
Appendix D

Laplaceand Fourier Transforms
( �

u � �
u)

Themeetingof two personalitiesis like the contactof two chemical
substances:if there is anyreaction,bothare transformed.

— Carl Jung(1875–1961)

In this appendix, we mainly study holomorphic vector-valued functions.
This includesHp spaces,Laplaceand Fourier transformsand Poissonintegral
formulae.Wealsopresentsomeresultson convolutions.

Throughoutthis chapter, B, B2 andB3 arecomplex Banachspaces,U , H and
Y arecomplex Hilbert spaces,K � C, andΩ � C is open.

A function f : Ω � B is holomorphic( f � H
�
Ω;B� ) if the(complex) derivative

f 	 � s� : � lim
h
 0

f
�
s � h�
� f

�
s�

h
(D.1)

of f existsat eachs � Ω. By f � k � we denotethekth derivativeof f . TheBanach
spaceH∞ � Ω;B� of boundedholomorphicfuncitonsis definedby

H∞ � Ω;B� : ��� f � H
�
Ω;B���� � f

�
H∞ : � sup

s� Ω

�
f
�
s� � B � ∞ ��� (D.2)

Westartwith thebasicpropertiesof holomorphicfunctions:

Lemma D.1.1(Weakly holomorphic � � � holomorphic) Let Ω � R be open, f :
Ω � B, andF : Ω ��� � B � B2 � .

(a) If Λ f � H
�
Ω � for all Λ � B� , then f � H

�
Ω;B� .

We may replace B� by any A � B� satisfying
�
x
�
B � sup� �Λx �!�� Λ �

span
�
A�"� � Λ �$#

1 � for all x � B.

(b) If ΛF
�&% � b � H

�
Ω � for all b � B, Λ � B�2, thenF � H

�
Ω; � � B � B2 �'� .

(c) If ΛF
�(% � b � H∞ � Ω � for all b � B � Λ � B�2, thenF � H∞ � Ω; � � B � B2 �'� .

(d) If G �)� � B �(� � B�2 � H∞ � Ω �*�'� (resp.G �+� � B � H∞ � Ω;B2 �'� ) and ΛG
�&% � b �

H∞ � Ω � for all b � B � Λ � B�2, then G � H∞ � Ω; � � B � B�&�2 �'� (resp. G �
H∞ � Ω; � � B � B2 �'� ).
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Thus,if f is weaklydifferentiableon Ω, thenit is differentiableon Ω.
Proof: (a)&(b) Thesefollow from [HP, Theorem3.10.1];notethat,by (a),

we canreplaceB andB�2 in (b) by A � B andA2 � B�2 asin (a). (Spanmeans
thesetof linearcombinations.)

(c) If ΛF
�&% � b � H∞ � Ω � for all b � B � Λ � B�2, thenF is uniformly bounded,

by theuniformboundednesstheorem(fix first Λ, thenb).
(d) 1, AssumethatG �-� � B �(� � B�2 � H∞ � Ω �*�'� . Defineg

�&% �.�-� � B � B�&�2 � by�
g
�
s� b� Λ : � �

GbΛ � � s�/� C. ThensupΩ
�
g
� � �

G
�10

(obviously) andg � H∞,
by (c). Naturally, wecanandwill identify G andg.

2, AssumethatG �2� � B � H∞ � Ω;B2 �'� . ThenG � H∞ � Ω; � � B � B�&�2 �'� , by 1, .
ButG

�
s� bΛ � Λ

�
Gb

�
s�'� for all b � Λ � s, henceG

�
s� b � Gb

�
s�3� B2, for any s � Ω,

b � B. Thus,G � H∞ � Ω; � � B � B2 �'� .
(Note analogousaltered versions of (a) and (b) also hold with, e.g.,

f �+� � B �(� � B�2 � H �
Ω �*�'� in (a), where H

�
Ω � equippedwith the topology of

uniformconvergenceon compactsubsets.) 4
Next weextendthestandardpropertiesof scalarholomorphicfunctionsto the

vector-valuedcase:

Lemma D.1.2(Holomorphic functions) Let s0 � Ω. For r �65 0 � ∞ 7 we set
Dr

�
s0 � : �8� s � C �� � s � s0 � � r � .
Let f � g � H

�
Ω;B� . Thenf 	 � H

�
Ω;B� , f �:9 ∞ � Ω � B� , andtheCauchyintegral

formulaapplies;in particular, if Γ is a closedpathin Ω, andtheindex of Γ around
s0 � Ω is 1 (see[Rud73,p. 79]), then;

Γ
f
�
s� ds � 0 and f � k� � z0 �<� k!

2πi

;
Γ

f
�
z� dz�

z � z0 � k = 1 � H for all k � N0 � (D.3)

Moreover, wehavethefollowing:

(a) If � hn �>� H
�
Ω;B� and hn � h uniformly on compactsubsetsof Ω, then

h � H
�
Ω;B� and,for each k � N, h � k�n � h � k� uocon Ω.

(b1)If T �:� � B � B2 � , thenT f � H
�
Ω;B2 � and

�
T f � 	 � s�?� T

�
f 	 � s�*� for all s � Ω.

(b2) If F � H
�
Ω; � � B � B2 �*� andF

�
s�@�BAC� � B � B2 � for somes � Ω, thenF D 1 is

analyticon a neighborhoodof s,and
�
F D 1 � 	 � s�E�F� F

�
s�!D 1F 	 � s� F �

s�!D 1.

(b3) If F � H
�
Ω; � � B2 � B3 �'� , thenF f � H

�
Ω;B3 � and

�
F f � 	 � F 	 f � F f 	 .

(b4) If φ � H
�
Ω 	 � Ω � , then f G φ � H

�
Ω 	 � B� .

(b5) Let F � G �H9 � Ω;B� . We haveF � H
�
Ω;B� andF 	 � G iff F

�
z�3� F

�
a�I�JLK

a M zN Gdmwhenever 5 a � z7O� Ω (here 5 a � z7 : ��� � 1 � t � a � tz �� t �P5 0 � 17Q� ).
(b6) If F � H

�
Ω; � � U � Y �'� , thenF

� %̄ �*�/� H
�
Ω; � � Y� U �'� .

(c) (Liouville) If Ω � C andΛ f is boundedfor each Λ � B� , then f is a constant
(in B).

(d) (Mor era) If(f) F �R9 � Ω;B� and
J

γ F
�
s� ds � 0 whenever γ � ∂

� 5 x1 � x2 7TS5 y1 � y2 7U� (a rectanglewhosesidesare parallel to thecoordinateaxes),then
F � H

�
Ω;B� .
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(e) (Analytic continuation) If Ω is connected,and f � g ona setA � Ω having
a limit point in Ω, then f � g on Ω.

(f) (Maximum modulusprinciple) If Ω is boundedand f �V9 � Ω̄;B�XW H
�
Ω;B� ,

then
�
f
�
H∞ � sup∂Ω

�
f
�&% � � B.

Moreover, if this is thecase, thenthevaluesof f on Ω canbeobtainedby
thePoissonintegral formula.

(g1) Let � bn �Y� B, and set ρ : �[Z lim supn � N
�
bn
� 1\ n ] D 1

. Then∑n � N bn
�
s �

s0 � n � : F
�
s� convergesabsolutelyanduocto a functionF � H

�
Dρ

�
s0 � ;B� .

Moreover, F � k � � s0 �^� k!ak for all k.

(g2) (Taylor series) Let F � H
�
DR

�
z0 �_� B� and r � R. Then

�
F � k � � s0 � �`#

k!Mr D k, whereM : � supDr � z0 � � F �&% � � , and

F
�
s�E� ∑

k � N

F � k� � s0 �
k!

�
s � s0 � k when � s � s0 � � R; (D.4)

this presentationis unique.

(h) If h � H
�
Ω ab� s0 � ;B� is boundedon a neighborhoodof s0, then b : �

lims
 s0 h
�
s� exists and h � H

�
Ω;B� if we set h

�
s0 � : � b (such points are

oftencalledremovablesingularities).

(i) LetB � B2 continuously. ThenH
�
Ω;B�E�c9 � Ω;B�dW H

�
Ω;B2 � .

(j) If F � H
�
Ω;B� andF

�
s0 �^� 0, thenF e � s � s0 �@� H

�
Ω;B� .

The fact (h) is equivalentto H∞ � Ω af� s0 � ;B�I� H∞ � Ω;B� (for arbitraryopen
setsΩ).

Proof: The first claims follow from [HP, Theorem3.10.1], [Rud73,The-
orem3.31] andinduction(alternatively, by applyingthe correspondingscalar
claimsto Λ f , Λ � B� ).

Claims(a), (e), (g1)and(g2) follow from [HP, pp.96–100].
Claims(b1) and(b3) areobvious,claims(b4), (c), (d) and(f) follow from

correspondingscalarclaims(in (c) wealsoneeduniformboundednesstheorem,
in (d) alsoLemmaD.1.1).

(b2) (N.B. This proof appliesalso if � � B � B2 � is replacedby a Banach
algebra.)By LemmaA.3.3(A2),F D 1 existsonaneighborhoodof s. Therefore,

F
�
s � h� � F �

s � h� D 1 � F
�
s� D 1

h
� F

�
s� D 1F 	 � s� F �

s� D 1 � F �
s� (D.5)� F

�
s�?� F

�
s � h�

h
� F

�
s � h� F �

s� D 1F 	 � s�<� 0 � (D.6)

as h � 0, becauseF
�
s � h� F �

s�!D 1F 	 � s�g� F 	 � s� , by continuity, and
F � s� D F � s= h�

h � � F 	 � s� . To remove the outer termsfrom (D.5), multiply it by
F
�
s � h�!D 1 to theleft andby F

�
s�1D 1 to theright, anduseLemmaA.3.1(j3) (see

LemmaA.3.4(F1)).
(b5) 1, “If ”: Let a � Ω. Chooseδ h 0 s.t. � z � a � � δ � z � Ω &�

G
�
z�O� G

�
a� � B � ε. Then

�
z � a�!D 1 � F �

z�O� F
�
a�'�O� G

�
a� � ε, for � z � a � � δε,

henceF 	 � a�E� G
�
a� . Becausea � Ω wasarbitrary, wehaveF � H andF 	 � G.
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2, “Only if ”: This follows from thescalarcase.
(b6)Now F � s̄�ji D F � s̄0 �ji

sD s0
� Z F � s̄� D F � s̄0 �

s̄D s̄0

] � � F 	 � s̄0 �'� , ass � s0.
(h) By thescalarcase,Λh extendsto H

�
Ω;C � for all Λ � B� . Theoperator

h
�
s0 � : Λ k� �

Λh� � s0 � is linearandbounded,henceh � H
�
Ω;B�(� � , by Lemma

D.1.1(b).By continuity, h
�
s0 �@� B.

(i) We have H
�
Ω;B�f�F9 � Ω;B�
W H

�
Ω;B2 � , by (b1). Conversely, if F �9 � Ω;B�OW H

�
Ω;B2 � then

J
γ F

�
s� ds � 0 in B2, hencein B, by (B.18)appliedto

I : B � B2, whenγ is asin (d). ThereforeF � H
�
Ω;B� .

