Chapter 12

H* Four-Block Problem
(1 F:(D,Q)|| <)

Whatis nowprovedwasonceonlyimagin’d.
— William Blake (1757-1827)

TheH” Four-Block Problem(H® 4BP)is presentean p. 36. In Section12.1
we solve the 4BP, in Section12.3we solve the correspondindgrequeng-domain
problem, and in Section12.2 we treat the discrete-timecounterpartsof these
problems.Therestof this chapterconsistof proofsandminor results.

Ourmaincontributionsarethe solutionof the continuous-timeéd* problemin
termsof two independenRiccati equationsanda couplingcondition(Theorems
12.1.4and12.1.5,underdifferentassumptionsandtheparametrizatiomf all sub-
optimal controllers(Theorem12.1.8),aswell asthe correspondingliscrete-time
results(including Theorem12.2.1). Anotherimportantresultis the factorization
solutionof thesameproblem(Theorenl2.3.6solvesthefrequeny domainprob-
lemfor MTIC systemsTheorem12.3.7(partially) for moregeneralones;Theo-
rem12.3.5connectghesesolutionsto the state-spaceolution).

In this chaptey 4 standsfor MTICtz or for someothersuitableclass:

Standing Hypothesis12.0.1 Throughout this chNapter we assume that
H,U,W,Y,Z are Hilbert spacesand the spacesA4(U x W), A4(Y x U) and

A4(Y x Z) satisfyHypothesis3.4.7andthat 7 = 7,

(Cf. TheoremB8.4.9(c),Lemmal4.3.5andDefinition 6.2.4.)

Note alsothat Hypothesisl2.3.1is assumedhroughSectionsl2.3-12.4and
Hypothesisl2.1.1throughSectionsl2.1,12.2,12.5and12.6.

In this chapter we allow the controllersto have internal loops unlesswe
usethe term “well-posed controller”; cf. Figures7.8 and 7.10 (or Figures7.9
and 7.11)). We also often drop the prefix “DPF-", since we study no other
controllersthanDPF-controllersn this chapter(seeSection7.3).
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12.1 The standard H* problem (H* 4BP)

Not every problem is necessarilydue to the capitalist mode of
production.

— HerbertMarcuse

We assumehe dynamicsof form (1.25)(seep. 37):

Standing Hypothesis12.1.1 ThroughoutSectionsl2.1,12.2,12.5and 12.6,we
assumehaty > 0 and

AlB [ A ‘ B, B -|
2= [F’E} = [ Ci1 | D11 Do J EWPLS(U XW,H,ZXY). (12.1)

Co | D1 Do

Definition 12.1.2(Suboptimal controller) A stabilizingDPF-contoller for X is
called suboptimalf it malesthe normofthemapw — zlessthaty.

SeeDefinition 7.3.1 for stabilizing Dynamic Partial Feedback(DPF) con-
trollersfor X (recallthatin this chaptethewords“with internalloop” areusually
omittedunlike in Chapter7).

The mapw — zis usuallydenotedby %;(D,Q), whereQ@ is the I/O-map of
the controller; seeCorollary 7.3.20(or Lemma12.3.2)for ;(D,Q). As noted
onp. 321,we have 7;(D,Q) = D12 + D11 Q(I — D21 Q)D, for well-posedQ. In
the literature, often “w comesbeforeu”, hencethe latter subindicesshouldbe
interchangedn the formulafor %, for comparison.

We shallshowv in Theoremsl2.1.4and12.1.5that, understandarccoercvity
assumptionandcertainregularity assumptionghe existenceof suchacontroller
is equivalentto thestandardCARE, signatureandcouplingconditions.Moreover,
in Theorem12.1.8we parametrizall suchcontrollersandshaowv thatall of them
arewell-posedwhenD»; = 0 (asoneusuallyassumes).Thus,for mostreaders
it suffices to considerwell-posedcontrollersonly. We also make someless
importantremarkson the problemunderdifferentassumptions.

Recallfrom Definition 7.3.1that Z being an exponentiallystabilizing DPF-
controllermeanghatthe closed-loopsystemin Figure7.9 (or 7.11)is exponen-
tially stable,.e.,thatall mapsbetweerthe signalsin this figure areexponentially
stable.By Lemma6.1.10,thisis the caseiff the correspondinglosed-loopsemi-
groupis exponentiallystable.

Thus, our conceptof a suboptimalexponentially stabilizing DPF-controller
is a direct generalizationof the standardconcept(the “suboptimal admissible
controller” of [ZDG], “y-admissiblecontroller” of [Keu], or “stabilizing y-
contractingcontroller” of [IOW]).

In mostapplicationsf Definition 12.1.2 we canshav thatHypothesisl2.3.1
is satisfied.SeeProposition7.3.4andLemmal2.5.7for %;(D,Q) in thegeneral
case.

We first notethatthe problemof this sectioncontainsthatof Section12.3:



Lemma 12.1.3(exp-4BP=> 1/0-4BP) Thel/O mapofanysuboptimalexponen-
tially] stabilizingDPF-contmoller for X is a suboptimalexponentially]stabilizing
DPF-contoller for . 0

(Thisis trivial, seeDefinitions12.3.3and7.3.1(cf. Theorem7.3.11(c1)).)

In thefirstform of our solutionwe shallassuméB;,-CARE” typeregularity to
obtainsimplerRiccatiequationsandhave the solutionlook exactly lik e its finite-
dimensionalcounterpartgwith the exceptionof weak WeissextensionsB}, and
Cw in placeof B* andC):

Theorem 12.1.4(H* 4BP & Bj,-CARES)
(Al) (Regularity) Assumehatat leastoneof (I)—(V) holds,whee

(D (Analytic A) 1. A genertesan analytic semigoup on H, B; €
B(U,Hg,), B2 € B(W,Hg,), C1 € B(Hy,,Z), Cz € B(Hy,,Y), D €
BU xW,Z xY), Bk, € (-1/2,1/2) (k=1,2); 2. y1<1/4or
y1—min{B1, B2} <1/2; and3. B2 > —1/4 or max{yi,y2} —B2< 1/2;

(I B is bounded (ie, B € BU x W,H)) and mg1ChA €
L1([0,1); B(H,ZxY));

(1) 1501)AB € L1(0,1]; B(U x W,H)) andC € B(H,Z x Y);

(V) mopABw € L*[0,1;H), TopA*C'to € LZ([0,1];H),
Tio,1)CwABYy € L2([0,1];Z x Y), Tg.1)Bj,A*C*tp € L2([0,1];U x W)
forallvo €U xW, to € Z x Y (equivalently (- — A)~1B, (- — A*)~1C*,
Cw(-—A) 1B, B}y (- — A*) 1C* € Hond Ci B(, )) for somew € R);

(V) A is exponentiallystableandD — D, D()* — D* € Hgtrong(cjg; B(*,%))
for somew < 0.

(A2) (Nonsingularity) Assumethat D},D11 > 0 and D22D%,, > 0, and that
11 22
thereise > 0 s.t.
(ir = A)xo = Biup = ||CiwXo+ D11lo||z > €[[Xolln and  (12.2)
(ir — A%)xo = CaYo = [|BawX0 + D22Yollw = €]|Xol|H (12.3)

forall xoe H, upeU, yo €Y, r eR.

Thenthere is a suboptimalexponentially stabilizing DPF-contoller for %
(possiblywith internal loop) iff (1.)—(3.) hold:

(1) (®-CARE) Dj,D12 — D;j,D11(D};D11)71D};D12 < ¥?I, and the
(B},-)CARE
KxSxKx = A* P + PcA+CiCy,
_ [PiiP11 DiPr2
= [D*ilel D’ilez—VZJ ’
o= =S ot o+ BB,
hasa solution(Px, Sx,Kx) € B(H,Dom(B,)) x B(U xW) x B(H1,U x W)
s.t.P > 0, andthesemigoupgenertedby A+ BKx is exponentiallystable

(12.4)



(2.) (®-CARE) Di2D}, — D12D3,(D22D%,) 1D22D}, < ¥?I, and the
(B:-)CARE
KySyKy = AR, + Py A" + BoB3,
_ [D22D3;  D22D1,
5= |ouiot; by
D * Cow
kv = -5 B2 B5 + [ 0] ),
hasa solution (2, Sy,Ky) € B(H, Dom( [gm ) x B(Y x Z) x B(HE,Y x
Z) s.t. & > 0, and the semigpup generted by A* + [C; Cﬂ Ky is
exponentiallystable
(3.) (Coupling condition) p(Px®) < V2.

(WerecallfromTheoem9.8.12(a)that anyexponentiallystabilizingsolutions

of Riccatiequationsare unique)
Assumehat (1.)—(3.) are satisfied.Thenthefollowing hold:

(12.5)

(a) All suboptimalexponentiallystabilizingDPF-contollersfor X are theones
parametrizedin Theoem 12.1.8(for 4 = MTIC(';ip in cases()—(IV) and

4=Theorem8.4.9¢/) in case(V)); notethatif D1 = 0, thenall of themare
well-posed Moreover, alsocondition(4.) of Theoem12.1.8canbe written

asaB},-CARE,i.e, asfollows:

(4.) (Pz-CARE) For somegequivalentlyall) X € GB(U xW) s.t.X21=0
andS= X*J1 X, theCARE
K3 SzKz = Ay Py + PzAz + BaXoy X5 BS,
Sz = DziDz, (12.6)
D22X2_21

ke =S |:X12X221:| Yoz B (B2w)

has a solution (?7,5,Kz) € B(H,Dom((B%)w)) x B(Y x Z) x
B(Dom(Az),Y xU) s.t. Bz > 0, Sz11>> 0, S22 — 215,715712 < 0
andthesemigpupgenertedby Az + BzKz is exponentiallystable

(b) Thesystem&x, Zv, 2z, ¥pd, ZT andZy satisfytheassumptionsfLemma
6.8.5for p= 1= qif anyof (I)—(IV) holds(andfor p= 2 = qif (IV) holds).
If (I) holds,thenthey alsosatisfyHypothesi®.5.1.

(SeeCorollary9.5.12(b)for additionalsmoothnes$or case(l). By Corollary
9.5.12(a),conditions“2.” and“3.” may be omittedfrom (I) if we write (1.)—(2.)

to theform of Theoreml12.1.5.)
Underthenormalizingconditions

Di2=0, Dj;[Ci D11 =1[0 I], (12.7)
condition(1.) canbewritten asfollows:
((BDwB)* (BDwBx — Y 2((BS)wPx)* (By)wPk = A" Px + PxA+CiCy (12.8)



with therequirementshat® € B(H,Dom(B},)), Px > 0, andA+ (Y ~2Ba(B})w —
B1(Bj)w)Px is exponentiallystable. (Note thatnow Sx = Jy := [,_z ] andKx =

[\;Z%SVWT;X] € B(H,U xW).) If Bis boundedthen(12.8)takestheclassicaform

Py (B1B} — y ?ByBb) P = A* Py + PcA+CiC;. (12.9)

Seep. 618 for further simplificationand remarks. Analogousremarksapply to
(2.) and(4.). We thusobsene thatthe classicaH” CAREsbecomespecialcases
of (1.) and(2.) (cf. p. 618).

Recall from Definition 9.8.1, that each of these P-CARES is given on
B(H1,H* ;) := B(Dom(A),Dom(A*)*); e.g.,(12.8) holdsiff

((BY)wPxX0, (B )wPxx1) — Y~ 2((BS)wBkXo, (BS)wPxXa)
= (Axg, PxX1) + (Px X0, Axz) + (C1X0,C1x1)

for all xo,x1 € Dom(A) (we cantake x; = Xp w.l.o.g., by LemmaA.3.1(g1)).
Analogously the & -CAREs are given on Dom(A*) and the Pz-CAREs (see
Theoreml2.1.8)on Dom(Az).

Seethe remarkin the proof for wealening (Al) (e.g., by assumingthat
HypothesiD.2.1is satisfiedby certainsystemswith J, or J;). SeeRemark12.1.7
for severalequivalentconditionsfor (A2).

One usually assumedhat (A,B;1) is exponentially stabilizableand (A,Cy)
is exponentiallydetectable.By the above, suchassumptionsre necessarjut
redundantunder (A1)—-(A2) (or somevhat wealer analogousassumptionssee
Theoreml2.1.50r Theoreml12.2.1).

Note that in “(P,Sx,Kx) € ...” only “P € B(H,Dom(B;,))" is a re-
guirement;the othertwo conditionsare automaticallysatisfiedwheneer P« €
B(H,Dom(B},)) and Sx and Kx are determinedby the secondand third equa-
tions of (12.4). An analogougemarkappliesto (2.) and(4.) (andto ary other
B;,-CARE).

Proof of Theorem 12.1.4: 0.1° Remarkson (1)—(V): Conditions(l) says
thatHypothesi®.5.1holdsfor = (henceor Zx andZy too) andthatHypothesis
9.5.7(2.) (without the D*JD condition) is satisfiedby Zx and Zy (but not
necessarilypy ). Theassumptiong (I1)—(V) couldbewealenedanalogously

Evenwithout the standinghypotheses(l) implies that [é%] generatean
ULR WPLS,by Lemma6.3.15.For (Il) (resp(lll)), wemustaddtheconditions
(4.) (resp.(2.)) and(1.) of Lemma6.3.15.Conditions(lV) and(V) arefarfrom
sufficientto guaranteehe axiomsof WPLSs.

The H;ongconditionin (V) could be rephrasecas “D — D € B(U x W,
L2(Ry;ZxY))xandD?—D € B(ZxY,L%(R,;U xW))x", i.e.,as“CyABy €
L2(R;;Z x Y) and B;,A*C*Jo € L?(Ry;U x W))* for all vo € U x W and
Yo€EZXY".

0.2° Remark: alternativesfor (Al): In Theorem12.1.4,an alternatve for
(A1) wouldbeto assumehat(Zx, Jy) and(Zy, Jy) havethepropertyof Remark
9.9.14(c).

Then(1.)—(3.)becomenecessanpby Lemmal2.1.13 put sufficiency would
requirea slightly strongerassumptiorto guaranteghatalso > or 27 is as

(12.10)



smooth(wheneer (1.) holds).

An even wealer assumptioncan also sufiice: if (Zx,Jy).(Zv,Jy) €
coercveCARE,then(1.)—(3.) arestill necessarypossiblyin a modifiedform,
seeLemmal2.1.13andRemarkl2.1.6;also(A2) mustpossiblybealteredif D
is not ULR), but for sufficiency one needsseveral additionalassumptionsgf.
theremarkin theproof of Lemmal2.1.12

1° Case(V): This is containedin Theorem12.1.11(let 4 be the classof
Theorem8.4.9¢/); notethat Hypothesis12.5.1holds, by Remark12.1.7(a)),
sincethetwo formsof (1.)—(2.) areequivalent,by Remark12.1.6(because&y
andy satisfyHypothesi®.2.2(7.)).Consequentlywe do nottreatcase(V) in
2°-3 below.

2° Condition (A1) of Theoem 12.1.5is satisfied: For (II)—(1V) this is
ohvious, sinceA € C(Ry; B(H)) C LL (Ry;B(H)); for (1) this follows from
Lemma9.5.2.

3° Theequivalenceand all controllers: We deducefrom Theorem12.1.5
that(1.)—(3.) of thattheoremareequialentto the existenceof anexponentially
stabilizing suboptimalDPF-controllerfor Z (possiblywith internalloop), and
thatif eitherholds,thenall suchcontrollersareparametrizethy Theoreni2.1.8
(andthatin this casethe assumptionsf Theoreml2.1.8aresatisfied).

It only remainsto beshown that(1.)—(2.) canbewritten asin this theorem.

4° (1.)—(3.) are equivalentto (1.)—(3.) of Theoem12.1.5: Note first thatif
eitherconditionshold, thenD$ J,Dx, Dy J,Dy € GB, by (A2) andthesignature
conditions,hencethe condition“D*JD € GB” of Hypothesis9.2.2(4.) (or of
Hypothesi®.5.7(2.))is satisfiedby bothZx andZy.

Condition (A1) implies that Hypothesis9.2.2is satisfiedby both >x and
>y; indeed,(l) implies(2.) or (3.) (resp.(2.) or (3.)) of Hypothesi9.2.2for
>x (respfor Zy), (1) implies(1.) (resp.(4.)), (1l1) implies(4.) (resp.(1.)), (V)
implies(5.) (resp.(5.)), (V) implies(7.) (resp.(7.)).

By Theorem9.2.3,it follows that Hypothesis9.2.1is satisfiedby (Zx, Jy)
andby (XZy,Jy), hencethe two CAREsbecomeequivalentto BWCARES, by
Theorem9.2.9.

(a) Theclaim (a) is containedn Theoreml2.1.5exceptfor thefactthatthe
‘P--CARE canbewritten as(4.) above; equialently, for thefactthatZ; andJ;
satisfyHypothesi€9.2.1. Thiswill beestablishedbelow.

(a)&(b) We shallestablish(b) andshow thatZ; satisfiesHypothesi9.2.2,
sothatXz andJ; satisfyHypothesis9.2.1. This completeghe proof of (a). It
alsoimpliesthat(4.) is satisfied(since“(4.)” of Theoreml12.1.8is necessarily
satisfied py thetheorem).

a.1° Thesystem=yx, Zv, 2z and Zpa satisfythe assumption®f Lemma
6.8.5for p=1=qif anyof (I)—(IV) holds(andfor p =2 = qif (IV) holds):

For Zx and Xy, this wasnotedin 1°. SinceB}, P € B(H,U x W), the
operatoKy is of theform describedn Lemma6.8.5(for Zx, hencealsofor %),
hencealso % and Zg satisfythe assumption®f the lemma(by the lemma).
Consequentlysodoeszq (Sinceit is a partof >4 by Lemmal2.5.15) hence
sodoesXz, by Lemma6.8.5(b).

a.2° Thesystem<t and Z; satisfythe assumption®f Lemma6.8.5for



p=1=qif (4.) andanyof (I)-(IV) hold (andfor p=2=qif (4.) and (IV)
hold): SinceKz in (4.) is of theform describedn Lemma6.8.5(by a.1°) for
>z, it followsthatZ,; satisfiegtheassumptionsf Lemma6.8.5,hencesodoes
> (becausdt is apartof Z).

a.3° Therestof (a) and(b): We shaw thisseparatelyindereachassumption.
Note that exceptfor claim on Hypothesis9.5.1, it sufficesto be shown that
Hypothesi®.2.2is satisfiedsothat(4.) holds).

We shall usethe factthat“(4.)” of Theorem12.1.8is satisfiedandS; =
D3J:Dz € GB, asnotedin the proof of Theorem12.1.5. (N.B., evenif we
had not assumed1.)—(3.), conditions(1.) and(4.) above would imply that
alsothecorresponding AREsweresatisfiedwith S = D3JDz), by Theorem
9.2.9(iii)&(iv), hencethen(1.)—(3.) would againhold, by Theorem12.1.8and
theabove.)

(IN: SinceCz is bounded,by (II) and (12.94), Hypothesis9.2.2(4.) is
satisfiedoy 2 7.

(1N): Now C and Ky are bounded(sinceCx = [Col] is), henceBgz is is
boundedby (12.94).Thus,Hypothesi®.2.2(1.)is satisfiedby > 7.

(IV): By a.1°, Hypothesi®.2.2(5.)is satisfiedoy 2.

(I): SinceCx = [¢] € B(Hy,,Z x W), wehaveKx € B(Hy,,U x W), hence
alsoZz is analytic,by Lemma9.5.4.

It follows that Bz € B(Y x U, (Hg,)*), where Bz := —max{y1,y2}, by
(12.94).Moreover, Cz € B(Hy,,W x U), whereyz = —[3,, by (12.94).

We concluderom (1) that(Bz,yz € (—1/2,1/2) and)yz < 1/4oryz — Bz <
1/2, hence(2.) or (3.) of Hypothesis9.5.7 is satisfiedby > (recall that
D3J:Dz € GB), hencesois Hypothesi®.2.2(2.).Consequentlythe 7-CARE
becomes B;,-CARE.

It follows thatKz € B(Hy,,Y x U). We concludefrom Proposition12.5.19
andLemma9.5.4that Z; satisfiesHypothesi9.5.1,hencesodoeszy. (Note
that Hypothesis9.5.1is strongerthan the assumption®©f Lemma6.8.5, by
Lemma9.5.2.) O

Next we shall allow for ary “L ! systems’insteadof the “B;;-CARE” type
regularity above. Thus,assumptiongl)—(lll) above becomespecialcase®f those
in (Al) belon. This leadsto more general(read: more complicated)Riccati

equations:

Theorem 12.1.5(H* 4BP < CARES)

(A1) (Regularity) AssumehatTyg 1)AB € L*([0,1); B(U x W, H)), T 1)CwA €
L1([0,1); B(H,Z xY)), and T 1)CwAB € L*([0,1); B(U x W,Z x Y)), or
that (IV) of Theoem12.1.4holds.

(A2) (Nonsingularity) Assumethat Dj;D11 > 0 and D22D3, > 0, and that
therise > 0s.t.

(ir —A)xg = Biug = ||CiwXo+ D11o||z > €||x0|ln and  (12.11)
(ir — A")xo = C3yo = [|BawX0 + D22Yollw = €]|Xol|H (12.12)



forallxoe H, upe U, yo €Y, r eR.

Thenthere is a suboptimalkexponentiallystabilizingDPF-contoller (possibly
with internal loop) for X iff (1.)—(3.)hold:

(1.) (B-CARE) D},D12— D%,D11(D},D11)"1D%;D12 < Y?lw, andthe CARE

K§SxKx = A" By + By A+CiCy,
_ [D13P11 DisD12
= [Dilel D12D12—V2|} ’
D «
-5 i,
hasa solution(?x, Sx,Kx) € B(H) x B(U x W) x B(H1,U x W) s.t. P >
0, Kx is exponentiallystabilizingfor ( A | B'), and lims_, e B}, P (S —
A~1B=0.
(2.) (B-CARE) D12D},— D12D35(D22D35,) ~'D22D}, < YPlz, andthe CARE
KySrKy = APy + P/ A" + B,B3,
_ [D22D3;  D22D7,
S = oot i)
kv =-SH([Biz] B3+ [ ] ),
has a solution (®/,Sy,Ky) € B(H) x B(Y x Z) x B(H{,Y x Z) s.t.
P, > 0, Ky is exponentially stabilizing for ( A* | C5 C; ), and
. C — * *
imso | &] B (s-A)E[Cs Ci] =0,
(3.) (Coupling condition) p(Px®) < V2.

If (1.)—(3.) are satisfied,thenall suboptimalexponentiallystabilizingDPF-
contmllersfor = aretheonesparametrizedn Theoem12.1.8(for 4 = MTlCé(lp,
or for class(y) of Theoem 8.4.9 under the alternative assumptiorf'(IV)” in
(A1)); notethatif D21 = 0, thenall of themare well-posed.

(12.13)

(12.14)

We remarkfrom Theoreml1.1.4(iii)&(i) that(1.) impliesthatthe FICPfor Zx
hasasolution,and(2.) impliesthatthe (dual)filter problemfor Zy hasasolution.

A sufficient conditionfor (A1) is condition(A1)()1. of Theorem12.1.4,by
Corollary9.5.12.SeeTheoreml2.1.11for alternatvesfor (A1) and(Az2).

Proof of Theorem12.1.5: If thereis asuboptimakxponentiallystabilizing
DPF-controller(possiblywith internalloop), then(1.)—(3.) hold, by Lemma
12.5.22.(Thus,afortiori, thisis thecasewhenthereis awell-posedsuboptimal
exponentiallystabilizingDPF-controller)

Corverselyif (1.)—(3.)hold,thenHypothesisl2.5.1andconditiong(1.) and
(4.) of Theoreml12.1.8aresatisfied,by Lemmasl12.5.21and12.5.20. Thus,
thenthereare suboptimalexponentially stabilizing DPF-controllerdfor Z, by
Theoreml2.1.8(whoseassumptionsiresatisfied).

We remarkfrom 3° of the proof of Lemmal2.5.20thatS; = D3JDz when
(1.)-(3.)hold. O



Remark 12.1.6(Differ ent forms of (1.)—(2.)) We first recall from Theoem
9.8.12(b)thatanysolutionof any(1.), (2.) or (4.) of this sectionis unique

We have usedthree forms of the Px-CARE (“(1.)") and the &/ -CARE
(“(2.)). The"weakest” forms(the standad forms)are givenin Lemmal2.1.12
(they applyto any UR settings).

Thosegyivenin Theoem12.1.5are equivalento thosegivenin Lemmal2.1.12
combinedwith assumption$x = Dy J,Dx andSy = D§J,Dy; theseassumptions

are redundanwhenN, and I’\I\;,d satisfyHypothesis8.4.8,as notedin the proof of
Lemmal2.5.21.

Thestrongestformsof (1.)—(2.) (the Bj,-CAREforms)are givenin Theoem
12.1.4;they are equivalento eitherof thewealer onesvhen&er Hypothesi®.2.1
is satisfiedby (Zx, Jy) and (Zy, Jy) (see(12.84)—(12.85)).

In all our resultsreferringto any of theseCAREspnecanalwaysreplacethe
CAREsby anywealer ones(of thethreeformslistedabove).

Moreover, underthe assumption®f Theoem12.1.4,12.1.50r 12.1.11,we
can usethe middle form for the 7--CARE (4.) or (4!) too (i.e., require that
Sz = D3JDy). 0

(This is straightforvard; use Theorem 9.2.9(ii)&(iv) for the Bj,-CARE
forms.)
Condition(A2) is virtually equivalentto thel-coercvity of D11 and]D)gzz

Remark 12.1.7(Differentforms of (A2))  (a) Assumethat (A1) of Theoem
12.1.4holds (or that (A1) of Theoem 12.1.5holds). Assumehat (A, B;)
is optimizableand (A,C,) is estimatablgthis is a necessaryondition, by
Theoem7.3.12(a))or thatD7;D11 > 0 andD22D5, > 0.

Thencondition(A2) of Theoem12.1.4holdsiff D11 and ]]))‘2’2 are | -coerive
over Uep; in fact, thenany of (i)—(iii) of Proposition10.3.2or Remark
10.3.3(for 2p,, and Z]Dgz) are equivalent.Onemore equivalentconditionis
that Hypothesisl2.5.1holds.

(b) If Z is exponentiallystable thenD1; and ]I))gz are |-coecive over Ueyp iff
Dj,D11 > 0 and D225, > 0 (equivalentlyiff Hypothesisl2.5.1holds).

(c) Thel-coecivity of D11 and]D>g2 over Uexp is equivalento (12.78)if therest
of Hypothesisl2.5.1holdsand (A, B) is optimizable

In this chapteythe I-coercvity of D11 (resp.of Dy») refersto the realization
o 1= (188) (50, = (1)

Proof: (a) By Proposition10.3.2(e2)use(el)and(g2)for (V)), conditions
()—(iii) areequvalent(notethatthisincludel-coercvity and(A2)). Therest
is givenin Lemmal2.5.4(use(b) for (V)) (sinceary of (I)-(IV) of Theorem
12.1.4(Al)implies (A1) of Theorem12.1.5,by 2° of the proof of Theorem
12.1.4).

(b) Thisfollows from (c) (take [ Ky, | Fy ] =0= [%}).

(c) By Lemmal2.5.2(i)&(vi), [ Ky | Fy | is exponentiallystabilizingfor
=, hence[ Xy | Fyg1] is exponentiallystabilizingfor =p,, (sincethetwo closed-
loop semigroupsreequal).



ThereforeDy; is |-coercve over Uep iff Nyg1 is (positively) |-coercie
over Uy, by Theorem8.4.5(d). By Lemma8.4.11(a2),this is the caseiff
N¢1;Nu11 > 0. By dualargumentswe obtainthatDd, is |-coercie over U

As in, e.g., [IOW], the Pz-CARE is not determinedby the exponentially
stabilizing solution of the Px-CARE but by a(ry) exponentially stabilizing
solution of the Px-IARE having Xi11,X22 € GB and Xp1 = 0 (see (9.114)).
Analogouslyfor the parametrizatiomf all controllerswe usea modifiedsolution
of the Pz-IARE(see(12.94)):

Theorem 12.1.8(All solutionsto the 4BP) Assumethat Hypothesis12.5.1 is
satisfiedwith Ny, My, € 4. Thenthere is a suboptimalexponentiallystabilizing
DPF-contoller for Z iff conditions(1.) and (4.) belowhold:

(1.) (B¢-CARE) TheCARE
Ky SxKx = A" P + PcA+CiCq,

_ [DPiDP11  DiyDi2 - % R
Sc= | oions by | oM BB (s=A) 1B, (1515
D; .
Kx = =S| it | G+ Buo).
hasa solution(?x, Sx,Kx) € B(H) x B(U x W) x B(H1,U x W) s.t. P >
0, Sx11> 0, Sxo2— sz1$%18<12 < 0 andKx is exponentiallystabilizing
for (A | B).
(4.) (Pz-CARE) TheCARE
K3S Kz = Ay Py + PrAz + BoXor Xor BS,
=D3JDz+ lim (B3 s—Az7)" !B
& =Dz Z+S_)+oo( 7)wPz(s—Az)” "Bz, (12.16)

KZ:_SZ—].( D22X2_2l X_*B*+(B*) TZ)
X12X2_21 22 P2 Z)W )

has a solution (?z,S7,Kz) € B(H) x B(Y x Z) x B(Dom(Az),Y x U)
St. P >0, S7211>> 0, S0 — 522182_33'15212 < 0 and Kz is exponentially
stabilizingfor ( Az | Bz ).

