Chapter 1

Intr oduction

Fromthewred of the past,which hathperishd,
Thusmud | atleastmayrecall,

It hathtaughtmethatwhat| mostcherishd
Deservedo bedeaestof all.

— Lord Byron (1788-1824);Stanzago Augusta”

In Section1.1, we sumnarize the main contrikutions of this monograph,
avoiding ary technicalities. Readerswishing to get a somavhat more accurate
pictureontheactualresultsshouldconsultSectionl.2,wherewe give a glanceat
eachchapterby explaining its contentdut yet avoiding mosttechnicaldetailsand
generality

Somecorventionson notation,proofsand hypahesesare explainedin Sec-
tion 1.3. Seetheendof thebookfor symbols,conceptsabbreviations, references
andindex.
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1.1 On the contributions of this book

Our ultimate goal hasbeento develop the H* Four-Block Problemtheory in
Chapter12. This hasrequiredus to first develop several other parts of the
theorythat are of independeninterest,suchasthe Riccati equationtheory the
costminimizationtheory the dynamicfeedbacktheory the WPLS theoryor the
discrete-timeheory all of whicharemainly generalizationsf existingtheoryfor
finite-dimensionabr smoothinfinite-dimensionakystems.

Our mainresultsincludethefollowing:

1. On (generalized)Optimal Control and Riccati equationsfor WPLSs, we
have

(a) establishetherelationshetweerdifferentclassicatoercvity assump-
tions (Section10.3),generalizedhemto WPLSsandappliedthemto
solve thegenerakontrolproblem(Section8.4).

(b) formulatedintegral Algebraic Riccati Equationsto establishthe cor-
respondingequialencein continuais time. This alsoallowed usto
reducesereral problemsto discretetime, whereinput andoutputop-
eratorsarebounded.

(c) established the corresponding equialence for (classical-type)
Continuoustime AlgebraicRiccati EquationJunderweakregularity)
(Chapten).

I. The implication from the existenceof a solution of the control
problemto theexistenceof a solutian of theRiccatiEquatiorwas
alreadyestablishedby G. Weiss,M. WeissandO. Stafansunder
strongeregularityandvery strongstabilizabilty anddetectability
assumptias.

ii. We have also shavn the existence of a smoothersolution un-
derseveral differentadditional regularity assumptios (e.g.,Sec-
tion 9.2).

(d) establishedhe Continuoustime Riccati equationson the domainof
the closed-loopsemigroupgeneratoifor general(possiblyirregular)
WPLSs(Section9.7; extensionof [FLT]).

(e) treatedall the above for both the exponentialy stabilizing controls
andfor therecently-populastronglyor output-sabilizing controlsand
othersthusproviding new resultsevenfor finite-dimensonalsystems

2. On specific control problemsfor WPLSs, we have extendedthe finite-
dimensioml resultsby, in additian to theabove, solving

(a) the H* full-information control problem in terms of the Riccati
equation(Chapterll).



i. In the stablecase the existenceof a solutionwasalreadyshavn
by O. Stafans,assuminghe existenceof correspondingpectral
factorization;a similar statementappliesto the LQR problem
below.

(b) the generallmeasuremerfeedbackor four-block) H* control prob-
lem in termsof two Riccati equationsanda spectralradiuscondition
(Chapter12). We have shavn thattherecenttheoryof controllerswith
aninternalloop (cf. [CWW96]) is shawn to be intimately connected
to a generalsolution of this problem,andall suchsolutions are also
covered.

(c) thecostminimization(LQR) problem,shaving the existenceof a so-
lution equivalentto the existenceof any solutian of thecorresponding
Riccati equation(the soluion neednot be stabilizing or even admis-
siblea priori). We have alsoderived similar generalization®f Strict
BoundedandStrictly Positve (Red) LemmagChapterl0).

3. OnWPLSsystentheory we have

(a) introducedcompatibilty, which allows oneto write ary WPLSin a
differentialform regardlesf regularity (Section6.3).

(b) introducedaninfinite-dimengonal weakly coprimefactorizationcon-
cept(Sectionss.4and6.5) andappliedit to establisithe stability and
uniquenessf a solutian of certainRiccatiequationg@ndcontrolprob-
lems (this is particularly usefulwhenthe solutionis not requiredto
be exponentally stabilizing. This conceptandcompatibilty have al-
readybecomethe subjectf leadingresearchey’ articles.

(c) characterizedhe transferfunctions(equvalently, impulseresponses)
having a Pritchard—Salamorealization(thus correctingthe errorsin
[KMR] to which we alsoprovide a counterexample). Similarly, we
have characterzedtransferfunctionsrealizablewith boundednputor
outputoperators(Section6.9)

(d) generalizedheequivalencebetweerexponental dynamicstabilizabil-
ity andexponenial stabilzability anddetectability(Theorem7.2.4).

4. The infinite-dimengonal control theory hasbeenlimited by several open
problemsan harmonicandfunctionalanalysisandfunctiontheory Thishas
leadusto solve thosemostintimately connectedo ourwork, e.g.,we have

(a) generalizedhe L2 Fouriermultiplier theorento the caseof functions
with valuesin Hilbert spacegthe separableasewasalreadyknown)
andbeyond(Theoreml.2.2).

(b) generalizeasimilarly the existenceresultof the boundaryfunction of
aH® function(Theoreml.2.3).



(c) developed a theory of strongly measurableoperatorvalued func-
tions, including the the completenessf L g ,nq (andincompleteness
of Lg’tmn@ and its applicationsincluding the two above results(Ap-
pendixF).

(d) shown the existenceof a spectralfactorizationfor convolutions with
(Hilbert space)operatofrvaluedmeasuredaving a discretepart plus
an L1 part (assumig the invertibility of the Toeplitz operator;see
Theoremdl.2.4and1.2.5).

(e) extendedto the infinite-dimensbnal casethe classical[ClaGoh] H?
spectralfactorizationfor any Popos function having an invertible
Toeplitzoperator(Theoren9.14.6).

Finally, of all the abose we also presentcorrespondingnfinite-dimensional
discrete-timeresults,which becomeratherelegantsince,in this case,the input
andoutputoperatorsarenaturallybounded.

For a control theorist, the generalizationof Riccati equationtheory to the
regular WPLS setting (particularly 1b and 1c above) and the generalH” and
minimizationproblemg2.) mayrise above therest.

To obsenrein detailtheothernew resultsin this monographthereadershould
readthe “Notes” at the endof eachsection. Therewe discussearlierresearchn
samedirection,including any known similar resultsunderlessgeneralsystems
settingsor assumpbons.

The size of this book requiressomeexplanatons. For the first, the chapters
of this monogaph are so intimately connectedo eachotherthatit would have
beenimpossble to remove a singlechaptemwithout destrying, e.g.,the proofsin
Chapterl 2.

If we hadlimited oursehesonly to very smoothsystemsor to discrete-time
systemsthe size of this book would have probablyfallen by morethanhalf but
its contribution even by muchmore. Indeed,mostproblemsbut alsomostvalue
in ourwork is in its generality Certainly we might have presenteaur solutions
only in termsof factorizationgwhich are given asan intermediarystagein our
proofs),but the Riccatiequationsarereally theform of the classicakolutiors and
somethinghatprovidesa practicalway to solve the problems.

SometimegheRiccatiequationdecomerery complicatedfor generakegular
WPLSs,hencewe have presenteanorebeautifulcorollariesfor importantspecial
casessuchasfor the casewherethe I/O mapis the corvolution with a measure.
Moreover, therealizationof the optimal controlin theform of a statefeedbackor
dynamicfeedbackcontrollerrequiresthe existenceof certainfactorizationghat
neednotexistin thegenerakcase(seeExamplell1.3.7).

One of the objectives of this book hasbeento stateand prove resultsof a
technicalnaturethataretoo longto be publishedn ordinaryresearctarticlesbut
thatarenecessaryuilding blocksfor thefinal results.



1.2 A summary of this book

We now start a rather self-containedsummary aiming to give the readera
motivation for and a picture of the theory treatedin eachchapter by starting
with a non-technicaldescriptionandthen presentingsomeresults. We strongy
recommendor thereaderto readthe sumnariesin this sectionbeforediving into
thetechnicalitieof theactualchapters.

The resultsmentiored belov are just exampks from the theory; here we
have usually favored simple, important examplesto more generalbut more
complex ones.Seethe chaptergshemselesfor furtherdefinitions results details,
explanationsandreferencs.

Outsie the appendicesthe lettersH, U, W, Y and Z will denotecomple
Hilbert space®f arbitrarydimensimsunlesssomething elseis indicated.

Part I: TI Operator Theory

TheappendiceandPart| of thebook containresultsin harmonicandfunctional
analysig(vectorvaluedfunctions,shift-invariantoperatorstransferfunctionsand
boundaryfunctionsthe Coronal heoremandspectrafactorizatioramongothers)
thatareneededn the controltheoryof Partsll-IV. Many of theresultsarealsoof
independeninterest.A fasttrackto WPLSsis to first have aglanceat subsectioa
2.1.1-2.1.7andthengodirectly to Partl.

Chapter 2: TI and MTIl Operators (MTI C TI)

In Chapter2, we study the theory Tl,, the spaceof bounded,shift-invariant
operatorsL? — L2, wherethe L2 spacemay have a weight and the functions
have their valuesin a Hilbert space.We also presentcertainsmoothsubclasses
of Tl, particularlyMTI, the convolutionswith a (vectorvalued)measureavith no
singularcontinuouspart.

Our contritutions include the theory of the intersectionTl, N Tly andits
causabpartfor two weightsw, o € R (see2.1.9-2.111and3.1.6),necessarand
sufficient conditians for losskssness&nd certainresultson static operatorsand
signatureoperators.

Technically Tl,(U,Y) is thespaceof boundedime-invariantlinearoperators
L2(R;U) — L2(R;Y), whereU andY areHilbert space®f arbitrarydimensioss,
weR,and

Juilg = ([ e 2*uoli o) (1)

for Bochnermeasurablai: R — U (thus, L§ = L2, L2 = {e“u(-)|u € L?}).
The time-invarianceof D € Tl, meansthatDt(t) = 1(t)D for all t € R, where
T(t)u:=u(- +t).

Themapsin TIC,(U,Y) := {D € Tlu(U,Y) | m_Dr, = 0} arecalledcausal
(or sometines Toeplitz operators);here, u := Xg, u andu := Xg U for all



functionsu, andXg is the characteristidunctionof asetE. Thefollowing is well
known:

Theorem1.2.1 For eath D € TIC,(U,Y), ther is a unique function D e
H®(C{; B(U,Y)), called the transferfunction (or symbol)of D, s.t. Du = Da

onCg forall ue L3(R,;U). ThemappingD — Disan isometricisomophism
onto. U

Here B(U,Y) denotesthe space of boundedlinear operatorsU — Y,
H®(C{; B(U,Y)) denoteshe Banachspaceof boundedholonorphic functions
Cd, — B(U,Y), andl denoteghe Laplacetransform

G(s) == /Re‘gu(t)dt (s€ Cf:={se C| Res> w}) (1.2)

of u. Thus,theelementf TIC,(U,Y) := UwerTICw(U,Y) correspondne-to-
oneto theholomorpht B(U,Y)-valuedfunctionsthatareboundedn someright
half-plane;suchfunctionsaregenerallycalled“proper” or “well-posed”. The set
of the l/O mapsof WPLSsis exactly TIC., (seeSection6.1). Transferfunctions
arestudiedalsoin Chaptel3.

