Appendix D

Laplace and Fourier Transforms

(Lu=1)

Themeetingof two personalitiesis like the contactof two chemical
substancesif there is anyreaction,bothare transformed.

— CarlJung(1875-1961)

In this appendix, we mainly study holomorphic vectorvalued functions.
This includesHP spaceslaplaceand Fourier transformsand Poissonintegral
formulae.We alsopresensomeresultson convolutions.

Throughouthis chaptey B, B, andB3 arecomplex Banachspacesy, H and
Y arecomplex Hilbert spacesk = C, andQ c C is open.

A function f : Q — Bisholomorphid(f € H(Q; B)) if the(comple&) derivative

(9= i f(s+ h[)1— f(s)

(D.1)

of f existsateachs e Q. By f(K we denotethekth derivative of f. The Banach
spaceH”(Q; B) of boundecholomorphicfuncitonsis definedby

H®(Q;B) :={f e H(Q;B) ||| f|n := su§§)||f(s)||3 < oo} (D.2)
se
We startwith the basicpropertiesof holomorphicfunctions:

Lemma D.1.1(Weakly holomorphic = holomorphic) LetQ C R beopen,f :
Q — B,andF : Q — B(B,Byp).
(@) If Af e H(Q) for all A € B*, thenf € H(Q;B).
We may replace B* by any A C B* satisfying ||X|[z = sup{|Ax||A €
sparfA), ||| < 1} for all x € B.
(b) If AF(-)b e H(Q) for all b € B, A € B}, thenF € H(Q; B(B,By)).
(©) If AF(-)be H*(Q) for all b € B, A € B, thenF € H*(Q; B(B, Byp)).

(d) If G € B(B,B(B5,H"(Q))) (resp.G € B(B,H*(Q;B>))) and AG(-)b €
H(Q) for all b € B, A € B}, then G € H*(Q; B(B,B}")) (resp.G €
H®(Q; B(B,By))).
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Thus,if f is weaklydifferentiableon Q, thenit is differentiableon Q.

Proof: (a)&(b) Thesefollow from [HP, Theorem3.10.1];notethat, by (a),
we canreplaceB andBj in (b) by A C B andA, C B; asin (a). (Spanmeans
the setof linearcombinations.)

(©) If AF(-)be H*(Q) for all b € B, A € B%, thenF is uniformly bounded,
by the uniform boundednestheoren(fix first A, thenb).

(d) 1° AssumethatG € B(B, B(B5,H*(Q))). Defineg(-) € B(B,B5*) by
(g(s)b)/\ := (GbA)(s) € C. Thensup, ||g]| = ||G||s (obviously) andg € H,
by (c). Naturally, we canandwill identify G andg.

2° AssumethatG € B(B,H*(Q;By)). ThenG € H*(Q; B(B,B%¥)), by 1°.
But G(s)bA = A(Ghb(s)) for all b, A, s, henceG(s)b= Gb(s) € By, forary s€ Q,
b € B. Thus,G € H*(Q; B(B,Byp)).

(Note analogousaltered versionsof (a) and (b) also hold with, e.g.,
f € B(B,B(B3,H(Q))) in (a), where H(Q) equippedwith the topology of
uniform cornvergenceon compactubsets.) O

Next we extendthe standardoropertiesof scalarholomorphicfunctionsto the
vectorvaluedcase:

Lemma D.1.2 (Holomorphic functions) Let s € Q. For r € [0,0] we set
Dr(s0) :={s€ C|[s—so| <r}.

Letf,ge H(Q;B). Thenf’ € H(Q;B), f € C*(Q,B), andtheCaudyintegral
formulaapplies;in particular, if I' is a closedpathin Q, andtheindex of I around
so € Qis 1 (see[Rud73,p.79]), then

_ K f(z)dz
2mi Jr (z—2z0)kt1

Moreover, we havethefollowing:

/f(s)ds:o and % (z) €H forallkeNo. (D.3)
i

(@) If {hn} C H(Q;B) and h, — h uniformly on compactsubsetsf Q, then
h e H(Q; B) and, for eaci k € N, ht’ — h® uocon Q.
(b2)If T € B(B,By), thenT f € H(Q;B) and(Tf)'(s) =T(f'(s)) forall s€ Q.

(b2) If F € H(Q; B(B,By)) andF(s) € GB(B,By) for somese Q, thenF 1is
analyticon a neighborhoodf s, and (F ~1)'(s) = —F(s) F/(s)F(s) L.

(b3)If F € H(Q; B(B2,Bg3)), thenF f € H(Q;B3) and (Ff) = F'f + Ff'.

(b4)If e H(Q',Q), thenfo@e H(Q/,B).

(b5) LetF,G € C(Q;B). We haveF € H(Q;B) andF’ = G iff F(z) — F(a) =
JjazgGdmwheneer[a,Z C Q (her[a,7 := {(1-t)a+tz|t € [0,1]}).

(b6) If F € H(Q; B(U,Y)), thenF (7* € H(Q; B(Y,U)).

(c) (Liouville) If Q =C andAf isboundedor eath A\ € B*, thenf is aconstant
(in B).

(d) (Morera) If(f) F € C(Q;B) and [ F(s)ds= 0 whene&ery = 0([x1, %] x
[v1,¥2]) (a rectanglewhosesidesare parallel to the coodinate axes),then
F € H(Q;B).



(e) (Analytic continuation) If Q is connectedand f = gonasetA C Q having
alimit pointin Q, thenf =gon Q.

() (Maximum modulusprinciple) If Q isboundedand f € C(ﬁ; B)NH(Q;B),
then|[ f[[= = supq | () le.

Moreover; if thisis the case thenthe valuesof f on Q canbe obtainedby
the Poissonintegral formula.

(91) Let {by} C B, and setp := (limsup,y ||bn||1/”)_1. Thens penbn(s—
so)" =: F(s) corvergesabsolutelyand uocto a functionF € H(Dy(sp); B).
Moreover, F (% (sp) = klay for all k.

(92) (Taylor series)Let F € H(Dr(2),B) andr < R. Then||[F®(sp)|| <
KIMr=, whee M :=sup, ., [IF ()|, and

F9(s)
ki

F(s=>

keN
this presentations unique

(h) If h e H(Q\ {so};B) is boundedon a neighborhoodof sy, then b :=
lims,s, N(s) existsand h € H(Q;B) if we seth(sp) := b (sud points are
oftencalledremovablesingularities).

(i) LetB C By continuously ThenH(Q;B) = C(Q;B) NH(Q;By).

() If F e H(Q;B) andF (s9) =0, thenF /(s— sp) € H(Q; B).

Thefact(h) is equivalentto H*(Q\ {s}; B) = H*(Q; B) (for arbitraryopen
setsQ).

Proof: Thefirst claimsfollow from [HP, Theorem3.10.1],[Rud73, The-
orem3.31] andinduction (alternatvely, by applyingthe correspondingscalar
claimsto Af, A € BY).

Claims(a), (e), (g1) and(g2) follow from [HP, pp. 96—100].

Claims(b1) and(b3) areobvious, claims(b4), (c), (d) and(f) follow from
correspondingcalarclaims(in (c) we alsoneeduniformboundednestheorem,
in (d) alsoLemmabD.1.1).

(b2) (N.B. This proof appliesalsoif B(B,By) is replacedby a Banach
algebra.)By LemmaA.3.3(A2),F ~1 existson aneighborhooaf s. Therefore,

F(s+h™1-F(g~!
h
_FOZEEED e inre 9 50 06)
as h — 0, becauseF(s+ h)F(s)~!F/(s) — F'(s), by continuity and
w — —F’(s). To remove the outertermsfrom (D.5), multiply it by
F(s+h)~! to theleft andby F (s)~* to theright, anduseLemmaA.3.1(j3) (see

LemmaA.3.4(F1)).

(b5) 1° “If . Letae€ Q. Choosed >0st [z—a <d=z€Q &
|G(2) — G(a)||g < &. Then(z—a)1(F(2) —F(a)) — G(a) < &, for |z—a| < &,
henceF’(a) = G(a). Becausa € Q wasarbitrary wehave F € H andF’ = G,

(s—s0)k when|s—so| < R; (D.4)

F(s+h)( +F(9 'F'(9F(9) )F(s)  (D.5)




2° “Only if" Thisfollows from thescalarcase.

(b6) Now £ F( S (F(SZ:EO(SO))* — F'(%)*, ass — .

(h) By the scalarcase/\h extendsto H(Q; C) for all A € B*. Theoperator
h(so) : A — (Ah)(so) is linearandboundedhenceh € H(Q; B**), by Lemma
D.1.1(b).By continuity, h(sp) € B

(i) We have H(Q;B) C C(Q;B)NH(Q;By), by (b1). Corversely if F
C(Q;B)NH(Q;By) then [, F(s)ds= 0in By, hencein B, by (B.18)appliedto
| : B— By, whenyis asin (d). ThereforeF € H(Q;B).