Given the solution (P, Sx,Kx) of (1.), chooseany X € GB(U x W) s.t.
X*J1X = S¢ and X217 = 0. Thenbytheopemtors Az, Bz, Cz, Dz appearing
in the 7z-CAREwemearnthefollowing (here Kx = [Eéﬂ € B(H1,U xW)):

Az | By A+ K o(Bhw | Ch+KDs  —Kyy
=1 X2 (Bw X5Dyy Xy Xi, | (12.17)
C; | Dz
0 0 |
€ B(Dom(Az) x Y xU,H x W x U); (12.18)

Dom(Az) :={xeH|Azxe H} = {xe Hi | Azxe H}.  (12.19)

Moreover, anysolutionsof (1.) or (4.) are unique
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Figure12.1: The suboptimakontrollerQ := %(T,L) : y+— u

Assumgl.) and(4.). Thenwe can constructall suboptimalexponentially
stabilizingDPF-contollersfor  asfollows:
ChooseG € GB(Y xU) s.t.G*1hG =S, Gy = 0and Gy1,G22 € GB, and

thensetR:=G [(') Moil] . If D21 = 0, thenthe assumptionsf Proposition12.5.19

are satisfied,hencethen Xr,, is exponentially stabilizing for %, and all well-
posedexponentially stabilizing suboptimalcontmollers for = are given by the
connection*Zg" of Zy and Z, in Figure 12.1, whee Zj, is any exponentially
stablerealizationof anyLL € TICep(Y,U) s.t.||L||tic < 1 (notethatthel/O-map
of contwller Xg is ,(T,L); cf. (12.26)).Moreover, any exponentiallystabilizing
suboptimalkontroller with internal loop for Z is equivalento a well-posedne
Here T € TIC.(U x Y) is a map that has a realization (denotedby 2t €

WPLSU x Y,H,U xY)) with thefollowing geneators:

Ag := A+BK; +Br:Cos2 (12.20)
Br1 = —BuoX5y (D3R 1R12+ Xi2)Ros — Bsi Ry (12.21)
Bra 1= —Bu2X; D3a(RisR11) ™! (12.22)
Cr1:= —Ki1— Ri,R;7Cox2 (12.23)
Cr2:= R;Cs2 (12.24)
Dy := [RO§2 _RRIf?lf } : (12.25)

whee B := BX 1 andC := C+ DKy.

For generl D33 € B(U,Y), the above formulaestill parametrizeall subop-
timal exponentiallystabilizing DPF-contollers for ~ modulo equivalence(see
Definition 7.3.1) exceptthat we haveto add to Q the outputfeedbak through
—D21=: —E, asin Figure 7.12(andin Lemmar.3.23),andthatthisinternalloop
neednotbewell-posedbut the combinedsystenof Figure 7.12is well-posed).

Notethatthe P--CARE is not uniquelydefined(since X may vary slightly);
thisis notimportant,becauseondition(4.) (and?;) is independenbnthechoice
of X (underthe above restrictions).An analogougormulationis givenin [IOW]



(seepp. 281 and 308-3090f [IOW]); the parametrization®n pp. 136—1370f
[Keu] or on p. 297 of [GL] are simplerdueto simplifying assumption®n the
generatoref .

TheconditionNy, M, € 4 canbewealenedsignificantlyif we replace'if f” by
“if ” atthebeginningof thetheoremasoneobsenesfrom the proof (seeTheorem
12.3.7(a)for thecorrespondindrequeng-spaceclaim).

We repeatthat all exponentiallystabilizing suboptimalcontrollersfor D are
givenby

Q= H(T,L) (L€ TICop(Y,U)iss.t.||Ljnc < 1) (12.26)

(when D21 = 0; cf. Lemma 7.3.23). As noted belov Theorem12.3.7, the
controllerQ in (12.47)is differentfor differentparameters..

The mapsT and L are the sameasin Theorem12.3.7(c)and Proposition
12.5.19,asoneobsenesfrom the proof below, henceparts(a)—(g)of thetheorem
applyfor Z andZy.

In particular T € ULR, since T is given by (12.48) and N+,M+ € 4.
AnalogoustQg Q € 4(Y,*) and Q € gTIC( ), whereQ = Q5 1Q, is the
l.c.f. of Q parametrizedby (12. 47)(hereQ*, N+ M+ andT correspondo X with
0 in placeof D21; notethatthe actualcontrollerhasthe additionalloop through
—D2y).

Remark 12.1.9(Figure 12.1) Figure 12.1illustratesthemap@Q := f(']l‘ L). The
combinectlosed-loopconnectiorof Z and 2y, |sasysten’navmg[ ] asits 1/0

map(seeLemmar.3.2with Z — Zp ands — >1.). Thesignalsp_ andqy referto
externalinputsandxg andxg to theinitial states.

Thus,this combinedsystenis not a realizationof Q in the senseof Definition
6.1.6; howerer, there existsalsoa realizationof Q in this strict senseby Theoem
12.3.5. 0

(Notethattheparametrizationf Figurel2.1wasgivenin (theMain) Theorem
5.4 of [Keu]too.)

Naturally, any Q givenby (12.26)hasinfinitely mary realizationgandsodo
T12 andT), andnot all of them are stabilizingfor Z. (Recallfrom Definition
7.3.1that for a realizationof QQ to be stabilizing for Z, this realization must
be also internally stabilized by the connection.) The term “all controllers”
has traditionally beenusedas above, meaningall (suboptimal[exponentially]
stabilizing)@'s (with somerealizations)notall realizationsof suchQ’s.

Our choiceto usepairs (Jy, J1) for the Px-CARE (or (Factor1X)of Theorem
12.3.7)and (J1,J1) for P,-CARE (or (FactorlZ))hasslightly scaledthe rows
andcolumnsof 2z comparedo thosein [Keu] or [ZDG] (if y # 1), but thereis
no essentiabifference(exceptthatwe have no simplifying assumptionsuchas
“D1p = 0= Dy"). Thisresultsin theformula®; = B (Y| — PPy )~* insteadof
P =P (1 —y 2P P)~tin Lemmal2.6.4.

Proposition 12.1.10(Non-exponentially stabilizing H* 4BP) Theoem 12.1.8
holds eveniff we remaore the word “exponentially” everywhee from the theo-



remandreplace(1.) by (1:), (4.) by (4:) and” TICgp” by“TIC”. Herewehave
referredto thefollowing conditions:

(1)) (®c-CARE) Condition(1.) holdsexceptthat on Kx we only require that
Kx is P-stabilizingfor Z, andthatD(l —Fx )=t and (I —Fx) ! arer.c.

(4)) (Pz-CARE) Condition(1.) holdsexceptthaton Kz weonlyrequirethatKz
is P-stabilizingfor 27 := (é—;%) ,andthat (I —F2)(I =F) € GTIC(Y xU)

andKz + (I —Fz)K is stable whee | Kz | Fz | is the pair geneatedby
Kz.

Moreover, (1.) hasa solutioniff (1!) hasa solutionand Z is exponentially
stabilizable If(f) Z is exponentiallystabilizable then(1.) and (1)) havesame
solutions(if any),andsodo (4.) and (4’); thus,thenany suboptimalstabilizing
controller parametrizedy themodifiedtheoemis exponentiallystabilizingiff
is exponentiallystable

Note that the assumption®f the theorem(by Lemmal2.5.9)andformulae
(12.20)—(12.25do not dependon D21. However, for Q to be suboptimaland
stabilizingfor =, we mustaddthe outputfeedbackhrough—D»4 asin Figure7.12
(with E := D»j); thiscombinedconnectiorns alwayswell-posedandstable).See
thecommentdelov Lemmal2.5.17for why ther.c. conditionin (1)) hasamore
complicateccounterpartn (4.).

We concludefrom Proposition12.1.10that if Hypothesisl2.5.1is satisfied
with Ny, M, € 4, thentheH* 4BP canbe solvedasfollows:

0. Choosesomeinitial estimatey > 0.
1. 1f (1)) doesnothave asolution,thenthereareno suboptimalkontrollers.

2. OtherwisechooseX asin (4.). If (4) doesnot have a solution,thenthere
areno suboptimalkontrollers.

3. Iteratel.-2.for differentvaluesof y (by using,e.g.,abinarysearchysoasto
find agoodapproximatenf theinfimal (optimal)y (but above it, sothat(1.)
and(4.) have solutions).

4. ChooseG and constructT (and Zg) asin Theorem12.1.8to obtain all
suboptimalontrollers.

Usuallywe arelooking for an exponentiallystabilizingsolution;if thisis the
case,thenwe mustreplace(1)) by (1.) and(4)) by (4.) above (seeTheorem
12.1.8). If (A,B) is exponentiallystabilizable,thenthe two pairs of conditions
becomeesquialent(by, e.g.,Lemmal2.5.2(ii)&(i) andTheorem6.7.15(c1)).

Underthe alternatve, more easily verifiable assumptiongAl) and (A2) of
Theorem12.1.5(or of Theorem12.1.4, or underthe assumptionf Theorem
12.1.11) we canusethefollowing alternatve procedure:

0. Choosesomeinitial estimatey > 0.
1. Therearesuboptimakolutionsiff (1.)—(3.)of Theoreml2.1.5hold.



2. Iteratel. for differentvaluesof y (by using,e.g.,abinarysearch}oasto find
agoodapproximateof theinfimal (optimal)y (but aboveit, sothat(1.)—(3.)
have solutions).

3. Set?; = P (Yl — P« Ry)~* to obtaina solutionof (4.).

4. ChooseG and constructT (and Q) asin Theorem12.1.8to obtain all
suboptimalkontrollers.

Thus,in this caseit sufficesto studythe P«-CARE andthe &/ -CARE to find
anestimateof infimal y, but we still needthe P--CARE for finding a suboptimal
controller (note that P,-CARE dependson Px-CARE, whereasPx-CARE and
R/ -CARE dependon the original systemZ andy only and are thereforemore
suitablefor computations)This latter procedures the classicalone.

For the noneponentiallystabilizablecasecoveredby the former procedure,
conditionsanalogougo (1.)—(3.)arenecessarnby Lemmal2.1.12 but we do not
know whetherthey aresufficient.

Proof of Theorem 12.1.8and Proposition 12.1.10: (We prove hereboth
Theoreml2.1.8andProposition12.1.10atonce.)

(We notethatif (1.) holds, then (%,Ji, ( XKx | | =X )) is an expo-
nentially stabilizingsolutionof the P« -IARE; cf. Lemmasll1.1.7and12.5.12.
Analogouslyif also(4.) holds,then(?z,J1,( GKz | | =G )) is anexponen-
tially stabilizing solution of the P--IARE, asin Proposition12.5.19,asone
obseresfrom I1.2° belon. Same“upper triangular” IARE (or “KPYS”) so-
lutions were usedalsoon pp. 280-281of [IOW] (in the correspondindinite-
dimensionatesult).)

0° We first note that ary P-stabilizingsolution of a CARE is unique, by
Theoren9.8.12(b)&(s1).

Part I: Theee is a suboptimalstabilizingDPF-contoller for Z iff (1!) and
(4)) hold:

[.1° We only haveto showthat (4BP3) holdsiff (1)) and(4!) hold: By
Lemma12.5.3, Hypothesis12.3.1is satisfied. By Theorem12.3.5(b)(and
Theorem6.6.28),(4BP1)is equialentto the existenceof a stabilizing DPF-
controllerfor Z. By Lemma12.3.10,(4BP1)—(4BP3)f Theoreml12.3.7are
equialent.

[.2° (Factorlx=(1!): This follows from Lemmal2.5.12(sincea solution
hasnecessarilyX, N, M € 4 ¢ ULR c UR, by Lemmal2.3.10(a)).

(A detailedverificationthatthe conditionon Px-CARE in Lemmal2.5.12
is equivalentto (1) is givenin 6° belov. An analogouscommentappliesto
(4, (1.) and(4.) too.)

[.3° Consequencead (Factorl): If (Factorl)holds,thenHypothesisl2.5.13
holds, by Lemma 12.5.12,and X,N,M € 4 c ULR, as noted above; in
particular thenMi; € GTIC«(U), by Proposition6.3.1(c).

1.4° (4BP3)=(1)&(4.): Assume(4BP3). By 2°, (1)) holds. But (Fac-
tor2Z) hasan ULR solution,by Lemmal12.3.10(aand Theorem12.3.7(el)),
hencealso(4.)=Lemmal2.5.17(ii)holds,by Lemmal2.5.17(c2).

1.5° (1)&(4.")=(4BP3): If D23 =0 and (1)) and(4’) hold, so that
the factslisted in 3° hold, thenwe obtain (Factor2)from Lemma12.5.17(a)



(andTheorem12.3.7(el))thus,then(4BP3)andhencealso(4BP1)hold. But
(4BP1)is independentf D21, by Lemmal2.5.9,hencesois (4BP3); on the
otherhand, (1)) and(4.) arealsoindependenbf D21, by Lemmal2.5.9.
Thus,(1)) and(4.) imply (4BP3)regardlesf D»;.

1.6° The CAREs(1)) and (4!): Equation(12.17)follows from (12.94),
Proposition6.6.18(d4)and (6.145) (note that the 2,-CARE correspondgo
(7,5, ( XKx | I =X )), whereX is choserasin (4.) (i.e.,asin (4.)), by the
lastclaimof Lemmal2.5.12;notealsothatwe provetheequivalenceregardless
of thechoiceof X (within theserestrictions)).

By Lemma9.11.5(e)the“lim” (insteadof w-lim) in (1.) (or (1.)) and(4.))
(or (4.)) is equivalentto the solutionbeingUR (sinceZx andZz (if ary) are
necessarifUR). Actually, sinceary spectraffactorizationis necessarilyn 4,
henceULR, we couldaswell write w-lim.

|.7° ThesetDom(Az): By LemmaA.4.6,

Dom(Az) :={x€ H|Azx € H}. (12.27)

By Proposition6.6.18(al),the space“Hc” for £+ equalsthat for Ze (Of
(6.132),which we denoteby

Hék = (r —A")THH+CHZ x Y]+ K*[U x W]] (12.28)

= {Xo € H|A"%o+C*[{3]+ K* [w}] € H for some(zo, Yo, Up,Wo) € Z x Y x U x W}
(12.29)

(for any r > wp); cf. Definition 6.1.17. Naturally, this is the space“Hg” for
>4 hencecontainedby the space*Hg” for Sga. By Proposition6.6.18(al),
the spaceHg, (for X7) equals‘Hg” for 2, andDom(Az) C Hg,, hencewe
canreplaceH in (12.27)by Hg,, henceby its supersets  (onwhich By, is
defined by theregularity of Z¢ andProposition6.2. 8(a2),sothattheformula
for Dom(Az) below (12.17)is well defined).

By Proposition6.6.18(d3)equation(12.17)actuallyholdson Hg, x U, but
thevaluesof Az onHg, \ Dom(Az) lie outsideH.

Part II: All controllers: Within Partll we assumehat(1.) and(4.) hold.

[I.1° By 1.3° 1.5° and Lemma12.3.10(a),Hypothesis12.5.13holds and
(Factor1X)and (Factor2Z)have solutionswith X,N,M,E,Z € 4 ¢ ULR and
Mj1 € GTIC(U).

11.2° R=Z* and Z11 € GTIC«(Y) whenD2; = 0: (Note that G canbe
obtainedrrom (11.101).)By (a)2” and(d)1° of theproofof Lemmal2.5.17(a),
thesolutionZ of (Factor2Z)obtainedn 1.5° satisfieZ = X*G* (whereG* = Z).

SinceX = [_[')21 Moh] = [0 'V'Oil] , we have R= Z*, whereRis asin Theorem
12.1.8.SinceZ11 = Gj; € GB, wehaveZ11 € GTIC, by Propositior6.3.1(c).
[1.3° All controllers andtheir well-posedneswhenD21 = 0. Theassump-

tions of Proposition12.5.19are satisfied,by Part | andll.2°, hencewe thus
obtainthe parametrizatiorof all suboptimalktabilizingcontrollers.



To obtain (12.20)—(12.25)first write out the generatorof %+, (12.102)
(12.103)and(12.104)using(13.57)(seell.3° for R= Z*), andthenusethese
to obtain(12.20)—(12.25)recallthatX 1K = Ky).

SinceDr21 =0, by (12.25) theconditionl —LLT21 € GTIC(U) in (12.105)
alwaysholds (by Proposition6.3.1(c))),henceall controllersparametrizedy
(12.26)arewell posed.

[1.4° CaseDy; # 0: By Lemmal2.5.9,(1)) and(4.)) areindependenof
D»1. Thereforetheabove shonvsthatall suboptimaktabilizingDPF-controllers
for ¥’ aregivenby (12.26),wheres’ is equalto = with 0 in placeof Dy.

Thus, the claim on Dy; at the end of Theorem 12.1.8 follows from
Proposition12.5.19(g)alternatvely, directly from Lemma7.3.23).

Remarkson case D1 # 0. By Lemma 7.3.23, this output feedback
connectionof Q and —D»; may be non-well-posedandit corresponddo a
controller with d.c. internal loop, as in the lemma), but when we add the
connectionwith D (as in Figure 7.12), all signalsin this final connection
becomewell-posedlf | +D21Q € GTIC«(Y), thenthefinal controllerbecomes
well-posed, an alternatve formula for it is given by Q@ = (1 + QD21)~*Q
(= Q(I +D21Q)™1), asnotedbelon Lemma7.2.18.

The factorization(Factor1X)is independentf D21, but the solutionZ of
(Factor2Z)usedn I1.1°—I1.4° (for theapplicationof Propositionl2.5.19)solves
the condition(Factor2Z)correspondingo 3/, notthatcorrespondingo , i.e.,
we usetheparametrizatioor thewrong(but equivalent)problemandcorrectit
by theadditionaloutputfeedbackhrough—D>; (sincewe do notknow whether
the solutionof (Factor2Z)correspondindo 3’ hasZ, invertible, asrequired
by Proposition12.5.19;moreover, in this casewe do not know whetherQ is
well-posed).

Part Ill: Conditions(1.) and(4.) compaedto (1!) and(4)):

If any of the equialent conditions of Lemma 12.5.2 hold, e.g., Z is
exponentiallystabilizable thenPartsI-Il hold with the primesremovedif we
requirethecontrollerto beexponentiallystabilizing(anduseTheorenl2.3.5(e)
insteadof Theorem12.3.5(b)). We obsene from this andPart | thatthen(1.)
and (1)) have samesolutions,and so do (4.) and (4.)). Corversely (1.)
obviously impliesthatX (equialently, (A, B)) is exponentiallystabilizable.

Moreover, if X is exponentiallystabilizable(i.e., [ K, | Fy | is exponen-
tially stabilizing),thenthe above formulationof all suboptimaltabilizingcon-
trollersequalsthat of all suboptimalexponentiallystabilizingcontrollersmod-
ulothefactthaty, isrequiredo beexponentiallystable asnotedin Proposition
12.5.19(e)(Cf. thecommentdelon Theoreml12.1.8.)

Note alsothatZ;, mustbe optimizableandestimatabldor the closed-loop
systemto be exponentially stable,by, e.g., Theorem6.7.10(d)(viii), Lemma
6.7.11(c)and (twice) Lemma6.7.18; by Theorem6.7.10(d)(viii), this is the
caseff X, is exponentiallystable. O

We give hereanalternatve setof conditionsunderwhich the conditions(1.)—
(3.) arenecessarandsufficient:



Theorem12.1.11(MTICyz : H® 4BP< CARESs) Assume that Hypothesis
12.5.1is satisfiedwith NU,MU,MI,,N\; € 4 (eg., that > is exponentiallystable
D € 4, Dj; D11 > 0andD,,D5, > 0) andthat 4 satisfiesHypothesis3.4.8.

Thenthere is a suboptimalexponentiallystabilizing DPF-contoller for X iff
conditions(1.)—(3.)of Theoem12.1.5hold. If (1.)—(3.) hold, thenall suboptimal
exponentiallystabilizing DPF-contollers for = are givenby Theoem12.1.8(in
particular, (1.) and(4.) of Theoem12.1.8hold).

Obviously, thisis particularlyusefulfor exponentiallystablesystems.
Proof: (If X is exponentially stable and D € 4, then we can take

[ Ku | Fy | =0, [%yi] = 0in Hypothesisl2.5.1to obtainthat N, :D:ﬁ; €

AandM, =1 =M, € BC 4.)
By Lemmal2.5.20andTheorem12.1.8,conditions(1.)—(3.) aresufficient
(andimply (1.)—(4.));by Lemmal2.1.12 they arealsonecessary O

Thenecessityof (1.)—(3.) canbe shovn undermoregenerakonditions:

Lemma 12.1.12(4: H® 4BP=> CARES) AssumehatHypothesisi2.5.1is sat-
isfiedwith N, My, My, N, € 4.

If there is a suboptimalexponentiallystabilizing DPF-contoller for %, then
(2.)—(3.)belowhold.

If there is a suboptimalstabilizingDPF-contoller for Z, then(1.), (2!) and
(3.) hold.

(1.) (®-CARE) Condition(1.) of Theoem12.1.8holds.
(2.) (B -CARE) Thedual of (1.) holds,i.e., the CARE

/

K¢SrKy = AR, + B A" + ByB3,

_ [D22D5,  D22Di, - Cow Y PP,
< Sr = [DlzD’éz DlzDiz*VZ'] +sﬂmm [Ciw] B (s-A)[C Cil,

| k=S (B B[S ),

(12.30)
hasa solution(®,Sy,Ky) € B(H) x B(Y x Z) x B(H{,Y x Z) s.t. P >0,
Sr11> 0, Sy — 8{21$1118{12 < 0 andKy is exponentiallystabilizing for
(Alcs ¢).

(3.) (Coupling condition) p(P®) < y°.

Here*(1.)” is the condition of Proposition12.1.10and“(2.))” is its dual
condition(i.e., equalto (2.) with correspondingnodifications).
However, we do not know whetherthe corverseclaimsholdin general.
Proof: Assumethat thereis a suboptimalexponentially stabilizing DPF-
controller for ~ (the proof belov appliesto the latter claim too, mutatis
mutandis).



By Theoreml2.1.8,conditions(1.) and(4.) of Theoreml2.1.8hold. Apply
Lemmal2.5.6to obtainthat“(1.)” holdsfor 24 too (seep. 740),i.e.,that(2.)
holds.

It was notedin 1.2°-1.3° the proof of Theorem12.1.8that (Factorl)is
satisfiedwith Mj; € GTIC,(U). We concludefrom Lemma12.5.18and
Lemmal2.6.4(axhat(3.) holds.

Remark— Why the corverse is open: For the exponential claim, the
problemis that since we have here given up the condition“S = D*JD” of
Hypothesis8.4.8, we can no longerusepart 3° of Lemma12.5.20to show
thatS; is asrequiredin (4.), sothatTheoreml12.1.8would be applicable.

For the latter claim, the problemis thatLemmal2.6.4(b)doesnot sayary-
thing of the preseration of I/O-stabilization(from &/-DARE to P;-DARE),
hencewe would only obtainaninternally P-stabilizingsolution,which is not
enoughfor derivationof (4.) (evenif wewould assumeHypothesis8.4.8to be
ableto establishthe requirementon &); in discrete-timewe facethe same
problem(althoughtherethe problemon S; disappearshy Lemmal2.6.4(c)).

U

In fact,in the exponentialcaseit suficesthat is somaevhatsmooth:

Lemma 12.1.13(H* 4BP=> (1.)-(3.)) Assume that (Xx,Jy),(Zy,}) €
coercveCAREover Ugp andthatDyy and]D>g2 are |-coeciveover Ueyp.

If there is an exponentiallystabilizingDPF-contoller for Z, then(1.)—(3.) of
Lemmal2.1.12hold (with s-lim in placeof lim).

SeeRemark12.1.6for different(equvalent)forms of (1.)—(3.),andRemark
12.1.7for theabove coercvity conditions.Seetheremarkin the proof of Lemma
12.1.12for why the corverseis open.

Proof: (Notethatif any of (1.)—(6.) of Remark9.9.14holds,thenwe need
notreplacelim by s-lim, by Lemma9.11.5(e).)

We obsenre from Lemmal2.5.7thattheassumptionsf Lemmall.2.20are
satisfiedor Zx (weneedhecoercvity assumptiomnD,; to satisfyHypothesis
11.2.1).Consequently(1.) is satisfied By dualagumentgseeLemmal2.5.6),
we obtain(2.).

Let O beanexponentiallystabilizingDPF-controllerfor Z. By discretiza-
tion (see Theorem 13.4.4(el)),we obsere that ASO is an exponentially
stabilizing DPF-controllerfor AS3, henceconditions(1.)—(3.) of Theorem
12.2.1aresatisfiedluseTheoreml3.4.4(g)for its coercvity conditions(12.32)
and (12.33)),even by same®x and R/, by Proposition9.8.7(a)(and unique-
nessseeTheoreml4.1.4(a)).Thus,(3.) holds. O

Notes

Our result, Theorem12.1.4 (and Theorem12.1.8),is of standardform and
extendsandgeneralizest leastmostnonsingulaistate-spaceolutionsto the H”
4BP In the finite-dimensionalcase,such earlier resultsinclude Theorem1l of
[GD88] Theorem3 of [DGKF] Theoremb.1 of [GGLD], Theorem8.3.20f [GL],
Theoreml6.40f [ZDG] andTheorem10.3.1of [IOW].



(Notethatmostof theminterchangehe subindicexorrespondingo u andw,
ascomparedo our formulae.As explainedon p. 317,we have usedthe“u comes
beforew” practice whichis morepopularin the FICPliterature,SeealsoLemma
12.6.2andtherestof Section12.6for how the notationof [IOW] corresponds$o
thatof ours.)

The early history of the problemis explainedon p. 328 of [IOW], whereit is
saidthattheassumptionandformulaeof [[OW] aremoregenerathanary earlier
(nonsingular)ones;thoseassumptionsand formulaeare essentiallythe sameas
ours,exceptthatthey assumehaty = 1 andD21 = 0. In addition,we alsotreat
non-well-poseaontrollers.

In some of the above results, one only speaksof Q stabilizing D (cf.
Section12.3),but in themit is assumedhatD hasan exponentiallystabilizable
anddetectableealizationandthat sucha realizationis chosenfor QQ too, sothat
oneendsup with our setting(seeTheorem7.3.11(c1)).

Theseresultswere extendedto smoothPritchard—Salamorystemsn Theo-
rem 5.4 of [Keu], by Bert van Keulen. Although our resultsallow for approxi-
mately twice as muchunboundednesasthe Pritchard—Salamonlassdoes,the
resultin [Keu] is not exactly containedin ours: in [Keu], the Riccati equation
“(2.)" is givenon aspacel’ embeddedn H(:= 7). Thetwo Riccatiequations
in [Keu] correspondo the“boundedB” caseof the FICP (for Z andfor its “dual”
24)- (Notealsothatarny exponentiallystable(not necessarilysmooth)Pritchard—
SalamorsystemsatisfieA1)(V) of Theoreml2.1.4,by Theorem6.9.6.)

All resultsmentionedabove alsomake the coercvity assumptiongA2). The
singular case,where(A2) is replacedby somethingwealer, is treatedin, e.qg.,
[Stoornwogel] for thefinite-dimensionatase;in thatcasethe proofsandsolutions
becomamorecomplicatedhanin thestandardsetting.SeeSectionl7.30f [ZDG]
or Section5.4.20f [Keu]for adiscussioron how to circumwvent(A2) by using“e-
perturbations’of the system(thatsatisfy(A2)) andthenletting € — O+.

The noteson pp. 446—-4470of [ZDG] describethe historical development
of solutionsto the finite-dimensionaH® 4BP throughseveral computationally
difficult formulationsto the simple“(1.)—(3.)” formulation of [GD88] and this
section.Also thefirst few paragraphsf thenoteson p. 628arerelevantto theH*
4BPR

Outsidethis monographwe do not know ary researchon noneponentially
stabilizingsuboptimalcontrollers(cf. Proposition12.1.10andLemmal2.1.12).

In Section12.3,we shallsolve thefrequeng-domain4BP (thel/O map4BP),
seeTheoremsl2.3.6and 12.3.7. (This is closeto the Youla parameterization
approaclof [Doyle84] and[Francis87].) We obtainthatthe 4BP is equialentto
two nestedspectrafactorizations(FactorlX)”and“(Factor2Z)”(equivalently, to
two nested Ji, J;)-losslessoprimefactorizations).

The CAREs (1.) and (4.) of Theorem12.1.8 correspondto thesetwo
factorizations.The CARE (2.) is thedualof (1.) (andthe 4BPis invariantunder
duality; seealsoLemmal2.5.6).

In Lemma12.5.18,we shall shav that the P--CARE (4.) is equivalentto
(2.)&(3.), thuscompletingthe proofthat(1.)—(3.) areequialentto the solvability
of the4BP Sinceadirectcontinuous-timgroof seemsalmostimpossible(unless,



e.g.,theplantZ hasboundedyenerators)ve havereducedheproofto thediscrete
time,wherethestandarc&computationganbeextendedo theinfinite-dimensional
case(seeLemmal2.6.4).

As in other chaptershereandin Section12.5, we encounterthe fact that
the equivalencebetweenthe CAREsandthe factorizationgequirecertainregu-
larity assumptionsand so doesalsothe equivalencebetweenthe factorizations
andthe J-coercvity propertiesconnectedo the solvability of the 4BP (cf. Ex-
ample 11.3.7); this is why mostof our resultshave somekind of 4 regularity
assumption.