In Section2.2, we study the invertibility of TIC, (and Tly) operators. In
Section2.3, we develop sufficient conditiors for a TIC operatorto be static,that
is, the multiplication operatorinducedby an elementof B(U,Y). We alsogive
certainresultsthat will be usedin connectionwith the signatue operators of
optimizatian problemsRiccatiequationsandspectrafactorizations.

Also Section2.4treatssignatue operatorsA mainresultof thissectionis that
for any Se B(U xY), thefollowing areequialent:

mszw[wP}EmmmmmegﬂquXw;
(i) S= B[MO}EﬁxammEegwij)

(Reall that G denoteshe subsebf invertibleoperators.)

Section 2.5 treats the concept “(J,S)-losslessness”(close to “(J,9)-
dissipatvity”), which is often studiedin connectionwith H* problemsandin-
definiteinner products(losslessness roughly equivaent to the nonngdivity of
the correspondingRiccati operator). Thereare two widely-useddefinitions of
losslessneswhoseexact connectionhasbeenunknaovn. We develop necessary
and/orsufficient conditiors for both conceptsandshaw thatthey coincidewhen
theinput spacesrefinite-dimensioal.

In Section2.6,we definethesubclasMTI(U,Y) (“M” for “measures”asthe
operatord € TI(U,Y) thatareof theform

(Eu)(t z Teu(t —ty) +/ (t—r)u (1.3)

i.e., of the form Eu = pux u, wherethe measureu consistsof a function f €
L1(R;B(U,Y)) plus a discretepartwith T, € B(U,Y) andty, € R for all k € N,
s.t.

[Elmri = 1[fllLa+ > Tl s,y < e (1.4)
keN



TheWenerclassMTIL" refersto theelementsf MTI of form u—s Tup+ f*u
(i.e.,nodelays). TheclassMTIC := MTI N TIC (resp.MTICL" := MTIL' N TIC)
consistsof thoseelementsof MTI (resp.MTICLl) that correspondo measures
supportednR .. In [CD80] and[CZ] amongotherstheclassMTIC (or “4(0)")
hasbeenstudiedfor finite-dimensbnalU andY.

Thebasicpropertief theseclassesrelistedin Section2.6. They sharemost
propertiesof mapswith rationaltransferfunctions;in particular they have the
samespectrafactorizationpropertiegseeSections.2). Thesepropertiesallow us
to shaw (in Partlll) thatclassicakonditionsfor thesolvability of standardontrol
problemsarenecessarandsufiicient alsofor systemavhosel/O mapsbelongto
MTIC (suchconditiors aresufficientbut notnecessarjor generaWPLSs);some
of this hasalreadybeenestablishedor lessgeneralsystens (see,e.g.,[CD80] or
[CW99]).

Chapter 3: Transfer Functions (T = L% oy, TIC = H®)

We studythe Laplaceand Fourier trandorms (or transferfunctionsor symbol3
of Tl andTIC mapsghatis, (causakndgeneraltime-invariantmapsL? — L2.

Our mainresultsaretwo generalizationso unseparabléiilbert spacesfirst
oneof theFouriermultiplier theorem(* TI(U,Y) = LgondiR; B(U,Y))") andthen
of the fact that an operatotrvaluedH> function over the rlght half-planehasa
boundaryfunction in strongL® on the imaginaryaxis asits “strong pointwise
limit”, in averynaturalsense.

We first shaw that“TI(U,Y) = LstrondiR: B(U,Y))” (Theorem3.1.3(al)):

Theorem 1.2.2 For eath E € TI(U,Y), there is a unique (symbo) E e

stronddR; B(U,Y)) s.t. Eu=Eua.eforalluelL? (R;U). Thismappig E — E
isan |sometr|C|somor|ch|smofTI(U Y) ontoL GondiR; B(U,Y)). 0

(Theseparableaseof thisclaimis well-known. HereiR is theimaginaryaxis,
andE € L,oiR; B(U,Y)) meanghatE : iR — B(U, Y)issdt. Eup € L*(iR;Y)
for all up € U. It follows that || E||_= = SURflu<1 | Eug||e < o, by Lemma
F1.6.)

Then we go on to showv that this Fourier transbrm restrictsto an iso-
metric isomaphism of Tla(U,Y) N TlL(U,Y) onto H?(Cyp; B(U,Y)), where
H®(Cap; B(U,Y)) refersto boundecholomorplic functionsC,p, — B(U,Y) and
Cap:={s€ Cla< Res< b}, andthatEd = Eu on Capb (bothsidesof theequa-
tion beingholomorphe) for all u € LZ(R;U)NL2(R;U).

In Sections3.1and3.2, we alsogive furtherresultson the Fourier transform
andwealer formsof thetwo resultsmentonedabove for arbitraryBanachspaces
U andY andLP in placeof L2 (and “TIY" in placeof Tl,). Thesecan be
consideredisextensonsof thesocalledFourier multiplier theory,

In Section3.3, we establishseveral resultson the boundaryfunctions of
holomorplic functions,the mostimportantof which is the following (Theorem
3.3.1(cl)):

strong



Theorem1.2.3 For each f € H®(C§; B(U,Y)), thereis a boundaryfunction
fo € LgrondIR: B(U,Y)) s.t. foup is the nontangnial limit of fup a.e oniR for
all up € U. O

(Theseparableaseof thistheoremwasgivenin [Thomas].)As theobsenant
readeralready may have guessed,fq is the Fourier transform of D, where
D e TI(U,Y) is s.t. D = f. This justifies the use of “D” to denoteboth the
FouriertransformbD € L srond @+iR; B(U,Y)) andthetransferfunction(Laplace
transform)D € H*(CZ; B(U,Y)) of amapD € TIC (U, Y).

Somecounterexamplesare given to shawv that Theorem1.2.3is not true for
generaBanachspacesorwith HZ in placeof H®.

We alsogive furtherresultson transferfunctions;theseresultswill beneeded
for the WPLStheoryof Partsll andlll.

Chapter 4: Corona Theoremsand Inverses

In this chapter we first shav that any causalinversesof I/O mapspresere
smoothnesandthenwe dothe samefor causaleft inversegmostof this consists
of combirationsof known results). The latter only holdsfor finite-dimensioal
input spacesput we presentpartial resultson the infinite-dimensbnal case,on
which we shalllaterbuild our quasi-coprimdactorizationtheoryfor WPLSs.

In Theorem4.1.1,we list the following equivalent conditionsfor the invert-
ibility of ary D € 4(U,Y), where4 standsfor TIC, MTIC, CTIC or for someof
their subclassementioredabove:

() De Ga,;

(i) D e GTIC;

(iiiy T, DL, € GB(L);

(iv) De GH®, i.e., D! existsandis boundecbn C+.

In particular 4 is inverse-closedh TIC. The sameholdsfor the setof maps
that are “exponentally 4”. For the casedimU = dimY < o, thereare several
otherequiaentconditions suchas(v) infc+ | de{D)| > O; (vi) D is left-invertible
in TIC (seethe Coronaequialencebelav for more).

We also give analogousresultson TI, MTI, CTI and their (noncausal)
subclasseg¢e.g.,E € MTI is invertible in MTI iff E is boundedlyinvertible on
IR) andfurtherinvertihility results.

Then we study the Corona Theoremand its consequence$ollowing the
methodof M. Vidyasagarin caseD € 4(U,Y), dimU < o, welist thefollowing
equialentconditionsfor theleft-invertibility of D:

(i) VD = | for someV € 4(Y,U);

(i) VD =1 for someV € TIC(Y,U);

(iii) D(s)*D(s) > el for all se C* andsomes > 0;

(iv) [[Duf| 2 > €]|ul| 2 forallu e L2(R;U), w > 0 andsomee > 0;



(v) D*rtD > e on L2 for somee > 0;
(vi) D'"D' > emgy for all t > 0 andsomee > 0.

(Here D' := o Dmgy.) It follows that N € A(U,Y) and M € A(U) are
right coprimeover 4, i.e., XM — YN = | for someX,Y € 4, iff N(s)*N(s) +
M(s)*M(s) > ¢l for all s€ C* andsomee > 0. Moreover, for mostof these
classesan equivalent conditionis that D canbe complementedo an invertible
map []I)) IE‘} over 4. Therefore,for theseclasseshe existenceof right or left
coprimefactorsin 4 impliesthe existenceof a doubly-coprimefactorizatiorover
A.

The CoronaTheoremdoesnot extendto infinite-dimensionalJ, but we give
severalpartialresultsfor theinfinite-dimensonalcase.

Chapter 5: Spectral Factorization (E =Y*X, D*JD = X*3X)

We studyspectal factorizaton (“canonicalfactorization”)in the senseof Israel
Gohbeg etal. Thismeandactoringthegiventime-invariantmapastheproductof
anon-causaanda causalnvertibe time-invariantmap (with theinverseshaving
the sameproperties).

In the frequengy domain, spectral factorization equals writing a given
operatotvalued essentiallypboundedmeasurableunction on the unit circle as
the productY*X, whereY andX are (the nontangentialimits at the circle of)
operatofvaluedboundedpoundedlyinvertible holonorphicfunctionson the unit
disc;thatis, givenE € L®(dD; C™"), finding Y, Y~1, X, X~ € H*(D; C™") such
thatE = ¥*X a.e.on aD, (in caseof unseparabléilbert spacesn placeof C",
this productmustnot beinterpretedoointwise).

This factorizationis an extremely importanttool in solving stable control
problemsandeventhe unstablecasecanoftenbereducedo the stableone.

For rationaltransferfunctions(equialently, for finite-dimensimal systems),
the existenceof sucha factorizatiorfor aboundedime-invariantmapL?2 — L2 is
equialentto theinvertibility of the Toeplitzoperatorof this map(The mapto be
factorizeds typically the costfunction(or Popw operator)of a controlproblem.)

Sincethisnecessaryoeplitzinvertibility conditionis notsufficientfor general
(non-rational)indefinite maps, the classicalconditionsfor the existenceof a
solutian to a control problemcannotbe generalizedo generaMWPLSs,not even
if we werenotbeinterestedn the regularity of the controller This makesthese
factorizationresultsessentiafor muchof the theory aswell asthe factthatthe
regularity implied by theseresultsmalesit possibé to write down the Riccati
equationdor the problemsandto obtainsmoothcontrollers. Thus,in our most
generalresultsin later sectionsandin someotherspecialcaseswe have to use
differentmethoddo obtainresults oftenwith fewer equivalentconditionsor more
complicatedormulae.

We also mentionthat thoughthe spectralfactorizationneednot exist, there
are yet “H? spectralfactors”, as shovn by Gohbeg et al. [ClaGoh] for finite-
dimensioml Hilbert spacesWe extendthis resultto the generalcasein Theorem
9.14.6.



Section5.1 consiss of ratherstraight-forvard derivaion of requiredresults
from the literature. In Section5.2, we treat the cornvolutions with measures
consistingof a discrete part plus an (uniformly measurable).! part. Our
main contribution is Lemmab.2.3, by which we can reducethe factorization
of suchcorvolutionsto the separatdactorizationsof the discreteandabsolutely
continuougartsof themeasurewhichalreadyhave beengraduallysolvedduring
thelastthreedecades.

Theposiive caseof thelemmahasalreadybeenprovedby J. Winkin [Winkin]
(for finite-dimensioal input and output spaces). Though the existenceof a
spectralfactorizationis always guaranteedn the positve case(assumig the
invertibility of the correspondingioeplitz operator),it is importantto know the
smoothnessf thefactor asexplainedabove.