(j) We have ΛF e � s � s0 �l� H
�
Ω;B� for all Λ � B� , by Theorem10.18of

[Rud86],henceF e � s � s0 �@� H
�
Ω;B� , by LemmaD.1.1. 4

Wewill usethefollowing notation:

Definition D.1.3(Hp � Lp
r � Hp

r � CJ � C mr � Ca M bHp � Lp
r � Hp

r � CJ � C mr � Ca M bHp � Lp
r � Hp

r � CJ � C mr � Ca M b) Let 1
#

p
#

∞, � ∞
#

a � b
#

∞,
and r � R, let J � R be an interval and let Ω � R be open. SetC mr : �onY� s �
C �� Res h r � , Ca M b : �F� s � C �� a � Res � b � ,

Lp
r
�
J;B� : � er p Lp � J;B�E�F� f : J � B �� eD r p f �&% �@� Lp � J;B�"��� (D.7)

Hp
r
�
B� : � Hp � C =r ;B� : �F� g � H

�
C =r ;B� �� � g � Hp

r � B� � ∞ ��� where (D.8)�
g
�
Hp

r � B� : � sup
r qsr r

�
g
�
r 	!� i

% � � Lp � R;B� � lim
r q 
 r = � g � r 	1� i

% � � Lp � R;B� � (D.9)

We alsosetHp : � Hp
0, Hp

∞ : �8t ωHp
ω, C m : � C m0 ,

�
f
�
Lp

r
: � �

eD r p f � p. If B � U is
a Hilbert space, then,in H2

r , wedefinetheinnerproductu
f � gv H2

r
: � lim

r qw
 r = u f � r 	1� i
% �"� g � r 	1� i

% �xv L2 � R;U � � (D.10)

The spacesHp � rD;B� (r h 0) are definedanalogously, with
�
g
�
Hp � Dr ;B� : �

supr qsy r
�
g
�
r 	 ei p � � Lp � K 0 M 2π � ;B� .

Finally,
�
g
�
Hp � CJ;B� : � supr � J

�
g
�
r � i

% � � Lp � R;B� defines(and norms)a sub-
spaceof H

�
CJ;B� , where CJ : ��� s � C �� Res � J � , if J is open.

Recallthat rD � Dr : �o� z � C �� � z � � r � . NotethatCR z � C m , C � a M b� � Ca M b,
andthatF �RA Hp

∞ if f thereis ω � R s.t.F �BA Hp
ω.

With the aid of Section6.2 of [HP], oneeasilyverifiesthatDefinition D.1.3
is correct,thattheabove innerproductinducestheoriginal

�E%{�
H2 norm,andthat

theabovedefinitionsof Lp
0 andH∞

r coincidewith their previousdefinitions.Note
alsothat we usethe (one-dimensional)Lebesguemeasureon iR and 5 0 � 2π � (in
particular, wehaveno2π-normalization).

Note that eachHp � C =ω � result has a “mirror image result” for Hp � C DD ω � ,
becausef k� f

� � % � is an isometricisomorphismbetweenthesetwo spaces(p �5 1 � ∞ 7 , ω � R).

Lemma D.1.4(Lp
r � Hp

rLp
r � Hp

rLp
r � Hp

r ) Let1
#

p1
#

p
#

p2
#

∞, and � ∞ � r � r 	 � ∞, andlet
Ω � C beopen.Thenthefollowingholds:

(a) The spacesLp
r , H∞ � Ω;B� and Hp

r are Banach spaces; in particular,
H2 � C =r ;U � is a Hilbert space.
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ByTheorem3.3.1(b),wecanusetheboundaryfunctionsof f andg to writeu
f � gv H2

r
� u

f � gv L2 � r = iR;U � .
(b1) Themappingf k� ea p f is an isometricisomorphismof Lp

r ontoLp
r = a. The

mappingg k� g
�&% � a� is an isometricisomorphismof Hp

r ontoHp
r = a.

(b2) If J is bounded,thenLp
r � Lp � Lp

r q with equivalentnorms.If p � ∞, then
Lp

r
�
J;B�E� Lp � J � µr;B� with equalnorms,where dµr � eD r p p dm,for p � ∞.

(b3) If fn � f in Lp
r and fn � g in Lp2

ω (or fn � g pointwisea.e.) for some
functionsf andg andsomeω � R, then f � g a.e.

(b4) We haveLp2
r
�
R = ;B�$�

c
Lp

r q � R = ;B� , indeed,
�
f
�
Lp

r q # Mp M p2 M r q D r
�
f
�
L

p2
r

for

all f � Lp2
r
�
R = ;B� .

(c) If g � H∞ � C =r ;B� is continuousto the boundaryr � iR, then
�
g
�
H∞

r
�

supr = iR
�
g
�&% � � B.

If B � U or B ��� � U � Y � , thenTheorem3.3.1(a2)&(c1)&(c2)provideanal-
ogousresultsfor an arbitrary g � H∞

r .

(d) WehaveHp
r
�
B�/�

c
Hp2

r q � B� andHp1
r
�
B�dW Hp2

r
�
B�$�

c
Hp

r
�
B� .

(e) (Hp � rD;B�Hp � rD;B�Hp � rD;B� ) Resultsanalogousto (a), (c) and (d) hold for Hp � rD;B� too,
and themappingg k� g

�
t
% � is an isometricisomorphismof Hp � rD;B� onto

Hp � trD;B� .
(f) Let f � Hp � C =ω ;B� , 1

#
p � ∞, ω � R, ε h 0. Thensup| θ | } π \ 2 � f

�
ω � ε �

reiθ � � B � 0 asr � ∞.

SeealsoLemmaF.3.2.
Proof: (a) For Lp

r this follows from (b1). A H∞-Cauchysequenceis a
pointwiseuniformly aCauchy-sequence,henceit convergesuniformly, andthe
limit is holomorphic,by LemmaD.1.2(a).ThusH∞ � Ω;B� is complete.

A Hp
r -Cauchysequence� fn � convergesto somefunction f in eachLp � t �

iR;B� (t h r). By (6.4.3) of [HP] (applied to someσ � �
r � t � ; cf. Theorem

3.3.1(a3)),this convergenceis uniform on C =
t for eacht h r), hence f is

holomorphic.Obviously, fn � f in Hp
r .

(b1)&(b2) Theseareobvious.
(b3)By TheoremB.3.2,therearen1 � n2 � n3 � %'%'%

s.t. fnk � f and fnk � g
pointwisea.e.,hencef � g a.e.

(b4)By (b1),wemayassumethatr 	 � 0. Assumethatr 	 � 0 h r. Then�
f
�

p
#o�

eD r p f � p2

�
er p �

q
#

Mp M p2 M r � f
�
L

p2
r

(D.11)

by LemmaB.3.13,whereMp M p2 M r : � �
er p �

q � ∞, q D 1 : � p D 1 � p2 D 1 �-5 1 � ∞ 7~D 1.
(c) This follows from the scalarcase(alternatively, from the Maximum

modulusprincipleby usinga conformalmapof C =
r � D1= ε).

(d) The latter claim follows easily from the fact that Lp1 W Lp2 �
c

Lp, by
LemmaE.1.1.

We have a continuousembeddingHp
r
�
B�`� H∞

r q � B� , by Theorem6.4.2
of [HP] (shift it by

�
r 	 � r �'e 2); obviously also inclusion Hp

r
�
B��� Hp

r q � B� is
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continuous,hence

Hp
r
�
B�/�

c
Hp

r q � B�dW H∞
r q � B�/�c Hp2

r q � B�"� (D.12)

(e) Theaboveproofsapplymutatismutandis(seealsoTheorem3.3.1).
(f) This follows from Theorem6.4.2of [HP] (replaceω by ω � ε e 2 and

ε by ε e 2 to overcomethe nonstandardassumption(iii) of Definition 6.4.1of
[HP]; cf. Theorem3.3.1(a3)). 4
Thenormof a holomorphicfunction is greateston theboundary(cf. Lemma

D.1.2(f)):

Lemma D.1.5(Hadamard ThreeLine Theorem) Let f � 9 b
�
Ca M b;B��W

H
�
Ca M b;B� . SetMr : � sup

�
f
�
r � iR � � B (r �H5 a � b7 ). Then

Mr
#

M1 D θr
a Mθr

b

#
max� Ma � Mb � �

r �P5 a � b7��_� (D.13)

where θr : � �
r � a�'e � b � a� .

Usethe mappings k� es to obtainthe HadamardThreeCircle Theorem(cf.
p. 264of [Rud86]).

Proof: For B � C, a � 0 andb � 1, this is Lemma1.1.2of [BL]. By setting
g
�
s� : � f

�'�
b � a� s � a� we obtain the scalarversionof the theorem. For a

general f , we then have
�
Λ f

�
r � it � ��# M1 D θr

a Mθr
b for all r � it � Ca M b and

Λ � B� s.t.
�
Λ
�$#

1; thegeneralclaim follows from this. 4
Definition D.1.6(Convolution) LetB S B2 � B3 becontinuousandbilinear. The
convolution f � g of f : Rn � B andg : Rn � B2 is definedby�

f � g� � t � : � ;
Rn

f
�
t � r � g � r � dr � ;

Rn
f
�
r � g � t � r � dr � B3 � (D.14)

for thoset � Rn for which f
�
t � % � g �(% ��� L1 � Rn;B3 � .

If, e.g., f (resp.g) is definedonΩ � Rn only, wedefinetheaboveconvolution
by declaringf � 0 (resp.g � 0) outsideΩ.

HereB � B2 � B3 might bea Banachalgebra,but evenmorecommonis the
casewhereB �o� � B2 � B3 � (e.g.,B � C andB3 � B2, or B � B�2 andB3 � C); in
factthelattercontainstheformer.

Standardconvolution resultsholdalsofor vector-valuedfunctions:

Lemma D.1.7(
�
f � h

�
q
#

M
�
f
�

p
�
h
�
r

�
f � h

�
q
#

M
�
f
�

p
�
h
�
r

�
f � h

�
q
#

M
�
f
�

p
�
h
�
r) Let p � q � r ��5 1 � ∞ 7 , f � Lp � Rn;B� and

g � Lq � Rn;B2 � , where B S B2 � B3 is bilinear and
�
bb2

�
B3

#
M
�
b
�
B
�
b2
�
B2.

If 1e p � 1e q � 1, then f � g existson the wholeRn, f � g �H9 bu
�
Rn;B3 � and�

f � g
�

∞
#

M
�
f
�

p
�
g
�
q (and f � g �g9 0

�
Rn;B3 � if 1 � p � ∞).

If h � L1 � Rn;B2 � , then f � h exists a.e. and
�
f � h

�
p
#

M
�
f
�

p
�
h
�
1. If

h � Lr � Rn;B2 � and p D 1 � r D 1 � 1 � q D 1, then f � h existsa.e. and
�
f � h

�
q
#

M
�
f
�

p
�
h
�
r .
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Moreover, in all combinationslisted above (e.g., L1, L1 and Lp or L1, Lp,
Lq, in any order), the laws τT � G � F �$� �

τTG�3� F � G � τTF
�
T � Rn) (time-

invariance),
�
G � F �
� H � G � � F � H � (commutativity)are valid, and for n � 1

wehaveπ D F � 0 � π D G � π D � F � G�<� 0 &
�
F � G� � t �E� �

π
K
0 M t � F � π

K
0 M t � G� � t �

(causality).
All aboveclaimsalsohold with L pω in placeof L p . All aboveclaimshold with

Zn in placeof Rn.

If B S B2 � B3 is bilinearandcontinuous,then
�
bb2

�
B3

#
M
�
b
�
B
�
b2
�
B2 for

someM � ∞, by LemmaA.3.4(J1). In mostcases,onehasM � 1 (e.g, when
B2 �c� � B � B3 � ).

We also note that if f � Lp
loc

�
R = ;B� and g � Lq

loc

�
R= ;B2 � , then f � g �9 � R = ;B3 � (apply the lemmato π

K
0 M T � f and π

K
0 M T � g for eachT � R = , and use

causalityto obtaincontinuityon 5 0 � T 7 ).
Proof of Lemma D.1.7: The proof of the third inequality (Young’s

Inequality) is analogousto that of TheoremE.1.7 and henceomitted; see
Theorem1.2.2of [BL] for the proof (the Zn caseis analogous).The proofs
of theotherclaimsareanalogousto thatin thefinite-dimensionalcase(for Rn);
see,e.g.,pp.39& 63–64of [GLS] anduseLemmaB.3.9for uniformcontinuity
andCorollary B.3.8 for the 9 0 property. Note that because

�L�
f � h� � t � � B3

#
M
�!�

f
�
B � � h � B2 � � t � � ∞ for a.e.t, theconvolution integrandis in L1 for a.e.t.