() We have AF /(s— s0) € H(Q;B) for all A € B*, by Theorem10.18of
[Rud86],henceF /(s—s) € H(Q;B), by LemmaD.1.1. m

We will usethefollowing notation:

Definition D.1.3(HP, LP, HP, Cj, CF, Cap) Letl<p<w, —w<a<b<m,
andr € R, letJ C R beaninterval andlet Q C R be open. SetC := +{s¢€
C|Res>r}, Cap:={se Cla<Res< b},

LP(J;B) :=€'LP(3;B) = {f : J—B|e™ () € LP(J;B)}, (D.7)

HP(B) := HP(C;;B) :== {g € H(C{";B) ||dllp(s) < }, whee  (D.8)

19llpg) = suplg(r’ +i-)llLerisy = Jim [19(r" +i)[|Lp(r;)- (D.9)
r'>r r'—r+

We alsosetHP := Hf, HE := UoHE, CF :=Cg, || f||p =& f||p. I B=U s
a Hilbert spacethen,in H?, we definetheinner product

(f.Qpz = Jim (F(r'+i),9(r" +i)2ru)- (D.10)
r r'_>r_|_ 1

The spacesHP(rD;B) (r > 0) are definedanalogously with [|g||ye(p,;p) =
sup < [19(r'€") [[Lr(j0,2m:8) - _ |

Finally, [|9lltr(c,:B) ‘= SURe ll9(r +i-)l|Lr(r;B) defines(and norms)a sub-
spaceof H(C;; B), whee C; := {se C| Rese J}, if Jis open.

RecallthatrD = D, := {z€ C||z] < r}. NotethatCr, = CF, C(5p) = Cap,
andthatF € GHE iff thereis w € R s.t.F € GHY.

With the aid of Section6.2 of [HP], one easilyverifiesthat Definition D.1.3
is correct,thatthe above innerproductinducesthe original || - || jz norm,andthat
the above definitionsof L§ andH> coincidewith their previous definitions.Note
alsothat we usethe (one-dimensional).ebesguemeasureon iR and |0, 2m7) (in
particular we have no 2renormalization).

Note that eachHP(C{,) result hasa “mirror image result” for HP(CZ,),
becausef — f(—-) is anisometricisomorphismbetweenthesetwo spacesp €
[1,0], we R).

LemmaD.1.4(LP, HP) Letl< p1<p<ppr<o,and—o < r <’ < o, andlet
Q C C beopen.Thenthefollowing holds:

(a) The spacesLf, H*(Q;B) and HP are Banad spaces;in particular,
H2(C;;U) is a Hilbert space



By Theoem3.3.1(b),we canusethe boundaryfunctionsof f andg to write
<f ’ g>Hr2 = <fag>L2(r+iR;U)'

(b1) Themappingf — € f is anisometricisomorphisnof L onto Lrp+a. The
mappingg — g(- — a) is anisometricisomorphisnof H onto Hrp+a.

(b2) If J is boundedthenL = LP = L}, with equivalentorms.If p < e, then
LP(J;B) = LP(J, u; B) with equalnorms,wheee dy, = e"P dm, for p < .

(b3)If f, — finLP and f, — gin L (or f, — g pointwisea.e) for some
functionsf andg andsomew € R, thenf =ga.e

(b4) We havel (R y;B) C LE(Ry;B), indeed,| f[lp < Mp p, | fll ez for
all f € LP*(Ry;B).

(c) If g € H*(C{;B) is continuousto the boundaryr + iR, then ||g||x= =
sup.ir [19()l-

If B=U or B= B(U,Y), thenTheoem3.3.1(a2)&(c1)&(c2)povide anal-
ogousresultsfor an arbitrary g € H”.

(d) We haveH?(B) C H;?(B) andHf*(B) NHF?(B) C HP(B).

(e) (HP(rD;B)) Resultsanalogousto (a), (c) and (d) hold for HP(rD;B) too,
andthe mappingg — g(t-) is an isometricisomorphisnof HP(rD;B) onto
HP(trD;B).

(f) Let f € HP(C{;B), 1< p< oo, wER, €> 0. Thensupg <y, |l f(w+e+
ré®|ls — 0asr — o,

SeealsoLemmaF.3.2.

Proof: (a) For LY this follows from (b1). A H®-Cauchysequences a
pointwiseuniformly a Cauchy-sequenclgencet corvergesuniformly, andthe
limit is holomorphic by LemmabD.1.2(a). ThusH*(Q; B) is complete.

A HP-Cauchysequencd f,} convergesto somefunction f in eachLP(t +
iR;B) (t > r). By (6.4.3)of [HP] (appliedto someag € (r,t); cf. Theorem
3.3.1(a3)),this corvergenceis uniform on C;" for eacht > r), hencef is
holomorphic.Obviously, f, — f in HP.

(b1)&(b2) Theseareobvious.

(b3)By TheorenB.3.2,therearen; <m <nz < --- s.t. f,, = f andf, — g
pointwisea.e.,hencef =ga.e.

(b4) By (b1), we mayassumehatr’ = 0. Assumethatr’ = 0> r. Then

Ifllp < lle " fllp, [l lg < Mppy.r [ FI P2 (D.11)

by LemmaB.3.13,whereMp p, r :=||€"|lg < 00, 1= p~t—pp~t € [1,00] L.

(c) This follows from the scalarcase(alternatvely, from the Maximum
modulusprinciple by usinga conformalmapof Ct — D1.¢).

(d) The latter claim follows easily from the factthat LPrt N LP2 C LP, by
LemmaE.1.1. ’

We have a continuousembeddingHP(B) C H%(B), by Theorem6.4.2
of [HP] (shift it by (r' —r)/2); obviously alsoinclusion HP(B) ¢ HE(B) is



continuoushence
HP(B) C Hf(B)NHF(B) C HI(B). (D.12)

(e) Theabove proofsapply mutatismutandig(seealsoTheorem3.3.1).

(f) This follows from Theorem6.4.2 of [HP] (replacew by w+ ¢/2 and
€ by €/2 to overcomethe nonstandarassumptior(iii) of Definition 6.4.1 of
[HP]; cf. Theorem3.3.1(a3)). O

Thenormof a holomorphicfunctionis greatesbn the boundary(cf. Lemma
D.1.2(f)):

LemmaD.1.5(Hadamard ThreeLine Theorem) Let f € G(CapB) N
H(Cap; B). SetM; := sup|| f(r +iR)||s (r € [a,b]). Then

My < M3 9 MZ < max{Ma,Mp} (1 € [a,b]), (D.13)
whee 6, .= (r—a)/(b—a).

Usethe mappings — €° to obtainthe HadamardThree Circle Theorem(cf.

p. 264 0of [Rud86]).
Proof: ForB= C,a=0andb =1, thisisLemmal.1.20f [BL]. By setting
g(s) := f((b— a)s+ a) we obtainthe scalarversionof the theorem. For a
generalf, we thenhave ||Af(r +it)]| < M%‘E’fMgr for all r +it € C,p and
A € B* s.t.|\|| £ 1; thegeneraklaim follows from this. O

Definition D.1.6(Convolution) LetB x B, — Bz becontinuousandbilinear. The
convolution f xgof f : R" — Bandg: R" — B; is definedby

(fg)(t) ::/ f(t—r)g(r)dr:/ £(r)g(t —r)dr € Bs, (D.14)

RD R0
for thoset € R" for which f(t —-)g(-) € L1(R"; Bs).

If, e.g.,f (resp.g) is definedon Q c R" only, we definetheabove convolution
by declaringf = 0 (resp.g = 0) outsideQ.

HereB = B, = Bz might be a Banachalgebrabut evenmorecommonis the
casewhereB = B(B»,Bz3) (e.9.,B= C andBz = B, or B= B} andBz = C); in
factthelattercontainsthe former.

Standardcorvolution resultshold alsofor vectorvaluedfunctions:

LemmaD.1.7(]| f #h||q < M|| f||pl|hllr) Let p,a,r € [1,»], f € LP(R";B) and
g€ L9(R";B2), where B x B, — B3 is bilinear and ||bby||g, < M||b]|g||b2]|g,-

If 1/p+1/g= 1, thenf x g existson thewholeR", f xg € G,,(R";Bs) and
£+ gllo < M fllpllgllq @nd f g € Co(R™Bg) if 1< p < o).

If h e LY(R™By), then f xh exists a.e and ||f * h||p < M| f||p|lh]|lz. If
heL"(R;By) andp 14+r 1=1+q 1 thenfxhexistsa.e and || f xh[jq <
M £{lpllD]r-



Moreover, in all combinationdisted above (e.g., L1, L andLP or L1, LP,
LY, in any order), thelaws t" (G*F) = (1TG)*F = G*1'F (T € R") (time-
invariance),(GxF)xH = G« (F xH) (commutativity)are valid, andfor n= 1
wehavemt F =0=T.G=T_(F*G)=0 & (F*G)(t) = (Tio)F * T G) (1)
(causality).

All aboveclaimsalsoholdwith L, in placeof L. All above claimshold with
Z" in placeof R".

If B x B, — Bg is bilinearandcontinuousthen||bby||s, < M||b||||b2]||B, for
someM < o, by LemmaA.3.4(J1). In mostcasesponehasM = 1 (e.g, when
Bo= @(B’ BS))

We also note that if f € L (R4;B) andg € L} (R:;By), then fxg €
C(R+;B3) (apply the lemmato 1o 1) f and g 19 for eachT € Ry, anduse
causalityto obtaincontinuityon [0, T]).

Proof of Lemma D.1.7: The proof of the third inequality (Young's
Inequality) is analogousto that of TheoremE.1.7 and henceomitted; see
Theoreml.2.2of [BL] for the proof (the Z" caseis analogous).The proofs
of theotherclaimsareanalogouso thatin thefinite-dimensionatase(for R");
seeg.g.,pp.39& 63—-640f [GLS] anduseLemmaB.3.9for uniform continuity
and Corollary B.3.8 for the (p property Note that becausd|(f xh)(t)||g, <
M(|| f||g * ||h||s,) () < o for a.e.t, thecorvolutionintegrandis in L for a.e.t.