The main corollariesof our lemmaare that such corvolutions mapshave
spectralfactors,andthat theseare of the sameform asthe original maps. This
allows oneto formulatethesolutionsto WPLS controlproblemsasin theclassical
case,thoughwith several technicalcomplications due to the unboundednessf
input andoutputoperatorgseeSection9.1). Thesecorollariescanbe written in
theform of thefollowing two theorems:

Theorem 1.2.4(Positive MTI spectral factorization) LetU bea Hilbert space
and let 4 be one of the classesTl, MTI, MTIL. LetE € 4(U), and set
4:=A4nTIC.

ThenE > 0iff E hasa factorization

E =X*X, wheeX € GA4(U). (1.5)
Moreover, if E € Aexp, thenX*+1 € Zeyp. 0

(The class Aexp (resp.ﬁa(p) consistsof “exponentiallystable4 (resp. Aexp)
maps”.By “IE > 0" (or “0 < E”) we meanthatE > €l for somee > 0.)

If E € MTI = 4, thenE andX are continuousin iR, hencethen (1.5) is
equivalentto “E(it) = X(it)*X(it) for allt € R, X, X~1 € MTIC(U)".

The generalindefinite)casels analogougxceptthatfor someclassesi, our
resultrequiredJ to befinite-dimensimal:

Theorem 1.2.5(MTI spectralfactorization) LetE € 4(U), whee 4 and 4 are
as in Theoem 5.2.7. Thenthe Toeplitz operator(or WienerHopf opemator)
L Em, € B(L?(Ry;U)) isinvertibleiff E hasa spectal factorization

E =YX, wheeX,Y € GA(U). (1.6)
Moreover, if E € Zexp, thenX*1 Y+ € Zgyp,. 0

(Notethatrt, Ert, € B(L?(Ry;U))iff Eny. + 1 € B(L%(R;U)).)

In fact, in the two theoremsabove, alsoseveral othersubclassesf MTI can
take the placeof 4 (seeTheoremsb.2.8and5.2.7). We also statea few other
resultsconcerninghe spectrafactorizationof TI mapsandsomeresultson other
subclasses.

If theassumptia “E € 4(U)” is replacedby “E € TI(U)", thenthe “gener
alizedcanonicalfactors”X andY of E needno longerbe stablein the indefinite



case(but their Cayley transformsare invertible in H2 over the unit disc). For
dimU < o, thiscanbefoundin [CG81]orin [LS] (with the Cayley transformsof
X*1 andY*! beinginvertible in H2 over the unit disc). We shaw thatthis theory
hasanextensia for the casewhereU is anarbitraryHilbert spacgseep. 148and
Theoren9.14.6).

To emphasizéheimpaortanceof spectralfactorizationwe notethatoneof the
mainthemeof thismonogaphis theequivalenceof thefollowing four conditiors
for severalcontrol problemsior anexponentialy stableWPLS:

(I) the problemhasa (nonsirgular) solutian;

(I the Popor Toeplitzoperatorof the problemis invertible;

(1) thePopw operatorof the problemhasa spectrafactorization;
(IV) theRiccatiequationof the problemhasa stabilizing solutian.

For thecasewherethe WPLS s merelystable we getalmostthe sameresults
and the unstablecaseis somavhat analogoug(it can often be reducedto the
[exponential{/] stablecase).

For systens with al/O mapin MTIC (andhencethe Popor operatorin MTI),
the equivalence’(ll) < (ll11)" follows from eitherof the two theoremsabove (the
formeronecoversmoreclasse®f I/0 mapsbutis only applicablan minimization
problems).

Theequvalence'(l) <(11)” will beestabli®iedin Chapte8 andin thesections
correspondingo the particularcontrol problems equvalence“(lll) <(1V)” will
be establishedn Section9.1 (assumig sufficient regularity of the /O mapand
thespectrafactor;MTI mapsaresufficiently regularfor our purposeshence for
suchsystens, we have acompleteequialenceof (1)—(1V)).

The I/0O map of a finite-dimensioal systemis rational, hencein MTI (if
stable). Therefore,in the standardinite-dimensbnal theorywe alwayshave the
equialenceof (I)—(1V).

Theorem1.2.5is not true for 4 = TI, not even whenU = C? (by Exam-
ple 8.4.13),andthe equivalence”(lll) <(1V)” doesnot even hold for all regular
systemgby Propositon 9.13.1(c1)). For thesereasonssomeof our resultsin
Chapter9©-12poseadditicnal regularityassumptiasonthesystem mostof them
aresatisfiedoy systemdaving aMTIC 1/O map(cf. Theorem8.4.9).

Part Il: Continuous-Time Control Theory

This part containsthe theory of well-posedlinear systemgWPLSs) system
theory regularity, spectraland coprimefactorizationand stabilization(by static
feedbackstatefeedbackputputinjectionor dynamc feedback).

Chapter 6: Well-PosedLinear SystemgWPLYS)

Chapters6 and 7 presentan extensve theory on Well-Posed Linear Systems
(WPLSSs) state-spacandfrequeng-domaintheory stability, regularity, factor



ization, statefeedback putputinjection, staticanddynamicoutputfeedbackand
relationsto Pritchard—Salamogystens andotherspecialcases.

Someof theresultsin thesechaptersareratherstraight-forvard extensionsof
existingtheoryor generalizationsf classicaresults thoughyetusefulfor control
problems.The mainnew contribtutionsof Chapter6 includethefollowing (in the
orderof appearance)

1. the relationsbetweenthe stabilties of different partsof a WPLS (from
Lemma6.1.10to Example6.1.14);

2. several,oftenverytechnicaregularityresultsneededn theRiccatiequation
theory;

3. compatibilty theory(to write alsoirregularWPLSsin adifferentialform as
in (1.7));

4. infinite-dimensonal quasi- and pseudo-coprimdactorizationtheory and
correspondingstabilzationtheory (Sections6.4—6.7). This theory senes
almostaswell asthe classicalcoprimefactorizationtheoryfor the stabi-
lizability anduniquenesanalysisof the solutionsof Riccatiequationsput
thesestrictly wealer coprimesgropertiesaresometimesnoreeasilyveri-
fied, andquasi-coprimeness preseredunderdiscretizationn bothdirec-
tions, thusallowing oneto reducesereral proofsto discretetime.

5. new resultson the generatorof closed-loopsystemgpart of Proposition
6.6.18);

6. equivalent conditionsfor different stability and stabilzability properties
(particularlypartsof Theorems.7.10and6.7.15);

7. theory of systemswith a smodhing semigroup(Section6.8, particularly
Lemma6.8.5);

8. the characterizatiomf thosetransferfunctions(equvalently, of /0 maps)
that have realizationshaving a boundedinput or outpu operatoror a
Pritchard—Salamorealization(Theorems.9.1and6.9.6);

Also almostall of ourresultsn Chapter$—12will begivenin aWPLSsetting
thereforewe motivatethesesystemdriefly below.
Lineartime-invariantcontrolsystemsareusuallygovernedby theequations

X (t) = AX(t) +Bu(t), y(t)=Cx+Du, x(0)=x%p (t>0), (1.7)

wherethe geneators [2B] € B(H x U,H x Y) of the systemare matrices,or
more generally linear operatorsin Hilbert spacesof arbitrary dimensions and
u: Ry — U istheinput,x: R; — H is thestateandy: R, — Y is the outputof
the system.If the generatorareboundedthenthe solution of (1.7) is obviously



~ X TA Bt x = Axg+ Btu
Y Iclp y=Cxo+Du

Figurel.l: Input/state/atputdiagramof a WPLS [é%]

givenby the system
X(t) = A(t)Xo+Bt(t)u
{ y = Cxo-+ DU, where (1.8)

A() = &, Bt (t)u = /0 'A(t—9BU(s)ds
Cxo = CA(-)Xo, Du = CBt(t)u+ Du.

The formulae(1.8)—(1.9)areactuallyvalid for ratherunboundedyenerators.
Therefore, WPLSs are defined by requiring A to be a strongly continuows
semigroup,D to be time-invariant and causal,B and C to be compatiblewith

A andD, and [A((C‘) B‘D()t)} beinglinear and continuousH x L2 (Ry;U) — H x
L2 .(R4;Y) for eacht > 0, equivalently, that

t t
IO+ [ IvOIFos < Ke(lbollf+ [ luoligds)  (2.10)

for some(equivalenty, all) t > 0, whereK; dependont only. An equialent
formulationis givenin Definition 6.1.1,wherewe usethe uniquenaturalexten-
sionsof B andD thatallow the inputsto be definedon the wholereal line, thus
simplifying severalformulae.

Abstract linear systemtheory has beengradually developed since Rudolf
Kalmans work in [KFA], by William Helton [Helton76a], Paul Fuhrmannand
othersuntil Dietmar Salamonand Anthory Pritchard[PS85][PS87]formulated
the Pritchard—Salamonsystemswhich are formally closeto WPLSs. These
systemshave beenextensiey studiedin eightiesandearly nineties,but they do
not cover all interestingexamples. This motivatedSalamonto defineWPLSsin
[Sal87].

The Lax—Phillipsscatteringtheory[LP] andthe operatorbasednodeltheory
of BélaSz.-NagyandCiprianFoias [SF] gave aremarkablempactto theresearch
alreadyon the seventies,andthesetheorieshave beenshownn to be equivalentto
WPLSs(seeChapterll of [Sbook]). Thus,alsothe systemtheorybasedon the
Lax—Phillipsmodelandextensvely developedin Soviet Unionby D.Z. Arov and
others(independentiffrom WPLSs;see[AN] andits referencdist) hasexactly
the WPLSframawvork.

Until then,researchhadbeendividedby differentwaysto represena system,
for example:

(1.9)

(1.) in termsof partial differential equationsor differential delay equations
[Lions] [FLT],

(2.) in termsof thegeneratorg £ 2] [Helton76a][Fuhrmann81],



(3.) asafrequeny domainrelationshipbetweennputs andoutpus [CG97],
(4.) asadynamicalsystem(e.g.,WPLS)in the senseof Kalman[KFA],
(5.) by fractionalrepresentation/id] [CD78]

as notedby Ruth Curtain [Curtain97], who emphasizedhe needfor a theory
coveringbothstate-spacandfrequeng-domainaspecandunifying all theabove
representationsthe work of Salamonand Geoge Weiss in the late eighties
shoved that WPLSs satisfy this need. ThereafterWPLSs have becomean
increasinglypopular subjectin some parts of control theory being the most
generalwidely-used classof infinite-dimensionalinear systems.

The more specializedapproachesstill have their advantagesin the study
of specialcases. One of the most important exampks of this is the work
of Irena Lasiecka, Roberto Triggiani and others (see [LT00a], [LTOO0b] and
referancestherein),who have solved statefeedbackproblemscorrespondingo
several importantPDEsand rathercoercve costfunctions,by usinga moread
hoc approach(of type “(1.)"). At its best, the abstractWPLS approachcan
complementthe othersby providing a different insight and an albundanceof
resultsincluding thosecommonfor rathergeneralsystemsand cost functions
thusremaoving theneedto “reinventthewheel” over andoveragain.