We note that the commutativity claims follow easily from the Fubini
Theorem.

Let f � Lp
ω andh � Lr

ω, andsetthen �f � eD ω p f � Lp, �h � eD ω p h. Then,obvi-
ously, f � h � eω p � �f � �h� , hence

�
f � h

�
Lq

ω

#
M
�
f
�
Lp

ω

�
h
�
Lr

ω asabove,etc. 4
Let Ω � C = or Ω � D. Let � zn ��� Ω andzn � z∞, wherez∞ � ∂Ω. We say

that zn � z∞ nontangentially if thereis an openconeC � Ω with vertex at z∞
s.t. � zn �b� C (see[Hoffman], [Rud86]or [Garnett]for equivalentdefinitions).In
particular, zn � 0 nontangentiallyonC = , asn ��� ∞, if f zn � C for all n, zn � 0,
asn ��� ∞, andthereis M � ∞ s.t.Imzn e Rezn � M for all n.

ThePoissonintegralPr � f of a function f convergesto f in many ways:

Lemma D.1.8(Poissonintegral formula) LetPr
�
t � : � r

π � r2 = t2 � .
(a1) The operator f k� Pr � f is a stableC0-semigroup on 9 bu

�
R;B� and on

Lp � R;B� when1
#

p � ∞.

(a2) If f �-9 � iR t�� ∞ � ;B� , thenr � it k� �
Pr � f � � t � is in 9 � C = t�� ∞ � ;B� . In

particular, f �B9 0
�
R;B� implies that

�
Pr � f � � t �/� 0 as � r � it �L� ∞ and

r � it � C = .

(a3) Let f � Lp � R;B� , 1
#

p
#

∞. Then f k� Pr � f is a semigroup(Pr � Pr q �
Pr = r q for r � r 	 h 0), althoughnot necessarilystrongly continuous(in case
p � ∞),

�
Pr � f

�
p
#��

f
�

p (r h 0),
�
Pr � f

�
p � �

f
�

p, and
J RD RgPr � f dm �J RD Rgf dm, as r � 0� , for anyR h 0 andg � L∞ � R; � � B � B2 �'� . Moreover,�

Pr � f � � t ��� f
�
t � asr � 0� nontangentially, for everyLebesguepoint t of

f , hencea.e.
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(a4) If f � L∞ � R;B� and g � L1 � R; � � B � B2 �'� , then
J
R g

%d�
Pr � f � dm �J

R gf dm,asr � 0� .

(b) Let F ��9 � C = ;B�
W H∞ � C = ;B� . ThenF is given on C = by the Poisson
integral formula

F
�
r � it �E� r

π

;
R

F
�
iy � dy

r2 � �
t � y� 2 � �

Pr � F
�
i
% �*� � t � �

r h 0 � t � R �_� (D.15)

(c) If F � H∞ � C = ;B� , thenF ��9 bu
�
r � iR;B� for anyr h 0, andr k� F

�
r � i

% �
is continuous

�
0 � ∞ �E��9 bu

�
R;B� .

(d) Theabove resultshold mutatismutandisfor D in placeof C = and ∂D in
placeof iR, with Pr

�
t � : � 1 D r2

1 D 2r cost = r2 (0
#

r � 1, t � R).

(We have sethereP0 : � δ, i.e., P0 � f : � f .) Note that in the above results,
the imaginaryaxis (iR) can be shifted right or left, whichever is needed. If B
is a Hilbert space,thenan arbitraryHp functionF hasanLp boundaryfunction
(whosePoissonintegral is F, by thescalarresult;seealso[HP, p. 227]), for any
p ��5 1 � ∞ 7 ; seeTheorem3.3.1(a2)&(a1).

Proof: (a1) The semigroupclaim can be proved as in the scalar case
[Garnett,pp.12–17];notethat

J
R Pr dm � 1.

(a2) For D in placeof C = , this follows from [Rud86, Theorem11.8] if
g is finite-dimensional;in thegeneralcaseonecanapproximateg by a finite-
dimensionalcontinuousfunction(e.g.,by afunctionthatis “piecewiselinearon5 0 � 2π 7 ”) anddeducethecontinuityasin theproof of [Rud86,Theorem11.8]).
Theoriginal (“C = ”) claim follows throughCayley transform.

(a3)1, Basicproperties:By p. 13–14of [Garnett],wehavePr � Pr q � Pr = r q
and

J
R Pr dm � 1, hencePr � is asemigroupand

�
Pr � f

�
p
#o�

f
�

p.
2, Nontangential limits: For f � Lp � D;B� (cf. (d)), the existenceof a

nontangentiallimit at eachLebesguepoint follows exactly as in the proof of
(scalar)Theorem11.23of [Rud86]. Therefore,the sameholdsfor Lp � iR;B� ,
becausetheCayley transformmapsLp � iR;B� one-to-oneinto Lp � ∂D;B� , and
preserves Lebesguepoints and nontangentiallimits, by Lemma 13.2.1(e).
(Recallthatr � 0� nontangentiallymeansthatr � 0 onasubsetof C = where
Im r e Rer is bounded(e.g.,on

�
0 ��� ∞ � ).)

3, �
Pr � f

�
p � �

f
�

p as r � 0� : For p � ∞ this follows from Theorem
6.4.3(ii)of [HP]. For p � ∞ thisfollows2, andtheinequality

�
Pr � f

�
p
#c�

f
�

p.
4, J RD RgPr � f dm � J RD Rgf dm: For p � ∞ this follows from (a4); for

p � ∞ this followsfrom thefactthatχ
K D RMRN g � Lq andPr � f � f in Lp, where

p D 1 � q D 1 � 1.
(a4)

J
R g

�
t � J R Pr

�
t � s� f

�
s� ds � g

�
t � f

�
t � dt � J

R
J
R g

�
t � Pr

�
t �

s� dt f
�
s� ds � J

R g
�
s� f

�
s� ds � 0, by The Fubini Theorem(andThe Hölder

Inequality),asr � 0� , since
J
R g

�
t � Pr

�
t � s� dt � g in L1, by (a1) (notethat

Pr
�
t � s�<� Pr

�
s � t � ).

(b) ΛF � Λ
�
Pr � F

�
i
% �*� on C = for all Λ � B� , by [Garnett,Lemma3.4],

hence(D.15)holds.
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(c) By shifting F to the left by r e 2, we see that we can assumethat9 � C = ;B�<W H∞ � C = ;B� . BecausePr � L1 and F
�
i
% ����9 b � L∞, we have

Pr � F
�
i
% �I��9 bu

�
R;B� , by LemmaD.1.7.

From(a1)it followsthatt k� Pt � F
�
i
% �?� Pt D r � Pr � F

�
i
% ���V9 bu is continuous

on
�
r � ∞ � ; becauser h 0 wasarbitrary, theclaim follows.
(d) Theproof areanalogous(seethesamereferences). 4

We usethe standarddefinition of the Laplacetransfrom;it follows that the
Fouriertransformbecomesits restrictionto iR. (Thus,this is thestandardFourier
transformrotatedclockwiseby π e 2.)

Definition D.1.9(Laplaceand Fourier transforms) Let u : R � B be measur-
able. TheLaplacetransformof u is thefunction� �

u : ���u � s� : � ;
R

eD stu
�
t � dt � (D.16)

definedon thoses � C for which the integral converges(i.e., for which eD sp u �
L1 � R;B� ). If u � L1 � R;B� , we call the restriction �u � iR : iR � B the Fourier
transformof u.

Naturally, the Laplaceand Fourier transformsinherit the propertiesof the
Bochnerintegral; in particular, they arelinearandcommutewith boundedlinear
operators.

It is shown in LemmaD.1.11that �u � L1 � R;B���E� �u � i % �E��9 0
�
iR;B� , andthat�u � L1 � R = ;B�C�E� �u � i % �I� H∞ � C = ;B� .

Next we list somebasicpropertiesof Laplacetransforms:

Lemma D.1.10( �f�f�f ) With thenotationof DefinitionD.1.3,wehavethefollowing:

(a1) If f � L1
r
�
R = ;B� , then

� �f � s� � B #o�
f
�
L1

r
for s � C̄ =r ,

(a2) If f � Lp
r
�
R = ;B� and t h r, then �f � H∞ � C =t ;B� , and

� �f � B #�
eD3� t D r �~p �

q
�
f
�
Lp

r � ∞ on C =t .

(a3) Let a � b. If
�
f
�
Lp

r � R;B� # M for r � �
a � b� , then f � Lp

a W Lp
b and�

f
�
Lp

r
��9 � 5 a � b7U� .

(a4)If f � Lp
a W Lp

b, then
�
f
�
Lp

r � R;B� # M : � max� � f
�
Lp

a
� � f

�
Lp

b
� for all r ��5 a � b7

(hence(a3)applies).

(b) (Uniqueness)Let u � v : R = � B be measurable and let er p u � er p v � L1 for
somer � R. Thenu � v a.e. iff �u ���v on C =r (iff �u ���v on r � iR).

SeealsoTheorem3.3.1.
Proof: (a1)This is obvious.
(a2)Chooseq s.t.1e p � 1e q � 1. Because

�
eD sp er p �

q
#F�

eD3� t D r �~p �
q � ∞ for

s � C =t , the function eD sp f is in L1 andwe get the norm bound(by Hölder’s
inequality). By the dominatedconvergencetheorem,we may differentiate
underthe integral sign, thuswe see f is holomorphic. See,e.g., [Sbook] for
details.



970 APPENDIXD. LAPLACEAND FOURIERTRANSFORMS( u u)

(a3)1, Casep � ∞: Let g � Lp � R = ;B� and
�
g
�
Lp

r

#
M for r � �

a � b� . Then�
g
� p
Lp

r
: � ;

R
eD r pt � g � t � � p

Bdt � ;
R

eD bpt � g � t � � p
Bdt � :

�
g
� p
Lp

b
� (D.17)

ast � b � , by theMonotoneConvergenceTheorem,henceg � Lp
b and

�
g
�
Lp

b
�

limr 
 b D � g � Lp
r
.

The sameholds for any g � Lp � R D ;B� , by the DominatedConvergence
Theorem;consequently, an arbitraryg � L1 � R;B� will do. Apply this to Rg
(and

� � b �'� a� ) to obtainthesameat a.
SetF

�
t � : � �

f
�
Lp

t
. By theabove, F

�
t ��� lims
 t F

�
s� for t ��� a � b � ; apply

this for 5 a � t 7 and 5 t � b7 to seethatF is continuousat every t ��5 a � b7 .
2, Casep � ∞: Let g � L∞

c
�
R = � for somec � 0. Set Mr : � �

g
�
L∞

r
: ��

eD r p g � ∞ for r � R. Thenthereis T h 0 s.t. ec\ 2 �g � � M0 for a.e.t h T. It
follows thatMr

#
MeD rT for r h ce 2, henceM0 � lim supr 
 0 D Mr . Therefore,

M0 � limr 
 0 D Mr (becauseMr is obviouslydecreasing).
If g � L∞ � R D � , then Mr is increasingand, so M is, obviously, again

continuousat 0 from the left. The sameholds for any g � L∞ � R � , because
max: R2 � R is continuous.