In discretetime, we have no suchproblems(sincetiCep = 4 is avalid choice,
by Theorem14.3.2);seeTheorem12.2.1.

The parametrizatior{12.26)of all suboptimalcontrollerswill be obtainedin
the frequeng-domaintheory (seeTheorem12.3.7),by reducingthe problemto
a frequeng-domainFICP (seeTheorem12.3.7(c)and Proposition12.5.19). To
getthis parametrizatiorsatishictory we musthave arealizationof the I/O mapT
(e.g.,theonegivenby (12.20)—(12.25))thiswill bedonein Proposition12.5.19,
simply by following the stepsguidedby (12.49)—(12.50).

We also note that the solution in Theorem12.1.8is not symmetric; by
replacingZ by 24 (seep. 740)in the proofs,onewould obtain(2.) in placeof
(1.) andafourth Riccatiequation(*(5.)”) in placeof (4.).



12.2 The discrete-timeH” problem (H* 4bp)

If youonly havea hammeryoutendto seeeveryproblemasa nalil.
— AbrahamMaslow (1908-1970)

As mentionedabove, we assumethat the discrete-timeform of Standing
Hypothesisl2.1.1holdsi.e., we consideithe system

Xn+1 = A% + Biun + Bowy,
Zn = C1Xn + D11Un + D1owWp, (neN) (12.31)
Yn = CoXn + D21Un + Doowy,

with initial statexg € H, disturbanceinput w € £2(N;W), control input u €
£2(N;U), objective outputz € £2(N; Z) andmeasuremerdutputy € £2(N;Y) (the
controllerinput); here[é B] € B(H xU xW,H x Z xY) arethegenerator®f >
(seeLemmal3.3.3).(As notedin Lemmal4.3.5,we canhave, e.g.,4 = E}L* or
A = tiCexp.)

We now presentthe discrete-timecounterparbf the theoryof Section12.1,
i.e., we try to find a controller@ : y — u (possiblywith internalloop; asin the
continuous-timecase,internalloop is unnecessargt leastwhenD2; = 0) s.t. it
stabilizesthe abore systemexponentiallyandmalkesthe norm [|w — z| 3,2 less
thanthegivennumbery > 0. (Seethe explanationon p. 36 for the H” four-block
problem.)Wealsorecordthediscrete-timdormsof all otherresultsin thischapter
(Theorem12.2.2).

We first presenthediscrete-timecounterparbf Theoreml2.1.4,andthenwe
briefly list the otherresultsof Section12.1thatcanbe corvertedto discretetime
(the mostimportantof which is the parametrizatiorof all suboptimalcontrollers,
Theoreml12.1.8).

Theorem 12.2.1(H* 4BP < DARESs) Assumehattheris € > 0s.t.
(z— A)xo = B1Uo = [|C1%0 + D11lo|[z > &(||Xo]|H + [[Uollu) and  (12.32)
(z—A")x0 = Cayo = ||B3Xo + D2aYollw > ([|XollH + [|Yollv) (12.33)

for all xo € H, up e U, yp €Y, z€ dD. (Alternatively we can assumethat
Hypothesisl2.5.1is satisfied.)

Thenthere is a suboptimalexponentiallystabilizing DPF-contoller for X iff
(2.)-(3.)hold:

(1.) (Px-DARE) the DARE
Px = A" PxA+CiCr — K SxKx,
= [BEBE D;Séiizyzl] +B B, (12.34)
Kx = =S [B%ﬂ C1+B*BA),
hasa solution(?x, Sx,Kx) € B(H) x B(U xW) x B(H,U xW) s.t. P >0,
Sx11>> 0, Sx22— Sx21S¢11Sk12 < 0 and p(A+ BKx) < 1;



(2.) (B -DARE) the DARE
By = AB A" +BBj — Ky SKy,

D22D3, D22Dji,

Sr = [D12D§2 D22D§2—V2|] * [gﬂ By [C§ Cﬂ ’ (12.35)
kv = -S43z Bs + [ &] v,

hasa solution(?¢,Sy,Ky) € B(H) x B(Y xZ) x B(H,Y x Z) s.t. By > 0,
Sr11>> 0, Sr22— 215,43 Sr12 < 0andp(A*+ [C; Cf] Ky) < L;

(3.) (Coupling condition) p(Px®) < V2.

If (1.)=(3.) hold, thenZr, is a suboptimalDPF-contoller for X (the central
controlle), and all suboptimalDPF-contollers are parametrizedin Theoem
12.1.8(seeFigure12.1).

Notethat(12.34)is the DARE for Zx andJy (exactly asin Theorem11.5.1),
and(12.35)is the DARE for Zy andJ,. Seealsotheremarksin Section12.1.

Proof: (We shall againrefer to continuous-timeesults,therebymeaning
their discrete-timdorms;cf. Theorem13.3.13andTheoreml2.2.2.)

Setq = ticexp (recall from Lemma14.3.5that ticep SatisfiesStanding
Hypothesisl2.0.1).

1° Necessityof (1.)—(3.): Necessityfollows from, e.g.,Lemma12.1.13
(recallthat“ e coercveCARFE is redundanin discretetime, asnotedbelow
Remark9.9.14).

2° Suficiencyunder Hypothesisl2.5.1: Even thoughwe would assume
no more than StandingHypothesis12.1.1, we would obtain from Lemma
12.6.4(b)&(c),thatconditions(1.) and(4.) holdiff (1.)—(3.) hold.

Consequentlyunder(1.)—(3.) andHypothesisl2.5.1,we obtainthe exis-
tenceof anexponentiallystabilizingsuboptimaDPF-controllefrom Theorem
12.1.8.

3° Suficiencyunderassumptiong12.32)—(12.33):Assume(1.)—(3.) and
(12.32)—(12.33)ThenHypothesisl 2.5.1is satisfied/evenwith “exponentially
jointly” in placeof “jointly”) by Lemmasl2.6.7and12.6.6.Consequentlywe
canapply2°.

4° Remarks:As notedin 2°, (1.) and(4.) holdiff (1.)—(3.) hold. However,
the equivalenceto the existenceof anexponentiallystabilizingDPF-controller
requiresfurtherconditions(e.g.,if B= 0= D, thennecessaril\sx = 0, sothat
(1.) cannothold), suchasthe onesusedin 2° or 3°.

Note from Proposition 15.2.2(c) that (12.32) and (12.33) say that

Al B A" | C )
((G’D—lJ ) and((@’ﬁzlz ,I) arel-coercve over Uep. asonecanver

ify from the proofbelow, evenwealer assumptionsvould suffice. O

Practicallyall our H” 4BPresultshold alsoin their discrete-timdorms:

Theorem 12.2.2(Discreteform of H* 4BP results) The following resultshold
alsoin their discrete-timeforms(i.e., afterthechangeslistedin Theoem13.3.13):



Lemmasl2.1.3and 12.1.12, Theoems12.1.11and 12.1.8, and everythingin
Sectionsl2.3,12.4and12.5.
Moreover, in the exponentialcaseof Lemmal2.1.12alsothe corverseholds
(thisis Theoem12.2.1with thealternativeassumption).
TheP,-DAREmeanghe DAREfor Z; =(12.123)and J;, hencethe condition
(4.) cannowbewrittenas

(4.) (P2-DARE) TheDARE (see(12.94))
K3SzKz = A PrAz — Py + BoXo5 X35 B,

J— * *
SZ = DzJDZ + 821)2827 (1236)
D22X2_21

Ko = -5 720 x5 85+ By 22,

hasa solution(?7,S7,Kz) € B(H) x B(Y xZ) x B(H,Y xU) s.t. Pz > 0,
S7113> 0, Sra2— 5215, Sr12 < 0 andp(Az + BzKz) < 1.

As noted around Example 14.2.9, we almost never have “S = D*JD” in
discretetime (thus, in practice we only meet the DARE equialent of the
“weakest” of the CAREsin Remarkl12.1.6,andTheorem12.1.11becomesather
unnecessary).

Seethe remarksbelov Lemmal2.6.4for the three DARES; in particular X
mustbe choserasin Lemmal2.6.1(equivalently asin Theorem12.1.8).

Proof of Theorem 12.2.2: Remark: Recall that thesechangesnclude
CARE—DARE,i.e., AP + P.A. — AL P.A. — P, etc.,asabove.

The proof: This follows roughly by applying (13.63) also to the proofs
(recall from Lemma 14.3.5 that 4 := ticerp satisfiesStanding Hypothesis
12.0.1).

Alternatively, onecoulduseLemmal2.6.7,Lemmal2.6.6,Lemmal3.1.7,
Lemma6.6.11and Lemmal13.3.12to make the proof slightly shorther(and
more“discrete-timeself-contained”). O

Notes

For finite-dimensionasystemsthediscrete-timeéH* 4BPis morecomplicated
than the continuous-timeH* 4BP — the sameholds for infinite-dimensional
systemsif we requirethe input and output operatorsto be bounded— but in
generalthe continuous-timesettingbecomessery complicated.This is why part
of the proof of our continuous-timeesults(in particular the equivalenceof (1.)—
(3.) and(1.)&(4.)) hasbeenreducedo discretetime (in the lasttwo sectionsof
this chapter).

Theorem 12.2.1 extends the classical nonsingularresultsto the infinite-
dimensionakase.Theorem10.12.10of [IOW] is possiblythe mostgeneralof all
the nonsingularfinite-dimensionafkesults;it is essentiallyTheorem12.2.1(and
Theorem12.1.8)with the assumptionshaty = 1 andD»1 = 0. SectionB.4.2 of
[GL] containsa resultcloseto (the discrete-timeform of) Theorem12.1.8. See
alsothenoteson p. 706. Thehistoryof the solutionsfor thediscrete-timeH* 4BP
is explainedon p. 501 of [GL].



The nonsingularfinite-dimensionalcase(where (12.32)—(12.33have been
replacedby wealer assumptionshasbeentreatedn [Stoonogel].



12.3 The frequency-spac€l/O) H” 4BP

Froma certainpointonward thereis nolonger anyturningbadk. That
is the pointthat mustbereaded.

— FranzKafka (1883-1924)

In this section, we solve the frequency-domair{or 1/0) H” Four-Block
Problem(I/O H* 4BP). This meanghat,givenaplantD : [{y] — [§] andy > 0, we
determinewhetherthereis a DPF-controllerQ : y — u for D thatmakesthenorm
w2z = [| 7:(D,Q)|| lessthany.

In Theorem12.3.6, we extendto MTICtz (and beyond) the fact that this
problem has a solution iff certaintwo nestedlosslesscoprime factorizations
exist (for rational mapsthis was establishedn [Green]), and we parameterize
all solutionsin terms of thesefactorizations. The exact conditions on the
factorizationsdependon whetherwe require Q to be well-posed(i.e., without
internalloop) or not. In Theorem12.3.7(a)&(d) the suficiency partof theabove
equivalenceis extendedto general WPLSs (we also extend the necessitypart
underthe assumptiorthat certainmapsadmit spectralfactorization). Theorem
12.3.5connectghesefrequeny domainsolutionsto the state-spacproblem.

Firstwe list the standard/O H” 4BP assumptionanddefinethe problem.

Standing Hypothesis12.3.1(1/0 4BP assumptions) Throughout this section

andSectiorl2.4,weassumehatD = [&1 &2} € TICw(U xW,Z xY), thaty > 0,

— 1~

andthatD hasad.c.i D = N\M, "' =M, "N, oftheform
e
Ny DNygp

(12.37)
Ny21 Y22

-1 g
D— [Null Nulz} [Mull MulZ} _ | My,
Nu21 Nugz| [ O ' 0 My,,

s.t. Nyp1 and My ¢; are r.c. and va21 and l\f/ITyZZ are l.c. We also male the
nonsingularityassumptions

NuiiNu11 >0, Ny ,oNy 5, > 0. (12.38)

By Proposition7.3.14and Lemma7.3.16,ary d.c.f. of D of form (12.37)
satisfiesalsotherestof the above hypothesigwhenthe hypothesidolds).

Obviously, the hypothesigs a generalizatiorof the assumption®f Theorem
4.40f [Green]andof thoseof Theorenb.6of [CG97]. Therefore,Theoreml2.3.6
generalizeshose(frequeng-domain)results.Thed.c.f.assumptiomoughly says
thatD canbestabilizedthroughy andu, and(12.38)is the standardhonsingularity
assumption.

The resultsof this sectionwill also be usedin the proof of the resultsof
Section12.1; indeed,underassumptiongAl) and (A2) of Theorem12.1.5(or
(Al) and(A2) of Theorem12.1.4),the existenceof an exponentiallystabilizing
controllerfor Z (alternatvely, conditions(1.)—(3.)) impliesthe above hypothesis,
asnotedin the proof of thetheorem.Thus,theresultsof this sectionalsoapplyto
ary classicalnonsingularkstate-spacél” 4BPs.



The DPF-stabilizingcontrollersfor D are Youla parametrizedn Corollary
7.3.20,in whichthemap % (D, Q) : w — z wasdefined;we repeathatdefinition
here:

Lemma 12.3.2(%¢(D,Q)) LetQ DPF-stabilizeD (Wlth internalloop). ThenQ is
amapW|th d.c. mternalloop and@ Q1Q2 Q2 Q1, wherQq,Q2,Q1,Q €

TIC, My,,Q2 — Ny, Q1 = | and@My13 — Q1Nup1 = 1.
Thecorrespondinglosed-loopy — z mapis givenby

F(D,Q) = NupaU+Ny1o = Ny, + UNy o, (12.39)
wheee U := Q1 Nyzo — @My, U := Njg Q1 — M12Qs. 0

For well-posedQ, we have (D, Q) := D12+ D11Q(I —D21Q) D2y, by (7.65).
(Note that, in the literature, the latter subindicesare often interchangedi.e., w
comesbeforeu.) As notedbelow Corollary 7.3.20,themap 7;(D,Q) depend®n
D and@Q only.

We remindthereadetthat,in this chapterwe oftendrop“DPF-" andwe allow
the (DPF-)ontrollersto be non-well-posedi.e., to have aninternalloop).

We repeatherethe definitionof a solutionof thel/O H* 4BP:

Definition 12.3.3(1/0 H* 4BP) A map Q (with internal loop) is a suboptimal
stabilizingDPF-controller(for D) if Q DPF-stabilizesD and || %(D,Q)|| <.

A solutionof thel/O (H”) 4BP (for D) meansa suboptimalstabilizingDPF-
contmoller for .

Recallfrom Section7.2,thatary well-posed(i.e., TIC«(Y,U)) mapis amap
with internalloop, hencethe above definition coversall well-posedcontrollers
too. In theresultswe shallalsospecifywhenthereexistsa well-posedsolution.

The purposeof this suboptimalproblemis thatits solutioncanbe usedfor a
binarysearchovery'sto find anestimateof theoptimaly andan“almostoptimal”
Q.

Thesolutionof the4BPis interplaybetweertheoriginal problemandits dual,
hencewe recordthefollowing (recallthatEd := AE* A):

Lemma 12.3.4(Dual problem) ThemapDy := [?)%2 gz} alsosatisfiesStanding

21 ~11

Hypothesisl2.3.1. Moreover, Q is suboptimalfor D iff Q¢ is suboptimalfor Dy.
O

(Thisfollows from Proposition7.3.4(d).

Next we notehow a solutionof the frequeng-domainproblemof this section
leadsto a solutionof the correspondingtate-spacproblem.

If ~ andZ arerealizationsof D andQ, respectrely (if Q is considerecas
a map with internalloop, thenZ may be ary realizationof a representatie of
Q), then,obviously, = I/0O-DPF-stabilizes iff Q DPF-stabilized. If % is SOS-
stabilizable thenZ canbe chosento be SOS-DPF-stabilizingi.e., suchthatthe
resultingclosed-loopsystemis SOS-stablesimilar claimshold alsofor stronger
stabilizability propertiesof



Theorem 12.3.5(1/0O 4BP= 4BP) LetQ bea stabilizingDPF-contoller for D
(with internal loop). Let Z be a realizationof D. Givena realizationX or Q,
theresultingclosed-loopconnectiorsystenwill bedenotedby 2P (see(7.60)and
(6.125)for X?; cf. Figure 7.11).

ThenTheoem7.2.3applies,in particular, thefollowing holds:

@lIfZis SOS-stabilizablghenZ canbechosers.t. 2P € SOS

(b) If Z is [strongly] r.c.-stabilizablethenZ canbe chosens.t. 2P is [strongly]
stable

(c) If Z is stabilizableand[strongly] detectablethenZ canbechosers.t. 2P is
[strongly] stable

(d) D andQ havesud realizationghattheir closed-loopconnectiorsystens?
becomestronglystable

(e) If Zo1 is exponentiallyjointly stabilizableand detectable then Q DPF-
stabilizesDD exponentiallywith internal loop iff it has a realization that
stabilizes> exponentiallywith aninternalloop.

Recallfrom Theorem6.6.28thatD hasa stronglyjointly r.c.-stabilizableand
l.c.-detectableealization becauset hasad.c.f., by StandingHypothesisl2.3.1.
Moreover, onecanchooseherealizationsothatit satisfiesalsoHypothesisl2.5.1,
by Lemmal2.5.23.

Proof: (a)—(d)Becaus&) hasad.c.f.,by Corollary7.3.20,Q hasastrongly
jointly r.c.-stabilizableandl.c.-detectableealizationZ, by Theorem6.6.28(if
Q is a well-posedcontroller; in the general(non-well-posed)casewe may
take Z to be a strongly stablerealization(asin Definition 6.1.6) of a stable
representatie of Q (cf. Definition 7.2.11)).

By Theorem7.2.3,Z stabilizesZ asin (a)—(d)(for (d) we usethefactthat,
by Theorem6.6.28,> canbechoserto beasin (b)).

(e) This is containedin Lemma7.3.6(b1)(even without any standingas-
sumptions). d

Michael Greenshovedin [Green](Theoremd4.4) that the frequeng-domain
H® 4BP hasa solution iff certaintwo nestedspectralfactorizationsexist (in
the rationalfinite-dimensionakase). This resultwas extendedto MTlCé(lp with
dimU xW x Y x Z < o« by GreenandRuth Curtain[CG97] (Theoremb5.6). The
following (see(c)) is adirectgeneralizatiorof theseresults:

Theorem 12.3.6(4: H® 4BP (1/0)) Assumehat Ny, M, € 4. Thenconditions
(4BP14)—(4BP37) are equivalent:

(4BP17) The I/O 4BP has a well-posedsolution “in 4"; i.e., there are
Q2 € 4(U)NGTIC. andQy € A(Y,U) s.t.Q,1Q, (DPF-)stabilizesh and
males 7,(D,Q) <.

(4BP27) (Factorl?) holds,andthereis a solutionQ;, Q, € 4 to the ASP

~ = = Ny, —Npp ~ T
U 1]=| @ [—Mlz Mu} forsomeUeTICW|th||IU||(<1 |
12.40



s.t.Qz € GTIC,(U).
(4BP37) (Factor14) and(Factor24) hold.

Here wereferto thefollowing:
(Factor1q) Therisar.c.f D = NM 1 s.t. My (+), Moz (+) € GB.

[Nll N1

e TIC(U xW,Z xW) is (Jy,J1)-lossless. 12.41
vt 2| eme ) 15 (3, 3) (12.41)

(Factor24) ThemapD, := [N Mgz ] [Ma2 Muz] e TIC»(U xW,Y xU) hasa

l.c.f. Dy :Mff%vu s.t.Wdis (Jl,Jl)-losslesandN+21(+oo),1\7JI+22(+00) €
GB(U), whee

§T+12 M’:Luz
Nz M2
(@) Anyr.c.f of D or l.c.f. of D isin 4. If (Factor1q) and (Factor24) hold,

then N,M,N_,M, € 4, and all well-posedsuboptimalDPF-stabilizing
controllers are givenby

W= e TIC(W x U,Y xU). (12.42)

=Q,1Q1, |Q Q| =L | My Ning , LeTIC(Y,U), |IL||<1
Q=0;'s, & f=[L |g™ g (Y.U), L

N (12.43)
with the additional condition that @, € GTIC.(U) (e.g., take L € 4,

L(+0) = 0).
We haveQy,Q, € ZiffL € 4.

(b) If My,N, € 4, then (4BP14) holds iff there is a well-posedsolution
Q=QQ; " stQ,Q € A

(c) Conditions" My (+00), M., po(+0) € GB(U)” areredundantf dimU < co.
(d) If Dp1 = 0, then (4BP17) is equivalentto (4BP1), i.e., if there is any
suboptimalstabilizing DPF-contoller for D, thenthere is a well-posed
suboptimalstabilizingDPF-contoller for D “in 3" O

(Thiswill beprovedin Lemmal2.4.16.) _ _

By 4(U) 14(Y,U) we meanmapsof form Q;1Q; s.t.Q; € 4A(Y,U), Q2 €
A(U) andQ; € GTIC.

SeeDefinition 6.4.4for losslessfactorizations. Note that we could replace
“(J1,J1)-lossless” by “frequeng-domain (Ji,J;1)-lossless”in (Factor1q) and
(Factor24), by Corollary2.5.5.

The factorizationD,. := [Nt Nzz| [Mu WZTl is a r.c.f. when (Factor1q)
holds,by Remark12.4.5.

Theabove ASP(analyticsystemproblem)formulationsaredueto [Green].

Abovewe assumedhatN,, M, € 4. In thegeneraktasewe cannotguarantee
the sufficient factorizationconditionsto be necessaryandthe conditionsbecome



slightly morecomplicatedunlessve assumeomeregularity. Thisis statedoelow;
we alsogive wealer sufficient conditionsfor the equivalence.

Theorem 12.3.7(1/0 H® 4BP) We considerthefollowing conditions:
(4BP1) The I/O 4BP has a solution, i.e., someQ stabilizesD and males
F(D,Q) <.
(4BP2)(Factorl)holds,andthereis a solutionQq, @, € TIC to the ASP

~ [~ Np2 —Np1 2 T
[IU |] = [Ql Qz] [ Moy Mn} for someU € TIC with ||UJ| < 1.
(12.44)

(4BP3)(Factorl)and (Factor2)hold.
(Factorl)Theeisar.c.i D =NM"! s.t. M, € GTIC.(W) and(12.41)holds.

(Factor1X)Theris X € GTIC(U x W), 5.t X* )X = [Naa2 Nuz2]* 3 [Nuaa Nuaz]
andXj; € gT|C(U)

(Factor2) Themap D := [ fgz | [V Miz] ! with d.c.internal loop canbe

writtenasDy = M N, (cf Remarki2.4.5)sothat Wd is (J1,J;)-lossless
andWx € GTIC, ( ), whee

W= Nizz Mz € TIC(W x U,Y x U). (12.45)
Nizz Miz
(Factor2Z) Ther is Z € GTIC(Y x U) s.t. EZhE* = ZJZ*, and (Z71E),; €
GTIC, whee
N2 —Npg
E:= e TIC(W x U,Y x U). 12.46
2, | eme ) (24

(Notethat wedefine(Factor2) only if (Factorl)holds.) Thefollowing holds:

(@) We have (4BP3)=(4BP2)=(4BP1). If ([Muutuz] 3) € SpR
then (4BP2)=(4BP1). If (Factorl) holds and (EY,J;) € SpF, then
(4BP3)=(4BP2)=(4BP1).

(b) AssumdFactorl). Then(4BP1)=(4BP2).

If Ql Qz satisfy (4BP2),thena solutionof the I/O 4BPis givenby Q =
Q2 1(@1 (WhICh is obV|oustaI C. f) Corversely anysolutionQ of (4BP1)is

of formQ = Qz Ql, wheee (Ql, Qg) solves(4BP2).

(c) If (Factorl) and (Factor2) hold, thenall suboptimalDPF-contollers (all
solutionsto thel/O 4BP)are givenbythel.c.f.

R:AI+11 I§+11

, LETIC(Y,U), ||L||<1
Mi21 Nipg

Q=0Q;'Q, [@1 @2] =[L ]
(12.47)

(by [[Lf| <1wegetall @'ss.t.|| 7:(D,Q)[| <y); thewell-posedsolutionsare
parametrizedy (12.47)with theadditionalconditionthatQ; € GTIC(U).



If N+21 € GTICx(U) (cf. (d)), then (12.47) can be written as Q =
Fo(T,L) := T12 + T11L(l — Tp1L) 1Ty, € TIC(Y,U) (for samel’s s.t.
Q e GTIC«(U); this parametrizeghe well-posedsuboptimalstabilizing
contmollersfor D), whee

T:= N.y '] [O M 11 € TIC,(U xY). (12.48)

N+21 0 | ML&-Zl

(d) Assumethat (Factorl) and (Factor2Z) are satisfiedwith Z € ULR. Then
(Factor2)hasa solutionhavingN, 21 € GTIC (V) iff thereis a well-posed

solutionQ = @, *Q; ofthel/O 4BPs.t.Q1, Q2 € TICNULR.
(e1)We have(Factorlx=(FactorlX),and (Factor2)=(Factor2Z).

(e2) Thesolutionsof (Factorl) and (FactorlX)correspondl-1 to ead other
throughformulae

Mpy My | -
(12.49)

The solutionsof (Factor2) and (Factor2Z) correspondl-1 to eat other
throughformulae

~ [0 Ny ] ~ 1 [I —N21] 1 M+11 N+11
+ [I —M;5 0 M M 21 Nip

(12.50)

N=NX1! M=MX1 X=M1M; [Ntbll lelz} x 1= [Nn Np2

(henceW := [ﬁu*z MJF*Z} =7 1E). -

(Thiswill beprovedin Lemmal2.4.14.)

The well-posednessnd independenc®f the above conditions,as well as
severaladditionalfactsarepresentedn thelemmasbelow.

Note thatin [M228z2] € TIC(U xW,Y x U) in (Factor2)doesnot have its
identity operatoron thediagonal.This choice(ananalogousvasdonein [Green]
and[CG97]) wasdoneto avoid having to interchangehe rows of E,Z, W etc.,
whichwould endup with WJ; W* = [ ].

Obviously, the controllerQ in (12.47)is differentfor differentparameterg..
Notethatthis parametrizeall well-posedsolutionsone-to-oneaswell asall non-
well-posedsolutionsone-to-onemoduloequivalence(seeDefinition 7.2.11).

However, the solutions[@l (@2] of (12.44)areusuallydifferentfrom those

of (12.47)(althoughboth parametrizell solutionsQ of the /O 4BR, by Lemma
12.4.3(c)).

In [Green],thesignatureoperatof'S= J,” wasusedn (Factorl)and(Factor2)
insteadof this simplestchoice“S= J;" (this correspondso the (Jy, Jy)-lossless
r.c.f’s usedin [Green]and[CG97]insteadof our (J,,J1)-lossless.c.f’s). Their
choice would introduce several additional y's in the proofs, and the second
columnsof certain mapswould have to be multiplied by y*1, but thereis no
essentiatlifference.Seealsothe correspondingemarkbelov Theoreml12.1.8.



By Theorem7.3.19, the standardassumptiongsee Standing Hypothesis
12.3.1)imply thatary stabilizingDPF-controllerof theplantD hasad.c.internal
loop (henceit hasad.c.f.if it is well-posed).

Thoughwe useinternalloop techniqueso handlethetemporaryplantD, , the
proofs could be written in the well-posedsensewvheneer D, is well-posed,in
particular for the 4 casetreatedin Theorem12.3.6.\We would mainly just have
to referto Sections/.1and6.4 insteadof Section7.2 (the samechangewould be
neededn Section7.3t00).

Lemma 12.3.8((4BP1)-(4BP3)are independenton Ny, M, If\lvy,l\f/ll,)
Conditions (Factorl)—(Factor2Z) are independentof the preliminary factor-
izations NyM,~* and M;_lf\]; (of D) satisfying StandingHypothesis12.3.1,
aswell as of factors N,M, X (if any) satisfying(Factorl) or (Factor1X)and of
factors N+,M Z (if any)satlsfylng(FactorZ[Z]) (i.e., they depencon D only).
Moreover thesetsof allowable(N,M)’s, X's, Z'sandQ's in aboveconditions

as well as the map E*J;E are independentof factors Ny, My, Ny,My The

solutlonsQl, Qz of (4BP2)are independenin the sensethat they alwaysdefine
thesamesetof Q's (which is thesetof Q's solvmg(4BP1))throughQ Q, 1(@1

MapsD, andE andthesetsof aIIowabIeM+ sandN+ sdependonD,M, N
only. 0
(Thiswill beprovedin Lemmal2.4.6.)

If dimU < oo, thentheinvertibility of My, X11, M., 2> and(ZE),, becomes
redundant:

Lemma 12.3.9(CasedimU < o) If dimU < o, then condition My, €
GTIC(W) is redundantin (Factorl) and Wa, € GTIC,(U) is redundantin
(Factor2). 0

(Thisfollows from Proposition2.5.4(1).)

Lemma 12.3.10(CaseNy, M, € 4) Assumethat Ny,M, € 4. Then (4BP1)-
(4BP3)are equivalentandclaim (a) belowholds. If (4BP1)holds,thenwe have
thefollowing:

(a) All possiblechoicesof N,M, X, E,Z, W,M, ,N, arein 4.
(b) The solutlons(@2 1Q, of the I/0 4BP are givenby (12.47),and we have
Ql,Qz cdsLeaA.