We note that the commutatvity claims follow easily from the Fubini
Theorem. B _

Let f € L§andhe L, andsetthenf =&~ f € LP, h= e “h. Then,obvi-
ously f xh=e® (f+h), hence| f «h[| a < M| f|| s ||h]L;, asabove,etc. O

LetQ=C" orQ=D. Let {z} € Q andz, — z., wherez, € Q. We say
that z, — z, nontangentially if thereis an openconeC C Q with vertex at z,
s.t.{zy} C C (see[Hoffman], [Rud86]or [Garnett]for equivalentdefinitions).In
particular z, — 0 nontangentiallon C*, asn — 4o, iff z, € C for all n, z, — 0,
asn — +oo, andthereis M < o s.t.Imz,/ Rez, < M for all n.

ThePoissonintegral P x f of afunction f corvergesto f in mary ways:
Lemma D.1.8(Poissonintegral formula) LetP(t) := m

(al) Theopefator f — P * f is a stableCp-semigoup on (yy(R;B) and on
LP(R;B) whenl < p < oo.

(@2)If f € C(iRU{w};B), thenr +it — (P + f)(t) isin C(C*U{»};B). In
particular, f € (o(R;B) impliesthat (P = f)(t) — 0 as |r +it| — c and
r+ite C+.

(@3)Let f e LP(R;B), 1< p< . Thenf — P x f isasemigoup (P * P =
P for r,r’ > 0), althoughnot necessarilystrongly continuous(in case
p=o0), [P fllp < [[fllp (r >0), IR+ fllp— || fl|p, and [Tz gR * f dm —
fngf dm,asr — 0+, for anyR > 0 andg € L*(R; B(B,By)). Moreover,
(P * f)(t) — f(t) asr — 0+ nontangentially, for every Lebesgugointt of
f, hencea.e



(a4) If f € L*(R;B) and g € LY(R;B(B,By)), then Jzg- (P » f)dm —
Jr9fdm,asr — 0+.

(b) Let F € C(C*t;B)nH®(C*;B). ThenF is givenon C* by the Poisson
integral formula

F(r+it)::—1/|?%:(Pr*F(i-))(t) (r>0,teR). (D.15)

(c) If F € H*(C*;B), thenF € Gy(r +iR;B) for anyr > 0, andr — F(r +i-)
is continuoug(0, ) — Guu(R;B).

(d) The above resultshold mutatismutandisfor D in placeof C™ andaD in

placeof iR, with P (t) := ﬁoﬁtw (0<r<1teR).

(We have setherePy := 9, i.e., Pyx f := f.) Notethatin the above results,
the imaginaryaxis (iR) canbe shifted right or left, whichever is needed. If B
is a Hilbert spacethenan arbitraryHP function F hasanLP boundaryfunction
(whosePoissonintegral is F, by the scalarresult; seealso[HP, p. 227]), for ary
p € [1,]; seeTheorem3.3.1(a2)&(al).

Proof: (al) The semigroupclaim can be proved as in the scalarcase
[Garnett,pp. 12-17];notethat [ P dm= 1.

(a2) For D in placeof C,, this follows from [Rud86, Theorem11.8] if
g is finite-dimensionaljn the generalcaseone canapproximateg by a finite-
dimensionatontinuoudunction(e.g.,by afunctionthatis “piecewiselinearon
[0,217") anddeducethe continuity asin the proof of [Rud86, Theorem11.8]).
Theoriginal (“C*") claim followsthroughCayley transform.

(a3) 1° Basicproperties:By p. 13—14of [Garnett],we have B « Py = P v
and [z Prdm= 1, henceP, x is asemigroupand|| P  f||p < || f||p.

2° Nontangntial limits: For f € LP(D;B) (cf. (d)), the existenceof a
nontangentialimit at eachLebesguegooint follows exactly asin the proof of
(scalar)Theorem11.230f [Rud86]. Therefore the sameholdsfor LP(iR;B),
becauséhe Cayley transformmapsL P(iR; B) one-to-ondnto LP(dD;B), and
preseres Lebesguepoints and nontangentiallimits, by Lemma 13.2.1(e).
(Recallthatr — 0+ nontangentiallymeanshatr — 0 onasubsebf C™ where
Imr/Rer is boundede.g.,on (0, +©)).)

3° ||« f||p — ||f]|p @asr — 0+: For p < o this follows from Theorem
6.4.3(ii) of [HP]. For p = « thisfollows 2° andtheinequality||P = f||p < || f|| p.

4° f_RRgPr x fdm — f_RRgfdm: For p = o this follows from (a4); for
p < = thisfollowsfrom thefactthatX_rrg € L9 andP x f — f in LP, where
pitagt=1.

@4)  Jro(t) Rt — 9f(s)ds — g)f()dt = Jrfra()R(t —
s)dtf(s)ds — Jzr9(s)f(s)ds— 0, by The Fubini Theorem(and The Holder
Inequality),asr — O+, since [z g(t)P:(t —s)dt — g in L1, by (al) (notethat
P(t—s)=PR(s-t)).

(b) AF = A(P; xF(i-)) on C* for all A € B*, by [Garnett,Lemma3.4],
hence(D.15) holds.



(c) By shifting F to the left by r/2, we seethat we can assumethat
C(CT;B)NH®(C*;B). BecauseP € L! andF(i-) € G, C L®, we have
P xF(i-) € Gu(R;B), by LemmaD.1.7.

From(al)it followsthatt — R xF (i-) = R_; x P, xF (i-) € Gy is continuous
on (r,o); because > 0 wasarbitrary theclaim follows.

(d) Theproof areanalogougseethe samereferences). O

We usethe standarddefinition of the Laplacetransfrom;it follows that the
Fouriertransformbecomedts restrictionto iR. (Thus,thisis the standard-ourier
transformrotatedclockwiseby 11/2.)

Definition D.1.9(Laplace and Fourier transforms) Letu: R — B be measur
able TheLaplacetransformof u is thefunction

Tui=10(s) = / e Su(t)dt, (D.16)
R
definedon thoses € C for which the integral corverges(i.e., for which e Su €
LY(R;B)). If ue LY(R;B), we call the restriction U5 : iR — B the Fourier
transformof u.

Naturally, the Laplaceand Fourier transformsinherit the propertiesof the
Bochnerintegral; in particular they arelinearandcommutewith boundedinear
operators.

It is shavnin LemmaD.1.11thatG € L(R;B) = U(i-) € (o(iR;B), andthat
teL}(Ry;B) = U(i-) e H*(CT;B).

Next we list somebasicpropertiesof Laplacetransforms:

Lemma D.1.10(f) With the notationof DefinitionD.1.3,we havethefollowing:

(@a1)lf f e L}(Ry;B), then||fA(s)||B < |Iff[; forse C_:ﬁ,

(@2) If f € LP(Ry;B) and t > r, then f € H®(C{;B), and ||f|ls <
le= =" lgll fllp < 0 O C{'.

(@3) Leta < b. If |[f[l prg <M for r € (a,b), then f € LENL{ and
IfllLp € C([a,b]).

(@d)If f € LENLY, then||f[| prie) <M :=max{||fl| g, | [l p} forall r € [a, b]
(hence(al3) applies).

(b) (Uniqueness)Let u,v: R, — B be measuable and let € u,&" v e L1 for
somer € R. Thenu=va.eiffi=vVonC/ (iff GU=Vonr +iR).

SeealsoTheorem3.3.1.

Proof: (al) Thisis obvious.

(a2)Choosey s.t.1/p+1/q=1. Becausdle S€"||q < ||[&=t=)||q < o for
se Ci, thefunctione™s f is in L1 andwe getthe norm bound (by Hélder’s
inequality). By the dominatedcorvergencetheorem,we may differentiate
underthe integral sign, thuswe seef is holomorphic. See,e.g.,[Sbook] for
details.



(a3)1° Casep < w: Letge LP(Ry;B) and||g|| p < M forr € (a,b). Then

lol% = [ & "Mla) 8ot~ [ &g Bat =:[iglfp. (D17

ast — b—, by theMonotoneCorvergenceTheoremhenceg € L and||g|||_8 =
limy_p— ||g|||_rp.

The sameholds for ary g € LP(R_;B), by the DominatedCorvergence
Theorem;consequentlyan arbitraryg € LY(R;B) will do. Apply this to Ag
(and(—b, —a)) to obtainthe sameata.

SetF(t) := || f||_p- By theabove, F(t) = lims F(s) for t € {a,b}; apply
thisfor [a,t] and[t,b] to seethatF is continuousateveryt € [a,b].

2° Casep =o: Letge L(R,) for somec < 0. SetM; := [|g||L> =
le "g|l» for r € R. Thenthereis T > 0 s.t.€”/2|g| < Mg for a.e.t > T. It
followsthatM, < Me T forr > c/2, henceMgp > limsug_,o_ M,. Therefore,
Mo = lim,_o_ M, (because\, is obviously decreasing).

If g€ L*(R_), then M, is increasingand, so M is, obviously, again
continuousat 0 from the left. The sameholdsfor ary g € L”(R), because
max: R? — R is continuous.

Apply theabovefor g:= ||e? f || to obtaincontinuityatb. Therestfollows
asin 1°.