Apply theabovefor g : � �
eD b p f � B toobtaincontinuityatb. Therestfollows

asin 1, .
(a4)W.l.o.g.we assumethata � 0, B � C, f � 0, f �� 0 andp � ∞ (case

p � ∞ is obvious).Set

g
�
r � : � �

f
� p
Lp

r
� ;

R
eD prt f

�
t � dt

�
r ��5 0 � b7��_� (D.18)

Obviously, g	 � r � � � J
R pteD prt f

�
t � dt, g	�	 � r � � � pg	 � r ���

p2 J
R t2eD prt f

�
t � dt h�� pg	 � r � for all r � �

0 � b� . Thus, if g	 � r0 ��� 0 for
somer0 � �

0 � b� , theng	�	 � r0 ��h 0, henceg hasno maximumon
�
0 � b� , hence

(a4)holds.
(b) For separableU , this resultis containedin [CZ, TheoremA.6.19], and

we may alwaysreplaceU by the closedspanof f 5C = 7 , which is a separable
Hilbert space(becausef 5C = 7 is a continuousimageof a separableset,hence
separable).

(c) This follows from thescalarcase(or from LemmaD.1.11(a3’))(andof
LemmaD.1.11(a3). 4
As in the scalarcase,the Fourier transformmapsL1 � R;B� to continuous

functionson iR, vanishingat infinity:

Lemma D.1.11(L1L1L1 Fourier transform) Let B bea Banach space, f � L1 � R;B�
andω � R. Thenwehavethefollowing:

(a1) �f ��9 0
�
iR;B� , and

� �f � ir � � B #o�
f
�
L1 for r � R.

(a2)TheFourier transformf k� �f is linear andcontinuous,i.e., in � � L1 �(9 0 � .
(a3) (Uniqueness)If �f � 0 on iR, then f � 0 (in L1, that is, a.e.).

(b) (Riemann–Lebesgue)Wehave
� �f � ir � � B � 0 as � r �"� ∞ andr � R.
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(c) �f � g � �f �goniR wheng � Lp � R;B2 � (p �:� 1 � 2 � ) andB S B2 � B3 is bilinear
andcontinuous.SeealsoLemmaD.1.12(c).

(d) If f � f 	 � L1, then �f 	 � ir �^� ir �f � ir �
� f
�
0� .

(e1) (Inverse Fourier transform) If �f � L1 � iR;B� , then f
�&% ���

1
2π
J
R eix p �f � ix � dx ��9 0

�
R;B� a.e. (andin all pointst of continuityof f ).

(e2) If f � f 	 � f 	�	 � L1 � R;B� (e.g., if f ��9 2
c
�
R;B� ), then �f � Lp � iR;B� for all

p �H5 1 � ∞ 7 .
(f1) �τ � t � f

�
s�E� est f

�
s� (s � iR) (for s � C = if f � π = f ).

(f2) If f � eω p f � L1, then �eω p f � s�<� �f � s � ω � (s � iR) (for s � C = if f � π = f ).

Assume, in addition,that f � π = f . Thenwehavethefollowing:

(a1’) f � H∞ � C = ;B��W�9 0
�
C = ;B� , andsupC � � �f � � supiR

� �f ��#o�
f
�
L1.

(a2’) The Laplace transform f k� �f is linear and continuous, i.e., in� � π = L1 � H∞ � .
(a3’) (Uniqueness)If �f � 0 on C = , then f � 0 (in L1, that is, a.e.).

(b’) Wehave
� �f � s� � B � 0 as � s �"� ∞ ands � C = .

(c’) �f � g � �f �g on C = if theassumptionsof (c) aresatisfiedandπ D g � 0.

(d’) Onecanobtain �f � r � it � fromthePoissonintegral formula�f � r � it �E� r
π

;
R

�f � iy � dy
r2 � �

t � y� 2 �
r h 0 � t � R �_� (D.19)

(d”) If f � f 	 � L1, then �f 	 � s�E� s �f � s�
� f
�
0� for s � C = .

As above, we do not distinguishbetweentheFourierandLaplacetransforms
unlessit is necessary.

If one would definethe Fourier transformas   f : � �f � i % � , then one would
obtainfrom (e1) that  -D 1 � 1

2π R ¡� 1
2π   R. However, we considertheFourier

transformof f in theLaplacesense,henceits domainis iR, not R. Despitethis
rotationby π e 2, thepropertiesof theFourier transformaresharedby its inverse,
e.g., �f � L1 impliesthat f ��9 0.

Proof: (a1) The uniform continuity is mosteasilyobtainedfrom (b); the
restis obvious.

(a1’) Theholomorphicityis notedin [HP, pp. 215–216].Thecontinuity is
obtainedfrom theDominatedConvergenceTheorem.Thenormclaim follows
from the scalarcase(alternatively, from the Poissonformula). The uniform
continuityis mosteasilyobtainedfrom (b’);

(a2)&(a2’) Theseareobvious.
(a3)&(a3’)&(d)&(d’)&(d”) Thesefollow from the scalarcase(cf. Lemma

B.2.6) (the Poissonkernel is an L1 function; pages229 and227of [HP] give
an alternative proof of (g’)). (In (d) and(d”), the derivative f 	 neednot exist
everywhere,it is enoughthat f � W1 M 1; analogously, in (e2) it suffices that
f � W2 M 1.)
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(b’) Let ε h 0. Chooseφ �¢9 ∞
c
�'�

0 ��� ∞ � ;B� s.t.
�
F � φ

�
1 � ε e 2. Be-

cause
� �φ � s� � B � � �φ 	 e s � B #£�

φ 	 � 1 eT� s � on C = , we have
� �φ � s� � B � ε e 2, hence�

F
�
s� � B � ε, for � s � large enough(by continuity (see(a1’)),

�
F
�
s� ��# ε for

s � iR too).
(b) If f � L1 � R;B� , then �f ���π = f � R¤ Rπ D f vanishesat infinity, by (b).
(c) Thiscanbeprovedasin thescalarcase[Rud86,Theorem9.2(c)].
(c’) This is containedin [HP, Theorem6.2.4].
(e1)Usethescalarcase(and(a1)&(b) for 9 0).
(e2) By (d) and (a1), ir �f � ir �.� f

�
0� and

�
ir � 2 �f � ir �@� �

ir � 1� f
�
0� are

bounded,henceso is r2 �f � ir � . Because�f ��9 0, it follows that �f � L1 W L∞,
hencein eachLp.

(f) Theseareobvious. 4
Many of thepropertiestreatedin thepreviouslemmahold for generalvector-

valuedmeasures.To makethingssimple,weonly treat“MTI ”, whichcorresponds
to certain(all if dimB � ∞) measureshaving only adiscretepartplusanabsolutely
continuouspart:

Lemma D.1.12(MTI Fourier transform) LetB bea Banach spaceandset

MTIB : ��� µ � ∑
j � Z

a jδt j � f �� � µ � MTI : � ∑
j

�
a j
�
B � �

f
�
L1 � R;B� � ∞ ��� (D.20)

MTICB : ��� µ � ∑
j

a jδt j � f � MTIB �� f � L1 � R = ;B� & t j � 0 for all j ���
(D.21)

Let µ � ∑ j � Z a jδt j � f � MTIB.
We usethestandard definitionsof theFourier transformof µ � MTIB andthe

Laplacetransformof µ � MTICB:�µ � s� : � ∑
j � Z

a jeD st j � �f � s�_� (D.22)

for s � iR (for s � C = , if µ � MTICB).
Wehavethefollowing:

(a1) �µ ��9 bu
�
iR;B� , and

� �µ � ir � � B #o�
µ
�
MTI for r � R.

(a2) The Fourier transform µ k� �µ is linear and continuous, i.e., in� � MTIB; 9 bu � .
(a3) (Uniqueness)If �µ � 0 on iR, thenµ � 0.

(b1)Wehavea j � limT 
�= ∞
J TD T �µ � ir � eD it jr dr for all j � Z.

(b2) If f � 0, then�µ � AP
�
iR;B� (i.e., �µ � i % ��� AP

�
R;B� ).

(c) Letν � MTIB2, andlet B S B2 � B3 bebilinear and
�
bb2

�
B3

#��
b
�
B
�
b2
�
B2.

Then(c1)–(c3)hold.

(c1) �µ � ν �¢�µ�ν on iR and
�
µ � ν

�
MTI

#¥�
µ
�
MTI

�
ν
�
MTI , where δt � δr : �

δr = t andδt � f : � τ
� � t � f .
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(c2)For all 1
#

p
#

∞ andg � Lp � R;B2 � , theconvolutionµ � g existsa.e.
and

�
µ � g

�
Lp � R;B3 � #o�

µ
�
MTI

�
g
�

p.
(c3) We have

�
µ � ν ��� λ � µ � � ν � λ � and

�
µ � ν �3� g � µ � � ν � g� when

λ � MTI
0 � B3 M B4 � andg � Lp � R; � � B3 � B4 �'� .

(d) Assumethat B �¦� � U � Y � , where U and Y are Hilbert spaces. Then�
µ � � TI � U MY � #F�

µ
�
MTI ,

�
µ�X�'��� �

Rµ�_�1�C� TI
�
Y� U � , � µ�X� d � µ�_�§� TI

�
Y� U � ,

R
�
µ�X� R� �

Rµ�!�¨� TI
�
U � Y � , and eω p � µ�X� eD ω p � �

eω p µ�!�¨� TIω
�
U � Y � . In

particular, thenµ�b� MTICB © �
µ�X� d � MTICB.

Moreover, then �µ � g �B�µ�g a.e. on iR for all g � L1 � R = ;U �Ot L2 � R;U � (and
on C = if π D g � 0 � π D µ). Therefore, �µ coincideswith ªµ� of of Theorem
3.1.3(andwith thatof Theorem6.2.1if π D µ � 0).

Assume, in addition,thatµ � ν � MTICB. Thenwehavethefollowing:

(a1’) �µ � H∞ � C = ;B�dW�9 bu
�
C = ;B� , andsupC � � �µ � � supiR

� �µ �$#��
µ
�
MTI .

(a2’) The Laplace transform µ k� �µ is linear and continuous, i.e., in� � MTICB;H∞ � .
(a3’) (Uniqueness)If �µ � 0 on C = , thenµ � 0.

(b’)
� �µ � s�d� M

�
B � 0 asRes �«� ∞ ands � C = , whereM � B is thecoefficient

of δ0.

(c’) Wehave �µ � ν �R�µ�ν onC = if ν � MTICB2 andtheassumptionsof (c) hold.

(d’) For r � it � C = one can obtain �µ � r � it � from the Poissonintegral
formulaPoissonintegral formula!for measures�µ � r � it ��� r

π

;
R

�µ � iy � dy
r2 � �

t � y� 2 � (D.23)

BecauseB is not necessarilyan algebra,we have definedMTIB to consist
of “measures”,not of the correspondingconvolution operators(we identify L1

functionsandcorrespondingabsolutelycontinuousmeasuresE k� J
E f dm).

If we had
�
bb2

�
B3

#
M
�
b
�
B
�
b2
�
B2, M h 0, in (c), thentheconlusionsof (c)

wouldstill bevalid, providedthatweaddedM alsoto theotherinequalitiesin (c).
To clarify (d), wenotethateω p δtk � eωtkδtk, hence

eω p � F � ∑
k � N

Tkδtk �<� eω p F �(% �d� ∑
k � N

eωtkTkδtk � (D.24)

Thus,the “stability” of µ canbeshifted(cf. Remark6.1.9). Most of (d) is valid
for generalB, B2 andB3 too. Here“

�
Rµ� ” refersto Roperatingµ (on MTI), not

on L2.
The functionsin the spacegeneratedby the sumsof AP functionsandcon-

tinuousfunctionshaving limits at infinity (which containstheFourier transforms
of MTIB functions)arecalledsemi-almostperiodicfunctions(see,e.g.,[Sarason]
for moreonsuchfunctions).

