||| —
Ell1uy < 1is equivalentto conditionsupcg ||! —IE(it)||$(U) < 1,by Theorem
3.1.3(d)andTheorem2.6.4(el).

By Theorem of [BR], it followsthatE = Y*X for someX,Y € MTIC4(U).

2° supp(X),suppy(Y) € S: Assumethat supp(E) ¢ SandS=S—
S C R.  We shall examine the proof of Theoreml| so as to shov that
supp(X),suppy(Y) C S. (Notethatthe Fouriertransformof [BR] hasanextra
reflection;thisis just a matterof notation.)

By LemmaC.1.2(f5),we have |[A— 1| 5ap) < [[A— 1]l < 1. FromLemma
C.1.2(f4)we obsere that||M (o |.«)||5(ap) < 1. Consequently

Xe@:= 5 (Mo o) (I = AM[o 1)) 0 (5.11)
keN

convergesin AP(R;U), for all ¢ € U, whereAP denoteshe Besicwich space
(seeLemmacC.1.2(f4)). Sincethe atomsof (Mg ;) (I — A)I'I[O,HO))" belongto
Su{0} =S, for eachk € N, alsotheatomsof X, @ belongto S. Becausepc U



wasarbitrary the atomsof X, belongto S. By p. 18 of [BR], X, € md,
henceX, € Mﬁc\ds,

By analogougproofs,oneshovsthatY, € Mﬁc\dyg andX_ € Mﬁ(:\¢s*.
FromtheformulaA= (I +X_)Y, of p. 51 of [GL-Identity] (whichis thebasis
of theproofof [BR]), weobsenethatY, =X, | +X_ =Y*, whereE = Y*Xis
aspectrafactorizationof E. This completegheproof (recallLemma5.2.1(f)).

U

Indeed the positive cases obtainedasa corollary:

Corollary 5.2.6 Let E € MTI4(U). ThenE > 0 < E = X*X for someX €
GMTIC4(U).

Moreover, if supp(E) C S, whele S=S—SC R, thensupp(X), suppy(Y) C
S.

Proof: SetF := E/||E||1; € MTl4(U). Thenl >F > 0, hencel|l - F|| < 1,
by LemmaA.3.1(b9). By Lemmab.2.5, it follows thatF = Y*Z for some
Y,Z € MTICq4s. UseLemmabs.2.1(a)&(f) to obsere that[F = X*X for some

X € MTIC4s. SetX := ||E||¥*X € MTICys. 0

Now we cancombinethe above resultsto two theorems:

Theorem 5.2.7(MTI spectralfactorization) LetS= S— S C R, andlet either
(1.) or (2.) hold,whee

(1.) 4 is oneof the classesMTIL, MTILS2C, MTI1z, MTIZS, MTlg1z, and
MTI S,
(2.) dimU < 0 and A4 is oneof theclassesMTI, MTl4, MTls, andMTl g s.

LetE € 4(U), and set 4 := ANTIC. Thenthe Toeplitz opertor Tg :=
i Emn, € B(L?%(Ry;U)) isinvertibleiff E hasa spectal factorization

E = Y*X, wheeX Y € GA(U). (5.12)

LetE, X andY beasabove ThenEq = Y;Xq is alsoa spectal factorization
(in MTlq), wheee ()q denoteghe discrete part. Moreover, if supp(E) C S, then
supp(X) C Sandsupp(Y) C S.

If, in addition, @ > 0 and E € 4 ,N 4, then Y,X € G4 _¢(U,Y)N
4_,(U,Y) for somee > 0; in particular, X*1 and Y*! are exponentiallystable

If we merely know that E € Tl, thenit is no longer guaranteedhat the
“canonicalfactors”X andY arestable seethenoteson p. 148for details.
However, positive results can be given also for certain other cases,see
Theorems.2.8and9.2.14.
Proof: 1° Thediscretepart Eq = W*Z:
If (5.12)ho|ds,thenT]E1 = Tx-1Ty-1, soassuméhat T is invertible. Then
sois Tg,, by Lemma5.2.3(b),sowe canfactorEq asW*Z, W,Z € GMTICy

(Z,W € GMTICEC, if 2 =MTI-?C, 2= MTIZS, or 2 = MTIS,, because



in thosecase¥y € MTI (?C) by Corollary5.1.4in casg1.) andby Lemma5.2.4
in case(2.).

Moreover, if supp(E) C S, then supg(Z),supp(W) C S, by Lemma
5.2.41in case(2.); in case(l.) either S= {0}, in which caseE,Z,W
B(U), or S containsa setof the form T’Z for someT’ > 0, in which case
supp(Z),supp(W) c T'Z C S, by Corollary5.1.4.

If E—Eq =0, thenwe cantake X :=7Z, Y := W to obtainthe required
result,but in thegeneralkcasewe proceedasfollows.

2° Theabsolutelycontinuougpart E5c .= E—Eq:

Becausd.1x is anidealof MTI, andEqc € L1, we have W—*EocZ 1 = g« for
someg € L1, hence

W (Eg +Eao)Z 1=1+g (5.13)

canbe factorizedas T*S with T,S € GMTICL" (with T,S € GMTICL2C if
(Eoc andhence)gs € LY(R;BC(U))%), by Theorems.1.2andthe invertibility
Of Tyy-+gz -1, Which follows from Lemmaz2.2.2(b).

Thus, we have E = Y*X, whereY := TW € GMTIC andX = SZ ¢
GMTIC. Moreover, Yq = TqgWy = Wy = W andXy = S4Zq = Zq = Z, hence
Eq = Y§Xq.

