
Chapter 1

Intr oduction

Fromthewreck of thepast,which hathperish’d,
Thusmuch I at leastmayrecall,
It hathtaughtmethatwhatI mostcherish’d
Deservedto bedearestof all.

— Lord Byron (1788–1824),"Stanzasto Augusta"

In Section1.1, we summarize the main contributions of this monograph,
avoiding any technicalities. Readerswishing to get a somewhat moreaccurate
pictureon theactualresultsshouldconsultSection1.2,wherewegiveaglanceat
eachchapterby explaining its contentsbut yetavoidingmosttechnicaldetailsand
generality.

Someconventionson notation,proofsandhypothesesareexplainedin Sec-
tion 1.3.Seetheendof thebookfor symbols,concepts,abbreviations,references
andindex.
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12 CHAPTER1. INTRODUCTION

1.1 On the contributions of this book

Our ultimate goal hasbeento develop the H∞ Four-Block Problemtheory in
Chapter12. This has requiredus to first develop several other parts of the
theory that areof independentinterest,suchasthe Riccati equationtheory, the
costminimizationtheory, thedynamicfeedbacktheory, theWPLS theoryor the
discrete-timetheory, all of whicharemainlygeneralizationsof existingtheoryfor
finite-dimensionalor smoothinfinite-dimensionalsystems.

Our mainresultsincludethefollowing:

1. On (generalized)Optimal Control and Riccati equationsfor WPLSs,we
have

(a) establishedtherelationsbetweendifferentclassicalcoercivity assump-
tions(Section10.3),generalizedthemto WPLSsandappliedthemto
solve thegeneralcontrolproblem(Section8.4).

(b) formulatedIntegral AlgebraicRiccati Equationsto establishthe cor-
respondingequivalencein continuous time. This alsoallowed us to
reduceseveralproblemsto discretetime, whereinput andoutputop-
eratorsarebounded.

(c) established the corresponding equivalence for (classical-type)
Continuous-timeAlgebraicRiccatiEquations(underweakregularity)
(Chapter9).

i. The implication from the existenceof a solution of the control
problemto theexistenceof asolution of theRiccatiEquationwas
alreadyestablishedby G. Weiss,M. WeissandO. Staffansunder
strongerregularityandverystrongstabilizability anddetectability
assumptions.

ii. We have also shown the existenceof a smoothersolution un-
derseveraldifferentadditional regularity assumptions (e.g.,Sec-
tion 9.2).

(d) establishedthe Continuous-time Riccati equationson the domainof
the closed-loopsemigroupgeneratorfor general(possiblyirregular)
WPLSs(Section9.7;extensionof [FLT]).

(e) treatedall the above for both the exponentially stabilizing controls
andfor therecently-popularstronglyor output-stabilizingcontrolsand
others,thusprovidingnew resultsevenfor finite-dimensionalsystems.

2. On specific control problemsfor WPLSs, we have extendedthe finite-
dimensional resultsby, in addition to theabove,solving

(a) the H∞ full-information control problem in terms of the Riccati
equation(Chapter11).
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i. In thestablecase,theexistenceof a solutionwasalreadyshown
by O. Staffans,assumingtheexistenceof correspondingspectral
factorization;a similar statementappliesto the LQR problem
below.

(b) the general(measurementfeedback,or four-block) H∞ controlprob-
lem in termsof two Riccatiequationsanda spectralradiuscondition
(Chapter12). Wehaveshown thattherecenttheoryof controllerswith
an internalloop (cf. [CWW96]) is shown to be intimately connected
to a generalsolution of this problem,andall suchsolutions arealso
covered.

(c) thecostminimization(LQR) problem,showing theexistenceof a so-
lution equivalentto theexistenceof any solution of thecorresponding
Riccati equation(the solution neednot be stabilizing or even admis-
siblea priori). We have alsoderivedsimilar generalizationsof Strict
BoundedandStrictly Positive(Real) Lemmas(Chapter10).

3. On WPLSsystemtheory, wehave

(a) introducedcompatibility, which allows oneto write any WPLS in a
differentialform regardlessof regularity (Section6.3).

(b) introducedaninfinite-dimensional weaklycoprimefactorizationcon-
cept(Sections6.4and6.5)andappliedit to establishthestability and
uniquenessof asolution of certainRiccatiequationsandcontrolprob-
lems(this is particularlyusefulwhen the solution is not requiredto
beexponentially stabilizing). This conceptandcompatibility have al-
readybecomethesubjectsof leadingresearchers’ articles.

(c) characterizedthe transferfunctions(equivalently, impulseresponses)
having a Pritchard–Salamonrealization(thuscorrectingtheerrorsin
[KMR] to which we alsoprovide a counter-example). Similarly, we
havecharacterizedtransferfunctionsrealizablewith boundedinputor
outputoperators.(Section6.9)

(d) generalizedtheequivalencebetweenexponential dynamicstabilizabil-
ity andexponential stabilizability anddetectability(Theorem7.2.4).

4. The infinite-dimensional control theoryhasbeenlimited by several open
problemsin harmonicandfunctionalanalysisandfunctiontheory. Thishas
leadusto solve thosemostintimatelyconnectedto ourwork, e.g.,wehave

(a) generalizedtheL2 Fouriermultiplier theoremto thecaseof functions
with valuesin Hilbert spaces(theseparablecasewasalreadyknown)
andbeyond(Theorem1.2.2).

(b) generalizedsimilarly theexistenceresultof theboundaryfunctionof
aH∞ function(Theorem1.2.3).



14 CHAPTER1. INTRODUCTION

(c) developed a theory of strongly measurableoperatorvalued func-
tions, including the the completenessof L∞

strong (and incompleteness
of Lp

strong) and its applicationsincluding the two above results(Ap-
pendixF).

(d) shown the existenceof a spectralfactorizationfor convolutions with
(Hilbert space)operator-valuedmeasureshaving a discretepart plus
an L1 part (assuming the invertibility of the Toeplitz operator;see
Theorems1.2.4and1.2.5).

(e) extendedto the infinite-dimensional casethe classical[ClaGoh] H2

spectralfactorizationfor any Popov function having an invertible
Toeplitzoperator(Theorem9.14.6).

Finally, of all the above we alsopresentcorrespondinginfinite-dimensional
discrete-timeresults,which becomeratherelegantsince,in this case,the input
andoutputoperatorsarenaturallybounded.

For a control theorist, the generalizationof Riccati equationtheory to the
regular WPLS setting(particularly 1b and 1c above) and the generalH∞ and
minimizationproblems(2.) mayriseabovetherest.

To observein detailtheothernew resultsin thismonograph,thereadershould
readthe“Notes” at theendof eachsection.Therewe discussearlierresearchin
samedirection,including any known similar resultsunderlessgeneralsystems,
settingsor assumptions.

The sizeof this book requiressomeexplanations. For the first, the chapters
of this monographareso intimately connectedto eachother that it would have
beenimpossible to removeasinglechapterwithout destroying, e.g.,theproofsin
Chapter12.

If we hadlimited ourselvesonly to very smoothsystemsor to discrete-time
systems,thesizeof this bookwould have probablyfallenby morethanhalf but
its contribution evenby muchmore. Indeed,mostproblemsbut alsomostvalue
in our work is in its generality. Certainly, we might have presentedour solutions
only in termsof factorizations(which aregiven asan intermediarystagein our
proofs),but theRiccatiequationsarereally theform of theclassicalsolutionsand
somethingthatprovidesa practicalway to solve theproblems.

SometimestheRiccatiequationsbecomeverycomplicatedfor generalregular
WPLSs,hencewehavepresentedmorebeautifulcorollariesfor importantspecial
cases,suchasfor thecasewheretheI/O mapis theconvolution with a measure.
Moreover, therealizationof theoptimal controlin theform of astatefeedbackor
dynamicfeedbackcontrollerrequiresthe existenceof certainfactorizationsthat
neednotexist in thegeneralcase(seeExample11.3.7).

One of the objectives of this book hasbeento stateand prove resultsof a
technicalnaturethataretoo long to bepublishedin ordinaryresearcharticlesbut
thatarenecessarybuilding blocksfor thefinal results.
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1.2 A summary of this book

We now start a rather self-containedsummary, aiming to give the readera
motivation for and a picture of the theory treatedin eachchapter, by starting
with a non-technicaldescriptionandthenpresentingsomeresults. We strongly
recommendfor thereaderto readthesummariesin thissectionbeforediving into
thetechnicalitiesof theactualchapters.

The resultsmentioned below are just examples from the theory; here we
have usually favored simple, important examplesto more generalbut more
complex ones.Seethechaptersthemselvesfor furtherdefinitions,results,details,
explanationsandreferences.

Outside the appendices,the lettersH, U , W, Y andZ will denotecomplex
Hilbert spacesof arbitrarydimensionsunlesssomethingelseis indicated.

Part I: TI Operator Theory

TheappendicesandPart I of thebookcontainresultsin harmonicandfunctional
analysis(vector-valuedfunctions,shift-invariantoperators,transferfunctionsand
boundaryfunctions,theCoronaTheoremandspectralfactorizationamongothers)
thatareneededin thecontroltheoryof PartsII–IV. Many of theresultsarealsoof
independentinterest.A fasttrackto WPLSsis to first haveaglanceatsubsections
2.1.1–2.1.7andthengodirectly to Part II.

Chapter 2: TI and MTI Operators (MTI � TI)

In Chapter2, we study the theory TIω, the spaceof bounded,shift-invariant
operatorsL2 � L2, where the L2 spacemay have a weight and the functions
have their valuesin a Hilbert space.We alsopresentcertainsmoothsubclasses
of TI, particularlyMTI, theconvolutionswith a (vector-valued)measurewith no
singularcontinuouspart.

Our contributions include the theory of the intersectionTIω � TIω � and its
causalpartfor two weightsω � ω ��� R (see2.1.9–2.1.11and3.1.6),necessaryand
sufficient conditions for losslessnessandcertainresultson staticoperatorsand
signatureoperators.

Technically, TIω
�
U � Y 	 is thespaceof boundedtime-invariantlinearoperators

L2
ω
�
R;U 	 � L2

ω
�
R;Y 	 , whereU andY areHilbert spacesof arbitrarydimensions,

ω � R, and 

u



L2

ω
: �
���

R
e� 2ωt



u
�
t 	 
 2

U dt � 1� 2
(1.1)

for Bochner-measurableu : R � U (thus, L2
0 � L2, L2

ω : ��� eω � u ��� 	��� u � L2 � ).
The time-invarianceof ��� TIω meansthat � τ

�
t 	�� τ

�
t 	�� for all t � R, where

τ
�
t 	 u : � u

��� �
t 	 .

Themapsin TICω
�
U � Y 	 : ���!�"� TIω

�
U � Y 	#�� π � � π $%� 0 � arecalledcausal

(or sometimesToeplitz operators);hereπ $ u : � χR & u andπ � u : � χR ' u for all
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functionsu, andχE is thecharacteristicfunctionof asetE. Thefollowing is well
known:

Theorem1.2.1 For each �(� TICω
�
U � Y 	 , there is a unique function )�(�

H∞ �
C $

ω ; * �
U � Y 	+	 , called the transferfunction (or symbol)of � , s.t. ,� u � )� û

on C $
ω for all u � L2

ω
�
R $ ;U 	 . Themapping�.-� )� is an isometricisomorphism

onto. /
Here * �

U � Y 	 denotesthe space of bounded linear operatorsU � Y,
H∞ �

C $
ω ; * �

U � Y 	+	 denotesthe Banachspaceof boundedholomorphic functions
C $

ω
� * �

U � Y 	 , and )u denotestheLaplacetransform)u �
s	 : �0�

R
e� stu

�
t 	 dt

�
s � C $

ω : �"� s � C �� Res 1 ω � 	 (1.2)

of u. Thus,theelementsof TIC∞
�
U � Y 	 : �32 ω 4 RTICω

�
U � Y 	 correspondone-to-

oneto theholomorphic * �
U � Y 	 -valuedfunctionsthatareboundedonsomeright

half-plane;suchfunctionsaregenerallycalled“proper” or “well-posed”. Theset
of theI/O mapsof WPLSsis exactly TIC∞ (seeSection6.1). Transferfunctions
arestudiedalsoin Chapter3.

In Section2.2, we study the invertibility of TICω (and TIω) operators. In
Section2.3,we develop sufficient conditions for a TIC operatorto bestatic,that
is, the multiplication operatorinducedby an elementof * �

U � Y 	 . We alsogive
certain resultsthat will be usedin connectionwith the signature operators of
optimization problems,Riccatiequationsandspectralfactorizations.