(a4) W.l.o.g.we assumdhata=0,B=C, f >0, f 0 andp < « (case
p = « is obvious). Set

g(r) ::||f||fr,,:/Re—p”f(t)dt (r € [0,b]). (D.18)

Obviously, Jgr) = — [ppte”Ptf(t)dt, g’'(r) = -—-pd(r) +
p? [xt2e P f(t)dt > —pgd/(r) for all r € (0,b). Thus, if ¢ (ro) = 0 for
somerg € (0,b), theng”(rp) > 0, henceg hasno maximumon (0,b), hence
(ad)holds.

(b) For separabléJ, this resultis containedn [CZ, TheoremA.6.19], and
we may alwaysreplaceU by the closedspanof f[C*], which is a separable
Hilbert space(becausef [C*] is a continuousmageof a separableset, hence
separable).

(c) This follows from the scalarcase(or from LemmabD.1.11(a3’))(andof
LemmabD.1.11(a3). O

As in the scalarcase,the Fourier transformmapsL*(R;B) to continuous
functionsoniR, vanishingatinfinity:

LemmaD.1.11(L! Fourier transform) LetB bea Banad space f € L1(R;B)
andw € R. Thenwe havethefollowing:

@1) f € G(iR;B), and ||f(ir)||s < || f|| .+ forr € R.
(a2) TheFourier transformf — fis linear and continuousi.e., in B(LY, (o).
(a3) (Uniqueness)f f = 0oniR, thenf =0 (in L, thatis, a.e).

~

(b) (Riemann—-Lebesgue)\e have||f(ir)||g — 0 as|r| — « andr € R.



(c) f/*\g: fgoniR wheng e LP(R;By) (pe{1,2}) andBx B, — Bgisbilinear
andcontinuous SeealsoLemmaD.1.12(c).

@) If £, f' € LL thenf/(ir) =ir f(ir) — £(0).

(e1) (Inverse Fourier transform) If f € LY(iR;B), then f(-) =
+ [r €% f(ix)dx € (5(R;B) a.e (andin all pointst of continuityof ).

e2)If f, ', 1" € LY(R;B) (eg., if f € CA(R;B)), then f e LP(iR;B) for all
p € [1,00].

(FL)T(1)F(S) = X () (s€iR) (for s€ TF if f = 1w, f).
(f2) If f,e®f € L1, thene®F(s) = f(s— w) (s€iR) (forse CT if f =, f).

Assumein addition,that f = 1t f. Thenwe havethefollowing:

(al’) f € H®(C*;B) N G(CT;B), andsup-+ || f]| = supg || 1l < || ]|,z

(a2’) The Laplace transform f +— f is linear and continuous, i.e., in
B(m L, H®).

(@3) (Unigueness)if f=00onC*,thenf=0 (in LY, thatis, a.e).

(b’) We have|| f(s)||z — O as|s| — « ands e CT.

(c) f/*\g = fAQ on CT if theassumptionsf (c) are satisfiedand_g = 0.

~

(d’) Onecanobtain f (r +it) fromthe Poissorintegral formula

~

f(r+it) = %/R% (r>0,teR). (D.19)

d”) If £, €L, thenf'(s) =sf(s) — f(0) forse C*.

As above, we do not distinguishbetweerthe Fourier andLaplacetransforms
unlesst is necessary R

If onewould definethe Fourier transformas ¥ f := f(i-), then one would

obtainfrom (el)that ¥ ~* = LAF = L FA. However, we considerthe Fourier
transformof f in the Laplacesensehenceits domainis iR, not R. Despitethis

rotationby 11/2, the propertiesof the Fouriertransformaresharedy its inverse,
e.g.,f € LYimpliesthatf € (.

Proof: (al) The uniform continuity is mosteasily obtainedfrom (b); the
restis obvious.

(al’) The holomorphicityis notedin [HP, pp. 215-216]. The continuity is
obtainedfrom the DominatedCornvergenceTheorem.The norm claim follows
from the scalarcase(alternatvely, from the Poissonformula). The uniform
continuityis mosteasilyobtainedfrom (b’);

(a2)&(a2’) Theseareohvious.

(al3)&(a3)&(d)&(d)&(d”) Thesefollow from the scalarcase(cf. Lemma
B.2.6) (the Poissorkernelis an L1 function; pages229 and 227 of [HP] give
an alternatve proof of (g")). (In (d) and(d"), the derivative f’ neednot exist
everyvghere,it is enoughthat f € Wh1; analogouslyin (e2) it suffices that
f e W31l)



(b)) Lete > 0. Chooseg e (¢°((0,+);B) s.t. ||F — gfls < &/2. Be-
causel|@(s)||s = [|@//slle < [|¢/||2/IS| on C*, we have |[¢(s)||s < &/2, hence
IIF(9)|ls < €, for |s| large enough(by continuity (see(al’)), |F(s)|| < € for
s€ iR too).

(b) If f € LY(R;B), thenf = 11, f + AATL T vanishesatinfinity, by (b).

(c) Thiscanbeprovedasin the scalarcasgfRud86,Theoren®.2(c)].

(c) Thisis containedn [HP, Theorem6.2.4].

(el)Usethescalarcase(and(al)&(b) for (p).

(e2) By (d) and (a1), ir f(ir) — f(0) and (ir)2f(ir) — (ir + 1)f(0) are
bounded,henceso is r2f(ir). Becausef € (p, it follows that f € L1NL>,
hencein eachLP.

(f) Theseareobvious. O

Many of the propertiedreatedn the previouslemmahold for generalvector
valuedmeasuresTo make thingssimple,weonly treat“MTI ”, whichcorresponds
to certain(all if dimB < ) measureblaving only adiscretepartplusanabsolutely
continuouspart:

LemmaD.1.12(MTI Fourier transform) LetB bea Banad spaceandset
MTlg = {p= ;aj&j + [ Ilvm =S llajlle + [l fllLarie) < =}, (D.20)
IS J
MTICg:= {u= a;&; + f e MTlg|f € LY(R,;B) & tj > 0forall j}.
J

(D.21)

Letpu= ZjEZ ajétj + f € MTlp.
We usethe standad definitionsof the Fourier transformof u € MTI g andthe
Laplacetransformof p € MTICg:

f(s) == % aje i + f(9), (D.22)

j€

fors€iR (for se CT, if pe MTICp).
We havethefollowing:

(@l)fie Gu(iR;B), and|[fi(ir)[g < [[W|lmm forr € R.

(@2) The Fourier transform p — [l is linear and continuous, i.e., Iin
B(MTIg; Cou)-

(a3) (Uniqueness)f i=0oniR, thenu= 0.
(b1)Wehavea; = IimT_>+mf_TTﬁ(ir)e_“irdr forall j € Z.
(b2)If f =0, thenfie AP(iR;B) (i.e,,[i(i-) € AP(R;B)).

(c) Letv € MTlg,, andlet B x B, — B3 bebilinear and||bby||g, < ||b||||b2||B,-
Then(c1)—(c3)hold.

(c1) @xv =W oniR and ||u* V|mTi < [|W|mTi|IV]IMTI, Whee & * & =
O+t andd; x f :=1(—t)f.



(c2)Forall 1< p<wandge LP(R;By), thecorvolutionp« g existsa.e
and [+ gllie(r;es) < [[H|mT1(|9]] p-

(c3) We have (u*V) xA = pux (VxA) and (U*V) x g = p* (V+g) when
A € MTI B(B3,Bs) andg € Lp(R, g(Bg, B4))

(d) Assumethat B = B(U,Y), whee U and Y are Hilbert spaces. Then
I i,y < lMlivm, (6)* = (AR)* € TI(Y,U), ()%= prx € TI(Y,U),
A(p)A = (AW = € TI(U,Y), and e (ux)e=? = (e Ww* € Tly(U,Y). In
particular, thenpx € MTICg < ()9 € MTICp.

Moreover, thenfixg =i a.e oniR for all g€ LY(R,;U) UL?(R;U) (and
on Ct if m_g= 0= 1_p). Theefore, [i coincideswith {ix of of Theoem
3.1.3(andwith thatof Theoem®6.2.1if Tt_u = 0).

Assumein addition,that u,v € MTICg. Thenwe havethefollowing:

(al) fie H*(C*;B) N Gu(CT; B), andsupe+ |[A] = supg [IA] < [IWlvm-

(a2’) The Laplace transform p — fi is linear and continuous, i.e., in
B(MTICg; H™).

(a3") (Uniqueness)f fi=0onC™, thenpu= 0.

(0) ||i(s) —M||g — 0 asRes— +w andse C*, whee M € Bis thecoeficient
of &p.

() Wehavefixv =V onCTifv e MTICpg, andtheassumptionsf (c) hold.

(d) For r +it € C™ one can obtain fi(r + it) from the Poissonintegral
formulaPoissorintegral formulalfor measures
co i T Aiy) dy
ty==| V—"—. D.23
A+t =4 RI2+(t—y)? (0:23)
BecauseB is not necessarilyan algebra,we have definedMTlg to consist
of “measures” not of the correspondingcorvolution operators(we identify L1
functionsandcorrespondin@bsolutelycontinuousmeasure& — [ f dm).
If we had||bby||s, < M||b||g||b2]|B,, M > 0, in (C), thenthe conlusionsof (c)
would still bevalid, providedthatwe addedM alsoto the otherinequalitiesn (c).
To clarify (d), we notethate® &, = €&, , hence

e (F + ZVTkétk) =e"F(.)+ ZweMka&k' (D.24)

ke ke
Thus, the “stability” of u canbe shifted(cf. Remark6.1.9). Most of (d) is valid
for gzeneraIB, B2 andB3 too. Here" (Aw)” refersto A operatingu (on MTI), not
onL-.