Proof: The parts(a1), (a2), (a1’) and (a2’) follows easily from thoseof
LemmaD.1.11.
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(a3)This follows from (b1)andLemmaD.1.11(a3).
(a3’) This follows from (a1’) and(a3).
(b1)&(b2)Thesefollow from LemmaC.1.2(h2),becausef hasnoeffecton

thelimit in (b1),by LemmaD.1.11(b).
(b’) W.l.o.g.weassumethatM � 0 and f � 0 (by LemmaD.1.11(b’)).
Givenε h 0, take first N � N s.t.∑ | k | r N

�
ak
� � ε e 3. BecauseeD stk � 0, as

Res ��� ∞, for eachk, thereis R h 0 s.t.∑ | k | } N
�
ak
� � ε e 3 for Res h R.

(c1)–(c2) Theseare not hard to verify (the hardestpart is containedin
LemmaD.1.11(c);useformulaeanalogousto (2.55)andTheorem2.6.4(d)for�
µ � ν

�$#o�
µ
�¬�

ν
�
). Notethatweusethestandard(associativeanddistributive)

definitionof � , which coincideswith�
µ � f � � t � : � ;

R
dµ

�&% � % f
�
t � % � (D.25)

(if the integral is definedin somereasonablesense;cf. [Dobrakov]; we do not
needthis).

(c3) Decomposeµ � ν � λ and verify the claims for distributedparts(Obvi-
ously, theconvolution is distributive).

(Notethatonecantakethevaluesof λ orgonX andB3 �)� � X � B4 � for some
BanachspaceX, sothatX is isometricallyisomorphicto a closedsubspaceof� � B3 � B4 � . More generally, we couldaswell assumethatB S B2 S X � B4 is
“trilinear” andcontinuous.)

(d) Clearly µ�­� TI. By (c2) we have
�
µ � � TI � U MY � #®�

µ
�
MTI . The second

claim follows from equations(here f � g � L2, F � L1 � R;B� , Tk � B, tk � R)u
Tkτ

� � tk � f � gvO� u
f � T �k τ

�
tk � gv and (D.26);

R

u ;
R

F
�
t � r � f

�
r � dr � g � t �xv dt � ;

R

u
f
�
r �_� ;

R

�
RF � � � r � t � g � t � dt v dr � (D.27)

(use the Fubini Theorem). Note that
�

Rµ� � � R
�
µ� � , so the order of these

operationsdoesnotmatter. Equations�
F � Rf � � � s�E� ;

R
F
� � t � s� f

� � s� ds � ;
R

F
� � t � s� f

�
s� ds � �'�

RF � � f � � s�
(D.28)

and R
�
τ
�
tk � Rf ��� τ

� � tk � f imply that R
�
µ � Rf �E� �

Rµ��� f . By combiningthe
two identitiesprovedaboveweobtainthat

�
µ�X� d � µ� � , which impliesthefinal

claim.
TheeD ω p claimis mosteasilyobtainedfromtheequation

� � �
eω p µ�?���µ � s � ω �

(cf. Remark2.1.6).
If g � L1, thentheclaimon �µ � g is containedin (c1)and(c’). If g � L2 a L1,

thenthisfollowsfrom theL1 caseby density:choose� gn �f� L1 W L2 s.t.gn � g
in L2 anduse(c2) andLemmaD.1.15.Theclaimson TI andTIC follow from
this.

(c’)&(d’) Thesecan be proved as parts (c’) and (d’) of LemmaD.1.11.4
See,e.g., [DU, pp. 1–6] and [Dinculeanu] for more generalvector-valued
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measures.
If f � L1 � R;Lp � , then �f �+9 0

�
iR;Lp � , by LemmaD.1.11(a1). Therefore,�f � ir �C� Lp, so that �f � ir � is “well-defined a.e.”, i.e.,

� �f � ir �*� �&% � makes senseas
an equivalentclass. But canwe fix somepoint t andthentransform

�
f
�&% �'� � t � ?

Theansweris positive for a.e.t:

Proposition D.1.13(
� � �

f � � t ��� � � �
f
�&% � � t �'�� � �

f � � t ��� � � �
f
�&% � � t �*�� � �

f � � t �E� � � �
f
�&% � � t �'� ) Let

�
Q �°¯±� µ� beσ-finite. Let ω � R,

p � q �P5 1 � ∞ 7 .
If f � L1

ω
�
R;Lp � Q;B�*� W L

�
R S Q;B� ands � ω � iR, then

J
R eD sr f

�
r � � t � dr

existsfor a.e. t � Q, and�f � s� � t �3� ;
R

eD sr f
�
r � � t � dr � B for a.e. t � Q � (D.29)

In particular, if f � Lq
ω
�
R = ;Lp � Q;B�'�dW�9 � R = ;Lp � Q;B�'� , then,for each s � C =ω ,�f � s� � t �^� J

R � eD sr f
�
r � � t � dr � B for a.e. t � Q; (the integrandin in L1 � Q;B� for

a.e. t � Q).

Note that this is result is nontrivial, althoughit is unfortunalywidely used
without reference(wedo notknow any).

Proof: Let s � ω � iR, so thateD sp f � L1 � R;Lp � Q;B�'�OW L
�
R S Q;B� . By

LemmaB.4.17,gs
�
t � : � J

R eD sr f
�
r � � t � dr existsa.e.,andgs � J

R eD sr f
�
r � dr �

Lp � Q;B� . In thesecondclaim we have eD sp f �²� L1 � R;Lp � Q;B�'� for Res h ω
(cf. theproof of LemmaD.1.10(a2)). 4
Thesetof boundedcomplex Borel measureson a locally compactHausdorff

spaceQ equals9 0
�
Q�'� , by the (a) Rieszrepresentationtheorem[Rud86,Theo-

rem 6.19]. Therefore,oneoften definesmeasuresasthe set 9f�0 (see,e.g.,[Din-
culeanu]).Weshallneedsomebasicresultson evenmoregeneral“measures”:

Lemma D.1.14(M) Let H be a Hilbert space, and let Ω � Rn be open. Set
M : �8� � 9 0

�
Ω;B� ;H � .

(a) For each µ � M andε h 0, there is a compactKε � Ω s.t.�
µφ

�
∞
#

ε
�
φ
�

∞ � �
µ
�
sup
Kε

�
φ
�
B for all φ ��9 0

�
Ω;B�_� (D.30)

(b) Each µ � M hasa uniquenorm-preservingextensionµ ��� � 9 b
�
Ω;B� ;H � .

(c) �µ : t k� µ
�
eit p ��� H satisfies�µ �Y9 bu

�
Rn; � � B � H �'� for all µ �V� � 9 0

�
Rn;B� ;H � .

(d) µτtφ � 0 in H as � t �1� ∞, t � Rn, for all µ � M andφ ��9 0
�
Rn;B� .

(e)Thislemmaalsoholdswith Zn in placeof Rn.

By (b), 9 b
�
Ω;B� is aclosedsubspaceof � � M � H � .

Proof: (a) 1, For each T � M and ε h 0, there is a compactK 	ε � Ω s.t.�
Tφ

� � ε
�
φ
�

for φ �29 0 s.t.φ � 0 on K 	ε: (This doesnot hold if, e.g.,H ��9 0

(aBanachspace)andT � I .)



976 APPENDIXD. LAPLACEAND FOURIERTRANSFORMS( u u)

Let
�
T
� � 1, w.l.o.g. Find ψ �H9 0 s.t.

�
ψ
�C#

1 and
�
Tψ

� 2 h 1 � ε2. Set
K 	ε : � supp

�
ψ � . If φ � 0 on K 	ε and

�
φ
��#

1, then
�
αφ � ψ

�§#
1 for �α � # 1,

hence

1 � sup|α | } 1

�
αTφ � Tψ

� 2 � �
Tφ

� 2 � �
Tψ

� 2 h �
Tφ

� 2 � 1 � ε2 � (D.31)

Thus,
�
Tφ

� � ε.

2, Therestof (a): ChooseacompactKε � Ω s.t.K 	ε � Ko
ε (e.g.,useLemma

A.2.3). Let φ ��9 0
�
Ω;B� bearbitrary.

By LemmaB.3.10,thereis ψk ��9 ∞
c
�
Ω � s.t.χK qε # ψ

#
χKo

ε . By 1, , wehave�
T
�
1 � ψ � φ � H #

ε
�L�

1 � ψ � φ � ∞
#

ε
�
φ
�

∞, hence�
Tφ

�$#��
T
�
1 � ψ � φ � � �

Tψφ
�$#

ε
�
φ
�

∞ � �
T
�
sup
Kε

�
φ
�
B � (D.32)

(b) 1, Isometricextension:Let � Kk �b� Ω beasin LemmaA.2.3. For each
k � N � 1, thereis ψk ��9 ∞

c
�
Ω � s.t.χKk

#
ψk

#
χKo

k � 1
, by LemmaB.3.10.

Let φ ��9 b
�
Ω;B� . Setφk : � φψk ��9 c

�
Ω;B� . For eachT � M, thesequence� Tφk � is a Cauchy-sequencein H, by (a)1, (becauseφk � φk= j � 0 on Kk and�

φk
�$#��

φ
�

for k � j � N � 1). Let φT � H bethelimit of this sequence.

Thenφ : M � H becomeslinearand
�
φT

�f#®�
T
�¬�

φ
�
. On theotherhand,�

φ
� 0 � M MH � � �

φ
�1³

b, becausegivenε h 0, wecanchooseq � Ω andS �:� � B � H �
s.t.

�
S
�C#

1 and
�
Sφ

�
q� � H � �

φ
� � ε (notethat Sδq : �φ k� S�φ � q� is in M and

φSδq � Sφ
�
q� ). Thus,

�
φ
� 0 � M MH � � �

φ
� ³

b.

2, Uniqueness:Assumew.l.o.g. that µ � M is extendedas above, and�
µ
� � 1 � �

µ	 � , wherealsoµ	 is acontinuousextensionof µ.

Assumeµ	 �� µ to obtainacontradiction.Thenε : � �
µ	 � φ �d� µ

�
φ � � H h 0 for

someφ ��9 b with
�
φ
� � 1.

Chooser � �
0 � 2� s.t.

�
1 � ε e 2r � 2 � �

ε e 2� 2 h 1. Choosek � N � 2 s.t.
Kε \ r � Ko

k D 1. Then φk � φ � 0 on Kk, henceµ
�
φk � φ � � ε e r � ε e 2, hence

µ	 � φk � φ �@h ε e 2.

Thereis �ψ �B9 0 s.t.
� �ψ � � 1 and µ

� �ψ �Ch 1 � ε e r. Set ψ : � ψk D 1 �ψ, so
that �µ � ψ �´�?h 1 � ε e 2r. Now ψ � 0 on Kc

k and φk � φ � 0 on Kk, hence�φα : � αψ � φk � φ ��9 b satisfies
� �φ ��# 1 when �α �"� 1. But

sup|α | µ 1
�µ	 � �φα �´� � �

1 � ε e 2r � 2 � �
ε e 2� 2 h 1 � (D.33)

hence
�
µ	 � h 1, acontradiction.

(c) The vector µ
�
eit p � in the lemma refers to the map µ0 �� � 9 0

�
Rn � ; � � B � H �'� inducedby µ � M throughµ0

�
φ � x : � µ

�
φx� for φ �:9 0

�
Rn � ,

x � B. Obviously,
�
µ0
�10-#o�

µ
�
M.