Also Section2.4treatssignatureoperators.A mainresultof thissectionis that
for any S �5* �

U 6 Y 	 , thefollowing areequivalent:

(i) S �87:9<; IU 0
0 � IY = 7 for some7>�@? TIC

�
U 6 Y 	 ;

(ii) S � E 9 ; IU 0
0 � IY = E for someE �A?B* �

U 6 Y 	 .
(Recall that ? denotesthesubsetof invertibleoperators.)

Section 2.5 treats the concept “
�
J � S	 -losslessness”(close to “

�
J � S	 -

dissipativity”), which is often studiedin connectionwith H∞ problemsand in-
definiteinnerproducts(losslessnessis roughlyequivalent to thenonnegativity of
the correspondingRiccati operator). Thereare two widely-useddefinitionsof
losslessnesswhoseexact connectionhasbeenunknown. We develop necessary
and/orsufficient conditions for bothconceptsandshow that they coincidewhen
theinputspacesarefinite-dimensional.

In Section2.6,wedefinethesubclassMTI
�
U � Y 	 (“M” for “measures”)asthe

operators�0� TI
�
U � Y 	 thatareof theform� 7 u 	 � t 	C� ∞

∑
k D 0

Tku
�
t E tk 	 � � ∞� ∞

f
�
t E r 	 u �

r 	 dr � (1.3)

i.e., of the form 7 u � µ F u, where the measureµ consistsof a function f �
L1 � R; * �

U � Y 	+	 plus a discretepart with Tk �G* �
U � Y 	 and tk � R for all k � N,

s.t. 
 7 

MTI : � 


f



L1

�
∑
k 4 N



Tk


IHKJ
U LY MCN ∞ O (1.4)
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TheWienerclassMTIL1
refersto theelementsof MTI of form u -� Tu0

�
f F u

(i.e., no delays).TheclassMTIC : � MTI � TIC (resp.MTICL1
: � MTIL1 � TIC)

consistsof thoseelementsof MTI (resp.MTICL1
) that correspondto measures

supportedonR $ . In [CD80] and[CZ] amongothers,theclassMTIC (or “ P �
0	 ”)

hasbeenstudiedfor finite-dimensionalU andY.
Thebasicpropertiesof theseclassesarelistedin Section2.6.They sharemost

propertiesof mapswith rational transferfunctions; in particular, they have the
samespectralfactorizationproperties(seeSection5.2).Thesepropertiesallow us
to show (in Part III) thatclassicalconditionsfor thesolvability of standardcontrol
problemsarenecessaryandsufficientalsofor systemswhoseI/O mapsbelongto
MTIC (suchconditionsaresufficientbut notnecessaryfor generalWPLSs);some
of this hasalreadybeenestablishedfor lessgeneralsystems (see,e.g.,[CD80] or
[CW99]).

Chapter 3: Transfer Functions ( QTI R L∞
strong, STIC R H∞)

We studytheLaplaceandFourier transforms(or transferfunctionsor symbols)
of TI andTIC maps,thatis, (causalandgeneral)time-invariantmapsL2 � L2.

Our main resultsaretwo generalizationsto unseparableHilbert spaces,first
oneof theFouriermultiplier theorem(“ )TI

�
U � Y 	T� L∞

strong
�
iR; * �

U � Y 	+	 ”) andthen
of the fact that an operator-valuedH∞ function over the right half-planehasa
boundaryfunction in strongL∞ on the imaginaryaxis as its “strong pointwise
limit”, in averynaturalsense.

Wefirst show that“ )TI
�
U � Y 	C� L∞

strong
�
iR; * �

U � Y 	+	 ” (Theorem3.1.3(a1)):

Theorem 1.2.2 For each 7U� TI
�
U � Y 	 , there is a unique (symbol) )7U�

L∞
strong

�
iR; * �

U � Y 	+	 s.t. )7 )u � ,7 u a.e. for all u � L2 � R;U 	 . Thismapping 7V-� )7
is an isometricisomorphismof TI

�
U � Y 	 ontoL∞

strong
�
iR; * �

U � Y 	+	 . /
(Theseparablecaseof thisclaimis well-known. HereiR is theimaginaryaxis,

and )7V� L∞
strong

�
iR; * �

U � Y 	+	 meansthat )7 : iR � * �
U � Y 	 is s.t. )7 u0 � L∞ �

iR;Y 	
for all u0 � U . It follows that


 )7 

L∞

strong
: � supW u0

W
U X 1


 )7 u0



∞ N ∞, by Lemma

F.1.6.)
Then we go on to show that this Fourier transform restricts to an iso-

metric isomorphism of TIa
�
U � Y 	 � TIb

�
U � Y 	 onto H∞ �

Ca L b; * �
U � Y 	+	 , where

H∞ �
Ca L b; * �

U � Y 	+	 refersto boundedholomorphic functionsCa L b � * �
U � Y 	 and

Ca L b : �3� s � C �� a N Res N b � , andthat )7 )u �Y,7 u on Ca L b (bothsidesof theequa-
tion beingholomorphic) for all u � L2

a
�
R;U 	 � L2

b

�
R;U 	 .

In Sections3.1 and3.2,we alsogive further resultson theFourier transform
andweaker formsof thetwo resultsmentionedabovefor arbitraryBanachspaces
U and Y and Lp in place of L2 (and “TI p

ω” in place of TIω). Thesecan be
consideredasextensionsof thesocalledFourier multiplier theory.

In Section3.3, we establishseveral resultson the boundaryfunctions of
holomorphic functions,the most importantof which is the following (Theorem
3.3.1(c1)):
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Theorem1.2.3 For each f � H∞ �
C $

0 ; * �
U � Y 	+	 , there is a boundaryfunction

f0 � L∞
strong

�
iR; * �

U � Y 	+	 s.t. f0u0 is thenontangential limit of f u0 a.e. on iR for
all u0 � U. /

(Theseparablecaseof this theoremwasgivenin [Thomas].)As theobservant
readeralready may have guessed,f0 is the Fourier transform of � , where�
� TI

�
U � Y 	 is s.t. )�Z� f . This justifies the useof “ )� ” to denoteboth the

Fouriertransform)�[� L∞
strong

�
ω

�
iR; * �

U � Y 	 	 andthetransferfunction(Laplace

transform))�0� H∞ �
C $

ω ; * �
U � Y 	 	 of amap �\� TICω

�
U � Y 	 .

Somecounter-examplesaregiven to show thatTheorem1.2.3is not true for
generalBanachspacesnorwith H2 in placeof H∞.

Wealsogive furtherresultson transferfunctions;theseresultswill beneeded
for theWPLStheoryof PartsII andIII.

Chapter 4: CoronaTheoremsand Inverses

In this chapter, we first show that any causalinversesof I/O mapspreserve
smoothnessandthenwedothesamefor causalleft inverses(mostof thisconsists
of combinationsof known results). The latter only holdsfor finite-dimensional
input spaces,but we presentpartial resultson the infinite-dimensional case,on
whichweshalllaterbuild ourquasi-coprimefactorizationtheoryfor WPLSs.

In Theorem4.1.1,we list the following equivalent conditionsfor the invert-
ibility of any �]�_^P �

U � Y 	 , where ^P standsfor TIC, MTIC, CTIC or for someof
their subclassesmentionedabove:

(i) �0�A?`^P ;

(ii) �0�A? TIC;

(iii) π $C� π $%�V?B* �
π $ L2 	 ;

(iv) )�\�V? H∞, i.e., )� � 1 existsandis boundedonC $ .

In particular, ^P is inverse-closedin TIC. Thesameholdsfor thesetof maps
that are “exponentially ^P ”. For the casedimU � dimY N ∞, thereareseveral
otherequivalentconditions, suchas(v) infC &ba det

� )�b	 a 1 0; (vi) � is left-invertible
in TIC (seetheCoronaequivalencebelow for more).

We also give analogousresults on TI, MTI, CTI and their (noncausal)
subclasses(e.g., 70� MTI is invertible in MTI if f )7 is boundedlyinvertible on
iR) andfurtherinvertibility results.

Then we study the Corona Theoremand its consequencesfollowing the
methodsof M. Vidyasagar. In case�[�G^P �

U � Y 	 , dimU N ∞, welist thefollowing
equivalentconditionsfor theleft-invertibility of � :

(i) cd�3� I for somec"�A^P �
Y� U 	 ;

(ii) ce�Y� I for somec"� TIC
�
Y� U 	 ;

(iii) )� �
s	+9!)� �

s	gf εI for all s � C $ andsomeε 1 0;

(iv)


 � u



L2

ω
f ε



u



L2

ω
for all u � L2

ω
�
R;U 	 , ω 1 0 andsomeε 1 0;
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(v) �h9 π � �0f επ � onL2 for someε 1 0;

(vi) � t 9 � t f επ i 0 L t M for all t 1 0 andsomeε 1 0.

(Here � t : � π i 0 L t M � π i 0 L t M .) It follows that jk�l^P �
U � Y 	 and m ��^P �

U 	 are

right coprimeover ^P , i.e., ^n moE ^p j"� I for some ^n � ^p � ^P , if f )j �
s	 9 )j �

s	 �)m �
s	 9 )m �

s	qf εI for all s � C $ andsomeε 1 0. Moreover, for mostof these
classesan equivalent condition is that � canbe complementedto an invertible
map r � sKt over ^P . Therefore,for theseclassesthe existenceof right or left
coprimefactorsin ^P impliestheexistenceof adoubly-coprimefactorizationover^P .

TheCoronaTheoremdoesnot extendto infinite-dimensionalU , but we give
severalpartialresultsfor theinfinite-dimensionalcase.

Chapter 5: Spectral Factorization ( ukRwvyx{z , |}x J |~R�z}x Sz )

We studyspectral factorization (“canonicalfactorization”)in thesenseof Israel
Gohberg etal. Thismeansfactoringthegiventime-invariantmapastheproductof
a non-causalanda causalinvertible time-invariantmap(with theinverseshaving
thesameproperties).

In the frequency domain, spectral factorization equals writing a given
operator-valued essentiallyboundedmeasurablefunction on the unit circle as
the product )p 9�)n , where )p and )n are (the nontangentiallimits at the circle of)
operator-valuedbounded,boundedlyinvertibleholomorphicfunctionson theunit
disc;thatis,given 7G� L∞ �

∂D;Cn � n 	 , finding )p � )p � 1 � )n � )n � 1 � H∞ �
D;Cn � n 	 such

that 78� )p 9 )n a.e.on ∂D, (in caseof unseparableHilbert spacesin placeof Cn,
thisproductmustnotbeinterpretedpointwise).

This factorizationis an extremely important tool in solving stablecontrol
problems,andeventheunstablecasecanoftenbereducedto thestableone.

For rationaltransferfunctions(equivalently, for finite-dimensional systems),
theexistenceof sucha factorizationfor aboundedtime-invariantmapL2 � L2 is
equivalentto theinvertibility of theToeplitzoperatorof this map(Themapto be
factorizedis typically thecostfunction(or Popov operator)of acontrolproblem.)

SincethisnecessaryToeplitzinvertibility conditionisnotsufficientfor general
(non-rational)indefinite maps, the classicalconditionsfor the existenceof a
solution to a controlproblemcannotbegeneralizedto generalWPLSs,not even
if we werenot be interestedon theregularity of thecontroller. This makesthese
factorizationresultsessentialfor muchof the theory, aswell asthe fact that the
regularity implied by theseresultsmakes it possible to write down the Riccati
equationsfor the problemsandto obtainsmoothcontrollers.Thus,in our most
generalresultsin later sectionsandin someotherspecialcases,we have to use
differentmethodsto obtainresults,oftenwith fewerequivalentconditionsor more
complicatedformulae.

We alsomentionthat thoughthe spectralfactorizationneednot exist, there
are yet “H2 spectralfactors”, as shown by Gohberg et al. [ClaGoh] for finite-
dimensional Hilbert spaces.We extendthis resultto thegeneralcasein Theorem
9.14.6.
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Section5.1 consists of ratherstraight-forward derivation of requiredresults
from the literature. In Section5.2, we treat the convolutions with measures
consistingof a discretepart plus an (uniformly measurable)L1 part. Our
main contribution is Lemma5.2.3, by which we can reducethe factorization
of suchconvolutionsto theseparatefactorizationsof thediscreteandabsolutely
continuouspartsof themeasure,whichalreadyhavebeengraduallysolvedduring
thelastthreedecades.