We studythe basicproperties stabilty, realizationtheory dual systemsand
generatorof WPLSsin Section6.1. For any WPLS, thereare generator8 €
B(U,Dom(A*)*) andC € B(Dom(A),Y) satisfyng (1.9) in a strongsensge.g.,
J5A(s)Bu(—s) ds corvergesin Dom(A*)* but its value belongsto the smaller
spaceH andequalsBu; alsothe formulax’ = Ax+ Bu holdsin Dom(A*)* a.e.),
asshavn by Salamor{Sal89]andWeiss[W89a] [W89b]. Salamoralsoobsened
thatary TIC. map(or propertransferfunction)canberealizedasa WPLS.

A WPLS neednot have a well-definedfeedthroughoperator(“D”), but all
systemsof practicalinterestseemto have one; suchWPLSsare calledregular.
Regularity is treatedin Sections6.2 and6.3. An equialentdefinition of [weak]
regularity is thatthetransferfunctionhasa [weak] limit (necessarilghesameD €
B(U,Y)) atinfinity alongthepositive realaxis. All weaklyregularsystemsatisfy
(1.9)in aweaksenseandtheclassicaformulaesuchasD(s) = D+C(s— A)~!B
holdif we replaceC by its weak\WeissextensiornCy,.

Reyularity is anextremelyimportantproperty becausdeedthrougtoperators
are of fundamentalimportancefor much of the control theory For example,
optimal control problemsare most often solved through Riccati equationsthat
arewritten in termsof the generator®f the system,including the (feedthrough)
operatoD. R

For generaWPLSs,equationg1.9) andtheclassicaformulaesuchasD(s) =
D + Cext(s— A) B still hold in a very weak sensefor certaincompatitte pairs
(Cext, D); theirtheoryis developedin Section6.3, which alsocontainsadditioral
resultson differentforms of regularity, on HP transferfunctions,on therelations
betweera WPLS andits generatorgndon reachabilityandobsenability.

In Sections6.4 and 6.5, we defineand study coprime,spectralandlossless
factorizations. The importanceof thesefactorizationss dueto the equivalence
on p. 21, with coprimefactorizationtaking the placeof spectralfactorizationin
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Figurel1.2: DynamicoutputfeedbackcontrollerQ for D € TIC.(U,Y)

“(1IN” in the unstablecase,and dueto the strongconnectionbetweencoprime
factorizationand dynamc stabilzation. We also presenttwo weak forms of
coprimenesswhich are usefulin the infinite-dimensbnal setting, the wealer
of them being invariantunder (inverse)discretizationand henceallowing us to
reduceseveralresultsto the simpler discrete-tine theory

Thus,theconnectiorbetweemresentation§.)—(5.) of p. 23is establishedn
Sections6.1-6.5. Connectionto (1.) is beyondthe scopeof this book. Instead,
we studyWPLStheory with emphasi®n Riccatiequationsandoptimal control.

Sections6.6 and 6.7 treat statefeedback,outputinjection and static output
feedback. Sinceour interestis not limited to exponentialstabilization but we
often only require that the controller makes the closed-loopsystemstable or
strongly stable(this has becomeincreasinglypopular lately), we meetcertain
additionaldifficulties.

In Section6.8,we studysystens whosesemigrougs smootling (e.g.,ABug €
Ha.e.onR, for eachug € U). In Segtiorl6.9,we show thata transferfunction
D hasarealizationwith boundedB iff D —ID(+4-) € Hgtrong over someright half-
plane.We alsoestablistanalogousesultsfor realizationsvith boundedC andfor
Pritchard—Salamorealizations.

Chapter 7: Dynamic Stabilization

In this chapter we treat different forms of dynamicstabilzation. In dynamic
output feedbak (Section7.1), the outputis fed back to the input througha
DynamicFeedbak Controller, in orderto stabilze and control the plant, asin
Figurel.2.

As one can verify from Figure 1.2, the map from the original input to the
outputof theplantD : u+— y becomeD(I — QD)1 : u_ —vy.

We have above treatedonly the I/O mapsof the plantand of the controller
We shall also study the problemwherethe plant and the controller have to be
stabilizedinternally too (seeFigure 7.2), but mostsuchresultsare obtainedas
corollariesof thel/O theory sinceacontrollerstabilizesa systemexponentialy iff
it I/O-stabilizeghe systemandboththe systemandthe controller areoptimizable
and estimatable (this is an extensionof the classicalconcept“exponentialy
stabilizableand exponenially detectable”),as shovn in [WRO0OQ], cf. Theorem
7.2.3(cl).

The main new contrikutions of this sectioninclude the relations between
externalandinternalstability of thecontrolledsystem(Theorem%.2.3and7.2.4),
particularlythe extensionof the equivalence(1.11); certainresultsof theinternal
loop theoryrequiredby the H” 4BP theory includingthe corollarieson dynamic
partial feedback;andtherelationbetweerthe stabilization of the controlledpart



andthe stabilization of the whole plantin partial feedback(Lemmas7.3.5and
7.3.6andTheorem7.3.11).

In Chapter7, we extend most classicalresults (such as the connectionto
coprimefactorizationand Youla parametrizatiorof all stabilzing controllers)to
the infinite-dimengonal caseand presentsomenew results. For exampk, we
extend(seeTheorem7.2.4(c))theclassicakquvalence

exponenially DF-stabilizable <= exponentally stabilzableanddetectable
(1.11)
to alargesubclas®n WPLS (includingthe parabolicsystemsf Section9.5).
In Section7.2,we studythemoregeneratontmollerswith internalloop, where
Q neednot be well-posed(i.e., proper), as long as the closed-loopsystemis
still well-posed;classical‘fractional H” /H*” controllersfall into this cateory.
For exampk, if D € TIC«(U,Y) hasthe doubly coprime factorization (d.c.f)
D = NM~! = M~!N, whereM, N,M,N € TIC, M,M € GTICo, and

A L e

N X
for someX) Y, X,\? € TIC, thenall stabilzing DF-controllerswith internalloop
for D aregivenby the Youla parametrizatio

(T+MU) (S +NU) ! = (S+NU)"}(T +MU), (1.13)

wherethe parameteilU rangesover TIC(U) (Theorem7.2.14). The controller
(1.13)is well-posediff S +NU (equivalenty, S+ NU) is invertible in TIC.. By
shifting stabilty, we obtainan analogousesulton exponental stabilization. We
alsogive a seriesof resultsthatdo notrequirethe plantto have ad.c.f.

Part of the resultsof Chapter7 have beenestablisked earlierin the works of
R. Curtain,R. RebarberG. Weiss,M. Weissandothers.

In Section7.3 we study dynamicpartial outputfeedbak (DPF), wherethe
controllercanaccessonly a part of the output (“the measurement’andit can
affect only part of theinput, asin Figure1.4. (seeFigure 7.8 for the I/O part).
ConsequentljthemapDs 2 : w+— z from the externalinput w to the actualoutput
zZbecomes

X -Y
N M

X -Y
-N M

Fo(D, Q) := D12+ D11Q(1 —D21Q) "Dos : Wi Z (1.14)

whenthe controlleris appliedto the system.All stabilizingDPF-controllersor
D € TIC,(U xW,Z x Y) aregivenby the Youlaformula(1.13)appliedto D»; in
placeof D if D satisfiesstandard‘stabilizability and detectability” assumpbns
(by Lemma7.3.6(b2)).

We list the corollariesof DF-stabilizatian theory for DPF-stabilization,as
above, andpresenDPF-specifiaesults(with andwithout internalloop, both I/O
theoryandstate-spactheory).

The above resultsandthe further theory developedin Chapter7 are usedin
Chapterl2 for the H* Four-Block Problem(H® 4BP), whereonetriesto find a
stabilizingdynamt partialfeedbackcontrollerthatminimizesthenormof w — z



(or malkesit lessthanagivenconstanty > 0).

Part Ill: Riccati equations and Optimal control

Thispartcontainsaatheoryonoptimalcontrol(bothin anabstracsettirg, andasan
applicationto WPLSs)andRiccati equationswith applicationsgo minimization
(LQR andH?) problemsandto the H* full-information andfour-block problems.

Chapter 8: Optimal Control (& 7 = 0)

We presentan abstracttheory on optimization and optimal control in state
feedbackorm (Sections8.1and8.2) andthe applicationof thistheoryto WPLSs
(Sections8.3and8.4)with guidelinego problemdinite timeinterval (Section8.5)
andto systens wheretheinputoperator(B) is allowedto bemoreunboundedhan
that of WPLSs(Section8.6). We solve the generalizedccontrol problem,whose
(possiblyindefinite)costfunctioncoversmoststandarccontrolproblems.

Our main contritutionsincludethe generalizatiorof the classicalcoercvity
assumpbnto generaWPLSsandcostfunctions,andthefactthatthisassumptn
leadsto a solution of the generalizedcontrol problem (see Theorems8.4.3
and 8.3.9); this was already extendedto stable WPLSs by O. Stafans. An
importantpart of our theory are also the methodsto treatesimultaneouslyall
formsof stabilzation(i.e.,whetheronerequiresthe “optimal control” to be,e.g.,
exponentialy, strongly or merely outpu-stabilizing. Theseresultswill thenbe
appliedin the derivation of the Riccati equation,LQR and H® theoriesin the
chaptergo follow.

We studythe critical pointsof a given costfunctionandthe casewheresuch
control correspondso a stabilizingstatefeedbackpair. Suchan“optimal” state
feedbackpair correspondso a “stabilizing” solutionof the Riccati equation,as
shavn in Chapter9. The correspondingspecialcontrol problemsare solved in
Chaptersl0-12.

GivenaWPLS [£{2] andacostoperatod = J* € B(Y), we considetthecost
function

J(Xo,U) ::/ (y(t),Jy(t))ydt, where y:=Cxo+Du (Xp€H, u:Ry—U)

° (1.15)
andu is requiredto be exponentally stabilzing, stronglystabiizing, stabilizing
or sometlng similar, dependingn how stableonewishestheclosed-loosystem
to be.

This coversall quadratic(definite or indefinite) costson the input, stateand
output(extend C andD suitaby if necessarye.g.,replaceC by [§] andD by
[P] to cover crosstermsof u andy). In particular minimization,H* andsimilar
controlproblemsare covered. The solutions of suchproblemscorrespondo the
controlsthatarecritical pointsof 7, i.e.,for whichtheFréchetderivative of 7(xo, -)
is zero;we call suchcontrolsJ-critical.



In Section8.4, we defineandstudyJ-coerivity, which is a generalizatiorof
the standardnonsingudrity assumpbns of several control problems(including
the “J-coercvity” assumptins definedin [S97b]-[S98d],the “Popov Toeplitz
invertibility” conditionin the stablecaseandthe “no transmis&n zeros”and“no
invariantzeros”conditionsin the positive case).We show thatary “stabilizable”
J-coercve WPLS hasa uniqueJ-critical (“optimal’) controlfor eachinitial state,
andthatthis J-critical control canbe presentedn WPLS form (this generalizes
the correspondingesultin [FLT]).

However, the correspondingeedbackneednot be well-posedwithout addi-
tional assumptioa on the system,asillustratedin Examples8.4.13and 11.3.7.
This leadsto someadditionaldifficulties in the Riccati equationtheory (the sit-
uationis the sameevenin the casestudiedin [FLT]). Sections8.3 and8.4 also
containsa seriesafurtherresultson J-critical controlsandJ-coercvity andonthe
connectiorof thelatterto spectralandcoprimefactorizations.

The control problemsfor unstabé systemsare traditiorally reducedto the
stablecaseby preliminarystabilization, whenthe optimal controlis requiredto
be exponentally stabilizing We shaw thatthis is possibé for WPLSstoo, give
a counterexamplefor otherformsof stabilizationanddevelop morecomplicated
tricks to overcomethis problem(Theorem8.4.5).