Givenε h 0, choosek � N � 1 s.t.Kε \ 4 � Kk. Chooseδ h 0 s.t. �eih p � 1 � #
ε e 2 � µ � on Kk= 1 when �h � � δ. We have �ei � t = h� q � eitq �´���eihq � 1 � (q � Rn),
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hence � �µ � t � h�
� �µ � t � � H : � �
µ0
�
ei � t = h�~p �?� µ0

�
eit p � �/#��

µ0
�
φke

it p � eih p � 1�'� �
(D.34)� �

µ0
�'�

1 � φk � eit p � eih p � 1�'� � � �
µ
�
ε e 2 � µ � � 2ε e 4 � ε � � t � Rn �/�h �Rn � δ �"�

(D.35)

Thus,�µ ��9 bu.
(d) This follows from (a).
(e) Thisanalogousbut easier. 4

Next we presenttheFourier–PlancherelandPaley–WienerTheorems.Func-
tionsin L1 W L2 canbeFouriertransformedwith ease,thetransformsbeingcontin-
uous,by LemmaD.1.11(a1).Fortunately, in a Hilbert spacesetting,theL2 norm
of thefunctionis preservedmodulothefactor ¶ 2π (see(D.36)),hencetheFourier
transformL1 � 9 0 canbe extendedto a transform(isomorphism)L2 � L2, by
LemmaA.3.10. Thus,for f � L2 � R;H � , the transformis definedby lim �fn (the
limit beingtaken in L2) for any sequence� fn ��� L1 W L2 converging to f in L2

(notethattheintegral (D.16)neednot converge).

Lemma D.1.15(Fourier–Plancherel transform) Let H be a Hilbert space. If
f : R � H is in L1 W L2, then

� �f � 2 � ¶ 2π
�
f
�
2. Therefore, the Fourier(–

Plancherel) transformcanbeextendedto an (isometrictimes ¶ 2π) isomorphism
of L2 � R;H � ontoL2 � iR;H � .

AnanalogousresultholdsonL2
ω (ω � R), hence, for all F � G � L2

ω
�
R = ;H � and

f � g � L2 � R;H � , wehavethatu
f̂ � ĝv L2 � 2π

u
f � gv L2 � �

f̂
�
L2 � ¶ 2π

�
f
�
L2 � u

F̂ � Ĝv H2
ω
� 2π

u
F � Gv L2

ω
� (D.36)

Similarly, the mappingof a � ∑k � Z ak �B· 2 � Z;H � to �a � z� : � ∑k � Z akzk �
L2 � ∂D;H � is an (isometrictimes ¶ 2π, as above) isomorphismof · 2 � Z;H � onto
L2 � ∂D;H � , andit maps· 2 � N;H � ontoH2 � D;H � .

Here the norm on L2 � r∂D;H � is given by
� �f � 22 : � J 2π

0
� �f � reit � � 2H dt (cf.

[Rud86],p. 89 & 337),hence
�
1
�
2 ��¶ 2π, and� �f � H2 � rD;H � : � sup

0 y t y r

� �f � L2 � t∂D;H � � lim
t 
 r D � �f � L2 � t∂D;H � � � �f � L2 � r∂D;H � � (D.37)4

Thus,
J 2π
0

� �f � eiθ � � 2H dθ � 2π∑n � Z
�
fn
� 2
H � ∞ for all f �-· 2 � Z;H � . (Recall

thatwehavedefinedtheLebesguemeasureof ∂rD to be2π.)
Theabove factscanbeverifiedasin the scalarcase(seee.g.,[Rud86]),and

they are presented(in varying generalities;note that H can be assumedto be
separablew.l.o.g.) in [RR], [Nikolsky], [HP] and[CZ]. We omit thedetails.The
lastequationin (D.37)refersto theboundaryfunctionof �f , cf. Theorem3.3.1.

By “isometrictimes ¶ 2π” wemean“
�
f̂
�
L2 ��¶ 2π

�
f
�
L2” (recallthatisomet-

ric meansnorm-preserving).
If H is an arbitraryBanachspace(contraryto standingassumptionsof this

section),even L1 W L2 � R;H � functionsare not in generalmappedinto L2, as
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illustratedin Example3.3.4(seeits secondremark);however, if f � L2 is finite-
dimensional,thenits rangeis isomorphicto someHilbert spaceCn, hencethen�f � L2 is well-defined(andcoincideswith �f ��9 0 a.e.if f � L1 W L2).

Wecall ¸ � R;B� : �8� f ��9 ∞ � R;B� �� � f
�
k M n : � �

xk f � n� � ∞ � ∞ for all k � n � N � ,
equippedwith the(Fréchetspace)topologyinducedby the

��%´�
k M n seminorms(cf.

[Rud73,Theorem1.37]),thespaceof rapidlydecreasingfunctions.

Lemma D.1.16(̧
�
R;B�¸ � R;B�¸ � R;B� ) The space ¸ : �¥¸ � R;B� is a completetopological

vectorspace(Fréchetspace),and 9 ∞
c is a densesubsetof ¸ . Moreover, ¸)� Lp

for all p �P5 1 � ∞ 7 .
Set   f : � � � �

f � � � i
% � for f � L1 � R;B� . Then  B5 ¸²7��B¸ ,   is an isomorphism

(linear continuousbijection) on ¸ , and   2 f � Rf for all f �2¸ . Moreover,
R�g� � ¸f� andτφ ��9 � R; ¸f� for all φ �¨¸ . 4

(Theproof for thescalarcaseis givenin, e.g.,Sections7.3–7.10of [Rud73],
and in Section2 of [Rauch]. Thoseproofs cover also the vector-valuedcase,
mutatismutandis,soweomit theproof.)

Hereweextendthetypical tool for Cauchyintegrals:

Lemma D.1.17 Assumethat γ is a σ-finite, complete, positivemeasure space,
Ω � C is open,g � L1 � γ;B� , f : γ S Ω � � � B � B2 � , f

�
t � % ��� H

�
Ω; �X� for each

t � γ, f
�&% � z��� L∞ � γ; �X� andsupz� Ω

�
f
�(% � z� � ∞ � ∞. ThenF � H∞ � Ω;B2 � , where

F
�
z� : � ;

γ
f
�
t � z� g � t � dt � (D.38)

By taking f
�
t � z� : � �

2πi
�
t � z�'�!D 1 andlettingγ becurvein C, wegetaCauchy

integral.
Proof: Set M : � supz� Ω

�
f
�&% � z� � ∞. Since

�
f
�&% � z� g � 1 #

M
�
g1
�
1 � : M 	

(z � Ω), we have
�
F
�
B2

#
M 	 on Ω. By The DominatedConverge Theorem

(with majorantM
�
g
�
B � L1 � γ � ), F is continuouson Ω. For every rectangleR

in Ω, wehave,by TheFubiniTheorem,that;
R

F
�
z� dz � ;

γ

;
R

f
�
t � z� dzg

�
t � dt � ;

γ
g
�
t � 0dt � 0 � (D.39)

(note that
J
R

J
γ
�
f
�
t � z� g � t � � dtdz

# J
RM

�
g
�
1dz � ∞ and that f � L

�
γ S

Ω; � � B � B2 � , by Lemma B.4.8). Therefore,F � H
�
Ω;B2 � , by The Morera

Theorem.Since
�
F
�

∞
#

M
�
g
�
1, wehaveF � H∞ � Ω;B2 � . 4

If f is holomorphiconbothsidesof iR andweaklyL1
loc-continuousto iR, then

f is holomorphicon iR too:

Proposition D.1.18(H
�
Ca M b ��W H

�
Cb M c �E� H

�
Ca M c �H

�
Ca M b �dW H

�
Cb M c �^� H

�
Ca M c �H

�
Ca M b ��W H

�
Cb M c �<� H

�
Ca M c � ) Let Ω � C beopen.Assume

that f : Ω � B is in H
�
Ω a � b � iR � ;B� , and that Λ f

�
t � i

% ��� Λ f
�
b � i

% � in
L1 � 5 u � v7U� , ast � b, for all Λ � B� andu � v � R s.t.b �¢5 u � v7 i � Ω.

Thenf canberedefinedona null subsetof b � iR sothat f � H
�
Ω;B� .

Naturally, wecanreplaceb � iR by anyotherstraight line (rotatetheplane).
An analogousresultholdsfor ∂rD in placeof b � iR.
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(RecallthatLp � 5 u � v7��²�
c

L1 � 5 u � v7U� for p �R5 1 � ∞ 7 andthatCa M b : �o� z � C �� a �
Rez � b � .)

In particular, we actuallyhave f
�
t � i

% �@� f
�
b � i

% � uniformly on eachsuch5¹� u � v7 (only outsideanull setif wedonot redefinef ), hencein Lp � 5 u � v7�� for any
p �H5 1 � ∞ 7 .

Proof: We takeb � 0 w.l.o.g.
1, CaseB � C:
1 � 1, Choosingu � v� ε � a � b: Let u0 � v0 � R bes.t.u0 � v0 and 5 u0 � v0 7 i � Ω. By

LemmaA.2.1(c),we have ε : � d
� 5 u0 � v0 7 i � Ωc ��h 0. By LemmaB.4.19,there

areu ��5 u0 � u0 � ε � andv �H5 v0 � v0 � ε � s.t. f
�&% � iu �_� f �&% � iv �<� L1 �*� � ε � ε �'� . Set

a : �º� ε e 2 � c : � ε e 2, so that 5 a � c7?S�5 u � v7
� Ω. SetA : � �
a � c�@S �

u � v� . Then
f � L1 � γ � , whereγ : � ∂A (with theR1– Lebesguemeasure).

1 � 2, DefiningF � H∞ � A� : By LemmaD.1.17(appliedto each
�
a � δ � c	 �

δ �<S �
u � δ � v � δ �^� A, δ h 0, to keep

�
s � z� D 1 bounded),wehaveF � H∞ � A� ,

where

F
�
z� : � ;

γ
h
�
s� z� f

�
s� ds� h : � �

2πi
�
s � z�'� D 1 (D.40)

1 � 3, Showing that f � F on A a iR: For any z � Aδ
c, we haveJ

γδ
c
h
�
s� z� f

�
s� ds � f

�
z� and

J
γδ
a
h
�
s� z� f

�
s� ds � 0, where γδ

c � ∂Aδ
c, Aδ

c : ��
δ � c�$S �

u � v�§� A, γδ
a � ∂Aδ

a, Aδ
a : � �

a �'� δ ��S �
u � v�§� A, δ � �

0 � c� , by the
CauchyFormula([Rud86,10.15]).An analogousclaim holdsfor z � Aδ

a.
Let z � A0

c. Sinceh
�&% � z� is continuousandboundedneariR and f

�
δ � % �<�

f
�(% � in L1 � 5 u � v7U� , asδ � 0, wehaveh

�
δ � % � z� f

�
δ � % � � h

�&% � z� f
�(% � in L1 � 5 u � v7��

too.
Consequently,

J
γδ
c
h
�
s� z� ds � f

�
z� and

J
γδ
a
h
�
s� z� ds � 0 holdalsofor δ � 0,

by continuity. An analogousclaim holds for z � A0
a. But

J
γ0
a = γ0

c
� J

γ, hence

F
�
z�E� J

γ h � f
�
z� for everyz � A0

a t A0
c � A a iR.

1 � 4, f � F a.e. on A W iR: This follows from 1 � 3, , sinceF
�
δ � % �T� f

�
δ �% �<� 0 in L1 � 5 u � v7�� , asδ � 0 (dueto thecontinuityof F), sothatF � f � 0 as

anelementof L1 � 5 u � v7U� .
1 � 5, CasewhereΓ : � iR W Ω is connected:Set �u : � inf Γ e i, �v : � supΓi , and

choosesequences� un ���*� vn ��� Γ e i s.t.un � �u andvn � �v. Thenby applying
1 � 1, –1� 4, to each 5 un � vn 7 i, we seethat f

�
it � : � limΩ » iR ¼ z
 it f

�
z� coincides

with the original f a.e.(on each 5 un � vn 7 i, hencea.e.on
� �u � �v� i) andmakes f

holomorphicon Ω.
1 � 6, Theoriginal claim for B � C: Set Γ : � iR W Ω. By LemmaA.2.2,

Γ �ct n � NΓn, wherethesetsΓn � iR aredisjoint openintervals.Redefinef by
continuity asin 1 � 5, . For eachn andeachz � Γn, we have d

�
z��t k ½µ nΓk ��h 0,

hence(thenew) f is holomorphicatz; consequently(thenew) f is holomorphic
on thewholeΩ. SinceN is countable,f becomesredefinedonanull setonly.