The functionsin the spacegeneratedy the sumsof AP functionsand con-
tinuousfunctionshaving limits atinfinity (which containsthe Fouriertransforms
of MTIg functions)arecalledsemi-almosperiodicfunctions(see e.g.,[Sarason]
for moreon suchfunctions).

Proof: The parts(al), (a2), (al’) and (a2’) follows easily from thoseof
LemmaD.1.11.



(a3) Thisfollowsfrom (b1l)andLemmaD.1.11(a3).

(a3) Thisfollowsfrom (al’) and(a3).

(b1)&(b2) Thesefollow from LemmacC.1.2(h2) becausd hasno effecton
thelimit in (b1),by LemmaD.1.11(b).

(b’) W.l.o.g.weassumeghatM = 0andf = 0 (by LemmaD.1.11(b’)).

Givene > 0, takefirst N € N's.t. 5 - [lax/| < €/3. Becausee ¥ — 0, as
Res — -+oo, for eachk, thereis R> 0s.t. 5 y<n /| < €/3for Res> R,

(c1)—(c2) Theseare not hard to verify (the hardestpart is containedin
LemmabD.1.11(c);useformulaeanalogougo (2.55)and Theorem2.6.4(d)for
[ V|| < [|Ml|IV]])- Notethatwe usethe standardassociatie anddistributive)
definitionof x, which coincideswith

OO ETORICS (D.25)

(if theintegralis definedin somereasonablasenserf. [Dobrakov]; we do not
needthis).

(c3) Decomposay, v, A and verify the claimsfor distributed parts (Obvi-
ously, the corvolutionis distributive).

(Notethatonecantakethevaluesof A orgonX andB3z = B(X, B4) for some
BanachspaceX, sothatX is isometricallyisomorphicto a closedsubspacef
‘B(Bs,B4). More generally we couldaswell assumehatB x B, x X — By is
“trilinear” andcontinuous.)

(d) Clearly px € TI. By (c2) we have [|ux ||ltiu,y) < |[M|wmi. Thesecond
claim follows from equationgheref,ge L?, F € L}Y(R;B), Tk € B, tx € R)

(Tkt(—=t) f, 9 = (f, T1(t)9) and (D.26)
/R</RF('[—r)f(r)dr,g(t)>dt:/R<f(r),/R(F|F*)(r—t)g(t)dt)dr, (D.27)

(usethe Fubini Theorem). Note that (AW)* = A(K*), so the order of these
operationgloesnot matter Equations

(F % 51f)(—s) = / F(—t—9)f(—s)ds= / F(—t+9)f(s)ds= ((FIF) % f)(9)
R R
(D.28)
andA(t(t)Af) = 1(—tx) f imply thatA(u«Af) = (Ap) = f. By combiningthe
two identitiesprovedabove we obtainthat (px)9 = p*«, whichimpliesthefinal
claim.

Thee™® claimis mosteasilyobtainedrom theequationf(e* ) = fi(s— w)
(cf. Remark2.1.6).

If g€ L1, thentheclaimonixgis containedn (c1)and(c’). If g€ L2\ LY,
thenthisfollowsfrom theL* caseby density:choose{gn} c L'NL?s.t.gy— g
in L2 anduse(c2) andLemmaD.1.15. Theclaimson Tl and TIC follow from
this.

(c)&(d’) Thesecan be proved as parts(c’) and (d’) of LemmaD.1.11.

Ul

See,e.qg., [DU, pp. 1-6] and [Dinculeanu] for more generalvectorvalued



measures.

If fe Ll(R;Lp), then f ¢ Co(iR;LP), by LemmaD.1.11(al). Therefore,
f(ir) € LP, sothat f(ir) is “well-defined a.e’, i.e., (f(ir))(-) makes senseas
an equialentclass. But canwe fix somepointt andthentransform(f(-))(t)?
Theanswelis positive for a.e.t:

Proposition D.1.13((£f)(t) = £(f(-)(t))) Let(Q,M, ) beo-finite. Letw € R,
P,q € [1,0].

If f e LL(R;LP(Q;B))NL(R x Q;B) ands € w+iR, then [ e f(r)(t)dr
existsfora.et € Q,and

f(s)(t) :/Resrf(r)(t)dr €eB fora.e teQ. (D.29)

In particular, if f € L§(R,;LP(Q;B))NC(Ry;LP(Q;B)), then,for eah se Cf,
f(s)(t) = Jr, e f(r)(t)dr e Bfora.e t € Q; (theintegrandin in L1(Q;B) for
aeteQqQ).

Note that this is resultis nontrvial, althoughit is unfortunalywidely used
without referencgwe do notknow ary).

Proof: Lets€ w+iR, sothate s f € LY(R;LP(Q;B))NL(R x Q;B). By
LemmaB.4.17,0s(t) := [gre 5'f(r)(t) dr existsa.e.,andgs = [re S'f(r)dr €
LP(Q;B). In theseconcclaimwe havee s f €€ L1(R;LP(Q;B)) for Res> w
(cf. theproofof LemmaD.1.10(a2)). O

The setof boundedcomplex Borel measuresn a locally compactHausdorf
spaceQ equals(y(Q)*, by the (a) Rieszrepresentatiotheorem[Rud86, Theo-
rem 6.19]. Therefore oneoften definesmeasuresisthe set (5 (see,e.g.,[Din-
culeanu]).We shallneedsomebasicresultson evenmoregeneral'measures”:

LemmaD.1.14(M) Let H be a Hilbert space and let Q ¢ R" be open. Set
M= B(((Q;B);H).

(a) Foreadhpe M ande > 0, thereis a compactKe C Q s.t.

||l < 8IIcplloo+||MIIS¢J|OIIcp||B forall @€ (b(Q;B). (D.30)

(b) Each p € M hasa uniquenorm-pieservingextensiont € B((,(Q;B); H).
(C)Ti:t— pu(ev) € H satisfiegie Gou(R™; B(B,H)) for all ue B((o(R™;B);H).
(d) utt@— 0in H as|t| — o, t € R", for all pe M andp € Go(R"™; B).

(e) Thislemmaalsoholdswith Z" in placeof R".

By (b), (b(Q;B) is aclosedsubspacef B(M,H).
Proof: (a) 1° Foreah T € M and e > 0, there is a compactk{ C Q s.t.
ITQ|| < €||@|| for € (o s.t.@=0onK/: (Thisdoesnotholdif, e.g.,H = (%
(aBanachspaceandT =1.)



Let | T|| =1, w.l.o.g. Findy € G s.t. |Y|| < 1 and||Ty||?> > 1—¢€2. Set
K. := supdy). If @=0onK/. and|@| < 1, then|lag+ ]| < 1 for |a| < 1,
hence

1> |s|up||O(T(p+TL|J||2 > ITQ2+ | Tyl > [ T@P+1-€2  (D.31)
al<1
Thus,||Tg|| <e.

2° Therestof (a): ChooseacompacK, C Q s.t.K{ c K? (e.g.,useLemma
A.2.3).Let @€ (H(Q;B) bearbitrary

By LemmaB.3.10,thereis Y € (Z°(Q) s.t.Xk: < Y < Xke- By 1°, we have
TA-W)elH <el|(1- )|l < €]|¢|[, hence

1Tl <ITA-wWell + [Twell < el|@lo+ T SéJIOII(PIIB- (D.32)

(b) 1° Isometricextension:Let {Ky} C Q beasin LemmaA.2.3. For each
ke N+1,thereis Y € (7 (Q) s.t- Xk, < Wk < XKe, by LemmaB.3.10.

Letpe G(Q;B). Setg := @k € (:(Q;B). ForeachT € M, thesequence
{To(} is aCauchy-sequende H, by (a)1° (becausep — ¢ ; = 0 on Ky and
llod|| < ||@l| for k,j € N+ 1). Let@T € H bethelimit of this sequence.

Then@: M — H becomedinearand||@T|| < ||T||||®l|. Ontheotherhand,
|0l z(m,H) > [|9l| ,» becausgivene > 0, we canchooseg € Q andSe B(B,H)
s.t.|§] <1 and||Sp(a)||n > ||@|| — € (notethat Sdq : @ — Sp(q) is in M and
¢Sdq = SP(q))- Thus,||@llam,H) = |l G-

2° Uniqueness: Assumew.l.o.g. that u € M is extendedas above, and
|| = 1= |||, wherealsoy! is a continuousextensionof .

Assumey # pto obtainacontradiction.Theng := ||/ (¢) — (@) ||n > Ofor
some@ € (, with ||@|| = 1.

Chooser € (0,2) s.t. (1—¢/2r)?+ (¢/2)2 > 1. Choosek € N+ 2 sit.
Ke/r C K 1o Theng— @ = 0 on Ky, hencep(g — @) < g/r < £/2, hence
H(p—) >¢e/2.

Thereis U € (o s.t. |0 =1L andp(P) > 1 —¢€/r. Setw := Yy 1, so
that [u(g)| > 1—¢/2r. Now ¢ = 0 on K¢ and ¢ — @ = 0 on Ky, hence
@y =P+ @ — e (p satisfied|q| < 1 when|a| = 1. But
sup [ ()| > (1—¢/2r)*+(g/2)* > 1, (D.33)
al=1

hencel||| > 1, acontradiction.