In the last two sectionof Chapter8, we give guidelires on how to extend
our optimization andRiccati equationresultsfor problemson finite time intenval
(Section8.5) and for more generalsystemshan WPLSs (Section8.6). These
resultsarenot usedelsavherein this monograph.

Chapter 9: Riccati Equations and J-Critical Control

It was shavn independentlyin [WW] and [S97b]-[S98d]that, in the (stable)
regular case,the optimal cost operatorof certain control problemssatisfiesa
generalizedoperator)Riccati equation.We establishedhe corverseimplication
from a stabilizingsolutian of the Riccati equationto the existenceof an optimal
control in [Mik97b]. In Chapter9, we extend both resultsto the general
optimizatian context of Chapter8, thus covering also generalunstablesystems
andmoresinguhbr problemgunderwealer regularity assumpbns).

We alsosimplify the equationandthe assumpbns in several specialcases,
presenta priori sufficient assumpbns for the requiredregularity, and provide
wealer resultsfor lessregular settings. Moreover, the connectionto spectralor
coprimefactorizationand further aspectgsuchas uniguenessRiccati inequali-
ties and certainpathologie} are addressed Possiblyill-posedor irregular opti-
mal controlsandcorrespondingeneralizediccatiequationsrecoveredin Sec-
tion 9.7 (for boundedutputoperatorsa specialcaseof thiswassolvedin [FLT]).
We describebelav the mainresultsof this chapter

Theexistenceof auniqueregularoptimalstatefeedbacloperatorfor aregular
WPLS is equialent to the existence of a (necessarilyunique) U} -stabilizing
solutionof the Continuous-tneAlgebraic RiccatiEquation (CARE)andfrom one
the other can be computed(seeTheorem9.9.1; read“optimal” as“J-critical”).
This extendsmostsimilar resultsin theliterature.



Whenwe optimize over exponentialy stabilzing controlsor statefeedback
operatorstheterm* U} -stabilizing” is equialentto “exponentialy stabilzing” (a
WPLSis exponenially stableff its semigroupA satisfieg|A(t)||n < Me** (t > 0)
for somew < 0, M < ). To make thingseasier we illustrate this underrather
strongassumpbns:

Theorem 1.2.6(Uep: Unique minimum < By,-CARE < J-coercive) Assume
that the WPLS [%%] and the cost opemtor J = J* € B(Y) are s.t.
Tho,1)AB € L([0,1); B(U,H)), C € B(H,Y) andD*JD >> 0. Thenthe following

are equivalent:

(i) Theris a uniqueminimizirg exponentialy stabiliang statefeedbak opera-
tor.

(i) Thereis a uniqueminimiang control over Uep(Xo) := {u € L2(R;U) |xe
L2(Ry;H)} for eadhinitial statexg € H.
(iif) TheRiccatiequation
(B, P +D*JC)*(D*ID) (B}, P+ D*JC) = A*P+ PA+C*IC (1.16)

hasasoluion ? = P* € B(H) s.t.P|H] c Dom(B},) andthesemigpupgen-
eratedby A — BK is exponentiallystable whee K := —(D*JD) (B}, P +
D*JC).

(iv) Z is optimizableandD is J-coerive over Uexp.

(v) Z is exponentiallystabilizableandthereis € > 0 satisfyirg

(ir —A)xo = Bug = (Cxo+ Du,J(Cxo+ Du)) > €|%0[|3 (o€ H, upeU, reR).

If (iii) holds,thenK isboundedK € B(H,U)) andit is theuniqueminimizing
exponentially stabilizng state feedba& opertor. The minimal cost equals
(X0, Pxo) for eachi xg € H. 0

(Thisis aspecialcaseof Corollary10.2.9combinedwith Theoren9.2.3.)

Thus,theoptimalcontrolcorresponds$o the statefeedbacku(t) = Kx(t) (t >
0), where K is as abore. Here B}, denotesthe Weiss extenson of B* €
B(Dom(A*),U). The Riccati equation(1.16)is givenon Dom(A) (see(9.14)).
See(1.17)for themorecomplicatedyeneralCARE.

When 7 (xo,u) = ||CX||3+ [|u]|3, i.e.,C=[}], D= [{], I =1, then(1.16)
becomes(B},?)*B;,? = A*P + PA+ C*C, the minimizing feedbackis given
by u(t) = —B,Px(t) (t > 0), and the closed-loopsemigroupis generatecby
A+ BK = A—BE;,P.

As explainedon p. 27, we canhave crosstermsof u andy in the cost,e.g.,
replaceC by [§] andD by [?] to obtainanothetWPLS and,correspondinglya
“more general”(actually lessgeneral)'standardform of the Riccatiequationas
in, e.g.,Remark9.1.14.

However, thetheoryof Section8.3alsoallows optimizationover variousother
sets(* U;") of controlsthan Uexp, €.9.,for thosewhich make the stateandoutput
stronglystablefor eachinitial state(* Usy”). Correspondinglytheregularoptimal



statefeedbacloperator(if any) over Us correspond$o theunigue solutionof the
CARE thatis Ug-stabilizirg, i.e., thatstabilzesthe stateandoutput stronglyfor
eachinitial state.

In the literature of infinite-dimengonal systems,it has becomepopularto
only requirethat the outputis stablefor eachinitial stateand possiby alsofor
eachstableexternalinput to the feedbackoop. In this casethe condition “ ;-
stabilizing” becomesathercomplicated Definition 9.8.1).

If the systemis exponentialy detectablethenall the casesmentimmedabore
(and certainothers)coincidewith exponentialstabilzation, but this assumption
is sometimedoo strong. If the systemis “coprime stabilzable” (in a suitable,
rather weak sense;this assumptionalways holds when the systemis output
stable(resp.stable,strongly stable)),then optimizatian over outputstabilizable
(resp. stabiizable, strongly stabilzable) controls correspondgo the “coprime
stabilizing” solutionof the CARE, andtheequvalenceof (I)—(IV) onp. 21 holds
see Section9.1 for details. However, this soluion neednot be exponentially
stabilizing, and the same CARE may also have an exponentialy stabilizing
solution(seeExample9.13.2; naturally in a minimization problemthe optimal
costbecomesigherfor strongestabilizabilty requirements)Partof theseresults
seemto benew evenfor finite-dimensbnal systems

Very regular systens, suchas thoseof Theorem1.2.6, are studiedin Sec-
tion 9.2. For themthe CARE becomegatherelegantand similar to its finite-
dimensionakounterpartsaspart(iii) of thetheoremshowns. Suchsystemsover
analyticsystemghencemostparabolic-typgroblems)aving ratherunbourled
inputandoutputoperatorsasshavn in Section9.5.

In thegeneralcase the optimalcontrolneednot correspondo a (well-posed)
statefeedbackoperator as explainedin Chapter8. Neverthelesssuchcontrol
correspondgo a generalizedRiccati equation,asillustratedin Section9.7 (for
WPLSswith aboundedutputoperator(*C”) andarathercoercve costfunction,
thiswasshowvn in [FLT] by F. Flandoli,I. LasieckaandR. Triggiani). However,
since theseequationsare given on the (unknavn) domain of the closed-loop
semigroupmeneratoratherthanon Dom(A), it becomewery difficult to solve the
Riccatiequatiorandthusobtainthe (possitly non-well-posedjeedbacloperator

As mentiored above, the existenceof a (well-posed)regular statefeedback
operatorfor aregular WPLS s equivaent to the CARE having a solution but in
this generalcasethe CARE becomesathercomple: we haveto find P = P* €
‘B(H) satisfying

K'SK =A*P+ PA4C"IC € B(Dom(A),Dom(A)*)
Mk _li * _ -1
S=D*JD +VSV_>|J'IQ ByP(s—A) "B € B() (1.17)
X = —(By?+D*JC) € B(Dom(A),U).

Obviously, S and K are uniquely determinedby ¢ if S is one-to-one,which
correspondgo a unique optimal control. The optimal statefeedbackis given
by u(t) = Kyx(t) for a.e.t > 0. SeeDefinition 9.1.5for details(and Definition
9.8.1for noninvertible signatureoperators).

Note that whereasthe special case (1.16) is close the finite-dimensioal



CARE, this generaform looks almostlik e the discrete-timeRiccati equation;in
particular the signatue operatar Smaydiffer from D*JD, asobseredin [S97b]
and[WW]. In the notesto Section9.8 we explain how the signatureproperties
of the problemare determinedby S, not by D*JD, evenwhenthe /O mapis a
simpledelay Thus,thesituatian is analogougo the (finite-dimensimal) discrete-
time setting,wherethe signatue operatorS := D*JD + B*PB takesthe role of
D*JD.

We alsolist several casesn which the CARE canbe simpified andcasesn
which an optimal controlis alwaysgiven by a well-posedregular statefeedback
pair (andhencecorrespond$o a CARE; seee.g.,Remark9.9.14).

The optimal controlis given by a well-posedstatefeedbackiff the Integral
Algebraic Riccati Equation(IARE) hasan I} -stabilizing solution, regardlessof
regularity. While IAREs are not particularly apt for engineeringpurposesthey
provide a link to discrete-timeRiccati equations,and this allows us the prove
several resultswhosecontinuows-time proofswould seemintractabledueto the
unboundednessf input and outputoperators.The IAREs alsoallow usto treat
the connectionbetweenoptimal control and Riccati equationsseparatelyfrom
regularity consideratios. Naturally, for regular WPLSs, the solutionsof the
CARE are exactly the soluions of the IARE correspondingo regular feedback.
Also thesequestios are addressedn Section9.8. Several further properties
of Riccati equationsare treatedin the restof the chapter Much of our theory
concerningor U; # Uexp is New evenfor finite-dimensimal systems.

In Section9.14,we give an extenson of the generalizedcanonicalfactoriza-
tion theoryto the caseof infinite-dimensbnal input and outputspaceqseealso
p. 148).

Chapter 10: Quadratic Minimization (LQR)

For controlproblemswith a posiive Popos operatoyonetraditiorally shavs that
undercertainconditionsary soluion of theRiccatiequations unique,admissble
andexponentidly stabilizing. Oneof our maincontrikutionsin thisandpreceding
chapteris the extensio of the above fact to WPLSs and partially also to the
non-ponentally stabilzing casethisis technicallyvery challengingdueto the
unboundednputandoutputoperatorswhich,e.g.,makeit hardto shav whenthe
“optimal feedback’is well posed.

As corollaries,we get several resultsthat formally look like the classical
ones. Thesecorollariesinclude Theorem1.2.7 below, (b4)&(c1)&(c2) of The-
orem 10.1.4,the Strict Boundedand Strictly Positve (Real) Lemmas,and the
eguialencebetweenoptimizability and exponentialstabilzability for systens
with a smoohing semigroupgTheorem9.2.12). We alsosolve several minimiza-
tion problemswith moregeneralstabilzability or regularity assumpons.

Importantnew contributions of the chapteralso include the connectionbe-
tween different classical coercvity assumptins and their generalizationsto
WPLSs,includingJ-coercvity (Section10.3).

In Section10.2, we study minimization problems,by which we refer to the
minimization of the costfunction (1.15). Theoreml1.2.6is a corollary of that



section.

