
Chapter 12

H∞ Four-Block Problem
(
� ����� � ��� 	

γ)

Whatis nowprovedwasonceonly imagin’d.

— William Blake (1757–1827)

TheH∞ Four-Block Problem(H∞ 4BP)is presentedon p. 36. In Section12.1
we solve the4BP, in Section12.3we solve thecorrespondingfrequency-domain
problem, and in Section12.2 we treat the discrete-timecounterpartsof these
problems.Therestof this chapterconsistsof proofsandminor results.

Ourmaincontributionsarethesolutionof thecontinuous-timeH∞ problemin
termsof two independentRiccatiequationsanda couplingcondition(Theorems
12.1.4and12.1.5,underdifferentassumptions)andtheparametrizationof all sub-
optimalcontrollers(Theorem12.1.8),aswell asthecorrespondingdiscrete-time
results(includingTheorem12.2.1).Anotherimportantresultis the factorization
solutionof thesameproblem(Theorem12.3.6solvesthefrequency domainprob-
lem for MTIC systems,Theorem12.3.7(partially) for moregeneralones;Theo-
rem12.3.5connectsthesesolutionsto thestate-spacesolution).

In this chapter, 
� standsfor MTICTZ or for someothersuitableclass:

StandingHypothesis12.0.1 Throughout this chapter we assume that
H � U � W� Y� Z are Hilbert spacesand the spaces 
��
 U � W � , 
��
 Y � U � and
��
 Y � Z � satisfyHypothesis8.4.7andthat 
��� 
� d

.

(Cf. Theorem8.4.9(c),Lemma14.3.5andDefinition6.2.4.)
NotealsothatHypothesis12.3.1is assumedthroughSections12.3–12.4and

Hypothesis12.1.1throughSections12.1,12.2,12.5and12.6.
In this chapter, we allow the controllersto have internal loops unlesswe

usethe term “well-posedcontroller”; cf. Figures7.8 and 7.10 (or Figures7.9
and 7.11)). We also often drop the prefix “DPF-”, since we study no other
controllersthanDPF-controllersin this chapter(seeSection7.3).
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690 CHAPTER12. H∞ FOUR-BLOCKPROBLEM ( γ)

12.1 The standard H∞ problem(H∞ 4BP)

Not every problem is necessarilydue to the capitalist mode of
production.

— HerbertMarcuse

Weassumethedynamicsof form (1.25)(seep. 37):

StandingHypothesis12.1.1 ThroughoutSections12.1,12.2,12.5and12.6,we
assumethat γ � 0 and

Σ
����� �� ��� � �� � � 1 � 2�

1
�

11
�

12�
2

�
21

�
22

 !#"
WPLS



U � W� H � Z � Y �%$ (12.1)

Definition 12.1.2(Suboptimal controller) A stabilizingDPF-controller for Σ is
calledsuboptimalif it makesthenormof themapw &' z lessthat γ.

SeeDefinition 7.3.1 for stabilizing Dynamic Partial Feedback(DPF) con-
trollersfor Σ (recallthatin this chapterthewords“with internalloop” areusually
omittedunlike in Chapter7).

The mapw &' z is usuallydenotedby (*) 
 � �,+-� , where + is the I/O-mapof
the controller; seeCorollary 7.3.20(or Lemma12.3.2)for ( ) 
 � �,+-� . As noted
on p. 321,we have ( ) 
 � �,+.� � � 12 / � 11 + 
 I 0 � 21 +1� � 22 for well-posed+ . In
the literature,often “w comesbeforeu”, hencethe latter subindicesshouldbe
interchangedin theformulafor ( ) for comparison.

We shall show in Theorems12.1.4and12.1.5that,understandardcoercivity
assumptionsandcertainregularityassumptions,theexistenceof suchacontroller
is equivalentto thestandardCARE,signatureandcouplingconditions.Moreover,
in Theorem12.1.8we parametrizeall suchcontrollersandshow thatall of them
arewell-posedwhenD21

�
0 (asoneusuallyassumes).Thus,for mostreaders

it suffices to considerwell-posedcontrollersonly. We also make someless
importantremarkson theproblemunderdifferentassumptions.

Recall from Definition 7.3.1 that 
Σ beingan exponentiallystabilizingDPF-
controllermeansthat theclosed-loopsystemin Figure7.9 (or 7.11) is exponen-
tially stable,i.e., thatall mapsbetweenthesignalsin this figureareexponentially
stable.By Lemma6.1.10,this is thecaseif f thecorrespondingclosed-loopsemi-
groupis exponentiallystable.

Thus,our conceptof a suboptimalexponentiallystabilizing DPF-controller
is a direct generalizationof the standardconcept(the “suboptimal admissible
controller” of [ZDG], “γ-admissiblecontroller” of [Keu], or “stabilizing γ-
contractingcontroller”of [IOW]).

In mostapplicationsof Definition12.1.2,wecanshow thatHypothesis12.3.1
is satisfied.SeeProposition7.3.4andLemma12.5.7for ( ) 
 � �,+.� in thegeneral
case.

Wefirst notethattheproblemof this sectioncontainsthatof Section12.3:
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Lemma 12.1.3(exp-4BP 2 2 2 I/O-4BP) TheI/O mapofanysuboptimal[exponen-
tially] stabilizingDPF-controller for Σ is a suboptimal[exponentially]stabilizing
DPF-controller for

�
. 3

(This is trivial; seeDefinitions12.3.3and7.3.1(cf. Theorem7.3.11(c1)).)
In thefirst form of oursolutionweshallassume“B4w-CARE” typeregularityto

obtainsimplerRiccatiequationsandhave thesolutionlook exactly like its finite-
dimensionalcounterparts(with the exceptionof weakWeissextensionsB4w and
Cw in placeof B4 andC):

Theorem 12.1.4(H∞H∞H∞ 4BP 5 5 5 B4wB4wB4w-CAREs)

(A1) (Regularity) Assumethatat leastoneof (I)–(V) holds,where

(I) (Analytic � � � ) 1. A generates an analytic semigroup on H, B1

"6 

U � Hβ1

� , B2

" 6 

W� Hβ2

� , C1

" 6 

Hγ1 � Z � , C2

" 6 

Hγ2 � Y � , D

"6 

U � W� Z � Y � , βk � γk

" 
 0 17 2 � 17 2� (k
�

1 � 2); 2. γ1 8 17 4 or
γ1 0 min 9 β1 � β2 :;8 17 2; and3. β2 �<0 17 4 or max9 γ1 � γ2 : 0 β2 8 17 2;

(II) B is bounded (i.e., B

" 6 

U � W� H � ) and π = 0 > 1? Cw � "

L1 
A@ 0 � 1� ; 6 
 H � Z � Y �A� ;
(III) π = 0 > 1? � B

"
L1 
A@ 0 � 1B ; 6 
 U � W� H �A� andC

" 6 

H � Z � Y � ;

(IV) π = 0 > 1? � Bv0

"
L2 
A@ 0 � 1B ;H � , π = 0 > 1? � 4 C 4 t0 "

L2 
A@ 0 � 1B ;H � ,
π = 0 > 1? Cw � Bv0

"
L2 
A@ 0 � 1B ;Z � Y � , π = 0 > 1? B4w � 4 C 4 t0 " L2 
A@ 0 � 1B ;U � W �

for all v0

"
U � W, t0

"
Z � Y (equivalently,


DC 0 A�FE 1B � 
DC 0 A4 �GE 1C 4 �
Cw

DC 0 A�FE 1B � B4w 
DC 0 A4 �FE 1C 4 " H2

strong


C Hω ;

6 
JI � I �A� for someω

"
R);

(V) � is exponentiallystableand K� 0 D �GK� 
 C̄ � 4 0 D 4 " H2
strong



C Hω ;

6 
JI � I �L�
for someω 8 0.

(A2) (Nonsingularity) Assumethat D 411D11 M 0 and D22D 422 M 0, and that
there is ε � 0 s.t.


ir 0 A� x0
�

B1u0
� 2 N C1wx0 / D11u0 N Z O ε N x0 N H and (12.2)


ir 0 A4 � x0
�

C 42y0
� 2 N B42wx0 / D 422y0 N W O ε N x0 N H (12.3)

for all x0

"
H � u0

"
U � y0

"
Y� r

"
R.

Then there is a suboptimalexponentiallystabilizing DPF-controller for Σ
(possiblywith internal loop) iff (1.)–(3.)hold:

(1.) (P XP XP X-CARE) D 412D12 0 D 412D11


D 411D11� E 1D 411D12 Q γ2I , and the

(B4w-)CARE RSSST SSSU K 4XSXKX
�

A4 P X / P XA / C 41C1 �
SX
�WV D X11D11 D X11D12

D X12D11 D X12D12 E γ2I Y �
KX
� 0 SE 1

X

 V D X11

D X12 Y C1 / B4w P X �%� (12.4)

hasa solution

 P X � SX � KX � " 6 
 H � Dom



B4w �A�Z� 6 
 U � W �[� 6 
 H1 � U � W �

s.t. P X O 0, andthesemigroupgeneratedbyA / BKX is exponentiallystable.
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(2.) (P YP YP Y-CARE) D12D 412 0 D12D 422


D22D 422�FE 1D22D 412 Q γ2I , and the

(B4w-)CARE RSSST SSSU K 4YSYKY
�

AP Y / P YA4 / B2B42 �
SY
� V D22D X22 D22D X12

D12D X22 D12D X12 E γ2I Y �
KY
� 0 SE 1

Y

\V D22

D12 Y B42 / V C2w
C1w Y P Y �%� (12.5)

hasa solution

 P Y � SY � KY � " 6 
 H � Dom


\V C2w
C1w Y �A�]� 6 
 Y � Z ��� 6 
 H 41 � Y �

Z � s.t. P Y O 0, and the semigroup generated by A4 /_^C 42 C 41 ` KY is
exponentiallystable.

(3.) (Coupling condition) ρ

 P X P Y � 8 γ2.

(Werecall fromTheorem9.8.12(a)thatanyexponentiallystabilizingsolutions
of Riccatiequationsareunique.)

Assumethat (1.)–(3.)aresatisfied.Thenthefollowinghold:

(a) All suboptimalexponentiallystabilizingDPF-controllers for Σ are theones
parametrizedin Theorem 12.1.8(for 
�a�

MTICL1

exp in cases(I)–(IV) and
� =Theorem8.4.9(γ b ) in case(V)); notethat if D21
�

0, thenall of themare
well-posed.Moreover, alsocondition(4.) of Theorem12.1.8canbewritten
asa B4w-CARE,i.e., asfollows:

(4.) (P ZP ZP Z-CARE) For some(equivalently, all) X

"dc 6 

U � W � s.t.X21

�
0

andS
�

X 4 J1X, theCARERSSST SSSU K 4ZSZKZ
�

A4Z P Z / P ZAZ / B2X E 1
22 X E 422 B42 �

SZ
�

D 4ZJ1DZ �
KZ
� 0 SE 1

Z

 � D22X e 1

22

X12X e 1
22
� X E 422 B42 / 
 B4Z � w P Z �%� (12.6)

has a solution

 P Z � SZ � KZ � " 6 
 H � Dom


A

B4Z � w �A�f� 6 
 Y � Z �.�6 


Dom


AZ �%� Y � U � s.t. P Z O 0, SZ11 M 0, SZ22 0 SZ21SE 1

Z11SZ12 Q 0
andthesemigroupgeneratedbyAZ / BZKZ is exponentiallystable.

(b) ThesystemsΣX � ΣY � ΣZ � Σ g d � Σ h andΣalt satisfytheassumptionsof Lemma
6.8.5for p

�
1
�

q if anyof (I)–(IV) holds(andfor p
�

2
�

q if (IV) holds).
If (I) holds,thenthey alsosatisfyHypothesis9.5.1.

(SeeCorollary9.5.12(b)for additionalsmoothnessfor case(I). By Corollary
9.5.12(a),conditions“2.” and“3.” maybeomittedfrom (I) if we write (1.)–(2.)
to theform of Theorem12.1.5.)

Underthenormalizingconditions

D12
�

0 � D 411 ^C1 D11̀
� ^ 0 I ` � (12.7)

condition(1.) canbewrittenasfollows:
A

B41 � w P X � 4 
 B41 � w P X 0 γ E 2 
A
 B42 � w P X � 4 
 B42 � w P X

�
A4 P X / P XA / C 41C1 (12.8)
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with therequirementsthat P X

" 6 

H � Dom



B4w �A� , P X O 0,andA / 
 γ E 2B2



B42 � w 0

B1


B41 � w �GP X is exponentiallystable. (Note thatnow SX

�
Jγ :
�i@ I 0

0 j γ2I B andKX
�V Elk BX1 ? w m X

γ e 2 k BX2 ? w m X Y " 6 
 H � U � W � .) If B is bounded,then(12.8)takestheclassicalformP X


B1B41 0 γ E 2B2B42 �GP X

�
A4 P X / P XA / C 41C1 $ (12.9)

Seep. 618 for further simplificationandremarks. Analogousremarksapply to
(2.) and(4.). We thusobserve thattheclassicalH∞ CAREsbecomespecialcases
of (1.) and(2.) (cf. p. 618).

Recall from Definition 9.8.1, that each of these P X-CAREs is given on6 

H1 � H 4E 1 � :

� 6 

Dom



A�%� Dom



A4 � 4 � ; e.g.,(12.8)holdsif fn 


B41 � w P Xx0 � 
 B41 � w P Xx1o 0 γ E 2 n 
 B42 � w P Xx0 � 
 B42 � w P Xx1o� n
Ax0 �pP Xx1oq/ n P Xx0 � Ax1or/ n C1x0 � C1x1o (12.10)

for all x0 � x1

"
Dom



A� (we can take x1

�
x0 w.l.o.g., by LemmaA.3.1(g1)).

Analogously, the P Y-CAREs are given on Dom


A4F� and the P Z-CAREs (see

Theorem12.1.8)onDom


AZ � .

See the remark in the proof for weakening (A1) (e.g., by assumingthat
Hypothesis9.2.1is satisfiedby certainsystemswith Jγ or J1). SeeRemark12.1.7
for severalequivalentconditionsfor (A2).

One usually assumesthat


A � B1 � is exponentially stabilizableand



A � C2 �

is exponentiallydetectable.By the above, suchassumptionsare necessarybut
redundantunder (A1)–(A2) (or somewhat weaker analogousassumptions,see
Theorem12.1.5or Theorem12.2.1).

Note that in “

 P X � SX � KX � " $s$s$ ” only “ P X

" 6 

H � Dom



B4w �A� ” is a re-

quirement;the other two conditionsare automaticallysatisfiedwhenever P X

"6 

H � Dom



B4w �A� and SX and KX are determinedby the secondand third equa-

tions of (12.4). An analogousremarkappliesto (2.) and(4.) (andto any other
B4w-CARE).

Proof of Theorem 12.1.4: 0 $ 1t Remarkson (I)–(V): Conditions(I) says
thatHypothesis9.5.1holdsfor Σ (hencefor ΣX andΣY too)andthatHypothesis
9.5.7(2.) (without the D 4 JD condition) is satisfiedby ΣX and ΣY (but not
necessarilyby Σ). Theassumptionsin (II)–(V) couldbeweakenedanalogously.

Even without the standinghypotheses,(I) implies that ^ A B
C D ` generatean

ULR WPLS,byLemma6.3.15.For (II) (resp.(III)), wemustaddtheconditions
(4.) (resp.(2.)) and(1.) of Lemma6.3.15.Conditions(IV) and(V) arefar from
sufficient to guaranteetheaxiomsof WPLSs.

The H2
strong-condition in (V) could be rephrasedas “

� 0 D

" 6 

U � W�

L2 
 R H ;Z � Y �A� I and
� d 0 D

" 6 

Z � Y� L2 
 R H ;U � W �L� I ”, i.e.,as“Cw � Bv0

"
L2 
 R H ;Z � Y � and B4w � 4 C 4 
y0

"
L2 
 R H ;U � W �L� I for all v0

"
U � W and
y0

"
Z � Y”.

0 $ 2t Remark:alternativesfor (A1): In Theorem12.1.4,an alternative for
(A1) wouldbeto assumethat



ΣX � Jγ � and



ΣY � Jγ � havethepropertyof Remark

9.9.14(c).
Then(1.)–(3.)becomenecessary, by Lemma12.1.13,but sufficiency would

requirea slightly strongerassumptionto guaranteethat also Σ g d or ΣZ is as
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smooth(whenever (1.) holds).
An even weaker assumptioncan also suffice: if



ΣX � Jγ �%� 
 ΣY � Jγ � "

coerciveCARE,then(1.)–(3.) arestill necessary(possiblyin a modifiedform,
seeLemma12.1.13andRemark12.1.6;also(A2) mustpossiblybealteredif

�
is not ULR), but for sufficiency oneneedsseveral additionalassumptions,cf.
theremarkin theproof of Lemma12.1.12

1t Case(V): This is containedin Theorem12.1.11(let 
� be the classof
Theorem8.4.9(γ b ); note that Hypothesis12.5.1holds,by Remark12.1.7(a)),
sincethetwo formsof (1.)–(2.) areequivalent,by Remark12.1.6(becauseΣX

andΣY satisfyHypothesis9.2.2(7.)).Consequently, wedonot treatcase(V) in
2t –3t below.

2t Condition (A1) of Theorem 12.1.5 is satisfied: For (II)–(IV) this is
obvious,since � "�u 
 R H ;

6 

H �A�wv L1

loc


R H ;

6 

H �A� ; for (I) this follows from

Lemma9.5.2.
3t Theequivalenceand all controllers: We deducefrom Theorem12.1.5

that(1.)–(3.)of thattheoremareequivalentto theexistenceof anexponentially
stabilizingsuboptimalDPF-controllerfor Σ (possiblywith internalloop), and
thatif eitherholds,thenall suchcontrollersareparametrizedbyTheorem12.1.8
(andthatin this casetheassumptionsof Theorem12.1.8aresatisfied).

It only remainsto beshown that(1.)–(2.)canbewrittenasin this theorem.
4t (1.)–(3.) are equivalentto (1.)–(3.) of Theorem12.1.5:Notefirst that if

eitherconditionshold, thenD 4XJγDX � D 4YJγDY

"xc 6
, by (A2) andthesignature

conditions,hencethe condition“D 4 JD

"yc 6
” of Hypothesis9.2.2(4.) (or of

Hypothesis9.5.7(2.))is satisfiedby bothΣX andΣY.
Condition (A1) implies that Hypothesis9.2.2 is satisfiedby both ΣX and

ΣY; indeed,(I) implies (2.) or (3.) (resp.(2.) or (3.)) of Hypothesis9.2.2for
ΣX (resp.for ΣY), (II) implies(1.) (resp.(4.)), (III) implies(4.) (resp.(1.)), (IV)
implies(5.) (resp.(5.)), (V) implies(7.) (resp.(7.)).

By Theorem9.2.3,it follows thatHypothesis9.2.1is satisfiedby


ΣX � Jγ �

andby


ΣY � Jγ � , hencethe two CAREsbecomeequivalent to BwCAREs,by

Theorem9.2.9.
(a)Theclaim(a) is containedin Theorem12.1.5exceptfor thefactthattheP Z-CARE canbewrittenas(4.) above;equivalently, for thefactthatΣZ andJ1

satisfyHypothesis9.2.1.Thiswill beestablishedbelow.
(a)&(b) We shallestablish(b) andshow thatΣZ satisfiesHypothesis9.2.2,

so thatΣZ andJ1 satisfyHypothesis9.2.1. This completestheproof of (a). It
alsoimpliesthat(4.) is satisfied(since“(4.)” of Theorem12.1.8is necessarily
satisfied,by thetheorem).

a $ 1t ThesystemsΣX � ΣY � ΣZ and Σ g d satisfythe assumptionsof Lemma
6.8.5for p

�
1
�

q if anyof (I)–(IV) holds(andfor p
�

2
�

q if (IV) holds):
For ΣX and ΣY, this was notedin 1t . SinceB4w P X

" 6 

H � U � W � , the

operatorKX is of theform describedin Lemma6.8.5(for ΣX, hencealsofor Σ),
hencealsoΣ z andΣdz satisfythe assumptionsof the lemma(by the lemma).
Consequently, sodoesΣ g d (sinceit is a partof Σdz , by Lemma12.5.15),hence
sodoesΣZ, by Lemma6.8.5(b).

a $ 2t ThesystemsΣ h and Σalt satisfythe assumptionsof Lemma6.8.5 for
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p
�

1
�

q if (4.) andanyof (I)–(IV) hold (and for p
�

2
�

q if (4.) and (IV)
hold): SinceKZ in (4.) is of the form describedin Lemma6.8.5(by a $ 1t ) for
ΣZ, it follows thatΣalt satisfiestheassumptionsof Lemma6.8.5,hencesodoes
Σ h (becauseit is apartof Σalt).

a $ 3t Therestof (a) and(b): Weshow thisseparatelyundereachassumption.
Note that except for claim on Hypothesis9.5.1, it suffices to be shown that
Hypothesis9.2.2is satisfied(sothat(4.) holds).

We shall usethe fact that “(4.)” of Theorem12.1.8is satisfiedandSZ
�

D 4ZJ1DZ

"{c 6
, asnotedin the proof of Theorem12.1.5. (N.B., even if we

hadnot assumed(1.)–(3.), conditions(1.) and (4.) above would imply that
alsothecorrespondingCAREsweresatisfied(with SZ

�
D 4ZJDZ), by Theorem

9.2.9(iii)&(iv), hencethen(1.)–(3.) would againhold, by Theorem12.1.8and
theabove.)

(II): SinceCZ is bounded,by (II) and (12.94), Hypothesis9.2.2(4.) is
satisfiedby ΣZ.

(III): Now C and KX are bounded(sinceCX
� ^ C1

0 ` is), henceBZ is is
bounded,by (12.94).Thus,Hypothesis9.2.2(1.)is satisfiedby ΣZ.

(IV): By a $ 1t , Hypothesis9.2.2(5.)is satisfiedby ΣZ.
(I): SinceCX

� ^ C1
0 ` " 6 
 Hγ1 � Z � W � , wehaveKX

" 6 

Hγ1 � U � W � , hence

alsoΣZ is analytic,by Lemma9.5.4.
It follows that BZ

" 6 

Y � U � 
 HβZ �A4F� , where βZ :

� 0 max9 γ1 � γ2 : , by
(12.94).Moreover, CZ

" 6 

HγZ � W � U � , whereγZ

� 0 β2, by (12.94).
Weconcludefrom (I) that(βZ � γZ

" 
 0 17 2 � 17 2� and)γZ 8 17 4 or γZ 0 βZ 8
17 2, hence(2.) or (3.) of Hypothesis9.5.7 is satisfiedby ΣZ (recall that
D 4ZJ1DZ

"xc 6
), hencesois Hypothesis9.2.2(2.).Consequently, the P Z-CARE

becomesaB4w-CARE.
It follows thatKZ

" 6 

HγZ � Y � U � . We concludefrom Proposition12.5.19

andLemma9.5.4thatΣalt satisfiesHypothesis9.5.1,hencesodoesΣ h . (Note
that Hypothesis9.5.1 is strongerthan the assumptionsof Lemma6.8.5, by
Lemma9.5.2.) 3
Next we shall allow for any “L 1 systems”insteadof the “B4w-CARE” type

regularityabove. Thus,assumptions(I)–(III) abovebecomespecialcasesof those
in (A1) below. This leadsto more general(read: more complicated)Riccati
equations:

Theorem 12.1.5(H∞H∞H∞ 4BP 5 5 5 CAREs)

(A1)(Regularity) Assumethatπ = 0 > 1? � B

"
L1 
A@ 0 � 1� ; 6 
 U � W� H �A� , π = 0 > 1? Cw � "

L1 
L@ 0 � 1� ; 6 
 H � Z � Y �A� , and π = 0 > 1? Cw � B

"
L1 
A@ 0 � 1� ; 6 
 U � W� Z � Y �A� , or

that (IV) of Theorem12.1.4holds.

(A2) (Nonsingularity) Assumethat D 411D11 M 0 and D22D 422 M 0, and that
there is ε � 0 s.t.


ir 0 A� x0
�

B1u0
� 2 N C1wx0 / D11u0 N Z O ε N x0 N H and (12.11)


ir 0 A4 � x0
�

C 42y0
� 2 N B42wx0 / D 422y0 N W O ε N x0 N H (12.12)
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for all x0

"
H � u0

"
U � y0

"
Y� r

"
R.

Thenthere is a suboptimalexponentiallystabilizingDPF-controller (possibly
with internal loop) for Σ iff (1.)–(3.)hold:

(1.) (P XP XP X-CARE) D 412D12 0 D 412D11


D 411D11�FE 1D 411D12 Q γ2IW, andtheCARERSSST SSSU K 4XSXKX

�
A4 P X / P XA / C 41C1 �

SX
� V D X11D11 D X11D12

D X12D11 D X12D12 E γ2I Y �
KX
� 0 SE 1

X

\V D X11

D X12 Y C1 / B4w P X �%� (12.13)

hasa solution

 P X � SX � KX � " 6 
 H �|� 6 
 U � W �]� 6 
 H1 � U � W � s.t. P X O

0, KX is exponentiallystabilizing for } A B ~ , and lims� H ∞ B4w P X


s 0

A�GE 1B
�

0.

(2.) (P YP YP Y-CARE) D12D 412 0 D12D 422


D22D 422� E 1D22D 412 Q γ2IZ, andtheCARERSSST SSSU K 4YSYKY

�
AP Y / P YA4 / B2B42 �

SY
��V D22D X22 D22D X12

D12D X22 D12D X12 E γ2I Y �
KY
� 0 SE 1

Y

 V D22

D12 Y B42 / V C2w
C1w Y P Y �%� (12.14)

has a solution

 P Y � SY � KY � " 6 
 H �f� 6 
 Y � Z �f� 6 
 H 41 � Y � Z � s.t.P Y O 0, KY is exponentially stabilizing for } A4 C 42 C 41 ~ , and

lims� H ∞
V C2
C1 Y w

P Y


s 0 A�FE 1 ^C 42 C 41 ` � 0.

(3.) (Coupling condition) ρ

 P X P Y � 8 γ2.

If (1.)–(3.) are satisfied,thenall suboptimalexponentiallystabilizingDPF-
controllers for Σ are theonesparametrizedin Theorem12.1.8(for 
��� MTICL1

exp,
or for class (γ b ) of Theorem 8.4.9 under the alternativeassumption“(IV)” in
(A1)); notethat if D21

�
0, thenall of themarewell-posed.

Weremarkfrom Theorem11.1.4(iii)&(i) that(1.) impliesthattheFICPfor ΣX

hasasolution,and(2.) impliesthatthe(dual)filter problemfor ΣY hasasolution.
A sufficient conditionfor (A1) is condition(A1)(I)1. of Theorem12.1.4,by

Corollary9.5.12.SeeTheorem12.1.11for alternativesfor (A1) and(A2).
Proof of Theorem12.1.5: If thereis asuboptimalexponentiallystabilizing

DPF-controller(possiblywith internal loop), then(1.)–(3.) hold, by Lemma
12.5.22.(Thus,a fortiori, this is thecasewhenthereis awell-posedsuboptimal
exponentiallystabilizingDPF-controller.)

Conversely, if (1.)–(3.)hold,thenHypothesis12.5.1andconditions(1.) and
(4.) of Theorem12.1.8aresatisfied,by Lemmas12.5.21and12.5.20. Thus,
thentherearesuboptimalexponentiallystabilizingDPF-controllersfor Σ, by
Theorem12.1.8(whoseassumptionsaresatisfied).

We remarkfrom 3t of theproof of Lemma12.5.20thatSZ
�

D 4ZJDZ when
(1.)–(3.)hold. 3
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Remark 12.1.6(Different forms of (1.)–(2.)) We first recall from Theorem
9.8.12(b)thatanysolutionof any(1.), (2.) or (4.) of this sectionis unique.

We have usedthree forms of the P X-CARE (“(1.)”) and the P Y-CARE
(“(2.)”). The“weakest” forms(thestandard forms)are givenin Lemma12.1.12
(they applyto anyURsettings).

Thosegivenin Theorem12.1.5areequivalentto thosegivenin Lemma12.1.12
combinedwith assumptionsSX

�
D 4XJγDX andSY

�
D 4YJγDY; theseassumptions

are redundantwhen � u and �� y
d

satisfyHypothesis8.4.8,asnotedin theproofof
Lemma12.5.21.

Thestrongestformsof (1.)–(2.) (the B4w-CAREforms)are givenin Theorem
12.1.4;they areequivalentto eitherof theweaker oneswheneverHypothesis9.2.1
is satisfiedby



ΣX � Jγ � and



ΣY � Jγ � (see(12.84)–(12.85)).

In all our resultsreferringto anyof theseCAREs,onecanalwaysreplacethe
CAREsbyanyweaker ones(of thethreeformslistedabove).

Moreover, under the assumptionsof Theorem12.1.4,12.1.5or 12.1.11,we
can usethe middle form for the P Z-CARE(4.) or (4.’) too (i.e., require that
SZ
�

D 4ZJDZ). 3
(This is straightforward; use Theorem 9.2.9(iii)&(iv) for the B4w-CARE

forms.)
Condition(A2) is virtually equivalentto the I -coercivity of

�
11 and

� d
22:

Remark 12.1.7(Different forms of (A2)) (a) Assumethat (A1) of Theorem
12.1.4holds(or that (A1) of Theorem12.1.5holds). Assumethat



A � B1 �

is optimizableand


A � C2 � is estimatable(this is a necessarycondition,by

Theorem7.3.12(a))or thatD 411D11 M 0 andD22D 422 M 0.

Thencondition(A2)of Theorem12.1.4holdsiff
�

11 and
� d

22 are I -coercive
over � exp; in fact, then any of (i)–(iii) of Proposition10.3.2or Remark
10.3.3(for Σ � 11 andΣ � d

22
) areequivalent.Onemoreequivalentconditionis

thatHypothesis12.5.1holds.

(b) If Σ is exponentiallystable, then
�

11 and
� d

22 are I -coercive over � exp iff� 411
�

11 M 0 and
�

22
� 422 M 0 (equivalently, iff Hypothesis12.5.1holds).

(c) TheI -coercivity of
�

11 and
� d

22 over � exp is equivalentto (12.78)if therest
of Hypothesis12.5.1holdsand



A � B� is optimizable.

In this chapter, the I -coercivity of
�

11 (resp.of
�

22) refersto the realization

Σ � 11 :
�a� A B1

C1 D11 � (resp.Σ � d
22

:
�a� AX C X2

BX2 D X22 � ).

Proof: (a)By Proposition10.3.2(e2)(use(e1)and(g2) for (V)), conditions
(i)–(iii) areequivalent(notethat this include I -coercivity and(A2)). The rest
is given in Lemma12.5.4(use(b) for (V)) (sinceany of (I)–(IV) of Theorem
12.1.4(A1)implies (A1) of Theorem12.1.5,by 2t of the proof of Theorem
12.1.4).

(b) This follows from (c) (take ^�� u � u ` � 0
� Vp� y�

y Y ).
(c) By Lemma12.5.2(i)&(vi), ^w� u � u ` is exponentiallystabilizingfor

Σ, hence ^�� u1 � u11
0 0 ` is exponentiallystabilizingfor Σ � 11 (sincethetwo closed-

loopsemigroupsareequal).
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Therefore
�

11 is I -coercive over � exp if f � u11 is (positively) I -coercive
over � out, by Theorem8.4.5(d). By Lemma8.4.11(a2),this is the caseif f� 4u11 � u11 M 0. By dualargumentswe obtainthat

� d
22 is I -coercive over � exp

if f 
� y22 
� 4y22 M 0. 3
As in, e.g., [IOW], the P Z-CARE is not determinedby the exponentially

stabilizing solution of the P X-CARE but by a(ny) exponentially stabilizing
solution of the P X-IARE having X11 � X22

"�c 6
and X21

�
0 (see (9.114)).

Analogously, for theparametrizationof all controllersweuseamodifiedsolution
of the P Z-IARE(see(12.94)):

Theorem 12.1.8(All solutionsto the 4BP) Assumethat Hypothesis12.5.1 is
satisfiedwith � u ��� u

" 
� . Thenthere is a suboptimalexponentiallystabilizing
DPF-controller for Σ iff conditions(1.) and(4.) belowhold:

(1.) (P XP XP X-CARE) TheCARERSSST SSSU K 4XSXKX
�

A4 P X / P XA / C 41C1 �
SX
� V D X11D11 D X11D12

D X12D11 D X12D12 E γ2I Y / lim
s� H ∞

B4w P X


s 0 A� E 1B �

KX
� 0 SE 1

X

\V D X11

D X12 Y C1 / B4w P X �%� (12.15)

hasa solution

 P X � SX � KX � " 6 
 H �|� 6 
 U � W �]� 6 
 H1 � U � W � s.t. P X O

0, SX11 M 0, SX22 0 SX21SE 1
X11SX12 Q 0 andKX is exponentiallystabilizing

for } A B ~ .
(4.) (P ZP ZP Z-CARE) TheCARERSSSST SSSSU K 4ZSZKZ

�
A4Z P Z / P ZAZ / B2X E 1

22 X E 422 B42 �
SZ
�

D 4ZJDZ / lim
s� H ∞



B4Z � w P Z



s 0 AZ � E 1BZ �

KZ
� 0 SE 1

Z

�� D22X e 1

22

X12X e 1
22
� X E 422 B42 / 
 B4Z � w P Z �%� (12.16)

has a solution

 P Z � SZ � KZ � " 6 
 H ��� 6 
 Y � Z ��� 6 
 Dom



AZ �%� Y � U �

s.t. P Z O 0, SZ11 M 0, SZ22 0 SZ21SE 1
Z11SZ12 Q 0 and KZ is exponentially

stabilizingfor } AZ BZ ~ .
Given the solution


 P X � SX � KX � of (1.), chooseany X

"�c 6 

U � W � s.t.