Thepositivecaseof thelemmahasalreadybeenprovedby J.Winkin [Winkin]
(for finite-dimensional input and output spaces). Though the existenceof a
spectralfactorizationis always guaranteedin the positive case(assuming the
invertibility of the correspondingToeplitz operator),it is importantto know the
smoothnessof thefactor, asexplainedabove.

The main corollariesof our lemma are that such convolutions mapshave
spectralfactors,andthat theseareof the sameform asthe original maps. This
allowsoneto formulatethesolutionsto WPLScontrolproblemsasin theclassical
case,thoughwith several technicalcomplications dueto the unboundednessof
input andoutputoperators(seeSection9.1). Thesecorollariescanbewritten in
theform of thefollowing two theorems:

Theorem1.2.4(PositiveMTI spectral factorization) LetU bea Hilbert space,
and let P be one of the classesTI, MTI , MTI L1

. Let 7��@P �
U 	 , and set^P : �AP � TIC.

Then7A� 0 iff 7 hasa factorization7A� n 9 n � where
n �A?�^P �

U 	�O (1.5)

Moreover, if 78��P exp, then
n�� 1 � ^P exp. /

(The classP exp (resp. ^P exp) consistsof “exponentiallystableP (resp.P exp)
maps”.By “ 7A� 0” (or “0 �U7 ” ) wemeanthat 7>f εI for someε 1 0.)

If 7�� MTI �"P , then )7 and )n are continuousin iR, hencethen (1.5) is
equivalentto “ )7 �

it 	��Y)n �
it 	�9�)n �

it 	 for all t � R,
n � n � 1 � MTIC

�
U 	 ”.

Thegeneral(indefinite)caseis analogousexceptthatfor someclassesP , our
resultrequiresU to befinite-dimensional:

Theorem1.2.5(MTI spectral factorization) Let 7A��P �
U 	 , where P and ^P are

as in Theorem 5.2.7. Then the Toeplitz operator(or Wiener–Hopf operator)
π $#7 π $���* �

L2 � R $ ;U 	�	 is invertibleiff 7 hasa spectral factorization7@� p 9 n � where
n � p �V?�^P �

U 	�O (1.6)

Moreover, if 7>�`P exp, then
n�� 1 � pq� 1 � ^P exp. /

(Notethatπ $�7 π $%��* �
L2 � R $ ;U 	+	 if f 7 π $ �

π � ��* �
L2 � R;U 	�	 .)

In fact, in the two theoremsabove, alsoseveralothersubclassesof MTI can
take the placeof P (seeTheorems5.2.8and5.2.7). We alsostatea few other
resultsconcerningthespectralfactorizationof TI mapsandsomeresultsonother
subclasses.

If theassumption “ 7\�yP �
U 	 ” is replacedby “ 7[� TI

�
U 	 ”, thenthe “gener-

alizedcanonicalfactors”
n

and
p

of 7 needno longerbestablein the indefinite
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case(but their Cayley transformsare invertible in H2 over the unit disc). For
dimU N ∞, thiscanbefoundin [CG81]or in [LS] (with theCayley transformsof)n � 1 and )p � 1 beinginvertible in H2 over theunit disc). We show thatthis theory
hasanextension for thecasewhereU is anarbitraryHilbert space(seep. 148and
Theorem9.14.6).

To emphasizetheimportanceof spectralfactorization,wenotethatoneof the
mainthemesof thismonographis theequivalenceof thefollowingfour conditions
for severalcontrolproblemsfor anexponentially stableWPLS:

(I) theproblemhasa (nonsingular)solution;

(II) thePopov Toeplitzoperatorof theproblemis invertible;

(III) thePopov operatorof theproblemhasaspectralfactorization;

(IV) theRiccatiequationof theproblemhasastabilizing solution.

For thecasewheretheWPLSis merelystable,wegetalmostthesameresults
and the unstablecaseis somewhat analogous(it can often be reducedto the
[exponentially] stablecase).

For systems with a I/O mapin MTIC (andhencethePopov operatorin MTI),
theequivalence“(II) � (II I)” follows from eitherof the two theoremsabove (the
formeronecoversmoreclassesof I/O mapsbut is only applicablein minimization
problems).

Theequivalence“(I) � (II) ” will beestablishedin Chapter8 andin thesections
correspondingto the particularcontrol problems; equivalence“(III) � (IV)” will
be establishedin Section9.1 (assuming sufficient regularity of the I/O mapand
thespectralfactor;MTI mapsaresufficiently regularfor ourpurposes;hence,for
suchsystems,wehaveacompleteequivalenceof (I)–(IV)).

The I/O map of a finite-dimensional systemis rational, hencein MTI (if
stable).Therefore,in thestandardfinite-dimensional theorywe alwayshave the
equivalenceof (I)–(IV).

Theorem1.2.5 is not true for P�� TI, not even whenU � C2 (by Exam-
ple 8.4.13),andthe equivalence“(III) � (IV)” doesnot even hold for all regular
systems(by Proposition 9.13.1(c1)). For thesereasons,someof our resultsin
Chapters9–12poseadditionalregularityassumptionsonthesystem; mostof them
aresatisfiedby systemshaving aMTIC I/O map(cf. Theorem8.4.9).

Part II: Continuous-Time Control Theory

This part containsthe theory of well-posedlinear systems(WPLSs): system
theory, regularity, spectralandcoprimefactorizationandstabilization(by static
feedback,statefeedback,outputinjectionor dynamic feedback).

Chapter 6: Well-PosedLinear Systems(WPLS)

Chapters6 and 7 presentan extensive theory on Well-PosedLinear Systems
(WPLSs): state-spaceandfrequency-domaintheory, stability, regularity, factor-
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ization,statefeedback,outputinjection,staticanddynamicoutputfeedbackand
relationsto Pritchard–Salamonsystems andotherspecialcases.

Someof theresultsin thesechaptersareratherstraight-forwardextensionsof
existingtheoryor generalizationsof classicalresults,thoughyetusefulfor control
problems.Themainnew contributionsof Chapter6 includethefollowing (in the
orderof appearance):

1. the relationsbetweenthe stabilities of different partsof a WPLS (from
Lemma6.1.10to Example6.1.14);

2. several,oftenverytechnicalregularityresultsneededin theRiccatiequation
theory;

3. compatibility theory(to write alsoirregularWPLSsin adifferentialform as
in (1.7));

4. infinite-dimensional quasi- and pseudo-coprimefactorizationtheory and
correspondingstabilization theory (Sections6.4–6.7). This theoryserves
almostaswell as the classicalcoprimefactorizationtheory for the stabi-
lizability anduniquenessanalysisof thesolutionsof Riccatiequations,but
thesestrictly weaker coprimesspropertiesaresometimesmoreeasilyveri-
fied,andquasi-coprimenessis preservedunderdiscretizationin bothdirec-
tions,thusallowingoneto reduceseveralproofsto discretetime.

5. new resultson the generatorsof closed-loopsystems(part of Proposition
6.6.18);

6. equivalent conditionsfor different stability and stabilizability properties
(particularlypartsof Theorems6.7.10and6.7.15);

7. theory of systemswith a smoothing semigroup(Section6.8, particularly
Lemma6.8.5);

8. thecharacterizationof thosetransferfunctions(equivalently, of I/O maps)
that have realizationshaving a boundedinput or output operatoror a
Pritchard–Salamonrealization(Theorems6.9.1and6.9.6);

Alsoalmostall of ourresultsin Chapters6–12will begivenin aWPLSsetting,
thereforewemotivatethesesystemsbriefly below.

Lineartime-invariantcontrolsystemsareusuallygovernedby theequations

x� � t 	C� Ax
�
t 	 � Bu

�
t 	�� y

�
t 	�� Cx

�
Du � x

�
0	C� x0

�
t f 0	�� (1.7)

wherethe generators r A B
C D t �A* �

H 6 U � H 6 Y 	 of the systemarematrices,or
more generally, linear operatorsin Hilbert spacesof arbitrary dimensions, and
u : R $ � U is theinput,x : R $ � H is thestateandy : R $ � Y is theoutputof
thesystem.If thegeneratorsarebounded,thenthesolution of (1.7) is obviously
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Figure1.1: Input/state/outputdiagramof a WPLS ;�� ���� =
givenby thesystem 

x
�
t 	¡� � �

t 	 x0
� �

τ
�
t 	 u

y � �
x0

� � u � where (1.8)� �
t 	�� eAt � �

τ
�
t 	 u �]� t

0

� �
t E s	 Bu

�
s	 ds��

x0 � C
� ��� 	 x0 � � u � C

�
τ
�
t 	 u �

DuO (1.9)

The formulae(1.8)–(1.9)areactuallyvalid for ratherunboundedgenerators.
Therefore, WPLSs are defined by requiring

�
to be a strongly continuous

semigroup,� to be time-invariant and causal,
�

and
�

to be compatiblewith�
and � , and ; � J t M � τ

J
t M� � = beinglinear andcontinuousH 6 L2

loc

�
R $ ;U 	 � H 6

L2
loc

�
R $ ;Y 	 for eacht f 0, equivalently, that


x
�
t 	 
 2

H
� � t

0



y
�
s	 
 2

Y ds ¢ Kt � 
 x0



2
H

� � t

0



u
�
s	 
 2

U ds� (1.10)

for some(equivalently, all) t 1 0, whereKt dependson t only. An equivalent
formulationis given in Definition 6.1.1,wherewe usethe uniquenaturalexten-
sionsof

�
and � thatallow the inputsto be definedon thewhole real line, thus

simplifying severalformulae.
Abstract linear systemtheory has beengradually developed since Rudolf

Kalman’s work in [KFA], by William Helton [Helton76a],Paul Fuhrmannand
othersuntil DietmarSalamonandAnthony Pritchard[PS85] [PS87] formulated
the Pritchard–Salamonsystems, which are formally close to WPLSs. These
systemshave beenextensively studiedin eightiesandearlynineties,but they do
not cover all interestingexamples.This motivatedSalamonto defineWPLSsin
[Sal87].

TheLax–Phillipsscatteringtheory[LP] andtheoperator-basedmodeltheory
of BélaSz.-NagyandCiprianFoiaş [SF] gavearemarkableimpactto theresearch
alreadyon theseventies,andthesetheorieshave beenshown to beequivalent to
WPLSs(seeChapter11 of [Sbook]). Thus,alsothesystemtheorybasedon the
Lax–Phillipsmodelandextensively developedin Soviet Unionby D.Z. Arov and
others(independentlyfrom WPLSs;see[AN] andits referencelist) hasexactly
theWPLSframework.

Until then,researchhadbeendividedby differentwaysto representasystem,
for example:

(1.) in termsof partial differential equationsor differential delay equations
[Lions] [FLT],

(2.) in termsof thegeneratorsr A B
C D

t [Helton76a][Fuhrmann81],
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(3.) asa frequency domainrelationshipbetweeninputs andoutputs [CG97],

(4.) asadynamicalsystem(e.g.,WPLS)in thesenseof Kalman[KFA],

(5.) by fractionalrepresentations[Vid] [CD78]

as notedby Ruth Curtain [Curtain97], who emphasizedthe needfor a theory
coveringbothstate-spaceandfrequency-domainaspectandunifying all theabove
representations;the work of Salamonand George Weiss in the late eighties
showed that WPLSs satisfy this need. ThereafterWPLSs have becomean
increasinglypopular subject in someparts of control theory, being the most
generalwidely-usedclassof infinite-dimensionallinearsystems.

The more specializedapproachesstill have their advantagesin the study
of special cases. One of the most important examples of this is the work
of Irena Lasiecka, Roberto Triggiani and others (see [LT00a], [LT00b] and
referencestherein),who have solved statefeedbackproblemscorrespondingto
several importantPDEsandrathercoercive cost functions,by usinga moread
hoc approach(of type “(1.)”). At its best, the abstractWPLS approachcan
complementthe othersby providing a different insight and an abundanceof
resultsincluding thosecommonfor rathergeneralsystemsand cost functions,
thusremoving theneedto “reinventthewheel”over andoveragain.

We studythe basicproperties,stability, realizationtheory, dual systemsand
generatorsof WPLSsin Section6.1. For any WPLS, therearegeneratorsB �* �

U � Dom
�
A9�	+9�	 andC ��* �

Dom
�
A	�� Y 	 satisfying (1.9) in a strongsense(e.g.,£ t

0
� �

s	 Bu
� E s	 ds converges in Dom

�
A 9�	+9 but its value belongsto the smaller

spaceH andequals
�

u; alsothe formulax� � Ax
�

Bu holdsin Dom
�
A 9 	 9 a.e.),

asshown by Salamon[Sal89]andWeiss[W89a] [W89b]. Salamonalsoobserved
thatany TIC∞ map(or propertransferfunction)canberealizedasaWPLS.