2, General B:
2 � 1, G � H

�
Ω;B� s.t. G � f on Ω a iR: Let ir � Ω. Then G

�
ir � Λ : �

limt 
 0Λ f
�
ir � t �f� C exists for all Λ � B� . By Theorem2.8 of [Rud73], it

follows thatG
�
ir �@��� � B�¾� C �E� : B�&� .
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SetG : � f onΩ a iR anddefineG on iR W Ω asabove. By 1 � 6, , GΛ � H
�
Ω �

for all Λ � B� . By LemmaD.1.1(b),we have G � H
�
Ω;B�&�!� . By continuity,

G
�
z�I� B for z � iR W Ω too,henceG � H

�
Ω;B� .

2 � 2, G � f a.e. on Ω W iR: Becausef 5Ω 7�� B is separable(sinceΩ is
separable),we canw.l.o.g.assumethatB is separable.By LemmaA.3.9, there
is acountablenorming � Λk � k � N � B� . By themethodsof 1 � 5, –1� 6, , it suffices
to consideranarbirary 5 u � v7 i � Ω only. Weshallusethediagonalargument.

SinceΛk f
�
t � i

% �.� Λk f
�
i
% � in L1 � 5 u � v7U� for all k � N, thereis a null set

N0 ��5 u � v7 anda sequencet0
j � 0� s.t.Λ0 f

�
t0
j � ir �^� Λ0 f

�
ir � , as j � ∞, for

all r �H5 u � v7¿a N0, by TheoremB.3.2.
Analogously, there is a subsequence� t1

j � of � t0
j � and a null set N1 �5 u � v7 s.t. Λ1 f

�
t1
j � ir �/� Λ1 f

�
ir � for all r �)5 u � v7´a N1. Given N0 �'�'�'�&� Nk and� t0

j ��� %'%'% �*� tk
j � as above, choosea subsequence� tk= 1

j � of � tk
j � and a null set

Nk= 1 ��5 u � v7 s.t.Λk = 1 f
�
tk= 1
j � ir �<� Λk = 1 f

�
ir � for all r �H5 u � v7¾a Nk= 1.

Consequently, Λk f
�
t j
j � ir �
� Λk f

�
ir � , as j � ∞, for all r �25 u � v7"a N, where

N : �ct kNk. Thus,for suchr (hencea.e.)we have Λk 5 f � ir �
� G
�
ir �(7À� 0 for all

k, hencef
�
ir �E� G

�
ir � .

3, Thefinal claims: If we rotateiR, thenwe just have to usetheLebesgue
measureon this obliqueline.

If f : Ω � B is in H
�
Ω a ∂bD;B� , andΛ f

�
rei p �^� Λ f

�
bei p � in L1 � 5 u � v7U� , as

t � b, for all Λ � B� andu � v � R s.t.be

K
u M vN i � Ω, then f canberedefinedon a

null subsetof Ω W ∂bD sothat f � �
Ω;B� .

(The above proof applies,mutatismutandis;se polar coordinatesfor the
applicationof LemmaB.4.19in 1 � 1, (locally, nearanarcof ∂

�
rD � ).)

Remark:Analogously, if f : Ω � B is in H
�
Ω a Γ;B� , Γ � Ω is a contin-

uousimageg 5 J 7 of an interval J, andany subinterval 5 u � v7<� g D 1 5 J W Ω 7 has
a neighborhoodhomeomorphicto

� � ε � ε �.S �
u � v� , with the homeomorphism

satisfyingh
�
0 � % �I� g on

�
u � v� , andΛ f

�
h
�
t � % �*�I� Λ f

�
h
�
0 � % �'� in L1 � 5 u � v7�� , as

t � 0, for all Λ � B� , then f � H
�
Ω;B� aftera redefinitionon a null subsetof

Γ. 4
Analogously, if f is Hp on bothsidesof iR andhassameboundaryfunction

from bothsides,then f is holomorphicandHp on thewholeregion:

Lemma D.1.19(Hp � Ca M b �dW Hp � Cb M c �<� Hp � Ca M c �Hp � Ca M b ��W Hp � Cb M c �E� Hp � Ca M c �Hp � Ca M b �dW Hp � Cb M c �<� Hp � Ca M c � ) Let a � b � c. Assumethat
f : Ca M c � B is in Hp � Ca M b;B� W Hp � Cb M c;B� and that f is theboundaryfunction
of itself on b � iR frombothsides,in thesenseof (6.) of Theorem3.3.1. Then f
canberedefinedon a null subsetof b � iR sothatweget f � Hp � Ca M c;B� .

Proof: By PropositionD.1.18,we get f � H
�
Ca M c;B� (since

�^%X�
L1 � K u M vNÁ� #

M
��%T�

Lp � R � ). By assumption(6.), f � Hp � Ca M c;B� (and
�
f
�
Hp � Ca Â c;B� �

max� � f
�
Hp � Ca Â b;B� � � f

�
Hp � Cb Â c;B� � ). 4

If f is in H2 on bothC = andonC D , then f is aconstant:

Proposition D.1.20(Hp= W HpD � CHp= W HpD � CHp= W HpD � C) Let f m � Hp � C mω ;B� , where ω � R, p �5 1 � ∞ 7 .



LAPLACEAND FOURIERTRANSFORMS( u u) 981

If Λ f = � Λ f D on ω � iR for each Λ � B� , then f =-Ã x Ã f D for somex � B
(x � 0 if p � ∞).

Analogously, if f m � Hp � D;B� and Λ f = � z�.� Λ f D � zD 1 � for a.e. z � ∂D, for
each Λ � B� , then f =�Ã x Ã f D for somex � B.

Proof: 1, CaseHp � C mω ;B� : Naturally, by “Λ f = � Λ f D ” we meanthat the
Lp � ω � iR � boundaryfunctionsareequala.e.;suchfunctionsexist, by Theorem
3.3.1(a2).

Assumew.l.o.g. that ω � 0. Let Λ � B� . By LemmaD.1.19, we have
Λ f = � fΛ � Λ f D for somefΛ � Hp � C = � .

But then fΛ � H∞ � C =0 � , by (6.4.3) of [HP]; analogously, fΛ � H∞ � C D1 � ,
hencefΛ � H∞ � C � .

By theLiouville Theorem,fΛ Ã xΛ for somexΛ � C. This holdsfor each
Λ � B� , hencef = and f D areequalto a singleconstantx � B. If p � ∞, then,
obviously, x � 0.

2, CaseHp � D;B� : Set f : � f = on D and f
�
z� : � f D � zD 1 � for z � D

c
. As

above,weseethatwe Λ f canbeextendedfΛ � H
�
D � . Since fΛ

�
∞ �E� Λ f D � 0� ,

fΛ is bounded,hencefΛ is aconstant.Thus, f is aconstant,asin 1, . 4
If f belongsto Lp

r for two different r ’s, then �f is holomorphic on the
correspondingstrip:

Proposition D.1.21(
� � 5 Lp

a W Lp
b 7?� H

�
Ca M b; �X�� � 5 Lp

a W Lp
b 7?� H

�
Ca M b; �X�� � 5 Lp

a W Lp
b 7?� H

�
Ca M b; �X� ) Let f � Lp

a
�
R;B� W Lp

b

�
R;B� , p �5 1 � ∞ 7 , a � b. Then

(a1) We have �f � H∞ � Caq M bq ;B� whenever a � a	 � b	 � b; in particular, �f �
H
�
Ca M b;B� . Moreover, f � L1

r
�
R;B� for all r � �

a � b� , hence �f � s� converges
absolutelyonCa M b.

(a2)ThemappingLp
a
�
R;B�dW Lp

b

�
R;B�E� H∞ � CaqÄM bq ;B� is continuous.

(b) If p � 1, then �f ��9 bu
�
Ca M b;B�
W H∞ � Ca M b;B� and

� �f � s� � B #£�
π = f

�
Lp

a
��

π D f
�
Lp

b
for all s � Ca M b.

(c) (
� � 5 L2

a W L2
b 7�� H2 � Ca M b;H �� � 5 L2

a W L2
b 7�� H2 � Ca M b;H �� � 5 L2

a W L2
b 7�� H2 � Ca M b;H � ) Assumethat p � 2 andthat B � H is a Hilbert

space. Then �f � H2 � Ca M b;H � , and �f has the nontangential boundary
function �f (thePlancherel transformof f ) on a � iR andon b � iR (in the
senseof (1.), (2.) and (4.)–(6.) of Theorem3.3.1(a))and

�
2π �!D 1\ 2 � �f � r �

i
% � � 2 #F�

π = f
�
L2

a
� �

π D f
�
L2

b
(r �H5 a � b7 ).

Conversely, if �g � H2 � Ca M b;H � , then there is g � L2
a
�
R;H � W L2

b

�
R;H � s.t.�g � � �

g.

RecallthatHp � Ca M b;B� : ��� f � H
�
Ca M b;B���� supr � � a M b� � f

�
r � i

% � � p � ∞ � .
Proof: Notethat f � π = Lp

a
�
R;B��W π D Lp

b

�
R;B� .

(a1) By LemmaD.1.10(a1)&(a2),we have �π = f � H∞ � C =aq ;B� and �π D f �
H∞ � C Dbq ;B� , hence �f � H∞ � CaqsM bq ;B� . Thesecondclaim follows from theproof
of LemmaD.1.10(a2).
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(a2)Seetheproofof (a1)andthatof LemmaD.1.10(a2)for aboundof form� �f � H∞
#

M
�"�

f
�
Lp

a
� �

f
�
Lp

b
.

(b) Cf. theproofof (a) (useLemmaD.1.11(a1’)).
(c) 1, Properties of �f : Note that

� � π = f � H2 � C =a ;B� and
� � π D f �

H2 � C Db ;B� , by LemmaD.1.15. By Theorem3.3.1(a2),
� � π = f hasa boundary

functionon a � iR; by continuity, sodoes
� � π D f too (in thesenseof (1.) and

(2.) of Theorem3.3.1(a);claim (6.) (which implies(5.) and(4.)) follows from
thestrongcontinuityof LemmaD.1.8(a1)).

The“mirror image”boundaryfunctiononb � iR (from theleft) is obtained
analogously. Thenormestimateis obvious.

2, The converse claim: For eachr � �
a � b� , there is gr � L2

r
�
R;H � s.t.�g � � �

gr a.e.on r � iR, by theFourier–PlancherelTheorem.
Let d � �

a � b� . SetF : � π = gd, G : � π D gd. Then
� �

G � H2 � C Dd ;H � is the
boundaryfunction of itself, by Theorem3.3.1(b)(whoseproof is obviously
independenton this lemma, relying on [RR] and the part of Appendices
precedingthislemma),andsois �g � H2 � Ca M d;H � ond � iR, hence�g � � � G � � �

F

is theboundaryfunctionof �h (a.e.) on d � iR. But
� �

F � H2 � C =d ;H � , hence�h
extendsto a function �h � H2 � C =a ;H � , by LemmaD.1.19.

It follows that �h � � �
h on C̄ =a for some h � L2

a
�
R = ;H � . But then

F � h. Analogously, we can show that G � L2
b

�
R D ;H � . It follows that

gd � F � G � L2
a W L2

b. Because�g � � �
gd on d � iR, we have �g � � �

gd on the
wholeCa M b, by LemmaD.1.2(e). 4
If f � L∞ � R;B� , then

�
f χA

�
1
#6�

f
�

∞m
�
A� � ∞ whenever m

�
A� � ∞. Thus,

we canthenapplythefollowing test:

Lemma D.1.22 Let B0 be a closedsubspaceof the Banach spaceB, and f �
L∞ � R;B� . If

� �
f χA �B9 0

�
R;B0 � whenever m

�
A� � ∞, then f � L∞ � R;B0 � i.e.,

f
�
t �I� B0 for a.e. t � R.