X 4 J1X
�

SX andX21
�

0. ThenbytheoperatorsAZ � BZ � CZ � DZ appearing

in the P Z-CAREwemeanthefollowing(hereKX
� V KX1

KX2 Y " 6 
 H1 � U � W � ):� AZ BZ

CZ DZ
� � �� A4 / K 4X2



B42 � w C 42 / K 4X2D 422 0 K 4X1

X E 422


B42 � w X E 422 D 422 X E 422 X 412

0 0 I

 !
(12.17)" 6 


Dom


AZ �]� Y � U � H � W � U � ; (12.18)

Dom


AZ � :

� 9 x " H �� AZx

"
H : � 9 x " H 4C > K �� AZx

"
H : $ (12.19)

Moreover, anysolutionsof (1.) or (4.) areunique.
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� h � h 1τ � h 2τ� h 1 � 11 � 12� h 2 � 21 � 22

Σ �
��� ��� τ� � �

Σ �
�H H� �qL �

� �H H pL�
�

u
�

y� yL��H H�
xb0�

xb�b0�
Figure12.1:Thesuboptimalcontroller + :

� (*) 
 � � � � : y &' u

Assume(1.) and (4.). Thenwe can constructall suboptimalexponentially
stabilizingDPF-controllers for Σ asfollows:

ChooseG

"#c 6 

Y � U � s.t. G4 J1G

�
SZ, G21

�
0 and G11 � G22

"yc 6
, and

thensetR :
�

G
V I 0
0 M X11 Y . If D21

�
0, thentheassumptionsof Proposition12.5.19

are satisfied,hencethen Σ h 12 is exponentiallystabilizing for Σ, and all well-
posedexponentiallystabilizing suboptimalcontrollers for Σ are given by the
connection“ Σ   ” of Σ h and Σ � in Figure 12.1, where Σ � is any exponentially
stablerealizationof any � " TICexp



Y� U � s.t. N � N TIC 8 1 (notethat theI/O-map

of controller Σ   is ( ) 
 � � � � ; cf. (12.26)).Moreover, anyexponentiallystabilizing
suboptimalcontroller with internal loop for Σ is equivalentto a well-posedone.

Here � " TIC∞


U � Y � is a map that has a realization(denotedby Σ h "

WPLS


U � Y� H � U � Y � ) with thefollowing generators:

Ah :
�

A / BKI / Bh 2Cz 2 (12.20)

Bh 1 :
� 0 Bz 2X E 422



D 422RE 1

11 R12 / X 412� RE 1
22 0 Bz 1RE 1

22 (12.21)

Bh 2 :
� 0 Bz 2X E 422 D 422



R411R11 � E 1 (12.22)

Ch 1 :
� 0 KI1 0 R412RE 411Cz 2 (12.23)

Ch 2 :
�

RE 411Cz 2 (12.24)

D h :
� � R422 0 R412RE 411

0 RE 411
� � (12.25)

where Bz :
�

BX E 1 andCz :
�

C / DKX.
For general D21

" 6 

U � Y � , the above formulaestill parametrizeall subop-

timal exponentiallystabilizing DPF-controllers for Σ moduloequivalence(see
Definition 7.3.1) exceptthat we haveto add to + the output feedback through0 D21

�
: 0 E, asin Figure7.12(andin Lemma7.3.23),andthat this internal loop

neednotbewell-posed(but thecombinedsystemof Figure7.12is well-posed).

Note that the P Z-CARE is not uniquelydefined(sinceX mayvary slightly);
this is not important,becausecondition(4.) (and P Z) is independentonthechoice
of X (undertheabove restrictions).An analogousformulationis givenin [IOW]
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(seepp. 281 and 308–309of [IOW]); the parametrizationson pp. 136–137of
[Keu] or on p. 297 of [GL] are simpler due to simplifying assumptionson the
generatorsof Σ.

Thecondition� u ��� u

" 
� canbeweakenedsignificantlyif wereplace“if f ” by
“if ” at thebeginningof thetheorem,asoneobservesfrom theproof(seeTheorem
12.3.7(a)for thecorrespondingfrequency-spaceclaim).

We repeatthat all exponentiallystabilizingsuboptimalcontrollersfor
�

are
givenby + � ( ) 
 � � � � 
 � " TICexp



Y� U � is s.t. N � N TIC 8 1� (12.26)

(when D21
�

0; cf. Lemma 7.3.23). As noted below Theorem12.3.7, the
controller + in (12.47)is differentfor differentparameters� .

The maps � and � are the sameas in Theorem12.3.7(c)and Proposition
12.5.19,asoneobservesfrom theproofbelow, henceparts(a)–(g)of thetheorem
applyfor Σ andΣ h .

In particular, � " ULR, since � is given by (12.48) and 
� H � 
� H " 
� .
Analogously, 
+ 2 � 
+ 1

" 
��
 Y� I � and 
+ 2

"¡c
TIC



Y � , where + � 
+ E 1

2 
+ 1 is the
l.c.f. of + parametrizedby (12.47)(here 
+ 4 , 
� H , 
� H and � correspondto Σ with
0 in placeof D21; notethat the actualcontrollerhasthe additionalloop through0 D21).

Remark 12.1.9(Figure12.1) Figure12.1illustratesthemap + :
� ( 
 � � � � . The

combinedclosed-loopconnectionof Σ h andΣ � is a systemhaving ^ 4  4¢4 ` asits I/O

map(seeLemma7.3.2with Σ &' Σ h and 
Σ &' Σ � ). ThesignalspL andqL referto
external inputsandxb0 andxb£b0 to theinitial states.

Thus,this combinedsystemis not a realizationof + in thesenseof Definition
6.1.6;however, thereexistsalsoa realizationof + in thisstrict sense, byTheorem
12.3.5. 3

(Notethattheparametrizationof Figure12.1wasgivenin (theMain) Theorem
5.4of [Keu] too.)

Naturally, any + givenby (12.26)hasinfinitely many realizations(andsodo� 12 and � ), andnot all of them are stabilizing for Σ. (Recall from Definition
7.3.1 that for a realizationof + to be stabilizing for Σ, this realizationmust
be also internally stabilized by the connection.) The term “all controllers”
has traditionally beenusedas above, meaningall (suboptimal[exponentially]
stabilizing) + ’s (with somerealizations),notall realizationsof such + ’s.

Our choiceto usepairs


Jγ � J1 � for the P X-CARE (or (Factor1X)of Theorem

12.3.7)and


J1 � J1 � for P Z-CARE (or (Factor1Z))hasslightly scaledthe rows

andcolumnsof ΣZ comparedto thosein [Keu] or [ZDG] (if γ ¤� 1), but thereis
no essentialdifference(exceptthatwe have no simplifying assumptionssuchas
“D12

�
0
�

D21”). This resultsin theformula P Z
� P Y



γ2I 0¥P X P Y �FE 1 insteadofP Z

� P Y


I 0 γ E 2 P X P Y �GE 1 in Lemma12.6.4.

Proposition 12.1.10(Non-exponentiallystabilizing H∞H∞H∞ 4BP) Theorem 12.1.8
holds even iff we remove the word “exponentially” everywhere from the theo-
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remandreplace(1.) by (1.’), (4.) by (4.’) and“ TICexp” by “ TIC”. Here wehave
referredto thefollowing conditions:

(1.’) (P XP XP X-CARE) Condition(1.) holdsexceptthat on KX weonly require that
KX is P-stabilizingfor Σ, andthat

� 

I 0 � X � E 1 and



I 0 � X � E 1 are r.c.

(4.’) (P ZP ZP Z-CARE) Condition(1.) holdsexceptthatonKZ weonlyrequirethatKZ

is P-stabilizingfor ΣZ :
� � AZ BZ

CZ DZ � , andthat


I 0 � Z � 
 I 0 
� � "¥c TIC



Y � U �

and � Z / 
 I 0 � Z � 
� is stable, where ^w� Z � Z ` is thepair generatedby
KZ.

Moreover, (1.) hasa solutioniff (1.’) hasa solutionand Σ is exponentially
stabilizable. If(f) Σ is exponentiallystabilizable, then(1.) and (1.’) havesame
solutions(if any),andsodo (4.) and(4.’); thus,thenanysuboptimalstabilizing
controller parametrizedbythemodifiedtheoremis exponentiallystabilizingiff Σ �
is exponentiallystable.

Note that the assumptionsof the theorem(by Lemma12.5.9)andformulae
(12.20)–(12.25)do not dependon D21. However, for + to be suboptimaland
stabilizingfor Σ, wemustaddtheoutputfeedbackthrough 0 D21 asin Figure7.12
(with E :

�
D21); thiscombinedconnectionis alwayswell-posed(andstable).See

thecommentsbelow Lemma12.5.17for why ther.c.conditionin (1.’) hasamore
complicatedcounterpartin (4.’).

We concludefrom Proposition12.1.10that if Hypothesis12.5.1is satisfied
with � u ��� u

" 
� , thentheH∞ 4BPcanbesolvedasfollows:

0. Choosesomeinitial estimateγ � 0.

1. If (1.’) doesnothaveasolution,thenthereareno suboptimalcontrollers.

2. Otherwise,chooseX asin (4.’). If (4.’) doesnot have a solution,thenthere
arenosuboptimalcontrollers.

3. Iterate1.–2.for differentvaluesof γ (by using,e.g.,abinarysearch)soasto
find agoodapproximateof theinfimal (optimal)γ (but above it, sothat(1.’)
and(4.’) havesolutions).

4. ChooseG and construct � (and Σ   ) as in Theorem12.1.8 to obtain all
suboptimalcontrollers.

Usuallywe arelooking for anexponentiallystabilizingsolution;if this is the
case,thenwe mustreplace(1.’) by (1.) and(4.’) by (4.) above (seeTheorem
12.1.8). If



A � B� is exponentiallystabilizable,then the two pairsof conditions

becomeequivalent(by, e.g.,Lemma12.5.2(ii)&(i) andTheorem6.7.15(c1)).
Under the alternative, more easily verifiable assumptions(A1) and (A2) of

Theorem12.1.5(or of Theorem12.1.4,or under the assumptionsof Theorem
12.1.11),wecanusethefollowing alternativeprocedure:

0. Choosesomeinitial estimateγ � 0.

1. Therearesuboptimalsolutionsif f (1.)–(3.)of Theorem12.1.5hold.
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2. Iterate1. for differentvaluesof γ (by using,e.g.,abinarysearch)soasto find
a goodapproximateof theinfimal (optimal)γ (but above it, sothat(1.)–(3.)
havesolutions).

3. Set P Z
� P Y



γ2I 0�P X P Y �FE 1 to obtainasolutionof (4.).

4. ChooseG and construct � (and + ) as in Theorem12.1.8 to obtain all
suboptimalcontrollers.

Thus,in this caseit sufficesto studythe P X-CARE andthe P Y-CARE to find
anestimateof infimal γ, but we still needthe P Z-CARE for finding a suboptimal
controller (note that P Z-CARE dependson P X-CARE, whereasP X-CARE andP Y-CARE dependon the original systemΣ and γ only andare thereforemore
suitablefor computations).This latterprocedureis theclassicalone.

For the nonexponentiallystabilizablecasecoveredby the former procedure,
conditionsanalogousto (1.)–(3.)arenecessary, by Lemma12.1.12,but wedonot
know whetherthey aresufficient.

Proof of Theorem 12.1.8and Proposition 12.1.10: (We prove hereboth
Theorem12.1.8andProposition12.1.10atonce.)

(We note that if (1.) holds, then

 P X � J1 � } XKX I 0 X ~q� is an expo-

nentiallystabilizingsolutionof the P X-IARE; cf. Lemmas11.1.7and12.5.12.
Analogously, if also(4.) holds,then


 P Z � J1 �q} GKZ I 0 G ~ � is anexponen-
tially stabilizing solution of the P Z-IARE, as in Proposition12.5.19,as one
observes from II.2 t below. Same“upper triangular” IARE (or “KPYS”) so-
lutions wereusedalsoon pp. 280–281of [IOW] (in thecorrespondingfinite-
dimensionalresult).)

0t We first note that any P-stabilizingsolutionof a CARE is unique,by
Theorem9.8.12(b)&(s1).

Part I: There is a suboptimalstabilizingDPF-controller for Σ iff (1.’) and
(4.’) hold:

I.1 t We only haveto showthat (4BP3)holds iff (1.’) and (4.’) hold: By
Lemma 12.5.3, Hypothesis12.3.1 is satisfied. By Theorem12.3.5(b)(and
Theorem6.6.28),(4BP1) is equivalentto the existenceof a stabilizingDPF-
controller for Σ. By Lemma12.3.10,(4BP1)–(4BP3)of Theorem12.3.7are
equivalent.

I.2 t (Factor1)5 (1.’): This follows from Lemma12.5.12(sincea solution
hasnecessarily¦§�,�¢��� " 
� v ULR v UR, by Lemma12.3.10(a)).

(A detailedverificationthat theconditionon P X-CARE in Lemma12.5.12
is equivalentto (1.’) is given in 6t below. An analogouscommentappliesto
(4.’), (1.) and(4.) too.)

I.3 t Consequencesof (Factor1): If (Factor1)holds,thenHypothesis12.5.13
holds, by Lemma 12.5.12, and ¦1���¨��� " 
� v ULR, as noted above; in
particular, then � 11

"�c
TIC∞



U � , by Proposition6.3.1(c).

I.4 t (4BP3)2 (1.’)&(4.’): Assume(4BP3). By 2t , (1.’) holds. But (Fac-
tor2Z) hasanULR solution,by Lemma12.3.10(a)(andTheorem12.3.7(e1)),
hencealso(4.’)=Lemma12.5.17(ii)holds,by Lemma12.5.17(c2).

I.5 t (1.’)&(4.’) 2 (4BP3): If D21
�

0 and (1.’) and (4.’) hold, so that
the factslisted in 3t hold, thenwe obtain (Factor2)from Lemma12.5.17(a)
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(andTheorem12.3.7(e1)),thus,then(4BP3)andhencealso(4BP1)hold. But
(4BP1) is independentof D21, by Lemma12.5.9,henceso is (4BP3); on the
other hand,(1.’) and (4.’) are also independentof D21, by Lemma12.5.9.
Thus,(1.’) and(4.’) imply (4BP3)regardlessof D21.

I.6 t The CAREs(1.’) and (4.’): Equation(12.17) follows from (12.94),
Proposition6.6.18(d4)and (6.145) (note that the P Z-CARE correspondsto
 P¢� SX � } XKX I 0 X ~ � , whereX is chosenasin (4.’) (i.e.,asin (4.)), by the
lastclaimof Lemma12.5.12;notealsothatweprovetheequivalenceregardless
of thechoiceof X (within theserestrictions)).

By Lemma9.11.5(e),the“lim ” (insteadof w-lim) in (1.’) (or (1.)) and(4.’)
(or (4.)) is equivalentto the solutionbeingUR (sinceΣX andΣZ (if any) are
necessarilyUR). Actually, sinceany spectralfactorizationis necessarilyin 
� ,
henceULR, wecouldaswell write w-lim.

I.7 t ThesetDom


AZ � : By LemmaA.4.6,

Dom


AZ � :

� 9 x " H �� AZx

"
H : $ (12.27)

By Proposition6.6.18(a1),the space“HC” for Σ z equalsthat for Σext (of
(6.132),which wedenoteby

H 4C > K :
��


r 0 A4 � E 1 @H / C 4 @ Z � Y B / K 4 @U � W BsB (12.28)� 9 x0

"
H �� A4 x0 / C 4 @ z0

y0 B / K 4 @ u0
w0 B " H for some



z0 � y0 � u0 � w0 � " Z � Y � U � W :

(12.29)

(for any r � ωA); cf. Definition 6.1.17. Naturally, this is the space“HB” for
Σdz , hencecontainedby the space“HB” for Σ g d . By Proposition6.6.18(a1),
the spaceHBZ (for ΣZ) equals“HB” for Σ g d , andDom



AZ �;v HBZ, hencewe

canreplaceH in (12.27)by HBZ, henceby its supersetH 4C > K (on which B4w is
defined,by theregularity of Σext andProposition6.2.8(a2),sothattheformula
for Dom



AZ � below (12.17)is well defined).

By Proposition6.6.18(d3),equation(12.17)actuallyholdson HBZ � U , but
thevaluesof AZ onHBZ © Dom



AZ � lie outsideH.

Part II: All controllers: Within Part II weassumethat(1.’) and(4.’) hold.
II.1 t By I.3 t , I.5 t and Lemma12.3.10(a),Hypothesis12.5.13holds and

(Factor1X)and(Factor2Z)have solutionswith ¦§�,�¢���ª��«1��¬ " 
� v ULR and� 11

"­c
TIC∞



U � .

II.2 t R
�

Z 4 and ¬ 11

"{c
TIC∞



Y � whenD21

�
0: (Note that G can be

obtainedfrom (11.101).)By (a)2t and(d)1t of theproofof Lemma12.5.17(a),
thesolution¬ of (Factor2Z)obtainedin I.5 t satisfiesZ

� 
X 4 G4 (whereG4 � 
Z).

Since 
X ��V I 0E D X21 M X11 Y ��V I 0
0 M X11 Y , we have R

�
Z 4 , whereR is asin Theorem

12.1.8.SinceZ11
�

G411

"dc 6
, wehave ¬ 11

"®c
TIC∞, by Proposition6.3.1(c).

II.3 t All controllers andtheir well-posednesswhenD21
�

0: Theassump-
tions of Proposition12.5.19aresatisfied,by Part I and II.2 t , hencewe thus
obtaintheparametrizationof all suboptimalstabilizingcontrollers.
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To obtain (12.20)–(12.25),first write out the generatorsof Σ z , (12.102)
(12.103)and(12.104)using(13.57)(seeII.3 t for R

�
Z 4 ), andthenusethese

to obtain(12.20)–(12.25)(recall thatX E 1K
�

KX).
SinceD h 21

�
0,by (12.25),theconditionI 0 � � 21

"¥c
TIC∞



U � in (12.105)

alwaysholds(by Proposition6.3.1(c))),henceall controllersparametrizedby
(12.26)arewell posed.

II.4 t CaseD21 ¤� 0: By Lemma12.5.9,(1.’) and(4.’) areindependentof
D21. Therefore,theaboveshowsthatall suboptimalstabilizingDPF-controllers
for Σ b aregivenby (12.26),whereΣ b is equalto Σ with 0 in placeof D21.

Thus, the claim on D21 at the end of Theorem 12.1.8 follows from
Proposition12.5.19(g)(alternatively, directly from Lemma7.3.23).

Remarkson case D21 ¤� 0: By Lemma 7.3.23, this output feedback
connectionof + and 0 D21 may be non-well-posed(and it correspondsto a
controller with d.c. internal loop, as in the lemma), but when we add the
connectionwith

�
(as in Figure 7.12), all signals in this final connection

becomewell-posed.If I / D21+ "�c TIC∞


Y � , thenthefinal controllerbecomes

well-posed,an alternative formula for it is given by + b �W

I / + D21 � E 1 +

(
� + 
 I / D21+¯� E 1), asnotedbelow Lemma7.2.18.

The factorization(Factor1X) is independentof D21, but the solution ¬ of
(Factor2Z)usedin II.1 t –II.4 t (for theapplicationof Proposition12.5.19)solves
thecondition(Factor2Z)correspondingto Σ b , not thatcorrespondingto Σ, i.e.,
weusetheparametrizationfor thewrong(but equivalent)problemandcorrectit
by theadditionaloutputfeedbackthrough 0 D21 (sincewedonotknow whether
the solutionof (Factor2Z)correspondingto Σ b has ¬ 11 invertible,asrequired
by Proposition12.5.19;moreover, in this casewe do not know whether + is
well-posed).

Part III: Conditions(1.) and(4.) comparedto (1.’) and(4.’):
If any of the equivalent conditions of Lemma 12.5.2 hold, e.g., Σ is

exponentiallystabilizable,thenPartsI–II hold with theprimesremovedif we
requirethecontrollerto beexponentiallystabilizing(anduseTheorem12.3.5(e)
insteadof Theorem12.3.5(b)).We observe from this andPart I that then(1.)
and (1.’) have samesolutions,and so do (4.) and (4.’). Conversely, (1.)
obviously impliesthatΣ (equivalently,



A � B� ) is exponentiallystabilizable.

Moreover, if Σ is exponentiallystabilizable(i.e., ^ � u � u ` is exponen-
tially stabilizing),thentheaboveformulationof all suboptimalstabilizingcon-
trollersequalsthatof all suboptimalexponentiallystabilizingcontrollersmod-
ulo thefactthatΣ � is requiredto beexponentiallystable,asnotedin Proposition
12.5.19(e).(Cf. thecommentsbelow Theorem12.1.8.)

NotealsothatΣ � mustbeoptimizableandestimatablefor theclosed-loop
systemto be exponentiallystable,by, e.g., Theorem6.7.10(d)(viii), Lemma
6.7.11(c)and (twice) Lemma6.7.18; by Theorem6.7.10(d)(viii), this is the
caseif f Σ � is exponentiallystable. 3
Wegivehereanalternativesetof conditionsunderwhich theconditions(1.)–

(3.) arenecessaryandsufficient:
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Theorem 12.1.11(MTICTZ : H∞MTICTZ : H∞MTICTZ : H∞ 4BP 5 5 5 CAREs) Assume that Hypothesis
12.5.1is satisfiedwith � u ��� u �°�� y �L�� y

" 
� (e.g., that Σ is exponentiallystable,� " 
� ,
� 411

�
11 M 0 and

�
22
� 422 M 0) andthat 
� satisfiesHypothesis8.4.8.

Thenthere is a suboptimalexponentiallystabilizingDPF-controller for Σ iff
conditions(1.)–(3.)of Theorem12.1.5hold. If (1.)–(3.)hold, thenall suboptimal
exponentiallystabilizingDPF-controllers for Σ are givenby Theorem12.1.8(in
particular, (1.) and(4.) of Theorem12.1.8hold).

Obviously, this is particularlyusefulfor exponentiallystablesystems.
Proof: (If Σ is exponentially stable and

� " 
� , then we can take^w� u � u ` � 0,
V � y�

y Y � 0 in Hypothesis12.5.1to obtainthat � u
� � � �� y

"
� and � u
�

I
� �� y

" 6 v±
� .)
By Lemma12.5.20andTheorem12.1.8,conditions(1.)–(3.) aresufficient

(andimply (1.)–(4.));by Lemma12.1.12,they arealsonecessary. 3
Thenecessityof (1.)–(3.)canbeshown undermoregeneralconditions:

Lemma 12.1.12( 
� : H∞
� : H∞
� : H∞ 4BP 2 2 2 CAREs) AssumethatHypothesis12.5.1is sat-
isfiedwith � u ��� u �²�� y �L�� y

" 
� .
If there is a suboptimalexponentiallystabilizingDPF-controller for Σ, then

(1.)–(3.)belowhold.
If there is a suboptimalstabilizingDPF-controller for Σ, then(1.’), (2.’) and

(3.) hold.

(1.) (P XP XP X-CARE) Condition(1.) of Theorem12.1.8holds.

(2.) (P YP YP Y-CARE) Thedualof (1.) holds,i.e., theCARERSSSSSSST SSSSSSSU K 4YSYKY
�

AP Y / P YA4 / B2B42 �
SY
�WV D22D X22 D22D X12

D12D X22 D12D X12 E γ2I Y / lim
s� H ∞

V C2w
C1w Y P Y



s 0 A� E 1 ^C 42 C 41 ` �

KY
� 0 SE 1

Y

\V D22

D12 Y B42 / V C2w
C1w Y P Y �%�

(12.30)
hasa solution


 P Y � SY � KY � " 6 
 H �*� 6 
 Y � Z �*� 6 
 H 41 � Y � Z � s.t. P Y O 0,
SY11 M 0, SY22 0 SY21SE 1

Y11SY12 Q 0 andKY is exponentiallystabilizingfor} A4 C 42 C 41 ~ .
(3.) (Coupling condition) ρ


 P X P Y � 8 γ2.

Here “(1.’)” is the condition of Proposition12.1.10and “(2.’)” is its dual
condition(i.e.,equalto (2.) with correspondingmodifications).

However, wedo notknow whethertheconverseclaimshold in general.
Proof: Assumethat thereis a suboptimalexponentiallystabilizingDPF-

controller for Σ (the proof below applies to the latter claim too, mutatis
mutandis).
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By Theorem12.1.8,conditions(1.) and(4.) of Theorem12.1.8hold. Apply
Lemma12.5.6to obtainthat “(1.)” holdsfor Σd too (seep. 740), i.e., that (2.)
holds.

It was noted in I.2 t –I.3t the proof of Theorem12.1.8 that (Factor1) is
satisfiedwith � 11

"³c
TIC∞



U � . We concludefrom Lemma 12.5.18and

Lemma12.6.4(a)that(3.) holds.
Remark— Why the converse is open: For the exponential claim, the

problem is that since we have heregiven up the condition “S
�

D 4 JD” of
Hypothesis8.4.8, we can no longer usepart 3t of Lemma12.5.20to show
thatSZ is asrequiredin (4.), sothatTheorem12.1.8wouldbeapplicable.

For thelatterclaim, theproblemis thatLemma12.6.4(b)doesnotsayany-
thing of the preservation of I/O-stabilization(from P Y-DARE to P Z-DARE),
hencewe would only obtainan internally P-stabilizingsolution,which is not
enoughfor derivationof (4.’) (evenif wewouldassumeHypothesis8.4.8to be
able to establishthe requirementson SZ); in discrete-time,we facethe same
problem(althoughtheretheproblemon SZ disappears,by Lemma12.6.4(c)).3
In fact,in theexponentialcaseit sufficesthatΣ is somewhatsmooth:

Lemma 12.1.13(H∞H∞H∞ 4BP 2 2 2 (1.)–(3.)) Assume that


ΣX � Jγ �´� 
 ΣY � Jγ � "

coerciveCAREover � exp andthat
�

11 and
� d

22 are I -coerciveover � exp.
If there is an exponentiallystabilizingDPF-controller for Σ, then(1.)–(3.) of

Lemma12.1.12hold (with s-lim in placeof lim).

SeeRemark12.1.6for different(equivalent)forms of (1.)–(3.),andRemark
12.1.7for theabovecoercivity conditions.Seetheremarkin theproof of Lemma
12.1.12for why theconverseis open.

Proof: (Notethat if any of (1.)–(6.) of Remark9.9.14holds,thenwe need
not replacelim by s-lim, by Lemma9.11.5(e).)

Weobservefrom Lemma12.5.7thattheassumptionsof Lemma11.2.20are
satisfiedfor ΣX (weneedthecoercivity assumptionon

�
11 tosatisfyHypothesis

11.2.1).Consequently, (1.) is satisfied.By dualarguments(seeLemma12.5.6),
weobtain(2.).

Let µ beanexponentiallystabilizingDPF-controllerfor Σ. By discretiza-
tion (see Theorem 13.4.4(e1)),we observe that ∆Sµ is an exponentially
stabilizing DPF-controllerfor ∆SΣ, henceconditions(1.)–(3.) of Theorem
12.2.1aresatisfied(useTheorem13.4.4(g)for its coercivity conditions(12.32)
and(12.33)),even by sameP X and P Y , by Proposition9.8.7(a)(andunique-
ness,seeTheorem14.1.4(a)).Thus,(3.) holds. 3
Notes
Our result, Theorem12.1.4(and Theorem12.1.8), is of standardform and

extendsandgeneralizesat leastmostnonsingularstate-spacesolutionsto theH∞

4BP. In the finite-dimensionalcase,suchearlier resultsinclude Theorem1 of
[GD88] Theorem3 of [DGKF] Theorem5.1of [GGLD], Theorem8.3.2of [GL],
Theorem16.4of [ZDG] andTheorem10.3.1of [IOW].
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(Notethatmostof theminterchangethesubindicescorrespondingto u andw,
ascomparedto our formulae.As explainedonp. 317,wehaveusedthe“u comes
beforew” practice,which is morepopularin theFICPliterature,SeealsoLemma
12.6.2andtherestof Section12.6for how thenotationof [IOW] correspondsto
thatof ours.)

Theearlyhistoryof theproblemis explainedon p. 328of [IOW], whereit is
saidthattheassumptionsandformulaeof [IOW] aremoregeneralthanany earlier
(nonsingular)ones;thoseassumptionsandformulaeareessentiallythe sameas
ours,exceptthat they assumethat γ

�
1 andD21

�
0. In addition,we alsotreat

non-well-posedcontrollers.
In some of the above results, one only speaksof + stabilizing

�
(cf.

Section12.3),but in themit is assumedthat
�

hasanexponentiallystabilizable
anddetectablerealizationandthatsucha realizationis chosenfor + too, so that
oneendsupwith our setting(seeTheorem7.3.11(c1)).

Theseresultswereextendedto smoothPritchard–Salamonsystemsin Theo-
rem 5.4 of [Keu], by Bert van Keulen. Although our resultsallow for approxi-
mately twice asmuchunboundednessasthe Pritchard–Salamonclassdoes,the
result in [Keu] is not exactly containedin ours: in [Keu], the Riccati equation
“(2.)” is givenon a space¶ embeddedin H(:

�¸·
). Thetwo Riccatiequations

in [Keu]correspondto the“boundedB” caseof theFICP(for Σ andfor its “dual”
Σd). (Notealsothatany exponentiallystable(not necessarilysmooth)Pritchard–
Salamonsystemsatisfies(A1)(V) of Theorem12.1.4,by Theorem6.9.6.)

All resultsmentionedabove alsomake thecoercivity assumptions(A2). The
singular case,where(A2) is replacedby somethingweaker, is treatedin, e.g.,
[Stoorvogel] for thefinite-dimensionalcase;in thatcasetheproofsandsolutions
becomemorecomplicatedthanin thestandardsetting.SeeSection17.3of [ZDG]
or Section5.4.2of [Keu] for adiscussiononhow to circumvent(A2) by using“ε-
perturbations”of thesystem(thatsatisfy(A2)) andthenletting ε ' 0/ .

The noteson pp. 446–447of [ZDG] describethe historical development
of solutionsto the finite-dimensionalH∞ 4BP throughseveral computationally
difficult formulationsto the simple “(1.)–(3.)” formulationof [GD88] and this
section.Also thefirst few paragraphsof thenotesonp. 628arerelevantto theH∞

4BP.
Outsidethis monograph,we do not know any researchon nonexponentially

stabilizingsuboptimalcontrollers(cf. Proposition12.1.10andLemma12.1.12).
In Section12.3,weshallsolve thefrequency-domain4BP(theI/O map4BP),

seeTheorems12.3.6and 12.3.7. (This is closeto the Youla parameterization
approachof [Doyle84] and[Francis87].)We obtainthat the4BPis equivalentto
two nestedspectralfactorizations“(Factor1X)”and“(Factor2Z)”(equivalently, to
two nested



J1 � J1 � -losslesscoprimefactorizations).

The CAREs (1.) and (4.) of Theorem12.1.8 correspondto thesetwo
factorizations.TheCARE (2.) is thedualof (1.) (andthe4BPis invariantunder
duality; seealsoLemma12.5.6).

In Lemma12.5.18,we shall show that the P Z-CARE (4.) is equivalent to
(2.)&(3.), thuscompletingtheproof that(1.)–(3.)areequivalentto thesolvability
of the4BP. Sinceadirectcontinuous-timeproofseemsalmostimpossible(unless,
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e.g.,theplantΣ hasboundedgenerators),wehavereducedtheproofto thediscrete
time,wherethestandardcomputationscanbeextendedto theinfinite-dimensional
case(seeLemma12.6.4).

As in other chapters,hereand in Section12.5, we encounterthe fact that
the equivalencebetweenthe CAREsandthe factorizationsrequirecertainregu-
larity assumptions,andso doesalso the equivalencebetweenthe factorizations
and the J-coercivity propertiesconnectedto the solvability of the 4BP (cf. Ex-
ample11.3.7); this is why most of our resultshave somekind of 
� regularity
assumption.

In discretetime,wehavenosuchproblems(sinceticexp
� 
� is avalid choice,

by Theorem14.3.2);seeTheorem12.2.1.
Theparametrization(12.26)of all suboptimalcontrollerswill beobtainedin

the frequency-domaintheory(seeTheorem12.3.7),by reducingthe problemto
a frequency-domainFICP (seeTheorem12.3.7(c)andProposition12.5.19). To
getthis parametrizationsatisfactory, we musthavea realizationof theI/O map �
(e.g.,theonegivenby (12.20)–(12.25));this will bedonein Proposition12.5.19,
simply by following thestepsguidedby (12.49)–(12.50).

We also note that the solution in Theorem12.1.8 is not symmetric; by
replacingΣ by Σd (seep. 740) in the proofs,onewould obtain(2.) in placeof
(1.) anda fourth Riccatiequation(“(5.)”) in placeof (4.).
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12.2 The discrete-timeH∞ problem (H∞ 4bp)

If youonlyhavea hammer, youtendto seeeveryproblemasa nail.

— AbrahamMaslow (1908–1970)

As mentionedabove, we assumethat the discrete-timeform of Standing
Hypothesis12.1.1holdsi.e.,weconsiderthesystemRST SU xnH 1

�
Axn / B1un / B2wn �

zn
�

C1xn / D11un / D12wn �
yn
�

C2xn / D21un / D22wn



n

"
N � (12.31)

with initial state x0

"
H, disturbanceinput w

"º¹
2 
 N;W � , control input u

"¹
2 
 N;U � , objectiveoutputz

"»¹
2 
 N;Z � andmeasurementoutputy

"¼¹
2 
 N;Y � (the

controllerinput); here ^ A B
C D ` " 6 
 H � U � W� H � Z � Y � arethegeneratorsof Σ

(seeLemma13.3.3).(As notedin Lemma14.3.5,we canhave, e.g., 
�¸� ¹ 1H I or
�½� ticexp.)
We now presentthe discrete-timecounterpartof the theoryof Section12.1,

i.e., we try to find a controller + : y &' u (possiblywith internal loop; asin the
continuous-timecase,internal loop is unnecessaryat leastwhenD21

�
0) s.t. it

stabilizestheabove systemexponentiallyandmakesthenorm N w &' z NG¾ k ) 2 ? less
thanthegivennumberγ � 0. (Seetheexplanationon p. 36 for theH∞ four-block
problem.)Wealsorecordthediscrete-timeformsof all otherresultsin thischapter
(Theorem12.2.2).

Wefirst presentthediscrete-timecounterpartof Theorem12.1.4,andthenwe
briefly list theotherresultsof Section12.1thatcanbeconvertedto discretetime
(themostimportantof which is theparametrizationof all suboptimalcontrollers,
Theorem12.1.8).