(c) The vector p(e€") in the lemma refers to the map Wy €
B(Co(R"); B(B,H)) inducedby pe M throughpo(@)x:= p(ex) for e G(R"),
x € B. Obviously, [|lol| 5 < [[M][wm-

Givene > 0, choosek € N+ 1 5.t.Kg/4 C K. Choosed > 0s.t. e — 1] <
£/2||u/| on Ky, 1 when|h| < 8. We have |¢(tha _ gltd] — |gha _ 1| (q € R"),



hence
7t +h) — ) |1 = (o) — po(€")]] < [|ro(@ee® (€M — 1))

(D.34)
+Ho((1— @)€" (€™ — 1)l < [IMle/2lIu| +2e/4=¢. (t€R", |hlrn < ).
(D.35)
Thus,p € G-
(d) Thisfollows from (a).
(e) Thisanalogousut easier O

Next we presenthe Fourie~Planchereand Paley—Wiener Theorems.Func-
tionsin L1 N L2 canbeFouriertransformedvith easethetransformseingcontin-
uous,by LemmaD.1.11(al).Fortunatelyin a Hilbert spacesetting,the L% norm
of thefunctionis preseredmodulothefactor/2mt (see(D.36)),hencethe Fourier
transformL! — ( canbe extendedto a transform(isomorphism)L2 — Ez, by
LemmaA.3.10. Thus,for f € L2(R;H), the transformis definedby lim f, (the
limit beingtakenin L?) for ary sequence f,} ¢ L1 NL? convergingto f in L?
(notethattheintegral (D.16) neednot cornverge).

Lemma D.1.15(Fourier—Planchetel transform) Let H be a Hilbert space If
f:R— Hisin L'nL2 then|f|. = v2m|f|]2. Theefor, the Fourier(-
Plandherel) transformcan be extendedo an (isometrictimesy/2m) isomorphism
of L2(R;H) ontoL2(iR; H).

AnanalagousresultholdsonLZ (w € R), hencefor all F,G € L2(R,;H) and
f,g€ L%(R;H), wehavethat

(f.9z=2nf.92 |Ifllo=v2m|fl2, (F,Gp =2F.G)p. (D.36)

Similarly, the mappingof a = ez a € £2(Z;H) t0 a(2) := Sz &z €
L2(dD;H) is an (isometrictimes+/2m, as above) isomorphisnof £2(Z;H) onto
L2(dD;H), andit mapst?(N;H) ontoH?(D; H).

Here the norm on L2(rdD;H) is given by ||f]|3 := [Z"||f(re")||3 dt (cf.
[Rud86], p. 89 & 337),hencel|1]| = /2, and

| ﬂ|H2(rD;H) .= sup ||ﬂ|L2(t6D;H) :tiql”f\”LZ(taD;H) = ”ﬂ|L2(r6D;H)- (D.37)
O<t<r

0

Thus, [Z"||F(€9)]|4 d0 = 21Y nez || fall3 < o for all f € £2(Z;H). (Recall
thatwe have definedthe Lebesguemeasuref orD to be 21t)

The above factscanbe verified asin the scalarcase(seee.g.,[Rud86]),and
they are presentedin varying generalities;note that H can be assumedo be
separablev.l.o.g.) in [RR], [Nikolsky], [HP] and[CZ]. We omit the details. The
lastequationin (D.37) refersto theboundaryfunctionof f, cf. Theorem3.3.1.

By “isometrictimesy/21’ we mean'|| ||, > = v/2m| || 2" (recallthatisomet-
ric meansnorm-preserving).

If H is an arbitrary Banachspace(contraryto standingassumption®f this
section),even L1 N L?(R;H) functionsare not in generalmappedinto L2, as



illustratedin Example3.3.4(seeits secondremark);however, if f € L2 is finite-
dimensionalthenits rangeis isomorphicto someHilbert spaceC", hencethen
f € L2 is well-defined(andcoincideswith f € (p a.e.if f € LI1NL2).

Wecall S(R;B) :={f € C*(R;B) \ | flln = [IX<F ]|, < o0 for all k,n € N},
equippedvith the (Fréchetspace}opologyinducedby the || - ||k n sSeminormgcf.
[Rud73,Theoreml.37]),the spaceof rapidly deceasingfunctions

LemmaD.1.16(S(R;B)) The space S := S(R;B) is a completetopolagical
vectorspace(Fréchetspace),and (¢’ is a densesubsebf S. Moreover, § C LP
forall p € [1,00].

Set¥ f := (£f)(—i-) for f € LY(R;B). Then¥[S] = S, ¥ is anisomorphism
(linear continuousbijection) on $, and F2f = Af for all f € S. Moreover,
Ae B(S)andtge C(R;S) forall pe . N

(The proof for the scalarcaseis givenin, e.g.,Sections7.3—7.10of [Rud73],
andin Section2 of [Rauch]. Thoseproofs cover also the vectorvaluedcase,
mutatismutandis sowe omit the proof.)

Herewe extendthetypical tool for Cauchyintegrals:

LemmaD.1.17 Assumethat y is a o-finite, complete positive measue space
Q c Cisopen,gec Li(y;B), f:yxQ — B(B,Bp), f(t, ) € H(Q;*) for ead
tey, f(-,2) € L2(y;*) andsupeq || T (,2)||w < . ThenF € H*(Q;By), whee

F(2) ::/yf(t,z)g(t)dt. (D.38)

By taking f (t,z) := (2ri(t —2)) ! andlettingy becurvein C, we geta Cauchy
integral.
Proof: SetM := sup,.q|/f(-,2)||«. Since||f(-,2)g||1 < M||g1]j1 =: M’
(z€ Q), we have ||F||g, < M’ on Q. By The DominatedCorverge Theorem
(with majorantM||g||s € L(y)), F is continuouson Q. For every rectangleR
in Q, we have, by The Fubini Theoremthat

/RF(Z)dZ=/y/Rf(t,Z)dzg(t)dt=/yg(t)Odt=o, (D.39)

(note that Jg [, [|f(t,2)g(t)[[dtdz < JgM|lg|ldz <  and that f € L(y x
Q; B(B,B;), by LemmaB.4.8). Therefore,F € H(Q;By), by The Morera
Theorem.Since||F||~ < M||g||1, we have F € H*(Q;Bp). m

If f is holomorphiconbothsidesof iR andweaklyL -continuoudoiR, then
f is holomorphiconiR too:

Proposition D.1.18(H(Cap) NH(Ch,c) = H(Cac)) LetQ C C beopen.Assume
that f : Q — Bisin H(Q\ (b+iR);B), andthat Af(t+i-) — Af(b+i-) in
LY([u,V]), ast — b, for all A € B* andu,v € R s.t.b+[u,V]i C Q.
Thenf canberedefinedna null subsebfb+ iR sothat f € H(Q;B).
Naturally, we canreplaceb+ iR by anyotherstraightline (rotatethe plane).
An analagousresultholdsfor orD in placeof b+iR.



(RecallthatLP([u,v]) C LY([u,v]) for p € [1,%] andthatCap := {z€ C | a<
Rez < b}.)

In particular we actuallyhave f(t+i-) — f(b+i-) uniformly on eachsuch
[—u,V] (only outsidea null setif we donotredefinef), hencen LP([u,V]) for ary
p & [1,00].

Proof: Wetakeb =0w.l.0.g.

1° CaseB =C:

1.1° Choosingy, Vv, €,a,b: Letup, Vo € R bes.t.ug < Vo and[ug, Vo)i C Q. By
LemmaA.2.1(c), we have € := d([uo, Vo]i, Q%) > 0. By LemmaB.4.19,there
areu € [ug, Up — &) andv € [Vo,Vo+€) s.t. f (- +iu), f(- +iv) € L1((—¢,¢)). Set
a:=—¢/2, c:=¢/2,sothat|a,c| x [u,v] C Q. SetA:=(a,c) x (u,v). Then
f € LY(y), wherey := 0A (with theR*- Lebesguameasure).

1.2° DefiningF € H*(A): By LemmaD.1.17 (appliedto each(a+ d,¢’ —
8) x (U+8,v—38) C A, &> 0,to keep(s— z)~* bounded)we have F € H*(A),
where

F(2):= /yh(s,z)f(s)ds, hi= (2mi(s—2))~" (D.40)

1.3° Showingthat f = F on A\iR: For ary z € A2, we have
Jgh(s,2f(s)ds = f(2) and fizh(s,2)f(s)ds = 0, where 2 = 0A%, A2 :=
(8,¢) x (u,v) C A, Y2 =0A3, AS:= (a,—d) x (u,v) C A, &€ (0,c), by the
CauchyFormula([Rud86,10.15]). An analogousslaim holdsfor z € A2.

Letze A2. Sinceh(-,2) is continuousandboundedheariR and f (84 -) —
f(-)inLY([u,v]), asd — 0,wehaveh(8+-,2) f (8+-) = h(-,2) f(-) in L([u,V])
too.

Consequentlyf,s h(s,z) ds= f(2) and Jiz h(s,2) ds= 0 hold alsofor 3 =0,
by continuity. An analogousclaim holdsfor z e AY. But Jg+@ = Ji» hence
F(2) = f,h=f(2) foreveryze AQUA? = A\IiR.

1.4° f =F a.e onAniR: Thisfollowsfrom 1.3°, sinceF (d+-) — f(8+
) —0in LY([u,V]), asd — 0 (dueto the continuityof F), sothatF — f =0 as
anelementof L([u,V]).

1.5° Casewheel :=iRNQisconnectedSetu:=infl /i, V:=supl;, and
choosesequence$un},{vn} C /i s.t.uy — U andv, — V. Thenby applying
1.1°-14° to each[un,vqi, we seethat f(it) := limg\jrs,-it f(2) coincides
with the original f a.e.(on each[un,Vp)i, hencea.e.on (U,V)i) and makes f
holomorphicon Q.