A WPLS neednot have a well-definedfeedthroughoperator(“D”), but all
systemsof practicalinterestseemto have one; suchWPLSsarecalled regular.
Regularity is treatedin Sections6.2 and6.3. An equivalentdefinitionof [weak]
regularity is thatthetransferfunctionhasa[weak] limit (necessarilythesameD �* �

U � Y 	 ) at infinity alongthepositiverealaxis.All weaklyregularsystemssatisfy
(1.9) in aweaksense,andtheclassicalformulaesuchas )� �

s	#� D
�

C
�
s E A	 � 1B

hold if we replaceC by its weakWeissextensionCw.
Regularity is anextremelyimportantproperty, becausefeedthroughoperators

are of fundamentalimportancefor much of the control theory. For example,
optimal control problemsare most often solved throughRiccati equationsthat
arewritten in termsof thegeneratorsof thesystem,including the (feedthrough)
operatorD.

For generalWPLSs,equations(1.9)andtheclassicalformulaesuchas )� �
s	��

D
�

Cext
�
s E A	 � 1B still hold in a very weaksensefor certaincompatible pairs�

Cext � D 	 ; their theoryis developedin Section6.3,which alsocontainsadditional
resultson differentformsof regularity, on Hp transferfunctions,on therelations
betweenaWPLSandits generatorsandonreachabilityandobservability.

In Sections6.4 and6.5, we defineandstudycoprime,spectraland lossless
factorizations.The importanceof thesefactorizationsis dueto the equivalence
on p. 21, with coprimefactorizationtaking the placeof spectralfactorizationin
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Figure1.2: Dynamicoutputfeedbackcontroller
¤

for �0� TIC∞
�
U � Y 	

“(III)” in the unstablecase,anddue to the strongconnectionbetweencoprime
factorizationand dynamic stabilization. We also presenttwo weak forms of
coprimeness,which are useful in the infinite-dimensional settings, the weaker
of thembeing invariantunder(inverse)discretizationandhenceallowing us to
reduceseveralresultsto thesimpler discrete-time theory.

Thus,theconnectionbetweenpresentations(2.)–(5.)of p. 23 is establishedin
Sections6.1–6.5.Connectionto (1.) is beyond the scopeof this book. Instead,
westudyWPLStheory, with emphasisonRiccatiequationsandoptimal control.

Sections6.6 and6.7 treat statefeedback,output injection and staticoutput
feedback. Sinceour interestis not limited to exponentialstabilization, but we
often only require that the controller makes the closed-loopsystemstableor
strongly stable(this hasbecomeincreasinglypopular lately), we meetcertain
additionaldifficulties.

In Section6.8,westudysystemswhosesemigroupis smoothing (e.g.,
�

Bu0 �
H a.e.on R $ for eachu0 � U ). In Section6.9,we show thata transferfunction)� hasa realizationwith boundedB if f )�@EG)� �¨�

∞ 	g� H2
strongoversomeright half-

plane.Wealsoestablishanalogousresultsfor realizationswith boundedC andfor
Pritchard–Salamonrealizations.

Chapter 7: Dynamic Stabilization

In this chapter, we treat different forms of dynamicstabilization. In dynamic
output feedback (Section7.1), the output is fed back to the input through a
DynamicFeedback Controller, in order to stabilize andcontrol the plant, as in
Figure1.2.

As one can verify from Figure 1.2, the map from the original input to the
outputof theplant � : u -� y becomes� �

I E ¤ �©	 � 1 : uL -� y.
We have above treatedonly the I/O mapsof the plant andof the controller.

We shall also study the problemwherethe plant and the controllerhave to be
stabilizedinternally too (seeFigure 7.2), but mostsuchresultsare obtainedas
corollariesof theI/O theory, sinceacontrollerstabilizesasystemexponentially if f
it I/O-stabilizesthesystemandboththesystemandthecontrollerareoptimizable
and estimatable (this is an extensionof the classicalconcept“exponentially
stabilizableand exponentially detectable”),as shown in [WR00], cf. Theorem
7.2.3(c1).

The main new contributions of this section include the relationsbetween
externalandinternalstability of thecontrolledsystem(Theorems7.2.3and7.2.4),
particularlytheextensionof theequivalence(1.11);certainresultsof theinternal
loop theoryrequiredby theH∞ 4BPtheory, includingthecorollarieson dynamic
partial feedback;andtherelationbetweenthestabilization of thecontrolledpart
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and the stabilization of the whole plant in partial feedback(Lemmas7.3.5and
7.3.6andTheorem7.3.11).

In Chapter7, we extend most classicalresults(such as the connectionto
coprimefactorizationandYoulaparametrizationof all stabilizing controllers)to
the infinite-dimensional caseand presentsomenew results. For example, we
extend(seeTheorem7.2.4(c))theclassicalequivalence

exponentially DF-stabilizable ªy« exponentially stabilizableanddetectable
(1.11)

to a largesubclassonWPLS(includingtheparabolicsystemsof Section9.5).
In Section7.2,westudythemoregeneralcontrollerswith internalloop, where¤

neednot be well-posed(i.e., proper), as long as the closed-loopsystemis
still well-posed;classical“fractional H∞ ¬ H∞” controllersfall into this category.
For example, if �­� TIC∞

�
U � Y 	 has the doubly coprime factorization (d.c.f.)�.�®j�m � 1 � ^m � 1 ^j , wherem>�Ij¯� ^m3� ^j[� TIC, m8� ^m°�V? TIC∞, and± m pj n³²%´ ^n E ^pE ^j ^m¶µ � ±

IU 0
0 IY

² � ´ ^n E ^pE ^j ^m¶µ ± m pj n¯² (1.12)

for some
n � p � ^n � ^p � TIC, thenall stabilizing DF-controllerswith internalloop

for � aregivenby theYoulaparametrization�¸·`� mº¹©	 �¸»�� j:¹<	�� 1 � � ^ »q� ^j ^¹©	�� 1 � ^·¼� ^m ^¹©	�� (1.13)

wherethe parameter¹ rangesover TIC
�
U 	 (Theorem7.2.14). The controller

(1.13)is well-posediff
»�� j:¹ (equivalently, ^ »B� ^j ^¹ ) is invertible in TIC∞. By

shifting stability, we obtainananalogousresulton exponential stabilization. We
alsogiveaseriesof resultsthatdonot requiretheplantto havead.c.f.

Part of the resultsof Chapter7 have beenestablished earlierin theworksof
R. Curtain,R. Rebarber, G. Weiss,M. Weissandothers.

In Section7.3 we studydynamicpartial output feedback (DPF), wherethe
controller can accessonly a part of the output (“the measurement”)and it can
affect only part of the input, as in Figure1.4. (seeFigure7.8 for the I/O part).
Consequently, themap � 12 : w -� z from theexternalinputw to theactualoutput
z becomes ½C¾ � �¯� ¤ 	 : �®� 12

� � 11
¤ �

I E�� 21
¤ 	 � 1 � 22 : w -� z (1.14)

whenthecontrolleris appliedto thesystem.All stabilizingDPF-controllersfor�]� TIC∞
�
U 6 W� Z 6 Y 	 aregivenby theYoulaformula(1.13)appliedto � 21 in

placeof � if � satisfiesstandard“stabilizability anddetectability”assumptions
(by Lemma7.3.6(b2)).

We list the corollariesof DF-stabilization theory for DPF-stabilization,as
above,andpresentDPF-specificresults(with andwithout internalloop,bothI/O
theoryandstate-spacetheory).

The above resultsandthe further theorydevelopedin Chapter7 areusedin
Chapter12 for the H∞ Four-Block Problem(H∞ 4BP), whereonetries to find a
stabilizingdynamic partialfeedbackcontrollerthatminimizesthenormof w -� z
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(or makesit lessthanagivenconstantγ 1 0).

Part III: Riccati equations and Optimal control

Thispartcontainsatheoryonoptimalcontrol(bothin anabstractsetting,andasan
applicationto WPLSs)andRiccati equations,with applicationsto minimization
(LQR andH2) problemsandto theH∞ full-informationandfour-blockproblems.

Chapter 8: Optimal Control ( d
du R 0)

We presentan abstracttheory on optimization and optimal control in state
feedbackform (Sections8.1and8.2)andtheapplicationof this theoryto WPLSs
(Sections8.3and8.4)with guidelinestoproblemsfinite timeinterval (Section8.5)
andto systemswheretheinputoperator(B) is allowedto bemoreunboundedthan
that of WPLSs(Section8.6). We solve the generalizedcontrol problem,whose
(possiblyindefinite)costfunctioncoversmoststandardcontrolproblems.

Our main contributionsincludethe generalizationof the classicalcoercivity
assumptionto generalWPLSsandcostfunctions,andthefactthatthisassumption
leads to a solution of the generalizedcontrol problem (see Theorems8.4.3
and 8.3.9); this was alreadyextendedto stableWPLSs by O. Staffans. An
importantpart of our theory are also the methodsto treatesimultaneouslyall
formsof stabilization(i.e.,whetheronerequiresthe“optimal control” to be,e.g.,
exponentially, strongly or merelyoutput-stabilizing). Theseresultswill thenbe
appliedin the derivation of the Riccati equation,LQR and H∞ theoriesin the
chaptersto follow.

We studythecritical pointsof a givencostfunctionandthecasewheresuch
control correspondsto a stabilizingstatefeedbackpair. Suchan “optimal” state
feedbackpair correspondsto a “stabilizing” solutionof the Riccati equation,as
shown in Chapter9. The correspondingspecialcontrol problemsaresolved in
Chapters10–12.

GivenaWPLS r � �� � t andacostoperatorJ � J 9g�y* �
Y 	 , weconsiderthecost

function¿ �
x0 � u	 : �]� ∞

0 À y � t 	�� Jy
�
t 	ÂÁ Y dt � where y : � �

x0
� � u

�
x0 � H � u : R $ � U 	

(1.15)
andu is requiredto be exponentially stabilizing, stronglystabilizing, stabilizing
or something similar, dependingonhow stableonewishestheclosed-loopsystem
to be.

This coversall quadratic(definiteor indefinite)costson the input, stateand
output(extend

�
and � suitably if necessary, e.g., replace

�
by r �0 t and � byr � I t to cover crosstermsof u andy). In particular, minimization,H∞ andsimilar

controlproblemsarecovered.Thesolutionsof suchproblemscorrespondto the
controlsthatarecriticalpointsof

¿
, i.e.,for whichtheFréchetderivativeof

¿ �
x0 � � 	

is zero;wecall suchcontrolsJ-critical.
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In Section8.4,we defineandstudyJ-coercivity, which is a generalizationof
the standardnonsingularity assumptions of several control problems(including
the “J-coercivity” assumptions definedin [S97b]–[S98d],the “Popov Toeplitz
invertibility” conditionin thestablecaseandthe“no transmission zeros”and“no
invariantzeros”conditionsin thepositive case).We show thatany “stabilizable”
J-coerciveWPLShasauniqueJ-critical (“optimal”) controlfor eachinitial state,
andthat this J-critical control canbe presentedin WPLS form (this generalizes
thecorrespondingresultin [FLT]).

However, the correspondingfeedbackneednot be well-posedwithout addi-
tional assumptions on the system,as illustratedin Examples8.4.13and11.3.7.
This leadsto someadditionaldifficulties in the Riccati equationtheory(the sit-
uationis the sameeven in the casestudiedin [FLT]). Sections8.3 and8.4 also
containsaseriesa furtherresultsonJ-critical controlsandJ-coercivity andonthe
connectionof thelatterto spectralandcoprimefactorizations.

The control problemsfor unstable systemsare traditionally reducedto the
stablecaseby preliminarystabilization, whenthe optimal control is requiredto
be exponentially stabilizing. We show that this is possible for WPLSstoo, give
a counter-examplefor otherformsof stabilizationanddevelop morecomplicated
tricks to overcomethisproblem(Theorem8.4.5).

In the last two sectionof Chapter8, we give guidelines on how to extend
our optimizationandRiccatiequationresultsfor problemson finite time interval
(Section8.5) and for more generalsystemsthan WPLSs(Section8.6). These
resultsarenotusedelsewherein thismonograph.