Theorem 12.2.1(H∞H∞H∞ 4BP 5 5 5 DAREs) Assumethat there is ε � 0 s.t.

z 0 A� x0

�
B1u0

� 2 N C1x0 / D11u0 N Z O ε

 N x0 N H / N u0 N U � and (12.32)


z 0 A4 � x0
�

C 42y0
� 2 N B42x0 / D 422y0 N W O ε


 N x0 N H / N y0 N Y � (12.33)

for all x0

"
H � u0

"
U � y0

"
Y� z

"
∂D. (Alternatively, we can assumethat

Hypothesis12.5.1is satisfied.)
Thenthere is a suboptimalexponentiallystabilizingDPF-controller for Σ iff

(1.)–(3.)hold:

(1.) (P XP XP X-DARE) theDARERSSST SSSU P X
�

A4 P XA / C 41C1 0 K 4XSXKX �
SX
�_V D X11D11 D X11D12

D X12D11 D X12D12 E γ2I Y / B4 P XB �
KX
� 0 SE 1

X

\V D X11

D X12 Y C1 / B4 P XA�´� (12.34)

hasa solution

 P X � SX � KX � " 6 
 H �Z� 6 
 U � W �Z� 6 
 H � U � W � s.t. P X O 0,

SX11 M 0, SX22 0 SX21SE 1
X11SX12 Q 0 andρ



A / BKX � 8 1;
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(2.) (P YP YP Y-DARE) theDARERSSST SSSU P Y
�

AP YA4 / B2B42 0 K 4YSYKY �
SY
� V D22D X22 D22D X12

D12D X22 D22D X22 E γ2I Y / V C2
C1 Y P Y ^C 42 C 41 ` �

KY
� 0 SE 1

Y

 V D22

D12 Y B42 / V C2
C1 Y P YA4 �%� (12.35)

hasa solution

 P Y � SY � KY � " 6 
 H ��� 6 
 Y � Z ��� 6 
 H � Y � Z � s.t. P Y O 0,

SY11 M 0, SY22 0 SY21SE 1
Y11SY12 Q 0 andρ



A4 / ^C 42 C 41 ` KY � 8 1;

(3.) (Coupling condition) ρ

 P X P Y � 8 γ2.

If (1.)–(3.) hold, thenΣ h 12 is a suboptimalDPF-controller for Σ (thecentral
controller), and all suboptimalDPF-controllers are parametrizedin Theorem
12.1.8(seeFigure12.1).

Notethat (12.34)is theDARE for ΣX andJγ (exactly asin Theorem11.5.1),
and(12.35)is theDARE for ΣY andJγ. Seealsotheremarksin Section12.1.

Proof: (We shall againrefer to continuous-timeresults,therebymeaning
their discrete-timeforms;cf. Theorem13.3.13andTheorem12.2.2.)

Set 
� :
�

ticexp (recall from Lemma14.3.5 that ticexp satisfiesStanding
Hypothesis12.0.1).

1t Necessityof (1.)–(3.): Necessityfollows from, e.g., Lemma12.1.13
(recall that “

"
coerciveCARE” is redundantin discretetime, asnotedbelow

Remark9.9.14).
2t Sufficiencyunder Hypothesis12.5.1: Even thoughwe would assume

no more than StandingHypothesis12.1.1, we would obtain from Lemma
12.6.4(b)&(c),thatconditions(1.) and(4.) hold if f (1.)–(3.)hold.

Consequently, under(1.)–(3.) andHypothesis12.5.1,we obtainthe exis-
tenceof anexponentiallystabilizingsuboptimalDPF-controllerfrom Theorem
12.1.8.

3t Sufficiencyunderassumptions(12.32)–(12.33):Assume(1.)–(3.) and
(12.32)–(12.33).ThenHypothesis12.5.1is satisfied(evenwith “exponentially
jointly” in placeof “jointly”) by Lemmas12.6.7and12.6.6.Consequently, we
canapply2t .

4t Remarks:As notedin 2t , (1.) and(4.) hold if f (1.)–(3.)hold. However,
theequivalenceto theexistenceof anexponentiallystabilizingDPF-controller
requiresfurtherconditions(e.g.,if B

�
0
�

D, thennecessarilySX
�

0, sothat
(1.) cannothold),suchastheonesusedin 2t or 3t .

Note from Proposition 15.2.2(c) that (12.32) and (12.33) say that
r� A B1
C1 D11 � � I � and


¿� AX C X2
BX2 D X22 � � I � are I -coercive over � exp. as one can ver-

ify from theproof below, evenweakerassumptionswouldsuffice. 3
Practicallyall our H∞ 4BPresultsholdalsoin theirdiscrete-timeforms:

Theorem 12.2.2(Discreteform of H∞H∞H∞ 4BPresults) The following resultshold
alsoin their discrete-timeforms(i.e., afterthechangeslistedin Theorem13.3.13):
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Lemmas12.1.3 and 12.1.12,Theorems12.1.11and 12.1.8, and everything in
Sections12.3,12.4and12.5.

Moreover, in theexponentialcaseof Lemma12.1.12also theconverseholds
(this is Theorem12.2.1with thealternativeassumption).

The P Z-DAREmeanstheDAREfor ΣZ
�

(12.123)andJ1, hencethecondition
(4.) cannowbewrittenas

(4.) (P ZP ZP Z-DARE) TheDARE(see(12.94))RSSST SSSU K 4ZSZKZ
�

A4Z P ZAZ 0�P Z / B2X E 1
22 X E 422 B42 �

SZ
�

D 4ZJDZ / B4Z P ZBZ �
KZ
� 0 SE 1

Z

�� D22X e 1

22

X12X e 1
22
� X E 422 B42 / B4Z P ZAZ �%� (12.36)

hasa solution

 P Z � SZ � KZ � " 6 
 H �]� 6 
 Y � Z �]� 6 
 H � Y � U � s.t. P Z O 0,

SZ11 M 0, SZ22 0 SZ21SE 1
Z11SZ12 Q 0 andρ



AZ / BZKZ � 8 1.

As noted aroundExample14.2.9, we almost never have “S
�

D 4 JD” in
discrete time (thus, in practice we only meet the DARE equivalent of the
“weakest” of theCAREsin Remark12.1.6,andTheorem12.1.11becomesrather
unnecessary).

Seethe remarksbelow Lemma12.6.4for the threeDAREs; in particular, X
mustbechosenasin Lemma12.6.1(equivalently, asin Theorem12.1.8).

Proof of Theorem 12.2.2: Remark: Recall that thesechangesinclude
CARE&' DARE, i.e.,A44 P 4 / P 4 A4 &' A44 P 4 A4 0�P 4 etc.,asabove.

The proof: This follows roughly by applying (13.63) also to the proofs
(recall from Lemma 14.3.5 that 
� :

�
ticexp satisfiesStandingHypothesis

12.0.1).
Alternatively, onecoulduseLemma12.6.7,Lemma12.6.6,Lemma13.1.7,

Lemma6.6.11and Lemma13.3.12to make the proof slightly shorther(and
more“discrete-timeself-contained”). 3
Notes
For finite-dimensionalsystems,thediscrete-timeH∞ 4BPis morecomplicated

than the continuous-timeH∞ 4BP — the sameholds for infinite-dimensional
systemsif we requirethe input and output operatorsto be bounded— but in
generalthecontinuous-timesettingbecomesvery complicated.This is why part
of theproof of our continuous-timeresults(in particular, theequivalenceof (1.)–
(3.) and(1.)&(4.)) hasbeenreducedto discretetime (in the last two sectionsof
this chapter).

Theorem12.2.1 extends the classicalnonsingularresults to the infinite-
dimensionalcase.Theorem10.12.1of [IOW] is possiblythemostgeneralof all
the nonsingularfinite-dimensionalresults;it is essentiallyTheorem12.2.1(and
Theorem12.1.8)with theassumptionsthat γ

�
1 andD21

�
0. SectionB.4.2of

[GL] containsa resultcloseto (the discrete-timeform of) Theorem12.1.8. See
alsothenotesonp. 706.Thehistoryof thesolutionsfor thediscrete-timeH∞ 4BP
is explainedon p. 501of [GL].
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The nonsingularfinite-dimensionalcase(where (12.32)–(12.33)have been
replacedby weaker assumptions)hasbeentreatedin [Stoorvogel].
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12.3 The fr equency-space(I/O) H∞ 4BP

Fromacertainpointonward thereis nolongeranyturningback. That
is thepoint thatmustbereached.

— FranzKafka (1883–1924)

In this section, we solve the frequency-domain(or I/O) H∞ Four-Block
Problem(I/O H∞ 4BP). Thismeansthat,givenaplant

�
:
@ u
w B°&' @ z

y B andγ � 0, we
determinewhetherthereis aDPF-controller+ : y &' u for

�
thatmakesthenormN w &' z N � NÀ( ) 
 � �,+.�rN lessthanγ.

In Theorem12.3.6, we extend to MTICTZ (and beyond) the fact that this
problem has a solution if f certain two nestedlosslesscoprime factorizations
exist (for rational mapsthis was establishedin [Green]), and we parameterize
all solutions in terms of these factorizations. The exact conditions on the
factorizationsdependon whetherwe require + to be well-posed(i.e., without
internalloop) or not. In Theorem12.3.7(a)&(d),thesufficiency partof theabove
equivalenceis extendedto generalWPLSs(we also extend the necessitypart
underthe assumptionthat certainmapsadmit spectralfactorization). Theorem
12.3.5connectsthesefrequency domainsolutionsto thestate-spaceproblem.

Firstwe list thestandardI/O H∞ 4BPassumptionsanddefinetheproblem.

StandingHypothesis12.3.1(I/O 4BPassumptions) Throughout this section

andSection12.4,weassumethat
� � V � 11 � 12� 21 � 22 Y " TIC∞



U � W� Z � Y � , thatγ � 0,

andthat
�

hasa d.c.f.
� � � u � u E 1 � �� y

E 1 �� y of theform� � � � u11 � u12� u21 � u22
� � � u11 � u12

0 I
� E 1 �ÂÁ I �� y12

0 �� y22Ã E 1 Á �� y11 �� y 12�� y21 �� y 22Ã (12.37)

s.t. � u21 and � u11 are r.c. and �� y21 and �� y 22 are l.c. We also make the
nonsingularityassumptions� u 411� u11 M 0 � �� y 22 �� y

4
22 M 0 $ (12.38)

By Proposition7.3.14and Lemma7.3.16,any d.c.f. of
�

of form (12.37)
satisfiesalsotherestof theabovehypothesis(whenthehypothesisholds).

Obviously, thehypothesisis a generalizationof theassumptionsof Theorem
4.4of [Green]andof thoseof Theorem5.6of [CG97]. Therefore,Theorem12.3.6
generalizesthose(frequency-domain)results.Thed.c.f.assumptionroughlysays
that

�
canbestabilizedthroughy andu, and(12.38)is thestandardnonsingularity

assumption.
The resultsof this sectionwill also be usedin the proof of the resultsof

Section12.1; indeed,underassumptions(A1) and(A2) of Theorem12.1.5(or
(A1) and(A2) of Theorem12.1.4),the existenceof an exponentiallystabilizing
controllerfor Σ (alternatively, conditions(1.)–(3.)) impliestheabovehypothesis,
asnotedin theproofof thetheorem.Thus,theresultsof thissectionalsoapplyto
any classical(nonsingular)state-spaceH∞ 4BPs.
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The DPF-stabilizingcontrollersfor
�

are Youla parametrizedin Corollary
7.3.20,in which themap ( ) 
 � �,+.� : w &' z wasdefined;we repeatthatdefinition
here:

Lemma 12.3.2(( ) 
 � �,+-�( ) 
 � �,+-�( ) 
 � �,+-� ) Let + DPF-stabilize
�

(with internal loop). Then+ is
a mapwith d.c.internal loopand + � + 1 + E 1

2
� 
+ E 1

2 
+ 1, where + 1 �,+ 2 � 
+ 1 � 
+ 2

"
TIC, �� y22+ 2 0®�� y 21+ 1

�
I and 
+ 2 � u11 0 
+ 1 � u21

�
I .

Thecorrespondingclosed-loopw &' zmapis givenby(*) 
 � ��+-� :
� � u11Ä / � u12

� �� y12 / Ä �� y 22 � (12.39)

where Ä :
� 
+ 1 � u22 0 
+ 2 � u12, Ä :

� 
� 11 + 1 0 
� 12 + 2. 3
For well-posed+ , wehave ( ) 
 � �,+-� :

� �
12 / � 11 + 
 I 0 � 21 +1� � 22, by (7.65).

(Note that, in the literature,the latter subindicesareoften interchanged,i.e., w
comesbeforeu.) As notedbelow Corollary7.3.20,themap ( ) 
 � �,+.� dependson�

and + only.
Weremindthereaderthat,in thischapter, weoftendrop“DPF-” andweallow

the(DPF-)controllersto benon-well-posed(i.e., to haveaninternalloop).
Werepeatherethedefinitionof asolutionof theI/O H∞ 4BP:

Definition 12.3.3(I/O H∞ 4BP) A map + (with internal loop) is a suboptimal
stabilizingDPF-controller(for

�
) if + DPF-stabilizes

�
and NÀ( ) 
 � �,+-�qN 8 γ.

A solutionof theI/O (H∞) 4BP(for
�

) meansa suboptimalstabilizingDPF-
controller for

�
.

Recallfrom Section7.2, thatany well-posed(i.e., TIC∞


Y� U � ) mapis a map

with internal loop, hencethe above definition coversall well-posedcontrollers
too. In theresultsweshallalsospecifywhenthereexistsa well-posedsolution.

Thepurposeof this suboptimalproblemis that its solutioncanbeusedfor a
binarysearchoverγ’s to find anestimateof theoptimalγ andan“almostoptimal”+ .

Thesolutionof the4BPis interplaybetweentheoriginalproblemandits dual,
hencewerecordthefollowing (recallthat « d :

�
R« 4 R):

Lemma 12.3.4(Dual problem) Themap
�

d :
�WV � d

22
� d

12� d
21
� d

11 Y alsosatisfiesStanding

Hypothesis12.3.1.Moreover, + is suboptimalfor
�

iff + d is suboptimalfor
�

d.3
(This follows from Proposition7.3.4(d).
Next we notehow asolutionof thefrequency-domainproblemof this section

leadsto asolutionof thecorrespondingstate-spaceproblem.
If Σ and 
Σ are realizationsof

�
and + , respectively (if + is consideredas

a map with internal loop, then 
Σ may be any realizationof a representative of+ ), then,obviously, 
Σ I/O-DPF-stabilizesΣ if f + DPF-stabilizes
�

. If Σ is SOS-
stabilizable,then 
Σ canbe chosento be SOS-DPF-stabilizing,i.e., suchthat the
resultingclosed-loopsystemis SOS-stable;similar claimshold alsofor stronger
stabilizabilitypropertiesof Σ:
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Theorem 12.3.5(I/O 4BP 2 2 2 4BP) Let + bea stabilizingDPF-controller for
�

(with internal loop). Let Σ be a realizationof
�

. Givena realization 
Σ or + ,
theresultingclosed-loopconnectionsystemwill bedenotedby Σo

I (see(7.60)and
(6.125)for Σo

I ; cf. Figure7.11).
ThenTheorem7.2.3applies,in particular, thefollowingholds:

(a) If Σ is SOS-stabilizable, then 
Σ canbechosens.t.Σo
I

"
SOS.

(b) If Σ is [strongly] r.c.-stabilizable, then 
Σ canbechosens.t.Σo
I is [strongly]

stable.

(c) If Σ is stabilizableand[strongly] detectable, then 
Σ canbechosens.t.Σo
I is

[strongly] stable.

(d)
�

and + havesuch realizationsthat their closed-loopconnectionsystemΣo
I

becomesstronglystable.

(e) If Σ21 is exponentiallyjointly stabilizableand detectable, then + DPF-
stabilizes

�
exponentiallywith internal loop iff it has a realization that

stabilizesΣ exponentiallywith an internal loop.

Recallfrom Theorem6.6.28that
�

hasa stronglyjointly r.c.-stabilizableand
l.c.-detectablerealization,becauseit hasa d.c.f.,by StandingHypothesis12.3.1.
Moreover, onecanchoosetherealizationsothatit satisfiesalsoHypothesis12.5.1,
by Lemma12.5.23.

Proof: (a)–(d)Because+ hasad.c.f.,by Corollary7.3.20,+ hasastrongly
jointly r.c.-stabilizableandl.c.-detectablerealization
Σ, by Theorem6.6.28(if+ is a well-posedcontroller; in the general(non-well-posed)casewe may
take 
Σ to be a strongly stablerealization(as in Definition 6.1.6) of a stable
representativeof + (cf. Definition7.2.11)).

By Theorem7.2.3, 
Σ stabilizesΣ asin (a)–(d)(for (d) we usethefact that,
by Theorem6.6.28,Σ canbechosento beasin (b)).

(e) This is containedin Lemma7.3.6(b1)(even without any standingas-
sumptions). 3
MichaelGreenshowed in [Green](Theorem4.4) that the frequency-domain

H∞ 4BP has a solution if f certain two nestedspectralfactorizationsexist (in
the rationalfinite-dimensionalcase).This resultwasextendedto MTICL1

exp with
dimU � W � Y � Z 8 ∞ by GreenandRuthCurtain[CG97] (Theorem5.6). The
following (see(c)) is a directgeneralizationof theseresults:

Theorem 12.3.6( 
� : H∞
� : H∞
� : H∞ 4BP(I/O)) Assumethat � u ��� u

" 
� . Thenconditions
(4BP1
� )–(4BP3
� ) areequivalent:

(4BP1
� ) The I/O 4BP has a well-posedsolution “in 
� ”; i.e., there are
+ 2

" 
��
 U �ÆÅ c TIC∞ and 
+ 1

" 
��
 Y� U � s.t. 
+ E 1
2

+ 1 (DPF-)stabilizes

�
and

makes ( ) 
 � ��+-� 8 γ.

(4BP2
� ) (Factor1
� ) holds,andthere is a solution 
+ 1 � 
+ 2

" 
� to theASPV 
Ä I Y � V 
+ 1 
+ 2 Y � � 22 0�� 210Ç� 12 � 11
� for some
Ä " TIC with N 
Ä N 8 1

(12.40)
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s.t. 
+ 2

"­c
TIC∞



U � .

(4BP3
� ) (Factor1
� ) and(Factor2
� ) hold.

Herewereferto thefollowing:

(Factor1
� ) There is a r.c.f.
� � ����E 1 s.t. K� 11


 / ∞ �%�ÈK� 22

 / ∞ � "­c 6 .� � 11 � 12� 21 � 22

� " TIC


U � W� Z � W � is



Jγ � J1 � -lossless. (12.41)

(Factor2
� ) Themap
� H :

� ^ÊÉ 21 É 22
I 0 ` ^�Ë 11 Ë 12

0 I ` E 1

"
TIC∞



U � W� Y � U � hasa

l.c.f.
� H � 
� E 1H 
� H s.t. Ì d is



J1 � J1 � -losslessand K
� H 21


 / ∞ �%� K
� H 22

 / ∞ � "c 6 


U � , where Ì :
�ÍÁ 
� H 12 
� H 12
� H 22 
� H 22 Ã " TIC



W � U � Y � U �%$ (12.42)

(a) Any r.c.f. of
�

or l.c.f. of
� H is in 
� . If (Factor1
� ) and (Factor2
� ) hold,

then ���Î�ª� 
� H � 
� H " 
� , and all well-posedsuboptimalDPF-stabilizing
controllersaregivenby+ � 
+ E 1

2

+ 1 � V 
+ 1 
+ 2 Y :

� ^ � I ` Á 
� H 11 
� H 11
� H 21 
� H 21 Ã � � " TIC


Y� U �%�ÏN � N 8 1

(12.43)
with the additional condition that 
+ 2

"½c
TIC∞



U � (e.g., take � " 
� ,K� 
 / ∞ � � 0).

Wehave 
+ 1 � 
+ 2

" 
� iff � " 
� .

(b) If �� y �D�� y

" 
� , then (4BP1
� ) holds iff there is a well-posedsolution+ � + 1 + E 1
2 s.t. + 1 ��+ 2

" 
� .

(c) Conditions“ K� 22

 / ∞ �%� K
� H 22


 / ∞ � "dc 6 
 U � ” areredundantif dimU 8 ∞.

(d) If D21
�

0, then (4BP1
� ) is equivalentto (4BP1), i.e., if there is any
suboptimalstabilizing DPF-controller for

�
, then there is a well-posed

suboptimalstabilizingDPF-controller for
�

“in 
� ”. 3
(Thiswill beprovedin Lemma12.4.16.)
By 
��
 U �FE 1 
��
 Y� U � we meanmapsof form 
+ E 1

2

+ 1 s.t. 
+ 1

" 
��
 Y� U � , 
+ 2

"
��
 U � and 
+ 2

"­c
TIC∞.

SeeDefinition 6.4.4 for losslessfactorizations.Note that we could replace
“


J1 � J1 � -lossless” by “frequency-domain



J1 � J1 � -lossless” in (Factor1
� ) and

(Factor2
� ), by Corollary2.5.5.

The factorization
� H :

� ^ É 21 É 22
I 0 ` ^ Ë 11 Ë 12

0 I ` E 1
is a r.c.f. when (Factor1
� )

holds,by Remark12.4.5.
TheaboveASP(analyticsystemproblem)formulationsaredueto [Green].
Aboveweassumedthat � u ��� u

" 
� . In thegeneralcase,wecannotguarantee
thesufficient factorizationconditionsto benecessary, andtheconditionsbecome
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slightly morecomplicatedunlessweassumesomeregularity. Thisis statedbelow;
wealsogiveweaker sufficientconditionsfor theequivalence.

Theorem 12.3.7(I/O H∞H∞H∞ 4BP) Weconsiderthefollowingconditions:

(4BP1) The I/O 4BP has a solution, i.e., some + stabilizes
�

and makes( ) 
 � �,+.� 8 γ.

(4BP2)(Factor1)holds,andthere is a solution 
+ 1 � 
+ 2

"
TIC to theASPV 
Ä I Y �_V 
+ 1 
+ 2 Y � � 22 0§� 210;� 12 � 11

� for some
Ä " TIC with N 
Ä N 8 1 $
(12.44)

(4BP3)(Factor1)and(Factor2)hold.

(Factor1)There is a r.c.f.
� � �Ð�{E 1 s.t. � 22

"­c
TIC∞



W � and(12.41)holds.

(Factor1X)There is ¦ "dc TIC


U � W � , s.t. ¦ 4 J1 ¦ � ^ É u11 É u12

0 I ` 4 Jγ ^ É u11 É u12
0 I `

and ¦ 11

"�c
TIC



U � .

(Factor2)Themap
� H :

� ^ É 21 É 22
I 0 ` ^ Ë 11 Ë 12

0 I ` E 1
with d.c.internal loopcanbe

written as
� H � 
� E 1H 
� H (cf. Remark12.4.5)sothat Ì d is



J1 � J1 � -lossless

and Ì 22

"�c
TIC∞



U � , whereÌ :
�ÍÁ 
� H 12 
� H 12
� H 22 
� H 22 Ã " TIC



W � U � Y � U �%$ (12.45)

(Factor2Z)There is ¬ "Ñc TIC


Y � U � s.t. « J1 « 4 � ¬ J1¬ 4 , and


 ¬§E 1«�� 22

"c
TIC, where « :

� � � 22 0�� 210;� 12 � 11
� " TIC



W � U � Y � U �%$ (12.46)

(Notethatwedefine(Factor2)only if (Factor1)holds.)Thefollowingholds:

(a) We have (4BP3)2 (4BP2)2 (4BP1). If

 ^ É u11 É u12

0 I ` � Jγ � " SpF,
then (4BP2)5 (4BP1). If (Factor1) holds and


 « d � J1 � " SpF, then
(4BP3)5 (4BP2)5 (4BP1).

(b) Assume(Factor1).Then(4BP1)5 (4BP2).

If 
+ 1 � 
+ 2 satisfy(4BP2), thena solutionof the I/O 4BP is givenby + �
+ E 1
2

+ 1 (which is obviouslya l.c.f.). Conversely, anysolution + of (4BP1)is

of form + � 
+ E 1
2 
+ 1, where


 
+ 1 � 
+ 2 � solves(4BP2).

(c) If (Factor1) and (Factor2) hold, thenall suboptimalDPF-controllers (all
solutionsto theI/O 4BP)aregivenby thel.c.f.+ � 
+ E 1

2

+ 1 � V 
+ 1 
+ 2 Y :

� ^ � I ` Á 
� H 11 
� H 11
� H 21 
� H 21 Ã � � " TIC


Y� U �%�ÏN � N 8 1

(12.47)
(by N � N;Ò 1 wegetall + ’s s.t. NÀ( ) 
 � �,+-�rN;Ò γ); thewell-posedsolutionsare
parametrizedby(12.47)with theadditionalconditionthat 
+ 2

"�c
TIC∞



U � .
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If 
� H 21

"Óc
TIC∞



U � (cf. (d)), then (12.47) can be written as + �( ) 
 � � � � :

� � 12 / � 11 � 
 I 0 � 21 � �GE 1 � 22

"
TIC∞



Y� U � (for same� ’s s.t.
+ 2

"Ñc
TIC∞



U � ; this parametrizesthe well-posedsuboptimalstabilizing

controllers for
�

), where� :
� Á 
� H 11 I
� H 21 0Ã E 1 Á 0 
� H 11

I 
� H 21 Ã " TIC∞


U � Y �%$ (12.48)

(d) Assumethat (Factor1) and (Factor2Z)are satisfiedwith ¬ " ULR. Then
(Factor2)hasa solutionhaving 
� H 21

"�c
TIC∞



U � iff there is a well-posed

solution + � 
+ E 1
2

+ 1 of theI/O 4BPs.t. 
+ 1 � 
+ 2

"
TIC Å ULR.

(e1)Wehave(Factor1)5 (Factor1X),and(Factor2)5 (Factor2Z).

(e2) Thesolutionsof (Factor1) and (Factor1X)correspond1-1 to each other
throughformulae� � � u ¦ E 1 �»� � � u ¦ E 1; ¦ � � E 1 � u; ^ É u11 É u12

0 I ` ¦ E 1 � V É 11 É 12Ë 21 Ë 22 Y $
(12.49)

The solutionsof (Factor2) and (Factor2Z) correspond1-1 to each other
throughformulae
� H � ¬ E 1 � 0 � 22

I 0;� 12
� � 
� H � ¬ E 1 � I 0§� 21

0 � 11
� ; ¬ E 1 � Á 
� H 11 
� H 11
� H 21 
� H 21 Ã

(12.50)

(henceÌ :
�WV 
� H 4 2 
� H 4 2 Y � ¬§E 1« ). 3

(Thiswill beprovedin Lemma12.4.14.)
The well-posednessand independenceof the above conditions,as well as

severaladditionalfactsarepresentedin thelemmasbelow.
Note that in ^�É 21 É 22

I 0 ` " TIC


U � W� Y � U � in (Factor2)doesnot have its

identity operatoron thediagonal.Thischoice(ananalogouswasdonein [Green]
and[CG97]) wasdoneto avoid having to interchangethe rows of «Ô��¬¯�ÕÌ etc.,
which wouldendupwith Ì J1 Ì 4 � ^ E I 0

0 I ` .
Obviously, thecontroller + in (12.47)is differentfor differentparameters� .

Notethatthisparametrizesall well-posedsolutionsone-to-oneaswell asall non-
well-posedsolutionsone-to-onemoduloequivalence(seeDefinition7.2.11).

However, thesolutions
V 
+ 1 
+ 2 Y of (12.44)areusuallydifferentfrom those

of (12.47)(althoughbothparametrizeall solutions+ of theI/O 4BP, by Lemma
12.4.3(c)).

In [Green],thesignatureoperator“S
�

Jγ” wasusedin (Factor1)and(Factor2)
insteadof this simplestchoice“S

�
J1” (this correspondsto the



Jγ � Jγ � -lossless

r.c.f.’s usedin [Green]and[CG97] insteadof our


J4 � J1 � -losslessr.c.f.’s). Their

choice would introduce several additional γ’s in the proofs, and the second
columnsof certainmapswould have to be multiplied by γ Ö 1, but there is no
essentialdifference.Seealsothecorrespondingremarkbelow Theorem12.1.8.
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By Theorem7.3.19, the standardassumptions(see StandingHypothesis
12.3.1)imply thatany stabilizingDPF-controllerof theplant

�
hasad.c.internal

loop (henceit hasad.c.f. if it is well-posed).
Thoughweuseinternallooptechniquesto handlethetemporaryplant

� H , the
proofscould be written in the well-posedsensewhenever

� H is well-posed,in
particular, for the 
� casetreatedin Theorem12.3.6.We would mainly just have
to referto Sections7.1and6.4 insteadof Section7.2 (thesamechangewould be
neededin Section7.3 too).

Lemma 12.3.8((4BP1)–(4BP3)are independenton � u ��� u � �� y � �� y )
Conditions (Factor1)–(Factor2Z) are independentof the preliminary factor-

izations � u � u E 1 and �� y
E 1 �� y (of

�
) satisfyingStandingHypothesis12.3.1,

as well as of factors �×���¡��¦ (if any) satisfying(Factor1) or (Factor1X)and of
factors 
� H � 
� H �,¬ (if any)satisfying(Factor2[Z]) (i.e., they dependon

�
only).

Moreover, thesetsof allowable

 �×���y� ’s, ¦ ’s, ¬ ’sand + ’s in aboveconditions

as well as the map «�4 J1 « are independentof factors � u �Î� u �D�� y �Ø�� y . The

solutions 
+ 1 � 
+ 2 of (4BP2)are independentin the sensethat they alwaysdefine
thesamesetof + ’s (which is thesetof + ’s solving(4BP1))through + :

� 
+ E 1
2

+ 1.

Maps
� H and « andthesetsof allowable 
� H ’s and 
� H ’s dependon

� �����,�
only. 3

(Thiswill beprovedin Lemma12.4.6.)
If dimU 8 ∞, thentheinvertibility of � 22 �Ù¦ 11 � 
� H 22 and


 ¬§E 1«�� 22 becomes
redundant:

Lemma 12.3.9(CasedimU 8 ∞dimU 8 ∞dimU 8 ∞) If dimU 8 ∞, then condition � 22

"c
TIC∞



W � is redundantin (Factor1) and Ì 22

"Úc
TIC∞



U � is redundantin

(Factor2). 3
(This follows from Proposition2.5.4(1).)

Lemma 12.3.10(Case� u �Î� u

" 
� ) Assumethat � u ��� u

" 
� . Then (4BP1)–
(4BP3)are equivalent,andclaim (a) belowholds. If (4BP1)holds,thenwehave
thefollowing:

(a) All possiblechoicesof �×���¡��¦Û�Õ«§�,¬¯�ÕÌ±� 
� H � 
� H are in 
� .

(b) The solutions 
+ E 1
2 
+ 1 of the I/O 4BP are given by (12.47),and we have
+ 1 � 
+ 2

" 
� 5 � " 
� .

(c) We can choose ¦ " 
� so that � 11 ��¦ 22 � 
� H "Úc TIC∞, X
� V X11 X12

0 X22 Y ,
M
� V M11 M12

0 X e 1
22 Y , X11 � X22 � M11

"®c 6
, and

� H becomeswell-posed.Thed.c.f.

(12.61)of
� H is over 
� .

(d) There is a well-posedsolution 
+ E 1
2

+ 1 of the I/O 4BP with 
+ 1 � 
+ 2

" 
� iff

wecanchoose¬ sothat

 ¬�E 1 � 22

� 
� H 21

"�c
TIC∞.

(e)Wehave �� y � �� y

" 
� iff thed.c.f.
� � � u � u E 1 � �� y

E 1 �� y is over 
� . If this

is thecase, thenalsothed.c.f.
�

21
� � u21� u E 1

11
� �� y

E 1

22 �� y21 is over 
� .
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(f) Wehavethefollowing implications:(4BP1
� ) 2 (4BP1),(4BP2
� ) 2 (4BP2),
(4BP3
� ) 2 (4BP3), (Factor1
� ) 2 (Factor1), (Factor2
� ) 2 (Factor2) (and
anysolutionsof formeronessolvethelatter onestoo).

(g)Theclaims(a)–(e)alsoapplyto anysolutionsof (Factor1
� ) and(Factor2
� )
(andfor thecorresponding¦ and ¬ ). 3

(Thiswill beprovedin Lemma12.4.15.)

Lemma 12.3.11((Factor1&2))

(a) If (Factor1) holds, then � 22 ��¦ 11

" c
TIC and NG¦ 21 ¦ E 1

11 N �N 
 ¦�E 1 � E 1
22

 ¦×E 1 � 21 N 8 1. If, in addition,(Factor2)holds,then Ì 22

"ºc
TIC

and NAÌ 12 Ì E 1
22 N 8 1.

(b) If
� � ����E 1 solves(Factor1)(resp.¦ solves(Factor1X)),thenall solutions

of (Factor1)(resp.of (Factor1X)for a fixed � u) aregivenby� �ª
 � E � 
 � E � E 1 (resp.E E 1 ¦ ) � E 4 J1E
�

J1 � E

"dc 6 

U � W �%$ (12.51)

If ¬ solves(Factor2Z),thenall solutionsaregivenby ¬Ôb � ¬ F E 1, F 4 J1F
�

J1 � F

"ªc 6 

Y � U � . If 
� E 1H 
� H solves(Factor2), then all solutionsof

(Factor2)for a fixedpair

 �×���Ñ� aregivenby

� H ��
 F 
� H �FE 1 
 F 
� H � (henceÌÜb � F Ì ).

(c) If (Factor1) is satisfied, then every ¦ "�c
TIC



U � W � s.t. ¦ 4 J1 ¦ �^ É u11 É u12

0 I ` 4 Jγ ^ É u11 É u12
0 I ` isasolutionof (Factor1X).If (Factor2)is satisfied,

thenevery ¬ "�c TIC


Y � U � s.t. ¬ J1 ¬ 4 � « J1 « 4 is a solutionof (Factor2Z).

(d) If (Factor1X)holdsand ¦ " UR, thenwecanhaveX21
�

0, X11 � X22

"xc 6
.

If, in addition, � u ��� u

"
UR, thenit followsthat

� �,�Û���ª��« " UR, M21
�

0,
M11 � M22

"­c 6
.