In Section10.1we studythe specialcaseof the costfunction||y||3+ ||u||3 and
its variants.Undera mild detectabilitycondition,thereis at mostonenonneative
solutionof the CARE, hencewe do not have to verify whethera soluion is “ U} -
stabilizing”:

Theorem 1.2.7(LQR: miny fo°(||IX||Z + ||ull3)) Assumethat the WPLS 5 =

A B] is uniformly regular (UR) and estimaéble (e.g., that C is boundedand
C*C > 0). Considerfor someRe B(U), Q € B(Y) s.t. R,Q > 0, the costfunc-
tion

900,0) = [ (/0. QuO) + (Ut RuD)y) dt (o€ H, ue Li(RiV)).
(1.18)
Thee is a UR minimiang state feedbak opemator for X iff there is a
nonn@ativesolution? € B(H) satisying the CARE

K*K = A"P + PA+C*QC,
p— * i * —_ _1
S=R+D'QD+ lim B, P(s—A)"B, (1.19)
K =-5(B;,2+D*QC),

for someK € B(H1,U), Se B(U), S>> 0.

If sud a solution exists,thenit is the uniguenonngative soluion of (1.19),
K is a UR exponentiallystabilizing statefeedbak operator for Z, andK is the
unique minimizirg statefeedbak& operator over all u € Lﬁ)c(RJr;U) (and over

Uexp andover Ugyy). 0

(This follows from Theorem10.1.4and Remark10.1.5.) For eachCARE
resultin this monographijncluding the one above, thereis alsoa “B,-CARE”
variantthatallows usto remove thelimit termandsimplify theformulationunder
ary of theregularity assumpons of Hypothess 9.2.2,asillustratedin Theorem
1.2.6.

Without the detectabiliy (estimatabiliy) condition, we obsene thata mini-
mizing statefeedbacloperatoover Uep correspondso themaximalnonngative
solutionof the CARE anda minimizing statefeedbackoperatorover gy corre-
spondgo the minimal nonn@aive solution of the CARE (Theorem10.1.4). We
alsoderive furtherresultson suchandmoregeneraminimizationproblems

In Section10.4we show thatthe solutian of the minimizationproblemleads
to the solutian of the H? full informationandstatefeedbackproblemswhereone
wishesto find a controller (Q; possiblyinducedby statefeedbackor dynamic
outputfeedbackthatminimizesthenorm

IDQ + D2 |2

stron

CHBW,Y))? (1.20)

Where@ : W — U is the frequeng-domaincontrol law (determinedoy Q) to an
external(disturbance)nputto the controlinput for the WPLS

AlB B with generators AlB B (1.22)
C|D D g clp o] '



asin Figure10.1. Theabore WPLS is obtainedby addinga secondnputto the
WPLSZ, WeassumehatbothD andD;, areWR. A strongeiproblemis tofind, for

eachwp € W, a“stabilizing” controlu s.t. || DU+ DaWol |2 (c+y) is minimized,see
Section10.4for details.We shav thatunderminimal assumptias,a minimizing

statefeedbacloperatorfor theoriginal systemalsosolvesthe H2 problemandthe
strongermproblemformulatedabore.

In Section10.3we treatmoststandardassumptiasfor classicalminimization
problemsand shov that they are strongerthan or equvalent to positve J-
coercvity (over Uexp Or over Upgyy).

In Section10.5,we presengeneralizedersionsof theBoundedrealLemma,
includingthefollowing:

Theorem 1.2.8(GeneralizedStrict Bounded RealLemma) Assumehaty > 0.
If C is boundedand dimY < oo, or if B is bounded,thenthe following are
equivalent:

(i) ¥ is exponentialy stabke and||D|| < ;
(i) Theeis ? < 0s.t.P[H] ¢ Dom(B},) and

A*P+ PA—C*C (B P —D*C)*
B:,? — D*C V2l —D*D >0 on Dom(A) xU. (1.22)

Moreover, any solution of (ii) satisfiesP < 0.

In the Strict Positve RealLemma,we presenanalogougonditionsfor thel/O
mapto satisfyD € TIC andRe(D+,-) > 0 (i.e.,D+D* > &l in L oniR; B(U,Y))
for somee > 0). Naturally, therearealsoanalogousesultsfor unbounded and
C.

In Section10.6,we presennhecessargndsufficientconditionsfor theuniform
positiity of the Popos operator(D*JD > 0), in termsof spectralfactorizations
andRiccati equationsor inequalites. Section10.7 presentadditional resultsfor
positive Riccatiequationgsay with positve signatureoperatoy S>> 0).

Chapter 11: The H” Full-Inf ormation Control Problem (FICP)

The H* controlproblemsreferto the minimization of the outputof a plantin the
presenceof a disturbancenput The name“H®” comesfrom the minimization
of the (controlledclosed-loopsystem L2 — L2 normfrom disturbanceo outptt,
which equalsthe H* norm of the correspondindransferfunction, by Theorem
1.2.1.

In the FICR studiedin this chaptey we can producethe control signal
knowing exactly the stateand disturbanceof the system whereasin the Four-
Block Problemof Chapterl2thecontrollersonly inputis aseparateneasurement
output.

Our mainresultsstatethat,giveny > 0, thereis a controller achiezing anorm
lessthany iff the Riccatiequation(1.24) hasa nonn@aive stabilizing solution.
Moreover, if this is the case thenthereis sucha controllerthat consistsof pure
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Figurel.3: TheH* FICP

statefeedback(with no measuremenof the disturbance).This generalizeghe
classicalresultsto this problem.For WPLSs,O. Stafanshadalreadyprovedthe
necessityartof theimplicationfor stablesystem#$aving anL ! impulseresponse.
We alsoformulatethe solutionin termsof J-losslesgactorizationsandsolve the
correspondingliscrete-timegoroblem.

Technically we study a systemof form Z = [%%}, with input space

U xW insteadof U. If D= [D1 D3] € TICa(U x W,Y) is regular, we canwrite
thisas

1.23
y =Cx+ Diu+Dow, ( )

{ X = Ax+ Biu+ Bow,
(if B=[B1 B] € B(U xW,H_1) andC € B(Dom(A),Y) areunbouned, then
thedynamicg(1.23)aresatisfiedonly in the sensadescribedn Theorem6.2.13).

We have divided the input spacen two to modela settingwhereonly part of
theinput(calledthecontmol), u: R, — U, isaccessibléy thecontroller whereas
the otherpartrepresentshedisturbarce (or uncertaintiessensomnoise,modeling
error) w : R, — W to the system. The signaly is the objectiveor error signal
whosenormis to be minimized.

In theoptimal H* State-feedbak Control Problem(SFCP) onewishestofind
a(pure)statefeedbackcontrollerof form “u(t) = Kx(t)” (with e.g.,K € B(H,U))
suchthat this feedbackstabilzes the systemexponentialy and minimizesthe
norm ||w — Y||g 2 2). In the optimal H® Full-Information Contol Problem
(FICP), the controlleris allowed to be of form “u(t) = K(t)x+ Fow(t)” (state
feedbackplus feedforvard), asin Figure1.3. (Here|[ K | F1 F» | is the state
feedbackpair generatedy K or [ K | 0 R, |, andthesignalu s representshe
externaldisturbancegor externalinputs)in the feedbackoop. The words“full
information” refer to the factthat the controllerhasaccesdo both the stateand
thedisturbance.)

Thereis nodirectmethodavailable(evenin thefinite-dimensbnalcase)o find
theexactoptimum Therefore jnsteadof the optimal problem,the corresponding
suboptimalH* problemis usually treatedin the literature. In the suboptinal
H® problem, we searchfor an exponentialy stabilizing controller such that
WYl g2, 2) <Y, Wherey> Oisagivenconstantsuchacontrolleris called(y-
)suboptimal We extendthe classicalresultsby shaving thatthereis a suboptinal
statefeedbaclkcontrolleriff the Riccatiequationcondition(iii) below is satisfied.
By varyingy we canthenfind an estimate of the infimal y anda corresponding



(almostoptimal controller (e.g.,by abinarysearchovery's).

As mentionedabove, under standardcoercvity assumptins and certain
regularity andnormalization conditons(see.e.g.,Theoreml1.1.4) thefollowing
areequvaent:

(i) thereis a suboptinal control law w — u, and (A,B;) is exponentialy
stabilizable;

(i) thereis a suboptinal state-feedbacKplus feedforward) controller u =
KwX—+ FX;

(i) thereis suboptmal purestate-feedbackontrolleru = Ky x;
(i) theRiccatiequation
P(B1B} —y 2B,Bj)P = A*P + PA+C*C, (1.24)

(on Dom(A)) hasa nonngaive solution? € B(H) suchthatA— (B1Bj —
y—ZBzB*z‘)fP generatesnexponenially stableCy-semigroup.

Moreover, if (i) holds,thenK := —Bj}? € B(H,U) determinesa suboptinal
(pure)state-feedbackontrollerfor Z (throughu(t) := Kx(t) (t > 0)). A solution
P of (iii) is unique.

Herewe have assumedhatB is boundedD, = 0 andD} [C D1] = [0 I];
see,e.g., (11.24)and (11.17)for the unsinplified forms of (iii) andK. (Also
without the above simgifying assumpbns, the suboptinal statefeedbackopera-
tor K is exponentially stabilizing (anduniformly regular, thoughnot necessarily
bounded)put we mustadda signatue condition to (iii); morewer, condition(ii’)
becomesstrictly strongerthanthe other conditions(which remainequivalentto
eachother)unlessa strongersignatureconditionis satisfied.)

We presentanalogousresults under different regularity assumptns, and
variantsfor Uy, Usta and Usy, 1.€., wherethe suboptinal controller needsto
be,e.g.,merelystronglystabilizing insteadof exponenially stabilzing. We also
establishthe sufficiency of the Riccati equationcondition for arbitrary regular
WPLSs(seeLemmall.2.13).In Examplell.3.7(c)we shaw that,however, this
conditionis notnecessaryor generakegularWPLSs.

In (i), we have allowedfor anarbitrarycontrollaw L?(R ;W) — L?(R,;U).
If sucha controllaw Q :w+—u hasatransferfunctlon(e 9. Q € TICw(W,U)),
thenthenorm|jw — y|| equalsg| D1 Q+ Dz ||icow,y), O ||]D)1Q+]D)2||Hoo CHBW,Y))-
By theabove equivaence this problem the FICP andthe SFCPareaII equialent
(undersimplfying assumpbns and suitabk regularity). Thus, if thereis ary
suboptinal controllaw (and (A,B1) is exponentiallystabilzable),thenthereis
actuallyacausallinear, stable time-invariantcontrollaw thatcanbeimplemented
as an exponenially stabilizing state feedbackcontroller (so that Q = (I —
F1)~1F,). Condition (i) can also be formulated as a minimax problem, as
explainedin Section11.1(particularlyon pp.613and626).

In Sectionl11.2,we give proofsandadditianal variantsfor the above results,
andwe extendthe (frequeng-domain)J-losslesgactorizationresultsfor the H*
FICPgivenin [Green]and[CG97]to MTIC andsimilarclasse¢Theoremll1.2.7).



The Discrete-Tme H” FICP is treatedin Sectionl11.5,andtheabstracH® FICP
in Section11.7.

The H*” FICPis interestimg bothfor its own meritsandfor the factthatit can
be usedto obtaina solutionto the H* 4BP presentedbelow.

Themethodausedfor thestableH™ FICP alsoapplyto the (one-block)Nehari
problem,whereonewishesto estimated(ID, TIC*) or theHankel norm || 1o, Drt_ ||
of someD € TIC. Thereforewe take a brief look atthis problemin Section11.8,
thisincludesthefollowing:

Theorem 1.2.9(Nehari) LetD € MTIC(W,U) andy > 0. If dimU xW <  or
D € MTICtz, thenthefollowing are equivalent:

(i) Theeis U € TIC(U,W) s.t.[[D+U*|| g2 <Y (i.e., d(D, TIC*) <y).