Chapter 9: Riccati Equations and J-Critical Control

It was shown independentlyin [WW] and [S97b]–[S98d]that, in the (stable)
regular case,the optimal cost operatorof certain control problemssatisfiesa
generalized(operator)Riccatiequation.We establishedtheconverseimplication
from a stabilizingsolution of theRiccati equationto theexistenceof anoptimal
control in [Mik97b]. In Chapter9, we extend both results to the general
optimization context of Chapter8, thuscovering alsogeneralunstablesystems
andmoresingular problems(underweaker regularityassumptions).

We alsosimplify the equationand the assumptions in several specialcases,
presenta priori sufficient assumptions for the requiredregularity, and provide
weaker resultsfor lessregular settings.Moreover, the connectionto spectralor
coprimefactorizationandfurther aspects(suchasuniqueness,Riccati inequali-
ties andcertainpathologies) areaddressed.Possiblyill-posedor irregular opti-
malcontrolsandcorrespondinggeneralizedRiccatiequationsarecoveredin Sec-
tion 9.7(for boundedoutputoperators,aspecialcaseof thiswassolvedin [FLT]).
We describebelow themainresultsof thischapter.

Theexistenceof auniqueregularoptimalstatefeedbackoperatorfor aregular
WPLS is equivalent to the existenceof a (necessarilyunique) ÃÄ99 -stabilizing
solutionof theContinuous-timeAlgebraic RiccatiEquation (CARE)andfrom one
the othercanbe computed(seeTheorem9.9.1; read“optimal” as “J-critical”).
This extendsmostsimilar resultsin theliterature.
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Whenwe optimize over exponentially stabilizing controlsor statefeedback
operators,theterm“ Ãy99 -stabilizing” is equivalentto “exponentially stabilizing” (a
WPLSisexponentially stableif f itssemigroup

�
satisfies


 � �
t 	 
 H ¢ Meωt �

t f 0	
for someω N 0, M N ∞). To make thingseasier, we illustratethis underrather
strongassumptions:

Theorem 1.2.6( Ã expÃ expÃ exp: Unique minimum � B9wB9wB9w-CARE � J-coercive) Assume
that the WPLS r � �� � t and the cost operator J � J 9 �Å* �

Y 	 are s.t.
π i 0 L 1M � B � L1 �+Æ 0 � 1	 ; * �

U � H 	 	 , C �Ç* �
H � Y 	 andD 9 JD � 0. Thenthefollowing

areequivalent:

(i) There is a uniqueminimizing exponentially stabilizing statefeedback opera-
tor.

(ii) There is a uniqueminimizing control over Ã exp
�
x0 	 : �\� u � L2 � R $ ;U 	#�� x �

L2 � R $ ;H 	 � for each initial statex0 � H.

(iii) TheRiccatiequation�
B9w È �

D 9 JC	 9 � D 9 JD 	 � 1 � B9w È �
D 9 JC	�� A9 È � È A

�
C 9 JC (1.16)

hasa solution È � È 9É�¼* �
H 	 s.t. È Æ

H ÊÌË Dom
�
B9w 	 andthesemigroupgen-

eratedby A E BK is exponentiallystable, where K : �ÍE �
D 9 JD 	 � 1 � B9w È �

D 9 JC	 .
(iv) Σ is optimizableand � is J-coerciveover Ã exp.

(v) Σ is exponentiallystabilizableandthere is ε 1 0 satisfying�
ir E A	 x0 � Bu0 « À Cx0

�
Du � J �

Cx0
�

Du	¸ÁÎf ε



x0



2
H

�
x0 � H � u0 � U � r � R 	�O

If (iii) holds,thenK is bounded(K �}* �
H � U 	 ) andit is theuniqueminimizing

exponentially stabilizing state feedback operator. The minimal cost equalsÀ x0 � È x0Á for each x0 � H. /
(This is aspecialcaseof Corollary10.2.9combinedwith Theorem9.2.3.)
Thus,theoptimalcontrolcorrespondsto thestatefeedbacku

�
t 	C� Kx

�
t 	 �

t f
0	 , where K is as above. Here B9w denotesthe Weiss extension of B 9 �* �

Dom
�
A9�	�� U 	 . The Riccati equation(1.16) is given on Dom

�
A	 (see(9.14)).

See(1.17)for themorecomplicatedgeneralCARE.
When

¿ �
x0 � u	:� 


Cx



2
2

� 

u



2
2, i.e., C �or C1

0 t , D �or 0I t , J � I , then(1.16)
becomes

�
B9w È 	 9 B9w È � A9 È � È A

�
C 9 C, the minimizing feedbackis given

by u
�
t 	¯�ÅE B9w È x

�
t 	 �

t f 0), and the closed-loopsemigroupis generatedby
A

�
BK � A E BB9w È .
As explainedon p. 27, we canhave crosstermsof u andy in the cost,e.g.,

replaceC by r C0 t andD by r DI t to obtainanotherWPLSand,correspondingly, a
“moregeneral”(actually, lessgeneral)“standard”form of theRiccatiequation,as
in, e.g.,Remark9.1.14.

However, thetheoryof Section8.3alsoallowsoptimizationovervariousother
sets(“ Ã¼99 ”) of controlsthan Ã exp, e.g.,for thosewhichmake thestateandoutput
stronglystablefor eachinitial state(“ Ã str”). Correspondingly, theregularoptimal
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statefeedbackoperator(if any) over Ã str correspondsto theuniquesolutionof the
CARE thatis Ã str-stabilizing, i.e., thatstabilizesthestateandoutput stronglyfor
eachinitial state.

In the literatureof infinite-dimensional systems,it hasbecomepopular to
only requirethat the output is stablefor eachinitial stateandpossibly also for
eachstableexternalinput to the feedbackloop. In this casethe condition “ Ã�99 -
stabilizing”becomesrathercomplicated(Definition9.8.1).

If thesystemis exponentially detectable,thenall thecasesmentionedabove
(andcertainothers)coincidewith exponentialstabilization,but this assumption
is sometimestoo strong. If the systemis “coprime stabilizable” (in a suitable,
rather weak sense;this assumptionalways holds when the systemis output
stable(resp.stable,stronglystable)),thenoptimization over output-stabilizable
(resp.stabilizable, strongly stabilizable) controls correspondsto the “coprime
stabilizing”solutionof theCARE,andtheequivalenceof (I)–(IV) onp. 21holds,
seeSection9.1 for details. However, this solution neednot be exponentially
stabilizing, and the sameCARE may also have an exponentially stabilizing
solution(seeExample9.13.2;naturally, in a minimization problemthe optimal
costbecomeshigherfor strongerstabilizability requirements).Partof theseresults
seemto benew evenfor finite-dimensionalsystems.

Very regular systems, suchas thoseof Theorem1.2.6, are studiedin Sec-
tion 9.2. For themthe CARE becomesratherelegantand similar to its finite-
dimensionalcounterparts,aspart(iii) of thetheoremshows. Suchsystemscover
analyticsystems(hencemostparabolic-typeproblems)having ratherunbounded
inputandoutputoperators,asshown in Section9.5.

In thegeneralcase,theoptimalcontrolneednot correspondto a (well-posed)
statefeedbackoperator, as explainedin Chapter8. Nevertheless,suchcontrol
correspondsto a generalizedRiccati equation,as illustratedin Section9.7 (for
WPLSswith aboundedoutputoperator(“C”) anda rathercoercivecostfunction,
this wasshown in [FLT] by F. Flandoli, I. LasieckaandR. Triggiani). However,
since theseequationsare given on the (unknown) domain of the closed-loop
semigroupgeneratorratherthanonDom

�
A	 , it becomesverydifficult to solvethe

Riccatiequationandthusobtainthe(possibly non-well-posed)feedbackoperator.
As mentioned above, the existenceof a (well-posed)regular statefeedback

operatorfor a regularWPLSis equivalent to theCARE having a solution, but in
this generalcasetheCARE becomesrathercomplex: we have to find È � È 9��* �

H 	 satisfyingÏÐÐÑ ÐÐÒ K 9 SK � A9 È � È A
�

C 9 JC ��* �
Dom

�
A	�� Dom

�
A	 9 	

S � D 9 JD
�

w-lim
sÓ $ ∞

B9w È �
s E A	I� 1B ��* �

U 	
SK �3E �

B9w È �
D 9 JC	 ��* �

Dom
�
A	�� U 	�O (1.17)

Obviously, S and K are uniquely determinedby È if S is one-to-one,which
correspondsto a uniqueoptimal control. The optimal statefeedbackis given
by u

�
t 	�� Kwx

�
t 	 for a.e.t f 0. SeeDefinition 9.1.5for details(andDefinition

9.8.1for noninvertiblesignatureoperators).
Note that whereasthe special case(1.16) is close the finite-dimensional
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CARE, this generalform looksalmostlike thediscrete-timeRiccatiequation;in
particular, thesignatureoperator Smaydiffer from D 9 JD, asobservedin [S97b]
and[WW]. In the notesto Section9.8 we explain how the signatureproperties
of the problemaredeterminedby S, not by D 9 JD, even whenthe I/O mapis a
simpledelay. Thus,thesituation is analogousto the(finite-dimensional)discrete-
time setting,wherethe signature operatorS : � D 9 JD

�
B9 È B takes the role of

D 9 JD.
We alsolist severalcasesin which theCARE canbesimplified andcasesin

which anoptimalcontrol is alwaysgivenby a well-posedregularstatefeedback
pair (andhencecorrespondsto aCARE; see,e.g.,Remark9.9.14).

The optimal control is given by a well-posedstatefeedbackif f the Integral
Algebraic RiccatiEquation(IARE) hasan Ã599 -stabilizing solution,regardlessof
regularity. While IAREs arenot particularlyapt for engineeringpurposes,they
provide a link to discrete-timeRiccati equations,and this allows us the prove
several resultswhosecontinuous-timeproofswould seemintractabledueto the
unboundednessof input andoutputoperators.The IAREs alsoallow us to treat
the connectionbetweenoptimal control and Riccati equationsseparatelyfrom
regularity considerations. Naturally, for regular WPLSs, the solutionsof the
CARE areexactly thesolutionsof the IARE correspondingto regular feedback.
Also thesequestions are addressedin Section9.8. Several further properties
of Riccati equationsare treatedin the restof the chapter. Much of our theory
concerningfor Ã 99�Ô��Ã exp is new evenfor finite-dimensional systems.

In Section9.14,we give anextension of thegeneralizedcanonicalfactoriza-
tion theoryto the caseof infinite-dimensional input andoutputspaces(seealso
p. 148).

Chapter 10: Quadratic Minimization (LQR)

For controlproblemswith a positivePopov operator, onetraditionally shows that
undercertainconditionsany solution of theRiccatiequationis unique,admissible
andexponentially stabilizing. Oneof ourmaincontributionsin thisandpreceding
chapteris the extension of the above fact to WPLSsand partially also to the
non-exponentially stabilizing case;this is technicallyvery challengingdueto the
unboundedinputandoutputoperators,which,e.g.,makeit hardto show whenthe
“optimal feedback”is well posed.

As corollaries,we get several resultsthat formally look like the classical
ones. ThesecorollariesincludeTheorem1.2.7below, (b4)&(c1)&(c2) of The-
orem 10.1.4,the Strict Boundedand Strictly Positive (Real) Lemmas,and the
equivalencebetweenoptimizability and exponentialstabilizability for systems
with a smoothing semigroup(Theorem9.2.12).We alsosolve severalminimiza-
tion problemswith moregeneralstabilizability or regularityassumptions.

Importantnew contributions of the chapteralso include the connectionbe-
tween different classical coercivity assumptions and their generalizationsto
WPLSs,includingJ-coercivity (Section10.3).