(e) Assumethat D21
�

0, (Factor1X)holds, � u ��� u ��¦ " UR, andX is chosen

as in (d). ThenE
� V N22 0E M12 M11 Y , and any UR solution of (Factor2) has

Z11 � 
� H 21

"�c 6
. 3

(Thiswill beprovedin Lemma12.4.6.)
We finish this section by an intuitive explanation of the role of

� H of
(Factor2
� ). This mapobviously maps

@ u
wÝ BÞ&' ^ y

uÝ ` (because� maps ^ uÝwÝ ` &'@ u
w B and � maps ^ uÝwÝ ` &' @ z

y B ).
When(Factor1
� ) is satisfied,themap

�
equalstheconnectionof

V �²ß11
�Øß

12à
21
à e 1

22 Y :@ uÝ
w B°&' ^ y

wÝ ` and
� H , asillustratedin Figure12.2.Here

��á
is definedby (11.10)

and ¦ :
� ^ I 0Ë 21 Ë 22 ` E 1 � V I 0E Ë e 1

22 Ë 21 Ë e 1
22 Y :

@ uÝ
w BÆ&' ^ uÝwÝ ` .

Since(12.41):̂ uÝ
wÝ ` &' @ z

w B is


Jγ � J1 � -lossless,one can deducethat N wz#&'

uz�N 8 1 if f N w &' z N 8 γ. Thus, + is suboptimalfor
�

andγ if f + is suboptimal
for

� H and 1. It follows that we have reducedthe solution to the casewhere�
is of the specialform (of

� H ) describedin (Factor2
� ). Thesefactsareoften
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usedin theproofof the4BP(see,e.g.,pp.421–of [ZDG]), but weusethemonly
implicitly (in Section12.4).In fact,in themoregeneralsettingof Theorem12.3.7,
thesystem

� H neednotbewell-posed.

Notes
Theorem12.3.6is a direct generalizationof Theorem4.4 of [Green]andof

thoseof Theorem5.6of [CG97],asexplainedbeforethetheorem.
Wehadessentiallywritten thissectionduringearly1998(but at thatstage,we

neededimprovementsto our Riccati equationtheoryin orderto solve the state-
spaceH∞ 4BP of Section12.1). At the endof year2000,HansZwart showed
us thereport[IZ00], which containssomethinglike Theorems12.3.6and12.3.7
with 
�Ó� MTICL1

anddimU � W � Z � Y 8 ∞; thusour assumptionsarealso
moregeneralthanthe onesin [IZ00]. Also [IZ00] usespurefrequency-domain
methods,andits methodsseemessentiallyfinite-dimensional(see,e.g.,Lemma
2.2.1(c1),Proposition2.5.4,Lemma7.1.4andtheremarkin theproof of Lemma
2.2.2(c2));dueto the samereasons,the methodsof [Green]and[CG97] do not
applyto this generalcase.

Our formulae(andproofs)becomemathematicallymorecompletedueto the
fact that we allow for controllerswith internal loop (hencewe do not needany
additionalinvertibility conditions);seeTheorem12.3.6or Theorem12.3.7(c)&(d)
for well-posedsolutions.

Thefrequency-domainresultshave their own merits,asexplainedin [CG97],
but they canalsobe usedto derive thesolutionto the correspondingstate-space
problem,andthatis whatwewill do in thelasttwo sectionsof this chapter.

Undersufficient regularity, onecanformulatethe two losslessfactorizations
asRiccatiequations;this leadsto Theorem12.1.8andProposition12.1.10,i.e., to
CAREs“(1.)” and“(4.)”. Because“(4.)” is formulatedin termsof a perturbed
equation,one usually wishesto replaceit with “(2.)” and “(3.)” of Theorem
12.1.5. This connectionis establishedin Lemma12.6.4 for the discrete-time
settingand in Section12.5 for the continuous-timesetting(by discretization);
the proofs requiresomeextra regularity (ascomparedto Theorem12.1.8or to
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Theorem12.3.6)in thecontinuous-timecase.
One might ask whethersomethingsimilar could be doneto the frequency-

domainsolution,i.e.,whether(Factor1)andits dualconditionwith somecoupling
condition (“(3.)”) would suffice, so that the perturbedfactorizationcondition
(Factor2)would not be needed.A positive answerto this questionis given in
Remark12.5.25(in themostpopularsettingwhere

�
hasanexponentiald.c.f.),

but westill lackasimpleformulationof thefrequency-domaincouplingcondition.
Although the problemis symmetric,our solutionis not. If we replace

�
by�

d in theproofs,weobtainTheorems12.3.6and12.3.7with thedualof (Factor1)
(thefactorizationcorrespondingto “(2.)”) in placeof (Factor1)and,analogously,
afourthfactorizationconditionin placeof (Factor2)(thesituationis thesamewith
thestate-spaceproblemandtheRiccatiequations,asnotedon p. 708).
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12.4 Proofsfor Section12.3

Whenconfrontedby a difficult problem,youcansolveit more easily
by reducingit to the question,"How would the Lone Ranger have
handledthis?"

The proofs of the resultsof Section12.3 are more complicatedthan in the
rationalcase(cf. [Green])or in thecaseof theCallier–Desoerclass(cf. [CG97]),
becausewe lack several algebraicpropertiessatisfiedby the rational transfer
functions, and becausethe (possibly) infinite dimensionsof input and output
spacescauseadditionalproblems.

Westartby proving someresultsconcerning(Factor1)(Lemma12.4.2).Then
welist additionalconditions(Lemma12.4.3)equivalentto (4BP1)–(4BP3)(under
suitablyassumptions).Thereafter, we go on to study(Factor2)(Lemma12.4.4–)
until wearereadyto prove theimplicationsandadditionalresultsof Section12.3
(Lemma12.4.7–).

Theproofswill referto thegeneralWPLScaseof Theorem12.3.7,wherewe
donotrequire+ to bewell-posed(i.e.,TIC∞



Y� U � ) but weallow + to beany map

with internalloop. However, thereadersinterestedonly in thecasesillustratedin
Theorem12.3.6andanalogousresultsmayconsiderwell-posed+ ’s only, i.e., the
casewhere+ 2

"­c
TIC∞



Y � and 
+ 2

"xc
TIC∞



U � .

Weshallneedthefollowing notion:

Lemma 12.4.1(4BP 2 FICP & FCP) Let the4BPfor
�

havea solution.Then^ É u11 É u12
0 I ` and

V%çÉ y
d
22
çÉ y

d
12

0 I Y areminimaxJγ-coercive.

SeeLemma12.5.7 for the analogousand further state-spaceresultsunder
weaker assumptions.

Proof: From (12.39) we observe that there are solutions Ä "
TIC ofNF� u11Ä / � u12 N 8 γ and Ä " TIC of N �� y

d

22Ä / �� y
d

12 N 8 γ. It follows from

Lemma11.3.10that ^ É u11 É u12
0 I ` and

V%çÉ y
d
22
çÉ y

d
12

0 I Y areminimaxJγ-coercive,hence

Jγ-coercive,by Lemma11.4.2. 3
Lemma 12.4.2 Wegiveherepartial proofsof Theorem12.3.7andLemmas12.3.8
and12.3.11(a)–(c);theseproofswill becompletedin lemmasbelow.

Proof: I Theorem12.3.7(e1)&(e2)(partially):
1t “(F actor1X)2 (Factor1)”: Assume(Factor1X). Set è :

� ¦×E 1, é :
�^ É u11 É u12

0 I ` è to obtain é 4 Jγ é � J1. Set � :
� � u è , � :

� � u è to obtain a
r.c.f. (by Lemma6.4.5(c))with� � � é 11 é 12I I � ��� � � I Iè 21 è 22

� � � I Ié 21 é 22
� (12.52)

(because� u
�a@ 4�40 I B ), satisfying(Factor1),becauseé is



Jγ � J1 � -lossless,by

Corollary2.5.5(sinceé 22
� � 22

"�c
TIC∞).
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2t “(F actor1)2 (Factor1X)”: (This is theaboveproofbackwards.)Assume
(Factor1). By Lemma6.4.5(c),we have è :

� � u E 1 � "yc
TIC



U � W � . Set� :

� � u è , � :
� � u è to obtainthat é :

� ^ É u11 É u12
0 I ` è satisfiesé � V É 11 É 12Ë 21 Ë 22 Y .

Thus, é 4 Jγ é � J1 implies that ^ É u11 É u12
0 I ` 4 Jγ ^ É u11 É u12

0 I ` � è E 4 J1è E 1. There-
fore, ¦ :

� è�E 1 is asin (Factor1X)(useagainCorollary2.5.5).
3t Equations(12.49)of (e2): This follows from 1t –2t .
II Lemma12.3.8— The first claim on � u ��� u � �� y � �� y (partially): This

is obvious for (4BP2), (Factor1) and (Factor2), hencefor (4BP3) too; for
(Factor1X) this follows from the above equivalence,for (Factor2Z)this will
follow from theequivalencethatwill beestablishedin Lemma12.4.4.

III Lemma12.3.11: (a), (c) and first half of (b): (a) For (Factor1X),
this follows from Lemma11.4.3(a)&(c)(with substitutions

� &' ^ É u11 É u12
0 I ` ,

Jγ &' J1, J &' Jγ; recall from StandingHypothesis12.3.1that � u 411� u11 M 0).
Theclaimson(Factor2Z)follow analogously.

(c) This followsdirectly from Lemma11.4.3(b).
(b) (the (Factor1[X]) part only) By ((c) and) Lemma 6.4.5(a), all fac-

torizationsof form (Factor1X) are given by E E 1 ¦ , whereJ1
�

E 4 J1E, E

"c 6 

U � W � . (Recallthat � u wastakenfixedhere.)

If
� � �Ð�{E 1 is as in (Factor1), then the above proof of

“(Factor1)2 (Factor1X)” shows that � � � u ¦�E 1, where ¦ is asabove, hence
suchfactorizationsagaindiffer by E only.

(Remark— ¦ dependson � u asfollows: If anr.c.f.
� � � u b 
 � u b �FE 1 is also

of form � u b �ª@ 4�40 I B , then � u b � � u Ä and� u b � � u Ä for someÄ "�c TIC withÄ ��@ 4�40 I B , by Lemma7.3.16.It follows that
V É u ê11 É u ê12

0 I Y � ^ É u11 É u12
0 I ` Ä , hence¦ Ä is a spectralfactorof

V É u ê11 É u ê12
0 I Y if f ¦ is a spectralfactorof ^ É u11 É u12

0 I ` .
Thus,for � u b � � u Ä , Ä �³@ 4�40 I B "xc TIC, (Factor1X)is satisfiedby ¦ b � E ¦ Ä ,
whereE is asabove.) 3
To simplify theformulaein theproof,weshow thatthepreliminaryfactoriza-

tion
� � � u � u E 1 canbereplacedby “a semioptimalpreliminaryfactorization”� � � áu � áu E 1. Thenweestablishfurtherequivalentconditionsfor (4BP1):

Lemma 12.4.3(Equivalent conditions (4BP1)–(4BP7))Assume (Factor1X)

and set è :
� ¦ E 1 �¼è :

� ^ I 0ë
21
ë

22 ` �ì¦ :
� è E 1, ¦ :

� ^ à 11
à

12
0 I ` , è :

� ¦ E 1
,� áu :

� � u è � V Ë ßu 11 Ë ßu 12
0 I Y �Ñ� áu :

� � u è , � � � u ¦�E 1 � � áu è and� :
� � u ¦×E 1 � � áu è . Then¦ � ¦ ¦ , è � è§è , andthefollowingholds.

(a) Ther.c.f.
� � ����E 1 is as in (Factor1),andther.c.f.

� � � áu � áu E 1 is as
in StandingHypothesis12.3.1.

(b) The conditions(4BP1), (4BP2) and (4BP4)–(4BP7)are equivalentand
independentof � , � and ¦ .

(c1) A map + with internal loop solvesthe 4BP iff it can be written as+ � 
+ E 1
2 
+ 1, where 
+ 1 � 
+ 2 satisfy (4BP2). Note that any maps 
+ 1 and
+ 2 satisfying(4BP2)arenecessarilyl.c.
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The above claims hold also with (4BP4), (4BP5), (4BP6) and (4BP7) in
placeof (4BP2).

(c2) (For a fixed pair

 
+ 1 � 
+ 2 � we have “(4BP4) 5 (4BP5)” and

“(4BP2) 2 (4BP6)5 (4BP7)”, whereas for 
+ E 1
2

+ 1 (as a map with l.c.

internal loop)all theseareequivalent.)

(c3) Assumethat � u ��� u

"
TICexp. If any of (4BP1), (4BP2) and (4BP4)–

(4BP7)hasa solutionwith 
+ 1 � 
+ 2

"
TICexp, thensodoall of them.

(This also holds with
�

in place of TICexp if
� v

a
TIC is closedunder

spectral factorization.)

(d) If (4BP5)(and hence(4BP1)–(4BP7)exceptpossibly(4BP3))holds, then
thel.c.f. 
+ E 1

2

+ 1
� + givenin (4BP5)is unique, andthefollowingequations

hold: 
Ä o
�±


I 0 Ä o è 21 � E 1 Ä o è 22 � (12.53)Ä o
�±


I 0 
Ä o ¦ 21� E 1 
Ä o ¦ 22
� 
Ä o


 è 21 
Ä o / è 22 � E 1 �
(12.54)


I 0 
Ä o ¦ 21� E 1 � I 0 Ä o è 21

"­c
TIC � (12.55)
 è 21 
Ä o / è 22 � E 1 � ¦ 22 / ¦ 21Ä o

"�c
TIC $ (12.56)

(e) Thislemmaholdsevenif wereplace“ 8 ” signsof thelemmaby “ Ò ” signs
(this includesrequiringthat NÀ( ) 
 � �,+.�rN¯Ò γ insteadof 8 γ).

Wehavereferredto thefollowingconditions:

(4BP4) There are 
+ 1 � 
+ 2

"
TIC s.t. 
+ 2 � áu 11 0 
+ 1 � áu 21

�
I and Ä o :

�
+ 1 � áu 22 0 
+ 2 � áu 12

"
TIC solves(theFICP) NF� áu 11Ä o / � áu 12 N 8 γ.

(4BP5) There are 
+ 1 � 
+ 2

"
TIC s.t. 0 
+ 1 � áu 21 / 
+ 2 � áu 11

�
I and Ä o :

�
+ 1 � áu 22 0 
+ 2 � áu 12

"
TIC is of the form Ä o

� Ä 1 Ä E 1
2 , where

VDí
1í
2 Y �è VÀîí o

I Y , 
Ä o

"
TIC and N 
Ä o N 8 1.

(4BP6) There are 
+ 1 � 
+ 2

"
TIC s.t. 
+ 2 � 11 0 
+ 1 � 21

"�c
TIC



U � , andN 
 
+ 2 � 11 0 
+ 1 � 21 �FE 1 
 0 
+ 2 � 12 / 
+ 1 � 22 �rN TIC kW>U ? 8 1.

(4BP7)(ASP) Thereare 
+ 1 � 
+ 2

"
TIC s.t.theoperatorsV 
Ä 1 
Ä 2 Y :

� V 
+ 1 
+ 2 Y � � 22 0�� 210;� 12 � 11
� " TIC



W � U � U � (12.57)

satisfy 
Ä 2

"�c
TIC and N 
Ä E 1

2

Ä 1 N 8 1.

Thus,condition“(Factor1X)and(4BPn) hold” is equivalentto (4BP1)(andto
(4BP2))whenever


 ^ É u11 É u12
0 I ` � Jγ � " SpF, by Theorem12.3.7(a).

Note that, for each+ solving the4BP(cf. (c)), thepairs

 
+ 1 � 
+ 2 � in (4BP2)

and (4BP5) need not be the same(in fact this happensvery seldom, when
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Ä è E 1
22 è 21

�
0, asshown in the proof of (4BP2)2 (4BP5)); we only know that

they differ by anelementof

c
TIC (seeDefinition7.2.11).

Theequivalence“(4BP1)5 (4BP4)” holdsfor theoriginal r.c.f.
� � � u � u E 1

too,asoneobservesfrom theproof.
If onel.c.f. of + satisfiestheASPgivenin (v) (and(iv) aswell), thenclearly

every l.c.f. of + does(cf. Lemma6.4.5(d)).
Proof of Lemma 12.4.3: Note that we have chosena “semicritical

preliminary factorization”
� � � áu � áu E 1 to make the formulaein the proof

(including thoseat the end of the lemma)simpler. By Lemma12.3.8 (see
Lemma12.4.2),this causesno lossof generality.

Theformula è � è�è is from (A.9), and ¦ � ¦ ¦ is its inverse.
(a)By Lemma6.4.5(c),� áu � áu E 1 is ar.c.f. of (c). Obviously, � áu �Ú@ 4�40 I B .

Therestfollowsasin Corollary7.3.17.
By 2t of theproofof Lemma12.4.2,ther.c.f.

� � �Ð� E 1 is asin (Factor1).
I Theequivalence:Let 
+ 1

"
TIC



Y� U � and 
+ 2

"
TIC



U � be l.c. (i.e., let+ :

� 
+ E 1
2

+ 1 bea mapwith l.c. internalloop; cf. Definition 7.2.11).We shall

show below theequivalenceof (4BP1)–(4BP7)© (4BP3)for 
+ E 1
2

+ 1 in thesense

that given n � m " 9 1 � 2 � 4 � 5 � 6 � 7 : , there is Ä n

"�c
TIC



U � s.t.


 Ä n 
+ 1 � Ä n 
+ n �
satisfies(4BPn) if f thereis Ä m

"�c
TIC



U � s.t.


 Ä m 
+ 1 � Ä m 
+ n � satisfies(4BPm)
(i.e., + hasa presentationsatisfying(4BPn) if f + hasa presentationsatisfying
(4BPm)). Notethat(4BP1)is independenton thepresentation.

1t “(4BP1)5 (4BP4)”: This follows from Lemma12.3.2.
2t “(4BP4)5 (4BP5)”: This followsdirectly from Theorem11.3.6.
4t “(4BP6)5 (4BP7)”: Clearly(4BP7)is only a reformulationof (4BP6).
5t “(4BP7)5 (4BP2)”: If


 
+ 1 � 
+ 2 � solves(4BP7), then

 
Ä E 1

2

+ 1 � 
Ä E 1

2

+ 2 �

solves(4BP2)(where 
Ä 2 is asin (4BP7)).Conversely, everysolutionof (4BP2)
is a solutionof (4BP7).

6t “(4BP5)2 (d)&(4BP7)”: Wenow assume(4BP5)(andhence(4BP1)and
(4BP4)too)andwill provefirst theclaimsin part(d) andthen(4BP7).

Theuniquenessof thel.c.f. followsfrom Lemma6.4.5(d).Thefirst formula
is equation0 
+ 1 � áu 21 / 
+ 2 � áu 11

�
I multiplied to theleft by 
+ E 1

2 .
Equations(12.53)–(12.56)follow from equations(11.89)–(11.92)of The-

orem 11.3.6 (where we must use the spectral factor ¦ � � E 1 � áu ofV É ßu 11 É ßu 12
0 I Y ) andthelastthreeequationsarederivedasfollows:
Ä 2 :
� 
+ 2 � 11 0 
+ 1 � 21

� 
+ 2 � áu 11 / 
+ 2 � áu 12è 21 0 
+ 1 � áu 21 0 
+ 1 � áu 22è 21

(12.58)��
 
+ 2 � áu 11 0 
+ 1 � áu 21�ï0 
 
+ 1 � áu 22 0 
+ 2 � áu 12 �,è 21 (12.59)�
I 0 Ä o è 21, by theequationsin (4BP5). Now 
Ä 2

�
I 0 Ä o è 21

"#c
TIC



U � ,

by (12.55).Similarly,
Ä 1
� 0 
+ 2 � 12 / 
+ 1 � 22

� 0 
+ 2 � áu 12è 22 / 
+ 1 � áu 22è 22
� Ä o è 22 $ (12.60)

Therefore, 
Ä E 1
2 
Ä 1

�ð

I 0 Ä o è 21 �FE 1 Ä o è 22

� 
Ä o, whosenorm is lessthan1,
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hence(4BP5)implies(4BP7).
7t “(4BP2)2 (4BP5)” (which completesthe proof of the equivalence):

Assume(4BP2). Then 
ñ :
� 
+ 2 � áu 11 0 
+ 1 � áu 21

� 
+ 2

 � 11 0¥� áu 12è 21 �l0
+ 1


 � 21 0ò� áu 22è 21 � � 
+ 2 � 11 0 
+ 1 � 21 0 
+ 2 � 12 è E 1
22 è 21 / 
+ 1 � 22 è E 1

22 è 21
�

I / 
Ä è E 1
22 è 21

"­c
TIC



U � , becauseNLè E 1

22 è 21 N 8 1, by (d) of thetheorem.

Define 
+ 2 :
� 
ñ E 1 
+ 2 � 
+ 1 :

� 
ñ E 1 
+ 1 to get a new l.c.f. of + , satisfying
+ 2 � áu 11 0 
+ 1 � áu 21
�

I , asrequired.

Fromthedefinitionsof � and � (givenin the lemma),we get 
+ 1 � áu 22 0
+ 2 � áu 12
� 
ñ E 1 @ 
+ 1 � 22 0 
+ 2 � 12 Bóè E 1

22
�ô


I / 
Ä è E 1
22 è 21 � E 1 @ 
Ä Bõè E 1

22
� 
Ä 
 I /è E 1

22 è 21 
Ä � E 1è E 1
22
� 
Ä 
 è 22 / è 21 
Ä � E 1 � Ä o, if we set Ä o :

� Ä 1 Ä E 1
2 andVDí

1í
2 Y :
� è V îí

I Y . Thus,(4BP3)is satisfiedandhencetheproofof theequivalence

hasbeencompleted.
II — (b), (c), (d), (e):
(b) In I, weshowedtheequivalencein (b). Since¦ wasarbitrary(andhence� and � too,by (12.49),whichwasestablishedin Lemma12.4.2),and(4BP1)

is independentof ¦ , � and � , hencesoare(4BP2)and(4BP4)–(4BP7).
(c1) It follows directly from the equationsin each(4BP

I
) that 
+ 1 � 
+ 2 are

l.c., asclaimed.
As one observes from the proof, conditions(4BP2) and (4BP4)–(4BP7)

have samesolutions

 
+ 1 � 
+ 2 � modulo the multiplication to the left by an

elementof

c
TIC



U � . By Definition 7.2.11,this meansthat the maps + :

�
+ E 1
2

+ 1 correspondingto thesesolutionsareequal(but thereareusuallymore

thanonesolution + ); by 2t thesemapsareexactly thesolutionsof (4BP1)(i.e.,
thesuboptimalDPF-stabilizingcontrollers).Thus,(c1) hasbeenestablished.

(c2)This canbeobservedfrom partI.
(c3) 1t Weaker assumptions:In fact,it sufficesto assumethat � u ��� u ��¦ "�

, that
� v

a
TIC (seeDefinition 6.2.4), and that

�
is inverse-closed(i.e.,� Å c TIC

� c �
).

The proof of Lemma 8.4.10 shows that if
�

is closed under spectral
factorization(in thesensethat 
¦ "ºc � whenever 
� " ��
 U � W� I �%� 
J � 
J 4 "6 � 
S "­c 6 � 
¦ "­c TIC



U � W � and 
¦ 4 
S
¦ � 
� 4 
J 
� ), then

�
is inverse-closed.

2t Suitable
�

’s: On the other hand,Lemma6.4.7(c)shows that TICexp

is closedunderspectralfactorization;obviously, so is 
� , so that we cantake
� :
�

TICexp or 
� :
�º�

.
3t Theproof using1t : By the assumptions,we have è1��¦ ��è � ¦f� è "#c � .

Therefore,�×���ª��� áu �,� áu " �
. Consequently, it is easyto verify from part I

that(c3)holds,sincedifferent 
+ 4 ’sareobtainedfrom eachotherandtheabove�
mapsby using only algebraicoperationsin TIC (herewe againneedthe

inverse-closednessof
�

).
(d) Thiswasestablishedin 6t .
(e) Obviously, the proof below appliesalsowith the changeslisted in (e).3
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Lemma 12.4.4(
� H� H� H & (Factor2)) The map

� H :
� ^�É 21 É 22

I 0 ` ^ÕË 11 Ë 12
0 I ` E 1

has a
d.c.internal loop: wehavethedoublycoprimeproduct� ^ Ë 11 Ë 12

0 I ` ^ 0 E I
0 0 `^ÊÉ 21 É 22

I 0 ` ^ I 0
0 0 ` � E 1 � Á ^ 0 0

0 I ` 0 ^ 0 E I
0 0 `0 V 0 É 22

I E Ë 12 Y V I E É 21
0 Ë 11 Y Ã (12.61)"�c

TIC

A


U � W �f� 
 Y � U �%� 
 U � W �f� 
 U � Y �L� . Moreover, Theorem
12.3.7(e1)&(e2)hold; in particular, wehave(Factor2)5 (Factor2Z).

Proof: We startwith the last equivalence,basedon the proof of Theorem
3.8of [Green].

Obviously, (12.61)is true,hence
� H hasad.c.internalloop (seeDefinition

7.2.11)andcanbewrittenas
� H � 
¦ E 1H 
é H , where
¦ H :

� � I 0�� 21

0 � 11
� " TIC



Y � U �%� 
é H :

� � 0 � 22

I 0;� 12
� " TIC



U � W� Y � U �%$

(12.62)
1t “(Factor2)2 (Factor2Z)”:Assume(Factor2).Then 
� H � ¬�E 1 
¦ H , 
� H �¬�E 1 
é H for some¬ "xc TIC



Y � U � , by Definition7.2.11.Consequently,¬ E 1 � Á 
� H 11 
� H 11
� H 21 
� H 21 Ã and ¬ E 1« � ¬ E 1 V 
é H 4 2 
¦ H 4 2 Y �öV 
� H 4 2 
� H 4 2 Y � Ì¡$

(12.63)
Therefore,(Factor2Z)holds.

2t “(Factor2Z)2 (Factor2)”: Assume(Factor2Z).Define 
¦ H � 
é H asabove
and set 
� H � ¬§E 1 
¦ H , 
� H � ¬§E 1 
é H to obtain 
� E 1H 
� H � 
¦ E 1H 
é H . SetÌ :

� ¬�E 1« to obtainthat Ì J1 Ì 4 � J1, andthat(12.63)holds.Then(Factor2)
holds.

3t Theorem12.3.7(e1)&(e2):Part II of theproofof Lemma12.4.3contains
partialproofsof Theorem12.3.7(e1)&(e2).Therestof (e1)and(e2)is obtained
above. 3
The factorization

� H :
� ^ É 21 É 22

I 0 ` ^ Ë 11 Ë 12
0 I ` E 1

is a r.c.f. when (Factor1
� )
holds:

Remark 12.4.5(
� H� H� H ) If (Factor1)holds,then ^ÊÉ 21 É 22

I 0 ` " TIC


U � W� Y � U � and^ Ë 11 Ë 12

0 I ` " TIC


U � W � are r.c. (evend.c.),by (12.61). 3

Lemma 12.4.6 Lemmas12.3.11and12.3.8hold.

Proof: 1 $ 1t Lemma12.3.11(a)–(c):Part II of the proof of Lemma12.4.3
containsthe proof of Lemma 12.3.11(a)and a partial proof of (b). The
“(Factor2)” part of (b) is obtainedas its (Factor1) part (note that the first
columnsof 
� H and 
� H arecontainedin ¬ E 1, hencethesedependon

�
only,

whereastheir secondcolumnsarepartof Ì andhencedependon � u ��� u in
thesamewayas « does).

Part (c) wasestablishedin Lemma12.4.3.
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Part (d): 1 $ 2t By (Factor1X), the assumptionsof Proposition11.3.4are
satisfiedand (FI3s) holds. By Lemma 11.3.11, the solution of (FI3s) for^ É u11 É u12

0 I ` (henceof (Factor1X))canbe chosenso that X is as in (d) (since
X

"­c 6 

U � W � , by Proposition6.3.1(b1)).

1 $ 3t Assumethat ¦ is asaboveand � u ��� u

"
UR. Then

� � � u � u E 1

"
UR

and �×���¡�Õ« " UR, by (12.49)andProposition6.3.1(b1).Consequently, X E 1 �� X e 1
11 4
0 X e 1

22
� , M

�WV 4a4
0 X e 1

22 Y ; by LemmaA.1.1(b),M11

"®c 6 

U � . If D21

�
0, then

N
�

DM
��V 4 4

0 D22X e 1
22 Y , hencethenE

�WV N22 E N21E M12 M11 Y ��V N22 0E M12 M11 Y .
1 $ 4t Part (e): (Note that

� �,�Û���¡��« " UR, by (d). Thus,any UR solution
� H � 
� H of (Factor2)correspondsto a UR solution ¬ of (Factor2Z)andvice
versa,by Theorem12.3.7(e2).)

By Theorem12.3.7(e2),we have


Z E 1 � 22M11

� 
M H 22
�

W22 and Ì "
UR. By (Factor2)andProposition6.3.1(b1),W22

"Üc 6 

U � , hence



Z E 1 � 22

"c 6 

U � , henceZ11

"�c 6 

Y � , by LemmaA.1.1(c1).But 
NH 21

��

Z E 1 � 22, hence

(e)holds.
2t Lemma 12.3.8: This is given in the proof of Lemma 12.4.3

for � u ��� u �D�� y �Ø�� y . For (4BP1) and (Factor1[X]) independenceon�×���ª��¦Û� 
� H � 
� H �,¬ is obvious;for (4BP2)it follows from Lemma12.4.3(b).
Fix apair


 �×���y� andacorresponding« . Let «]b correspondto someE given
in Lemma12.3.11(b).By Lemma6.4.8(c),EJ1E 4 � J1. By settingR :

� ^ 0 IE I 0 `
wegetR4 «*b R ��V Ë 1XÉ 2 X Y E andR4 J1R

� 0 J1, hence« b J1 « b 4 � 0 � � 240;� 14 � J1
� � 240;� 1 4 � 4 � (12.64)

which is independentof E, i.e., dependson
�

only, hencesodo thesolutions¬ of (Factor2Z[’]). From the equivalencesgiven in Theorem12.3.7(e1),we
obtain that also the solvability of (Factor2[’]) dependson

�
only (but

� H
dependson �×��� , hencesodo 
� H � 
� H ). Theclaimsconcerning+ follow from
Lemma12.4.3(c). 3
Now wecanshow that(4BP3)implies(4BP1)–(4BP7):

Lemma 12.4.7((Factor) 2 (4BP)) Assume(Factor1) and (Factor2). Then
(4BP1)–(4BP7)hold.

Proof: We use the notation of Theorem 12.3.7(e1)–(e2)(see Lemma

12.4.4).Set
V 
+ 1 
+ 2 Y :

� ^ 0 I ` ¬§E 1 to obtainV 
Ä 1 
Ä 2 Y :
� V 
+ 1 
+ 2 Y « � ^ 0 I ` Ì � ^ Ì 21 Ì 22 ` $ (12.65)

From Lemma12.3.11(a)we obtainthat NAÌ E 1
22 Ì 21 N 8 1, hence(4BP7)is

satisfied.Thus,(4BP1)–(4BP7)hold,by Lemma12.4.3(b). 3
We shallusethefollowing to reduce(Factor2Z)to a (frequency-domain)H∞

FICP:
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Lemma 12.4.8(÷Æø÷Æø÷Æø ) Assume(4BP2). Thenthere is ø "ºc TIC


Y � U � s.t. øZ« �Vúù 0îí I Y " TIC



W � U � Y � U � , where û*û 4 M 0, N 
Ä N 8 1.

As theproof shows, 
Ä is theoneappearingin (4BP2).
Proof: Assume(4BP2).By Lemma12.4.3(c1)&(b),
+ E 1

2

+ 1 (from (4BP2))

stabilizes
�

(becauseit satisfies(4BP1)),andconditions(4BP1)–(4BP7)except

possibly (4BP3) hold. In particular, ^ 0 E I
I 0 ` � çË y 22

çÉ y 21î  1
î  2
� ^ 0 E I

I 0 ` "³c TIC, by

Theorem7.3.19(iv’), henceÁ �� y22 �� y 21
+ 1 
+ 2 Ã "xc TIC


Y � U �%$ (12.66)

Fromthe


2 � 2� - and



2 � 1� -blocksof equation �� y � áu � �� y � áu weget�� y 22� áu 22 0®�� y 21� áu 12
� �� y 22 �{�� y 22� áu 21 0®�� y 21� áu 11

� �� y 22� áu 21
�

0 $
(12.67)

On the other hand, « �üV É 22 E É 21E Ë 12 Ë 11 Y �üV É ßu 22 E É ßu 21E Ë ßu 12 Ë ßu 11 Y ^ ë 22 E ë 21
0 I ` (herewe

haveset ¦ :
� �ºE 1 � u, è :

� ¦×E 1). By combiningthis and(12.67)wegetV �� y22 �� y 21Y « ��V �� y22 0Y � è 22 0Çè 21

0 I
� ��V �� y22è 22 0Û�� y 22è 21 Y $

(12.68)

Thiscombinedwith (4BP2)givesus
� çË y 22

çÉ y 21î  1
î  2
� « �aV çÉ y 22

ë
22 E çÉ y 22

ë
21îí I Y , whereN 
Ä N 8 1. Thus, øZ« ��V ù 0îí I Y , whereø :

�ý� I �� y22è 21

0 I
� Á �� y22 �� y21
+ 1 
+ 2 Ã " TIC



Y � U �%� (12.69)

and û :
� �� y22


 è 22 / è 21 
Ä � is onto( û*û 4 M 0), because�� y 22 is onto,by Stand-

ing Hypothesis12.3.1,andè 22 / è 21 
Ä "�c TIC


W � (becauseNLè E 1

22 è 21 
Ä N 8 1,
by Lemma12.3.11(a)).By (12.66)andLemmaA.1.1(b1), ø "ºc TIC



Y � U � .3

Lemma 12.4.9 Theorem12.3.7(c)holds.