(i) TheHankel norm||tt.Drt_|| of D is lessthany.

(i) Thee is X € GTICU x W) st X33 € GTIC(U) and
521" [o 3 | [P =X [} 9]

(RecallthatD € MTICtz meanghatD hasanL! impulseresponselusdelays
of form S, Dkt for someperiodT > 0.)

Thefactorizationin (iii) is often calleda co-spectrafactorization.The norm
|| Dri_ || equalsp(BB*C*C)/2, whereBB* andC*C are the reachabilityand
obsenability Gramiansyespectrely, of ary realizationof I having stableinput
andoutputmaps.

We do nottreatthe NehariRiccatiequationssincetheir theorywould require
lengthy additionsto Chapter9 due to the noncausalityof the corresponding
“closed-loopsystems”.

Chapter 12: H* Four-Block Problem (|| (D, Q) || <)

In the H* Four-Block Problem (H* 4BP) (aka. “the standardH® problem” or
“the generakegulatorproblem”),onetriesto find a DPF-controllethatmakesthe
normw — z lessthana givenconstanty > 0 (see(1.14)),i.e.,y-suboptmal.

Consequentlyasexplainedabove, the differenceto the H* FICP is thatnow
the controllerdoesnot have accesgo thedisturbancepnly to a partof the output
(“the measurement”gsin Figurel.4(orin Figure7.8;seeFigures7.10and7.11
for DPF-controllerswith internalloop).

Thus,thegoalof theengineeiis againto minimizethenormfrom theexternal
disturbancenputto the objective outputof the system As in the previous chap-
ter, we againgeneralizethe classicalresult(previously generalizedo Pritchard—
Salamorsystemdsy B. van Keulen[K eu]) thatthereis a y-suboptinal exponen-
tially stabilzing (measuremenfieedback)controlleriff certaintwo independent
Riccati equationshave exponenially stabilzing nonngative solutonsandthese
(necessarilyunique)solutions satisfythe standardspectralradiuscondition. We
formulatetheresultalsoin termsof two nestedl-losslesgactorizationsandsolve
the H” discrete-timeFour-Block Problem;in fact thesetwo generalization®f
classicakesultssene aspartsof our lengthyproof.
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Figurel.4: DPF-controllerz for < € WPLSU xW,H,Z xY)

As in Section7.3, the output“y” is now divided in two, namely“y’= [{],
wherezis theobjective outputto beminimizedandy is ameasuremerihatis fed
into the controller This correspondso thedynamics

X = Ax+Biu+ Bow,
Z=C1x+ D11u+ D1ow, (1.25)
y = Cox+ Doru+ Doow,

with initial state xo € H, disturbanceinput w € L?(R,;W), control input
u e L2(R;;U), objective output z € L?(R,;Z) and measuremenbutputy €
L2(Ry;Y) (thecontrollerinpuf). In the caseof a generalweakly regular system,
equationg1.25)holdin the strongsenseseeTheorem6.2.13for details.

We arethento find a controllerQ : y — u s.t.thenormw — z becomesmall
enoughand that the closed-loopconnectionbecomesexponentialy stable(that
is the main case;we only treatthe casewherethe closed-loopsystemis merely
requiredto be stableor strongy stable).

(We remindthatthe orderof the subirdicescorrespondingo u andw is often
reversedn theliterature;this alsoaffectsthe formulaebelow.)

In Section12.1, we presentsereral versionsof the standardresultthat the
H® 4BP has a solution iff the two H* Riccati equationshave nonngaive
exponentialy stabilizingsolutionssatisfyingthe couplingcondition. Sincewe do
not useary simplifying assumpons, our formulaebecomerathercomplicated.
Therefore,we shav here the simplified forms of thoseformulae (by making
additionalassumpbns):

Theorem 1.2.10(H* 4BP) Let y > 0. Make the regularity and nonsingilarity
assumptins(Al1)&(A2) of Theoem12.1.4.

Thenthere is an exponentiallystablizing DPF-contioller for Z (possiby with
internal loop) satisfyirg ||w — Z|| < yiff (1.)—(3.) of Theoem12.1.4hold. Under
thenormalizingconditions

B*
D1p=0=Dj;, Di;[Ci D1 =[0 I] =D [ng , (1.26)

conditions(1.)—(3.) canbewritten asfollows:

(1.) (®-CARE) Ther is P € B(H,Dom(B;,)) s.t. Z > 0 on H, A+



(Y ~2B2(Bj)w — B1(B})w) P is exponentiallystable and

(BDwPx)* (BL)wPx — Viz((BE)WTX)*(BE)WTX = A" P 4 PxA+CiCy.
(1.27)

(2.) (B-CARE) Theeis & € @(H,Dom([gﬂ ) s.t. B >0onH, A* +
w
(Y2C}(C1)w — C3(C3)w) Py is exponentialy stabk, and

(C2)wB)* (Co)wB — Y 2((C1)wPk)* (CL)wBk = AP + BA" + B,Bj.
(1.28)

(3.) (Coupling condition) p(PxPy) < V2.

Any solutiors of (1.) or (2.) are unique If (1.)—(3.) are satidied, then
all exponentiallystabilizing DPF-contollers for X satidying ||w+— Z|| < y are
the onesparametrzedin Theoem12.1.8,and the regularity claimsof Theoem
12.1.4(a)&(b)apply.

In (3.), p denotesthe spectralradius. One of the alternatve regularity
assumptiosin (A1) is thatB is boundedandr 1)CwA € L1([0,1); B(H,ZxY)).
For boundedB, the Riccatiequation(1.27)takesthe classicaform

Py (B1B] —y ?B2B3) B = A" B + PxA+CiCy. (1.29)

Seep. 618 for further simpification and remarks. Analogousremarksapply to
(2.); e.g.,for boundedC, the Riccatiequation(1.28)becomes

P (C5Co — Y °CiC1) By = Ay + P A" + B;Bj. (1.30)

Thus, the classicalresultsbecomespecial casesof ours. We also give sev-
eral results under wealer regularity assumptns (e.g., for the case where
AB,CyA,CyAB € L,loc; this allows roughly twice asmuchunboundedessasthe
assumptiosof a Pritchard—Salamosysten).

In generalwe allow for DPF-controllerswith internalloop, but we show that
suchaloopis not neededf D»; = 0 (i.e., onecanusea well-posedcontrollerin
thatcase).

In Section12.2, we give discreteforms of the resultsof Chapterl2. For
themwe needno regularity assumptns(sinceB andC are alwaysboundedor
“discrete-timewWPLSs").

In Section12.3, we studythe frequeng-domainH* 4BPR, whereoneis only
givenan /O mapD € TIC,(U xW,Z xY), andonewishesto find a controller
(/0 map)Q € TICx(Y,U) s.t. the closed-loopconnectionbecomegl/O-)stable
andsatisfied|w — 7| < y (see(1.14)for F;(D, Q) : w+— z we alsotreatthecase
whereQ is allowed to have an internalloop). In particular no state-spacer
internalstability considerationsrerequired.



Michael Greenshavedin [Green](Theorem4.4) thatthe frequeng-domain
4BP hasa solution iff certaintwo nestedspectralfactorizationsexist (in the
rational finite-dimensbnal case). In Section12.3 we extend this resultand its
earlier extensiors to mapshaving a d.c.f. in MTIC (Theorem12.3.6); we also
provide partial resultsfor moregeneralsetting. Our proof of Theorem1.2.10is
basednboththefrequeng-domaindBPandtheH” FICP. Therestof thechapter
consistof proofsandminorresults.

Part IV: Discrete Time Control Theory

Part IV presentghe discrete-timecounterpariof the theory of PartsI-IIl. Pri-
marily we list the continuows-timeresultsthathold alsofor thediscrete-timewell-
posedinear systemgwpls’s) (cf. Theoreml3.3.13;ournotationis muchthesame
in both settings). Most proofs apply mutatismutands; we give explicit proofs
whenthisis notthe case.Several proofsin Partsl-Ill areactuallyreducedo the
discretetime. Our maincontributionsin this partaremainly the sameasthosein
continuoustime (PartsI-IIl), suchasthe solutiors of theH® problemgSections
11.5and12.2).

Chapter 13: Discrete-Time Maps and Systemg(ti & wpls)

In Chapter13, we presentbriefly somefacts on the discretecounterpartsof
WPLSs, which we call discrete-timewell-posedlinear systemgwpls’s). They
arethesystemgyovernedby the differenceequations

Xj+1 = AXj + Buj,
jeZ, (1.31)
yj = CX; + Duj,

for some[2 B] € B(H xU,H xY). We shaw thatalmostall our continwous-time
resultshave discrete-timeanalogiegseeTheoreml3.3.13) andalsomary further
resultshold dueto theboundednessf thegeneratingpperatorgA, B,C, D).

In Section13.1, we study boundedlinear time-invariant maps¢2(Z;U) —
22(Z;Y) (‘i (U,Y)", Where||u||§r2(z;u) ‘= SlIr *u|3), for r > 0, and corre-
spondingtransferfunctions. The Cayley transformis treatedin Section13.2.
(Thesetwo sectionscorrespondo Chapter2 and3; in particular we extendthe
discrete-timd-ouriermultiplier andH* boundaryfunctiontheoremsgor 1/0 maps
overunseparablélilbert spaces).

In Section13.3,we studywpls’s (this correspondso Chapter6; alsoChapters
4, 7 and 8 (and partially the rest of this monogaph) are treatedin Theorem
13.3.13).

In Section13.4,we shov how to obtainwpls’s from WPLSsby discretization.
This allows us to reducesereral WPLS problemsto wpls problems,which are
oftensubstanally simplerdueto theboundednputandoutputoperators.



Discrete-timeRiccatiequation§DARESs) andspectralandcoprimefactoriza-
tion aretreatedn Chapterl4, minimizationproblemsn Chapterl5,andH® (and
Nehari)problemsn Sectionsl1.5and12.2.

Chapter 14: Riccati Equations (DARE)

In Chapterl4, we shall presentthe resultsof Chapters9 and5 (seethe above
summaries)n their discrete-timeforms and supplementhis by further results.
In particular we define and study infinite-dimensbnal Discrete-timeAlgebraic
RiccatiEquatons(DARES)

We show thatfor thegenerakostfunction,the existenceof anoptimal control
is equialentfor the DARE (1.32)to have a stabilizingsolution. Moreover, the
optimal controller can be computedfrom sucha solution. We alsoshow thata
third equivalentconditionis thegeneralizatiomof thestandaratoercvity condition
combinedo exponenial stability (Theorem14.2.7).

Noticethatthediscrete-timeH® controlproblemsaresolvedin Sectionsl1.5
and12.2. The solutionsare alreadyknown for finite-dimensbnal problems(see
[lOWY]).

Given aninitial statexo € H, we saythat“u € Uexp(X0)” iff u € £2(N;U) is
suchthatx € £2(H,U) (wherexis determinedy (1.31)with xg = 0); suchcontrols
(u) aresometinescalled“exponentally stabilzing” (or “power stabilizing). (It
obvioudy followsthaty € £2(N,Y).)