In Section10.2,we studyminimizationproblems,by which we refer to the
minimization of the cost function (1.15). Theorem1.2.6 is a corollary of that
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section.
In Section10.1westudythespecialcaseof thecostfunction
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2 and

its variants.Underamild detectabilitycondition,thereis atmostonenonnegative
solutionof theCARE,hencewe do nothave to verify whethera solution is “ Ã�99 -
stabilizing”:

Theorem1.2.7(LQR: minu
£ ∞
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U 	minu

£ ∞
0
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£ ∞
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2
U 	 ) Assumethat the WPLS Σ �r � �� � t is uniformly regular (UR) and estimatable (e.g., that C is boundedand

C 9 C � 0). Consider, for someR �Ç* �
U 	 , Q �Ç* �

Y 	 s.t.R� Q � 0, thecostfunc-
tion¿ �

x0 � u	 : � � ∞

0
� À y � t 	�� Qy

�
t 	¸Á Y � À u �

t 	Õ� Ru
�
t 	¸Á U � dt

�
x0 � H � u � L2

loc
�
R $ ;U 	�	ÕO

(1.18)
There is a UR minimizing state feedback operator for Σ iff there is a

nonnegativesolution È ��* �
H 	 satisfying theCAREÏÐÐÑ ÐÐÒ K 9 SK � A9 È � È A

�
C 9 QC �

S � R
�

D 9 QD
�

lim
sÓ $ ∞

B9w È �
s E A	I� 1B �

K �3E S� 1 � B9w È �
D 9 QC 	Õ� (1.19)

for someK ��* �
H1 � U 	 , S ��* �

U 	 , S � 0.
If such a solution exists,thenit is theuniquenonnegative solution of (1.19),

K is a UR exponentiallystabilizing statefeedback operator for Σ, and K is the
uniqueminimizing statefeedback operator over all u � L2

loc

�
R $ ;U 	 (and overÃ exp andover Ã out). /

(This follows from Theorem10.1.4and Remark10.1.5.) For eachCARE
result in this monograph,including the oneabove, thereis alsoa “B 9w-CARE”
variantthatallowsusto removethelimit termandsimplify theformulationunder
any of the regularity assumptionsof Hypothesis 9.2.2,asillustratedin Theorem
1.2.6.

Without the detectability (estimatability) condition,we observe that a mini-
mizingstatefeedbackoperatorover Ã exp correspondsto themaximalnonnegative
solutionof theCARE anda minimizing statefeedbackoperatorover Ã out corre-
spondsto theminimal nonnegative solution of theCARE (Theorem10.1.4).We
alsoderive furtherresultsonsuchandmoregeneralminimizationproblems.

In Section10.4we show that thesolution of theminimizationproblemleads
to thesolution of theH2 full informationandstatefeedbackproblems,whereone
wishesto find a controller (

¤
; possiblyinducedby statefeedbackor dynamic

outputfeedback)thatminimizesthenorm
 )� )¤ � )� 2



H2

strong

J
C & ;

HKJ
WLY MÖM � (1.20)

where )¤ : )w � )u is the frequency-domaincontrol law (determinedby
¤

) to an
external(disturbance)input to thecontrolinput for theWPLS± � � �

2� � � 2
² with generators

±
A B B2

C D 0
² � (1.21)
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asin Figure10.1. Theabove WPLS is obtainedby addinga secondinput to the
WPLSΣ, Weassumethatboth � and� 2 areWR.A strongerproblemis tofind, for
eachw0 � W, a “stabilizing” controlu s.t.


 )� )u � )� 2w0



H2

J
C & ;Y M is minimized,see

Section10.4for details.We show thatunderminimal assumptions,a minimizing
statefeedbackoperatorfor theoriginalsystemalsosolvestheH2 problemandthe
strongerproblemformulatedabove.

In Section10.3wetreatmoststandardassumptionsfor classicalminimization
problemsand show that they are stronger than or equivalent to positive J-
coercivity (over Ã exp or over Ã out).

In Section10.5,wepresentgeneralizedversionsof theBoundedRealLemma,
includingthefollowing:

Theorem 1.2.8(GeneralizedStrict BoundedRealLemma) Assumethatγ 1 0.
If C is boundedand dimY N ∞, or if B is bounded,then the following are

equivalent:

(i) Σ is exponentially stableand


 � 
 N γ;

(ii) There is È ¢ 0 s.t. È Æ
H ÊTË Dom

�
B9w 	 and±

A9 È � È A E C 9 C �
B9w È E D 9 C 	 9

B9w È E D 9 C γ2I E D 9 D ² � 0 on Dom
�
A	É6 U O (1.22)

Moreover, anysolution of (ii) satisfiesÈ N 0.

In theStrictPositiveRealLemma,wepresentanalogousconditionsfor theI/O
mapto satisfy�>� TIC andReÀ � � � � ÁÌ� 0 (i.e., )� � )��9�f εI in L∞

strong
�
iR; * �

U � Y 	+	
for someε 1 0). Naturally, therearealsoanalogousresultsfor unboundedB and
C.

In Section10.6,wepresentnecessaryandsufficientconditionsfor theuniform
positivity of the Popov operator( �³9 J �0� 0), in termsof spectralfactorizations
andRiccati equationsor inequalities. Section10.7presentadditional resultsfor
positiveRiccatiequations(say, with positivesignatureoperator, S � 0).

Chapter 11: The H∞ Full-Inf ormation Control Problem(FICP)

TheH∞ controlproblemsrefer to theminimizationof theoutputof a plantin the
presenceof a disturbanceinput. The name“H ∞” comesfrom the minimization
of the(controlledclosed-loopsystem) L2 � L2 normfrom disturbanceto output,
which equalsthe H∞ norm of the correspondingtransferfunction, by Theorem
1.2.1.

In the FICP, studied in this chapter, we can produce the control signal
knowing exactly the stateand disturbanceof the system, whereasin the Four-
Block Problemof Chapter12thecontrollersonly input is aseparatemeasurement
output.

Our mainresultsstatethat,givenγ 1 0, thereis a controller achieving a norm
lessthanγ if f the Riccati equation(1.24)hasa nonnegative stabilizingsolution.
Moreover, if this is thecase,thenthereis sucha controllerthatconsistsof pure
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Figure1.3: TheH∞ FICP

statefeedback(with no measurementof the disturbance).This generalizesthe
classicalresultsto this problem.For WPLSs,O. Staffanshadalreadyprovedthe
necessitypartof theimplicationfor stablesystemshavinganL1 impulseresponse.
We alsoformulatethesolutionin termsof J-losslessfactorizationsandsolve the
correspondingdiscrete-timeproblem.

Technically, we study a systemof form Σ � ; � � 1 � 2� �
1
�

2 = , with input space

U 6 W insteadof U . If �®� rÙ� 1 � 2 t � TIC∞
�
U 6 W� Y 	 is regular, wecanwrite

thisas Ú
x� � Ax

�
B1u

�
B2w�

y � Cx
�

D1u
�

D2w� (1.23)

(if B � r B1 B2 t ��* �
U 6 W� H � 1 	 andC �Ç* �

Dom
�
A	�� Y 	 areunbounded, then

thedynamics(1.23)aresatisfiedonly in thesensedescribedin Theorem6.2.13).
We have dividedthe input spacein two to modela settingwhereonly partof

theinput(calledthecontrol), u : R $ � U , is accessibleby thecontroller, whereas
theotherpartrepresentsthedisturbance(or uncertainties,sensornoise,modeling
error) w : R $ � W to the system. The signaly is the objectiveor error signal
whosenormis to beminimized.

In theoptimal H∞ State-FeedbackControl Problem(SFCP), onewishestofind
a(pure)statefeedbackcontrollerof form “u

�
t 	Û� Kx

�
t 	 ” (with e.g.,K �Ä* �

H � U 	 )
such that this feedbackstabilizes the systemexponentially and minimizes the
norm



w -� y


 HCJ
L2 L L2 M . In the optimal H∞ Full-Information Control Problem

(FICP), the controller is allowed to be of form “u
�
t 	d� K

�
t 	 x �

F2w
�
t 	 ” (state

feedbackplus feedforward),asin Figure1.3. (Here r × s 1 s 2 t is the state
feedbackpair generatedby K or r K 0 F2 t , andthesignaluØ representsthe
externaldisturbances(or externalinputs)in the feedbackloop. The words“full
information” refer to the fact that the controllerhasaccessto both the stateand
thedisturbance.)

Thereisnodirectmethodavailable(evenin thefinite-dimensionalcase)tofind
theexactoptimum. Therefore,insteadof theoptimal problem,thecorresponding
suboptimalH∞ problem is usually treatedin the literature. In the suboptimal
H∞ problem, we searchfor an exponentially stabilizing controller such that

w -� y


 HKJ
L2 L L2 M N γ, whereγ 1 0 is agivenconstant;suchacontrolleris called(γ-

)suboptimal. Weextendtheclassicalresultsby showingthatthereis asuboptimal
statefeedbackcontrollerif f theRiccatiequationcondition(iii) below is satisfied.
By varying γ we canthenfind an estimateof the infimal γ anda corresponding



1.2. A SUMMARY OF THIS BOOK 35

(almostoptimal) controller (e.g.,by abinarysearchover γ’s).
As mentionedabove, under standardcoercivity assumptions and certain

regularityandnormalization conditions(see,e.g.,Theorem11.1.4),thefollowing
areequivalent:

(i) there is a suboptimal control law w -� u, and
�
A � B1 	 is exponentially

stabilizable;

(ii) there is a suboptimal state-feedback(plus feedforward) controller u �
Kwx

�
F2x;

(ii’) thereis suboptimal purestate-feedbackcontrolleru � Kwx;

(iii) theRiccatiequationÈ �
B1B91 E γ � 2B2B92 	 È � A9 È � È A

�
C 9 C � (1.24)

(on Dom
�
A	 ) hasa nonnegative solution È �º* �

H 	 suchthatA E �
B1B91 E

γ � 2B2B92 	 È generatesanexponentially stableC0-semigroup.

Moreover, if (iii) holds, then K : �
E B 91 È �V* �
H � U 	 determinesa suboptimal

(pure)state-feedbackcontrollerfor Σ (throughu
�
t 	 : � Kx

�
t 	 �

t f 0	 ). A solutionÈ of (iii) is unique.
Herewe have assumedthatB is bounded,D2 � 0 andD 91 r C D1 t � r 0 I t ;

see,e.g., (11.24)and (11.17) for the unsimplified forms of (iii) and K. (Also
without theabove simplifying assumptions,thesuboptimal statefeedbackopera-
tor K is exponentially stabilizing (anduniformly regular, thoughnot necessarily
bounded),but wemustaddasignaturecondition to (iii); moreover, condition(ii’)
becomesstrictly strongerthanthe otherconditions(which remainequivalentto
eachother)unlessa strongersignatureconditionis satisfied.)

We presentanalogousresults under different regularity assumptions, and
variantsfor Ã out, Ã sta and Ã str, i.e., wherethe suboptimal controller needsto
be,e.g.,merelystronglystabilizing insteadof exponentially stabilizing. We also
establishthe sufficiency of the Riccati equationcondition for arbitrary regular
WPLSs(seeLemma11.2.13).In Example11.3.7(c),we show that,however, this
conditionis notnecessaryfor generalregularWPLSs.

In (i), we haveallowedfor anarbitrarycontrollaw L2 � R $ ;W 	C-� L2 � R $ ;U 	 .
If sucha control law

¤
: w -� u hasa transferfunction(e.g.,

¤ � TIC∞
�
W� U 	 ),

thenthenorm



w -� y



equals


 � 1
¤ � � 2



TIC

J
WLY M , or


 )� 1 )¤ � )� 2



H∞

J
C & ;

HKJ
WLY MÖM .

By theaboveequivalence,thisproblem,theFICPandtheSFCPareall equivalent
(undersimplifying assumptions and suitable regularity). Thus, if there is any
suboptimal control law (and

�
A � B1 	 is exponentiallystabilizable),then thereis

actuallyacausal,linear, stable,time-invariantcontrollaw thatcanbeimplemented
as an exponentially stabilizing state feedbackcontroller (so that

¤ � �
I Es 1 	 � 1s 2). Condition (i) can also be formulated as a minimax problem, as

explainedin Section11.1(particularlyonpp.613and626).
In Section11.2,we give proofsandadditional variantsfor theabove results,

andwe extendthe(frequency-domain)J-losslessfactorizationresultsfor theH∞

FICPgivenin [Green]and[CG97]to MTIC andsimilarclasses(Theorem11.2.7).
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TheDiscrete-TimeH∞ FICP is treatedin Section11.5,andtheabstractH∞ FICP
in Section11.7.

TheH∞ FICPis interesting bothfor its own meritsandfor thefact that it can
beusedto obtainasolutionto theH∞ 4BPpresentedbelow.

Themethodsusedfor thestableH∞ FICPalsoapplyto the(one-block)Nehari
problem,whereonewishesto estimated

� �¯� TIC 9 	 or theHankel norm



π $C� π � 


of some�0� TIC. Therefore,we takeabrief look at thisproblemin Section11.8,
this includesthefollowing:

Theorem1.2.9(Nehari) Let �"� MTIC
�
W� U 	 andγ 1 0. If dimU 6 W N ∞ or�]� MTICTZ , thenthefollowingareequivalent:

(i) There is ¹0� TIC
�
U � W 	 s.t.