Proof: 1t (12.47): Assume(Factor1)and(Factor2),so that (4BP2),(Fac-
tor1X) and(Factor2Z)hold, by Lemma12.4.7andTheorem12.3.7(e1)&(e2)
(seeLemma12.4.4).Weset ¬§E d :

�±
 ¬ d �GE 1 etc.
Set 
¬ :

� ø�¬ to obtain 
¬ J1 
¬ 4 �ô
 øZ«�� J1

 ø[«�� 4 , where ø is as in Lemma

12.4.8. Now equationsÌ � ¬ E 1« � 
¬ E 1øZ« and

 ø[«�� d �ô@ 4�40 I B imply thatÌ d � V 4 4k îþ e d? 21 k îþ e d? 22 Y , hence


 
¬§E d � 22
� Ì d

22

"³c
TIC



U � , by (Factor2Z),

hence
¬ d
11

"xc
TIC



Y � , by LemmaA.1.1(c1).
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Now each pair 
+ 1 � 
+ 2

"
TIC correspondsto a unique pair + 1 � + 2

"
TIC definedby

�   d
1  d
2

� :
� ø]E d � î  d

1î  d
2
� . The pairs


 
+ 1 � 
+ 2 � satisfying (4BP2)

correspondto pairs + 1 � + 2 satisfying� 
Ä d

I
� � « d Á 
+ d

1
+ d
2 Ã � « d ø d Á + d

1+ d
2 Ã � (12.70)

for some 
Ä with N 
Ä N 8 1 [ Ò 1 for + ’s s.t. NÀ( ) 
 � �,+-�qNìÒ γ; seeLemma
12.4.3(e)].

From(12.70)and 
� :
� « d ø d ��@ 4�40 I B we obtainthat + 2

�
I , hence+ d

1 is as

above if f it satisfies(theFICP) N 
Ä d N :
� N 
� 11 + d

1 / 
� 12 N 8 1 [ Ò 1].
Thus,we may apply Corollary 11.3.5(with substitutions

� &' 
� , γ &' 1,¦<&' 
¬ d; notethat 
� 411 
� 11
�½
 û d� 4 û d ��
 û|û 4 � d M 0, since û (andhence


 û d� 4
is onto)) to obtainthatall + d

1’s of this form aregivenby + d
1
� � 1 � E 1

2 , whereV � 1� 2 Y :
� 
¬§E 1 ^ � I ` and N � N 8 1 [ Ò 1] (hence � 2

"±c
TIC



U � , by Theorem

11.3.6).Writing it out,wehaveÁ + d
1

I Ã �ý� � 1� 2
� � E 1

2
� 
¬ E d � �

I
� � E 1

2 $ (12.71)

Thus,
� î  d

1î  d
2
� � ø�E d 
¬§E d ^ � I ` � E 1

2
� ¬§E d ^ � I ` � E 1

2 .

By postmultiplyingthis by � 2, we get anotherrepresentative of 
+ E 1
2

+ 1

(since� 2

"xc
TIC



U � ), givenbyV 
+Çb1 
+Çb2 Y � � d

2
V 
+ 1 
+ 2 Y � ^ � d I ` ¬ E 1 � (12.72)

But this “all solutionsformula” is equalto (12.47)(see(12.50)for ¬ E 1).
2t Formula + � ( ) 
 � � � � : The formula + � ( ) 
 � � � � can be shown

equalto (12.47)just by writing the two formulaeout andsimplifying slightly
(notethat I 0 � 21 � � I / 
� H 11 
� E 1H 21 � is invertible if f 
+ 2

� � 
� H 11 / 
� H 21
�


I / � 
� H 11 
� E 1H 21 � 
� H 21 is invertible, by LemmaA.1.1(f6), i.e., if f + is well-
posed(by Lemma7.2.12(b))).

3t Remark: We neededø only to get a spectralfactor (namely 
¬ d) with
invertible



1 � 1� -block andto establishthecondition“

� 41J
�

1 M 0”. Otherwise
wecouldhaveappliedTheorem11.3.6directly for « d insteadof 
� .) 3
If the coprimenessrequirementsof StandingHypothesis12.3.1aresatisfied

“exponentially”, then the existenceof a solution the 4BP is equivalent to the
existenceof an exponentially stabilizing solution of the 4BP (at least when� u ��� u

" 
� , sothat(4BP3)becomesnecessary):

Proposition 12.4.10(Exponentially stabilizing solutionsof the (I/O) 4BP)
Assumethat wecanwrite “d.c.f. over TICexp”, “r .c. over TICexp” and“l.c. over
TICexp” to StandingHypothesis12.3.1 in place of “d.c.f.”, “r .c.” and “l.c.”,
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respectively(this is thecaseif Hypothesis12.5.1holdsandΣ is optimizable).
If (4BP3) holds, then �×���ª��¦Û�,¬¯��« " TICexp, and all exponentiallyDPF-

stabilizingsuboptimalcontrollers (with internal loop) for
�

are parametrizedby
(12.47)with theadditionalrequirementthat � " TICexp.

Proof: Oneobservesfrom theproof of Lemma12.5.3thattheassumptions
of thelemmaaresatisfiedif Hypothesis12.5.1holdsandΣ is optimizable.

1t1+ is suboptimaland exponentiallyDPF-stabilizingiff + � 
+ E 1
2 
+ 1 for

some
+ 1 � 
+ 2

"
TICexp satisfying(4BP4):

From Corollary 7.3.20(i’) and Remark7.3.24 we observe that + DPF-
stabilizes

�
exponentiallywith internal loop if f + � 
+ E 1

2

+ 1 and 
+ 2 � u11 0
+ 1 � u21

�
I for some 
+ 1 � 
+ 2

"
TICexp (cf. Lemma12.3.2).

2t×¦;Ö 1 �����Î�¡�,¬ÇÖ 1 �Õ« " TICexp: As in the proof of Lemma12.4.3(c3),we
observe that ¦;Ö 1 �,�Ç�Î� "

TICexp, hence« " TICexp. By Lemma6.4.7(c),it
follows that ¬ "yc TICexp. (by Lemma12.3.11(b),this appliesto all possible
choicesof ¦§�,�¨���ª�,¬1�Õ« ).

3t Sufficiency:Therefore,for each� " TICexp, wehave 
+ 1 � 
+ 2

"
TICexp in

(12.47)(see(12.50)for ¬ E 1). By Lemma12.4.3(c3),+ :
� 
+ E 1

2

+ 1 corresponds

to asolutionof (4BP4)belongingto TICexp, hence+ is asin 1t .
4t Necessity:If + � + E 1

2 + 1 is asuboptimalexponentiallyDPF-stabilizing
controller(with aninternalloop), then^ + 1 + 2 ` � Ä V 
+ 1 
+ 2 Y :

� ^ Ä � Ä ` ¬ E 1 (12.73)

for some Ä "ÿc
TIC, by Lemma 6.4.5(d) and (12.47), hence then^ Ä � Ä ` � ¬ ^ + 1 + 2 ` " TICexp, hence Ä "

TICexp (recall from 2t that¬ "Úc TICexp), hence Ä "Úc TICexp, by Lemma 2.2.7. Consequently, then� � Ä E 1 Ä � " TICexp. 3
Next wewantto make � 11 and ¬ 11 invertible;thereforeweneedthefollowing

result:

Lemma 12.4.11(X22X22X22 invertible) Assume that X

"Íc 6 

U � W � , and that^ T I ` X ^ 0I ` "�c 6 
W � (resp.X11

"ªc 6
and ^ T I ` X ^ I0 ` � 0) for someT

"6 

U � W � with N T N 8 1.
Thenthere is E

"Üc 6 

U � W � s.t.E 4 J1E

�
J1, and 
X :

�
EX satisfies
X22

"c 6 

W � (resp. 
X21

�
0 and 
X11 � 
X22

"­c 6
).

Thus, 
X 4 J1 
X � X 4 J1X.
Proof: Weusebelow LemmaA.3.1(d)&(e2).SetU :

�±

I 0 T 4 T � E 1� 2 M 0,

V :
�ô


I 0 TT 4F� E 1� 2 M 0. By LemmaA.1.1(f6)&(d1), V2T
�

TU2 and the
inverseof

E :
�ý� U 0

0 V
� � I T 4

T I
� �ý� U UT 4

VT V
� is E E 1 ��� U 0 T 4 V0 TU V

� $ (12.74)

By asimplecomputationoneverifiesthatE 4 J1E
�

J1.
If ^ T I ` X ^ 0I ` "�c 6 
W � , then 
X22

�
V ^ T I ` X ^ 0I ` "�c 6 
W � . If, instead,^ T I ` X ^ I0 ` � 0 and X11

"ªc 6
, then 
X21

�
V ^ T I ` X ^ I0 ` � 0 and hence
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X11
�

U 
X11; therefore,
X11
�

U E 1X11

"�c 6
, and,consequently, 
X22

"�c 6
, by

LemmaA.1.1(b2). 3
Lemma 12.4.12(Well-posed

� H� H� H ) If (Factor1) holds and ¦1�Î� u

"
ULR, then

we can take ¦ 22 �Î� 11

"ic
TIC∞ (and X

� V X11 X12
0 X22 Y , M

� V M11 M12

0 X e 1
22 Y where

X11 � X22 � M11

"�c 6
); in particular,

� H becomeswell-posed.

Proof: (WeusehereTheorem12.3.7(e1)&(e2)andLemma12.3.11(a)&(c);
thesehavealreadybeenproved,in Lemmas12.4.2and12.4.4.)

Let ¦ satisfy(Factor1X).Now X :
� ¦ 
 / ∞ � "�c 6 andX11

"�c 6
, byPropo-

sition 6.3.1(c). Clearly N X21X E 1
11 N§ÒiNG¦ 21 ¦ E 1

11 N 8 1 (seeLemma12.3.11(a)),
hencewith T :

� 0 X21X E 1
11 weobtainfrom Lemma12.4.11anoperatorE

"�c 6
s.t. 
¦ :

�
E ¦ satisfies 
¦ 4 J1 
¦ � ¦ 4 J1 ¦ and 
X11 � 
X22

"ªc 6
, 
X21

�
0; hence
¦ 22

"xc
TIC∞



W � , by Proposition6.3.1(c).

By Lemma 12.3.11(c), also 
¦ satisfies (Factor1X). The claims for� � � u 
¦×E 1 follow from the above (the invertibility of M11 and hence
thatof � 11 follows from LemmaA.1.1(b2)&(b1)). 3

Lemma 12.4.13(Well-posed+ + + ) Assumethat (Factor1) and (Factor2Z) hold
with ¬ " 
� , and let somewell-posed+ � 
+ E 1

2 
+ 1 with 
+ 1 � 
+ 2

" 
� solvethe

4BP. Thenwecanredefine¬ " 
� s.t.

 ¬ E 1 � 22

"�c
TIC∞ (i.e., 
� H 21

"­c
TIC∞).

Thisalsoholdswith ULR in placeof 
� .

Proof: Let
�½� 
� or

�½�
ULR (in fact,thelemmaandthisproofholdsfor�

in placeof 
� whenever
6 v

a

� v
a

ULR).

Set � :
�_V 
+ 1 
+ 2 Y ¬ ^ 0I ` " � asin Theorem12.3.7(c).

Because
� v ULR, we can set T :

� � 
 / ∞ � , X :
� ¬§E 1 
 / ∞ � , to obtain

c 6�� 
+ 2

 / ∞ � � ^ T I ` X ^ 0I ` . By Proposition6.3.1(c),X

"ºc 6
. By Lemma

12.4.11weget


EX � 22 invertible.

Thus,by setting ¬Ôb : � ¬ E E 1

" �
we get


 ¬Ôb E 1 � 22

 / ∞ � �¸
 EX � 22

"yc 6
,

and we seethat ¬Ôb J1 ¬ b 4 � ¬ J1 ¬ 4 (
� « J1 « 4 ) and Ìºb :

� ¬Ôb E 1 « � E Ì also
satisfiesÌÜb J1 Ì�b 4 � J1, by Lemma6.4.8(c). 3

Lemma 12.4.14 Theorem12.3.7holds.

Proof: Parts (e1) and(e2) wereshown in Lemma12.4.4,andpart (c) in
Lemma12.4.9.Weprove(a), (b) and(d) below.

(a) 1t “(4BP3) 2 (4BP2)2 (4BP1)”: “(4BP3)2 (4BP2)” is obtainedfrom
Lemma12.4.7,and“(4BP2)2 (4BP1)” from Lemma12.4.3(b).

2t “(4BP1) 2 (4BP2)” when

 ^ É u11 É u12

0 I ` � Jγ � " SpF: Assume(4BP1).Then� b : � ^ É u11 É u12
0 I ` is minimaxJγ-coercive,by Lemma12.4.1,henceJ-coercive.
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Thus,if

 � bp� Jγ � " SpF, then(Factor1X)(andhence(Factor1))holds,by Lemma

11.4.3(b).Consequently, (4BP2)holds,by Lemma12.4.3(b).
3t “(4BP2) 2 (4BP3)” when


 « d � J1 � " SpF: Assumethat(4BP2)holdsand
 « d � J1 � " SpF. As in p. 530 of [Green],we set ^ + 1 + 2 ` :
�ÍV 
+ 1 
+ 2 Y ø�E 1

(hereø is from Lemma12.4.8and 
+ 1 � 
+ 2 from (4BP2))to obtainV 
Ä I Y � V 
+ 1 
+ 2 Y « � ^ + 1 + 2 ` øZ« � ^ + 1 + 2 ` � û 0
Ä I
� � � + 1 û / + 2 
Ä+ 2

� $
(12.75)

Thus, + 2
�

I and N + 1 û / 
Ä N � N 
Ä N 8 1, i.e., NFû d+ d
1 / 
Ä d N 8 1, hence
� :

� « d ø d is minimax J1-coercive, by Lemma11.3.10(recall from Lemma
12.4.8 that 
� 411 
� 11

� 
 û d� 4 
 û d� M 0, as required by Hypothesis11.3.1)),
henceJ1-coercive, by Lemma11.4.2,i.e., π H 
 « d ø d � 4 J1 « d ø dπ H is invertible.
Therefore,alsoπ H 
 « d � 4 J1 « dπ H is invertible,by Lemma2.2.2(b)&(a1).

Since

 « d � J1 � " SpF, we have


 « d � 4 J1 « d ��
 
¬ d � 4 S
¬ d for some 
¬ d

"c
TIC



Y � U � and S

"�c
TIC



U � . Consequently, 
� 4 J1 
� �a
 
¬ dø d � 4 S
 
¬ dø d �

and 
¬ dø d

"³c
TIC. By Lemma 11.4.3(a), 
� 4 J1 
� ��� 4 J1

�
for some

� "c
TIC



Y � U � s.t.

�
11

"xc
TIC



Y � .

It follows that

�� E 1 � 22

"³c
TIC



U � , hence


 Ì d � 22

"±c
TIC



U � , whereÌ d :

� 
� � E 1 (we have

 Ì d � 22

��� E 1
22 , because
� �½@ 4�40 I B , by Lemma12.4.8).

(Notethat Ì d :
� 
� � E 1 is



J1 � J1 � -lossless,by Corollary2.5.5(iii)&(i).)

Set ¬ :
��� d ø]E 1, so that Ì � ¬§E 1« and hence(Factor2Z) (hencealso

(Factor2)holds.
(b) This is containedin Lemma12.4.3(c1).
(d) By Definition7.2.11(andLemma7.2.12(b)),+ � 
+ E 1

2

+ 1 is well-posed

if f 
+ 2

"­c
TIC∞.

1t If: This follows from Lemma12.4.13.
2t Only if: By Theorem12.3.7(e2),wehave


 ¬§E 1 � 22
� 
� H 21. If thismapis

invertibleand ¬ " ULR, then ¬§E 1

"
ULR, by Proposition6.3.1(c),andwecan

take � � 0 to obtain
V 
+ 1 
+ 2 Y � ^ 
 ¬§E 1 � 21


 ¬�E 1 � 22̀

"
ULR; in particular
+ 2

��
 ¬�E 1 � 22

"­c
TIC. 3

Lemma 12.4.15 Lemma12.3.10holds.

Proof: Assumethat � u ��� u

" 
� . Then

 ^ É u11 É u12

0 I ` � Jγ � " SpF,hencewe
have “(4BP3)2 (4BP2)5 (4BP1)”, by Theorem12.3.7(a). If (4BP2) holds,
thenwe have ¦ " 
� , hence« " 
� , by Theorem12.3.7(e2),hence


 « d � J1 � "
SpF, hence(4BP3) holds, by Theorem12.3.7(a). Thus, (4BP1)–(4BP3)are
equivalent.

(a) Since « " 
� , we have « d

" 
� , hence¬ d

" 
� , hence¬ " 
� . It follows
from Theorem12.3.7(c)&(e2)that(a) holds.

(b) Thefirst claimfollowsfrom Theorem12.3.7(c),thesecondfrom thefact
that ¬ " 
��� c 
� (andfrom (12.50)).
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(c) By Lemma12.4.12,we can take � 11 ��¦ 22

"¡c
TIC∞ etc., hence

� H
becomeswell-posed.Consequently, 
� H "ºc TIC∞, by Lemma7.2.12(b).The
d.c.f. (12.61)of

� H is over 
� , i.e.,all its termsbelongto 
� .
(d) This follows from Lemma12.4.13(becausethe converseis true by

(12.47)with � � 0).
(e) Choose 
+ 1 � 
+ 2

" 
� so that + is DPF-stabilizing
�

. By Theorem
7.3.19(iii), + DF-stabilizes

�
21. Because
+ 1 � 
+ 2 �,� u ��� u

" 
� , it follows from

Lemma7.2.16 that the d.c.f.
�

21
� � u21� u E 1

11
� �� y

E 1

22 �� y 21 is over 
� if(f)�� y21 �Ø�� y22

" 
� . By (7.79), the “if f ” in (e) follows analogously(becauseits
converseis trivial).

(f) This is obvious (recall from Proposition6.3.1(c) that
� "¡c

TIC∞ 5K�Ï
 / ∞ � "­c 6 for any
� "

TIC∞ Å ULR, hencefor any
� " 
� ).

(g) Oneobservesthis from theproof of Lemma12.4.16below. 3
Lemma 12.4.16 Theorem12.3.6holds.

Proof: By Lemma 12.3.10(a)&(c), (Factor1) is now equivalent to
(Factor1
� ).

The equivalenceof (4BP1)–(4BP3)follows from Lemma 12.3.10; by
Lemma12.3.10(c)&(d),we canmaintaintheequivalencewhile strengthening
thethreeassumptionsto (4BP1
� )–(4BP3
� ).

(We could equivalently drop the condition � 11

 / ∞ � "ÿc 6

from
(Factor1
� ), but we prefer having

� H well-posed in the formulation of
(Factor2
� ).)

(a) This follows from Theorem12.3.7(c)andLemma12.3.10(b).
(b) (In fact,it wouldsuffice to assumethat �� y 21 � �� y 22

" 
� ; cf. theproofof
Lemma12.3.10(e)above.)

“If ” is trivial, “only if ” follows from Lemma7.2.16(a)(it providesa joint
d.c.f. of

�
and + in 
� , hence+ � 
¦�E 1 
é � éÔ¦¯E 1 for some 
éf� 
¦.�Õ¦1��é " 
� ;

recallfrom Lemma7.2.12(b)that ¦§� 
¦ "�c TIC∞).
(c) This follows from Lemma12.3.9.
(d) By Lemma12.3.11(e),the requirement
� H 21

"#c 6 

U � in (Factor2
� )

can always be satisfied,hence(Factor2
� ) is equivalent to (Factor2) when
(Factor1
� ) (equivalently, (Factor1))holds. Thus, (4BP3
� ) is equivalent to
(4BP3),hencenow (4BP1)–(4BP3)and(4BP1
� )–(4BP3
� ) areall equivalent
to eachother. 3
Notes
The methodsof [Green] (or [CG97]) do not apply in the generalcase,as

explainedon p. 721. However, we have beenableto usepart of themby using
suitablemodifications.

Much of Lemma 12.4.3 was establishedfor rational transfer functions in
Section3 of [Green]. Part of Lemma12.4.11is from Lemma3.6 of [Green].
In the proof of Lemma12.4.9,we have borrowed from [Green,p. 530] the idea
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to reducetheASP(4BP2)to a H∞ FICP. Greenand[CG97] usethewell-known
matrix complementationpropertiesof their respective transferfunction classes.
SincegeneralH∞ functionsdo notpossesssuchproperties,by Lemma4.1.10,we
have constructeda suitablereducingoperator( ø ) explicitly, in Lemma12.4.8,by
using(4BP2).
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12.5 Proofsfor Section12.1— 4BP X � Y � Z

Conjecture 1. The proof of every result requires at least three
auxiliary lemmas.

Addendumto Conjecture1. Thisappliesalsoto theproofsofauxiliary
lemmas.

— K.M.

(RecallStandingHypothesis12.1.1.)In this section,we shallgive proofsfor
theresultsof Section12.1.Observethat,in mostresultsof thissection,theletters¦ and � correspondto “(1.)” (the P X-CARE) or to thecorrespondingIARE, not
to (Factor1X)of Theorem12.3.7;seeeachstatementfor details.

Theclassicalassumptionis that ^ � � 1 ` is exponentiallystabilizableandV
	�
2 Y is exponentiallydetectable.By Lemma13.3.17,in the discrete-timecase

this holdsif f thesystemΣ21 :
�WV
	 �

1�
2 � 21 Y is exponentiallyjointly stabilizableand

detectable;thesameis truein thecontinuous-timeif, e.g.,B1 andC2 arebounded
(cf. Corollary9.2.13(b)).

In that case,the correspondingpairs “ ^w� u1 � u11 � u12 ` ” and “
� � y 2�

y 12�
y 22

� ”
(andinteractionoperator“ « uy

12”) stabilize� andhencethewholeΣ exponentially,
by Lemma13.3.8. However, sometimesthe following, weaker assumptionis
enoughfor us:

Hypothesis12.5.1(H∞H∞H∞ 4BP) Assumethat Σ
� ^ 	 �� � ` " WPLS



U � W� H � Z �

Y � , andthereare jointly stabilizinganddetectingpairs^ � u � u ` ��� � u1 � u11 � u12
0 0 0

� and (12.76)��
 yñ
y
� � �� 0 
 y 2

0
ñ

y12
0
ñ

y22

 !
(12.77)

for Σ with someinteractionoperator
V 0 g uy

12
0 0 Y . Moreover, wemake thenonsingu-

larity assumptions � u 411� u11 M 0 � �� y 22 �� y
4
22 M 0 � (12.78)

where � u :
� � � u, �� y :

� �� y
�

, � u :
�³


I 0 � u11 �FE 1, �� y :
��


I 0 ñ y 22�FE 1.

Notealsothatjoint stabilizationis alwaysdoublycoprime,byTheorem6.6.28,
andthattheinteractionoperatoris necessarilyof theabove form (for pairsof the
above form).

We stronglyrecommendfor mostreadersto assumethat the above pairsare
exponentially jointly stabilizing and detecting,so that someof the proofs and
resultsbelow becomeessentiallysimpler (and much of them can be ignored).
Thiscoversthecaseof anexponentiallystabilizingcontroller, andthe(restof the)
generalcaseis not thatimportant.Indeed,this assumptionis necessarywhenone
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is interestedin finding a suboptimalexponentiallystabilizing controller (recall
Definition12.1.2):

Lemma 12.5.2(Nonexp.4BP& opt. 2 2 2 exp.4BP) AssumeHypothesis12.5.1.
Thefollowingareequivalent:

(i) Σ is optimizable;

(ii) Σ is estimatable;

(iii) Σ is optimizableandestimatable

(iv) ^ � u � u ` is exponentiallystabilizing;

(v)
VD� y�

y Y is exponentiallystabilizing;

(vi) ^w� u � u ` and
V � y�

y Y areexponentiallyjointly stabilizing;

(vii) Σ21 :
�_V
	 �

1�
2 � 21 Y is exponentiallyjointly stabilizableanddetectable;

(viii) Σ is exponentiallyDPF-stabilizablewith internal loop;

(ix) Σ21 is exponentiallyDF-stabilizablewith internal loop.

If (i) holds,thenthesystemsΣ z , Σ g d andΣ h of Lemmas12.5.15and12.5.16
andProposition12.5.19are thenexponentiallystable(undertheassumptionsof
thoseresults).

If ^w� u � u ` is stronglystabilizingfor Σ, thenthesystemsΣ z , Σ g d
d andΣ h

arestronglystable(undercorrespondingassumptions,asabove).

Thus,whenwe canshow thatHypothesis12.5.1is satisfiedandΣ is optimiz-
able, then, for solving the exponentialH∞ 4BP, it suffices to solve the I/O H∞

4BPof Section12.3,i.e.,thecorrespondingfrequency-domain(or I/O map)prob-
lem,sincethenweobtainasolutionof theexponentialproblemfrom Proposition
12.5.19.

An analogousclaim obviously holds for the more general“nonexponential
H∞ 4BP” (seethediscussionbelow Definition 12.1.2)insteadof theexponential
H∞ 4BP, andalso for the “strong H∞ 4BP” wherewe requirestronginsteadof
exponentialstability.

Proof of Lemma 12.5.2: 1t Theequivalenceof (i)–(vi): If Σ is estimatable,
then ^w� u � u ` is exponentiallystabilizing,by Theorem6.7.15(c2),henceΣ
is thenoptimizable.If Σ is optimizable,then

V � y�
y Y is exponentiallystabilizing,

by theaboveandduality.
Thus,if (i) or (ii) holds,thensodo(i)–(vi) (notethat ��� � � L and ��� � � îL

in termsof (6.133),(6.170),(6.168)and(6.171),sothatalso� L and� îL arethen

exponentiallystable). Moreover, then ^Ê� u1 � u11
0 0 ` and

V 0 � y 2
0
�

y 22 Y areobviously

jointly admissible,henceexponentiallyjointly stabilizingfor Σ21
� V
	 �

1�
2 � 21 Y

(since


Σ21 � L and



Σ21� îL have thesamesemigroupsasΣL andΣ îL), sothatalso

(vii) holds.
Conversely, any of (iii)–(vii) obviously implies(i) or (ii) (hence(i)–(vii)).
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Finally, (vi) implies (viii) and (ix), by Theorem7.3.12(b1),“(viii) 2 (i)”
followsfromTheorem7.3.12(a),and“(ix) 2 (i)” followsfromTheorem7.2.4(a)
andLemma6.7.4.,

2t Σ z , Σ g d and Σ h are exponentiallystable: By Lemma12.5.15,Σ z is
exponentiallystable,hencesois Σ g d (since � dz is). For Σ h this is containedin
Proposition12.5.19.

3t Stronglystablecase:See2t . 3
Thetheoryof Section12.3canbeappliedunderHypothesis12.5.1:

Lemma 12.5.3(Hyp. 12.5.12 2 2 Hyp. 12.3.1) Hypothesis12.5.1impliesHypoth-
esis12.3.1(with same� u ��� u �D�� y �²�� y). Indeed,defineΣTotal by (12.87).Then¦ u :

�
I 0 ñ y / � é u

� ^ I 40 4 ` � é u :
� 0;� u « uy

� V 0 E Ë u11
g uy

12
0 0 Y �

(12.79)�¦ y :
�

I 0 � u / �é y
� ��@ 4�40 I B and �é y :

� 0Ç« uy �� y
� V 0 E g uy

12
çË y 22

0 0 Y
(12.80)

complement� u ��� u � �� y � �� y to a d.c.f.; this d.c.f. satisfiesHypothesis12.3.1.

Weshallusethisbelow without furthermention.
Conversely, if

� "
TIC∞ satisfiesHypothesis12.3.1,then

�
hasa realization

satisfyingHypothesis12.5.1,by Lemma12.5.23.
Proof: AssumeHypothesis12.5.1.Then ¦ u ��é u � �¦ y � �é y in (12.79)–(12.80)

arestable(beingpartsof (6.170)and(6.171))andcomplement� u �,� u � �� y � �� y

to ad.c.f.; this d.c.f.satisfiesHypothesis12.3.1.Indeed,the


1 � 1� -blockof the

equation Á 
¦ 0 
é0 
� 
� Ã � � é� ¦ � � I (12.81)

(from (6.172)) is �� y11� u11 / 
 « � � 12� u21
�

I , hence� u21 and � u11 arer.c.

Analogously, �� y 21 and �� y 22 arel.c. 3
Next we note that Hypothesis12.5.1is equivalent to the standardH∞ 4BP

assumptions(undertheregularityassumption(A1)):

Lemma 12.5.4(


A � B1 � &



A � C2 �ò2


A � B1 � &


A � C2 �ò2


A � B1 � &


A � C2 � 2 Hypothesis12.5.1) Assume(A1)of Theo-

rem12.1.5. ThenHypothesis12.5.1is satisfiedwith “exponentiallyjointly” in
place of “jointly” iff



A � B1 � is optimizable,



A � C2 � is estimatableand (A2) of

Theorem12.1.5holds.
If Hypothesis12.5.1is satisfied,thennecessarily� u ��� u � �� y � �� y

"
MTICL1

exp
(or in (γ b ) underthealternative“(IV)” in (A1)), andwecanchoosethemsothat�� u

 / ∞ � � I ,

��� y

 / ∞ � � I .

Proof: 1t 
 A � B1 � &


A � C2 ��� Hypothesis12.5.1This is containedin

Lemma12.5.2.
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2t 
 A � B1 � &


A � C2 �±2 Hypothesis12.5.1exceptpossibly(12.78): By

Corollary9.2.13(b),thereareK

" 6 

H � U � and � " 6 
 Y� H � s.t.A / B1K and

A / � C2 areexponentiallystable.ExtendΣ by K and � (with F
�

0
�

G
�

E)
to satisfyHypothesis12.5.1with “exponentiallyjointly” in placeof “jointly”
exceptpossibly(12.78).

By (theproofof) Corollary9.2.13(c),� u ��� u �D�� y �Ø�� y

"
MTICL1

exp (andthey

are d.c. over MTICL1

exp) and
�� u

 / ∞ � � I ,

��� y

 / ∞ � � I . The caseof the

alternative “(IV)” in (A1) follows similarly (use(c3) and (b) insteadof (c1)
of Lemma6.8.4).

3t Conditions(12.78) 5 (A2): TheoperatorK is exponentiallystabilizing

for Σ11 :
� � A B1

C1 D11 � , with closedloop I/O map
V É u11Ë u11 Y (since � u :

��

I 0� u �FE 1 �V k I E � u11 ? e 1 EZk I E � u11 ? e 1 � u12

0 I Y ).
By Lemma8.4.11(a2),� u 411� u11 M 0 if f � u11 is I -coercive; by Theorem

8.4.5(d),this is thecaseif f
�

11 is I -coercive over � exp (w.r.t. systemΣ11); by
(e2)&(i)&(ii’) of Proposition10.3.2,this is thecaseif f D 411D11 M 0 and(12.11)
holds;thesearecontainedin theassumptions.

By dual arguments,we obtain that �� y 22 �� y
4
22 M 0 if f D22D 422 M 0 and

(12.12)holds.
4t Thefinal claimswereobservedin 2t . 3

Lemma 12.5.5(P X & P Y 2P X & P Y 2P X & P Y 2 Hypothesis12.5.1) If conditions(A1), (A2), (1.)
and(2.) of Theorem12.1.5aresatisfied,then



A � B1 � is optimizableand



A � C2 � is

estimatable.

SeeLemma12.5.4for more.
Proof: By Theorem11.1.4(iii)&(i) (or Theorem11.1.3(iii)&(i) in case(IV)

of (A1)), theFICPfor ΣX hasa solution;in particular,


A � B1 � is exponentially

stabilizable.By duality,


A � C2 � is exponentiallydetectable. 3

Whensolving P X-part of the 4BP, we get the P Y-part in the bargain dueto
duality:

Lemma 12.5.6(Duality) Hypotheses12.1.1,12.5.1,12.3.1and12.0.1,andDef-
initions 12.1.2and12.3.3are invariantunder(“interchanged”) duality.

In particular, a map + " TIC∞


Y� U � is a suboptimal[exponentially]stabi-

lizing DPF-controller for Σ (resp.for
�

) iff + d

"
TIC∞



U � Y � is a suboptimal

[exponentially]stabilizingDPF-controller for Σd (resp.for
�

d). 3
(Part of this follows from Proposition7.3.4(d),the restis obvious (notealso

that µ is well-posedif f µ d is). Part of thelemmais containedin Lemma12.3.4.)
Here(andelsewhere),

�
d :
��@

0 I
I 0 B � d @ 0 I

I 0 B , � d :
� � d @ 0 I

I 0 B , � d :
��@

0 I
I 0 B � d and � d :

�� d, Σd :
� V 	

d
�

d�
d � d Y etc.; i.e., we take causaladjointsof eachmapor system,and

interchangetherowsandcolumnscorrespondingto U andW andto Z andY.



12.5. PROOFSFORSECTION12.1— 4BP X Y Z 741

If the4BPhasasolution,thenthe“I/O FICP” andits dualproblemhavewell-
posedsolutions:

Lemma 12.5.7(H∞H∞H∞ 4BP 2 H∞2 H∞2 H∞ FICP) Assumethat there is a suboptimalsta-
bilizing DPF-controller for Σ (or for

�
). Thenthere are Ä " TIC



W� U � and
Ä " TIC



Y� Z � s.t. N � 11 Ä / � 12 N TIC 8 γ and N � 12 / 
Ä � 22 N TIC 8 γ.

Assumethat there is a suboptimalexponentiallystabilizing DPF-controller
for Σ. Then



A � B1 � is optimizable, hence � ΣX

exp


x0 �Û¤� /0 for each x0

"
H; γ �

γ0 for ΣX (seeDefinition 11.1.2); and Ä can be chosenso that, in addition,^ í I ` @ L2 
 R H ;W �JBÞv³� ΣX
exp


0� . Analogousclaimshold for ΣY.

Proof: 1t The first claim follows from Proposition7.3.4(e)(the stability
of

� E 1 and 
 E 1 (henceof Ä :
��
�� E 1 � 12 and 
Ä :

�a
 
 E 1 � 12) follows from
Proposition7.3.4(b)).