1.6° Theoriginal claim for B= C: Setl :=iRN Q. By LemmaA.2.2,
I = Unenl n, Wwherethe setsl', C iR aredisjoint openintenals. Redefinef by
continuityasin 1.5°. For eachn andeachz € 'y, we have d(z Uyznl k) > O,
hencethenew) f isholomorphicatz, consequentlythenew) f is holomorphic
onthewhole Q. SinceN is countable,f becomegedefinedonanull setonly.

2° Genenl B:

21° Ge H(Q;B) st. G=f on Q\iR: Letir € Q. ThenG(ir)A :=
lim¢_,oAf(ir +t) € C existsfor all A € B*. By Theorem2.8 of [Rud73], it
followsthatG(ir) € B(B*,C) =: B**.



SetG:= f onQ\ iR anddefineG oniRNQ asabore. By 1.6°, GA € H(Q)
for all A € B*. By LemmaD.1.1(b),we have G € H(Q;B**). By continuity
G(z) e Bfor ze iRNQ too, henceG € H(Q; B).

2.2° G=f a.e on QNiR: Becausef[Q] C B is separablgsinceQ is
separable)we canw.l.0.g.assumehatB is separableBy LemmaA.3.9,there
is acountablenorming{Ay}ken C B*. By themethodof 1.5°-1.6°, it suffices
to consideranarbirary[u, v[i C Q only. We shallusethe diagonalargument.

SinceAgf(t+i-) = Af(i-) in L([u,V]) for all k € N, thereis a null set
No C [u,V] andasequence? — 0+ s.t./\of(t?+ ir) — Nof(ir), asj — oo, for
all r € [u,v] \ No, by TheoremB.3.2.

Analogously thereis a subsequencéti} of {t?} anda null setN; C
[u,V] S.t. /\1f(tj1-|— ir) — Aqf(ir) for all r € [u,v]\ N1. GivenNy,...,Nx and
{t%},---,{tk} asabove, choosea subsequencéti™*} of {t¢} anda null set
Ne11 C [u,V] s.t./\k+1f(t}‘+1+ ir) = Apa f(ir) forall r € [u,v] \ Nks1.

Consequently\y f (t] +ir) — A f(ir), asj — oo, for all r € [u,v]\ N, where
N := UxNk. Thus,for suchr (hencea.e.)we have Ay f(ir) — G(ir)] = 0 for all
k, hencef (ir) = G(ir).

3° Thefinal claims: If we rotateiR, thenwe just have to usethe Lebesgue
measuren this obliqueline.

If f:Q— Bisin H(Q\abD;B), andAf(re") — Af(be") in LY([u,V]), as
t — b, forall A € B* andu,v € R s.t.be*Vi  Q, thenf canberedefinedbna
null subsebf QN adbD sothat f € (Q;B).

(The above proof applies, mutatis mutandis;se polar coordinatesor the
applicationof LemmaB.4.19in 1.1° (locally, nearanarcof d(rD)).)

Remark: Analogouslyif f:Q — Bisin H(Q\TI;B), ' C Q is a contin-
uousimageg[J] of aninterval J, andary subinteral [u,v] ¢ g~1[JN Q] has
a neighborhoochomeomorphido (—¢,€) x (u,v), with the homeomorphism
satisfyingh(0,-) = g on (u,v), andAf(h(t,-)) — Af(h(0,-)) in L([u,V]), as
t — 0O, for all A € B¥, thenf € H(Q;B) afteraredefinitionon a null subsebf
I. O

Analogouslyif f is HP onbothsidesof iR andhassameboundaryfunction

from bothsidesthenf is holomorphicandHP onthewholeregion:

Lemma D.1.19(HP(Cap) NHP(Cpc) = HP(Cac)) Leta < b < c. Assumehat
f:Cac— Bisin HP(Cyp;B) NHP(Cp; B) andthat f is the boundaryfunction
of itself on b+ iR fromboth sides,in the senseof (6.) of Theoem3.3.1. Thenf
canberedefinedna null subsebfb+iR sothatweget f € HP(Cy; B).

Proof: By PropositionD.1.18,we get f € H(Ca; B) (since|| - ||y
M|l - [lLpr))- By assumption(6.), f € HP(Cac;B) (and ||f||Hp(Ca7C;B)
max{{| f|[ne(c.p:8), [ fllHr(chem) })-

O IIA

If fisin H2onbothCt andonC—, thenf is aconstant:

Proposition D.1.20(H£nHE=C) Let f. € HP(CE;B), whee w e R, p €
[1, o]



If Afy =Af_ onw—+IiR for each A € B*, thenf, = x= f_ for somex € B
(x=0if p< o).

Analogously if f. € HP(D;B) andAf, (2) = Af_(z 1) for a.e z€ aD, for
eah A\ € B*, thenf, = x= f_ for somex € B.

Proof: 1° CaseHP(C%;B): Naturally by “Af, = Af_" we meanthatthe
LP(w+iR) boundaryfunctionsareequala.e.;suchfunctionsexist, by Theorem
3.3.1(a2).

Assumew.l.0.g. thatw = 0. Let A € B*. By LemmaD.1.19, we have
Af, = fo = Af_ for somefy € HP(CT).

But then fo € H®(C{), by (6.4.3) of [HP]; analogously fA € H*(C7),
hencefp € H*(C).

By the Liouville Theorem,fp = xa for somexa € C. This holdsfor each
N\ € B*, hencef, andf_ areequalto a singleconstantx € B. If p < o, then,
obviously, x= 0.

2° CaseHP(D;B): Setf := f, onD and f(z) := f_(z) for ze D°. As
above,we seethatwe A f canbeextendedfy € H(D). Sincefp (o) = Af_(0),
fa is boundedhencefy, is aconstantThus, f is aconstantasin 1°. O

If f belongsto LP for two differentr’s, then fis holomorphic on the
correspondingtrip:

Proposition D.1.21(Z[LENLE] € H(Capi*)) Let f € LR(R;B)NLP(R;B), p €
[1,00],a< b. Then

(al) We have f € H*(C y;B) wheneera < @ < b/ < b; in particular, f €
H(Cap;B). Moreover, f € LY(R;B) for all r € (a,b), hencef(s) corverges
absolutelyonC,p,.

(a2) ThemappingL5(R; B) NLY(R; B) — H®(Cy 1; B) is continuous.

(b) If p=1, then f € Gu(Cap;B) NH*(Cap;B) and || f(9)lls < ||t |l o +
I £l p forall se Cap-

(c) (ZLANLY] = H?(Cap; H)) Assumehat p = 2 andthat B = H is a Hilbert
space Thenf € H2(Ca7b;H), and f has the nontangential boundary

function f (the Plancherel transformof f) ona+iR andonb+iR (in the
senseof (1.), (2.) and (4.)—(6.) of Theoem3.3.1(a))and (2m) /2| f(r +
2 <l fllz + (e fl 2 (r € [a, b]).
Corversely if § € H2(Cap;H), thentheris g € LZ(R;H) NLE(R;H) s.t.
g=rg.
RecallthatHP(Cyp; B) := {f € H(Cap; B) | SURc(ap) Il F(r +i-)[|p < 0}
Proof: Notethat f € 1, LE(R;B)NTLL(R;B).
(al) By LemmaD.1.10(al)&(a2)we have T, f € H®(C;B) andT_f €
H*(C,:B), hencef € H*(C4,v;B). Thesecondclaim follows from the proof
of LemmaD.1.10(a2).



__(a2)Seetheproofof (al)andthatof LemmaD.1.10(a2for aboundof form
1flle <M Elle+ 1 Elp-

(b) Cf. theproofof (a) (useLemmaD.1.11(al)).

(c) 1° Properties of f: Note that £, f € H2(C{;B) and £r_f ¢
HZ(CE; B), by LemmaD.1.15. By Theorem3.3.1(a2),£1,. f hasa boundary
functionon a+ iR; by continuity, sodoesZrtf too (in the senseof (1.) and
(2.) of Theorem3.3.1(a);claim (6.) (whichimplies(5.) and(4.)) follows from
the strongcontinuityof LemmaD.1.8(al)).

The“mirror image”boundaryfunctiononb+ iR (from theleft) is obtained
analogouslyThe normestimatds ohbvious.

2° The corverse claim: For eachr € (a,b), thereis gr € L?(R;H) s.t.
0= fgr a.e.onr +iR, by the Fourie—PlanchereTheorem.

Letd € (a,b). SetF :=Tm,gqg, G:=Ti_gg. ThenzG € H?(Cy;H) is the
boundaryfunction of itself, by Theorem3.3.1(b) (whoseproof is obviously
independenton this lemma, relying on [RR] and the part of Appendices
precedinghislemma),andsois § € H?(C,4;H) ond+iR, henceg— £G = £F
is the boundaryfunctionof h (a.e.)ond +iR. But £F € H2(Ct;H), henceh
extendsto afunctionh € H2(C;H), by LemmaD.1.19.

It follows that h = rh on CI for someh € L2(R,;H). But then
F = h. Analogously we can shav that G € LZ(R_;H). It follows that
g = F+G e LanLE Becaused= rgq ond+iR, we have § = £gq onthe

wholeCg, ), by LemmaD.1.2(e). O

If f €L*(R;B),then|[fXall1 <[ f|lem(A) < whenerer m(A) < . Thus,
we canthenapplythefollowing test:

LemmaD.1.22 Let By be a closedsubspaceof the Banad spaceB, and f €
L®(R;B). If £fXa € (0(R;Bo) wheneer m(A) < o, then f € L*(R;Bp) i.e.,
f(t)eBpfora.eteR.