(c) We can chooseX € 4 so that My1,Xp2,M; € GTICw, X = [Xél ﬁ;i]

M= [Moll ;Alz] X11, X22,M11 € GB, andD, becomesvell-posedThed.c.

(12.61)of D, is over 4.
(d) Ther is a well-posedsolution@, *Q; of the /O 4BP with Q1,Q, € 4 iff
we canchooseZ sothat (Z_l)zz =N;21 € GTIC.
~ = . ~ 1. ~ :
(e)WehaveNy, My € 7 iff thed.c.E D=NM, =M, N, isover 4. If this
~ 1~ ~
is the case thenalsothed.c.f Dy = Nyp M1 = My, Ny, is over 4.



() We havethefollowing implications: (4BP14)=(4BP1),(4BP22)=-(4BP2),
(4BP37)=(4BP3), (Factor14)=(Factorl), (Factor24)=(Factor2) (and
any solutionsof formeronessolvethelatter onestoo).

(9) Theclaims(a)—(e)alsoapplyto anysolutionsof (Factor14) and(Factor24)
(andfor the correspondingX and 7). 0

(Thiswill beprovedin Lemmal2.4.15.)

Lemma 12.3.11((Factorl&?2))

(@) If (Factorl) holds, then My,X;; € GTIC and ||X21X111|| =
(X122 (X 1)z < 1. If, in addition, (Factor2) holds,thenWy, € GTIC
and W W,y || < 1.

(b) If D = NM ! solvegFactorl)(resp X solvegFactor1X)),thenall solutions
of (Factorl)(resp.of (FactorlX)for a fixedN) are givenby

D = (NE)(ME) ! (resp.E~1X) , E*}.E = J;, E € GB(U xW). (12.51)

If Z solveg(Factor2Z),thenall solutionsare givenby 7/ = ZF~1, F*J;F =
Ji, F e GB(YY xU). If M_1N+ solves(Factor2), then all solutlonsof
(Factor2)for afixedpair (N,M) aregivenbyD, = (FM+) (FN+) (hence
W =FW).

(c) If (Factorl) is satisfied, then every X € GTIC(U x W) s.t. X*1X =
[Muza Noaz]* g, [Nosz Nsz] is a solutionof (Factor1X).If (Factor2)is satisfied,
theneveryZ e GTIC(Y xU) s.t. Z1hZ* = E}H E* is asolutionof (Factor2Z).

(d) If (FactorlX)holdsandX € UR, thenwecanhaveXy; =0, X11,X22 € GB.
If, in addition, Ny, M, € UR, thenit followsthatD,N,M,E € UR, M1 =0,
Mi11,M22 € GB.

(e) Assumehat D21 = 0, (FactorlX)holds,Ny,My,X € UR, and X is chosen

asin (d). ThenE = [_'\,'\ﬁiz Mon]’ and any UR solution of (Factor2) has

Z11,N, 21 € GB. O

(Thiswill beprovedin Lemmal2.4.6.)

We finish this section by an intuitive explanation of the role of D, of
(Factor24). This mapobviously maps|ws, | — @] (becauséM maps[v> | —
[w] andN maps[w3 ] — [7).

When(Factor12) is satisfiedthe mapD equalsthe connectiorof [g?l ggzl} :

[\ ]~ [w,] andDy, asillustratedin Figure12.2.HereD" is definedby (11.10)

andX := [, v, ] = [7M5|21M21 Mgzl] %= W]

Since (12.41){w3 ] — [&] is (Jy,J1)-lossless,one can deducethat |jw, —
Us|| < Liff ||w— Z| <y. Thus,Q is suboptimalfor D andy iff Q is suboptimal
for Dy and1l. It follows that we have reducedthe solutionto the casewhere
D is of the specialform (of D, ) describedn (Factor24). Thesefactsare often
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Figure12.2: ThemapD,

usedin the proof of the 4BP (see.e.qg.,pp. 421-of [ZDG]), but we usethemonly
implicitly (in Section12.4).In fact,in themoregenerakettingof Theoreml2.3.7,
thesystemD,. neednotbewell-posed.

Notes

Theorem12.3.6is a direct generalizatiorof Theorem4.4 of [Green]and of
thoseof Theoremb.6 of [CG97], asexplainedbeforethetheorem.

We hadessentiallywritten this sectionduringearly 1998 (but at thatstage we
neededmprovementsto our Riccati equationtheoryin orderto solve the state-
spaceH” 4BP of Section12.1). At the end of year 2000, HansZwart shaoved
usthereport[1Z00], which containssomethindike Theoremsl2.3.6and12.3.7
with 4 = MTICL" anddimU xW x Z x Y < oo; thusour assumptiongre also
more generalthanthe onesin [IZ00]. Also [IZ00] usespurefrequeng-domain
methods andits methodsseemessentiallyfinite-dimensionalsee,e.g.,Lemma
2.2.1(c1),Proposition2.5.4,Lemma7.1.4andtheremarkin the proof of Lemma
2.2.2(c2));dueto the samereasonsthe methodsof [Green]and[CG97] do not
applyto this generakase.

Our formulae(andproofs)becomemathematicallymore completedueto the
factthat we allow for controllerswith internalloop (hencewe do not needary
additionalinvertibility conditions);seeTheoreml2.3.6or Theoreml2.3.7(c)&(d)
for well-posedsolutions.

The frequeng-domainresultshave their own merits,asexplainedin [CG97],
but they canalsobe usedto derive the solutionto the correspondingtate-space
problem,andthatis whatwe will doin thelasttwo sectionof this chapter

Undersufficient regularity, one canformulatethe two losslessactorizations
asRiccatiequationsthisleadsto Theoreml2.1.8andPropositionl2.1.10,.e.,t0
CAREs*“(1.)" and“(4.)”. Becausé(4.)” is formulatedin termsof a perturbed
equation,one usually wishesto replaceit with “(2.)” and“(3.)” of Theorem
12.1.5. This connectionis establishedn Lemma12.6.4for the discrete-time
settingandin Section12.5 for the continuous-timesetting (by discretization);
the proofs require someextra regularity (as comparedo Theorem12.1.80or to



Theoreml2.3.6)in the continuous-timease.

One might ask whethersomethingsimilar could be doneto the frequeng-
domainsolution,i.e.,whether(Factorl)andits dualconditionwith somecoupling
condition (“(3.)”) would suffice, so that the perturbedfactorizationcondition
(Factor2)would not be needed. A positive answerto this questionis givenin
Remark12.5.25(in the mostpopularsettingwhereD hasan exponentiald.c.f.),
but we still lackasimpleformulationof thefrequeng-domaincouplingcondition.

Although the problemis symmetric,our solutionis not. If we replaceD by
Dy in theproofs,we obtainTheoremsdl2.3.6and12.3.7with thedualof (Factorl)
(thefactorizationcorrespondingo “(2.)") in placeof (Factorl)and,analogously
afourthfactorizatiorconditionin placeof (Factor2)(thesituationis the samewith
the state-spacproblemandthe Riccatiequationsasnotedon p. 708).



12.4 Proofsfor Section12.3

Whenconfrontedby a difficult problem,you can solveit more easily
by reducingit to the question,"How would the Lone Rangr have
handledthis?"

The proofs of the resultsof Section12.3 are more complicatedthanin the
rationalcase(cf. [Green])or in the caseof the Callie—Desoeirclass(cf. [CG9I7]),
becausewe lack several algebraicpropertiessatisfiedby the rational transfer
functions, and becausethe (possibly) infinite dimensionsof input and output
spacegauseadditionalproblems.

We startby proving someresultsconcerningFactorl)(Lemmal2.4.2).Then
welist additionalconditions(Lemmal2.4.3)equivalentto (4BP1)—(4BP3Junder
suitablyassumptions)Thereafterwe go on to study(Factor2)(Lemmal2.4.4-)
until we arereadyto prove theimplicationsandadditionalresultsof Section12.3
(Lemmal2.4.7-).

Theproofswill referto thegeneraMWPLS caseof Theoreml2.3.7,wherewe
donotrequireQ to bewell-posedi.e., TIC.(Y,U)) but we allow Q to beary map
with internalloop. However, thereadersnterestednly in the casesllustratedin
Theoreml2.3.6andanalogousesultsmay considemwell-posedQ’s only, i.e.,the
casewhereQ; € GTIC(Y) andQ, € GTIC.(U).

We shallneedthe following notion:

Lemma 12.4.1(4BP = FICP & FCP) Letthe4BPfor D havea solution. Then
~d —~d
[Nt Nus2] and [Nyzz NYlZ] are minimaxJ,-coercive
0 1
SeelLemmal2.5.7for the analogousand further state-spaceesultsunder

wealer assumptions.
Proof: From (12.39) we obsere that there are solutionsU € TIC of

_ ~d .
INu11U + Nygo|| < y andU € TIC of ||Ny,,U+ Ny ,|| <y. It follows from
Lemmall.3.10that [Ntbll Nt;lz] and [g%gz ﬁ%iz] areminimaxJ,-coercve, hence
J-coercive, by Lemmall.4.2. O

Lemma 12.4.2 We givehere partial proofsof Theoem12.3.7andLemmad 2.3.8
and12.3.11(a)—(c)theseproofswill becompletedn lemmaselow

Proof: | Theoem12.3.7(el)&(e2)partially):

1° “(Factor1X)=(Factorl)”: Assume(FactorlX).SetV := X1, Y :=
[Ma11Na12] V to obtain Y*J,Y = J;. SetN := N,V, M := M,V to obtaina
r.c.f. (by Lemma6.4.5(c))with

Y11 Yo * * * *
N= M= = 12.52
[ * * ]’ [V21 sz] [Yzl Yzz] ( )

(becauseM, = [ |]), satisfying(Factorl),becauseY is (Jy,J1)-losslessby
Corollary2.5.5(sinceYz; = My, € GTIC.).



2° *(Factorl)=(FactorlX)”: (Thisis theabore proofbackwards.)Assume
(Factorl). By Lemma6.4.5(c),we have V := M, "M € GTIC(U xW). Set

N:=N,V, M =M,V toobtainthat := [Ny Ny2] v satisfiesy = |} 12 |.

Thus,Y*3,Y = J; impliesthat [ Na2 Nus2]™ g [Naa Nuzz] = v+ 3 V-1, There-
fore,X := V-1 is asin (Factor1X)(useagainCorollary 2.5.5).

3° Equationg(12.49)of (e2): Thisfollows from 1°—2°.

Il Lemmal2.3.8— Thefirst claim on Ny,M,, My, N, (partially): This
is obvious for (4BP2), (Factorl) and (Factor2), hencefor (4BP3) too; for
(Factor1X) this follows from the above equivalence,for (Factor2Zz)this will
follow from the equivalencethatwill beestablishedn Lemmal2.4.4.

I Lemmal2.3.11: (a), (c) and first half of (b): (a) For (FactorlX),
this follows from Lemma11.4.3(a)&(c)(with substitutionsD + [Nt Nus2],
Jy = J1, I = Jy; recallfrom StandingHypothesisl2.3.1thatN,11Ny11 > 0).
Theclaimson (Factor2Z)follow analogously

(c) Thisfollowsdirectly from Lemmal1.4.3(b).

(b) (the (Factorl[X]) part only) By ((c) and) Lemma6.4.5(a), all fac-
torizationsof form (Factor1X) are given by E~'X, whereJ; = E*J;E, E €
GB(U xW). (RecallthatN, wastakenfixedhere.)

If D = NM?! is as in (Factorl), then the aboe proof of
“(Factorl)=-(Factor1X)” shavs thatN = N, X1, whereX is asabove, hence
suchfactorizationsagaindiffer by E only.

(Remark— X depend®nNj, asfollows: If anr.c.f. D =N,/(M,")~tisalso
of formM,’ = [§ ], thenN,’ = N,U andM,,’ = M, U for someU € GTIC with

U = [} 7], by Lemma7.3.16.lt followsthat [N%'ll N‘;'H] = [Maur Nai2] [, hence

XU is a spectralfactor of [N%'ll Nl;'u] iff X is a spectraffactorof [Nt Nusz],

Thus,for Ny = NyU, U = [§ }] € GTIC, (Factor1X)is satisfiedoy X' = EXU,
whereE is asabove.) O

To simplify theformulaein the proof, we show thatthe preliminaryfactoriza-
tion D = NyM,~* canbe replacedby “a semioptimalpreliminaryfactorization”
D= Nﬁ“Mu‘“_l. Thenwe establisHfurtherequivalentconditionsfor (4BP1):
Lemma 12.4.3(Equivalent conditions (4BP1)—(4BP7))Assume (FactorlX)
: - : 0 : -1 % . = . w1

and setV:=X"1 V= [y, )], X:=V 1 X:=[¥ufe] V=X,
My = MV = [Mue) ) ND = NV, M = MX ! = M{'W and
N:= N, X1 =N,V. ThenX = XX, V = VV, andthefollowing holds.

(a) Ther.c.t D=NM ! is asin (Factorl),andther.c.f D = NOM, 1is as

in StandingHypothesisl2.3.1.

(b) The conditions (4BP1), (4BP2) and (4BP4)—(4BP7)are equivalentand
independentf N, M andX.

(c1) A map Q with internal loop solvesthe 4BP iff it can be written as
Q = Q,'Qq, whee Q;,Q, satisfy(4BP2). Notethat any mapsQ; and

Q. satisfying(4BP2)are necessarily.c.



The above claims hold also with (4BP4), (4BP5), (4BP6) and (4BP7)in
placeof (4BP2).

(c2) (For a fixed pair (@1,@2) we have “(4BP4)<(4BP5)" and
“(4BP2)=-(4BP6)=(4BP7)", whereas for Qz‘lQl (as a map with |.c.
internalloop) all theseare equivalent.)

(c3) Assumethat Ny, My, € TICgp. If any of (4BP1), (4BP2)and (4BP4)-
(4BP7)hasa solutionwith Qq,Q2 € TICep, thensodoall of them.

(This also holds with 4 in place of TICe, if A c TIC is closedunder
spectal factorization.)

(d) If (4BP5)(and hence(4BP1)—(4BP7)exceptpossibly(4BP3))holds, then
thel.c.f. leQl = Q givenin (4BP5)is unique andthefollowing equations

hold:
Up = (I = UpV21) 1Uo Vo, (12.53)
Uo = (I — UoXp1) UoXpp = Uo(VarUo + V22) 1,
(12.54)
(I = UoXpy) L =1 =TUpVa1 € GTIC, (12.55)
(Va1 Uo + V22) ™1 = X0+ X5, Us € GTIC. (12.56)

(e) Thislemmaholdsevenif wereplace” <” signsof thelemmaby” <” signs
(thisincludesrequiringthat || 7(ID,Q)|| < yinsteadof < y).

We havereferredto the following conditions:
(4BP4) Thee are Q;,Q2 € TIC s.t. @M, — IND,; = | and Uy =
QN 5o — QoM 4, € TIC solves(the FICP) [N 1,Uo + Ni* 15l < v.
(4BP5) Thee are Q1,Q € TIC s.t. — Q1N + @M, = | and Uy =
QIND 5, — @MY, € TIC is of the form U, = U1 U, %, whee [gﬂ =
Y [f{o} ,Up € TIC and || Uy || < 1.
(4BP6) Thee are Q1,Q2 € TIC s.t. @My — QiN21 € GTIC(U), and
1(Q@2Ma11 — Q1N21) ~H(—Q2Mi2 + Q1 No2) | Iricwu) < 1.
(4BP7)(ASP) Thee are Q1,Q; € TIC s.t.theopemtors
~ ~71. [~ = N2z —-Np
[Ul Uz} = [Ql QZ} [—Mlz Mu] e TICW xU,U)  (12.57)
satisfyU, € GTIC and ||fJ§1U~Jl|| <1l

Thus,condition“(Factorl1X)and(4BPn) hold” is equialentto (4BP1)(andto
(4BP2))whenever ([Nt Muiz] 3) € SpF, by Theorem12.3.7(a).

Note that, for eachQ solvingthe 4BP (cf. (c)), the pairs (@1,@2) in (4BP2)
and (4BP5) need not be the same(in fact this happensvery seldom, when



UV, V21 = 0, asshawn in the proof of (4BP2)=(4BP5)); we only know that
they differ by anelementof GTIC (seeDefinition7.2.11).
Theequivalence'(4BP1)=(4BP4)” holdsfor theoriginalr.c.f. D = N,M, ¢
too, asoneobsenesfrom the proof.
If onel.c.f. of Q satisfiegshe ASP givenin (v) (and(iv) aswell), thenclearly
everyl.c.f. of Q does(cf. Lemma6.4.5(d)).

Proof of Lemma 12.4.3: Note that we have chosena “semicritical
preliminaryfactorization’D = Nj‘Mu“_l to make the formulaein the proof
(including thoseat the end of the lemma)simpler By Lemma12.3.8(see
Lemmal2.4.2),this causeso lossof generality

TheformulaV = VYV is from (A.9), andX = XX is its inverse.

(a) By Lemma6.4.5(c)NY M ~tisar.c.f. of (c). Obviously, M = [§ 1]
Therestfollows asin Corollary7.3.17.

By 2° of theproofof Lemmal2.4.2 ther.c.f. D = NM~ Lisasin (Factorl).

I Theequwalence Let Q; € TIC(Y,U) and@, € TIC(U) bel.c. (i.e., let
Q:= Qz Q1 be a mapwith I.c. internalloop; cf. Definition 7.2.11). We shall
show below theequialenceof (4BP1)—(4BP7\(4BP3)for @51@1 in thesense
that given n,m e {1,2,4,5,6,7}, thereis U, € GTIC(U) s.t. (UnQ1,UnQn)
satisfieg4BP) iff thereis Uy € GTIC(U) s.t. (Um@l,Um@n) satisfieq4BPm)
(i.e., Q hasapresentatiorsatisfying(4BPn) iff Q hasa presentatiorsatisfying
(4BPm)). Notethat(4BP1)is independenbn the presentation.

1° “(4BP1)x=(4BP4)": Thisfollowsfrom Lemmal2.3.2.

2° “(4BP4)=(4BP5)”: Thisfollowsdirectly from Theoreml11.3.6.

4° “(4BP6)=(4BP7)": Clearly (4BP7)is only areformulationof (4BP6)

5° “(4BPT7)=(4BP2)": If (Q1,Q2) solves (4BP7),then (U;1Q1,U;1Q2)
soIves(4BP2)(WhereU2 isasin (4BP7)).Corversely every solutionof (4BP2)
is asolutionof (4BP7).

6° “(4BP5)=(d)&(4BP7)”: We now assumg4BP5)(andhencg4BP1)and
(4BP4)too) andwill provefirst theclaimsin part(d) andthen(4BP7).

Theuniquenessf thel.c.f. followsfrom Lemma6.4.5(d). Thefirst formula
is equation—Q1 N7, + QM ;, = | multiplied to theleft by Q; *.

Equations(12.53)—(12.56follow from equationg11.89)—(11. 92))f The-
orem 11.3.6 (where we must use the spectral factor X = MM of

[Nﬁaﬂ NG 12]) andthelastthreeequationsarederivedasfollows:

U := QM1 — QuNzy = @M 11+ M 1,Vo1 — QuND  — QuNT5,V21

(12.58)
= (@M 1~ UND L) — (QuUND 5 — QoM 1) Vas (12.59)
=1 —-T,V>1, by theequationsn (4BP5). Now IINJZ =1-U,Vy1 € GTIC(U),

by (12.55).Similarly,
=~ QMo+ QN2 = — QoM 1,Vo2 + QuND Vo0 = Up Vo (12.60)

Therefore,IUglUl = (I = UoV21) U V2 = Uy, whosenormis lessthan 1,



hence(4BP5)implies(4BP7).

7° “(4BP2)=(4BP5)” (which completesthe proof of the equialence):
Assume(4BP2) ThenG := QZMU 11— QlNu 01 = QQ(M]_]_—MU 12V21)—
Q (N21 —N§*55V21) = QM — Q1N21 — QM2 V3t Vo1 + Qi N2V, Vo =
I-HUV2 Vo1 € gTIC( ), becaus¢|V2 Va1|| < 1, by (d) of thetheorem.

B Deflnng G 1Qp, Qi := G Q4 to getanew I.c.f. of Q, satisfying
Q@M 11— UNT,, =1, asrequired.

Fromthe definitionsof N andM (givenin the Iemma) we get@le\ 00—
QM) 12 = [Qlsz - Qlez]V22 = (I +UV22 Vo1)~ 1[U]V22 = U(l +
V3V U)~ 1V22 = U(V2 + V21U) 1 = Uy, if we setUs := U;U;* and
[gﬂ =V [ﬂ . Thus,(4BP3)is satisfiedcandhencetheproofof theequivalence
hasbeencompleted.

Il —(b), (c), (d). (e):

(b) In I, we shovedtheequialencan (b). SinceX wasarbitrary(andhence
N andM too, by (12.49),whichwasestablishedh Lemmal2.4.2),and(4BP1)
is independentf X, N andM, hencesoare(4BP2)and(4BP4)—(4BP7).

(c1) It follows directly from the equationsn each(4BPx) thatQ,Q», are
l.c., asclaimed.

As one obsenres from the proof, conditions(4BP2) and (4BP4)—(4BP7)
have samesolutions (Q1,Q2) modulo the multiplication to the left by an
elementof GTIC(U). By Definition 7.2.11,this meansthat the mapsQ :=
Q2 1(@1 correspondingo thesesolutionsare equal(but thereareusuallymore
thanonesolutionQ); by 2° thesemapsareexactly thesolutionsof (4BP1)(i.e.,
thesuboptimaDPF-stabilizingcontrollers).Thus,(c1) hasbeenestablished.

(c2) This canbeobsenedfrom partl.

(c3) 1° Wealer assumptionsin fact, it sufficesto assumehatN,, M, X €
A4, that 4 - TIC (seeDefinition 6.2.4), and that 4 is inverse-closedi.e.,
ANGTIC = GA).

The proof of Lemma 8.4.10 shaws that if 4 is closed under spectral
factorization(in the sensethatX € G4 whenaerD € 4(U x W, %), J=J* €
B, Se GB, X € GTIC(U xW) andX*SX = D*JD), then4 is inverse-closed.

2° Suitable 4’s: On the other hand,Lemma6.4.7(c) showvs that TICep
is closedunderspectralfactorization;obviously, sois 4, sothatwe cantake
4 :=TICep Or 4:= A.

3° Theproofusing1®: By the assumptionswe have V,X, V. X,V € G 4.
Therefore N,M,M;*,N{* € 4. Consequentlyit is easyto verify from part|
that(c3) holds,sincedifferent@* 'sareobtainedrom eachotherandtheabove
A mapsby usingonly algebraicoperationsin TIC (herewe againneedthe
inverse-closedness 4).

(d) Thiswasestablishedn 6°.

(e) Obviously, the proof belov appliesalsowith the changedistedin (e).

]



Lemma 12.4.4(Dy & (Factor2)) ThemapD, = [ 2] [Y1 M2] ™" hasa
d.c.internalloop: we havethe doublycoprimeproduct

My Myp 0-117-1 00 70—
[[N% NLZ]} [[OI 8}} = [_ [LO &]22 ] [| [ONfl (12.61)
I 0 00 | Moy| |0 My

€ GTIC((U xW) x (Y xU),(U xW) x (UxY)). Moreover Theoem
12.3.7(el)&(e2hold; in particular, we have(Factor2y=(Factor2Z).

Proof: We startwith the last equivalence basedon the proof of Theorem
3.80of [Green].

Obviously, (12.61)is true, hencdD)+ ‘hasad.c.internalloop (seeDefinition
7.2.11)andcanbewrittenasD, = X Y+, where

s |1 —Na1 _ 10 Ny

X, = [o Mﬂ]eTlC(qu) Y, _{ Z]ETIC(U xW,Y x U).
(12.62)

1° “(Factor2)=(Factor2Z)": Assume(Factor2). ThenM, = Z~X, N, =

7YY, for someZ e GTIC(Y xU), by Definition 7.2.11.Consequently

Mi11 Nig
My21 Nigg

Z'=

andZE=2"[V,2 Xiwo| = [Np2 M| =W
(12.63)

Therefore(Factor2Z)holds.

2° “(Factor2Z}>(Factor2)”. Assume(Factor2Z). DeflneXJr Y+ asabove
and setM; = Z 'X,, Ny = Z 1Y, to obtain M;'N, = X;1V¥,. Set
W := Z~E to obtainthatWJ; W* = J;, andthat(12.63)holds. Then(FactorZ)
holds.

3° Theoem12.3.7(el)&(e2)Partll of theproofof Lemmal2.4.3contains

partialproofsof Theoreml2.3.7(el)&(e2) Therestof (el)and(e2)is obtained
above. O

The factorizationD, := [N Nz2] [Mu M{ﬂ}_l is a r.c.f. when (Factor1q)
holds:

Remark 12.4.5(Dy ) If (Factorl)holds,then[™21 f22] e TIC(U xW,Y xU) and
[MirMez] € TIC(U x W) arer.c. (evend.c.),by (12.61). 0

Lemma 12.4.6 Lemmasl2.3.11and 12.3.8hold.

Proof: 1.1° Lemmal2.3.11(a)—(c):Part Il of the proof of Lemmal2.4.3
containsthe proof of Lemma 12.3.11(a)and a partial proof of (b). The
“(Factor2)” part of (b) is obtainedas its (Factorl) part (note that the first
columnsof M, andN, arecontainedn Z~1, hencethesedependon D only,
whereastheir secondcolumnsare partof W andhencedependon N, My, in
thesameway asE does).

Part (c) wasestablishedn Lemmal2.4.3.



Part (d): 1.2° By (FactorlX),the assumption®f Proposition11.3.4are
satisfiedand (FI3s) holds. By Lemma11.3.11, the solution of (FI3s) for
[Nuoll Nl;ﬂ] (henceof (FactorlX))canbe chosensothat X is asin (d) (since
X € GB(U xW), by Proposition6.3.1(b1)).

1.3° AssumethatX is asaboveandN,, M, € UR. ThenD = NyM,, ! € UR
andN,M, E € UR, by (12.49)andPropositior6.3.1(b1).ConsequentlyX 1 =
[Xgll X;‘_zl] M= [’5 ngl] ; by LemmaA.1.1(b),M11 € GB(U). If Doy =0, then
N =DM = [3 D22§<2_21] , hencethenE = [_’\,‘\ﬁiz ;,,Nfll} - [}3@2 Moll] .

_ 14° Part (e): (NotethatD,N,M,E € UR, by (d). Thus,ary UR solution
M, ,N; of (Factor2)correspondg$o a UR solutionZ of (Factor2Z)andvice
versaby Theoreml2.3.7(e2).) N

By Theorem12.3.7(e2),we have (Z71)2oM11 = My = Why and W €
UR. By (Factor2)andProposition6.3.1(b1)Ws2 € GB(U), hence(Z=1),; €
GB(U), henceZy; € GB(Y), by LemmaA.1.1(c1).ButN, 21 = (Z~1)22, hence
(e) holds.

2° Lemma 12.3.8: This is given in the proof of Lemma 12.4.3
for Ny,My, Ny, M. For (4BP1) and (Factorl[X]) independenceon
N, M, X, N+,M+,Z is obvious;for (4BP2)it follows from Lemmal2.4.3(b).

Fix apair (N,M) andacorresponding. LetE' correspondo someE given
in Lemma12.3.11(b) By Lemma6.4.8(c) ELE* = J.. By settingR:= [ 9 }]

we getR'E'R = [1;?21:] E andR*J;R= —Jj, hence
e =[N Ju[ N | (12.64)

which is independenof E, i.e., dependon D only, henceso do the solutions
Z of (Factor2Z[']). Fromthe equivalencesgivenin Theorem12.3.7(el),we
obtain that also the solvability of (Factor2[']) dependson D only (but D,
depend®n N, M, hencesodo N, ,M, ). TheclaimsconcerningQ follow from
Lemmal2.4.3(c). O

Now we canshow that(4BP3)implies (4BP1)—(4BP7):

Lemma 12.4.7((Factor)=(4BP)) Assume (Factorl) and (Factor2). Then
(4BP1)—(4BPT7hold.

Proof: We use the notation of Theorem 12.3.7(el)—(e2)see Lemma
12.4.4).Set [@1 @2} :=[0 1]Z~1to obtain

[0 O =[@ Q|E=[0 1JW=[Wa W]. (12.65)

From Lemma12.3.11(a)wve obtainthat||W,3 Wa1|| < 1, hence(4BP7)is
satisfied.Thus,(4BP1)—(4BP7hold,by Lemmal2.4.3(b). O

We shall usethefollowing to reduce(Factor22)to a (frequeng-domain)H®
FICP:



Lemma 12.4.8(3P) Assumg4BP2). ThentherisP € GTIC(Y xU) s.t.PE =
[% ?] e TIC(W x U,Y xU), whee SS* > 0, |U]| < 1.

As theproofshONs,I[NJ istheoneappearingn (4BP2).
Proof: Assume(4BP2).By Lemma12.4.3(cl)&(b),le(@l (from (4BP2))
stabilizedD (becausd satisfie{4BP1)),andconditions(4BP1)—(4BP7gxcept

possibly (4BP3) hold. In particulay [9 ] [%122 %221} (941 € GgTIC, by
Theorem7.3.19(V’), hence

[%122 Né;l € GTIC(Y x V). (12.66)

Fromthe (2,2)- and(2,1)-blocksof equationMI,Nﬁ‘ = I’N;Mﬁ‘ we get

T3 A\ N A N T3 A N A N A
My 5oNu 20 = Ny oy My 10 = Ny oo, My 0N 91 — Ny oy M g = Ny oMy 5 = 0.