 � � ¹�9 
 HKJ
L2 M N γ (i.e., d

� �³� TIC 9 	 N γ).

(ii) TheHankel norm



π $#� π � 


of � is lessthanγ.

(iii) There is
n � ? TIC

�
U 6 W 	 s.t.

n
11 � ? TIC

�
U 	 andr I

�
0 I t 9 ; I 0

0 � γ2I = r I
�

0 I t � n r I 0
0 � I t n 9 .

(Recallthat �>� MTICTZ meansthat � hasanL1 impulseresponseplusdelays
of form ∑∞

kD 0Dkτ � kT for someperiodT 1 0.)
Thefactorizationin (iii) is oftencalleda co-spectralfactorization.Thenorm


π $�� π � 

equalsρ

� ��� 9 � 9 � 	 1� 2, where
�C� 9 and

� 9 � are the reachabilityand
observability Gramians,respectively, of any realizationof � having stableinput
andoutputmaps.

Wedonot treattheNehariRiccatiequations,sincetheir theorywould require
lengthy additions to Chapter9 due to the noncausalityof the corresponding
“closed-loopsystems”.

Chapter 12: H∞ Four-Block Problem( Ü Ý{Þ�|%ß�àºáCÜãâ γ)

In the H∞ Four-Block Problem(H∞ 4BP) (aka. “the standardH∞ problem” or
“the generalregulatorproblem”),onetriesto find aDPF-controllerthatmakesthe
normw -� z lessthana givenconstantγ 1 0 (see(1.14)),i.e.,γ-suboptimal.

Consequently, asexplainedabove, thedifferenceto theH∞ FICP is thatnow
thecontrollerdoesnothaveaccessto thedisturbance,only to apartof theoutput
(“the measurement”),asin Figure1.4(or in Figure7.8;seeFigures7.10and7.11
for DPF-controllerswith internalloop).

Thus,thegoalof theengineeris againto minimizethenormfrom theexternal
disturbanceinput to theobjective outputof thesystem. As in thepreviouschap-
ter, we againgeneralizetheclassicalresult(previously generalizedto Pritchard–
Salamonsystemsby B. vanKeulen[Keu]) that thereis a γ-suboptimal exponen-
tially stabilizing (measurementfeedback)controller if f certaintwo independent
Riccati equationshave exponentially stabilizing nonnegative solutionsandthese
(necessarilyunique)solutionssatisfythe standardspectralradiuscondition. We
formulatetheresultalsoin termsof two nestedJ-losslessfactorizationsandsolve
the H∞ discrete-timeFour-Block Problem;in fact thesetwo generalizationsof
classicalresultsserveaspartsof our lengthyproof.
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U 6 W� H � Z 6 Y 	

As in Section7.3, the output “y” is now divided in two, namely“y” � Æ z
y Ê ,

wherez is theobjectiveoutputto beminimizedandy is ameasurementthatis fed
into thecontroller. Thiscorrespondsto thedynamicsÏÐÑ ÐÒ x� � Ax

�
B1u

�
B2w�

z � C1x
�

D11u
�

D12w�
y � C2x

�
D21u

�
D22w� (1.25)

with initial state x0 � H, disturbanceinput w � L2 � R $ ;W 	 , control input
u � L2 � R $ ;U 	 , objective output z � L2 � R $ ;Z 	 and measurementoutput y �
L2 � R $ ;Y 	 (thecontrollerinput). In thecaseof a generalweaklyregularsystem,
equations(1.25)hold in thestrongsense,seeTheorem6.2.13for details.

We arethento find a controller
¤

: y -� u s.t. thenormw -� z becomessmall
enoughand that the closed-loopconnectionbecomesexponentially stable(that
is the maincase;we only treatthecasewherethe closed-loopsystemis merely
requiredto bestableor strongly stable).

(We remindthattheorderof thesubindicescorrespondingto u andw is often
reversedin theliterature;thisalsoaffectstheformulaebelow.)

In Section12.1, we presentseveral versionsof the standardresult that the
H∞ 4BP has a solution if f the two H∞ Riccati equationshave nonnegative
exponentially stabilizingsolutionssatisfyingthecouplingcondition.Sincewedo
not useany simplifying assumptions, our formulaebecomerathercomplicated.
Therefore,we show here the simplified forms of thoseformulae (by making
additionalassumptions):

Theorem 1.2.10(H∞H∞H∞ 4BP) Let γ 1 0. Make the regularity and nonsingularity
assumptions(A1)&(A2)of Theorem12.1.4.

Thenthere is anexponentiallystabilizing DPF-controller for Σ (possibly with
internal loop)satisfying



w -� z


 N γ iff (1.)–(3.)of Theorem12.1.4hold. Under
thenormalizingconditions

D12 � 0 � D21 � D 911 r C1 D11t � r 0 I t � D22

±
B92
D 922

² � (1.26)

conditions(1.)–(3.)canbewrittenasfollows:

(1.) (È XÈ XÈ X-CARE) There is È X �\* �
H � Dom

�
B9w 	+	 s.t. È X f 0 on H, A

�
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γ � 2B2

�
B92 	 w E B1

�
B91 	 w 	 È X is exponentiallystable, and� �

B91 	 w È X 	 9 � B91 	 w È X E γ � 2 �+� B92 	 w È X 	 9 � B92 	 w È X � A9 È X
� È XA

�
C 91C1 O

(1.27)

(2.) (È YÈ YÈ Y-CARE) There is È Y �@* �
H � Dom

� ; C2
C1 = w

	+	 s.t. È Y f 0 on H, A9 ��
γ � 2C 91 �

C1 	 w E C 92 �
C 92 	 w 	 È Y is exponentially stable, and�+�

C2 	 w È X 	 9 � C2 	 w È X E γ � 2 �+� C1 	 w È X 	 9 � C1 	 w È X � AÈ X
� È XA9 � B2B92 O

(1.28)

(3.) (Coupling condition) ρ
� È X È Y 	 N γ2.

Any solutions of (1.) or (2.) are unique. If (1.)–(3.) are satisfied, then
all exponentiallystabilizing DPF-controllers for Σ satisfying



w -� z


 N γ are
the onesparametrizedin Theorem12.1.8,and the regularity claimsof Theorem
12.1.4(a)&(b)apply.

In (3.), ρ denotesthe spectral radius. One of the alternative regularity
assumptions in (A1) is thatB is boundedandπ i 0 L 1M Cw

� � L1 �+Æ 0 � 1	 ; * �
H � Z 6 Y 	+	 .

For boundedB, theRiccatiequation(1.27)takestheclassicalformÈ X
�
B1B91 E γ � 2B2B92 	 È X � A9 È X

� È XA
�

C 91C1 O (1.29)

Seep. 618 for further simplification andremarks. Analogousremarksapply to
(2.); e.g.,for boundedC, theRiccatiequation(1.28)becomesÈ X

�
C 92C2 E γ � 2C 91C1 	 È X � AÈ X

� È XA9 � B2B92 O (1.30)

Thus, the classicalresultsbecomespecialcasesof ours. We also give sev-
eral results under weaker regularity assumptions (e.g., for the case where�

B � Cw
� � Cw

�
B � L1

loc; this allows roughlytwice asmuchunboundednessasthe
assumptions of aPritchard–Salamonsystem).

In generalwe allow for DPF-controllerswith internalloop, but we show that
sucha loop is not neededif D21 � 0 (i.e., onecanusea well-posedcontrollerin
thatcase).

In Section12.2, we give discreteforms of the resultsof Chapter12. For
themwe needno regularity assumptions(sinceB andC arealwaysboundedfor
“discrete-timeWPLSs”).

In Section12.3,we studythe frequency-domainH∞ 4BP, whereoneis only
givenan I/O map ��� TIC∞

�
U 6 W� Z 6 Y 	 , andonewishesto find a controller

(I/O map)
¤ � TIC∞

�
Y� U 	 s.t. the closed-loopconnectionbecomes(I/O-)stable

andsatisfies



w -� z


 N γ (see(1.14)for

½K¾ � �¯� ¤ 	 : w -� z; we alsotreatthecase
where

¤
is allowed to have an internal loop). In particular, no state-spaceor

internalstability considerationsarerequired.
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MichaelGreenshowed in [Green](Theorem4.4) that the frequency-domain
4BP has a solution if f certain two nestedspectralfactorizationsexist (in the
rational finite-dimensional case). In Section12.3 we extend this result and its
earlier extensions to mapshaving a d.c.f. in MTIC (Theorem12.3.6); we also
provide partial resultsfor moregeneralsettings. Our proof of Theorem1.2.10is
basedonboththefrequency-domain4BPandtheH∞ FICP. Therestof thechapter
consistsof proofsandminor results.

Part IV: Discrete-Time Control Theory

Part IV presentsthe discrete-timecounterpartof the theoryof Parts I–III. Pri-
marily welist thecontinuous-timeresultsthatholdalsofor thediscrete-timewell-
posedlinear systems(wpls’s)(cf. Theorem13.3.13;ournotationis muchthesame
in both settings). Most proofsapply mutatismutandis; we give explicit proofs
whenthis is not thecase.Severalproofsin PartsI–III areactuallyreducedto the
discretetime. Our maincontributionsin this partaremainly thesameasthosein
continuous-time (PartsI–III), suchasthesolutions of theH∞ problems(Sections
11.5and12.2).

Chapter 13: Discrete-Time Maps and Systems(ti & wpls)

In Chapter13, we presentbriefly somefacts on the discretecounterpartsof
WPLSs,which we call discrete-timewell-posedlinear systems(wpls’s). They
arethesystemsgovernedby thedifferenceequationsÏÐÑ ÐÒ x j $ 1 � Axj

�
Buj �

y j � Cxj
�

Du j � j � Z � (1.31)

for some r A B
C D t ��* �

H 6 U � H 6 Y 	 . Weshow thatalmostall ourcontinuous-time
resultshavediscrete-timeanalogies(seeTheorem13.3.13),andalsomany further
resultsholddueto theboundednessof thegeneratingoperators(A � B � C � D).

In Section13.1, we study boundedlinear time-invariant maps å 2
r
�
Z;U 	 �å 2

r
�
Z;Y 	 (“ti r

�
U � Y 	 ”, where



u



2

¾
2
r

J
Z;U M : � ∑k



r � kuk



2
U ), for r 1 0, and corre-

spondingtransferfunctions. The Cayley transformis treatedin Section13.2.
(Thesetwo sectionscorrespondto Chapters2 and3; in particular, we extendthe
discrete-timeFouriermultiplier andH∞ boundaryfunctiontheoremsfor I/O maps
overunseparableHilbert spaces).

In Section13.3,westudywpls’s(thiscorrespondsto Chapter6; alsoChapters
4, 7 and 8 (and partially the rest of this monograph) are treatedin Theorem
13.3.13).

In Section13.4,weshow how to obtainwpls’s from WPLSsby discretization.
This allows us to reduceseveral WPLS problemsto wpls problems,which are
oftensubstantially simplerdueto theboundedinputandoutputoperators.
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Discrete-timeRiccatiequations(DAREs)andspectralandcoprimefactoriza-
tion aretreatedin Chapter14,minimizationproblemsin Chapter15,andH∞ (and
Nehari)problemsin Sections11.5and12.2.

Chapter 14: Riccati Equations (DARE)

In Chapter14, we shall presentthe resultsof Chapters9 and5 (seethe above
summaries)in their discrete-timeforms andsupplementthis by further results.
In particular, we defineand study infinite-dimensional Discrete-timeAlgebraic
RiccatiEquations(DAREs).

Weshow thatfor thegeneralcostfunction,theexistenceof anoptimal control
is equivalentfor the DARE (1.32) to have a stabilizingsolution. Moreover, the
optimal controllercanbe computedfrom sucha solution. We alsoshow that a
thirdequivalentconditionis thegeneralizationof thestandardcoercivity condition
combinedto exponential stability (Theorem14.2.7).

Noticethatthediscrete-timeH∞ controlproblemsaresolvedin Sections11.5
and12.2. The solutionsarealreadyknown for finite-dimensionalproblems(see
[IOW]).

Given an initial statex0 � H, we saythat “u �®Ã exp
�
x0 	 ” if f u �5å 2 � N;U 	 is

suchthatx �æå 2 � H � U 	 (wherex isdeterminedby (1.31)with x0 � 0); suchcontrols
(u) aresometimescalled“exponentially stabilizing” (or “power stabilizing”). (It
obviously followsthaty �¼å 2 � N � Y 	 .)