Oneoftenwantsto minimize or, moregenerally optimize a costfunction(i.e.,
to find a J-critical control)undertherestrictionu € Uexp(Xo). This problemhasa
uniquesoluion iff the extendedDARE hasa soluion:

Theorem1.2.11 Thee is a unique J-critical control for ead xg € H iff the
extendediscrete-timeAlgebraic RiccatiEquation(eDARE)

)
K*SK = A*PA— P+ C*JC,

X S=D*JD+B*PB, (1.32)

K = —(D*JC+B*PA),

\

hassoluion (?,S K) sud that ? = P* € B(H), Sis one-to-oneK € B(H,U)
ando(A+ BK) C D. Moreover, anysud solutian is unique

If sudh a soluion exists,thenthe J-critical control is determinedy the state
feedbak u; = Kx; andcorrespondingl-critical costis givenby (xo, Pxo), where
Xo is theinitial state 0

(Herethe costfunctionis of form J(Xo, u) := 3 _o(Y; Jy)y for someJ = J* €
B(Y). SeeTheoreml4.1.6for the proof.)

The above theoremcorrespondd$o U; = Uexp (in the discrete-timesense);
analogousesultsholdfor other?}’s(cf. Chaptei8). We alsopresensomeresults
in the singulr case(whereSis notone-to-oneandK is not unique)andsuficient
conditionsfor the existenceof a uniqueJ-critical control.



Chapter 15: Quadratic Minimization

This chapteris mostly the discrete-timecounterparbf ChapterlO; seethe above

summaryfor ChapterlO for correspondingproblemsandresults,suchas LQR

andH? problems,extendedminimization, coercvity, real lemmasand maximal
solutins of Riccatiinequalites/equationsNaturally, severaladditionaldiscrete-
time resultsaregiven;thefollowing onesolves theextended_QR (minimization)
problem:

Corollary 1.2.12(LQR: min ZT:0(||yj||$+ |ujll3)) Let RQ > 0. Then the
following are equivalent:

(i) thereis a (y, Qy),2 + (u, R ,2-minimizing control overall u: N — U for eath
Xo € H;

(ii) for eadh xg € H thereisu e £2(N;U) s.t.y € £3;

(iii) theDARE

;

P = A*PA+C*QC— K*K,

{ S=R+D*QD+B*PB, (1.33)

| K=-S"(D"QC+B*PA),
hasa nonngativesolutian P.

If (iii) holds, thenthe smallestnonngative solution is minimizing over all
u:N—U.

Thee is a minimizingcontrol over Ueyyp iff the DARE hasan exponentially
stabilizing solution 2, ; sud a solufon is strictly minimiang over Uep andthe
greatestnonngativesolutionof the DARE.

If 2 is exponentiallydetectablge.g., C*C > 0), thenthe DARE hasat most
one nonngative soluion, and sud a solution is necessarilystrictly minimizing

over Usyp. ]

In Section15.5, we shav thatarny strongy stabilzing solutionof a posiive
DARE (or of the correspondindriccatiinequalif) is the maximalone. We also
studyRiccatiinequalitiesn theindefinitecase.

AppendicesA-F

In the appendiceswe presentmathematicaknowledgethatis necessaryor a
completeunderstandtig of the proofsin the main part of this monogaph. The
readersunfamiliar with the theoryof vectorvaluedfunctionsmight wish to have
a glanceat the beginnings of AppendicesA, B andD beforestartingto readthe
maintext, but mostreaderswill probablyvisit theappendicesnly whenin need
to clarify somepartsof the proofsin the maintext.

Most of the appendicegonsistsof vectorvaluedanalogiesof “well-known”
scalarresults,someof which are difficult to find in the literatureeven in the



scalarcase whereassomeof our resultsseemto be new evenin the scalarcase.
Hopefully, the appendicesan also sere as a referencefor several resultsthat
have beencommonlyusedin infinite-dimensonal controltheorywithout known

references.

In the main text of this monograph,the vector spacesare assumedo be
compl (K = C), but in the appendicesthe scalarfield K canbe taken to be
eitherC of R (in AppendixD andSectionsA.4 andF.3, we assuméhatK = C,
asexplicitly statedthere;in the othersectionsn the appendicesve alwaysstate
explicitly any suchexceptions).

In AppendixA, we presentstandarddefinitionsandseveral factson algebra,
topology and functional analysis, including several useful formulae for the
inversesof operatordbetweerproductspaces.

In SectionB.1, we briefly presen{Lebesgueintegration,differentiaton, mea-
surabilityandLP and ¢ function spaces.In the restof AppendixB, we extend
suchconceptdor functionswith valuesin Banachspacegwe call suchfunctions
vectorvalued. Our resultsinclude the density of finite-dimengonal, smooth
compactlycarriedfunctionsin vectorvalued (Lebesgue) P spacegeven simu-
taneouslyfor different p’s and weight functions seeTheoremB.3.11), several
integral inequalites and equalities(e.g., TheoremsB.4.12 and B.4.16), certain
productmeasurabity results differentiationformulaefor integrals (SectionB.5)
andthebasictheoryof vectorvaluedSoboles spacegSectionB.7).

In AppendixC, we briefly introducevectorvaluedalmostperiodicfunctions.

In AppendixD, we studyholomorphe vectorvaluedfunctions.Thisincludes
(Hardy)HP spacesl.aplaceandFouriertransformsandPoissorintegralformulae.
We alsopresensomeresultson convolutionsandon vectorvaluedmeasures.

In Appendix E, we presentthe Riesz—ThorinInterpolation Theorem, the
Hausdor—Young Theoremandsimilar resultsfor vectorvalued functions,with
applicationgo controltheory

In AppendixF, we definespacesf strongly measuable functions(f : Q —
‘B(B,By), wherefx: Q — B is (Bochnef)measurabléor eachx € B) andweakly
measuable functions (Afx is measurablefor eachx € B and A € B}). In
particular we defineand study Lgtmng and L\f\’,eak spaceqthe main applications
arecontainedn the abore summaryon Chapter3) and Hgtmng and H\f’veak spaces
(with applicationsin systemtheory). We also develop integration, convolution
andLaplacetransformtheoryfor stronglyor weakly measurabléunctions.

The completenessf Lgong (whereang’trong Is incompletefor p < «) and
someHP N HP type resultsat the end of AppendixD may be the deepesnewn
resultsin the appendiceswhereasmary of the other resultsare more or less
straight-forvard generalizationand/orextensionf known facts.



1.3 Conventions

If we spole a different languaye, we would perceive a somevhat
differentworld.

— Ludwig Wittgenstein(1889-1%1)

Most of the notationis explainedat the point whereit is usedfor the first
time, andthereis an extensve list of referencessymiols, terms,abbreiations
andacrorymsattheendof thisbook(p. F.3). Thecorrespondencef diagramsof
systemdo correspondingquationcanbe obsenedfrom Figure6.1 (p. 155);in
particular inputscorrespondo columnsandoutpus to rows, asin a matrix (and
in [Sbook]).

Following the standardcornvention, in definitionswe write if insteadof iff
(which means‘if andonly if”). An asterisk(*x”) often denotesdor something
omitted(seethe symbollist, p. 1038). By braclets(“|...]") we denotereferences
(p- 1024)or optionalparts;seep. 1037.

For clarity, we have chosenthe “Blackboardbold” style to indicate the
“integral” operatorse.g.,a WPLS is of the form [%}%}. As a result,we have
to useordinary bold letters(C, R, Z, N ={0,1,2,...}) for standardfields of
(comple, real,integer, natural)numbers.

The generatorsf _[%%} aredenotecby [4}2] or [%}—S],_asin Section1.2
(alternatvely, seeDefinition 6.1.1,Lemma6.1.16and Definition 6.2.3). Simi-
larly, the generatorgfeedthroughoperators)of any otherintegral maps(always
Blackboardboldwill usuallybe denotedby correspondingrdinary(capital)let-
ters.Notealsothe barsseparatinghe differentpartsof the systemthisis helpful
whenthe partsconsistof largerexpressions

The order of proofs

The “integral” notation(1.8) of a systemallows usto treatcontinuoustime and
discrete-timeproblemsin a unified way. This allows usto transfercontinuas-
time resultsto discretetime with a minimal effort: it sufficesto just list which
partsarevalid alsoin discretetime, with sameproofs(seeTheorem13.3.13).In
particular within thediscrete-timeheory(Part1V), ary referenceto continuas-
time resultsreferto correspondingliscrete-timevariants(oneshaving undegone
thesubstiutions(13.63)).

However, theproofsof certainresultsrestontheboundednessf “dif ferential”
or differenceoperators,hencethey are given first for discretetime and then
extendedto continuas time by discretization(becausediscrete-tine systens
always have boundedgenerators). Suchresultsinclude the uniquenesof the
solution of the Riccati equation,the two-Riccatiformula of the H* Four-Block
Problemandseveralresultson stabilization.

Becauseof this, to verify the proofs of the whole monograph,one might
wish to first read and verify the resultsin their discrete-timeform, and only
thenin their continuais-timeform (seeTheoremsl3.3.13,14.1.3,15.1.1,11.5.2
and12.2.2andtheir proofsfor detailsand otherpossibleorders). Neverthekss,



all resultsthat are valid in both continuousand discretetime are first statedin
continuougime, andwe give the proofsin their continuais-timeformswheneer
reasonablypossilbe; in suchcaseghediscrete-timeanalogiesarejust references
to the continwus-timeresultsandproofs,asin Theorem13.3.13.

Mostreadersnayreadthebook“asis”, butthereademishingto have adeeper
insight(or to understanall proofs)hasto studyalsothediscrete-timepartin order
to completelyabsorbthe continuaus-timepart. Corversely readerdnterestedn
discrete-timeresultsonly may skip things suchas generatorsand regularity of
continuous-tine systemsaswell asrelatedcomplicatedechnicalmethods.

Trying to balancebetweerthe propertiemeededrom areferencananualand
thoseneededor a*“chronological”orderof proofs,we have groupedsomeclearly
relatedresultstogether thus placing someresultsbeforethoseneededn their
proofs;we have tried to clarify the orderof proofsin thosecases.

Proofs

The proofsoften containextrainformation: remarks clarificationsof ambiguous
statementsn the theorems,wealer or alternatve assumptias, or “counter
examples”shaving thatour assumptiosarenot superfluousetc.

We placea square(“[0") at the end of eachproof, and at the end of each
lemma,propositia, theorem,corollary or remarkwhoseproof is only sketched
or replacedvy areferenceto someotherresult.

Thereareseveralalgebraichasicresults(e.g.,the Schurdecompositia of an
(operator)matrix) thatareoftenusedin controltheorywithout a furthermention
We have compiledthemto the OperatorMatrix LemmaA.1.1, which hashelped
usmake mary proofsdramaticallyshorter simger andeasierandtheresultsmore
elegantthanin the earlyversiors of this book (you do notwantto know...).

Notes

At the end of most sections,thereis a “Notes” subsectioncontainingfurther
remarksand external referencesjncluding ary earlier forms of similar results
in the literature (known to us). However, we often refer to a “more up-to-date
referance” insteadof thefirst author

Whenreadingthe notesto discrete-timesectionspneshouldalsoconsultthe
notesto correspondingontinuos-timesections Note alsothe historicalremarks
of Sectionl.2.

Hypotheses

At thebeginning of eachchapterwelist any standinghypothesesandassumpbns
of the chapteror of its parts.

Outsice the appendicesany Banachand Hilbert spacesare complex and of
arbitrarydimensimsunlessotherwisestated.In theappendiceghescalarfield K
may be eitherof R or C exceptthatin AppendixD andSectionsA.4 andF.3 we
assumehatK = C, asexplicitly statedthere.