(12.67)
Ny, —N N -N° —
Onthe otherhand,E = | N2, 2| = | {522 ] [Vz2 V1] (herewe
have setX := MM, V := X 1). By combiningthis and(12.67)we get
= 5 5 Va2 —V21 S g
[Myzz NYZJ E= [Nyzz O} [ 0o | ] = [Ny22V22 —Ny22V21}'
(12.68)
Thiscombinedwith (4BP2)givesus [1\%122 %221} E= [Ny%sz _Ny|22V21] , Where
|U|| < 1. Thus,PE = [% ﬂ , where
P [Io Nyzlzvﬂ] %22 Na1| e Tic(y x L), (12.69)
1

andS = N;Zz(ng +V21I[NJ) isonto(SS* > 0), becaus&I;,22 is onto,by Stand-

ing Hypothesisl2.3.1,andV,2+ V21U € GTIC(W) (becausdiV521V21ﬁ|| <1,
by Lemmal2.3.11(a)).By (12.66)andLemmaA.1.1(b1),P € GTIC(Y x U).

O

Lemma 12.4.9 Theoem12.3.7(c)holds.

Proof: 1° (12.47): Assume(Factorl)and (Factor2),sothat (4BP2), (Fac-
torlX) and (Factor2Z)hold, by Lemmal2.4.7and Theorem12.3.7(el)&(e2)
(seeLemmal2.4.4) We setZ 9 := (291 etc.

SetZ := PZ to obtain ZJ,Z* = (PE)X (PE)*, whereP is asin Lemma
12.4.8. Now equationsW = Z~1E = Z~'PE and (PE)? = [§}] imply that
W = | 374, @9, |, hence(Z 92 = WY, € GTIC(U), by (Factor22),
henceZd, € GTIC(Y), by LemmaA.1.1(c1).



Now each pair @1,@2 € TIC correspondsto a unique pair Q1,Q, €
d ~ ~
TIC definedby [Q } = p—d [Qg] The pairs (Q1,Q2) satisfying (4BP2)

o]
2 2
correspondo pairsQ;, Q, satisfying
[Efd] =E¢ o = E9pA 95], (12.70)
Q3 2

for someU with |[U|| <1 [< 1 for Q's s.t. || F(D,Q)|| <y; seeLemma
12.4.3(e)].

From(12.70)andD := E9PY = [} {] we obtainthatQ, = I, hence@clj is as
aboveiff it satisfiegthe FICP)||T¢]| := |[Du Q5 + Dz < 1[< 1].

Thus, we may apply Corollary 11.3. 5(W|th substitutionsD — D, y— 1,
X - Z9; notethat D%, Dyg = (S9*S4= (S§%) > 0, smceS (and hence(Sd)

is onto)) to obtainthatall Qf s of this form aregivenby Ql = ]L11L2 , Where
[E} .= Z71[L] and ||| < 1 [< 1] (hencel, € GTIC(U), by Theorem
11.3.6).Writing it out, we have

[@‘i
|

Thus,{@ﬂ P9z 9Lyt =z 9[L] Lt

_ H;l] L, =7 [H L,t. (12.71)

Q
By postmultiplyingthis by 1L, we get anotherrepresentatie of @5 1@1
(sincel; € GTIC(U)), givenby

[@1 @Z]:Lg [@1 @2}:[]1}1 1zt (12.72)

But this “all solutionsformula” is equalto (12.47)(see(12.50)for Z~1).

2° Formula Q = %(T,L): The formula Q = %,(T,L) can be shavn
equalto (12.47)just by writing the two formulaeout andsimplifying slightly
(notethatl — To1IL = | +N+11N 21]L is invertible iff Qz =LNy11+Nyg1 =
{ +LN+11N;%1)N+21 is invertible, by LemmaA.1.1(f6), i.e., iff Q is well-
posedby Lemma7.2.12(b))). N

3° Remark: We neededP only to get a spectralfactor (namelyZ9) with
invertible (1, 1)-block andto establishthe condition“ID; JD; >> 0”. Otherwise
we could have appliedTheoreml1.3.6directly for EY insteadof ]IN).) O

If the coprimenessequirementof StandingHypothesisl2.3.1are satisfied
“exponentially”, then the existenceof a solution the 4BP is equvalentto the
existenceof an exponentially stabilizing solution of the 4BP (at least when
Ny, M, € 4, sothat(4BP3)becomesiecessary):

Proposition 12.4.10(Exponentially stabilizing solutionsof the (1/0) 4BP)
Assumehat we canwrite “d.c.f. over TICqp”, “r.c.over TICqp” and“l.c. over
TICep" to StandingHypothesis12.3.1in place of “d.c.f’, “r.c’ and*l.c.”,



respectivel\thisis the caseif Hypothesisl2.5.1holdsand is optimizable).

If (4BP3) holds, then N,M,X,Z,E € TICgp, and all exponentially DPF-
stabilizingsuboptimalcontrollers (with internal loop) for D are parametrizecby
(12.47)with theadditionalrequirrmenthatL € TICeyp.

Proof: Oneobsenesfrom the proof of Lemmal2.5.3thattheassumptions
of thelemmaaresatisfiedf Hypothesisl2.5.1holdsand is optimizable.

1° Q is suboptimaland exponentiallyDPF-stabilizingiff Q = Q, 1(@1 for
somte Qz € TICep satisfying(4BP4).

From Corollary 7.3.20(i") and Remark7.3.24 we obsere that Q DPF-
stabilizesD exponentiallywith internalloop iff Q = leQl and@My 1 —
@1Nu21= | for some@l,@z € TICep (cf. Lemmal2.3.2).

2° X+ N,M, Z*1 E € TICep: As in the proof of Lemma12.4.3(c3)we
obsene that X*1 N,M € TICep, henceE € TICep. By Lemma6.4.7(c),it
followsthatZ € GTICep. (by Lemmal2.3.11(b)this appliesto all possible
choicesof X,N,M, Z, E). o

3° Suficiency: Thereforefor eachlL € TICep, Wwe have Q1,Q» € TICqp in
(12.47)(see(12.50)for Z~1). By Lemmal2.4.3(c3)Q := Q; Q4 corresponds
to asolutionof (4BP4)belongingto TICep, henceQ is asin 1°.

4° Necessitylf Q = @2‘1@1 is asuboptimalexponentiallyDPF-stabilizing
controller(with aninternalloop), then

[Q @z]ZU[@l @z] =[UL U]zt (12.73)

for some U € GTIC, by Lemma 6.4.5(d) and (12.47), hence then
[UL U] =Z[Q; Q,] € TICep, henceU € TICey (recall from 2° that
Z € GTICep), henceU € GTICep, by Lemma2.2.7. Consequentlythen
L=U"1UL € TICep. 0

Next wewantto make Ml11 andZi 1 invertible;thereforeve needthefollowing
result:

Lemma 12.4.11(X22 invertible) Assumethat X € giB( W), and that
[T 1]1X[?] € GBW) (resp.X11€ GB and [T I]X[}] = ) for someT €
B(U,W) with ||T|| < 1.
Thenthereis E € GB(U x W) s.t. E*JE = J1, and X := EX satisfiesXy, €
GB(W) (resp.>’Z21 =0and )?11, )?22 € GB).
Thus,X*3X = X*J1X.
Proof: We usebelow LemmaA.3.1(d)&(e2).SetU := (I - T*T)" %20,
V= (-TT*"Y2> 0. By LemmaA.1.1(f6)&(d1), V2T = TU? andthe
inverseof

E:= [lé 3} H TI]: [\yT U\” is E 1= [_l#u _I/*V]. (12.74)

By asimplecomputatioroneverifiesthatE*J; E = J;.
If [T 1]X[9] € GBW),thenXoo=V [T 1]X[?] € GB(W). If, instead,
[T 1]X[4] =0andX € GB, thenXp =V [T 1]X[}] = 0 and hence



X11 = UXyy; therefore Xy1 = U~1X13 € GB, and,consequentlyXz, € GB, by
LemmaA.1l.1(b2). O

Lemma 12.4.12(Well-posedDy.) If (Factorl) holds and X, M, € ULR, then

we can take Xp2,Mi; € GTIC., (and X = [Xél 2;] M = [MO“ )“("2}25} whese

X11,X22,M11 € GB); in particular, D, becomesvell-posed.

Proof: (We usehereTheoreml2.3.7(el)&(e2andLemmal2.3.11(a)&(c);
thesehave alreadybeenproved,in Lemmasl2.4.2and12.4.4.)

LetX satisfy(FactorlX).NowX '=X(4») € GBandX11 € GB, by Propo-
sition 6.3.1(c). CIearIy||X21X1‘l | < IX21X77 | < 1 (seeLemmal2.3.11(a)),
hencewith T := —X21X11 we obtainfrom Lemmal2.4. 11anoperat0|E €GB
st. X = EX satlsflesX*J1X X*J1X and X11, Xop € GB, X1 = 0; hence
Xop € GTIC« (W), by Proposition6.3.1(c).

By Lemma 12.3.11(c), also X satisfies (FactorlX). The claims for

M = M X! follow from the above (the invertibility of M1; and hence
thatof Mi11 followsfrom LemmaA.1.1(b2)&(b1)). O

Lemma 12.4.13(Well-posedQ) Assumethat (Factorl) and (Factor2Z) hold
with Z € 4, and let somewell-posedQ = Q2 Q1 with Ql,(@z € 4 solvethe

4BP ThenwecanredefineZ € 4 s.t.(Z 12, € GTIC. (i.e, N+21 € GTICw).
Thisalsoholdswith ULR in placeof 4.

Proof: Let 4 = 4 or 4 = ULR (in fact,thelemmaandthis proof holdsfor
A4 in placeof 4 wheneer B CAC ULR).

Setl := [@1 @2} 2.[9] € 4 asin Theorem12.3.7(c).

Because4 C ULR, we cansetT := L(4+o), X := Z~1(4»), to obtain
GB > Q(+) = [T 1]X[?]. By Proposition6.3.1(c),X € GB. By Lemma
12.4.11we get(EX)22 invertible.

Thus, by settingZ’ := ZE~1 € 4 we get (Z'™)a2(+) = (EX)22 € GB,
and we seethat Z'3WZ"* = ZLZ* (= ELE*) andW := Z/~E = EW also
satisfiesSW J;W'* = J;, by Lemma6.4.8(c). O

Lemma12.4.14 Theoem12.3.7holds.

Proof: Parts (el) and (e2) were shavn in Lemmal2.4.4,andpart (c) in
Lemmal2.4.9.We prove (a), (b) and(d) below.

(a) 1° “(4BP3)=(4BP2)=-(4BP1)": “(4BP3)=(4BP2)" is obtainedfrom
Lemmal2.4.7,and“(4BP2)=-(4BP1)"from Lemmal2.4.3(b).

2° “(4BP1)=-(4BP2)" when([ M1 Mu12] |3, ) € SpF Assume(4BP1).Then
D= [Nl(‘)ll N‘;ﬂ} is minimax J,-coercve, by Lemmal2.4.1,hencel-coercve.



Thus,if (IV, Jy) € SpF, then(Factor1X)(andhencegFactorl))holds,by Lemma
11.4.3(b).Consequently(4BP2)holds,by Lemmal2.4.3(b).
3° “(4BP2)=(4BP3)” when(E%, J;) € SpF Assumethat(4BP2)holdsand

(EY,31) € SpF. As in p. 530 0f [Green],we set[Q; Q] := [@1 @2] Pt
(hereP is from Lemmal2.4. 8andQ1 Qz from (4BP2))to obtain

[Iﬁ I] = [@1 @2] E=[Q1 Q[FE=[Q1 Q@ [I[NJ I} - Flsgz@ﬂﬁ} '
(12.75)

Thus,Q, = | and||Q:S+U|| = ||U| < 1, i.e., ||Sd@(1j+ﬁd|| < 1, hence
D := EIpd is minimax J;-coercve, by Lemma11.3.10(recall from Lemma
12.4.8that D%, Dy = (S9*(S% > 0, as required by Hypothesis11.3.1)),
henceJ;-coercie, by Lemmai1.4.2,i.e., 1, (EPY)* 3 E9Pm, is invertible.
Thereforealsom(]Ed)*JlEdm is invertible,by Lemma2.2.2(b)&(al).

Since (EY,J;) € SpF we have (E9)*}EY = (2%)*SZ¢ for someZ €
GTIC(Y xU) andS€ GTIC(U). ConsequentlyD* ;D = (Z9PY)*S(ZPY)
and Z%P9 € GTIC. By Lemma11.4.3(a),D* ;D = R*J;R for someR €
GTIC(Y xU) s.t.Ryy € ngC( ).

It follows that (R=1),2 € GTIC(U), hence(Wd)zg € GTIC(U), where
W := DR! (we have (W)25 = Ry;, becausd = [ {], by Lemmal2.4.8).
(Notethatwd := DR~! is (J1,J1)-losslessby Corollary 2.5.5(iii)&(i).)

SetZ := RIP~1, sothat W = Z~1E and hence(Factor2Z) (hencealso
(Factor2)holds.

(b) Thisis containedn Lemmal2.4.3(cl). o

(d) By Definition7.2.11(andLemma7.2.12(b))Q = Q§1Q1 is well-posed
iff @ € GTICa.

1° If: Thisfollowsfrom Lemmal2.4.13. N

2° Onlyif: By Theorem12.3.7(e2)we have (Z~1)22 = N, 21. If thismapis
invertibleandZ € ULR, thenZ~! € ULR, by Proposition6.3.1(c),andwe can

take I = O to obtain [@1 @2} = [(Z Y21 (Z 1)22] € ULR; in particular
Q = (Z Y€ GTIC. 0

Lemma 12.4.15Lemmal2.3.10holds.

Proof: AssumethatN,, M, € 4. Then([N%)ll Nulﬂ Jy) € SpF,hencewe
have “(4BP3):>(4BP2)<:>(4BP1)” by Theorem12.3.7(a). If (4BP2) holds,
thenwe have X € 4, henceE € 4, by Theorem12.3.7(e2)hence(EY,J;) €
SpF, hence(4BP3) holds, by Theorem12.3.7(a). Thus, (4BP1)-(4BP3)are
equialent.

(a) SinceE € 4, we have Y € 4, henceZd € 4, henceZ € 4. It follows
from Theoreml2.3.7(c)&(e2}that(a) holds.

(b) Thefirstclaimfollowsfrom Theoreml2.3.7(c) thesecondrom thefact
thatZ € 4 = G4 (andfrom (12.50)).



(c) By Lemmal2.4.12,we cantake Mj1,Xo2 € GTIC etc., henceD,
becomesrvell-posed.ConsequentLM € GTICw, by Lemma7.2.12(b).The
d.c.f.(12.61)of D, isover 4, i.e.,all its termsbelongto 4.

(d) This follows from Lemma12.4.13 (becausehe corverseis true by
(12.47)with L = 0).

(e) Chooste,Qz € 4 sothat Q is DPF- stablllzng By Theorem
7.3.19(iii), Q DF-stabilizedDo; . Becaus@l,Qz,Nu,Mu € 4, it follows from

Lemma7.2.16that the d.c.f. Dy = Nu21MU11 = My22 Ny21 is over 4 if(f)

Ny21,My22 € 4. By (7.79),the “iff” in (e) follows analogously(becausets
corverseis trivial).

(f) This is obvious (recall from Proposition6.3.1(c)thatR € GTIC, <
R(+) € GB for ary R € TIC., NULR, hencefor ary R € ).

(g) Oneobsenresthis from the proof of Lemmal2.4.16below. O

Lemma 12.4.16 Theoem12.3.6holds.

Proof: By Lemma 12.3.10(a)&(c), (Factorl) is now equvalent to
(Factor1q).

The equvalenceof (4BP1)—(4BP3)follows from Lemma 12.3.10; by
Lemmal2.3.10(c)&(d),we canmaintainthe equivalencewhile strengthening
thethreeassumptionso (4BP14)—(4BP37).

(We could equivalently drop the condition Mjj(+w) € GB from
(Factor1q), but we prefer having D, well-posedin the formulation of
(Factor29).)

(@) Thisfollows from Theorem12.3.7(c)andLemmal2.3.10(b).

(b) (In fact,it would suffice to assumehatNy ,,, My ., € 4; cf. theproofof
Lemmal2.3.10(epbove.)

“If 7 is trivial, onIy if” follows from Lemma7.2.16(a)(it provldesajomt
d.c.f.of D andQ in 4, henceQ = X~1Y = YX! for someY,X,X,Y € Z;
recallfrom Lemma7.2.12(b)thatX,X € GTICw).

(c) Thisfollows from Lemmal2.3.9. B

(d) By Lemma12.3.11(e) the requiremeniN,»; € GB(U) in (Factor22)
can always be satisfied, hence (Factor24) is equivalentto (Factor2) when
(Factor14) (equialently, (Factorl))holds. Thus, (4BP33) is equialentto
(4BP3),hencenow (4BP1)-(4BP3jnd(4BP14)—(4BP37) areall equivalent
to eachothet O

Notes

The methodsof [Green] (or [CG97]) do not apply in the generalcase,as
explainedon p. 721. However, we have beenableto usepart of themby using
suitablemodifications.

Much of Lemma12.4.3 was establishedor rational transferfunctionsin
Section3 of [Green]. Part of Lemmal2.4.11is from Lemma3.6 of [Green].
In the proof of Lemmal12.4.9,we have borroved from [Green,p. 530] the idea



to reducethe ASP (4BP2)to a H” FICP. Greenand[CG97] usethe well-known
matrix complementatiorpropertiesof their respectre transferfunction classes.
SincegeneraH®” functionsdo not possessuchpropertiespy Lemma4.1.10,we

have constructed suitablereducingoperator(lP) explicitly, in Lemmal2.4.8,by
using(4BP2).



12.5 Proofsfor Section12.1— 4BP P, R/, P>

Conjectue 1. The proof of every result requires at least three
auxiliary lemmas.

Addendunto Conjectue 1. Thisappliesalsoto theproofsof auxiliary
lemmas.

— K.M.

(RecallStandingHypothesisl2.1.1.) In this section,we shall give proofsfor
theresultsof Section12.1. Obsene that,in mostresultsof this section theletters
X andM correspondo “(1.)" (the P-CARE) or to the correspondindARE, not
to (FactorlX)of Theoreml2.3.7;seeeachstatementor details.

Theclassicalassumptioris that | A | B; | is exponentiallystabilizableand

[CA;] is exponentiallydetectable.By Lemma13.3.17,in the discrete-timecase

this holdsiff thesystemz,; ;= [%%} is exponentiallyjointly stabilizableand
detectablethe sames truein the continuous-timef, e.g.,B; andC, arebounded
(cf. Corollary9.2.13(b)).
. . By,
In that case,the correspondingairs“ | Kui | Fuz1 Fuiz |” and* gyylz "
22

(andinteractionoperator‘E‘l’g”) stabilizeA andhencethewhole Z exponentially
by Lemma13.3.8. However, sometimeshe following, wealer assumptions
enoughfor us:

Hypothesis12.5.1(H* 4BP) Assumethat 3 = [%%] € WPLSU x W,H,Z x
Y), andthere are jointly stabilizinganddetectingpairs

[Ky | Fy]= Kgl E(J)ll ]Fuolz} and (12.76)
(0 H
H y2
[Gy } -0 g, (12.77)
/ L 0 Gy,

for £ with someinteraction opemtor [8 ]E(:ujé] . Moreover, we male the nonsingu-
larity assumptions
~ ~x%
Nu11Nu11 >0, Nyo,Nyo» >0, (12.78)

whee Ny := DMy, Ny := MyD, My := (I —Fy11)~5 My = (1 = Gy,,) %

Notealsothatjoint stabilizationis alwaysdoublycoprime by Theoren6.6.28,
andthatthe interactionoperatoris necessarilyof the above form (for pairsof the
above form).

We stronglyrecommendor mostreaderdo assumehatthe above pairsare
exponentiallyjointly stabilizing and detecting,so that someof the proofs and
resultsbelon becomeessentiallysimpler (and much of them can be ignored).
This coversthe caseof anexponentiallystabilizingcontroller andthe (restof the)
generakases notthatimportant.Indeed this assumptions necessarywhenone



is interestedin finding a suboptimalexponentially stabilizing controller (recall
Definition12.1.2):

Lemma 12.5.2(Nonexp.4BP & opt. = exp.4BP) AssumeHypothesis12.5.1.
Thefollowing are equivalent:

(i) Z is optimizable;

(i) X is estimatable;

(i) X is optimizableandestimatable

(iv) [ Ky | Fy | is exponentiallystabilizing;

(v) [%yl] is exponentiallystabilizing;
(vi) [ Ky | Fy ] and [%ﬂ are exponentiallyjointly stabilizing;

(Vil) o1 := [é g:l] is exponentiallyjointly stabilizableand detectable;
(viii) Z is exponentiallyDPF-stabilizablewith internal loop;
(iX) 221 is exponentiallyDF-stabilizablewith internal loop.

If (i) holds,thenthe systems s, Zpa and Zt of Lemmasl2.5.15and12.5.16
and Proposition12.5.19are thenexponentiallystable (underthe assumption®f
thoseresults).

If [ Ky | Fu | is stronglystabilizingfor Z, thenthe system&.s, >wdandZyp
are strongly stable(undercorrespondingassumptionsasabove).

Thus,whenwe canshaw thatHypothesisl2.5.1is satisfiedandZ is optimiz-
able, then, for solving the exponentialH* 4BR it suficesto solve the /O H®
4BP of Section12.3,i.e.,the correspondindgrequeng-domain(or I/O map)prob-
lem, sincethenwe obtaina solutionof the exponentialproblemfrom Proposition
12.5.19.

An analogousclaim obviously holds for the more general“nonexponential
H® 4BP” (seethediscussiorbelow Definition 12.1.2)insteadof the exponential
H* 4BP, andalsofor the “strong H* 4BP” wherewe requirestronginsteadof
exponentialstability.

Proof of Lemma 12.5.2: 1° Theequivalencef (i)—(vi): If Z is estimatable,
then| Ky | Fu ] is exponentiallystabilizing,by Theorem6.7.15(c2) hencex

is thenoptimizable.If X is optimizable then [%H is exponentiallystabilizing,

by theabove andduality.
Thus,if (i) or (i) holds,thensodo (i)—(vi) (notethatA, = A, andAy = Ar
in termsof (6.133),(6.170),(6.168)and(6.171),sothatalsoA, andA; arethen

exponentiallystable). Moreover, then [Ky |Fy1] and [%} are obviously

jointly admissible henceexponentiallyjointly stabilizingfor 231 = [é &J

(since(Z21)L and(Z21); havethe samesemigroupsasZ, andz;), sothatalso
(vii) holds.
Corversely ary of (iii)—(vii) obviouslyimplies (i) or (ii) (hence(i)—(vii)).



Finally, (vi) implies (viii) and (ix), by Theorem7.3.12(b1),"(viii) =(i)”
followsfrom Theorem7.3.12(a)and“(ix) =-(i)" followsfrom Theorem7.2.4(a)
andLemma6.7.4.,

2° X5, Zpd and Zp are exponentiallystable: By Lemmal2.5.15,% is
exponentiallystable hencesois Zpd (sinceAdo is). For Z thisis containedn
Proposition12.5.19.

3° Stronglystablecase:See2°. O

Thetheoryof Section12.3canbe appliedunderHypothesisl2.5.1:

Lemma 12.5.3(Hyp. 12.5.1= Hyp. 12.3.1) Hypothesisl 2.5.1limpliesHypoth-
esis12.3.1(with sameNy, My, Ny, My ). Indeed defineZqa by (12.87). Then

Xy =1 -Gy +D¥y = [41], Vo i= —MyBy = [§ M ],
(12.79)

X, =1-F,+Y,D=[5i] and Y, :=-E,M = [g fEﬁéy@zz]
(12.80)

complemenMy,, NU,I\A/JI;,, N; toad.c.f; thisd.c.f satisfiesHypothesisl 2.3.1.

We shallusethis below without furthermention.
Corverselyif D € TIC,, satisfiedHypothesisl2.3.1,thenD hasarealization
satisfyingHypothesisl2.5.1,by Lemmal2.5.23. o
Proof: AssumeHypothesisl2.5.1. ThenXy, Yy, Xy, Yy in (12.79)—(12.80)

arestable(beingpartsof (6.170)and(6.171))andcomplemeniMy, Ny, My, Ny
to ad.c.f.;thisd.c.f. satisfiedHypothesisl 2.3.1.Indeed the (1, 1)-block of the

equation
FW Y}:I (12.81)

X -Y

-N M||N X

(from (6.172))is MI,HMUH-I- (I )12Nu21 = I, henceNyp; andMyy; arer.c.
AnalogouslyNy,, andMy,, arel.c. O

Next we note that Hypothesisl12.5.1is equvalentto the standardH® 4BP
assumptiongundertheregularity assumptior{Al)):

Lemma 12.5.4((A,B1) & (A,C2) = Hypothesis12.5.1) AssumdAl)of Theo-
rem12.1.5. ThenHypothesisl2.5.1is satisfiedwith “exponentiallyjointly” in
place of “jointly” iff (A,By) is optimizable (A,Cy) is estimatableand (A2) of
Theoem12.1.5holds. o

If Hypothesisl2.5.1is satisfied thennecessarilyNy, My, Ny, My, € MTIC(L;p
(orin (Y) undgr\the alternative“(IV)” in (Al)), andwe canchoosethemsothat

My (+0) = 1, My (+00) = 1.

Proof: 1° (A,B1) & (A,Cz) <« Hypothesisl2.5.1This is containedin
Lemmal2.5.2.



2° (A/B1) & (A,Cz) = Hypothesisl2.5.1exceptpossibly(12.78): By
Corollary9.2.13(b) thereareK € B(H,U) andH € B(Y,H) s.t. A+ B;K and
A+ HC, areexponentiallystable.ExtendX by K andH (with F =0= G = E)
to satisfy Hypothesisl2.5.1with “exponentiallyjointly” in placeof “jointly”
exceptpossibly(12.78).

By (the proof of) Corollary9.2.13(c)Nu,Mu,N;,MT), € MT|CIé;p (andthey

are d.c. over MTng(lp) andﬁu(+oo) =1, M@Hoo) = 1. The caseof the
alternatve “(IV)” in (Al) follows similarly (use(c3) and (b) insteadof (c1)
of Lemma6.8.4).

3° Conditions(12.78)« (A2): The operatorK is exponentiallystabilizing

for 311 = (CA—lfDilll), with closedloop I/O map [1%1111] (sinceM, = (I —

]Fu)il -

[ (I-Fu1)™* ~(1-Fu11) 'Fuo ).
0 |

By Lemma8.4.11(a2)Ny1,Nu11 > 0 iff Nyj; is I-coercve; by Theorem
8.4.5(d),this is the caseiff Dy is |-coercve over Uep (W.I.t. Systemz11); by
(e2)&(i)&(ii") of Proposition10.3.2 thisisthecaseff D];D11 > 0and(12.11)
holds;thesearecontainedn theassumptions.

By dual aguments,we obtain that N;zzf\];;z > 0 iff D22D3, > 0 and
(12.12)holds.

4° Thefinal claimswereobseredin 2°. O

Lemmal12.5.5(% & B = Hypothesis12.5.1) If conditions(Al), (A2), (1.)
and(2.) of Theoem12.1.5are satisfiedthen(A, By) is optimizableand (A,C,) is
estimatable

SeeLemmal?2.5.4for more.
Proof: By Theoreml1.1.4(iii)&(i) (or Theoreml1.1.3(iii)&(i) in case(lV)
of (A1)), the FICPfor Zx hasasolution;in particular (A, B;) is exponentially
stabilizable By duality, (A,C,) is exponentiallydetectable. O

Whensolving Px-part of the 4BR, we getthe R/ -partin the baigain dueto
duality:

Lemma 12.5.6(Duality) Hypothese42.1.1,12.5.1,12.3.1and12.0.1,and Def-
initions 12.1.2and 12.3.3are invariantunder(“inter changed”) duality.

In particular, a mapQ € TIC«(Y,U) is a suboptimal[exponentially] stabi-
lizing DPF-contwoller for X (resp.for D) iff Q¢ € TIC(U,Y) is a suboptimal
[exponentially]stabilizingDPF-contoller for Z4 (resp.for Dy). m

(Part of this follows from Proposition7.3.4(d),the restis obvious (note also
thatQ is well-posedff Q1 is). Part of thelemmais containedn Lemma12.3.4.)

Here(andelsavhere) Dy := [°,]D[°!], Cq := CY[°!], By := [*}]BY andAq :=
Al 3= [éﬂ%’%} etc.;i.e., we take causaladjointsof eachmapor systemand
interchangehe rows andcolumnscorrespondingo U andW andto Z andY.



If the4BP hasasolution,thenthe®“l/O FICP” andits dualproblemhave well-
posedsolutions:

Lemma 12.5.7(H* 4BP= H® FICP) Assumethat there is a suboptimalsta-
bilizing DPF-contoller for < (or for D). Thenthere are U € TIC(W,U) and
U e TIC(Y,Z) s.t.| D11 U+ D12 ||tic < yand||Di2 + UDo2||1ic < Y.

Assumethat there is a suboptimalexponentiallystabilizing DPF-contmoller
for Z. Then(A,B;) is optimizable henceﬂéé‘p(xo) # 0 for each xp € H; y >
Yo for Zx (seeDefinition 11.1.2); and U can be chosenso that, in addition,
[V][L2(R4;W)] € U%(0). Analegousclaimshold for Ty .