Oneoftenwantsto minimizeor, moregenerally, optimizeacostfunction(i.e.,
to find aJ-critical control)undertherestrictionu �AÃ exp

�
x0 	 . Thisproblemhasa

uniquesolution if f theextendedDARE hasasolution:

Theorem1.2.11 There is a unique J-critical control for each x0 � H iff the
extendedDiscrete-timeAlgebraic RiccatiEquation(eDARE)ÏÐÐÐÐÐÑ ÐÐÐÐÐÒ K 9 SK � A9 È A E È �

C 9 JC�
S � D 9 JD

�
B9 È B �

SK �3E �
D 9 JC

�
B9 È A	�� (1.32)

hassolution
� È � S� K 	 such that È � È 9 ��* �

H 	 , S is one-to-one, K ��* �
H � U 	

andσ
�
A

�
BK 	gË D. Moreover, anysuch solution is unique.

If such a solution exists,thentheJ-critical control is determinedby thestate
feedback u j � Kxj andcorrespondingJ-critical costis givenby À x0 � È x0Á , where
x0 is theinitial state. /

(Herethecostfunctionis of form

¿ �
x0 � u	 : � ∑∞

k D 0 À y� JyÁ Y for someJ � J 9 �* �
Y 	 . SeeTheorem14.1.6for theproof.)
The above theoremcorrespondsto ÃÄ99 �çÃ exp (in the discrete-timesense);

analogousresultsholdfor other Ã}99 ’s(cf. Chapter8). Wealsopresentsomeresults
in thesingular case(whereS is notone-to-oneandK is notunique)andsufficient
conditionsfor theexistenceof auniqueJ-critical control.
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Chapter 15: Quadratic Minimization

This chapteris mostly thediscrete-timecounterpartof Chapter10; seetheabove
summaryfor Chapter10 for correspondingproblemsandresults,suchasLQR
andH2 problems,extendedminimization, coercivity, real lemmasandmaximal
solutionsof Riccati inequalities/equations.Naturally, severaladditionaldiscrete-
timeresultsaregiven;thefollowing onesolves theextendedLQR (minimization)
problem:

Corollary 1.2.12(LQR: min ∑∞
j D 0

� 

y j



2
Y

� 

u j



2
U 	 ) Let R� Q � 0. Then the

followingareequivalent:

(i) there is a À y� QyÁ ¾ 2

� À u � RuÁ ¾ 2-minimizingcontrol overall u : N � U for each
x0 � H;

(ii) for each x0 � H there is u �yå 2 � N;U 	 s.t.y �yå 2;

(iii) theDARE ÏÐÐÐÐÐÑ ÐÐÐÐÐÒ È � A9 È A
�

C 9 QC E K 9 SK �
S � R

�
D 9 QD

�
B9 È B �

K ��E S� 1 � D 9 QC
�

B9 È A	Õ� (1.33)

hasa nonnegativesolution È .

If (iii) holds, then the smallestnonnegative solution is minimizing over all
u : N � U.

There is a minimizingcontrol over Ã exp iff the DAREhasan exponentially
stabilizingsolution È $ ; such a solution is strictly minimizing over Ã exp andthe
greatestnonnegativesolutionof theDARE.

If Σ is exponentiallydetectable(e.g., C 9 C � 0), thenthe DAREhasat most
onenonnegative solution, and such a solution is necessarilystrictly minimizing
over Ã exp. /

In Section15.5,we show that any strongly stabilizing solutionof a positive
DARE (or of thecorrespondingRiccati inequality) is themaximalone. We also
studyRiccati inequalitiesin theindefinitecase.

AppendicesA–F

In the appendices,we presentmathematicalknowledgethat is necessaryfor a
completeunderstanding of the proofs in the main part of this monograph. The
readersunfamiliar with thetheoryof vector-valuedfunctionsmight wish to have
a glanceat thebeginningsof AppendicesA, B andD beforestartingto readthe
maintext, but mostreaderswill probablyvisit theappendicesonly whenin need
to clarify somepartsof theproofsin themaintext.

Most of the appendicesconsistsof vector-valuedanalogiesof “well-known”
scalarresults,someof which are difficult to find in the literatureeven in the
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scalarcase,whereassomeof our resultsseemto benew even in thescalarcase.
Hopefully, the appendicescan alsoserve as a referencefor several resultsthat
have beencommonlyusedin infinite-dimensional control theorywithout known
references.

In the main text of this monograph,the vector spacesare assumedto be
complex (K � C), but in the appendices,the scalarfield K canbe taken to be
eitherC of R (in AppendixD andSectionsA.4 andF.3, we assumethatK � C,
asexplicitly statedthere;in theothersectionsin theappendiceswe alwaysstate
explicitly any suchexceptions).

In AppendixA, we presentstandarddefinitionsandseveral factson algebra,
topology and functional analysis, including several useful formulae for the
inversesof operatorsbetweenproductspaces.

In SectionB.1,webriefly present(Lebesgue)integration,differentiation,mea-
surability andL p and è function spaces.In the restof AppendixB, we extend
suchconceptsfor functionswith valuesin Banachspaces(we call suchfunctions
vector-valued). Our resultsinclude the densityof finite-dimensional, smooth,
compactlycarriedfunctionsin vector-valued(Lebesgue)L p spaces(evensimul-
taneouslyfor different p’s andweight functions; seeTheoremB.3.11), several
integral inequalities and equalities(e.g., TheoremsB.4.12 and B.4.16), certain
productmeasurability results,differentiationformulaefor integrals(SectionB.5)
andthebasictheoryof vector-valuedSobolev spaces(SectionB.7).

In AppendixC, webriefly introducevector-valuedalmostperiodicfunctions.
In AppendixD, we studyholomorphic vector-valuedfunctions.This includes

(Hardy)Hp spaces,LaplaceandFouriertransformsandPoissonintegralformulae.
We alsopresentsomeresultsonconvolutionsandonvector-valuedmeasures.

In Appendix E, we presentthe Riesz–ThorinInterpolationTheorem, the
Hausdorff–YoungTheoremandsimilar resultsfor vector-valued functions,with
applicationsto controltheory.

In AppendixF, we definespacesof strongly measurable functions( f : Q �* �
B � B2 	 , where f x : Q � B is (Bochner-)measurablefor eachx � B) andweakly

measurable functions (Λ f x is measurablefor each x � B and Λ � B 92). In
particular, we defineand studyL p

strong andLp
weak spaces(the main applications

arecontainedin theabove summaryon Chapter3) andHp
strong andHp

weak spaces
(with applicationsin systemtheory). We alsodevelop integration, convolution
andLaplacetransformtheoryfor stronglyor weaklymeasurablefunctions.

The completenessof L∞
strong (whereasLp

strong is incompletefor p N ∞) and
someHp � Hp type resultsat the end of AppendixD may be the deepestnew
resultsin the appendices,whereasmany of the other resultsare more or less
straight-forwardgeneralizationsand/orextensionsof known facts.
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1.3 Conventions

If we spoke a different language, we would perceive a somewhat
differentworld.

— Ludwig Wittgenstein(1889–1951)

Most of the notationis explainedat the point whereit is usedfor the first
time, andthereis an extensive list of references,symbols, terms,abbreviations
andacronymsat theendof thisbook(p. F.3). Thecorrespondenceof diagramsof
systemsto correspondingequationscanbeobservedfrom Figure6.1 (p. 155); in
particular, inputscorrespondto columnsandoutputs to rows, asin a matrix (and
in [Sbook]).

Following the standardconvention, in definitionswe write if insteadof iff
(which means“if andonly if ”). An asterisk(“ F ”) often denotesfor something
omitted(seethesymbollist, p. 1038).By brackets(“

Æ O+O+OéÊ ”) we denotereferences
(p. 1024)or optionalparts;seep. 1037.

For clarity, we have chosenthe “Blackboardbold” style to indicate the
“integral” operators,e.g.,a WPLS is of the form r � �� � t . As a result,we have
to useordinary bold letters(C, R, Z, N �­� 0 � 1 � 2 ��O+O+O � ) for standardfields of
(complex, real,integer, natural)numbers.

The generatorsof r � �� � t aredenotedby r A B
C

t or r A B
C D

t , asin Section1.2
(alternatively, seeDefinition 6.1.1,Lemma6.1.16andDefinition 6.2.3). Simi-
larly, the generators(feedthroughoperators)of any otherintegral maps(always
Blackboardbold)will usuallybedenotedby correspondingordinary(capital)let-
ters.Notealsothebarsseparatingthedifferentpartsof thesystem;this is helpful
whenthepartsconsistof largerexpressions.

The order of proofs

The “integral” notation(1.8) of a systemallows us to treatcontinuous-time and
discrete-timeproblemsin a unified way. This allows us to transfercontinuous-
time resultsto discretetime with a minimal effort: it suffices to just list which
partsarevalid alsoin discretetime, with sameproofs(seeTheorem13.3.13).In
particular, within thediscrete-timetheory(Part IV), any referencesto continuous-
time resultsrefer to correspondingdiscrete-timevariants(oneshaving undergone
thesubstitutions(13.63)).

However, theproofsof certainresultsrestontheboundednessof “dif ferential”
or differenceoperators,hencethey are given first for discretetime and then
extendedto continuous time by discretization(becausediscrete-time systems
always have boundedgenerators).Such resultsinclude the uniquenessof the
solution of the Riccati equation,the two-Riccati formula of the H∞ Four-Block
Problemandseveralresultsonstabilization.

Becauseof this, to verify the proofs of the whole monograph,one might
wish to first read and verify the resultsin their discrete-timeform, and only
thenin their continuous-timeform (seeTheorems13.3.13,14.1.3,15.1.1,11.5.2
and12.2.2andtheir proofsfor detailsandotherpossibleorders). Nevertheless,
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all resultsthat arevalid in both continuousanddiscretetime are first statedin
continuoustime,andwegive theproofsin their continuous-timeformswhenever
reasonablypossible; in suchcasesthediscrete-timeanalogiesarejust references
to thecontinuous-timeresultsandproofs,asin Theorem13.3.13.

Mostreadersmayreadthebook“asis”, but thereaderwishingtohaveadeeper
insight(or tounderstandall proofs)hasto studyalsothediscrete-timepartin order
to completelyabsorbthecontinuous-timepart. Conversely, readersinterestedin
discrete-timeresultsonly may skip thingssuchas generatorsand regularity of
continuous-timesystems, aswell asrelatedcomplicatedtechnicalmethods.

Trying to balancebetweenthepropertiesneededfrom areferencemanualand
thoseneededfor a“chronological”orderof proofs,wehavegroupedsomeclearly
relatedresultstogether, thus placing someresultsbeforethoseneededin their
proofs;wehave tried to clarify theorderof proofsin thosecases.

Proofs

Theproofsoftencontainextra information: remarks,clarificationsof ambiguous
statementsin the theorems,weaker or alternative assumptions, or “counter-
examples”showing thatourassumptions arenotsuperfluous,etc.

We placea square(“ / ”) at the end of eachproof, and at the end of each
lemma,proposition, theorem,corollary or remarkwhoseproof is only sketched
or replacedby a referenceto someotherresult.

Thereareseveralalgebraicbasicresults(e.g.,theSchurdecomposition of an
(operator)matrix) thatareoftenusedin controltheorywithout a furthermention.
We have compiledthemto theOperatorMatrix LemmaA.1.1, which hashelped
usmakemany proofsdramaticallyshorter, simpler andeasierandtheresultsmore
elegantthanin theearlyversions of thisbook(youdonotwantto know...).

Notes

At the end of most sections,there is a “Notes” subsectioncontainingfurther
remarksand external references,including any earlier forms of similar results
in the literature(known to us). However, we often refer to a “more up-to-date
reference” insteadof thefirst author.

Whenreadingthenotesto discrete-timesections,oneshouldalsoconsultthe
notesto correspondingcontinuous-timesections.Notealsothehistoricalremarks
of Section1.2.

Hypotheses

At thebeginning of eachchapter, welist any standinghypothesesandassumptions
of thechapteror of its parts.

Outside the appendices,any BanachandHilbert spacesarecomplex andof
arbitrarydimensionsunlessotherwisestated.In theappendices,thescalarfield K
maybeeitherof R or C exceptthat in AppendixD andSectionsA.4 andF.3 we
assumethatK � C, asexplicitly statedthere.