Notethatalwayszfxa € Co(R;B), becausexa € L.

Proof: (We could have aswell assumehat f € L. andthatA is bounded
andmeasurable.)

SetE := f~1[B\ Bg]. We assumghatm(E) > 0, derive acontradictionand
deducethat f(t) € By for a.e.t € R.

Becausef‘E is nowhere zero, LemmaB.2.8(b) providesus A C E and
L € B* s.t. 0 < m(A), A =0 on By, andReA > 1 on A. ChooseA’ C A s.t.
0 < m(A') < 0o, Then0# Afxy € LY(R;B), henced # £AfXy = ALf Xy €
(o(R), by LemmaD.1.11(a3).But X is Bo-valued,henceALfxy =0, a
contradiction. 0

If afunctionis holomorphicarounddD, thenit is theinverseCayley transform
of someMTIL" operator

LemmaD.1.23 Assumethat Q C C is openand s.t. 0D C Q, and that g €
H(Q;B). Thentherearebe Bandf € L1(R;B) s.t.g=b+ f O(Pc_:;yw-



Proof: 1° bg = by = by = bg = 0 w.l.o.g: Write gasyy_,bk(z+ 1) ona
neighborhoof K := {z€ C||z+ 1| <&} C Q (for somee > 0). Because

(-+1) =2m e oQcn e = F o Gcayig (D.41)

whereF =2, e~ € £[LL(R,;B)], wecantake 5 := 53_, b F¥, to obtainthat
g—Fzo (pggqu = y5 4bk(z+1)X. By LemmaD.1.12(c’),Fs = b/ + 3 for some
b’ € Bandfz € LY(R,;B) (sincert e~ € LY(R,;B)). Thus,we have reduced
the problemto the casewhereby = b; = by = b3 =0.

2° Seth := go @caylg. Assumingbg = by = by = bz = 0, it follows that
z+— g(2)/2* is holomorphicaroundK; let M := maxcx ||9(2)/Z*|s. Then
l9(2)|lg < |z+1[*M for ze K, i.e.,||h(s)||g < [2/(1+9)|*M when|2/(1+9)| <
g in particularh‘iR € LY(iR;B), becausd is continuousoniiR.

3’ Becausef,ye, andeg,,,q areboundedniR, it follows (asin 2°) from
thechainrule thatalsol’ andh’ arein L(iR;B), hence

. 1 XL/ . 1 . . 1 i
fim Zn/Ré h(ix) dx = ~_h(i)(~i") € L(R;B) (D.42)
andh= T, by LemmaD.1.11(e2)&(el). O
Sometimeghe propertiesof atransferfunctionD : iR — B canberecovered
by multiplying it with the following function:
LemmaD.1.24 Lete > 0, p € [1,]. For eacht > 0 andr € R, weset
for(x) = 2632 X e, fip(s) = fro(s—ir) = 26%/2(s+t —ir) 2.
(D.43)

Wehavefr € L2, ,(Ry), [[firllo=1 and f € LP(w+iR) N Co(w+iR) (w > 0).
Moreover, thefollowing hold:

(@) Therisd> 0s.t.

sup [fir(s)l<e & |firl

. <e & | iR) <€
SEC, [s—ir| >€ Lo ({ip |lp—r|>e}) [ ferllLp(eo+iry

(D.44)
wheneer0<t<9d, reR, w>e.
(b) If E C iR is measuable and p € [1,2], then, for a.e r € E, ther is
6: 6f,E,r,g > O St
I ﬂ,r||Lp(iR\Eg,r) <g (0<t<LY), (D.45)

wheeEe, = {ip€E||p—r| <e}.
(c)Foranyge LP(iR;B) andp € [1,) (or g € (5(iR;B) and p= ) andt > 0,

theris Re R s.t. [ix ||ﬂ7rg||5dm < eand [z ﬂ,r 2||lgllsdm < € wheneer
reR,r|>R.

Proof: The claimsat the beginning of the lemmafollow from straightfor
ward computationgwhich we omit).



(a) We shallassumehatr = 0 (usetranslation)w.l.0.g.
1° SURcc 1 | Tro(9)| < & Setd; := min{e/2, (¢2/9)%/3}. Then,for all
se C andt € (0,%1], we have
~ 2t3/2 2¢2/9  2€2/9
> f < < =
528 = MO (902 = eejp2 ~ s <°
which providesthefirst inequalityin (D.45).
2° || ft0llLp(wir) — O: For p = oo thisfollowsfrom 1°. For p < o, we have

(D.46)

Ifeo(co+i) 1B < 127 +i- [ 2Pt%P/2)) = 0, (D.47)

ast — 0+, for ary w > ¢, becausee +i-|~2P = |¢24-2|7P ¢ L. Therefore,
thereis 63 > 0 s.t.third inequalityin (D.45)is achievedfor all t € (0, 83].

3 |l <& We hae [fio(ip)| = 2t%2/(p? + t?) <

LP({ip| Ip|>z})
2t3/2/e2 — 0, ast — 0+, whenaer|p| > €. Casep = o follows directly from
this; casep < o follows from this andthe DominatedCorvergenceTheorem,
becauseh o € LP, asnotedin 2°.
(b) 1° AssumptionsBYy Section7.110of [Rud86],we have
c
im mE*“N(r—eg,r+¢)) _0 (D.48)
g0+  M(r —g,r+g)
for a.e.r € E. We assumehatr is suchande > 0, andfind d > 0 s.t. (D.45)
holds.W.l.0.g.we assumehatr = 0 (usetranslationof E and f).
2° || frollLp(riE,,) < & ChooseR> 0s.t. 2P+ [ |y +1|~Pdy < eP/4P.
Choosa € (0,€) s.t. m(ESN(—y,y))/2y < €1 :=€P/3P2PT1Rfor all y € (O,n].
Setd:=min{1,n/R,£*/8,£/2,€3}. Then,for ary t € (0,3], we have

[ Foliy) Pdy=2*40/2 [ 2Py =202 [ 77 Pr
lyI=Re y>Rt u

>R
(D.49)
— 2Pi3p/2-2p+l / U2+ 1| "Pdu < 2Pt P/2gP /4P < gP /2P,
u>R
(D.50)

becausd — p/2 > 0. Moreover, Rt < n, hence
~ ~ 2t3/2 P
/ | feo(iy)[Pdy < [ froll5-2Rt-€1 < | ——| -2tRex  (D.51)
{lyl<Rt,yeE} t
< 2PHL=P/2+1Re) — gP/3P (D.52)
BecauseP /2P + P /3P < €P, we have establishedb).

(c) Becausef, |f|2 € LP/(P-D(iR) N Gy(iR), this follows from Lemma
B.3.13. U

Thefollowing functionis handywhendealingwith Fouriertransforms:



Lemma D.1.25 Define@(t) := e **/2. Theng and ¢~ are entire functionsand
®(s) = V21e>'/2 £ 0 for s€ C; in particular, (ir) = v2re /2 > 0for r € R.
Moreover @ € S(R)NLY for all p € [1,0] and w € R, and the functionsof

theform _; T(tk) gy, wheen € N+ 1, andty € R andby € Bfor all ke N, are
densen L(R;B) aswell asin L%(R;B).

Proof: By thedominatedconvergencetheoremwe canexchangehe order
of integration and differentiationto obtainthat(Ap is holomorphiceverywhere
(@ € H(C)). By [Rauch, pp. 64-65], (s) = v/2re>/2 holds for s € iR,
henceit holds everywhere,by LemmaD.1.2(e). One easily verifies that
pe S(R)NLY(R) for all p, w.

BecauseheFouriertransformof @ is nowherezero,thedensityclaim holds
for B=C, by, e.g.,Theoren®.5of [Rud73](theL* case)andp. 1450f [Katzn]
(the L2 case);the generalcasefollows from the densityof finite-dimensional
functionsin LP (TheoremB.3.11). O

We finish this sectionby presentingone more vectorvaluedextensionof a
standardesult:

Lemma D.1.26 The span of {T_€*up|s € (w,w+ 1), up € U} is densein
L2(R_;U).

Proof: We take w = 0 w.l.0.g. Simplefunctionsaredensen L2(R _;U), by
TheorenB.3.11,hencesois thespanof {qug \ @€ L?(R_), upeU}. Therefore,
we mayandwill assumehatU = C w.l.0.g.

Letue L?(R-). If ue {r_e® |s€ (0,1)}4, i.e.,

0 00 P
0=(e",Uy2r_) :/ etu(t)dt :/ e Su(—t)dt = Au(s), (D.53)
_ . 0
for all s€ (0,1), thenfu = 0 on C*+, hencethenu = 0, by LemmaD.1.2(e).
Therefore{e® |s€ (0,1)} is densen L2(R_). O

Notes

As obvious from the proofs, mary of the resultsof this appendixare well
known atleastin thescalarcase.LemmabD.1.23is dueto O. Stafans.

Further results on holomorphicvectorvalued functions are given in, e.g.,
[HP]. Generalvectorvaluedmeasuregwith MTIC asa specialcase;cf. Lemma
D.1.12andSection2.6)aretreatedn [DU], [Dinculeanu],[Dobrakov], [Park] and
in referencesherein.