Proof: 1° The first claim follows from Proposition7.3.4(e)(the stability
of R"* and H! (henceof U := (R™1)1, and U := (H™!)12) follows from
Proposition7.3.4(b)).

2° Let £ beanexponentiallystabilizingDPF-controllerfor £. By Proposi-
tion 7.3.4(e),w +— u is givenby U := (R~1)1, € TIC(W,U), and %(D,0Q) =
D11U+ Dqo.

However, for eachw € L?(R, ;W) (andxo = 0, u_ = 0,y; = 0), all signals
in the combinedclosed-loopsystem(seeFigure 12.1) arein L2 (sincei is
exponentiallystabilizing,sothat>} is exponentiallystable);in particular

L2(R+;H) > x=Bt[4] =Bt [V]w (12.82)

(becausen eachform of feedback(cf. Summary6.7.1),the state,outputand
inputareuniquesolutionsof (6.122)—(6.124)by Proposition6.6.2).

We concludethat [Y]w € Ueqp(0) = Zléz(p(O). Sincew wasarbitrary we
havey > |D11U+ D1o|| > Yo (Whereyp := Yo 5, is definedwith Zx in place
of ). By Theorem7.3.12(a),(A,B;) is optimizable,hencesois (A,B); in
particular ‘Uéé‘p(xo) # 0 for all xg € H. O

In finite-dimensionatheory oneoftenlooks for amap@Q € TIC(Y,U) that
“stabilizes 2", a system. However, it seemsthat in such theory one always
assumesn optimizableand estimatablerealizationof Z, and the definition of
“Q stabilizesZ” refersto this realizationexplicitly or implicitly. Nevertheless,
we shallshav below that sucha concepthasa meaningfuldefinition for general
¥ ¢ WPLS, andthat for “L 1-smoothsystems”(andary discrete-timesystems),
this definition guaranteeghe existenceof a realizationof Q that stabilizesZ
exponentially(in the ordinarysense):

Indeed,insteadof requiring the existenceof a DPF-stabilizingsystemwith
internalloop, it sufiicesto requirethe existenceof a DPF-stabilizingmap with
internalloop (cf. the differencebetweenFigures7.11 and 12.3); thus, alsothis
formally wealer conditionis equialentto (1.)—(3.):

Remark 12.5.8(“Suboptimal exponentially stabilizing Q (not E) for Z7)
Insteadof finding a suboptimalsystenmthat stabilizesZ exponentially we may
require the existenceof a suboptimalmap (a (well-posed)map@ € TIC«(Y,U)
or amapQ with internal loop) that stabilizesz exponentially
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Figure12.3:“DPF-controllerQ with internalloop” for £ € WPLSU x W, H,Z x
Y)

By this we meanthe wealenedform of Definition 7.3.1, whee the second
row and secondcolumnof ZP neednot be exponentiallystable(for an arbitrary
realizationof £ of Q; notethat the realization affectsonly the secondrow and
columnof ZP). It followsthat X, is optimizableandestimatable

Assumehat (A1) of Theoem12.1.5holds. _

Then any map Q that stabilizesZ exponentially has a realization Z €
WPLSU xW x Z,H,Z x Y x =) that stabilizesZ exponentially(if Q is well-
posed,then = can be chosento be well-posed). In particular, the existence
of a suboptimalexponentiallystabilizing Q is equivalentto the existenceof a
suboptimalexponentiallystabilizingcontmoller = (becauseéhe corverseis trivial;
notethat “(1.)—(3.)” is a third equivalentconditionif also (A2) holds,and that
thenthecontmwller canbetakenwell-posedvhen&erD,; =0, by Theoem12.1.8,
evenif Q were notwell-posed).

Notethatin discretetime (A1) becomesedundantandthatary of (1)—(1V) of
Theoreml2.1.4(Al)implies(Al) of Theoreml2.1.5.

Proof: (We only sketchthe proof. Note thatanalogouslefinitionscouldbe
madewith otherattributesthan“exponentially”,aswell asfor DF-stabilization
(insteadof DPF-stabilizatiorstudiedin this chapter),but we have no usefor
such.)

1°If Q € TICk(Y x =,U x =) DPF-stabilizes € WPLSU xW,H,Z xY)
exponentially thenX,4 is optimizableand estimatable:Let % be arealization
of Q, let ZP be the correspondinglosed-loopsystem(asin Definition 7.3.1),
andlet 2P, denotex? with the secondrow andthe seconccolumnremored.

By writing =° out, onecanverify that>?,, doesnot containelementsof 3
(otherthanits 1/0 map@Q). Indeed,for D} ‘this is trivial, for CP we obsene
this from thefactthattheleft columnof (7.74)doesnot containsuchelements
(since(CP)31 consistof theelementsf (I — D)~ andC; only), theformulae
for BY areanalogousand

APy = (AD)11= A+ B11(CP)11, (12.83)

by (7.75); thus, also ARH is independenbf T. Therefore,the concept“Q

stabilizesz exponentially”is independenof the realizationz of Q.
Assumethat Q stabilizesZ exponentially i.e., that the four partsof ZﬂH



satisfy 1.—4. of Definition 6.1.1for somew < 0 (notethat “AP,” is not a
semigroupin general). Then (C?)11 is (exponentially) stableand Aﬂon €
L?(R4;H) forall xo € H. By (12.83),it followsthat[ A | By ] is optimizable.
By dualamguments,[ A | C; | is estimatable.

2° An optimizableand estimatablehenceexponentiallystabilizingrealiza-
tion = of Q exists(under(A1)): Assumethat(A1) holdsandthatQ stabilizess
exponentially

By 1°, 2,1 is optimizableandestimatablehencethe above claim holds,by
Lemma7.3.6(b1)(seealsoTheorem7.3.11(cl)).

(This 2° appliesbothto (well-posed)Q € TIC,(Y,U) (giving (well-posed)
T € WPLSU,H,Y)) andto Q € TIC«(Y x =,U x =) (giving £ € WPLSU x
=, H,Y x ).

3° Assume(Al). If = stabilizesS exponentially then Q stabilizess
exponentially (if =P of Definition 7.3.1is exponentiallystable,thensois the
correspondingsub”system™2? ,"); the corversewasgivenin 2°. Thus,we
havethefirstequivalence.

Under (A2), we obtainthe secondequivalencefrom Theorem12.1.5. If
D»1 = 0, thenall suboptimakxponentiallystabilizingcontrollersareequialent
to well-posedones by Theoreml12.1.8. O

We oftenwish to assumehatD»1 = 0. Usually, thisis nota problem:

Lemma 12.5.9(D21 isirr elevant) Thevalidity of Hypothesisl2.5.1remainsun-
changed if one alters D21 (ceteris paribus). The sameholds for Hypotheses
12.5.13and12.3.1,andfor theassumptionsef Theoem12.1.11.

Conditions(1.) and(4.) of Theoem12.1.8are independenof D,1; thesame
holdsfor (1!) and(4:) of Proposition12.1.10.If Hypothesisl2.3.1is satisfied,
then(4BP1)is independendf Dao;.

However, D2; does affect the well-posednessand the exact form of the
suboptimalkontrollers;cf., e.g.,Proposition12.5.19(Q).
__ Proof: 1° Hypothesisl2.5.1: Obviously, the samepairswill do (but Ny and
Ny areaffected).

2° Hypothesisl2.5.13:0ObserethatZy is independendf Do1.

3° Hypothesisl2.3.1: This follows from Lemma7.3.23and Proposition
7.3.14(i)&(iii) (or from equation(7.103).

4° Theoem12.1.11: WhenD is replacedby D+ R, whereR= [ J] €
BU xW,Z xY), the mapM, of Hypothesisl2.5.1is unafectedbut N, is
replacedoy Ny +RM,, € 4. An analogousemarkappliesto MTy andf\l;.

4 (1.),(4.), (1) and(4)): Thisis obvioussincecorrespondingperators
are independenbn Dy; exceptfor the r.c. conditionin (1), which canbe
handledwith Lemma6.5.7(b).

5° (4BP1): AssumeHypothesisl2.3.1(it is independentdf D,1, by thelast
claimof Lemma7.3.23).Let Y beequalto D with 0 in placeof D»s.

We obsere from Lemma 7.3.23 that there is a suboptimalstabilizing
DPF-controlleffor D (necessarilyvith d.c.internalloop, by the hypothesisand



Theorem7.3.19(i)&(")) iff thereis a suboptimalktabilizingDPF-controllerfor

.

O

Thefactorizationof Theoreml12.3.7correspondo systen>yx andto system

>z of (12.94),hence,by Theorem9.9.10,to their Riccati equationsthatis, to
“(1.)” and“(4.)” of Theorem12.1.8(the systemZy providesthe dual (H* filter
problem)Riccatiequation(2.)” of Theoremsl2.1.4and12.1.5):

Definition 12.5.10(ARE systems)We definethefollowing systemsnd map:

Al B T A | B B, ]
L XX 0| 0 1 |
- ad d d A
Ay By Ad cd
Sy & 1oy | = BS | D4, DI, (12.85)
0| 0 |
epfre = [P D3z (12.86)
Dyq := [ ]DY[°!] = . 12.86
D9, DS,

SeeLemmal2.5.16for £z and Zyq.
Herewe write outafew formulae:

Lemma 12.5.11(Zyotal) Assumedypothesid2.5.1.ThenthepairsandE,y ofthe
hypothesigxtend to Zrptg € WPLS(Z x Y xU xW,H,Z xY xU x W), whee

A |0 Hy, B B>
Ct |0 Gy, Din Dp2

2 Total -= Co 0 Gy 2 Do oo (12.87)
Ku1 | 0 Ej5 Fuirx Fuip
0 0O O 0 0
Moreover, [ Ky | Fy | stabilizesSx to
A+Bi™™,11Kyg | BiMy11 BiMy12+Bo
C1 +Nu11Ku1 Nu11 Nu11
2x) = 0 0 | (12.88)
My11Ky1 Myq1—| Mu12
0 0 0
hee M, := (I - Fy)~t = [Muu Murz],
Analagously the pair [Hég ‘ G%gz G%‘fz] stabilizesSy to
- R —d —d 7
A%+ CITM  Hy § | CIMy,, C3My,, +C§
—d —d —d
B + Ny 22Hyg Ny, Ny1p
Zyy 1= 0 0 | (12.89)
—d__ 4 —d —d
My, Hy, My ,, -1 My,
i 0 0 o |




(all elements above are from (6.171)); her I\N/led = (I — (Gyd)—1 =
~ ~ —~d —~—d —~—d
(Myg)ll (Myld)lz] =My 0] = [M)(')zz MFZ]

Proof: The first claim is from Definition 6.6.21. One easily verifiesthe
formulae. Sinceall elementsf (12.88)arefrom (6.170)and all elementsof
(12.89)arefrom (6.171),it is obviousthatthesesystemsarestable. O

Now we arereadyfor the main partof the proof. We first shav that (Factorl)
is equivalentto the“ P-CARE”:

Lemma 12.5.12((Factorl) & P«-CARE) AssumehatHypothesid2.5.1holds
andthatN,,M, € UR.

Then(Factorl) hasa UR solutionN,M iff the CAREfor ¥x and J, hasa
UR P-stabilizingsolution (%, Sk, K) s.t. D(I —F)~t and (I —F)~* are[qg.]r.c.,
Py >0, Sx11>> 0 and Sx22 — Sx21S;17Sx12 < 0.

If [ Ku | Fu | is exponentiallystabilizing then (Factorl) hasa UR solution
N,M iff the CAREfor Zx and J, hasa UR exponentially stabilizing solution
(B, Sx,Ki) 8.t B¢ > 0, Sx11>> 0:and Sxaz — Sk21S11Sx12 < 0.

In either case the IARE for Zx and J, has a UR P-stabilizing solution
(B, [K|F])stM:=(-F)! N:=DM and X := MM, satisfy
(Factorl)and(FactorlX),and Hypothesisl2.5.13is satisfied.

Corversely if Hypothesisl2.5.13is satisfied,thenthe IARE for Zx and J,
hasa unique UR P-stabilizingsolution (&, Ji,[ K | F ]) s.t. (I = F)~1 = M,
DM = N.

Proof: Now D = N;M, ! is UR, by Proposition6.3.1(b1). By Theorem
12.3.7(el)&(e2)(Factorl)and (FactorlX)areequvalent,and X is UR iff N
andM areUR

1° (FactorlX)iff CAREfor Zyx,: By Proposition11.3.4(f),(Factor1X)(or
(FI3s)) is equivalentto (Fl4s) for Zy,. If we addthe requirementhatX (or
F) is UR, then,by Proposition11.3.4(a),(Fl4s)is equvalentto (FI5s),i.e., to
the conditionthatthe CARE for Zx andJ, hasa UR stable,P-SOS-stabilizing
solution (%, Sk, Ki) s.t. B > 0, Sx11>> 0 andSx2z2 — Sx21S¢11Sx12 < 0.

2° (Factor1X)iff CAREfor =x when|[ Ky | Fy | is exponentiallystabiliz-
ing: By Proposition9.12.4andLemma9.12.3(b) the exponentiallystabilizing
solutionsof the CAREsfor (Zx,, Jy) and(Zx, Jy) correspondo eachotherone-
to-one(they have sameA’s, by (b), henceoneis exponentiallystabilizingiff
bothare);by Theorem9.8.12 they areequal.Sincel, is UR, oneis UR iff the
otheroneis, by Propositior9.12.4.

3° (Factor1X)iff CAREfor Zx: Work asin 2°, let Fx andFy;, correspondo
the solutionsof thetwo CARESs,andsetXy;, := | —Fy, andMy := (I —Fx )L,

By Lemma9.12.3(b),condition(P) is presered. ThemapXy; := M;lMu
isin GTIC iff DMy andMx arer.c.,by Lemma6.4.5(c)(sinceN, = DM, and
M, arer.c.). By Lemma6.6.17(b)&(c),the solutionfor the CARE for (2, Jy)
is stableand [SOS-]stabilizingiff [ Ky, | Fx, ] is r.c.-stabilizing;by Lemma
6.7.11(a2)thisis thecassff | Kx |Fx | isq.r.c.-stabilizingfor = (equivalently,
r.c.-stabilizing by Lemma6.4.5(c)).



(Notethat(?x, Sk, K|) arethesamein 2° and3°.)

4° X andM: In 1°, we canchooseX sothat X1 = 0 andXy1, Xo2 € GB,
by Proposition11.3.4(eXor by Lemmall.3.13(i)&(iii") andTheorem9.8.12),
if we replacethe CARE by the IARE andSx by J;. This is automaticif we
areoriginally given N, M satisfyingHypothesisl2.5.13(the uniquenesslaim
followsfrom Theoren9.8.12(b)(&(s1))).

Therestfollows asabove (notefrom 4° thatMy = Mux;(bl, hencenow M
becomegqualto M, by (12.49)). O

We shalloftenassumehefollowing:

Hypothesis12.5.13((Factorl) with X =[§ x]) Hypothesis 12.5.1  holds,
Nu,M, € UR, and N,M is an UR solution of (Factorl) s.t. Xo1 = 0, whee
X :=M"1My.

(Whenthis hypothesisolds,wedenoteby (%, J1, [ K | F ]) thesolutionof
the P-IARE mentionedat theendof Lemmal2.5.12,andby %+ the correspond-
ing (stable)closed-loopsystem.)

(The regularity assumptionsnight be somavhat (resp.completely)reduced,
but this would require somavhat more complicatedformulationsof the results
basedon the above hypothesigresp.anduseof IAREs insteadof CAREsasin
(Fl4s)insteadof (FI5s)in Theoreml1.3.3).)

By (12.49),"N,M € UR” couldbereplacedy “X € UR”.

Lemma 12.5.14 Make Hypothesisl2.5.13. ThenX satisfies(FactorlX),M =

[MO” )'\(/'2325] , andXy1, Xo2,M11 € GB. Moreover, thenD, X, E € UR.

Proof: By Theorem12.3.7(e2),X satisfies(FactorlX), henceX Xj1 €
GTICw. By LemmaA.1.1(b),My11 € GTIC,(U). By Proposition6.3.1(b1),
it follows thatX, X113, M1 € GB, henceXop, (X111, (X 1)22 € GB(W) and
(X"1)21 = 0, by LemmaA.1.1(b). By (12.49),M = [§{]X L, hencealsoM
andM;; areasabove. By Proposition6.3.1(b1) D, X,E € UR. O

We needto defineexplicitly the closed-loopsystemcorrespondindo P, SO
thatwe candefinethe“ 2 -CARE” furtherbelow:

Lemma 12.5.15(Zs) Make Hypothesis12.5.13. Assumethat [ Ky | Fy ] is
[[e xponentially]strongly] stabilizingfor Z.

Then there is a unique [[exponentially] strongly] P-stabilizing solution
(Px,Sx, [ K | F ]) of the IARE for Zx and Ji, and [ K | F | is determined
uniquelyby requiringthatF =1 —M 1. Thepair [ K | F | is [[exponentially]
strongly] stabilizingfor % too; we denotethe correspondingclosed-loopsystem
by

Ay | By
Ky | Fo

sothatFy =M—1, Dy = N=DM.



It isimportantto notethatZ - is a state-feedbackerturbatiorof Z, not of Zx,
althoughK is determinedy the IARE for Zx.

Proof: (Recall from Hypothesis 12.5.1 and Theorem 6.6.28 that
[ Ky | Fu ] is r.c.-stabilizingfor = evenwithout the extra assumptiorof the
lemma.)

By theassumption| K, | Fy | is[[exponentially]strongly]stabilizingfor
>, hencealsofor Zx. Asin theproofof Lemmal2.5.12 we obtainthesolution
of theIARE mentionedabove; beingP-stabilizing,Px is unique(seeTheorem
9.8.12(b)&(s1);note that Sy and [ K | F | is not uniquein generalbefore
we fix F). By Lemma6.6.17(d)&(c),[ K | F | is [[exponentially]strongly]
stabilizingfor Z too. 0

The third Riccati equationtraditionally assosiatedo the 4BP correspondso
therealizationZ of [D%lz D%zz] € TIC(Y xU,W x U) definedbelow:

Lemma 12.5.16(2z and Pz-CARE) Assumehat Hypothesisl2.5.13holdsand
thatMy; € GTIC,(U). Then(seethehypothesidor %)

~ |~ 0 0 0
[®17]=[ o, | g, 1o, | A
is a stableadmissiblestatefeedbak pair for
r A]Ed B]Ed 12% ‘ C(dD,Z _K%,l
g = |G D } = ]BOdz Ng, Mg, (12.92)
- E B -Ng; MY,
[ A+ KIMITBY | Cd+ (NK)§  —(MK)§
= ®ng | om§ - ] (12.93)
—(BM){ ‘ —(DM)$; 11

Thetop threerows (“the [%ﬁ%&] part”) of the correspondingclosed-loop
systemare givenby

hp B ][RI | RGOS K KIGE,
. . —dmd —dmd —d~d
2z:= [ C, | D ] = X2 B3 X2 D2, X22 X1z
2172 0 0 |
(12.94)

€ WPLSY x U,H,W x U) (see(12.17) for correspondinggenerators). In
particular,

—d —ded d d
Dy = [X220D32 Xzzlxlz] — [DBH D+|22] eTIC(Y xU,WxU). (12.95)
The systemZyq is stable; it is exponentiallystableiff X is optimizable(by
Lemmal2.5.2). 0

(Thisis obvious. Notefrom Lemmal2.5.14andProposition6.3.1(c)thatthe
assumptioron M4 is redundantf M € ULR.)



TheCARE (resp.lARE) for Zz andJ; is calledthe P--CARE(resp.?--IARE).

Lemma 12.5.17(%z-IARE 4 (Factor2)) AssumehatHypothesisl2.5.13holds
andMj1 € GTIC,(U). Considerthefollowing conditions:

(i) (Factor2Z)hasa UR solutionZ € GTIC(Y xU) s.t.Z1p=0andZ;1,Z; €
GB.

(i) the CAREfor Zz and J; hasa UR P-stabilizingsolution (77, S7,Kz,) s.t.
P; >0, S711> 0, 20— 521511512 < 0, (1 —=Fz; ) (I = F) € GTIC(Y x

U) andKz + (I —Fz,)K is stable

(i) the CARE for Zz and J; has a UR stable P-stabilizing solution
(P2,5,Ke) s.t. P2 >0, Seq1>> 0 and Sezo— Se21561,Se12 < 0.

(i) the CAREfor 2z and J; has a UR exponentially stabilizing solution
(P2,5,Kz,1) S.t.82 > 0, Sz11>> 0and oo — 52155155712 < O.

(ii") the CAREfor Zz and J; has a UR exponentially stabilizing solution
(P2,%,Ke) st. P2 >0, Se11>> 0and Sezo — Se1§ 1 SE12 < 0.

Then(cl)—(d)belowhold; if D2; = 0, thenalso(a) and (b) hold:

(2) We have(i) < (ii) < (i)

(b)If [ Ky | Fy | is exponentiallystabilizing then(i)—(iii") are equivalent.

(cl) If (Factor2Z) has a solution, then (ii)—(iii)) (and (i) and (iii") if
[ Ky | Fy | is exponentiallystabilizing)hold if wedrop“UR” andthecon-
ditionson & andSz, andwereplace"CARE” by “IARE”.

(c2) If (Factor2Z)hasa UR solution,then(ii) holds(and(i’) if [ Ky | Fy | is
exponentiallystabilizing).

(d) If (i) hasa solution(or (ii") hasand | Ky | Fy ] is exponentiallystabiliz-
ing), thenEJ, E* = Z.J,7Z* for someZ € GTIC(Y xU) s.t. EZ~%is (3, Jy)-
losslessandZ;1 € GB(Y).

If, in addition, dimU < o, thenZ satisfies(Factor2Z) (and (Factor27) if
NUaMU S _ﬂ)

Recallfrom Theoreml2.3.7(a}hatif (E9,J;) € SpF, thenonemoreequialent
conditionis that the 4BP hasa solution. We remind that mostreadersshould
ignore the noneponential4BP (and hence(ii) and (iii) and most of the proof
below); it combinesa lessimportantproblemwith morecomplicatedproofsand
solutions.

Note thatwe could drop the regularity assumptiorin (i) andformulate(ii['])
and(iii[']) analogouslyto (F14) (seeTheoreml11.3.3).

In the proof of Theorem12.1.8and Proposition12.1.10,we strengtherthe
equialenceof (Factor2)and (ii[’]) (by establishinga converseto (c2) without
assuminghatD21 = 0).

The conditionin (ii) may seemcomplicated(it correspondgo Z9 being a
spectralfactor of (E4)*JEY) comparedto the simple r.c. condition of Lemma
12.5.12(correspondingo X solving (Factorl)). The explanationis thatthe word



“stable”in (iii) is, indeedar.c. condition(by Corollary9.9.11),but since(12.91)
neednotbe(q.)r.c.-stabilizingn generalthecorrespondingonditionin (ii) is not
ar.c. conditionw.r.t. Zz. This explainsthe correspondinglifferencein (1) and
(4)) of Proposition12.1.10.

Proof of Lemma 12.5.17: (Much of this follows the lines of the proof
of Lemmal2.5.12,we just needcertainmore complicateddetails. For each
claim, wefirst givetheproofwhere[ K, | Fy ] isassumedo beexponentially
stabilizing;mostreaderwill skipthemorecomplicatecandlessimportantpart
(with amerestabilizationassumption).)

Remarksand notation: Since N;M € UR, we have DM~1,D,,D, €
UR, As shown in the proof, the operatorsin (ii)—(iii") having samesym-
bols are equal. The solutionsof (ii)—(iii’) (if arny) are unique,by Theorem
9.8.12(b)&(s1).

We usethe standarchotationwhereX := | —F, M:=X"!,and[ K | F ]
correspondgo K (with any subscripts). We also usethe notationof Lemma
12.5.16.

Theproof: We give the proofsin theorder(cl), (c2),(d), (a), (b).

(c1) This follows from 2° and 4° (and 1° and 3° if [ Ky | Fy | is
exponentiallystabilizing).

1° (Factor2Z) = wealened (i) (when [ Ky | Fy | is exponentially
stabilizing): Assume (Factor2Z). By Corollary 9.9.11 (and Theorem
9.9.10), the IARE for Xz« and J; hasan exponentially stabilizing solution
(Pz,9,[ Ke | Fe ]), whereFg = | — 79 (notefrom Lemma12.5.16that X
is exponentiallystable).

From 3° we obtain an exponentially stabilizing solution
(Pz,91,| Kz | Fz ]) of the Zz-IARE. It only remainsto be shawn that
%7 > 0.

By (9.224),we have Xz = Xg M, henceZ 9 = Mg = MM and

Do 7 := Dy Mz = (EOM)Myz = E9Z 9= W9 e TIC(Y xU,W xU), (12.96)

whereMy := (I —Fz)~!, Mg = (I —Fg) L. By (12.96)andLemmal2.3.11(a),
(]D)Q,z)zz = Wgz € GTIC(U). But (Mz)22 = (]D)Q’z)zz (sinceDz =[], by

(12.95)),and(J1)22 = —| < 0, henceit follows from Lemmal1.2.18(seethe
remarkin its proof) that ?; > 0 (andthatthereis a suboptimalH-FI-pair for

2z andy = 1 andthatHypothesisl1.2.1is satisfiedfor ¥z over Uep).

2° (Factor2Z)=- wealened(ii): Assume(Factor2Z).(We startalmostasin
1°, but the proof of “2, > 0” mustbewritten moreexplicitly.)

By Corollary9.9.11(andTheorem9.9.10),the IARE for 2z« andJ; hasa
stable,P-stabilizingsolution (22,31, [ K | Fe |), whereFg = | — 79 (note
from Lemmal2.5.16that>pq is stable).

From4° we obtaina P-stabilizingsolution(%z,J1, [ Kz | Fz |) of the 7,-
IARE (by 25 we shall denotethe correspondindstable)closed-loopsystem)
s.t.(l=Fz;)(I =F) € GTIC(Y xU) andKz, + (I —Fz, )K is stable.It only
remaingto beshowvn that®?; > 0.




By (9.224),we have Xz = XgM, henceZ 9 = Mg = MMy and
Doz :=DzMz = (E°M)Mz = E9Z 9= W € TIC(Y xU,W xU), (12.97)

whereMyz := (I =Fz)™1, Mg = (I —=Fg)~L. By (12.96)andLemma12.3.11(a),
(Ds,z)22 = Wy, € GTIC(U). But (Mz)22 = (Do z)22 (sinceDz = [§ ], by
(12.95)),and(J1)22 = —I < 0,

In 1°, we obtained?; > 0 at this point from Lemma11.2.18. Sincethis
time 2, neednot be exponentiallystabilizing, we shallapply Lemmal1.2.18
for =7 (seebelow) insteadof %7 in this case.

Thepair[ K | F | := [ | ¥4 F52] is admissiblefor =7, becausdzy; €
GTICx(Y) (becauséMzor = (D5 z)22 € GTIC(U), asshowvn above); let =7
bethe correspondinglosed-loopsystem.Notethat

1A J— M —
D _DzM_[o | 0 |

* *] , whereM :=(1-F)"1= [* *} . (12.98)

By Lemma9.12.3(2,J;, [ K, | Fy |) isasolutionof thelARE for =7 :=
(&2~ ] andJy, where

(K | B )= [ R-XK | 1-X0 - %52~
_ [ 0 | 0 0 } (12.99)
My3Ko2 | MpgMzo1 | =My,

(the last equality follows by direct computation). But [ K; | Fy | is sta-
ble (becauseSs is stableand Mzz, € GTIC(U)), andsois (I —F,)~1 =
[ My Moy, |+ NENCEZ is stable,by Corollary 6.6.9 (seeDefinition 6.6.10),
hence[ K, | F, ] isr.c.-stabilizing by Lemma6.6.17(d).

Consequentlywe canapplyLemmall.2.180 > to obtainthat?; > 0 (we
have notestablishedHypothesisl1.2.1for =, but thathypothesiss redundant,
asnotedin thelatterremarkof the proofof Lemmal1l.2.18we did usethefact
thatD™ = [§ 1], i.e.,thatHypothesisl1.1.1is satisfied).

3° (cl)-formof (ii") (iii"): Given an exponentially stabilizing solution
(P2,S, [ Ke | Fe ]) of thelARE for =g« andJ;, anexponentiallystabilizing
solution(?z,S, | Kz | Fz ]) of the®,-IARE (i.e.,of the|ARE for =7 andJ;)
is thendeterminedy

Xg =XzX and Ke =Kz + Xg (MK) = Kz + XzK, (12.100)

by Lemma9.12.3(b)(this hassameclosed-loopsemigroup hencealsothis is
exponentiallystabilizing). Thus, (ii") implies (iii’) afterthe changedistedin
(c). Thecorversefollows analogously B

(For future usewe notethat both solutionsare UR if oneis, becauseF is
UR).

4° (cl)-formof (ii)«<(iii): In the sameway asin 3°, we obsere from
Lemma9.12.3(b), that the P-admissiblesolutions (%, Sz, [ Kz | Fz ]) and
(P2,S, [ Ke | Fe ]) of thetwo IARESs correspondo eachotherone-to-one
through(12.100).

By Lemma6.6.17(c),[ Ke | Fe | is stableandstabilizingiff Ke is stable




andl —Fg € GTIC(Y x U). By (12.100) this is the caseiff (I —F7)(I —F) €
GTIC(Y xU) andKg =Kz +XzK is stable.Thus, (i) implies (ii).