Notethatalways
� �

f χA ��9 0
�
R;B� , becausef χA � L1.

Proof: (We couldhave aswell assumethat f � L1
loc andthatA is bounded

andmeasurable.)
SetE : � f D 1 5B a B0 7 . Weassumethatm

�
E �^h 0, deriveacontradiction,and

deducethat f
�
t �I� B0 for a.e.t � R.

Becausef � E is nowhere zero, Lemma B.2.8(b) provides us A � E and
L � B� s.t. 0 � m

�
A� , Λ � 0 on B0, andReΛ h 1 on A. ChooseA	 � A s.t.

0 � m
�
A	 � � ∞. Then0 �� Λ f χAq � L1 � R;B� , hence0 �� � � Λ f χAq � Λ

� �
f χAq �9 0

�
R � , by LemmaD.1.11(a3).But

� �
f χAq is B0-valued,henceΛ

� �
f χAq � 0, a

contradiction. 4
If a functionis holomorphicaround∂D, thenit is theinverseCayley transform

of someMTIL1
operator.

Lemma D.1.23 Assumethat Ω � C is open and s.t. ∂D � Ω, and that g �
H
�
Ω;B� . Thenthereareb � B and f � L1 � R;B� s.t.g � b � �f G φ D 1

Cayley.



LAPLACEAND FOURIERTRANSFORMS( u u) 983

Proof: 1, b0 � b1 � b2 � b3 � 0 w.l.o.g.: Write g as∑∞
kµ 0bk

�
z � 1� k on a

neighborhoodof K : ��� z � C �� � z � 1 � # ε �§� Ω (for someε h 0). Because�&% � 1�E� 2¤π = eD p G φ D 1
Cayley � �F G φ D 1

Cayley � (D.41)

where �F � 2¤π = eD p � � � 5 L1 � R = ;B�(7 , wecantake �F3 : � ∑3
k µ 0bk �Fk, to obtainthat

g � �F3 G φ D 1
Cayley � ∑∞

kµ 4 bk
�
z � 1� k. By LemmaD.1.12(c’), �F3 � b	 � �f3 for some

b	 � B and f3 � L1 � R = ;B� (sinceπ = eD p � L1 � R = ;B� ). Thus,we have reduced
theproblemto thecasewhereb0 � b1 � b2 � b3 � 0.

2, Seth : � g G φCayley. Assumingb0 � b1 � b2 � b3 � 0, it follows that
z k� g

�
z�'e z4 is holomorphicaroundK; let M : � maxz� K

�
g
�
z�'e z4 �

B. Then�
g
�
z� � B # � z � 1 � 4M for z � K, i.e.,

�
h
�
s� � B # �2e � 1 � s�´� 4M when �2e � 1 � s�´� �

ε; in particularh � iR � L1 � iR;B� , becauseh is continuouson iR.
3, Becauseφ 	Cayley andφ 	�	Cayley areboundedon iR, it follows(asin 2, ) from

thechainrule thatalsoh	 andh	�	 arein L1 � iR;B� , hence

f : � 1
2π

;
R

eix p h � ix � dx � 1
2π

�h � i % � � � i
% �I� L1 � R;B� (D.42)

andh � �f , by LemmaD.1.11(e2)&(e1). 4
Sometimesthepropertiesof a transferfunction �Å : iR � B canberecovered

by multiplying it with thefollowing function:

Lemma D.1.24 Let ε h 0, p �P5 1 � ∞ 7 . For each t h 0 andr � R, weset

ft M r � x� : � π = 2t3\ 2xeD�� t D ir � x � i.e., �ft M r � s�E� �ft M 0 � s � ir �E� 2t3\ 2 � s � t � ir � D 2 �
(D.43)

Wehaveft M r � L2D t \ 2 � R = � , � ft M r � 2 � 1, and �f � Lp � ω � iR �ÀWY9 0
�
ω � iR � (ω � 0).

Moreover, thefollowinghold:

(a) There is δ h 0 s.t.

sup
s� C M | sD ir | Æ ε

� �ft M r � s�´� � ε &
� �ft M r � Lp �¹Ç iρ �� | ρ D r | Æ ε È�� � ε &

� �ft M r � Lp � ω = iR � � ε

(D.44)

whenever0 � t
#

δ � r � R � ω � ε.

(b) If E � iR is measurable and p �F5 1 � 27 , then, for a.e. r � E, there is
δ � δ f M E M r M ε h 0 s.t. � �ft M r � Lp � iR » Eε Â r � � ε

�
0 � t

#
δ �_� (D.45)

where Eε M r : �F� iρ � E �� �ρ � r � � ε � .
(c) For anyg � Lp � iR;B� andp ��5 1 � ∞ � (or g �:9 0

�
iR;B� andp � ∞) andt h 0,

there is R � R s.t.
J
iR
� �ft M rg � Bdm � ε and

J
iR � �ft M r � 2 � g � Bdm � ε whenever

r � R, � r � � R.

Proof: The claimsat the beginning of the lemmafollow from straightfor-
wardcomputations(whichweomit).
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(a) Weshallassumethatr � 0 (usetranslation),w.l.o.g.
1, sups� C M | s| Æ ε � �ft M 0 � s�´� � ε: Setδ1 : � min � ε e 2 � � ε2 e 9� 2\ 3 � . Then, for all

s � C andt � �
0 � δ1 7 , wehave� s � � ε �E� � �f � s�´� # 2t3\ 2� � s �&� t � 2 # 2ε2 e 9�

ε � ε e 2� 2 � 2ε2 e 9
ε2 e 4 � ε � (D.46)

whichprovidesthefirst inequalityin (D.45).
2, � �ft M 0 � Lp � ω = iR � � 0: For p � ∞ this followsfrom 1, . For p � ∞, wehave� �ft M 0 � ω � i

% � � p
p
#o�

2p � ε � i
% � D 2pt3p\ 2 �

1 � 0 � (D.47)

ast � 0� , for any ω � ε, because� ε � i
% �ÉD 2p ��� ε2 � % 2 �ÉD p � L1. Therefore,

thereis δ3 h 0 s.t.third inequalityin (D.45) is achievedfor all t � �
0 � δ3 7 .

3, � �ft M 0 � Lp �¹Ç iρ �� | ρ | Æ ε È(� � ε: We have � �ft M 0 � iρ �{�²� 2t3\ 2 e � ρ2 � t2 � #
2t3\ 2 e ε2 � 0, ast � 0� , whenever �ρ � � ε. Casep � ∞ follows directly from
this; casep � ∞ follows from this andtheDominatedConvergenceTheorem,
because�ft M 0 � Lp, asnotedin 2, .

(b) 1, Assumptions:By Section7.11of [Rud86],we have

lim
ε 
 0= m

�
Ec W �

r � ε � r � ε �'�
m
�
r � ε � r � ε � � 0 (D.48)

for a.e.r � E. We assumethat r is suchandε h 0, andfind δ h 0 s.t. (D.45)
holds.W.l.o.g.weassumethatr � 0 (usetranslationof E and f ).

2, � �ft M 0 � Lp � iR » Eε Â r � � ε: ChooseR h 0 s.t. 2p= 1 J ∞
R � y2 � 1 �wD pdy � εp e 4p.

Chooseη � �
0 � ε � s.t.m

�
Ec W � � γ � γ �*�'e 2γ � ε1 : � εp e 3p2p= 1R for all γ � �

0 � η 7 .
Setδ : � min � 1 � η e R� ε4 e 8 � ε e 2 � ε3 � . Then,for any t � �

0 � δ 7 , wehave; | y | Æ Rt
� �ft M 0 � iy �´� pdy � 2p= 1t3p\ 2 ;

y Æ Rt
� y2 � t2 � D pdy � 2p= 1t3p\ 2 ;

u Æ R
� u2t2 � t2 � D pt du

(D.49)� 2pt3p\ 2 D 2p= 1
;

u Æ R
� u2 � 1 � D pdu � 2pt1 D p\ 2εp e 4p # εp e 2p �

(D.50)

because1 � pe 2 � 0. Moreover, Rt � η, hence; Ç | y | y Rt M y � Ec È � �ft M 0 � iy �´� pdy
#o� �ft M 0 � p

∞
%
2Rt

%
ε1

#[Ê 2t3\ 2
t2 Ë p %

2tRε1 (D.51)#
2p= 1t D p\ 2= 1Rε1 � εp e 3p (D.52)

Becauseεp e 2p � εp e 3p � εp, wehaveestablished(b).

(c) Because �f �Ì� �f � 2 � Lp\ � p D 1� � iR �EWH9 0
�
iR � , this follows from Lemma

B.3.13. 4
Thefollowing functionis handywhendealingwith Fouriertransforms:
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Lemma D.1.25 Defineφ
�
t � : � eD t2 \ 2. Then �φ and �φ D 1 are entire functionsand�φ � s�E� ¶ 2πes2 \ 2 �� 0 for s � C; in particular, �φ � ir �E� ¶ 2πeD r2 \ 2 h 0 for r � R.

Moreover, φ ��¸ � R � W Lp
ω for all p �+5 1 � ∞ 7 and ω � R, and the functionsof

theform ∑n
kµ 1 τ

�
tk � φbk, where n � N � 1, andtk � R andbk � B for all k � N, are

densein L1 � R;B� aswell asin L2 � R;B� .
Proof: By thedominatedconvergencetheorem,we canexchangetheorder

of integrationanddifferentiationto obtain that �φ is holomorphiceverywhere
(�φ � H

�
C � ). By [Rauch, pp. 64–65], �φ � s�b� ¶ 2πes2 \ 2 holds for s � iR,

henceit holds everywhere,by Lemma D.1.2(e). One easily verifies that
φ �>¸ � R �dW Lp

ω
�
R � for all p � ω.

BecausetheFouriertransformof φ is nowherezero,thedensityclaimholds
for B � C, by, e.g.,Theorem9.5of [Rud73](theL1 case)andp. 145of [Katzn]
(the L2 case);the generalcasefollows from the densityof finite-dimensional
functionsin Lp (TheoremB.3.11). 4
We finish this sectionby presentingonemore vector-valuedextensionof a

standardresult:

Lemma D.1.26 The span of � π D esp u0 �� s � �
ω � ω � 1�"� u0 � U � is densein

L2
ω
�
R D ;U � .

Proof: Wetakeω � 0 w.l.o.g.Simplefunctionsaredensein L2 � R D ;U � , by
TheoremB.3.11,hencesois thespanof � φu0 �� φ � L2 � R D �_� u0 � U � . Therefore,
wemayandwill assumethatU � C w.l.o.g.

Let u � L2 � R D � . If u �2� π D esp �� s � �
0 � 1�"�´Í , i.e.,

0 � u
esp � uv L2 � R ÎX� � ; 0D ∞

estu
�
t � dt � ; ∞

0
eD stu

� � t � dt � ª Ru
�
s�"� (D.53)

for all s � �
0 � 1� , then ª Ru � 0 on C = , hencethenu � 0, by LemmaD.1.2(e).

Therefore,� esp �� s � �
0 � 1�"� is densein L2 � R D � . 4

Notes
As obvious from the proofs, many of the resultsof this appendixare well

known at leastin thescalarcase.LemmaD.1.23is dueto O. Staffans.
Further resultson holomorphicvector-valued functions are given in, e.g.,

[HP]. Generalvector-valuedmeasures(with MTIC asa specialcase;cf. Lemma
D.1.12andSection2.6)aretreatedin [DU], [Dinculeanu],[Dobrakov], [Park] and
in referencestherein.
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