2t Let 
Σ beanexponentiallystabilizingDPF-controllerfor Σ. By Proposi-
tion 7.3.4(e),w &' u is givenby Ä :

�¸
�� E 1 � 12

"
TIC



W� U � , and ( ) 
 � �,µ.� ��

11 Ä / � 12.
However, for eachw

"
L2 
 R H ;W � (andx0

�
0, uL

�
0, yL

�
0), all signals

in the combinedclosed-loopsystem(seeFigure 12.1) are in L2 (since 
Σ is
exponentiallystabilizing,sothatΣo

I is exponentiallystable);in particular,

L2 
 R H ;H � � x
� � τ

@ u
w B � � τ ^ í I ` w (12.82)

(becausein eachform of feedback(cf. Summary6.7.1),the state,outputand
input areuniquesolutionsof (6.122)–(6.124),by Proposition6.6.2).

We concludethat ^ í I ` w " � exp


0� � � ΣX

exp


0� . Sincew wasarbitrary, we

have γ �ðN � 11 Ä / � 12 N O γ0 (whereγ0 :
�

γ0 > ΣX is definedwith ΣX in place
of Σ). By Theorem7.3.12(a),



A � B1 � is optimizable,henceso is



A � B� ; in

particular, � ΣX
exp


x0 �;¤� /0 for all x0

"
H. 3

In finite-dimensionaltheory, oneoften looks for a map + " TIC∞


Y� U � that

“stabilizes Σ”, a system. However, it seemsthat in such theory one always
assumesan optimizableand estimatablerealizationof Σ, and the definition of
“ + stabilizesΣ” refersto this realizationexplicitly or implicitly. Nevertheless,
we shall show below thatsucha concepthasa meaningfuldefinition for general
Σ

"
WPLS, andthat for “L 1-smoothsystems”(andany discrete-timesystems),

this definition guaranteesthe existenceof a realizationof + that stabilizesΣ
exponentially(in theordinarysense):

Indeed,insteadof requiring the existenceof a DPF-stabilizingsystemwith
internal loop, it sufficesto requirethe existenceof a DPF-stabilizingmapwith
internal loop (cf. the differencebetweenFigures7.11 and12.3); thus,also this
formally weaker conditionis equivalentto (1.)–(3.):

Remark 12.5.8(“Suboptimal exponentially stabilizing + + + (not 
Σ
Σ
Σ) for ΣΣΣ”)
Insteadof finding a suboptimalsystemthat stabilizesΣ exponentially, we may
require the existenceof a suboptimalmap(a (well-posed)map + " TIC∞



Y� U �

or a map + with internal loop) that stabilizesΣ exponentially.
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1

�
11
�

12�
2

�
21
�

22

Σ

� µ 11 µ 12µ 21 µ 22

�H H
y � y�yL � z�
u � �H H uL� 


u

�
w

�
x0

�x�
�ξ �H H ξL�
ξ�

Figure12.3:“DPF-controller+ with internalloop” for Σ

"
WPLS



U � W� H � Z �

Y �
By this we meanthe weakenedform of Definition 7.3.1, where the second

row andsecondcolumnof Σo
I neednot beexponentiallystable(for an arbitrary

realizationof 
Σ of + ; notethat the realizationaffectsonly the secondrow and
columnof Σo

I ). It followsthat Σ21 is optimizableandestimatable.
Assumethat (A1)of Theorem12.1.5holds.
Then any map + that stabilizes Σ exponentially has a realization 
Σ "

WPLS


U � W � Ξ � 
H � Z � Y � Ξ � that stabilizesΣ exponentially(if + is well-

posed,then 
Σ can be chosento be well-posed). In particular, the existence
of a suboptimalexponentiallystabilizing + is equivalentto the existenceof a
suboptimalexponentiallystabilizingcontroller 
Σ (becausetheconverseis trivial;
notethat “(1.)–(3.)” is a third equivalentconditionif also (A2) holds,and that
thenthecontroller canbetakenwell-posedwheneverD21

�
0, byTheorem12.1.8,

evenif + were notwell-posed).

Notethatin discretetime(A1) becomesredundant,andthatany of (I)–(IV) of
Theorem12.1.4(A1)implies(A1) of Theorem12.1.5.

Proof: (Weonly sketchtheproof. Notethatanalogousdefinitionscouldbe
madewith otherattributesthan“exponentially”,aswell asfor DF-stabilization
(insteadof DPF-stabilizationstudiedin this chapter),but we have no usefor
such.)

1t If + " TIC∞


Y � Ξ � U � Ξ � DPF-stabilizesΣ

"
WPLS



U � W� H � Z � Y �

exponentially, thenΣ21 is optimizableandestimatable:Let 
Σ be a realization
of + , let Σo

I be thecorrespondingclosed-loopsystem(asin Definition 7.3.1),
andlet Σo

I >H denoteΣo
I with thesecondrow andthesecondcolumnremoved.

By writing Σo
I out, onecanverify thatΣo

I >H doesnot containelementsof 
Σ
(other than its I/O map + ). Indeed,for

� o
I this is trivial, for

� o
I we observe

this from thefact thattheleft columnof (7.74)doesnot containsuchelements
(since


 � o
I � 31 consistsof theelementsof



I 0 � o � E 1 and

�
2 only), theformulae

for � o
I areanalogous,and� o

I >H :
�³
 � o

I � 11
� � / � 1τ


 � o
I � 11 � (12.83)

by (7.75); thus, also � o
I >H is independentof 
Σ. Therefore,the concept“ +

stabilizesΣ exponentially”is independentof therealization
Σ of + .
Assumethat + stabilizesΣ exponentially, i.e., that the four partsof Σo

I >H
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satisfy 1.–4. of Definition 6.1.1 for someω 8 0 (note that “ � o
I >H ” is not a

semigroupin general). Then

 � o

I � 11 is (exponentially)stableand � o
I >H x0

"
L2 
 R H ;H � for all x0

"
H. By (12.83),it followsthat ^ � � 1 ` is optimizable.

By dualarguments,̂ � �
2 ` is estimatable.

2t An optimizableandestimatable, henceexponentiallystabilizingrealiza-
tion 
Σ of + exists(under(A1)): Assumethat(A1) holdsandthat + stabilizesΣ
exponentially.

By 1t , Σ21 is optimizableandestimatable,hencetheaboveclaim holds,by
Lemma7.3.6(b1)(seealsoTheorem7.3.11(c1)).

(This 2t appliesbothto (well-posed)+ " TIC∞


Y� U � (giving (well-posed)
Σ " WPLS



U � 
H � Y � ) andto + " TIC∞



Y � Ξ � U � Ξ � (giving 
Σ " WPLS



U �

Ξ � 
H � Y � Ξ � ).
3t Assume(A1). If 
Σ stabilizesΣ exponentially, then + stabilizesΣ

exponentially(if Σo
I of Definition 7.3.1 is exponentiallystable,thenso is the

correspondingsub”system”“Σo
I >H”); the conversewasgiven in 2t . Thus,we

have thefirst equivalence.
Under (A2), we obtain the secondequivalencefrom Theorem12.1.5. If

D21
�

0, thenall suboptimalexponentiallystabilizingcontrollersareequivalent
to well-posedones,by Theorem12.1.8. 3
Weoftenwish to assumethatD21

�
0. Usually, this is notaproblem:

Lemma 12.5.9(D21D21D21 is irr elevant) Thevalidity of Hypothesis12.5.1remainsun-
changed if one alters D21 (ceteris paribus). The sameholds for Hypotheses
12.5.13and12.3.1,andfor theassumptionsof Theorem12.1.11.

Conditions(1.) and(4.) of Theorem12.1.8are independentof D21; thesame
holdsfor (1.’) and(4.’) of Proposition12.1.10.If Hypothesis12.3.1is satisfied,
then(4BP1)is independentof D21.

However, D21 does affect the well-posednessand the exact form of the
suboptimalcontrollers;cf., e.g.,Proposition12.5.19(g).

Proof: 1t Hypothesis12.5.1:Obviously, thesamepairswill do(but � u and�� y areaffected).
2t Hypothesis12.5.13:Observe thatΣX is independentof D21.
3t Hypothesis12.3.1: This follows from Lemma7.3.23and Proposition

7.3.14(i)&(iii) (or from equation(7.103).
4t Theorem12.1.11: When

�
is replacedby

� / R, whereR
� ^ 0 0

R21 0 ` "6 

U � W� Z � Y � , the map � u of Hypothesis12.5.1is unaffectedbut � u is

replacedby � u / R� u

" 
� . An analogousremarkappliesto �� y and �� y .
4t (1.), (4.), (1.’) and(4.’): This is obvioussincecorrespondingoperators

are independenton D21 except for the r.c. condition in (1.’), which can be
handledwith Lemma6.5.7(b).

5t (4BP1): AssumeHypothesis12.3.1(it is independentof D21, by thelast
claimof Lemma7.3.23).Let

� b beequalto
�

with 0 in placeof D21.
We observe from Lemma 7.3.23 that there is a suboptimalstabilizing

DPF-controllerfor
�

(necessarilywith d.c.internalloop,by thehypothesisand
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Theorem7.3.19(i)&(i’)) if f thereis asuboptimalstabilizingDPF-controllerfor� b . 3
Thefactorizationsof Theorem12.3.7correspondto systemΣX andto system

ΣZ of (12.94),hence,by Theorem9.9.10,to their Riccati equations,that is, to
“(1.)” and“(4.)” of Theorem12.1.8(thesystemΣY providesthedual (H∞ filter
problem)Riccatiequation“(2.)” of Theorems12.1.4and12.1.5):

Definition 12.5.10(ARE systems)Wedefinethefollowing systemsandmap:

ΣX :
�ý� � ��

X
�

X
� :
� �� � � 1 � 2�

1
�

11
�

12

0 0 I

 ! � (12.84)

ΣY :
�ý� � Y � Y�

Y
�

Y
� :
� �� � d � d

2
� d

1� d
2

� d
22

� d
12

0 0 I

 ! � (12.85)�
d :
�³@

0 I
I 0 B � d @ 0 I

I 0 B � � � d
22

� d
12� d

21
� d

11
� $ (12.86)

SeeLemma12.5.16for ΣZ andΣ g d .

Herewewrite outa few formulae:

Lemma 12.5.11(ΣTotalΣTotalΣTotal) AssumeHypothesis12.5.1.Thenthepairsand « uy of the
hypothesisextendΣ to ΣTotal

"
WPLS



Z � Y � U � W� H � Z � Y � U � W � , where

ΣTotal :
� ������ � 0 
 y2 � 1 � 2�

1 0
ñ

y12

�
11

�
12�

2 0
ñ

y22

�
21

�
22� u1 0 « uy

12 � u11 � u12
0 0 0 0 0

 �����! $ (12.87)

Moreover, ^w� u � u ` stabilizesΣX to

ΣX � :
� ������ � / � 1τ � u11� u1 � 1 � u11 � 1 � u12 / � 2�

1 / � u11� u1 � u11 � u11
0 0 I� u11� u1 � u11 0 I � u12
0 0 0

 �����!
(12.88)

here � u :
��


I 0 � u �FE 1 � ^ Ë u11 Ë u12
0 I ` .

Analogously, thepair
V � y

d
2
�

y
d
22
�

y
d
12

0 0 0 Y stabilizesΣY to

ΣY � :
� �������� �

d / � d
2τ �� y

d

22
 y
d
2

� d
2 �� y

d

22

� d
2 �� y

d

21 / � d
1� d

2 / �� y
d

22
 y
d
2 �� y

d

22 �� y
d

12
0 0 I�� y

d

22
 y
d
2 �� y

d

22 0 I �� y
d

12
0 0 0

 �������! (12.89)
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(all elements above are from (6.171)); here 
� yd :
� 


I 0 ñ y
d �GE 1 �V k îË yd ? 11 k îË yd ? 12

0 I Y ��@ 0 I
I 0 B �� y

d @
0 I
I 0 B � V çË y

d
22
çË y

d
12

0 I Y .
Proof: The first claim is from Definition 6.6.21. One easily verifies the

formulae. Sinceall elementsof (12.88)arefrom (6.170)andall elementsof
(12.89)arefrom (6.171),it is obviousthatthesesystemsarestable. 3
Now we arereadyfor themainpartof theproof. We first show that(Factor1)

is equivalentto the“ P X-CARE”:

Lemma 12.5.12((Factor1) 5 P X5 P X5 P X-CARE) AssumethatHypothesis12.5.1holds
andthat � u ��� u

"
UR.

Then(Factor1) has a UR solution �×��� iff the CAREfor ΣX and Jγ has a
UR P-stabilizingsolution


 P X � SX � KI � s.t.
� 


I 0 � �FE 1 and


I 0 � �GE 1 are [q.]r .c.,P X O 0, SX11 M 0 andSX22 0 SX21SE 1

X11SX12 Q 0.
If ^�� u � u ` is exponentiallystabilizing, then(Factor1)hasa UR solution�×��� iff the CAREfor ΣX and Jγ has a UR exponentiallystabilizing solution
 P X � SX � KI � s.t. P X O 0, SX11 M 0 andSX22 0 SX21SE 1

X11SX12 Q 0.
In either case, the IARE for ΣX and Jγ has a UR P-stabilizing solution
 P X � J1 � ^ � � ` � s.t. � :

�ö

I 0 � � E 1, � :

� � � and ¦ :
� � E 1 � u satisfy

(Factor1)and(Factor1X),andHypothesis12.5.13is satisfied.
Conversely, if Hypothesis12.5.13is satisfied,then the IARE for ΣX and Jγ

hasa uniqueUR P-stabilizingsolution

 P X � J1 � ^w� � ` � s.t.



I 0 � � E 1 � � ,� � � � .

Proof: Now
� � � u � u E 1 is UR, by Proposition6.3.1(b1). By Theorem

12.3.7(e1)&(e2),(Factor1)and(Factor1X)areequivalent,and ¦ is UR iff �
and � areUR

1t (Factor1X)iff CAREfor ΣX � : By Proposition11.3.4(f),(Factor1X)(or
(FI3s)) is equivalent to (FI4s) for ΣX � . If we add the requirementthat ¦ (or� ) is UR, then,by Proposition11.3.4(a),(FI4s) is equivalentto (FI5s), i.e., to
theconditionthat theCARE for ΣX andJγ hasa UR stable,P-SOS-stabilizing
solution


 P X � SX � KI � s.t. P X O 0, SX11 M 0 andSX22 0 SX21SE 1
X11SX12 Q 0.

2t (Factor1X)iff CAREfor ΣX when ^w� u � u ` is exponentiallystabiliz-
ing: By Proposition9.12.4andLemma9.12.3(b),theexponentiallystabilizing
solutionsof theCAREsfor



ΣX � � Jγ � and



ΣX � Jγ � correspondto eachotherone-

to-one(they have same� z ’s, by (b), henceoneis exponentiallystabilizingif f
bothare);by Theorem9.8.12,they areequal.Since� u is UR, oneis UR iff the
otheroneis, by Proposition9.12.4.

3t (Factor1X)iff CAREfor ΣX: Work asin 2t , let � X and � X � correspondto
thesolutionsof thetwo CAREs,andset ¦ X � :

�
I 0 � X � and � X :

�±

I 0 � X �FE 1.

By Lemma9.12.3(b),condition(P) is preserved. Themap ¦ X � :
� � E 1

X � u

is in

c
TIC iff

� � X and � X arer.c.,by Lemma6.4.5(c)(since� u
� � � u and� u arer.c.). By Lemma6.6.17(b)&(c),thesolutionfor theCARE for


ΣX � � Jγ �

is stableand[SOS-]stabilizingif f ^w� X � �� � X � ` is r.c.-stabilizing;by Lemma
6.7.11(a2),thisis thecaseif f ^w� X �� � X ` isq.r.c.-stabilizingfor Σ (equivalently,
r.c.-stabilizing,by Lemma6.4.5(c)).
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(Notethat

 P X � SX � KI � arethesamein 2t and3t .)

4t X andM: In 1t , we canchooseX so that X21
�

0 andX11 � X22

"#c 6
,

by Proposition11.3.4(e)(or by Lemma11.3.13(i)&(iii’) andTheorem9.8.12),
if we replacethe CARE by the IARE andSX by J1. This is automaticif we
areoriginally given �×��� satisfyingHypothesis12.5.13(theuniquenessclaim
follows from Theorem9.8.12(b)(&(s1))).

Therestfollowsasabove(notefrom 4t that � X
� � u ¦ E 1

X � , hencenow � X

becomesequalto � , by (12.49)). 3
Weshalloftenassumethefollowing:

Hypothesis12.5.13((Factor1) with X
��@ 4�40 4 BX
�³@ 4�40 4 BX
��@ 4�40 4 B ) Hypothesis 12.5.1 holds,� u ��� u

"
UR, and �×��� is an UR solution of (Factor1) s.t. X21

�
0, where¦ :

� � E 1 � u.
(Whenthis hypothesisholds,wedenoteby


 P X � J1 � ^�� � ` � thesolutionof
the P X-IAREmentionedat theendof Lemma12.5.12,andby Σ z thecorrespond-
ing (stable)closed-loopsystem.)

(The regularity assumptionsmight be somewhat (resp.completely)reduced,
but this would requiresomewhat more complicatedformulationsof the results
basedon the above hypothesis(resp.anduseof IAREs insteadof CAREsasin
(FI4s)insteadof (FI5s)in Theorem11.3.3).)

By (12.49),“ �×��� "
UR” couldbereplacedby “ ¦ " UR”.

Lemma 12.5.14 Make Hypothesis12.5.13. Then ¦ satisfies(Factor1X),M
�V M11 M12

0 X e 1
22 Y , andX11 � X22 � M11

"xc 6
. Moreover, then

� ��¦f�Õ« " UR.

Proof: By Theorem12.3.7(e2), ¦ satisfies(Factor1X), hence ¦§��¦ 11

"c
TIC∞. By LemmaA.1.1(b), � u11

"#c
TIC∞



U � . By Proposition6.3.1(b1),

it follows thatX � X11 � Mu11

"Üc 6
, henceX22 � 
 X E 1 � 11 � 
 X E 1 � 22

"Üc 6 

W � and


X E 1 � 21
�

0, by LemmaA.1.1(b). By (12.49),M
� @ 4�40 I B X E 1, hencealsoM

andM11 areasabove. By Proposition6.3.1(b1),
� ��¦f�Õ« " UR. 3

We needto defineexplicitly theclosed-loopsystemcorrespondingto P X, so
thatwecandefinethe“ P Z-CARE” furtherbelow:

Lemma 12.5.15(Σ zΣ zΣ z ) Make Hypothesis12.5.13. Assumethat ^�� u � u ` is
[[exponentially]strongly] stabilizingfor Σ.

Then there is a unique [[exponentially] strongly] P-stabilizing solution
 P X � SX � ^w� � ` � of the IARE for ΣX and J1, and ^w� � ` is determined
uniquelyby requiring that � � I 0ì� E 1. Thepair ^w� � ` is [[exponentially]
strongly] stabilizingfor Σ too; we denotethe correspondingclosed-loopsystem
by

Σ z :
� �� � z � z� z � z� z � z  ! � (12.90)

sothat � z � � 0 I ,
� z � � � � � .
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It is importantto notethatΣ z is astate-feedbackperturbationof Σ, notof ΣX,
althoughK is determinedby theIARE for ΣX.

Proof: (Recall from Hypothesis 12.5.1 and Theorem 6.6.28 that^w� u � u ` is r.c.-stabilizingfor Σ even without the extra assumptionof the
lemma.)

By theassumption,̂w� u � u ` is [[exponentially]strongly]stabilizingfor
Σ, hencealsofor ΣX. As in theproofof Lemma12.5.12,weobtainthesolution
of theIARE mentionedabove; beingP-stabilizing,P X is unique(seeTheorem
9.8.12(b)&(s1);note that SX and ^w� � ` is not unique in generalbefore
we fix � ). By Lemma6.6.17(d)&(c), ^ � � ` is [[exponentially]strongly]
stabilizingfor Σ too. 3
The third Riccati equationtraditionallyassosiatedto the4BPcorrespondsto

therealizationΣZ of
V � d�

12
� d�

22
0 I Y " TIC



Y � U � W � U � definedbelow:

Lemma 12.5.16(ΣZΣZΣZ and P ZP ZP Z-CARE) Assumethat Hypothesis12.5.13holdsand
that � 11

"�c
TIC∞



U � . Then(seethehypothesisfor Σ z )V 
� 
� Y :

�ý� 0 0 0� dz > 1 � d
21 I 0ì� d

11
� (12.91)

is a stableadmissiblestatefeedback pair for

Σ g d :
� � � g d � g d� g d

� g d
� :
� ��� � dz � dz > 2 0 � dz > 1� dz > 2 � d

22 0Ç� d
120 � dz > 1 0�� d

21 � d
11

 ��!
(12.92)

:
� �� � d / � d � dτ � d � d

2 / 
 � � � d2 0 
 � � � d1
 � �Ñ� d2 
 � �Ñ� d22 0;� d
120 
 � �<� d1 0 
 � �Ñ� d21 � d

11

 ! $ (12.93)

Thetop threerows(“the
V 	 Ý � Ý� Ý � Ý Y part“) of the correspondingclosed-loop

systemaregivenby

ΣZ :
�ý� � Z � Z�

Z
�

Z
� :
� �� � d / � d

2τ ¦ E d
22 � d

2
� d

2 / � d
2 ¦ E d

22
� d

22 0 � d
1 / � d

2 ¦ E d
22 ¦ d

12¦ E d
22 � d

2 ¦ E d
22
� d

22 ¦ E d
22 ¦ d

12
0 0 I

 !
(12.94)"

WPLS


Y � U � H � W � U � (see (12.17) for correspondinggenerators). In

particular,�
Z
� � ¦ E d

22
� d

22 ¦ E d
22 ¦ d

12
0 I

� � � � dH 12
� dH 22

0 I
� " TIC



Y � U � W � U �%$ (12.95)

The systemΣ g d is stable; it is exponentiallystableiff Σ is optimizable(by
Lemma12.5.2). 3

(This is obvious. Notefrom Lemma12.5.14andProposition6.3.1(c)thatthe
assumptionon � 11 is redundantif � "

ULR.)
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TheCARE(resp.IARE) for ΣZ andJ1 is calledthe P Z-CARE(resp.P Z-IARE).

Lemma 12.5.17(P ZP ZP Z-IARE 5 5 5 (Factor2)) AssumethatHypothesis12.5.13holds
and � 11

"xc
TIC∞



U � . Considerthefollowingconditions:

(i) (Factor2Z)hasa UR solution ¬ "�c TIC


Y � U � s.t.Z12

�
0 andZ11 � Z22

"c 6
.

(ii) the CAREfor ΣZ andJ1 hasa UR P-stabilizingsolution

 P Z � SZ � KZ > I � s.t.P Z O 0, SZ11 M 0, SZ22 0 SZ21SE 1

Z11SZ12 Q 0,


I 0 � Z > I � 
 I 0 
� � "�c TIC



Y �

U � and � Z > I / 
 I 0 � Z > I � 
� is stable.

(iii) the CARE for Σ g d and J1 has a UR stable, P-stabilizing solution
 P Z � SE � KE � s.t. P Z O 0, SE11 M 0 andSE22 0 SE21SE 1
E11SE12 Q 0.

(ii’) the CARE for ΣZ and J1 has a UR exponentially stabilizing solution
 P Z � SZ � KZ > I � s.t. P Z O 0, SZ11 M 0 andSZ22 0 SZ21SE 1
Z11SZ12 Q 0.

(iii’) the CARE for Σ g d and J1 has a UR exponentiallystabilizing solution
 P Z � SE � KE � s.t. P Z O 0, SE11 M 0 andSE22 0 SE21SE 1
E11SE12 Q 0.

Then(c1)–(d)belowhold; if D21
�

0, thenalso(a) and(b) hold:

(a) Wehave(i) 5 (ii) 5 (iii).

(b) If ^�� u � u ` is exponentiallystabilizing, then(i)–(iii’) areequivalent.

(c1) If (Factor2Z) has a solution, then (ii)–(iii) (and (ii’) and (iii’) if^w� u � u ` is exponentiallystabilizing)hold if wedrop“UR” andthecon-
ditionsonSE andSZ, andwereplace“CARE” by “IARE”.

(c2) If (Factor2Z)hasa UR solution,then(ii) holds(and(ii’) if ^�� u � u ` is
exponentiallystabilizing).

(d) If (ii) hasa solution(or (ii’) hasand ^ � u � u ` is exponentiallystabiliz-
ing), then « J1 « 4 � ¬ J1 ¬ 4 for some¬ "xc TIC



Y � U � s.t. « d ¬�E d is



J1 � J1 � -

losslessandZ11

"xc 6 

Y � .

If, in addition, dimU 8 ∞, then ¬ satisfies(Factor2Z)(and (Factor2
� ) if� u ��� u

" 
� ).

RecallfromTheorem12.3.7(a)thatif

 « d � J1 � " SpF, thenonemoreequivalent

condition is that the 4BP hasa solution. We remind that most readersshould
ignore the nonexponential4BP (and hence(ii) and (iii) and most of the proof
below); it combinesa lessimportantproblemwith morecomplicatedproofsand
solutions.

Note thatwe coulddroptheregularity assumptionin (i) andformulate(ii[’])
and(iii[’]) analogouslyto (FI4) (seeTheorem11.3.3).

In the proof of Theorem12.1.8andProposition12.1.10,we strengthenthe
equivalenceof (Factor2)and (ii[’]) (by establishinga converseto (c2) without
assumingthatD21

�
0).

The condition in (ii) may seemcomplicated(it correspondsto ¬ d being a
spectralfactor of


 « d � 4 J« d) comparedto the simple r.c. condition of Lemma
12.5.12(correspondingto ¦ solving(Factor1)).Theexplanationis thattheword
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“stable” in (iii) is, indeed,a r.c. condition(by Corollary9.9.11),but since(12.91)
neednotbe(q.)r.c.-stabilizingin general,thecorrespondingconditionin (ii) is not
a r.c. conditionw.r.t. ΣZ. This explainsthecorrespondingdifferencein (1.’) and
(4.’) of Proposition12.1.10.

Proof of Lemma 12.5.17: (Much of this follows the lines of the proof
of Lemma12.5.12,we just needcertainmorecomplicateddetails. For each
claim,wefirst givetheproofwhere ^w� u � u ` is assumedto beexponentially
stabilizing;mostreaderswill skip themorecomplicatedandlessimportantpart
(with amerestabilizationassumption).)

Remarksand notation: Since �×��� "
UR, we have

� ���{E 1 � � H � � Z

"
UR, As shown in the proof, the operatorsin (ii)–(iii’) having samesym-
bols are equal. The solutionsof (ii)–(iii’) (if any) are unique,by Theorem
9.8.12(b)&(s1).

We usethestandardnotationwhere¦ :
�

I 0 � , � :
� ¦ E 1, and ^w� � `

correspondsto K (with any subscripts).We alsousethe notationof Lemma
12.5.16.

Theproof: Wegive theproofsin theorder(c1), (c2), (d), (a), (b).

(c1) This follows from 2t and 4t (and 1t and 3t if ^w� u � u ` is
exponentiallystabilizing).

1t (Factor2Z) 2 weakened (ii’) (when ^ � u � u ` is exponentially
stabilizing): Assume (Factor2Z). By Corollary 9.9.11 (and Theorem
9.9.10), the IARE for Σ g d and J1 has an exponentially stabilizing solution
 P Z � J1 � ^�� E � E ` � , where� E

�
I 0ò¬ d (notefrom Lemma12.5.16thatΣ g d

is exponentiallystable).

From 3t we obtain an exponentially stabilizing solution
 P Z � J1 � ^ � Z � Z ` � of the P Z-IARE. It only remains to be shown thatP Z O 0.

By (9.224),wehave ¦ Z
� ¦ E 
� , hence¬ E d � � E

� 
�º� Z and� z > Z :
� �

Z � Z
�³
 « d 
�Ñ�Ê� Z

� « d ¬ E d � : Ì d

"
TIC



Y � U � W � U �%� (12.96)

where� Z :
��


I 0 � Z � E 1, � E
��


I 0 � E � E 1. By (12.96)andLemma12.3.11(a),
 � z > Z � 22
� Ì d

22

"Ñc
TIC



U � . But


 � Z � 22
�ð
 � z > Z � 22 (since

�
Z
�ð@ 4�40 I B , by

(12.95)),and


J1 � 22

� 0 I Q 0, henceit follows from Lemma11.2.18(seethe
remarkin its proof) that P Z O 0 (andthat thereis a suboptimalH∞-FI-pair for
ΣZ andγ

�
1 andthatHypothesis11.2.1is satisfiedfor ΣZ over � exp).

2t (Factor2Z) 2 weakened(ii): Assume(Factor2Z).(Westartalmostasin
1t , but theproof of “ P Z O 0” mustbewrittenmoreexplicitly.)

By Corollary9.9.11(andTheorem9.9.10),the IARE for Σ g d andJ1 hasa
stable,P-stabilizingsolution


 P Z � J1 � ^w� E � E ` � , where � E
�

I 0d¬ d (note
from Lemma12.5.16thatΣ g d is stable).

From4t weobtainaP-stabilizingsolution

 P Z � J1 � ^ � Z � Z ` � of the P Z-

IARE (by Σ z we shall denotethe corresponding(stable)closed-loopsystem)
s.t.



I 0 � Z > I � 
 I 0 
� � "Üc TIC



Y � U � and � Z > I / 
 I 0 � Z > I � 
� is stable.It only

remainsto beshown that P Z O 0.
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By (9.224),wehave ¦ Z
� ¦ E 
� , hence¬�E d � � E

� 
�º� Z and� z > Z :
� �

Z � Z
��
 « d 
�Ñ�,� Z

� « d ¬ E d � : Ì d

"
TIC



Y � U � W � U �%� (12.97)

where� Z :
�ª


I 0 � Z �FE 1, � E
�¡


I 0 � E �FE 1. By (12.96)andLemma12.3.11(a),
 � z > Z � 22
� Ì d

22

"Ñc
TIC



U � . But


 � Z � 22
�ð
 � z > Z � 22 (since

�
Z
�ð@ 4�40 I B , by

(12.95)),and


J1 � 22

� 0 I Q 0,
In 1t , we obtainedP Z O 0 at this point from Lemma11.2.18. Sincethis

time P Z neednot beexponentiallystabilizing,we shall applyLemma11.2.18
for Σ

á
(seebelow) insteadof ΣZ in thiscase.

Thepair ^ � � ` :
� ^ � Z1 � Z11 � Z12

0 0 0 ` is admissiblefor ΣZ, because� Z11

"c
TIC∞



Y � (because� Z22

�i
 � z > Z � 22

"yc
TIC



U � , asshown above); let Σ

á
bethecorrespondingclosed-loopsystem.Notethat� á � �

Z � ��� I I
0 I

� � where � :
��


I 0 � � E 1 �ý� I I
0 I

� $ (12.98)

By Lemma9.12.3

 P¨� J1 � ^���� � � ` � is asolutionof theIARE for Σ

á
0 :
�^ 	 ß � ß� ß � ß ` andJ1, where^w��� � � ` :

� ^ � 0ò¦ � á I 0 ¦ 
 I 0 ^ � Z11 � Z12
0 0 ` � E 1 `� � 0 0 0� E 1

Z22 � z 2 � E 1
Z22 � Z21 I 0 � E 1

Z22
� (12.99)

(the last equality follows by direct computation). But ^�� � � � ` is sta-
ble (becauseΣ z is stableand � Z22

"³c
TIC



U � ), and so is



I 0 � � �FE 1 �^ I 0Ë Z21 Ë Z22 ` , henceΣ

á
is stable,by Corollary 6.6.9 (seeDefinition 6.6.10),

hence ^ � � � � ` is r.c.-stabilizing,by Lemma6.6.17(d).
Consequently, wecanapplyLemma11.2.18toΣ

á
toobtainthat P Z O 0 (we

havenotestablishedHypothesis11.2.1for Σ
á

, but thathypothesisis redundant,
asnotedin thelatterremarkof theproofof Lemma11.2.18;wedid usethefact
that

��á ��@ 4�40 I B , i.e., thatHypothesis11.1.1is satisfied).
3t (c1)-form of (ii’) 5 (iii’): Given an exponentially stabilizing solution
 P Z � SZ � ^�� E � E ` � of theIARE for Σ g d andJ1, anexponentiallystabilizing

solution

 P Z � SZ � ^w� Z � Z ` � of the P Z-IARE (i.e.,of theIARE for ΣZ andJ1)

is thendeterminedby¦ E
� ¦ Z 
¦ and � E

� � Z / ¦ E

 
� 
� � � � Z / ¦ Z 
� � (12.100)

by Lemma9.12.3(b)(this hassameclosed-loopsemigroup,hencealsothis is
exponentiallystabilizing). Thus,(ii’) implies (iii’) after the changeslisted in
(c). Theconversefollowsanalogously.

(For future usewe notethat both solutionsareUR if oneis, because
� is
UR).

4t (c1)-form of (ii) 5 (iii): In the sameway as in 3t , we observe from
Lemma9.12.3(b),that the P-admissiblesolutions


 P Z � SZ � ^ � Z � Z ` � and
 P Z � SZ � ^�� E � E ` � of the two IAREs correspondto eachotherone-to-one
through(12.100).

By Lemma6.6.17(c), ^ � E � E ` is stableandstabilizingif f � E is stable
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andI 0 � E

"�c
TIC



Y � U � . By (12.100),this is thecaseif f



I 0 � Z � 
 I 0 
� � "c

TIC


Y � U � and � E

� � Z / ¦ Z 
� is stable.Thus,(ii) implies(iii).

Assume(iii), sothat � E and � E arestable.Thenalso� Z
� 
¦×� E is stable.

By theabove, it only remainsto show that P Z is stabilizingfor Σ g d andJ1. By
Lemma9.12.3(b),it sufficies to show that � Z � Z is stable(since � Z

� 
¦Ç� E

is stableandtherestof theclosed-loopsystemis containedin thatfor ΣZ). By
(12.100), � Z � Z

� � Z � E 0 � Z ¦ Z 
� � � Z � E 0 
� � (12.101)

which is stable(sincealso � E and 
� arestable).Thus, P Z is stabilizing,hence
(ii) holds.

(c2)Muchof (c2)followsfrom (c1). TheCAREandtheconditiononSZ are
obtainedfrom 2t (andin 1t if ^ � u � u ` is exponentiallystabilizing)below.

(Note that (d) or (a)&(b) containsthe converseimplication if D21
�

0 or
dimU 8 ∞.)