Assumg(iii), sothatMg andKg arestable.ThenalsoMz = SNQME is stable.
By theabove, it only remainsto show that #; is stabilizingfor Zz« andJ;. By
Lemma9.12.3(b),it sufficiesto shav thatMz KKz is stable(sinceMz = XME
is stableandtherestof the closed-loopsystemis containedn thatfor 7). By
(12.100),

My Kz = My Ke — MzXzK = Mz Ke — K, (12.101)

whichis stable(sincealsoKg andK arestable).Thus,?- is stabilizing,hence
(i) holds.

(c2)Muchof (c2)followsfrom (c1). TheCARE andtheconditionon S are
obtainedfrom 2° (andin 1° if [ Ky | Fu ] is exponentiallystabilizing)below.

(Note that (d) or (a)&(b) containsthe corverseimplicationif D21 = 0 or
dimU < o.)

1° (ii") holdswhen[ Ky | Fy | is exponentiallystabilizing: It wasnotedat
theendof (c1)1° thatHypothesisl1.2.1is satisfiedoy 27 (for U; = Uexp) and
thatl > yr (for Zz), hencel > yo, by (11.12).

SinceZ € UR, we have Fg,Mg € UR, (becaus&g = | — Z9, by (c1)1°)
by Proposition6.3.1(b1),henceMz; = XMg € UR. Consequentlythe triple
(P2,91, [ Kz | Fz ]) of (c1)I°&(c1)3° correspondgo a (unigue) exponen-
tially stabilizing solution (?7,Sz,Kz,) of the Pz-CARE, by Corollary 9.9.8.
By Proposition11.2.19(d1)we have Sz11 > 0 andSzoo — Szzglllsm < 0.

2° (ii) holds: Almostasin 1° above, we obtaina uniqueUR r.c.-stabilizing
solution (?,S;,Ky,) of the CARE for 279 and J; (use (c1)2&(c1)4° and
Corollary9.9.8),and§, = Xh*Jlxh, whereX; = | — F;, andthat S, > 0 and

S22— §215,1S12 < 0.

Thesolution(?,J;, [ Ky | Fy |) of the CARE for £ andJ; corresponds
analogouslyto a UR solution (P, Sz, Kz,|) of the CARE for >z andJ; (which
alsosatisfieghe (c1)-formof (ii)), whereSz = X*3X =X"'SX, X := Xh—lx =
[Xél Xllz}. Consequentlyalso Sy satisfiesthe requiredcondition, by Lemma
11.3.13(i)&(ii").

(d) We prove “(i") =(i)” in 1° (and 2°) assumingthat [ K, | Fy | is
exponentiallystabilizing;theothercasefollowsanalogouslyfuse(c1)4 instead
of (c1)3).

(N.B. By droppingthe assumptiorD»; = 0 we lost the conditionon & in
(ii"y (comparedo (b)), hencedo notlongerknow whetherZ canbe choseras
in (i) or whetheM\k; is invertible (thelatteris trueif dimU < ).)

1° Assume(ii). By Lemma11.3.13(i)&(iii"), thereis Z € GB(Y x U)
st. ZhZ* = S. Apply Theorem9.8.12(s1)to redefinethe solution so
that we obtain another UR nonne@ative exponentially stabilizing solution

(P2, [ Kz | Fz ]) of thelARE for 57 andJ; s.t.1 — F, = Z*.
SetZ := X*Z, sothatZS,7* = X*SX =: S. By (c1)3, we getan UR
exponentiallystabilizing solution (2, Ji, [ Ke | Fe ]) of the IARE for Zp



and J; s.t. Xg = XzX = Z*X = z*. By Corollary 9.9.11,Z% := | — Fg €
GTIC(Y xU). By Lemma9.8.14, W9 := E9Z~9 is (J1,J;)-lossless. But
X =[! 9], by (12.91),henceZ;1 = Z;1 € GB(Y).

2° CasedimU < o Since WY := E9Z~9 is (Jy,J;)-lossless,we have
Wa, € GTIC(U), by Proposition2.5.4(1),hence(Factor2Z)is satisfied(hence
sois (Factor2), hencealso (4BP3), hence(4BP1) and (4BP2), by Theorem
12.3.7(a)&(el)) L

(If Ny,M, € 4, thenN,M,M; ,N; € 7, by Lemma12.3.10(a) Thus,then
(Factor23) is satisfied sinceM, 2o = Wo, € GTIC(U) andN; 21 = (Z 1) €
GB(U) (sincezy1 € GB(Y)), by (12.50).)

(@) By (c2), (i) implies (ii). Thecorversefollowsfrom 2°, and“(ii) < (iii)”
from 1°.

1° (ii) < (iii): LetSz beasin (i) (and[ Kz | Fz | correspondso asolution
of the CARE, i.e., Fz = 0), thenXe = XzX = X, where(%,S7, [ Ke | Fe ])
isasin (cl)4.

By Corollary9.9.8,thecorrespondingolution(?, S, Kg) of the CARE for
g andJ; hasthe signatureoperatorSe := X*SzX. By Lemmal1.3.13(ii"),
also S is asin (iii) (sinceX = [\, ] dueto the assumptiorthat D21 = 0).
Thus,(ii) implies(iii). Thecorverseis analogous. L

2° (i)=-(i): This follows from (d), sincenow Z := X*Z, by (d)1°, where
X = [}) M%1j| andZ is asin (i).

(b) Theproofof (a)will dowith slightchanges. O

Lemma 12.5.18(%; < Py & p(PPy) < Yy?) Assumethat Hypothesis12.5.13
holdsandMj; € GTIC(U). Let P bethecorresponding-stabilizingsolution
of the P«-CARE(asin Lemmal2.5.12). Assuméhat the P,-elAREandthe P, -
elAREhaveinternally P-stabilizingsolutions?; and R/, respectively

Then?, > 0iff B > 0 andp(P /) < Y°. If 7 > 0, then(a)—(c)of Lemma
12.6.4hold for the solutionsof the eDARES.

Proof: 1° The assumption®f Lemmal2.6.4 are satisfied: By Lemma
12.5.12, the IARE for Zx and J, has a UR P-stabilizing solution
(B, d1, [ K| F])st.(I-F)~' =M, DM =N. SinceMy; = (X~1)2, (by
(12.49)), we have My, € GTIC,(W) (becauseXy; € GTIC), henceXj,; €
GTIC»(U), whereX’ := M1, by LemmaA.1.1(c1).

By discretization (see Proposition 9.8.7(a)), we obsere that
(P, 3,05 K | F ]) asolutionof the IARE for ASZx andJy; the correspond-
ing solution (2, S,K’) of the DARE (“ Px-DARE”) satisfiesthe assumptions
of Lemma12.6.4,by Lemma11.3.13(vi)&(i) (recall that X, X/, € GTIC
and that X’Zl(X’ll)*1 = —M2‘21M21 = X01(X11) ! (becauseMX’ = | and
Mp, = (X71)2,, by (12.49)),hence|| X}, (X ;) 71| < 1, by Lemmal2.3.11(a)).

2° TheequivalenceBy discretizationseeagainProposition9.8.7(a)),we
obtain that 7, B/, Px are P-stabilizing solutions of the Px-eDARE, Py-
eDARE and?z-eDARE (the onescorrespondingo (ASzx, Jy), (ASZy,Jy) and
(ASZz,J1)), respectiely. (Cf. Lemmal2.6.1.)



If 2 >0, then P, := VP7(l + PxP)~* is an internally P-stabilizing
solutionof the Py -eDARE andp(?x 7)) < Y, by Lemmal2.6.4(b)&(a)(recall
1°), hence®, = R/, by Theorem14.1.4(b).The corversefollows analogously
from Lemmal2.6.4.

3° (a)—(c): If Pz > 0, then(a)—(c)of Lemmal2.6.4hold for the DARES,
by 1° (but thoseS; andS, maydiffer from thosecorrespondingo the CARES,

etc.). O

We have alreadyshavn that all suboptimall/O mapsfor D are given by
(12.48). Now we constructa stablerealizationfor T, sothatwe canpresenthe
formulafor all solutionsin the standardorm (cf. Theorem12.1.8,whichis based
onthis):

Proposition 12.5.19((Factorl&2) = 4BP & all solutions) Make Hypothesis
12.5.1. Assumethat (FactorlX) and (Factor2Z) hold (let X and Z be their
solutions)andthatZ11 € GTIC,(Y) (asin Theoem12.3.7(d)).Define

[ Kga | Fgo | o= [ =37 ' (279 D JiCo | 1-29 . (12.102)
(asin (9.140); this is geneated by [ Z*Kg | | —Z* | if (%, S, Ke) is a UR
stable P-stabilizingsolutionof the CAREfor Zpa andJy). Then| Kga | Fga | is

.. . ] . d d
anadmissiblestatefeedbak pair for Zpq; in particular, [%} € WPLS(Y x
U,H,Y xU). SetR := 1| —Fgs = Z% SinceRy; = Z¢, € GTIC., the output
feedbak opemator L := [} 1] € B(Y xU xY,Y x U) is admissiblefor

Ags | (Bga)1 (Bgo)2

B _
S = [ Aait alt :| — (Kga)1 | Raz R12 7 (12.103)
Cait | Da —(Kga)2 | Rox Rop
0 I 0
andthe correspondinglosed-loopsystenis givenby
d d d
. AL | CE, Chy
Sanl = [ Aait | BaiL ] _| o |d ?:1 (12.104)
Cait | Dat T5, Ty

B
ar d d
By, | T2 Tro

€ WPLS(Y xU,H,Y xU xY). ThenZy := [éﬁ%} € WPLS(U xY,H,U x
Y) is arealizationof T :=(12.48),andthefollowing hold:

(a) If wedeletethemiddlecolumnandbottomrow of Zr, weobtainarealization
2T, of T12. Thesystemir,, is a well-posedsuboptimalcontoller (the
“central controller”) for Z.

(b) (All well-posedZq’s) All well-posedstabilizingsuboptimalcontmollers g
for Z are givenby the connectionof 2t and Zp, in Figure 12.1(cf. Remark
12.1.9), whee the parameterLL is as in (12.105)and %, is any stable
realizationof LL.



(c) (All well-posedQ’s) All well-posedstabilizingsuboptimalcontollersQ
TICx(Y,U) for D are givenby

Q=% (T, L) (LeTIC(Y,U)iss.t.|[Ltic <1 andl —LT21 € GTICx(U)).
(12.105)

(d) (All (possiblyill-posed) solutions) By remaving the conditionl — LTy €
GTIC.(U) wegetall stabilizingsuboptimakontmollers (with internalloop)
in any of (a)—(c).

(e) (All well-posedexponentially stabilizing solutions)If | Ky | Fy | is [ex-
ponentially] strongly stabilizing thenwe canreplace“stable” by “[e xpo-
nentially] strongly stable” and “stabilizing” by “[e xponentially] strongly
stabilizing” everywhee in this proposition. [if we require in (12.105)that
L € TICeqp(Y,U)].

() We canreplace” ||L||tic < 1” by* ||L||tic < 1" everywheein this proposi-
tion if wereplace“suboptimal” by “s.t. || (D, Q)|| <Y

(9) If we add someelementE € B(U,Y) to D23, thenthe parametrizationsn
(d) are is undhanged exceptthat we haveto add to Q the outputfeedbak
through—E, asin Lemmar.3.23andFigure 7.12.

(h) If Z is SR(resp.UR, SVR,UVR,SLR,ULR), thenZ,, 251t andZt are SR
(resp.UR,SVRUVR,SLR,ULR).

SeeTheorem12.1.8for a more classic“all controllers” result. As noted
belov Theorem12.1.8,“all suboptimalstabilizingcontrollers”refersto all maps
Q € TIC (or, in (d), all mapsQ with internalloop moduloequivalence)Q : y— u
S| Fo(D, Q) ricw,z) < Y (with somerealization) hotto all systemshaving such
anl/O map.Thatis, in our“all solutions”formula,we do notdistinguishbetween
two solutionshaving the same‘l/O map”!

Indeed,ary, e.g.,l.c.-detectableealizationof a Q satisfying(12.105)will do
— on the other hand,arny solution mustbe a realizationof someQ satisfying
(12.105). In the exponentialcasementionedn (e), all possibleZq’s areexactly
all optimizableandestimatableealizationsof Q's satisfying(12.105),by (c) and
Theorem7.3.11(c1).

We recallfrom Definition 6.1.6thatfor any I. € TIC (resp.L € TICgp), there
existsa strongly(resp.exponentially)stablerealizationZy, of L.

We leaveit to thereaderto write out A, By andCr in termsof Z, K, Fy, X
andZ; seeTheoreml12.1.8for their generatorgunderthe regularity assumption
Ny, My € 4).

Proof of Proposition 12.5.19: (We notethatLemmal2.5.15andthe part
of Lemmal2.5.16concerning g arevalid alsounderthe assumptionsf this
propositionwith the sameproofs,henceXyq is well defined.)

1° The proof of initial claims: By Theorem 9.9.10(gl)&(a2)&(cl),
[ Kga | Fra | is stabilizing and J-critical over Uoy; for Zpa. If the CARE
for g and J; hasa UR stable, P-stabilizing solution (?z,Sg,Kg), then
all J-critical pairs are generatecby [QKE I—Q] (Q € GB), by Theorem

IHerewe usequoteshecaus&) neednot bewell-posedn general.




9.9.10(d1)and Theorem9.8.12(b)&(s1) henceonly [Z*Kg | —Z*] cangen-
erate| * | 1-29].
By Lemma A.1.1(c1), we have (Z 1)z € GTIC.(U); by (12.50),

(Z™Y22 = Nyp1. SetR:=Z9 =1 —Fg, G:=R =279 If wedenote
d d
« [Tgl Tﬂ " in (12.104)by H, then,by (6.125),
T22T12
0 Iv] _[Ro1 Roo|,, [I—Riz —Riz]\-1[0 |
]HI[lU O]_ k 0}0 [ R ]> [| O] (12.106)
_ [Ro1 Roo 0 I _1_ [0 | G21 G2 -
L 0 | |R11 Rpp ~ |Gu1 Gr2 | 0
(12.107)
~ ~. -1
— 1\7112 Mf!' HNd+11 Nip — d (12.108)
L4111 +21 0 J

(write the formulae out or multiply (11.88) by [?;] to the left and right to
obtain the third equality; the fourth follows from (12.50) and the last one
from (12.48)), as claimed, i.e., the closed-loopl/O map Dy L containsTd
(permuted) sothatwe canpick correspondingows, interchangehe columns
andtake the causaladjoint of the systemto obtainarealizationof T, asstated
in the proposition.

(a) Thisfollowsfrom (b) by takingIL = 0.

(c) This follows from Theorem12.3.7(c)(which is applicable by Lemma
12.5.3andthefactthatN, 1 = (Z*1)22 € GTIC., by 1° above).

(d)&(f) Also thesefollow from Theoreml12.3.7(c)for (c); the proofsof (a)
and(b) shav thatthe sameholdsfor them.

(g) This follows from Lemma 7.3.23 (note that in this casethe well-
posednessf asolutionneednotbeequialentto | —LTy1 € GTIC).

(h) UseProposition6.3.1(b2)(andLemma6.2.5). (Note alsothatif Z € 4
(e.g.Ec AorNM ¢ 7), thenR € Aand“T e 4 4"

(b)&(e) Assumethat | Ky | Fy | is [[exponentially] strongly] stabilizing
for Z. LetL beasin (c) or asin (d), andlet 2, bean[[exponentially]strongly]
stablerealizationof L.

1° Thesystem>q is [[exponentially]strongly’] stable by Lemmal2.5.15,
andzZ is [[exponentially]strongly]l.c.-detectableby Theorem6.6.28[[shifted
andLemmal2.5.2(vi)]].

By (c), Q DPF-stabilizesD (possibly with an internal loop; cf. (d)),
henceXg 1/0-DPF-stabilizesz. We shall shav in 2°-3° %o DPF-stabilizes
> [[exponentially]strongly]; this establishegb) and(e) [[this includesalso(c)
modifiedasin (e), becasehenQ DPF-stabilized exponentially]].

2° It is [[exponentially] strongly] I.c.-detectable:Since 0 | 0 0] is
a [[exponentially] strongly] r.c.-stabilizing state feedbackpair for 2, the
pair (6.188)is admissiblefor >4 (usesubstitutionsk, F, K, ,F,K,,F, — 0,

Zalt ] in the proof of Lemma6.7.11(c)),andthe

% Ta TU Tant, 3o [ o)



correspondinglosed-loopsystemis givenby

Aat | Bar
B
[2 Dz]: (%“) RDa"I R | (12.109)
- d)1 11 — 12
K15 0 0 0

Therefore(6.188)is admissiblefor Z% [é (Ig ﬂ , andthe correspondinglosed-

loop systemis (12.109)with its secondow (correspondingo (Cait)1) removed,;
in particular (6.188)is [strongly"] stabilizing. Consequentlycorresponding
maps‘N :=D,” and“M :=T, + 1" (seeDefinition 6.6.10)aregivenby

N — [R|21 Réz]’ M — [Rél RIH}; (12.110)

theseare [[exponentially]] r.c. (because[$ )] N + [$0]M' =1). Thus, =4
is [[exponentially] strongly] r.c.-stabilizable(by Lemma6.7.17,the permu-
tation of columnsdoesnot matter),i.e., Zt is [[exponentially] strongly] l.c.-
detectable.

3° X is [[exponentially]strongly] stabilizing: Let 2° containZ,, X1 and
2 sothatthe static outputfeedbackoperatorl correspondgo the connection
Fo(D, F¢(T,L)) (cf. (7.4) andDefinition 7.3.1).

SinceZ (by 1°) andZy (by 2°) andZy, (by assumptionare[[exponentially]
strongly] |.c.-detectableso is Z°, by Lemma 6.7.18 (applied twice). By
Proposition6.7.14(b)(2.),! is [[exponentially] strongly] stabilizing for Z°.
Thus,all closed-loopmapsin Figure12.1are[[exponentially]strongly] stable
(becausehey areexactly the elementf ZP). As notedin 1°, this establishes
(b) and(e).

(An alternatve proof would apply Proposition6.7.14(b)(1.)&(2.)for sub-
systemd[or the generator®f 2 andZy andoptimizability andestimatability;
cf. (12.20)]].) O

The P-DARE, P/-DARE andthe couplingconditionimply the existenceof

asuboptimalkontrollerfor Z:

Lemma12.5. 20(Suff|C|ency) Assumethat Hypothesisl12.5.1is satisfiedwith
Nu, My, My,Ny € 4, that 4 satisfyHypothesis.4.8,andthat conditions(1.)—(3.)

of Lemmal2.1.12are satisfied.

ThenHypothesisl2.5.13and conditions(1.) and (4.) of Theoem12.1.8are
satisfied;in particular, thenthere are suboptimalexponentiallystabilizingDPF-

contollers.

Proof: (We useHypothesis3.4.8only in 3°.)

1° Hypothesis12.5.13and (Factor14): By (1.) and Lemma12.5.12,
Hypothesis 12.5.13 is satisfied and hence (Factorl) has a solution with
X11, X22,M11,M22 € GB, by Lemmal2.5.14.By Lemmal2.3.10(a)M, N, X €
4, hence(Factor1q) is satisfied.



2° The Pz-CARE has an exponentially stabilizing solution (?z,Sz,Kz),
whee 77 = P/ (1 — LPfoy)—l > 0: By 1° of the proof of Lemmal2.5.18,%«
is anexponentiallystabilizingsolutionof the P«-DARE with Sx asin Lemma
12.6.4 (herewe meanthe DARE for (ASZX,JV)). The situationwith &/ is
analogougby dualaguments).

By Lemmal2.6.4,the P--DARE (the DARE for ASY7 and Ji1) hasthe
exponentially stabilizing solution 7 = R/ (1 — PcPy)~1 > 0 with Sz37 > 0
and Syop — Sz21521115z12 < 0 (recall“(3.)"). It follows from (the discretized,
seeTheorem12.2.2)Lemmal2.5.17(ii’)&(d) that (ASE) 4 (ASE)* = ZahZ}
for someZa € Gtic(Ya x Up).

We deducethat 1t, AS(EY)* 3;AS(E9) T, € GB, hencert, (EY)*JEdm, €
GB(L>(R.;Y x U)), by Theorem13.4.5(h2). Consequently (E%)*JEd =
R* SR for someR € GAY(Y xU) andSe € GB(Y xU).

By Corollary9.9.11,R correspond$o anexponentiallystabilizingsolution
P, of the 72-IARE, henceof the #7-DARE too. By uniquenesgTheorem
9.8.12(a)), P, = P;. By Proposition9.8.10 and Remark 9.8.2, P is an

exponentiallystabilizing solution of the P--CARE (sinceR € gled C GULR
andhenceR e GB(Y xU), by Proposition6.3.1(b1)).

3 S11> 0 and Syop — Szz1SZ_1115z12 < 0 (so that 2 solvesLemma
12.5.17(ii")): SetA =B = C = 0 (but keepthe D of %), so that the -
DARE and P/-DARE have unique exponentially stabilizing solutions, given
by P« = 0= P = Kx = Ky, andSx andS, areof the standardorm, by the
signature-conditions (1.) and(2.). By Lemmal2.6.4(a)—(c)/z = O is the
(unigue)exponentiallystabilizingsolutionof the #z-DARE andSz11 > 0 and
Sz20— 5221521115212 < 0. But S, Sy andS; arethe sameasin our problem
(becausd = C = 0), hencethis provesour claim.

(Alternatively, one could write a someavhat shorther(but still not short)
proof by going throughthe samecomputationsas in the proof of Lemma
12.6.4(c)(including thoseon pp. 321-3260f [IOW]; onecan,e.g.,take A =
B = C = 0 buttheD of ~ mustbekept).)

4° (1.) and(4.) of Theoem12.1.8are satisfied:Condition(1.) is contained
in theassumptionsandcondition(4.) wasestablishedn 2°-3° above.

5° The existenceof a solution: By 4°, the assumptionsof Theorem
12.1.8aresatisfied hencetherearesuboptimalexponentiallystabilizingDPF-
controllersfor Z. O

Theabove alsoholdsunderdifferentassumptions:

Lemma 12.5.21 Suppos¢hattheassumption§Al)and(A2) andconditions(1.)—
(3.) of Theoem12.1.5are satisfied.Thenthe assumptionef Lemmal2.5.20are

satisfiedfor 4 = MTICgfp.

Proof: Recall from Theorem8.4.9that 4 = MTIC(';(lp satisfiesStanding
Hypothesisl2.0.1andHypothesis3.4.8.

By Lemmas12.5.5and 12.5.4, Hypothesis12.5.1is satisfied(even with
“exponentiallyjointly” in place of “jointly”), Ny,M,,Ny,My € 2 (or €(Y)



under‘(IV)” of (A1)), andl\//lij(-i—oo) =1, I\f/[@(-i—oo) =1.

Note that conditions(1.)—(3.) of Theorem12.1.5are equalto thoseof
Lemmal2.1.12combinedto conditionsSx = D%J,Dx andS, = D J,Dy. By
Hypothesis8.4.8 and Corollary 9.9.11, theseadditional conditionsare now
redundant. O

Lemma 12.5.22(4BP: necessity) Assumethat there is a suboptimalexponen-
tially stabilizingDPF-contoller (possiblywith internal loop), andthat (Al) and
(A2) of Theoem12.1.5hold. Then(1.)—(3.)of Theoem12.1.5hold.

Proof: (The regularity condition (A1) on X is not superfluousby, e.g.,
Examplell.3.7 but it maybewealened.)

Set4 := MTIC(%;p (or 4 =(y) in case*(IV)” of (A1)), so that Standing
Hypothesisl2.0.1is satisfied py Theorem8.4.9(c).

1° Hypothesisl2.5.1: By Theorem7.3.12(a),(A,B;) is optimizableand
(A,Cy) is estimatable By Lemmal2.5.4,it follows that Hypothesisl2.5.1is
satisfied(evenwith “exponentiallyjointly” in placeof “jointly”).

2° By Lemma 12.5.3 and 1°, Hypothesis 12.3.1 is satisfied with
Nu, My, Ny, My € 4.

3° (1.)—(3.)hold: Thisfollowsfrom Theoreml12.1.11. O

Givenjustan1/O map,asin the frequeng-domainproblemof Section12.3,
we canchoosea stabilizablerealizationasexplainedbelow (theadvantagehereis
thatwe gettheconstructve formula(12.113)):

Lemma 12.5.23 AssumeHypothesisl2.3.1. A strongly jointly stabilizableand
detectableealization for D canbechosenasfollows.
By theassumptionthere are Q1,Q2,Q1,Q2 € TIC s.t.

[Mull Ql]_l Q@ -O
Nuzz @ —Ny21 My, 20

€ GTIC. (12.111)

It followsthat [IKIEJ 83;} , |:QDI§3 —%m] € GTIC, whee
! —y

QDFZ = [6([52} ; QDFl = [8(%1} , @DFZ = [(%2 ﬂ , @DFl = [8(%1] . (12.112)

Choosea strongly stable realizations, for ['agg? e } . Then St =
(Zb)[o 0] satisfiesHypothesisl2.5.1andits I/O mapis givenby (we denotethe
0

componentsf Z1qiq asin (12.87))

0 ~ D11 Qq D
[Elyy 11‘]1’?2} . [[Té%\:&%ﬁl] [1mat Ml%mlz]] ' (12.113)

Thepairs [ Ky | Fy | and [%ﬂ are actually strongly jointly stabilizingand
detectingfor X (with Eyy), thesepairs are asin Hypothesisl 2.5.1.



If thereis a suboptimalktabilizingcontrollerfor D, thenthereis a suboptimal
stronglystabilizingcontrollerfor the above system by Theorem12.3.5. Also an
exponentialversionof theabove lemmaandclaimhold (useRemark6.1.9andthe
“exponential”’assumptionsf Proposition12.4.10).

Proof: (Note that Q := QQ,* = Q;'Q, DPF-stabilizesD with d.c.
internalloop, by Corollary 7.3.20(jii), whereasQor1Qgt, = QgL Qor2 DF-
stabilizesD with d.c. internalloop, by Theorem7.2.14(iii); cf. alsoLemma
7.3.10.)

We obtain (12.111)from Lemma6.5.8. But from [M“ QD”] we obtain

Ny Qor2
[02] by four permutations,where T := [%;%] € GTIC. Therefore,
[IX{J 8’5;] € GTIC; analogously Qor2 _%Fl € GTIC.
The claimson strongjoint stablllzability anddetectabilityfollow asin the
proofof Theorem6.6.28. 0

We usetherestof this sectionto studytheconnectiorbetweerthe CAREsand
thefactorizationof Section12.3. We mainly just sketchthe proofs(andsomeof
the statements)sincewe do not usetheseresultselsavhere.

Lemma 12.5.24(Px, Py directly) AssumeHypothesisl2.5.1. ThelAREscorre-
spondingto (1!) and(2!) havesolutionsPx and R/, respectivelyiff (FactorlX)
and (Factor2Y)hold, whee thelatter is givenby

(Factor2Y)Theeis Y € GTIC(Y x Z), s.t. Y*J;Y = [ﬁégz ﬁylfz} 3, [ﬁ%gz Ny’li’z}
andYyy € GTIC(Y).

AssuméFactor1X)and (Factor2Y).SetN := N, X1, N:= YalN;. Then

P =G, (I =N, Ni; + Nt Njp) Gy g, (12.114)
By = Croi (1 - N1, (M) + N0 (W) ) G, (12.115)

—~—d
whee C,; = C1 +Ny11Ky1, Cypq = 1B3c21 JrI\Iyzz]I'Hyczj-

Seetheremarksbelov Lemmal2.1.12for (1)) and(2.); by Lemmal2.5.12
(and Lemma12.5.2 and duality), they are equivalentto (1.) and(2.) if Z is
exponentiallystabilizable(but we needsomeregularity additionsto get CARES
in placeof IARES).

Note that (Factor2Y) is not equivalentto (Factor2Z)but to the analogyof
(FactorlX)for Dy.

Proof of Lemma 12.5.24: 1° Theequivalence:By usingLemma9.12.3,
onecanverify thatthe solutionsof thelARE “(1.")" correspond.-1to ther.c.-
stabilizingsolutionsof the IARE for Zyx, andJ, (see(12.88));equialently, to
the solutionsof (Factor1X)(of Theorem12.3.7).By (9.141),we have

B = {C“} (3y— AN Iy T Ny ) [C“} (12.116)



whereNy := [(N%)ll (N2 | -1,

Thecorrespondencieetween(2.) and(Factor2Y)is analogous.

2° (12.114)& (12.115): We have Nx = [M1MNz], whereN = NyX 1,
hence

[Nx J; 111, Ny |11 = Nig 1, Nj g — NioTt, Ny (12.117)

By (12.116)and (12.89), % = C,% [| —NnglmN;;} ., G1. Combinethis
with (12.117)to obtain(12.114).Equation(12.115)is obtainedanalogously

3° Aremarkon P := C,,Cy,1A: UsingLemmal2.5.11andthe property
“mi, D = CB” of Definition 6.1.1appliedto whole X4, We get

P = (Cy + Ny Ku1) (B2 + Hy ,N, ) (12.118)
= T4 D120 + N1 T4 FugoTl + 10 Gy )0 Ny o) + Nuag T4 Ea2 0 Ny o)
(12.119)

= T Do T + Nyt My T3 My 170 + 70 Ny My Que Ny, (12.120)

wherethelastidentity usesequationg12.113)andD;1 = Ny11My Ill-

(The above componentsare in B(L2(R_;W),L2(R;;Y)), wherew € R
is s.t. Z1otal € WPLS,; their sum is stable (since so is the left-hand-side
P := C,;Cy;iA € B(L2(R_;W),L2(R,;Y))). Note this formula can be re-
ducedto i, Do U if X is stable.) O

In, e.g.,Theoreml2.1.4,we givennecessanandsufiicient conditionsfor the
standardH” 4BP in termsof the original system“(1.)—(3.)", whereasTheorem
12.1.8useshoththe original systemanda perturbedsystem(condition“(4.’)").