Thelastparagraplof the theoremfollows from Proposition5.2.2. O

TheassumptionthattheinputspacdJ mustbefinite-dimensionalis probably
superfluouseven in case(2.); there may be expectedresultsin this direction
in the nearfuture. We have written this work basedmore on hypothesegsee
HypothesisB.4.7)thanon classesin orderfor thereadetto easilyincorporatearny
new factorizatiorresultsto this work.

In theuniformly positive case(which canbe usedfor minimizationproblems,
positve and boundedreal lemmasand analogous)we do not needary dimen-
sionalityrestrictions:

Theorem 5.2.8(Positive MTI SpF) LetU beaHilbert spacgletS=S—SCR,
andlet 4 beoneof theclassesTl, MTI, MTlg, MTls, MTlgs, MTIL, MTILH2C,
MTitz, MTIFS, MTlg1z, andMTIgs, .
LetE € 4(U), andset4 := 2NTIC. ThenE > 0 iff E hasa spectal
factorization
E=X'X, wheeX e G4(U). (5.14)

LetE andX be asabove ThenEq = XX is also a spectal factorization
(in MTly), wheee -4 denoteshe discrete part. Moreover, if supg(E) C S, then
supp(X) C S.

If, in addition,w > 0 andE € 4, thenX € GA_¢(U,Y)NA_,(U,Y) for
somee > 0.

If E> 0, thenE > 0iff E is invertible; equivalently, iff t, Ert, is invertible
(by LemmaA.3.1(bl)andLemma2.2.2(d)).
Proof: 1° If (5.14)holds,then,E > 0, by, e.g.,Lemmab.2.1(a).



2° Let E>> 0. Thenm Emy > 0, by Lemma2.2.2(d),hencethe claims
follow from Theorem5.2.7 (becauseE = X*SX, by Lemma5.2.1(d), and
clearly S>> 0, so E = (S¥2X)*(SY/2X), X € 4) when we note that the
assumptiordimU < o in the proof of Theorem5.2.7 canbe removedin this
positive casepy using,in casg2.), Corollary5.2.6insteadof Lemmabs.2.4and
Lemmab.2.3(c)insteadof (b).
3° The exponential(measure)stability is obtainedas in Theorem5.2.7.
U

We have presenteabur spectralfactorizationresultsfor several subclassesf
MTI in orderto getmorespecificinformationon the smoothnessf the spectral

factors.For example theuniform half-plane-rgularity of MTICL mapsallowsus
to evensimplify the Riccatiequationsprovidedthatthe Popos operatorbelongs

to MTIL',

Notes

Exceptfor (e) andthe TICgp claims,Lemmab.2.1is containedin Lemma
4.3 of [S98c]. Propositions.2.2wasestablishedn thefinite-dimensionapositive
MTItz casein Lemma3.3of [Winkin], by usinganalyticextensions.

For finite-dimensionalld, most of Theorem5.2.8 (for MTI'—l, MTl4 and
MTItz) is containedn TheorenB.1M of [Winkin] (andin [CW99]). Also Lemma
5.2.3(c)andour strateyy to startwith afactorizationof the discretepartarefrom
[Winkin]. (ThespacédJ is assumedo be finite-dimensionabndE is assumedo
be uniformly positive everywheren [Winkin].)

As obvious from the proof, Lemmab.2.4is essentiallycontainedin [RSW]
(originating in [Karlovich91] and the joint articlesof Yuri Karlovich and llya
Spitkovsky etal.).

Lemmab.2.5and Corollary 5.2.6 are essentiallycontainedin [BR] except
for the claimson S. Our proofs usethe ideasof the proof of Theorem6.1 of
[RSW]. The exactassumptiorin [BR] is * (]Euo, uo)| > €||uo||3”, henceslightly
more generalthan “E > 0” (but doesnot allow for, e.g., E = [}) _Ol]). See
[Karlovich93] (particularly Theorems14 and 15) for similar (not analogous)
factorizationresultsfor [semi-Jalmostperiodic functions(with valuesin C™"),
for further equialent conditionsand for factorizationsof functionswith non-
invertible Toeplitzoperators.

Forary E € Tl s.t.E > 0, theinvertibility of theToeplitzoperatoiis equivalent
to the existenceof a spectralfactorization,by Theorem5.2.8. For a general
E € Tl s.t. iy Em,. is invertible, we needan extra assumptionasin Theorems
5.2.7,Theorem9.2.140r 9.14.4.

Indeed for ageneralE € TI(C") s.t. T, Ert, is invertible, we only know the
existenceof a“Generalizedcanonicafactorization”(seeSection9.15,[CG81] or
[LS]) whereE = Y*X a.e.oniR andtheCayley transformof X, Y € H(CT;C™m)
areinvertiblein H2 overtheunit disc. By Example8.4.13,these(uniqguemodulo
a multiplicative constant)generalizedactorsneednot be well-posed(i.e., X and
Y maybeunboundedt infinity) unlessn = 1.

In and belov Theorem9.14.6, we extend the above resultson generalized




canonicafactorizatiorfor infinite-dimensionall (assuminghatE is theToeplitz
operatorcorrespondingo somecostfunction;thisis theonly casefor which such
factorizationsareneededn controltheory). In this wealer result, X (-)* andX 1

areonly known to be H3,,4 over the unit disc (HZ;ond(D; B(U))).-

Obviously, the Cayley transform makes spectral factorization of
H®(C*;B(U)) mapsequialentto the spectralfactorizationof H*(D; B(U))
maps.Unlike in continuougime, the generalizedliscrete-timecanonicalfactors
are always well-posed,by Theorem9.14.6, but still not necessarilystable,as
notedin Example8.4.13.Seealsothe noteson pp. 141and543.