1t (ii’) holdswhen ^�� u � u ` is exponentiallystabilizing: It wasnotedat
theendof (c1)1t thatHypothesis11.2.1is satisfiedby ΣZ (for � 44 � � exp) and
that1 � γFI (for ΣZ), hence1 � γ0, by (11.12).

Since ¬ " UR, we have � E ��� E

"
UR, (because� E

�
I 0�¬ d, by (c1)1t )

by Proposition6.3.1(b1),hence� Z
� 
¦×� E

"
UR. Consequently, the triple
 P Z � J1 � ^�� Z � Z ` � of (c1)1t &(c1)3t correspondsto a (unique) exponen-

tially stabilizingsolution

 P Z � SZ � KZ > I � of the P Z-CARE, by Corollary 9.9.8.

By Proposition11.2.19(d1),wehaveSZ11 M 0 andSZ22 0 SZ21SE 1
Z11SZ12 Q 0.

2t (ii) holds: Almostasin 1t above,we obtaina uniqueUR r.c.-stabilizing
solution


 P¨� S� � K � > I � of the CARE for Σ
á

0 and J1 (use (c1)2t &(c1)4t and
Corollary 9.9.8),andS� � X 4� J1X� , whereX� � I 0 F� , andthat S� 11 M 0 and

S� 22 0 S� 21SE 1� 11S� 12 Q 0.

Thesolution

 P¢� J1 � ^���� � � ` � of theCARE for Σ

á
0 andJ1 corresponds

analogouslyto a UR solution

 P¢� SZ � KZ > I � of theCARE for ΣZ andJ1 (which

alsosatisfiesthe(c1)-formof (ii)), whereSZ
�

X 4 J1X
�

X 4 S� X, X :
�

X E 1� X
�^ X11 X12

0 I ` . Consequently, also SZ satisfiesthe requiredcondition, by Lemma
11.3.13(i)&(ii”).

(d) We prove “(ii’) 2 (i)” in 1t (and 2t ) assumingthat ^�� u � u ` is
exponentiallystabilizing;theothercasefollowsanalogously(use(c1)4t instead
of (c1)3t ).

(N.B. By droppingtheassumptionD21
�

0 we lost theconditionon SE in
(iii’) (comparedto (b)), hencedo not longerknow whetherZ canbechosenas
in (i) or whetherW22 is invertible(thelatteris trueif dimU 8 ∞).)

1t Assume(ii’). By Lemma11.3.13(i)&(iii’), there is 
Z "�c 6 
 Y � U �
s.t. 
ZJ1 
Z 4 � SZ. Apply Theorem 9.8.12(s1)to redefine the solution so
that we obtain another UR nonnegative exponentially stabilizing solution
 P Z � J1 � V 
� Z 
� Z Y � of theIARE for ΣZ andJ1 s.t.I 0 
� Z

� 
Z 4 .
SetZ :

� 
X 4 
Z, so that ZSZZ 4 � 
X 4 SZ 
X �
: SE. By (c1)3t , we get an UR

exponentiallystabilizingsolution

 P Z � J1 � V 
� E 
� E Y � of the IARE for Σ g d
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and J1 s.t. 
XE
� 
XZ 
X � 
Z 4 
X �

Z 4 . By Corollary 9.9.11, ¬ d :
�

I 0 
� E

"c
TIC



Y � U � . By Lemma 9.8.14, Ì d :

� « d ¬�E d is


J1 � J1 � -lossless. But
X ��@ I 04�4 B , by (12.91),henceZ11

� 
Z11

"xc 6 

Y � .

2t CasedimU 8 ∞: Since Ì d :
� « d ¬�E d is



J1 � J1 � -lossless,we haveÌ 22

"ºc
TIC



U � , by Proposition2.5.4(1),hence(Factor2Z)is satisfied(hence

so is (Factor2),hencealso (4BP3), hence(4BP1) and (4BP2), by Theorem
12.3.7(a)&(e1))

(If � u ��� u

" 
� , then �×���ª� 
� H � 
� H " 
� , by Lemma12.3.10(a).Thus,then
(Factor2
� ) is satisfied,since 
� H 22

� Ì 22

"ºc
TIC



U � and 
NH 21

��

Z E 1 � 22

"c 6 

U � (sinceZ11

"�c 6 

Y � ), by (12.50).)

(a) By (c2), (i) implies(ii). Theconversefollows from 2t , and“(ii) 5 (iii)”
from 1t .

1t (ii) 5 (iii): Let SZ beasin (ii) (and ^ � Z � Z ` correspondsto asolution
of theCARE, i.e., FZ

�
0), thenXE

�
XZ 
X � 
X, where


 P Z � SZ � ^�� E � E ` �
is asin (c1)4t .

By Corollary9.9.8,thecorrespondingsolution

 P¨� SE � KE � of theCAREfor

Σ g d andJ1 hasthe signatureoperatorSE :
� 
X 4 SZ 
X. By Lemma11.3.13(ii”),

alsoSE is as in (iii) (since 
X � ^ I 0
0 M11 ` dueto the assumptionthat D21

�
0).

Thus,(ii) implies(iii). Theconverseis analogous.
2t (ii) 2 (i): This follows from (d), sincenow Z :

� 
X 4 
Z, by (d)1t , where
X � V I 0
0 M X11 Y and 
Z is asin (i).

(b) Theproof of (a)will do with slight changes. 3
Lemma 12.5.18(P Z 5 P Y & ρ


 P X P Y � 8 γ2P Z 5 P Y & ρ

 P X P Y � 8 γ2P Z 5 P Y & ρ

 P X P Y � 8 γ2) Assumethat Hypothesis12.5.13

holdsand � 11

"�c
TIC∞



U � . Let P X bethecorrespondingP-stabilizingsolution

of the P X-CARE(as in Lemma12.5.12).Assumethat the P Z-eIAREandthe P Y-
eIAREhaveinternally P-stabilizingsolutionsP Z and P Y , respectively.

Then P Z O 0 iff P Y O 0 andρ

 P X P Y � 8 γ2. If P Z O 0, then(a)–(c)of Lemma

12.6.4hold for thesolutionsof theeDAREs.

Proof: 1t The assumptionsof Lemma12.6.4 are satisfied: By Lemma
12.5.12, the IARE for ΣX and Jγ has a UR P-stabilizing solution
 P X � J1 � ^w� � ` � s.t.



I 0 � � E 1 � � ,

� � � � . Since � 22
�ð
 ¦ E 1 � 22 (by

(12.49)), we have � 22

"±c
TIC∞



W � (because¦ 11

"±c
TIC), hence ¦ b11

"c
TIC∞



U � , where¦ b : � � E 1, by LemmaA.1.1(c1).

By discretization (see Proposition 9.8.7(a)), we observe that
 P X � J1 � ∆S ^ � � ` � asolutionof theIARE for ∆SΣX andJγ; thecorrespond-
ing solution


 P X � Sb � K b � of theDARE (“ P X-DARE”) satisfiestheassumptions
of Lemma 12.6.4, by Lemma 11.3.13(vi)&(i) (recall that ¦wbJ��¦wb11

"Úc
TIC∞

and that ¦ b21

 ¦ b11 � E 1 � 0;� E 1

22 � 21
� ¦ 21


 ¦ 11 � E 1 (because��¦ b � I and� 2 4 �³
 ¦×E 1 � 24 , by (12.49)),henceNG¦wb21

 ¦wb11 �FE 1 N 8 1, by Lemma12.3.11(a)).

2t Theequivalence:By discretization(seeagainProposition9.8.7(a)),we
obtain that P X, P Y, P X are P-stabilizingsolutionsof the P X-eDARE, P Y-
eDARE and P Z-eDARE (theonescorrespondingto



∆SΣX � Jγ � , 
 ∆SΣY � Jγ � and


∆SΣZ � J1 � ), respectively. (Cf. Lemma12.6.1.)
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If P Z O 0, then P;bY :
�

γ2 P Z


I / P X P Z �FE 1 is an internally P-stabilizing

solutionof the P Y-eDARE andρ

 P X PÇbY � 8 γ, by Lemma12.6.4(b)&(a)(recall

1t ), hencePÇbY � P Y, by Theorem14.1.4(b).Theconversefollows analogously
from Lemma12.6.4.

3t (a)–(c): If P Z O 0, then(a)–(c)of Lemma12.6.4hold for the DAREs,
by 1t (but thoseSZ andSY maydiffer from thosecorrespondingto theCAREs,
etc.). 3
We have alreadyshown that all suboptimalI/O mapsfor

�
are given by

(12.48). Now we constructa stablerealizationfor � , so thatwe canpresentthe
formulafor all solutionsin thestandardform (cf. Theorem12.1.8,which is based
on this):

Proposition 12.5.19((Factor1&2) 2 4BP& all solutions) Make Hypothesis
12.5.1. Assumethat (Factor1X) and (Factor2Z) hold (let ¦ and ¬ be their
solutions)andthat ¬ 11

"­c
TIC∞



Y � (asin Theorem12.3.7(d)).Define^w� g d � g d ` :

� ^ 0 J E 1
1 π H 
 ¬§E d � 4 � 4g dJ1

� g d I 0ò¬ d ` $ (12.102)

(as in (9.140); this is generated by ^ Z 4 KE I 0 Z 4 ` if

 P Z � SE � KE � is a UR

stable, P-stabilizingsolutionof theCAREfor Σ g d andJ1). Then ^w� g d � g d ` is

anadmissiblestatefeedback pair for Σ g d ; in particular,
V 	�� d

���
d� � d � � d Y " WPLS



Y �

U � H � Y � U � . Set
�

:
�

I 0 � g d
� ¬ d. Since

�
11
� ¬ d

11

"�c
TIC∞, the output

feedback operator L :
� ^ E I 0 I

0 0 0 ` " 6 
 Y � U � Y� Y � U � is admissiblefor

Σalt :
� � � alt � alt�

alt
�

alt
� :
� ���� � g d


 � g d � 1 
 � g d � 20 
 � g d � 1 �
11

�
120 
 � g d � 2 �

21
�

22

0 I 0

 ���! � (12.103)

andthecorrespondingclosed-loopsystemis givenby

Σalt > L :
� � � alt > L � alt > L�

alt > L �
alt > L � � ���� � dh � dh 2

� dh 1

0 I 0� dh 1 � d
21 � d

11� dh 2 � d
22 � d

12

 ���!
(12.104)"

WPLS


Y � U � H � Y � U � Y � . ThenΣ h :

�aV 	 � �!�
1
�!�

2� � h X 1 h X 2 Y " WPLS


U � Y� H � U �

Y � is a realizationof � :
�

(12.48),andthefollowing hold:

(a) If wedeletethemiddlecolumnandbottomrowof Σ h , weobtaina realization
Σ h 12 of � 12. The systemΣ h 12 is a well-posedsuboptimalcontroller (the
“central controller”) for Σ.

(b) (All well-posedΣ  Σ  Σ   ’s) All well-posedstabilizingsuboptimalcontrollers Σ  
for Σ are givenby theconnectionof Σ h andΣ � in Figure 12.1(cf. Remark
12.1.9), where the parameter � is as in (12.105) and Σ � is any stable
realizationof � .
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(c) (All well-posed+ + + ’s) All well-posedstabilizingsuboptimalcontrollers + "
TIC∞



Y� U � for

�
aregivenby+ � ( ) 
 � � � � 
 � " TIC



Y� U � is s.t. N � N TIC 8 1 andI 0 � � 21

"¥c
TIC∞



U �A�´$

(12.105)

(d) (All (possibly ill-posed) solutions)By removing theconditionI 0 � � 21

"c
TIC∞



U � wegetall stabilizingsuboptimalcontrollers(with internal loop)

in anyof (a)–(c).

(e) (All well-posedexponentially stabilizing solutions) If ^ � u � u ` is [ex-
ponentially] stronglystabilizing, thenwe can replace“stable” by “[e xpo-
nentially] strongly stable” and “stabilizing” by “[e xponentially] strongly
stabilizing” everywhere in this proposition. [if we require in (12.105)that� " TICexp



Y� U � ].

(f) Wecanreplace“ N � N TIC 8 1” by “ N � N TIC Ò 1” everywhere in thisproposi-
tion if wereplace“suboptimal” by “s.t. NÀ(*) 
 � �,+-�qN¯Ò γ”.

(g) If we add someelementE

" 6 

U � Y � to D21, thenthe parametrizationsin

(d) are is unchanged exceptthat we haveto add to + the outputfeedback
through 0 E, asin Lemma7.3.23andFigure7.12.

(h) If ¬ is SR(resp.UR,SVR,UVR,SLR,ULR), thenΣalt, Σalt > L andΣ h are SR
(resp.UR,SVR,UVR,SLR,ULR).

SeeTheorem12.1.8 for a more classic“all controllers” result. As noted
below Theorem12.1.8,“all suboptimalstabilizingcontrollers”refersto all maps+ " TIC∞ (or, in (d), all maps+ with internalloopmoduloequivalence)+ : y &' u
s.t. NÀ(*) 
 � �,+.�rN TIC kW> Z ? 8 γ (with somerealization),not to all systemshaving such
anI/O map.Thatis, in our“all solutions”formula,wedonotdistinguishbetween
two solutionshaving thesame“I/O map”.1

Indeed,any, e.g.,l.c.-detectablerealizationof a + satisfying(12.105)will do
— on the other hand,any solution must be a realizationof some + satisfying
(12.105). In theexponentialcasementionedin (e), all possibleΣ   ’s areexactly
all optimizableandestimatablerealizationsof + ’s satisfying(12.105),by (c) and
Theorem7.3.11(c1).

Werecallfrom Definition6.1.6thatfor any � " TIC (resp.� " TICexp), there
existsastrongly(resp.exponentially)stablerealizationΣ � of � .

We leave it to thereaderto write out � h , � h and
� h in termsof Σ, � u, � u, ¦

and ¬ ; seeTheorem12.1.8for their generators(undertheregularity assumption� u ��� u

" 
� ).
Proof of Proposition 12.5.19: (We notethatLemma12.5.15andthepart

of Lemma12.5.16concerningΣ g d arevalid alsoundertheassumptionsof this
proposition,with thesameproofs,henceΣ g d is well defined.)

1t The proof of initial claims: By Theorem 9.9.10(g1)&(a2)&(c1),^ � g d � g d ` is stabilizing and J-critical over � out for Σ g d . If the CARE
for Σ g d and J1 has a UR stable, P-stabilizing solution


 P Z � SE � KE � , then
all J-critical pairs are generatedby ^QKE I 0 Q̀ (Q

"ªc 6
), by Theorem

1Herewe usequotesbecause" neednot bewell-posedin general.
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9.9.10(d1)andTheorem9.8.12(b)&(s1),henceonly ^ Z 4 KE I 0 Z 4 ` cangen-
erate ^ I I 0ò¬ d ` .

By Lemma A.1.1(c1), we have

 ¬§E 1 � 22

"Wc
TIC∞



U � ; by (12.50),
 ¬§E 1 � 22

� 
� H 21. Set
�

:
� ¬ d � I 0 � g d ,

ñ
:
�#� E 1 � ¬§E d. If we denote

“
V h d

21
h d

11h d
22
h d

12 Y ” in (12.104)by 
 , then,by (6.125),


 � 0 IY
IU 0

� � � � 21
�

22

I 0
� 
 I 0 � I 0 �

11 0 � 12

0 I
� � E 1 � 0 I

I 0
� (12.106)� � � 21

�
22

I 0
� � 0 I�

11
�

12
� E 1 � � 0 Iñ

11
ñ

12
� � ñ 21

ñ
22

I 0
� E 1

(12.107)� � 0 I
� dH 11 
� dH 21
� � 
� dH 11


� dH 21
I 0

� E 1 � � d (12.108)

(write the formulae out or multiply (11.88) by
@

0 I
I 0 B to the left and right to

obtain the third equality; the fourth follows from (12.50) and the last one
from (12.48)), as claimed, i.e., the closed-loopI/O map

�
alt > L contains � d

(permuted),so thatwe canpick correspondingrows, interchangethecolumns
andtake thecausaladjointof thesystemto obtaina realizationof � , asstated
in theproposition.

(a) This follows from (b) by taking � � 0.

(c) This follows from Theorem12.3.7(c)(which is applicable,by Lemma
12.5.3andthefactthat 
� H 21

�³
 ¬§E 1 � 22

"xc
TIC∞, by 1t above).

(d)&(f) Also thesefollow from Theorem12.3.7(c)for (c); theproofsof (a)
and(b) show thatthesameholdsfor them.

(g) This follows from Lemma 7.3.23 (note that in this casethe well-
posednessof asolutionneednotbeequivalentto I 0 � � 21

"­c
TIC∞).

(h) UseProposition6.3.1(b2)(andLemma6.2.5). (Notealsothat if ¬ " 
�
(e.g., « " 
� or �×��� " 
� ), then

� " 
� and“ � " 
� E 1 
� ”.)

(b)&(e) Assumethat ^�� u � u ` is [[exponentially]strongly] stabilizing
for Σ. Let � beasin (c) or asin (d), andlet Σ � bean[[exponentially]strongly]
stablerealizationof � .

1t ThesystemΣ g d is [[exponentially]strongly4 ] stable,by Lemma12.5.15,
andΣ is [[exponentially]strongly] l.c.-detectable,by Theorem6.6.28[[shifted
andLemma12.5.2(vi)]].

By (c), + DPF-stabilizes
�

(possibly with an internal loop; cf. (d)),
henceΣ   I/O-DPF-stabilizesΣ. We shall show in 2t –3t Σ   DPF-stabilizes
Σ [[exponentially]strongly]; this establishes(b) and(e) [[this includesalso(c)
modifiedasin (e),becasethen + DPF-stabilizes

�
exponentially]].

2t Σ h is [[exponentially] strongly] l.c.-detectable:Since ^ 0 0 0 ` is
a [[exponentially] strongly4 ] r.c.-stabilizingstatefeedbackpair for Σalt, the
pair (6.188)is admissiblefor Σalt > L (usesubstitutions� � � � � L � � L � � � � � � &' 0,

Σ &' Σalt, ΣL &' Σalt > L, Σ � &' V Σalt= 0 0 $ Y in theproof of Lemma6.7.11(c)),andthe
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correspondingclosed-loopsystemis givenby�� � � � �� � � �� � � �  ! :
� ���� � alt � alt�

alt
�

alt0 
 � g d � 1 �
11 0 I

�
12

0 0 0

 ��! $ (12.109)

Therefore,(6.188)is admissiblefor Σdh V I 0 0
0 0 I
0 I 0 Y , andthecorrespondingclosed-

loopsystemis (12.109)with its secondrow (correspondingto

 �

alt � 1) removed;
in particular, (6.188) is [strongly4 ] stabilizing. Consequently, corresponding
maps“ � :

� � � ” and“ � :
� � � / I ” (seeDefinition6.6.10)aregivenby� b � � � 21

�
22

I 0
� �»� b � � � 11

�
12

0 I
� ; (12.110)

theseare [[exponentially]] r.c. (becausê 0 I
0 0 ` ��b / ^ 0 0

0 I ` �db � I ). Thus, Σdh
is [[exponentially] strongly4 ] r.c.-stabilizable(by Lemma6.7.17, the permu-
tation of columnsdoesnot matter),i.e., Σ h is [[exponentially]strongly] l.c.-
detectable.

3t Σ   is [[exponentially]strongly] stabilizing: Let Σo containΣ � , Σ h and
Σ so that the staticoutput feedbackoperatorI correspondsto the connection( ) 
 � �J( ) 
 � � � �A� (cf. (7.4)andDefinition7.3.1).

SinceΣ (by 1t ) andΣ h (by 2t ) andΣ � (by assumption)are[[exponentially]
strongly] l.c.-detectable,so is Σo, by Lemma 6.7.18 (applied twice). By
Proposition6.7.14(b)(2.), I is [[exponentially] strongly] stabilizing for Σo.
Thus,all closed-loopmapsin Figure12.1are[[exponentially]strongly]stable
(becausethey areexactly theelementsof Σo

I ). As notedin 1t , this establishes
(b) and(e).

(An alternative proof would applyProposition6.7.14(b)(1.)&(2.)for sub-
systems[[or thegeneratorsof Σ andΣ h andoptimizability andestimatability;
cf. (12.20)]].) 3
The P X-DARE, P Y-DARE andthecouplingconditionimply theexistenceof

a suboptimalcontrollerfor Σ:

Lemma 12.5.20(Sufficiency) Assumethat Hypothesis12.5.1 is satisfiedwith� u ��� u � �� y � �� y

" 
� , that 
� satisfyHypothesis8.4.8,andthatconditions(1.)–(3.)
of Lemma12.1.12aresatisfied.

ThenHypothesis12.5.13andconditions(1.) and(4.) of Theorem12.1.8are
satisfied;in particular, thenthere are suboptimalexponentiallystabilizingDPF-
controllers.

Proof: (WeuseHypothesis8.4.8only in 3t .)
1t Hypothesis12.5.13and (Factor1
� ): By (1.) and Lemma 12.5.12,

Hypothesis12.5.13 is satisfied and hence (Factor1) has a solution with
X11 � X22 � M11 � M22

"�c 6
, by Lemma12.5.14.By Lemma12.3.10(a),�#�,�Û��¦ "
� , hence(Factor1
� ) is satisfied.
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2t The P Z-CARE has an exponentiallystabilizing solution

 P Z � SZ � KZ � ,

where P Z
� P Y



I 0dP X P Y �FE 1 O 0: By 1t of theproof of Lemma12.5.18, P X

is anexponentiallystabilizingsolutionof the P X-DARE with SX asin Lemma
12.6.4(herewe meanthe DARE for



∆SΣX � Jγ � ). The situationwith P Y is

analogous(by dualarguments).
By Lemma12.6.4, the P Z-DARE (the DARE for ∆SΣZ and J1) has the

exponentiallystabilizing solution P Z
� P Y



I 0�P X P Y �FE 1 O 0 with SZ11 M 0

andSZ22 0 SZ21SE 1
Z11SZ12 Q 0 (recall “(3.)”). It follows from (the discretized,

seeTheorem12.2.2)Lemma12.5.17(ii’)&(d) that


∆S«�� J1



∆S«Ð� 4 � ¬ ∆J1 ¬ 4∆

for some¬ ∆

"­c
tic


Y∆ � U∆ � .

We deducethat π H ∆S 
 « d � 4 J1∆S 
 « d � π H "�c 6 , henceπ H 
 « d � 4 J1 « dπ H "c 6 

L2 
 R H ;Y � U �L� , by Theorem13.4.5(h2). Consequently,


 « d � 4 J1 « d �� 4 SE
�

for some
� "­c 
� d 


Y � U � andSE

"�c 6 

Y � U � .

By Corollary9.9.11,
�

correspondsto anexponentiallystabilizingsolutionPÇbZ of the P Z-IARE, henceof the P Z-DARE too. By uniqueness(Theorem
9.8.12(a)), P;bZ � P Z. By Proposition9.8.10 and Remark 9.8.2, P Z is an

exponentiallystabilizingsolutionof the P Z-CARE (since
� "yc 
� d v c ULR

andhenceR

"­c 6 

Y � U � , by Proposition6.3.1(b1)).

3t SZ11 M 0 and SZ22 0 SZ21SE 1
Z11SZ12 Q 0 (so that P Z solvesLemma

12.5.17(ii’)): Set A
�

B
�

C
�

0 (but keep the D of Σ), so that the P X-
DARE and P Y-DARE have uniqueexponentiallystabilizing solutions,given
by P X

�
0
� P Y

�
KX

�
KY, andSX andSY areof the standardform, by the

signature-conditionsin (1.) and(2.). By Lemma12.6.4(a)–(c),P Z
�

0 is the
(unique)exponentiallystabilizingsolutionof the P Z-DARE andSZ11 M 0 and
SZ22 0 SZ21SE 1

Z11SZ12 Q 0. But SX, SY andSZ arethe sameasin our problem
(becauseB

�
C
�

0), hencethis provesourclaim.
(Alternatively, one could write a somewhat shorther(but still not short)

proof by going through the samecomputationsas in the proof of Lemma
12.6.4(c)(including thoseon pp. 321-326of [IOW]; onecan,e.g., take A

�
B
�

C
�

0 but theD of Σ mustbekept).)
4t (1.) and(4.) of Theorem12.1.8aresatisfied:Condition(1.) is contained

in theassumptions,andcondition(4.) wasestablishedin 2t –3t above.
5t The existenceof a solution: By 4t , the assumptionsof Theorem

12.1.8aresatisfied,hencetherearesuboptimalexponentiallystabilizingDPF-
controllersfor Σ. 3
Theabovealsoholdsunderdifferentassumptions:

Lemma 12.5.21 Supposethattheassumptions(A1)and(A2)andconditions(1.)–
(3.) of Theorem12.1.5are satisfied.Thentheassumptionsof Lemma12.5.20are
satisfiedfor 
�½� MTICL1

exp.

Proof: Recall from Theorem8.4.9 that 
���
MTICL1

exp satisfiesStanding
Hypothesis12.0.1andHypothesis8.4.8.

By Lemmas12.5.5and 12.5.4,Hypothesis12.5.1is satisfied(even with
“exponentially jointly” in placeof “jointly”), � u ��� u � �� y � �� y

" 
� (or

"
(γ b )
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under“(IV)” of (A1)), and
�� u

 / ∞ � � I ,

��� y

 / ∞ � � I .

Note that conditions(1.)–(3.) of Theorem12.1.5 are equal to thoseof
Lemma12.1.12combinedto conditionsSX

�
D 4XJγDX andSY

�
D 4YJγDY. By

Hypothesis8.4.8 and Corollary 9.9.11, theseadditional conditionsare now
redundant. 3

Lemma 12.5.22(4BP: necessity)Assumethat there is a suboptimalexponen-
tially stabilizingDPF-controller (possiblywith internal loop), andthat (A1) and
(A2)of Theorem12.1.5hold. Then(1.)–(3.)of Theorem12.1.5hold.

Proof: (The regularity condition (A1) on Σ is not superfluous,by, e.g.,
Example11.3.7,but it maybeweakened.)

Set 
� :
�

MTICL1

exp (or 
�a�
(γ b ) in case“(IV)” of (A1)), so that Standing

Hypothesis12.0.1is satisfied,by Theorem8.4.9(c).
1t Hypothesis12.5.1: By Theorem7.3.12(a),



A � B1 � is optimizableand


A � C2 � is estimatable.By Lemma12.5.4,it follows thatHypothesis12.5.1is
satisfied(evenwith “exponentiallyjointly” in placeof “jointly”).

2t By Lemma 12.5.3 and 1t , Hypothesis 12.3.1 is satisfied with� u ��� u �D�� y �Ø�� y

" 
� .
3t (1.)–(3.)hold: This follows from Theorem12.1.11. 3

Givenjust an I/O map,asin the frequency-domainproblemof Section12.3,
wecanchooseastabilizablerealizationasexplainedbelow (theadvantagehereis
thatwegettheconstructive formula(12.113)):

Lemma 12.5.23 AssumeHypothesis12.3.1. A strongly jointly stabilizableand
detectablerealizationΣ for

�
canbechosenasfollows.

By theassumption,thereare + 1 �,+ 2 � 
+ 1 � 
+ 2

"
TIC s.t.� � u11 + 1� u21 + 2

� E 1 �ÍÁ 
+ 2 0 
+ 10Û�� y21 � u22Ã "xc TIC $ (12.111)

It followsthat
V Ë u   DF1É u   DF2 Y � � î  DF2 E î  DF1E çÉ y

çË y
� "�c TIC, where+ DF2 :

� ^ I 0
0   2 ` �Z+ DF1 :

� ^ 0   1
0 0 ` � 
+ DF2 :

�_V î  2 0
0 I Y � 
+ DF1 :

�_V 0 î  1
0 0 Y $ (12.112)

Choosea strongly stablerealizationΣ � for
V I E   DF2 É u  DF1 Ë u E I Y . ThenΣTotal :

�

Σ � �&% 0 0

0 E I ' satisfiesHypothesis12.5.1andits I/O mapis givenby (wedenotethe

componentsof ΣTotal asin (12.87))� ñ y
�« uy � u
� :
� �� V 0 � 11   1

0 I E   2 H � 21   1 Y �V 0 E Ë u e 1
11
  1

0 0 Y V I E Ë u e 1
11 Ë u e 1

11 Ë u12
0 0 Y  ! $ (12.113)

Thepairs ^w� u � u ` and
V � y�

y Y are actuallystrongly jointly stabilizingand

detectingfor Σ (with « uy), thesepairsareasin Hypothesis12.5.1.
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If thereis a suboptimalstabilizingcontrollerfor
�

, thenthereis a suboptimal
stronglystabilizingcontrollerfor theabove system,by Theorem12.3.5.Also an
exponentialversionof theabovelemmaandclaimhold(useRemark6.1.9andthe
“exponential”assumptionsof Proposition12.4.10).

Proof: (Note that + :
� + 1 + E 1

2
� 
+ E 1

1 
+ 2 DPF-stabilizes
�

with d.c.
internal loop, by Corollary 7.3.20(iii), whereas+ DF1 + E 1

DF2
� 
+ E 1

DF1 
+ DF2 DF-
stabilizes

�
with d.c. internal loop, by Theorem7.2.14(iii); cf. also Lemma

7.3.10.)

We obtain (12.111)from Lemma6.5.8. But from
V Ë u   DF1É u   DF2 Y we obtain^ I 0

0 h ` by four permutations,where � :
� V Ë u11   1É u21   2 Y "¸c TIC. Therefore,V Ë u   DF1É u   DF2 Y "�c TIC; analogously,

� î  DF2 E î  DF1E çÉ y
çË y

� "­c TIC.

Theclaimson strongjoint stabilizabilityanddetectabilityfollow asin the
proof of Theorem6.6.28. 3
Weusetherestof thissectionto studytheconnectionbetweentheCAREsand

thefactorizationsof Section12.3.We mainly just sketchtheproofs(andsomeof
thestatements),sincewedo notusetheseresultselsewhere.

Lemma 12.5.24(P X �JP YP X �pP YP X �JP Y dir ectly) AssumeHypothesis12.5.1.TheIAREscorre-
spondingto (1.’) and(2.’) havesolutionsP X and P Y, respectively, iff (Factor1X)
and(Factor2Y)hold,where thelatter is givenby

(Factor2Y)There is é "­c TIC


Y � Z � , s.t. é 4 J1 é �_V çÉ y

d
22
çÉ y

d
12

0 I Y 4 Jγ
V çÉ y

d
22
çÉ y

d
12

0 I Y
and é 11

"�c
TIC



Y � .

Assume(Factor1X)and(Factor2Y).Set � :
� � u ¦×E 1, 
� :

� é E 1
d �� y . ThenP X

� � � 41 
 I 0 � 11π H � 411 / � 12π H � 412 � � � 1 � (12.114)P Y
� �

Y � 41 � I 0 
� d
22π H 
 
� d

22 � 4 / 
� d
12π H 
 
� d

12 � 4 � � Y � 1 � (12.115)

where
� � 1 � � 1 / � u11� u1,

�
Y � 1 � � d

2 / �� y
d

22
 y
d
2.

Seetheremarksbelow Lemma12.1.12for (1.’) and(2.’); by Lemma12.5.12
(and Lemma12.5.2and duality), they are equivalent to (1.) and (2.) if Σ is
exponentiallystabilizable(but we needsomeregularity additionsto get CAREs
in placeof IAREs).

Note that (Factor2Y) is not equivalent to (Factor2Z)but to the analogyof
(Factor1X)for

�
d.

Proof of Lemma 12.5.24: 1t Theequivalence:By usingLemma9.12.3,
onecanverify thatthesolutionsof theIARE “(1.’)” correspond1-1 to ther.c.-
stabilizingsolutionsof the IARE for ΣX � andJγ (see(12.88));equivalently, to
thesolutionsof (Factor1X)(of Theorem12.3.7).By (9.141),wehaveP X

� � � � 1
0
� 4 
 Jγ 0 Jγ � X J E 1

1 π H � 4X Jγ � � � � 10
� � (12.116)
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where� X :
�_V k É u ? 11 k É u ? 12

0 I Y ¦�E 1.

Thecorrespondencebetween(2.’) and(Factor2Y)is analogous.
2t (12.114)& (12.115): We have � X

� ^ É 11 É 124 4 ` , where � :
� � u ¦×E 1,

hence @ � X J E 1
1 π H � X B 11

� � 11π H � 411 0ò� 12π H � 412 $ (12.117)

By (12.116)and (12.89), P X
� � � 41 V I 0ò� X J E 1

1 π H � 4X Y 11

� � 1. Combinethis

with (12.117)to obtain(12.114).Equation(12.115)is obtainedanalogously.
3t A remarkon ø :

� � � 1 � Y � 41 R: Using Lemma12.5.11andthe property
“π H � π E � � � ” of Definition6.1.1appliedto wholeΣTotal, wegetø �³
 � 1 / � u11� u1 � 
 � 2 / 
 y 2 �� y 22� (12.118)�

π H � 12π E / � u11π H � u12π E / π H ñ y 12π E �� y 22 / � u11π H « 12π E �� y 22
(12.119)�

π H � 12π E / � u11π H � u E 1
11 � u12π E / π H � u11π E � u E 1

11 + 1π E �� y 22 (12.120)

wherethelastidentity usesequations(12.113)and
�

11
� � u11� u E 1

11 .
(The above componentsare in

6 

L2

ω


R E ;W �%� L2

ω


R H ;Y �L� , whereω

"
R

is s.t. ΣTotal

"
WPLSω; their sum is stable (since so is the left-hand-sideø :

� � � 1 � Y � 41 R

" 6 

L2 
 R E ;W �%� L2 
 R H ;Y �A� ). Note this formula can be re-

ducedto π H � 12π E if Σ is stable.) 3
In, e.g.,Theorem12.1.4,we givennecessaryandsufficient conditionsfor the

standardH∞ 4BP in termsof the original system“(1.)–(3.)”, whereasTheorem
12.1.8usesboththeoriginalsystemandaperturbedsystem(condition“(4.’)”).