In Theorem12.3.6,we have givenanalogousiecessarandsufficient condi-
tions (“(Factorl)”and“(Factor3”)in termsof the original anda perturbedsystem
for the correspondindgrequeng-domainproblem (/O map problem). The fol-
lowing remarkcontainsthe analogyof “(1.)—(3.)” for this problem;notethatwe
againgetsufficiency only for theexponentialproblem(seeRemark12.6.9for the
simplerdiscrete-timecounterparof this remark):

Remark 12.5.25(p(XY) < y2: 1/0 formulation) AssumeHypothesis12.3.1,s0
that the d.c.f (12.111)exists (we needits map Q; € TIC(Y,U) below for P).
Assumalsothat Ny, My, Ny, My € 4. Then(i) implies(iii) (seebelow).Here

O :=P" (I —N111:Nj; + Npomip Nj,) P <| — N5, Noo + NEZTLNQ) ,
B B (12.121)
P is givenby (12.120) N := NX~! andN := Y;'N,.

Assumein addition, that we have exponentialcoprimenessn Hypothesis
12.3.1 (see Proposition 12.4.10), still with Ny, My, Ny, My € 4, and that 4
satisfiedHypothesis8.4.8;assumehat (12.111)is chosenaccodingly. Thenthe
following are equivalent:

() there is a suboptimalstabilizingcontmoller for D (i.e., (4BP1)holds);
(ii) thereis a suboptimalkexponentiallystabilizingcontroller for I



(iii) (FactorlX)and(Factor2Y)holdand p(@) <Y.

If (4BP1)holdsand D21 = 0, thenead suboptimalstabilizing controller for
D is equivalento a well-posedne

We do not know whether (iii) implies (i) in the non-ponentialcase;the
reasongor this areexplainedat theendof the proof of Lemmal2.1.12.

Proof: Notethatnow (4BP1)-(4BP3pareequialent,by Lemmal2.3.10.

1° “(i) =(iii)":  Assume(4BP1), so that (4BP3) and hence (Factor1X)
holds. Then(4BP1)holdsfor Dy too, by Proposition7.3.4(d),henceso does
(4BP3)for Dy, hencesodoes(Factor2Y)(sinceit equals’(FactorlX)” for Dy).

By Lemmal2.5.24,it follows that (1) and(2.) have solutions(where
> is chosenasin Lemmal2.5.23,so0 that Hypothesisl2.5.1is satisfied). By
Theorem12.3.5(b), there is a suboptimalstabilizing DPF-controllerfor Z,
hence(3.) holds,by Lemmal2.1.12j.e.,p(Px®/) <YV. By (12.114),(12.115),
(12.118)andLemmaA.3.3(s2),p(0) = p(B 2 ).

2° “(ii) =(i)": Thisistrivial.

3° “(iii) =-(ii)”: Make now theadditionalassumptiongn theremark.Since
(12.111)waschoserto bein GTICep, we canuseshiftedLemmal2.5.23to
satisfyHypothesisl2.5.1with [ Ky | Fu | beingexponentiallystabilizing(cf.
Lemmal2.5.2).

Assume(iii). By Lemmal2.5.24,it follows that (1)) and(2)) have
solutions, henceso do (1.) and(2.). As in 1°, we obsene that also (3.)
holds, hencethereis a suboptimalexponentially stabilizing controller for X
by Theorem12.1.11(by Theorem12.1.8,all suchcontrollersare equivalent
to well-posedcontrollersif D21 = 0). The I/O map of this controlleris a
suboptimalexponentiallystabilizingcontrollerfor D, hence(4BP1)holds.

Remark: In the discrete-time version of the remark, “still with
Nu, My, Ny, My € 4, and that 4 satisfied Hypothesis8.4.8” becomessu-
perfluoussincethenTheoreml2.1.11canbereplacedy Theoreml2.2.1and
henceHypothesis8.4.8is not required,sothat 4 = ticexp becomesapplicable

(and we automaticallyhave NU,MU,N;,MI, € ticexp Under this exponential
coprimenesgassumption). O

(Seethenotesonp. 706.)



12.6 Proofsfor Section12.2— 4bp ?, R/, P>

Labor omniavicit improbus
— Vemil (70-19B.C.)

Recall Standing Hypothesis12.1.1. Recall also that when referring to
continuougimetheory(asabove), we assumehatsubstitutiong13.63)aremade.

Themainresultof this sectionis Lemmal2.6.4,which generalizeshe“(1.)—
(3.) iff (1.) and(4.)” proof of [IOW] to our generality and which is needed
alsofor the continuous-timeproofsfor Section12.1. We startwith a few results
thatdefinerequiredsymbolsandshaw the correspondenceetweerthemandthe
symbolsof [IOW]. At the endof the section,thereare someresultsthat clarify
certainimportantpropertieof the (discrete-timeH” 4bp.

The DARE (12.34)will be calledthe Px-DARE andthe DARE (12.35)will
becalledthe P/-DARE In this section we shallestablisitheconnectiorbetween
thesetwo DAREsandathird one,P--DARE, thatwill bedefinedbelow:

Lemma 12.6.1(Pz-DARE) Assumehatthe P-DARE(12.34)hasaninternally
P-stabilizingsolution (P, Sx, Ki) s.t.Sx11 > 0 and S22 — S§1,Sx11Sx12 < O.
Thenthe correspondinglARE has anotherinternally P-stabilizing solution
(P, d,[ K| F ])s.t. Xo1 =0, wheeX:=1—TF € tico(U x W).
Fix such a solutionandsetM := X 1, N := DM. ThenXy1, X2 € G3B and

X11Ki1 + X12K| 2:| K = |:X1_11K1 — X1_11X12X2_21K2

K=XK| =
! [ X22K|2 X2_21K2

] . (12.122)
Moreover, Lemmal2.5.16applies(evenunderthesewealer assumptionsif

Hypothesisl2.5.13is satisfied thenits triple (%, J;, [ K | F ]) hasthe above

properties),andthe generting operators of 2z definedby are givenby

As | By A+ KB | G +KHD5, KXy
{ G | D ] =1 X, B X205 XX |- (12.123)
z1=e 0 0 |

We definethe P,-DARE asthe DAREfor 2z andJ;. We notethat (thesymbols
on theleft ocrrespondo the notationof [IOW], pp. 307—; this will be explained
later)

Qx 1= C53Cz = B2Xy; X5, B, (12.124)
D 1u—
[°}]Ly = D53,Cz = [ij X5 X B, (12.125)
0l 017 . * D22 — —x * * 0O O
Note from Lemma 12.5.12that here X = | — F = M ! correspondsto

P (i.e., to (Factorl)), not to (FactorlX). Note also that (12.123)corresponds
to [ K | =X ] (more exactly, to the statefeedbackpair [\2,| -%,, 1-%,] for

(extended)x), whereX = X(Jroo), notto K;, althoughwe have writtenit in terms
of K| andX, notin termsof K andX.




Proof: By Lemmal1.3.13(i)&(iii), thereis X € GB(U xW) s.t. X*J1 X =
Sx, X21 = 0. By Theorem9.8.12(s1),(Px,Ji, ( XK | =X )) is alsoa
solutionof the correspondindARE with samestabilizability propertiesnote
that[ K | F | is notuniquebutall possiblechoicesareobtainedparameterizes
by X € B(U xW) s.t. X1 = 0andX*1 X = ).

Corversely ary internally P-stabilizingsolutionof the IARE with X7 =0
is as above, by Theorem9.8.12(b)&(s1),henceXi1, X2 € GB, by Lemma
11.3.13(b3).Therefore(12.122)holds. Therestis straightforvard. O

Next we make anotheremarkon the correspondencef our notationandthat
of [[IOW]:

Lemma 12.6.2(®«,Py) For P and R Riccati equations,we note that Zx
satisfies

Qc = C;Jny = CiCy, (12.127)
0l * . * o D)l]tlcl
[t¢]Le = D3 J/Cx = [Dizcl , (12.128)
D*.D D*.D
IRo[0)] = DDy = | n1tnit | Fiied2 } 12.129
[ ] [ ] X‘JV X [DIZD11 D#ilez_y2| ( )

(here thefirsttermson ead line referto symbolsof [IOW], p. 307—,to which we
will referlater), and>$ satisfies

Qo = qupyd = ByB?, (12.130)
o17| * - [* D22B5
[| O]LO = DYdeYd = [DlZB£:| s (12131)
« D2oD3,  D22Dj, ]
o “"1:=D Dya = < " . 12.132
[ ]RO[ ] YdJy ve |:D12D22 D12D12—y2| ( )

Let X be asin Lemmal2.6.1,sothat Xp; = 0. Then,S¢K; = X*JXK| =
X*JK, henceK = J;-1X~*(SK| ), hence

K= -3 X" (-SK)) = [_ i 0 } [Tl], (12.133)

VX KiK' VR ] [T
T1| _ [D1,C1+BiPA
To|  |Di.Ci+B5 A

Ki= X (DiCi+BiBA), K=y X (Ta—X{X1'T1)  (12.135)

(12.134)

d

(Thisis obvious. Notethatwe have T, = My, T = My in IOW-notation.)
We shallalsoneedthe following technicalresult:

Lemma 12.6.3 Here (exceptionally)X, Y, Z referto element®of B(H).

(a) Letp(XY) < LandX,Y > 0. Thenl —XY € GB(H),Z:=Y (I -XY)"1>0.
(b) LetX,Z > 0. Thenl +XZ € GB(H),Y :=Z(1 +XZ)"1 >0, p(XY) < 1.



(c) If the assumptionsof (a) or (b) hold, then the assumptionf both (a)
and (b) hold, a(XY) c [0,1), 1 +XZ = (I = XY)™%, Y =Z(1 +XZ)~%, and

Z=Y(I-XxY)™L
Proof: (a) Let p(XY) < 1. Then1 ¢ o(XY), hencel — XY € GB(H).
SetZ :=Y(l —XY)™1, W:= | —YV2XY/2 sothat W = W*. Because

p(YY/2XYY2) = p(XY) < 1, by LemmaA.3.3(s2), we have (W) C 1 —
(—1,1) = (0,2), in particular W >> 0. Therefore,

(Z(1 = XY)%, (I = XY)%) = (Y%, (1 = XY)% = (Y2 WY¥2x) > 0 forall xeH.
(12.136)
ConsequentlyZ > 0. Moreover, | +XZ = (I — XY +XY)(I = XY)™1 = (I -
XY)~1, andz — zZXY =Y impliesthatY = Z(I +XZ)~L.

(b) By LemmaA.3.3(s2)&(s3),0(XZ) U {0} = o(T) U {0}, whereT :=
Z1/2x7Y?. But T > 0, hencea(XZ) c R,, hencea(l +XZ) C [1,%); in
particular | +XZ € GB(H). Moreover,

Y(1+XZ)%, (1 +XZ)%) = (Zx, (1 + XZ)X) = (X, (Z+ZXZ)x >0, (12.137)
forall xe H, i.e.,for all (I +XZ)x € H, henceY > 0.

Furthermoreg(XY) =o(I = (1 +X2) ) =1-1/0(1 +XZ) c 1-(0,1] =

[0,1), hencep(XY) < 1. The final two equationsare obtainedfrom, e.g.,

Y+YXZ=/Z.
(c) Seetheproofsof (b) and(a). O

Next we establishthe connectiorbetweerthe P/,-DARE andthe Pz-DARE,
l.e.,weshawv that“(1.) and(4.)” holdiff “(1.)—(3.)” hold (seeSection12.2):

Lemma12.6.4(P & P & p(PxB) <Y?) Let the Px-DARE have an inter-
nally P-stabilizing solution (Px,Sx,Kx,1) S.t. Px > 0, Sx11 > 0 and Sk —
&213;%153(12 < 0. Thenthefollowing are equivalent:
(i) the 7z-eDAREhasa solution(?z,S,Kz) s.t. 72 > 0,
(i) the 2, -eDAREhasa solution(?,Sy,Ky) s.t. Z > 0 andp(PxPy) < V.
Assumehat (i) or (ii) (henceboth)holds.Let(?,,S7,Kz) and(R/,Sy,Ky) be

thecorrespondingsolutions(i.e., oneis givenandtheotheris theoneconstructed
in the proof). Thenthefollowing hold:

(a) We have

=RVl - BB)L, B=VP( + BP) 7, (12.138)
I+ BPBr=(1-y *BB) ", Aoy =(+BPB)Asz(I+BP) 7,
(12.139)
whee As y and A z arethecorrespondingslosed-loopsemigpupgenea-
tors.
(b) 7 is [strongly/exponentially]internally P-stabilizingiff &, is.
(©) If Sy11>> 0, Sr22 — Sr21S,11Sv12 < 0, then Sza; > 0 and Spzp —
2157115712 < 0.



Recall that an internally P-stabilizing solution is unique, and an inter-
nally exponentiallystabilizingsolutionis exponentiallystabilizing(seeTheorem
14.1.4(b)andLemmal3.3.8).

The 2-DARE, ®/-DARE and ?;-DARE, i.e., the DAREs for (Zx,J),
(Xv,Jy) and(Zz,J1) aregivenin (12.34),(12.35)and (12.36),respectrely. See
(12.84), (12.85) and (12.94) for correspondingsystemsand (12.123) for the
generatorg\z, Bz, Cz andDy.

Proof of Lemma 12.6.4: (As before,the eDAREsreferto corresponding
DAREs without the requirementS, € GB. Note alsothat we have madeno
coercvity assumptionsn Z (e.g.,(12.32)—(12.33Jor “(A2)") neednotholda
priori).)

We shallfollow the (finite-dimensionalexponentiallystabilizing) proof of
[IOW] andextendit to our generality(in somepartsof the proof we areforced
to developedifferent methodsdue to infinite dimensions)the pagenumbers
and“(10.nnn)"s below referto IOW.

Let (P, Sx,Kx,1) betheinternally P-stabilizingsolutionof the Px-DARE.
Fix someX of theform of Lemmal2.6.1,sothatX>1 = 0 (andSx = X*J1X).
SetK := XKx,, sothat (%, J1, ( K | I =X )) is alsointernally P-stabilizing
asin Lemmal2.6.1(with thesameA, Cs, Ky asfor ( Kx,; | 0)).

We have the following correspondencef the [IOW]-notation(hereon the
left-hand-sideandours

OT=0%“>0"=">0", D=D[%], B=B["], I= ][] =[],

(12.140)
Vo= [\1\2,] = (X0, e = —[2K, F = [)Key = [RIX K, (12.141)
Ry = [£]D5a01Dz[%1], Co = B, X = B, Y= By, Z= % (12.142)

(notethat[?g]‘1 =[] =[%]"). Throughoutthe restof this proof, symbolsin
guotationmarksalwaysreferto [[OW]-notation,in particular theindicesl and
2 correspondingo U andW areinterchangedasabove). It followsthatthe P -
DARE is equalto (notethat —SKx | = —X*J1XKx | = =X*JK = [7;]VFIWE)

theequationsystem
W*IW = WHrWee — Wi Wep = A" PxA— P +CiCp = “A*XA— X+ CICr",

(12.143)
* _ [ V&MV 1 Ve11 Vo Ve22 | _ ron 017 _ w [D11D%,—1+B;XBy D} D12+BiXBy ] «
VC JVC - [ 21 VC*ZZVCZJ]-_l Vgi;V022i| — [| o]S([I 0] - [ Dizé]il'i'BE)]iBl D%;Dlz-‘rB%XBZ y
(12.144)
cqy _ | WeaVear =W Vet | _ W |D11Ca BiXA] .
W IV = [ Wi5Va2 = D%,Cy + BEXA| (12.145)

Part I: casey = 1:

1° Symplectigencils: Note that the conditions(CD1), (CD2) and (CD4)
on p. 308 hold, respectiely, iff the P«-DARE, R/ -DARE and Pz-DARE have
exponentiallystabilizingsolutionswith S,11 > 0 andS,»> — &213;111&12 < 0,
by Lemmall.l.7(seealsoLemmal2.6.2andLemmal2.6.1).

However, we start with only the assumptionthat the P-DARE hasan



internally P-stabilizingsolution, and we shall obtain analogousesultsasin
[IOW], by following their proof.

Let S= X*J1X andKx correspondo X, =1 (i.e., to the solutionof the
DARE), andlet K correspondo X (i.e., K = XK ). ThenV; = RXR and
W = —RK, whereR = [? |] in thenotationof [IOW].

Let (My,Ny) and(Mz,Nz) be the symplecticpencils(seeLemmal4.2.5)
correspondingo (CD2)and(CD4),respectiely, with third andfourth rowsand
columnsof Mz andNz interchangedin particular

| 0 00 | 0 00
|0 —A 00 |0 —A-BiX,,')Kz 0 0

My=1g _¢, o o adMz= |, XX K Ks O 0 (12.146)
0 C 00 0 —Co—DaX;5'Ka 0 0

satisfyMy € B(H xH xZ xY) andMz € B(H xH xY xU).

By repeatingheroutinebut loooongcomputationgdo nottry thisathome)
of pp.315-3170f [IOW], we seethattheextensionadM{,, N, € B(H x H x Z x
Y xW xU) of My andNy, andM%,N, € B(H xH xU xY xW x Z) of Mz
andNz, andthe operatordJ,; andW; giventheresatisfy

UaMpWa = MY, UaNGW, = N, (12.147)

andU,; andW, areinvertible (useLemmaA.1.1(b1)&(b2)andelementaryow
andcolumnoperationdor this invertibility).

(Note: we musthave ()* in placeof ()T. Notealsothefollowing misprints:
thetop row of the biggestmatrixin (10.161)shouldbe [-S  SV5H,Vi,|, the
W] in (10.162)shouldbe W, (i.e., W), and“(10.165)” on line 5 of p. 317
shouldbe®(10.164)".)

2° “p(PxPr) < 1" is necessary:Let the ,-DARE have aninternally P-
stabilizingsolution?; > 0. Thenl +®P, € GB(H), Py := P (I + P Pz) "1 >
Oandp(Px?/) < 1,by Lemmal2.6.3(a).Thus,we only have to show that B,
is the (unique)internally P-stabilizingsolutionof P, -eDARE.

Moreover, NzVz = MzVzA5 z andhenceNyVy = M5V, A 7 (i.e., (10.166)
and(10.169)hold), where

I Vz
P, Vg = 0

Kz —OF7Ax 7

©isasonp. 316,K; is thecorrespondingtatefeedbackoperatoandA 7 the
correspondinglosed-loopsemigroupgeneratarby Lemmal4.2.5.

But (12.147)impliesthatNyW, V4 = NoW, VA5 7 (thisis (10.170)),and

Vy = , (12.148)

| —® 0 | 2 O
Wa= [0 | 0| impliesthatw;i= |0 I 0], (12.149)
%

* * * * %



|
It follows thatW, Vs, = [ +fuZXTZ] Consequently

*

|
NV = MOWAS v, where VW i=W; Vy (1 + B r) ™t = {Ty} (12.150)

*

andAsy = (I + BxPz)As z(1 + PxP,)~L. The four top rows of N\ =
MW Ay areNyW = MyWA s v, whereVy consistsof the four top rows of
Vy. By Lemmal4.2.5,2 solvesthe®/-eDARE, andAs vy isthecorresponding
closed-loopsemigroupgeneratar

3 “p(PxPy) <1 is suficient: (We go here2° backwards.) Assumeii).
Then®s := P/ (I — B¢Py)~1 >0, by Lemmal2.6.3(a)andNy Wy = MyW A v
andhenceN( W = M{ WA v, where

| Wy
W = [‘PY] , W = [ XaW Ay ] : (12.151)
Ky —XoWAs,y

where Xy and X, arethe operators'X;” and“Xp” of (10.158). By (12.149),
we have Vy :=WaVy (I — PPy )t = [f.z'wz} - But NpW; V7 = M{W; VA 7,
whereAs 7 := (I — Px By )As z(I — Px By) 1, henceNyVs = ML VLA 7, hence
NzVz = MzVzAx z, whereVz = [%':Z] arethefourtoprowsof V. Consequently
P7 is asolutionof the 2--eDARE.

(a) Given (i) or (ii), we obtain the connectingformulae (12.138) and
(12.139)from (2°, 3° and)Lemmal2.6.3.

(b) By (a) andLemmaA.4.2(h1), As v is [strongly/exponentially] stable
iff As z is. Moreover, if P7 is internally P-stabilizing,sothatAs z and A y

2
areboundedby theabove) and(Ay ;%o PzAT 7%0) = ||£le/ A&ZXoHa —0,as
n— +oo, forall xg € H, theniPzA”o,Zxo = ?21/21,21/2A&ZX0 — 0, hence
PAY X0 =By (I + P Pr)AY 7 (1 + P Pz) 'xo = B2 AL 7 (1 + Px Bz) "tx0 — 0,
(12.152)

for all xo € H, hencealso 2y is internally P-stabilizing (because{Ay y } is
bounded).

(c) Wefollow herecloselypp. 321-3260f IOW. Now
“Ry +CoZC" = [1](Dza*01Dza + Bya* PzBya)[74] = [7a]Sz[ 4], (12.153)

whereCo := [?g]Bgd =[%] [C;—i%l;i(lm] . We divide theproofin parts1® and2°.
1° S711>> 0. Make the definitionsof p. 321. By p. 322,we have 7V > 0

(useLemmaA.3.1(p2)for thefinal conclusion). Then
"D2Dy; = D22D%y+CoPyCh = Sy11> 0. (12.154)

ConsequentlySy11 > 0, becausesy 1 =" 5221/5;2", by the computationn
p. 322.

2° S0 — szmsz—lllszlz < 0, equivalently(10.198)holds: Now “D3,D1, =



VcT22V022"’ i.e.,
“Dy,D1p = *1D11+ B1PxB1 = (Sx)11 = X{1X11>> 0 (12.155)

BecauseQ :=" DyoX7" "€ B(U,Z x H), sothatQ*Q = I, thereis an unitary
extensionUc € GB(U xV,Z x H) of Q, by LemmaA.3.1(e3),whereV :=
RanQ)* is a closed subspaceof Z x H; thus, (10.200) holds. Similarly,
D21D5; = Sr11= Y;1Y11 > 0, sothatthereis aunitaryextensionU, € GB(Y x
V' W x H) of “Da;Veps” = Dy Ya1, asin (10.201) whereV’ = RanDy,Y11)* €
W x H. In (10.202)the partitionis w.r.t. B(Y x V/,U x V).

The restis straightforvard, hence(10.206)> 0 (i.e., E > 0 in (10.209),
where E € GB(Y x V’)), hence(10.207)—(10.208hold, by, e.g., Lemma
A.3.1(d).

We arrive at the inequalitiesat the endof the proof. By LemmaA.3.3(s2),
(10.208),and LemmaA.3.1(b1), the last inequality holds, hence(10.198}
S22+ 215515712 0.

Part Il: Thegenerl case(y > 0): Apply Partl to diag(l,y~!I,1)Z, andthen
applyLemmal2.6.5(e.g.,we havep(y 2P Py) < 1< p(Pc By ) < V). 0

For generaly > 0, we divide z by y to reducethe 4bpfor the casewith y = 1:

Lemma 12.6.5(p(BxBy) < Y2 # 1) The4bpfor X andy > 0 correspondso the
4bp for diag(l,y I,1)Z and 1 (i.e., we multiply [ C1 | D11 D1z | by vy 3).

Moreover, the solutionsof the DARESsfor the latter problemcorresponado those
for the original problemas follows (both solutionsexist iff either exists; in the
claimson P; weassumehattheassumptionsf Lemmal2.6.1hold):

(Pxys Sxy, Kxy) = (Y _ZTX 2S)( Kx), (12.156)
Sxyes = diag(l;y L1 1L 1) - Exes; (12.157)
(Bry, Sty Kvy) = (B, [ 6 Tl.} St oy ] [b9]Kv), (12.158)
Zyyo = diagl;1,yl,1,¥1) - Zyes - diag(l; 1,y I); (12.159)
(Rry, Sy, Kzy) = (Y Pz, [V' 0] 191,16 3] K2), (12.160)
Zzyo_dlag(l,yl,yl,l,yl)-Zzo-dlag(l;l,y_ll); (12.161)

in particular, p(B?y) < Y? < p(PxyBry) < 1, and the stabilizability of these
solutionsis invariant underthis modification.

(Thiswasusedin theproofof Lemmal2.6.4.)

Proof: (In the lemma, Zx is the closed-loopsystemcorrespondingo
P«-DARE (henceto modifiedZx andJy); analogouslyfor vy andZzys; in
particular the closed-loopsemigroupsreinvariant.)

1° P«-DARE and P/-DARE: (Note that here we have madeno further
assumptionghanStandingHypothesisl2.1.1.)

By writing the P-DARE andthe P/-DARE out with substitutions> —
diag(l,y11,1)Z andy+ 1, oneobsenesthatthe solutionsof the modifiedand
original Px-DARE and‘R/-DARE correspondo eachotherthroughthe above
formulae.



2° Pz-DARE: The requirementthat X*J1X = S (which is implicit in
Lemmal2.6.1)resultsin y~1X in placeof the original X in (12.123),which
affects(theextended)>; asin (12.161),hencethe claimson Pz-DARE canbe
verifiedin the sameway asthoseon the Px-DARE.

3° Theclaimsatthe endof thelemmafollow from the equations. O

We endthis sectionby recordingdiscrete-timecounterpart®f threeimportant
lemmasandaremarkof Section12.5.

Firstwe notethatHypothesisl2.5.1is wealer thanstandardH” 4BPassump-
tions:

Lemma 12.6.6((A,B1) & (A,C2) = Hypothesis12.5.1) Assumethat (A, Bj)
is optimizableand (A,C,) is estimatable

ThenHypothesid 2.5.1is satisfied evenwith “e xponentiallyjointly” in place

of “jointly”) exceptpossibly(12.78). Moreover, thencondition(12.78)holdsiff
(12.32)—(12.33pre satisfied.

Proof: By Proposition13.3.14(andits proof), thereareK € B(H,U) and
H € B(Y,H) s.t. A+ B1K andA+ HC, areexponentiallystable.ExtendX by K
andH (with F = 0 = G = E) to satisfyHypothesisl2.5.1with “exponentially

jointly” in placeof “jointly” (cf. the proof of Lemmal3.3.17(a)&(b))except
possibly(12.78).

But K is exponentiallystabilizingfor 211 := (é—l%), with closedloop
I/0 map [%1111] (sinceM, = (I -F,) 1= [('*E;)n)*l *(lleulll)illFulZi|).
By Lemma8.4.11(a2) Ny1;Nu11 > 0 iff Nyj is I-coercve; by Theorem

8.4.5(d),this is the caseiff Dy is I-coercve over Uep (W.I.t. systemZ11); by
Proposition15.2.2(f1)&(i)&(ii), thisis the casaff (12.32)holds.

By dualagumentswe obtainthatf\l;zzf\lvyZ2 > 0iff (12.33)holds. O

Lemmal2.6.7(B & Pr = Hypothesis12.5.1) If conditions(1.) and (2.) of
Theoem12.2.1are satisfiedand(12.32)—(12.33hold,then(A, B1) is optimizable
and(A,Cy) is estimatable

SeeLemmal?2.6.6for more.

Proof: By Theorem11.5.1(iii)&(i), (the ficp for Zx hasa solution and)
(A,B1) is exponentiallystabilizable. By dual amuments,(A,Cy) is exponen-
tially detectable. O

Lemma 12.6.8(Hypothesis12.5.1=> (12.32)—(12.33))Hypothesid 2.5.1is sat-
isfied with [ K, | Fy ] and [%ﬂ being exponentially [jointly] stabilizing iff
(A,By) is optimizable (A,C,) is estimatableand (12.32)—(12.33are satisfied.

Proof: “If ”: Thisfollowsfrom Lemmasl2.6.7and12.6.6.



“Only if” AssumethatHypothesisl2.5.1holdsandthat | Ky | Fy | is ex-
ponentiallystabilizing. Then (A, B;) is optimizableand (A,Cy) is estimatable,
by Lemmal2.5.2. From the end of the proof of Lemma12.6.6,we obsene
that(12.32)and(12.33)hold. O

In discrete-timethenecessargndsufiicientconditions‘(Factorl1X)and(Fac-
tor2Z)” for thesolvability of thefrequeng-domainH” 4BP canbe formulatedin
termsof original datawithout any regularity assumptions:

Remark 12.6.9(p(XY) < y2: I/O formulation) Assumethat Hypothesis12.3.1
is satisfiedwith exponentialcoprimenesgasin Proposition12.4.10). Then(i)—
(i) of Remarkl2.5.25are equivalent. 0

(Thiswasremarledattheendof the proof of Remark12.5.25.)

However, also in discretetime, our result in the non-eponential caseis
onedirectionalasin Remark12.5.25.

(Seethenotesonp. 711.)
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