In Theorem12.3.6,we have givenanalogousnecessaryandsufficient condi-
tions(“(Factor1)”and“(Factor3”)in termsof theoriginalandaperturbedsystem
for the correspondingfrequency-domainproblem(I/O mapproblem). The fol-
lowing remarkcontainstheanalogyof “(1.)–(3.)” for this problem;notethatwe
againgetsufficiency only for theexponentialproblem(seeRemark12.6.9for the
simplerdiscrete-timecounterpartof this remark):

Remark 12.5.25(ρ


XY � 8 γ2ρ


XY � 8 γ2ρ


XY � 8 γ2: I/O formulation) AssumeHypothesis12.3.1,so

that the d.c.f. (12.111)exists (we needits map + 1

"
TIC



Y� U � below for ø ).

Assumealsothat � u ��� u � �� y � �� y

" 
� . Then(i) implies(iii) (seebelow).Here
µ :
� ø 4 
 I 0ò� 11π H � 411 / � 12π H � 412 �¿ø � I 0 
� 422π E 
� 22 / 
� 412π E 
� 12 � �

(12.121)ø is givenby (12.120),� :
� ��¦¢E 1 and 
� :

� é E 1
d �� y .

Assume, in addition, that we have exponentialcoprimenessin Hypothesis
12.3.1 (see Proposition 12.4.10), still with � u ��� u � �� y � �� y

" 
� , and that 
�
satisfiedHypothesis8.4.8;assumethat (12.111)is chosenaccordingly. Thenthe
following areequivalent:

(i) there is a suboptimalstabilizingcontroller for
�

(i.e., (4BP1)holds);

(ii) there is a suboptimalexponentiallystabilizingcontroller for
�

;
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(iii) (Factor1X)and(Factor2Y)holdandρ

 
µf� 8 γ.

If (4BP1)holdsandD21
�

0, theneach suboptimalstabilizingcontroller for�
is equivalentto a well-posedone.

We do not know whether(iii) implies (i) in the non-exponentialcase;the
reasonsfor this areexplainedat theendof theproof of Lemma12.1.12.

Proof: Notethatnow (4BP1)–(4BP3)areequivalent,by Lemma12.3.10.
1t “(i) 2 (iii)”: Assume(4BP1), so that (4BP3) and hence(Factor1X)

holds. Then(4BP1)holdsfor
�

d too, by Proposition7.3.4(d),henceso does
(4BP3)for

�
d, hencesodoes(Factor2Y)(sinceit equals“(Factor1X)” for

�
d).

By Lemma12.5.24,it follows that (1.’) and(2.’) have solutions(where
Σ is chosenasin Lemma12.5.23,so that Hypothesis12.5.1is satisfied).By
Theorem12.3.5(b), there is a suboptimalstabilizing DPF-controllerfor Σ,
hence(3.) holds,by Lemma12.1.12,i.e.,ρ


 P X P Y � 8 γ. By (12.114),(12.115),
(12.118)andLemmaA.3.3(s2),ρ


 
µ.� � ρ

 P X P Y � .

2t “(ii) 2 (i)”: This is trivial.
3t “(iii) 2 (ii)”: Makenow theadditionalassumptionsin theremark.Since

(12.111)waschosento be in

c
TICexp, we canuseshiftedLemma12.5.23to

satisfyHypothesis12.5.1with ^w� u � u ` beingexponentiallystabilizing(cf.
Lemma12.5.2).

Assume(iii). By Lemma 12.5.24, it follows that (1.’) and (2.’) have
solutions,henceso do (1.) and (2.). As in 1t , we observe that also (3.)
holds, hencethere is a suboptimalexponentiallystabilizing controller for Σ
by Theorem12.1.11(by Theorem12.1.8,all suchcontrollersare equivalent
to well-posedcontrollersif D21

�
0). The I/O map of this controller is a

suboptimalexponentiallystabilizingcontrollerfor
�

, hence(4BP1)holds.
Remark: In the discrete-time version of the remark, “still with� u ��� u � �� y � �� y

" 
� , and that 
� satisfiedHypothesis8.4.8” becomessu-
perfluous,sincethenTheorem12.1.11canbereplacedby Theorem12.2.1and
henceHypothesis8.4.8is not required,so that 
�¸� ticexp becomesapplicable

(and we automaticallyhave � u ��� u �L�� y �°�� y

"
ticexp under this exponential

coprimenessassumption). 3
(Seethenoteson p. 706.)
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12.6 Proofsfor Section12.2— 4bp X � Y � Z

Labor omniavicit improbus

— Vergil (70–19B.C.)

Recall Standing Hypothesis12.1.1. Recall also that when referring to
continuoustimetheory(asabove),weassumethatsubstitutions(13.63)aremade.

Themainresultof this sectionis Lemma12.6.4,which generalizesthe“(1.)–
(3.) if f (1.) and (4.)” proof of [IOW] to our generality, and which is needed
alsofor thecontinuous-timeproofsfor Section12.1. We startwith a few results
thatdefinerequiredsymbolsandshow thecorrespondencebetweenthemandthe
symbolsof [IOW]. At the endof the section,therearesomeresultsthat clarify
certainimportantpropertiesof the(discrete-time)H∞ 4bp.

TheDARE (12.34)will becalledthe P X-DARE, andtheDARE (12.35)will
becalledthe P Y-DARE. In thissection,weshallestablishtheconnectionbetween
thesetwo DAREsanda third one, P Z-DARE, thatwill bedefinedbelow:

Lemma 12.6.1(P ZP ZP Z-DARE) Assumethat the P X-DARE(12.34)hasan internally
P-stabilizingsolution


 P X � SX � KI � s.t.SX11 M 0 andSX22 0 S4X12SX11SX12 Q 0.
Thenthe correspondingIARE has another internally P-stabilizingsolution
 P X � J1 � ^�� � ` � s.t.X21

�
0, where ¦ :

�
I 0 � " tic∞



U � W � .

Fix such a solutionandset � :
� ¦×E 1, � :

� � � . ThenX11 � X22

"�c 6
and

K
�

XKI
��� X11KI1 / X12KI2

X22KI2
� � KI

��� X E 1
11 K1 0 X E 1

11 X12X E 1
22 K2

X E 1
22 K2

� $ (12.122)

Moreover, Lemma12.5.16applies(evenundertheseweaker assumptions;if
Hypothesis12.5.13is satisfied,thenits triple


 P X � J1 � ^�� � ` � hasthe above
properties),andthegeneratingoperatorsof ΣZ definedbyaregivenby� AZ BZ

CZ DZ
� :
� �� A4 / K 4I2B42 C 42 / K 4I2D 422 0 K 4I1X 411

X E 422 B42 X E 422 D 422 X E 422 X 412
0 0 I

 ! $ (12.123)

Wedefinethe P Z-DARE astheDAREfor ΣZ andJ1. Wenotethat(thesymbols
on the left ocrrespondto thenotationof [IOW], pp. 307–; this will beexplained
later)

Q ( :
�

C 4ZJγCZ
�

B2X E 1
22 X E 422 B42 � (12.124)@

0 I
I 0 B L ( :

�
D 4ZJγCZ

��� D22

X12
� X E 1

22 X E 422 B42 � (12.125)@
0 I
I 0 B R( @ 0 I

I 0 B : � D 4ZJγDZ
��� D22

X12
� X E 1

22 X E 422 ^ D 422 X 412̀ 0 � 0 0
0 γ2I

� $ (12.126)

Note from Lemma 12.5.12 that here ¦ �
I 0 � � ��E 1 correspondstoP X (i.e., to (Factor1)),not to (Factor1X).Note also that (12.123)corresponds

to ^ K I 0 X ` (more exactly, to the statefeedbackpair
@ 0 0 0
K2 E X21 I E X22 B for

(extended)Σ), whereX :
� K¦ 
 / ∞ � , not to KI , althoughwehavewritten it in terms

of KI andX, not in termsof K andX.
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Proof: By Lemma11.3.13(i)&(iii), thereis X

"ºc 6 

U � W � s.t.X 4 J1X

�
SX, X21

�
0. By Theorem9.8.12(s1),


 P X � J1 � } XKI I 0 X ~r� is also a
solutionof the correspondingIARE with samestabilizability properties(note
that ^w� � ` is notuniquebut all possiblechoicesareobtainedparameterizes
by X

" 6 

U � W � s.t.X21

�
0 andX 4 J1X

�
SX).

Conversely, any internallyP-stabilizingsolutionof theIARE with X21
�

0
is as above, by Theorem9.8.12(b)&(s1),henceX11 � X22

"Úc 6
, by Lemma

11.3.13(b3).Therefore,(12.122)holds.Therestis straightforward. 3
Next we makeanotherremarkon thecorrespondenceof our notationandthat

of [IOW]:

Lemma 12.6.2(P X �pP YP X �pP YP X �JP Y) For P X and P Y Riccati equations,we note that ΣX

satisfies

Qc :
�

C 4XJγCX
�

C 41C1 � (12.127)@
0 I
I 0 B L 4c :

�
D 4XJγCX

��� D 411C1

D 412C1
� � (12.128)@

0 I
I 0 B Rc

@
0 I
I 0 B : � D 4XJγDX

��� D 411D11 D 411D12

D 412D11 D 412D12 0 γ2I
� (12.129)

(here thefirst termson each line referto symbolsof [IOW], p. 307–,to which we
will referlater), andΣd

Y satisfies

Qo :
�

C 4YdJγCYd
�

B2B42 � (12.130)@
0 I
I 0 B L 4o :

�
D 4YdJγCYd

�ý� D22B42
D12B42� � (12.131)@

0 I
I 0 B Ro

@
0 I
I 0 B : � D 4YdJγDYd

�ý� D22D 422 D22D 412
D12D 422 D12D 412 0 γ2I

� $ (12.132)

Let X be as in Lemma12.6.1,so that X21
�

0. Then,SXKI
�

X 4 JγXKI
�

X 4 JγK, henceK
�

J E 1
γ X E 4 
 SXKI � , hence

K
� 0 J E 1

γ X E 4 
 0 SXKI � � � 0 X E 411 00 γ E 2X E 422 X 412X E 411 γ E 2X E 422
� � T1

T2
� � (12.133)� T1

T2
� � � D 411C1 / B41 P XA

D 412C1 / B42 P XA
� (12.134)

K1
� 0 X E 411



D 411C1 / B41 P XA�%� K2

�
γ E 2X E 422



T2 0 X 412X E 411 T1 � (12.135)3

(This is obvious.NotethatwehaveT 42 � M1, T 41 � M2 in IOW-notation.)
Weshallalsoneedthefollowing technicalresult:

Lemma 12.6.3 Here (exceptionally)X � Y� Z referto elementsof
6 


H � .
(a) Letρ



XY � 8 1 andX � Y O 0. ThenI 0 XY

"�c 6 

H � , Z :

�
Y


I 0 XY � E 1 O 0.

(b) LetX � Z O 0. ThenI / XZ

"­c 6 

H � , Y :

�
Z


I / XZ �FE 1 O 0, ρ



XY � 8 1.
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(c) If the assumptionsof (a) or (b) hold, then the assumptionsof both (a)
and(b) hold, σ



XY ��v @ 0 � 1� , I / XZ

�½

I 0 XY �FE 1, Y

�
Z


I / XZ �FE 1, and

Z
�

Y


I 0 XY �GE 1.

Proof: (a) Let ρ


XY � 8 1. Then 1 ¤" σ



XY � , henceI 0 XY

"¡c 6 

H � .

Set Z :
�

Y


I 0 XY � E 1, W :

�
I 0 Y1� 2XY1� 2, so that W

�
W 4 . Because

ρ


Y1� 2XY1� 2 � � ρ



XY � 8 1, by Lemma A.3.3(s2), we have σ



W �fv 1 0
 0 1 � 1� ��
 0 � 2� , in particular, W M 0. Therefore,n

Z


I 0 XY � x � 
 I 0 XY � xo � n Yx � 
 I 0 XY � xo � n Y1� 2x � WY1� 2xoZO 0 for all x

"
H $

(12.136)
Consequently, Z O 0. Moreover, I / XZ

� 

I 0 XY / XY � 
 I 0 XY �FE 1 �¸
 I 0

XY � E 1, andZ 0 ZXY
�

Y impliesthatY
�

Z


I / XZ � E 1.

(b) By LemmaA.3.3(s2)&(s3),σ


XZ �*)¥9 0 : � σ



T �+)¥9 0 : , whereT :

�
Z1� 2XZ1� 2. But T O 0, henceσ



XZ �§v R H , henceσ



I / XZ �§v @ 1 � ∞ � ; in

particular, I / XZ

"­c 6 

H � . Moreover,n

Y


I / XZ � x � 
 I / XZ � xo � n Zx � 
 I / XZ � xo � n x � 
 Z / ZXZ � xoZO 0 � (12.137)

for all x

"
H, i.e., for all



I / XZ � x " H, henceY O 0.

Furthermore,σ


XY � � σ



I 0 
 I / XZ � E 1 � � 1 0 17 σ 
 I / XZ �]v 1 0 
 0 � 1B �@

0 � 1� , henceρ


XY � 8 1. The final two equationsare obtainedfrom, e.g.,

Y / YXZ
�

Z.
(c) Seetheproofsof (b) and(a). 3

Next we establishtheconnectionbetweenthe P Y-DARE andthe P Z-DARE,
i.e.,weshow that“(1.) and(4.)” hold if f “(1.)–(3.)” hold (seeSection12.2):

Lemma 12.6.4(P Z 5 P Y & ρ

 P X P Y � 8 γ2P Z 5 P Y & ρ

 P X P Y � 8 γ2P Z 5 P Y & ρ

 P X P Y � 8 γ2) Let the P X-DARE have an inter-

nally P-stabilizing solution

 P X � SX � KX > I � s.t. P X O 0, SX11 M 0 and SX22 0

SX21SE 1
X11SX12 Q 0. Thenthefollowingareequivalent:

(i) the P Z-eDAREhasa solution

 P Z � SZ � KZ � s.t. P Z O 0;

(ii) the P Y-eDAREhasa solution

 P Y � SY � KY � s.t. P Y O 0 andρ


 P X P Y � 8 γ2.

Assumethat(i) or (ii) (henceboth)holds.Let

 P Z � SZ � KZ � and


 P Y � SY � KY � be
thecorrespondingsolutions(i.e., oneis givenandtheotheris theoneconstructed
in theproof). Thenthefollowinghold:

(a) WehaveP Z
� P Y



γ2I 0�P X P Y � E 1 � P Y

�
γ2 P Z



I / P X P Z � E 1 � (12.138)

I / P X P Z
��


I 0 γ E 2 P X P Y � E 1 � Az > Y �³
 I / P X P Z � Az > Z 
 I / P X P Z � E 1 �
(12.139)

whereAz > Y andAz > Z are thecorrespondingclosed-loopsemigroupgenera-
tors.

(b) P Z is [strongly/exponentially]internally P-stabilizingiff P Y is.

(c) If SY11 M 0, SY22 0 SY21SE 1
Y11SY12 Q 0, then SZ11 M 0 and SZ22 0

SZ21SE 1
Z11SZ12 Q 0.
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Recall that an internally P-stabilizing solution is unique, and an inter-
nally exponentiallystabilizingsolutionis exponentiallystabilizing(seeTheorem
14.1.4(b)andLemma13.3.8).

The P X-DARE, P Y-DARE and P Z-DARE, i.e., the DAREs for


ΣX � Jγ � ,


ΣY � Jγ � and


ΣZ � J1 � aregiven in (12.34),(12.35)and(12.36),respectively. See

(12.84), (12.85) and (12.94) for correspondingsystemsand (12.123) for the
generatorsAZ, BZ, CZ andDZ.

Proof of Lemma 12.6.4: (As before,theeDAREsrefer to corresponding
DAREs without the requirementS4 "Ñc 6 . Note also that we have madeno
coercivity assumptionson Σ (e.g.,(12.32)–(12.33)(or “(A2)”) neednot hold a
priori).)

We shall follow the(finite-dimensional,exponentiallystabilizing)proof of
[IOW] andextendit to our generality(in somepartsof theproof weareforced
to developedifferentmethodsdue to infinite dimensions);the pagenumbers
and“(10.nnn)”s below referto IOW.

Let

 P X � SX � KX > I � betheinternallyP-stabilizingsolutionof the P X-DARE.

Fix someX of the form of Lemma12.6.1,so thatX21
�

0 (andSX
�

X 4 J1X).
SetK :

�
XKX > I , so that


 P X � J1 �ú} K I 0 X ~ ) is alsointernallyP-stabilizing
asin Lemma12.6.1(with thesame� z¯� � z¯� � z asfor } KX > I 0 ~ ).

We have the following correspondenceof the [IOW]-notation(hereon the
left-hand-side)andours
 � T ��
 � 4 � “ � 0“

� b�b M 0b£b � D
�

D
@

0 I
I 0 B�� B

�
B
@

0 I
I 0 BÕ� J

��@
0 I
I 0 B J1

@
0 I
I 0 B ��@ j I 0

0 I B��
(12.140)

Vc
��V Vc11 0

Vc21 Vc22 Y ��@ 0 I
I 0 B X @ 0 I

I 0 B,� Wc
� 0 @ 0 I

I 0 B K � F
��@

0 I
I 0 B KX > I �³@ 0 I

I 0 B X E 1K � (12.141)

R( ��@ 0 I
I 0 B D 4ZdJ1DZd

@
0 I
I 0 B,� CO

�
B4Zd � X

� P X � Y � P Y � Z
� P Z (12.142)

(notethat
@

0 I
I 0 B E 1 �¸@ 0 I

I 0 B ��@ 0 I
I 0 B 4 ). Throughoutthe restof this proof, symbolsin

quotationmarksalwaysreferto [IOW]-notation,in particular, theindices1 and
2 correspondingtoU andW areinterchanged(asabove). It followsthatthe P X-
DARE is equalto (notethat 0 SKX > I � 0 X 4 J1XKX > I � 0 X 4 J1K

�¸@
0 I
I 0 B V 4c JWc)

theequationsystem

W 4 JW
�

W 4c2Wc2 0 W 4c1Wc1
�

A4 P XA 0�P X / C 41C1
�

“A4 XA 0 X / C 41C1“ �
(12.143)

V 4c JVc
� V V Xc21Vc21 E V Xc11Vc11 V Xc21Vc22

V Xc22Vc21 V Xc22Vc22 Y ��@ 0 I
I 0 B SX

@
0 I
I 0 B � “

V D11D X11 E I H BX1XB1 D X11D12 H BX1XB2
D X12D11 H BX2XB1 D X12D12 H BX2XB2 Y “ �

(12.144)

W 4c JVc
� �W 4c2Vc21 0 W 4c1Vc11

W 4c2V22
� � “

� D 411C1

D 412C1
� / � B41XA

B42XA
� “ $ (12.145)

Part I: caseγ
�

1:
1t Symplecticpencils: Note that the conditions(CD1), (CD2) and(CD4)

on p. 308hold, respectively, if f the P X-DARE, P Y-DARE and P Z-DARE have
exponentiallystabilizingsolutionswith S4 11 M 0 andS4 22 0 S4 21SE 14 11S4 12 Q 0,
by Lemma11.1.7(seealsoLemma12.6.2andLemma12.6.1).

However, we start with only the assumptionthat the P X-DARE has an
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internally P-stabilizingsolution, and we shall obtain analogousresultsas in
[IOW], by following their proof.

Let S
�

X 4 J1X andKX > I correspondto XI
�

I (i.e., to the solutionof the
DARE), and let K correspondto X (i.e., K

�
XKX > I ). ThenVc

�
RXR and

Wc
� 0 RK, whereR

� ^ 0 I
I 0 ` in thenotationof [IOW].

Let


MY � NY � and



MZ � NZ � be the symplecticpencils(seeLemma14.2.5)

correspondingto (CD2)and(CD4),respectively, with third andfourthrowsand
columnsof MZ andNZ interchanged,in particular,

MY
� ���� I 0 0 0

0 0 A 0 0
0 0 C1 0 0
0 0 C2 0 0

 ��!
and MZ

� ���� I 0 0 0
0 0 A 0 B1X E 1

22 K2 0 0
0 0 X12X E 1

22 K2 / K1 0 0
0 0 C2 0 D22X E 1

22 K2 0 0

 ��!
(12.146)

satisfyMY

" 6 

H � H � Z � Y � andMZ

" 6 

H � H � Y � U � .

By repeatingtheroutinebut loooongcomputations(donot try thisathome)
of pp.315–317of [IOW], weseethattheextensionsM bY � N bY " 6 
 H � H � Z �
Y � W � U � of MY andNY, andM bZ � N bZ " 6 
 H � H � U � Y � W � Z � of MZ

andNZ, andtheoperatorsUa andWa giventheresatisfy

UaM bZWa
�

M bY � UaN bZWa
�

N bY � (12.147)

andUa andWa areinvertible(useLemmaA.1.1(b1)&(b2)andelementaryrow
andcolumnoperationsfor this invertibility).

(Note: wemusthave

 � 4 in placeof


 � T . Notealsothefollowing misprints:
thetop row of thebiggestmatrix in (10.161)shouldbe ^ 0 Sc ScV 4c21V 4c22̀ , the
WT

2 in (10.162)shouldbeWT
c2 (i.e., W 4c2), and“(10.165)” on line 5 of p. 317

shouldbe“(10.164)”.)

2t “ ρ

 P X P Y � 8 1” is necessary:Let the P Z-DARE have an internally P-

stabilizingsolution P Z O 0. ThenI / P X P Z

" c 6 

H � , P Y :

� P Z


I / P X P Z � E 1 O

0 andρ

 P X P Y � 8 1, by Lemma12.6.3(a).Thus,weonly have to show that P Y

is the(unique)internallyP-stabilizingsolutionof P Y-eDARE.

Moreover, NZVZ
�

MZVZAz > Z andhenceN bZV bZ � M bZV bZAz > Z (i.e., (10.166)
and(10.169)hold),where

VZ
� �� IP Z

KZ

 ! � V bZ � �� VZ

00 Θ P ZAz > Z  ! � (12.148)

Θ is asonp. 316,KZ is thecorrespondingstatefeedbackoperatorandAz > Z the
correspondingclosed-loopsemigroupgenerator, by Lemma14.2.5.

But (12.147)impliesthatN bYW E 1
a V bZ � N bYW E 1

a V bZAz > Z (thisis (10.170)),and

Wa
� �� I 0¯P X 0

0 I 0I I I  ! impliesthatW E 1
a
� �� I P X 0

0 I 0I I I  ! � (12.149)
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It follows thatW E 1
a V bZ �_V I H m X m Zm Z4 Y . Consequently,

N bYV bY � M bYV bYAz > Y � where V bY :
�

W E 1
a V bZ 
 I / P X P Z � E 1 � �� IP YI  ! (12.150)

and Az > Y �ö

I / P X P Z � Az > Z 
 I / P X P Z �FE 1. The four top rows of N bYV bY �

M bYV bYAz > Y areNYVY
�

MYVYAz > Y, whereVY consistsof the four top rows of
V bY. By Lemma14.2.5,P Y solvesthe P Y-eDARE,andAz > Y is thecorresponding
closed-loopsemigroupgenerator.

3t “ ρ

 P X P Y � 8 1” is sufficient: (We go here2t backwards.)Assume(ii).

Then P Z :
� P Y



I 0ìP X P Y �FE 1 O 0, by Lemma12.6.3(a),andNYVY

�
MYVYAz > Y

andhenceN bYV bY � M bYV bYAz > Y, where

VY
� �� IP Y

KY

 ! � V bY � �� VY

XaVYAz > Y0 XbVYAz > Y  ! � (12.151)

whereXa andXb are the operators“X1” and “X2” of (10.158). By (12.149),

we haveV bZ :
�

WaV bY 
 I 0®P X P Y �FE 1 � V Im Z4 Y . But N bYW E 1
a V bZ � M bYW E 1

a V bZAz > Z,

whereAz > Z :
�Ú


I 0 P X P Y � Az > Z 
 I 0 P X P Y �FE 1, henceN bZV bZ � M bZV bZAz > Z, hence

NZVZ
�

MZVZAz > Z, whereVZ
�ôV Im Z4 Y arethefour toprowsof V bZ. Consequently,P Z is asolutionof the P Z-eDARE.

(a) Given (i) or (ii), we obtain the connectingformulae (12.138) and
(12.139)from (2t , 3t and)Lemma12.6.3.

(b) By (a) andLemmaA.4.2(h1), Az > Y is [strongly/exponentially]stable
if f Az > Z is. Moreover, if P Z is internally P-stabilizing,so that Az > Z andAz > Y
arebounded(by theabove) and

n
Anz > Zx0 �pP ZAnz > Zx0o � NÀP 1� 2

Z Anz > Zx0 N 2H ' 0, as

n ' / ∞, for all x0

"
H, then P ZAnz > Zx0

� P 1� 2
Z P 1� 2

Z Anz > Zx0 ' 0, henceP YAnz > Yx0
� P Y



I / P X P Z � Anz > Z 
 I / P X P Z � E 1x0

� P ZAnz > Z 
 I / P X P Z � E 1x0 ' 0 �
(12.152)

for all x0

"
H, hencealso P Y is internally P-stabilizing(because9 Anz > Y : is

bounded).
(c) We follow herecloselypp.321–326of IOW. Now

“R( / COZC4O b£b ��@ 0 I
I 0 B 
 DZd 4 J1DZd / BZd 4 P ZBZd � @ 0 I

I 0 B ��@ 0 I
I 0 B SZ

@
0 I
I 0 BÕ� (12.153)

whereCO :
�³@

0 I
I 0 B B4Zd

��@
0 I
I 0 B V E X11KI1

C2 H D22KI2 Y . Wedivide theproof in parts1t and2t .
1t SZ11 M 0: Make the definitionsof p. 321. By p. 322,we have

· M 0
(useLemmaA.3.1(p2)for thefinal conclusion). Thenb£b D22D 422

b£b � D22D 422 / C2 P YC 42 � SY11 M 0 $ (12.154)

Consequently, SZ11 M 0, becauseSZ11
� b£b D22

·
D 422

b£b , by thecomputationson
p. 322.

2t SZ22 0 SZ21SE 1
Z11SZ12 Q 0, equivalently(10.198)holds: Now “D 412D12

�
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VT
c22Vc22”, i.e.,

“D 412D b£b12
�

D 411D11 / B41 P XB1
�³


SX � 11
�

X 411X11 M 0 (12.155)

BecauseQ :
� b£b D12X E 1

11
b£b " 6 
 U � Z � H � , so that Q4 Q �

I , thereis an unitary
extensionUc

"¡c 6 

U � V � Z � H � of Q, by LemmaA.3.1(e3),whereV :

�
Ran



Q�-, is a closedsubspaceof Z � H; thus, (10.200) holds. Similarly,

D21D 421
�

SY11
�

Y 411Y11 M 0, sothatthereis aunitaryextensionUo

"®c 6 

Y �

V b � W � H � of “D
T
21Vo22”

�
D 421Y11, asin (10.201),whereV b � Ran



D 421Y11 � , v

W � H. In (10.202)thepartitionis w.r.t.
6 


Y � V bÎ� U � V � .
The rest is straightforward, hence(10.206)M 0 (i.e., E M 0 in (10.209),

where E

"�c 6 

Y � V b � ), hence(10.207)–(10.208)hold, by, e.g., Lemma

A.3.1(d).
We arrive at the inequalitiesat theendof theproof. By LemmaA.3.3(s2),

(10.208),and LemmaA.3.1(b1), the last inequality holds, hence(10.198)
�0 SZ22 / SZ21SE 1

Z11SZ12 M 0.
Part II: Thegeneral case(γ � 0): Apply Part I to diag



I � γ E 1I � I � Σ, andthen

applyLemma12.6.5(e.g.,wehaveρ


γ E 2 P X P Y � 8 1 5 ρ


 P X P Y � 8 γ2). 3
For generalγ � 0, wedividez by γ to reducethe4bpfor thecasewith γ

�
1:

Lemma 12.6.5(ρ

 P X P Y � 8 γ2 ¤� 1ρ

 P X P Y � 8 γ2 ¤� 1ρ

 P X P Y � 8 γ2 ¤� 1) The4bpfor Σ andγ � 0 correspondsto the

4bp for diag


I � γ E 1I � I � Σ and 1 (i.e., we multiply ^ � 1

�
11

�
12 ` by γ E 1).

Moreover, thesolutionsof theDAREsfor the latter problemcorrespondto those
for the original problemas follows (both solutionsexist iff either exists; in the
claimson P Z weassumethat theassumptionsof Lemma12.6.1hold):
 P Xγ � SXγ � KXγ � ��
 γ E 2 P X � γ E 2SX � KX �%� (12.156)

ΣXγ z � diag


I ;γ E 1I � I � I � I � C ΣX z ; (12.157)
 P Yγ � SYγ � KYγ � ��
 P Y � V I 0

0 γ e 1I Y SY
V I 0
0 γ e 1I Y � ^ I 0

0 γI ` KY �%� (12.158)

ΣYγ z � diag


I ; I � γI � I � γI � C ΣYz C diag



I ; I � γ E 1I � ; (12.159)
 P Yγ � SZγ � KZγ � ��
 γ2 P Z � ^ γI 0

0 I ` SZ ^ γI 0
0 I ` � ^ I 0

0 γI ` KZ �%� (12.160)

ΣZγ z � diag


I ;γI � γI � I � γI � C ΣZ z C diag



I ; I � γ E 1I � ; (12.161)

in particular, ρ

 P X P Y � 8 γ2 5 ρ


 P Xγ P Yγ � 8 1, and the stabilizability of these
solutionsis invariantunderthis modification.

(Thiswasusedin theproof of Lemma12.6.4.)
Proof: (In the lemma, ΣXγ z is the closed-loopsystemcorrespondingtoP X-DARE (henceto modifiedΣX andJ1); analogouslyfor ΣYγ z andΣZγ z ; in

particular, theclosed-loopsemigroupsareinvariant.)
1t P X-DARE and P Y-DARE: (Note that here we have madeno further

assumptionsthanStandingHypothesis12.1.1.)
By writing the P X-DARE and the P Y-DARE out with substitutionsΣ &'

diag


I � γ E 1I � I � Σ andγ &' 1, oneobservesthatthesolutionsof themodifiedand

original P X-DARE and P Y-DARE correspondto eachotherthroughtheabove
formulae.
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2txP Z-DARE: The requirementthat X 4 J1X
�

SX (which is implicit in
Lemma12.6.1)resultsin γ E 1X in placeof the original X in (12.123),which
affects(theextended)ΣZ asin (12.161),hencetheclaimson P Z-DARE canbe
verifiedin thesamewayasthoseon the P X-DARE.

3t Theclaimsat theendof thelemmafollow from theequations. 3
Weendthissectionby recordingdiscrete-timecounterpartsof threeimportant

lemmasanda remarkof Section12.5.
FirstwenotethatHypothesis12.5.1is weaker thanstandardH∞ 4BPassump-

tions:

Lemma 12.6.6(


A � B1 � &



A � C2 �ò2


A � B1 � &


A � C2 �ò2


A � B1 � &


A � C2 � 2 Hypothesis12.5.1) Assumethat



A � B1 �

is optimizableand


A � C2 � is estimatable.

ThenHypothesis12.5.1is satisfied(evenwith “exponentiallyjointly” in place
of “jointly”) exceptpossibly(12.78). Moreover, thencondition(12.78)holdsiff
(12.32)–(12.33)aresatisfied.

Proof: By Proposition13.3.14(andits proof), thereareK

" 6 

H � U � and� " 6 
 Y� H � s.t.A / B1K andA / � C2 areexponentiallystable.ExtendΣ by K

and � (with F
�

0
�

G
�

E) to satisfyHypothesis12.5.1with “exponentially
jointly” in placeof “jointly” (cf. the proof of Lemma13.3.17(a)&(b))except
possibly(12.78).

But K is exponentiallystabilizing for Σ11 :
��� A B1

C1 D11 � , with closedloop

I/O map
V É u11Ë u11 Y (since� u :

�³

I 0 � u �FE 1 � V k I E � u11 ? e 1 EZk I E � u11 ? e 1 � u12

0 I Y ).
By Lemma8.4.11(a2),� u 411� u11 M 0 if f � u11 is I -coercive; by Theorem

8.4.5(d),this is thecaseif f
�

11 is I -coercive over � exp (w.r.t. systemΣ11); by
Proposition15.2.2(f1)&(i)&(ii), this is thecaseif f (12.32)holds.

By dualarguments,weobtainthat �� y 22 �� y
4
22 M 0 if f (12.33)holds. 3

Lemma 12.6.7(P X & P Y 2P X & P Y 2P X & P Y 2 Hypothesis12.5.1) If conditions(1.) and (2.) of
Theorem12.2.1aresatisfiedand(12.32)–(12.33)hold,then



A � B1 � is optimizable

and


A � C2 � is estimatable.

SeeLemma12.6.6for more.
Proof: By Theorem11.5.1(iii)&(i), (the ficp for ΣX hasa solution and)


A � B1 � is exponentiallystabilizable. By dual arguments,


A � C2 � is exponen-

tially detectable. 3
Lemma 12.6.8(Hypothesis12.5.12 2 2 (12.32)–(12.33))Hypothesis12.5.1is sat-

isfied with ^w� u � u ` and
VD� y�

y Y being exponentially [jointly] stabilizing iff

A � B1 � is optimizable,



A � C2 � is estimatableand(12.32)–(12.33)aresatisfied.

Proof: “If ”: This follows from Lemmas12.6.7and12.6.6.
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“Only if ” AssumethatHypothesis12.5.1holdsandthat ^�� u � u ` is ex-
ponentiallystabilizing. Then



A � B1 � is optimizableand



A � C2 � is estimatable,

by Lemma12.5.2. From the endof the proof of Lemma12.6.6,we observe
that(12.32)and(12.33)hold. 3
In discrete-time,thenecessaryandsufficientconditions“(Factor1X)and(Fac-

tor2Z)” for thesolvability of thefrequency-domainH∞ 4BPcanbeformulatedin
termsof originaldatawithout any regularityassumptions:

Remark 12.6.9(ρ


XY � 8 γ2ρ


XY � 8 γ2ρ


XY � 8 γ2: I/O formulation) Assumethat Hypothesis12.3.1

is satisfiedwith exponentialcoprimeness(as in Proposition12.4.10). Then(i)–
(iii) of Remark12.5.25areequivalent. 3

(Thiswasremarkedat theendof theproofof Remark12.5.25.)
However, also in discretetime, our result in the non-exponential caseis

onedirectional,asin Remark12.5.25.
(Seethenotesonp. 711.)
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