Part IV

Discrete-Time Control Theory
(wpls’s)
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Chapter 13

Discrete-Time Maps and Systemg(ti
& wpls)

At anygivenmomentan arrow mustbe eitherwhee it is or wheee it
is not. But obviouslyit cannotbewhee it is not. Andif it is whele it
is, thatis equivalento sayingthatit is at rest.

— Zeno’s(335-262B.C.) paradoxof the moving (still?) arrov

In this chapterwe presenterebriefly somefactson thediscretecounterparts
of WPLSs,which we call discrete-timewell-posedinear systemgwpls’s). They
arethe systemgyovernedby differenceequations

{ Xj+1 = AXj + Buj,

13.1
yj =Cxj+Duj, jeZ, ( )

for A,B,C, D € B; seeDefinition 13.3.1landLemmal3.3.3for definitions.

We shawv that almost all our continuous-timeresults have discrete-time
analogiegseeTheorem13.3.13),and also mary further resultshold dueto the
boundednessf thegeneratingpperatorgA, B,C, D). Roughlyspeakingwe write
continuous-timeresults (and definitions) in lower case(e.g., L2 — ¢?), asin
(13.63).

In Section13.1, we study boundedlinear time-invariant maps¢2(Z;U) —
22(Z;Y) (i (U,Y), where||u||§?(z;u) = 3 |Ir¥uyl|3), andthe corresponding
transferfunctions(this correspondso Chapter® and3). The Cayley transformis
treatedn Sectionl3.2.

In Section13.3,we studywpls’s (this correspond#o Chapter6, alsoChapters
4,7 and8 aretreatedn Theoreml3.3.13).Thel/O mapsof wpls’s areexactly the
causalmapsin Ursoti; (see(13.46)).

In Sectionl13.4,we shav how to obtainwpls’sfrom WPLSs by discretization.
This allows us to reduceseveral WPLS problemsto wpls problems,which are
often substantiallysimpler due to boundedinput and output operators. (This
differs from the Cayley transformof Lemma 13.2.1 and from the method of
Lemmal3.1.4.)

Discrete-timeRiccatiequation§DARESs)andspectrafactorizatioraretreated
in Chapterl4 (this corresponds$o Chapters® and5) andminimizationproblems
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in Chapterl5 (this correspondso Chapterl0). Discrete-timeH® (and Nehari)
problemsaretreatedn Sectionsl1.5and12.2.

Also in this chapterU, W, H, Y and Z denoteHilbert spacesof arbitrary
dimensionsandB denotesa Banachspace.



13.1 Discrete-timel/O maps(tic)

ThePriest’sgrey nimhusin a nichewhere hedressedliscreetly | will
not sleephere tonight. Homealso | cannotgo. A voiceg sweetened
andsustainedc¢alledto himfromthesea.Turningthe curvehewaved
his hand. A sleekbrown head,a seal’s, far out on the water round.
Usurper

— Jamesloyce (1882-1941),Ulysses"

In thisandthefollowing sectionwe presentesultscorrespondingo Chapters
2 and 3; in particular we extend the discrete-timeFourier multiplier and H*
boundaryfunction theoremsto 1/0 mapsover unseparableéHilbert spaces,in
Lemmasl3.1.5and13.1.6.0ur third mainresultis LemmalticCorvol(d), which
treatstime-invariantcausaloperatorgqticioc) thatare“almostr-stable”(thatmap
functionswith finite supportinto £2). We alsodefineti andtic and treatetheir
basicpropertiesncludingadjoints,inversesconvolutionformsand Z-transforms.
FurtherresultsareobtainedthroughTheoreml13.3.13.

We startby presentingour notation.Let SC Z, p € [1,0) andr > 0. Recall
thatx : S— B (equivalently, x € BS) meanshatx is afunctionfrom Sto B, i.e.,a
B-valuedsequenc®n S. We set||{X;}jesl|¢=(sp) = suquHr*jx,— llg, €% :=1¢7.
We alsodefine

tP(SB) = {x:S—=BJ[Xjp := 25||rjxj||g < oo} (13.2)
JE

andeP = ¢P. Wehave [|X[|,a < [[X]|p < o0 (X: S— B, 0 >q>p>1, r>0)(proof:
assumew.l.o.g.that |||, = 1, ...). For SC N we have (useLemmaB.3.13for
p<a)

IXl2(sB) < Mr/spallXllggs (°>s>r1>0, p,ge(l,0]). (13.3)

By BC(U,Y) we denotecompactinearoperatord) — Y, and
L5(SBU,Y)) :={T € £4(SB(U,Y))|T; € BC(U,Y) forall j#0}, (13.4)
0L :={Tel|Tj=0 forall +j<0}, (13.5)
Upes ={T €L |Tj=0 forall +j<0}. (13.6)
Note thatthe vectorsex := Xy (k € §) form the standarcorthonormalbase

of the Hilbert spacef?(S), and {xq & | a € 4, k € S} is anorthonormalbasefor
£2(S;H) wheneer, {Xq }qc4 is anorthonormabasefor H. Obviously,

ce(SB) :={(Xj)jes|x; = O for j notin somefinite subsebf S} (13.7)

is densen £P(S;B). By LemmaB.4.15,P(SH)* = ég/r(S; H) whenl1< p< o
andp 1+q1=1.
Thecornvolution

(@))jez * (kez = (Y ajbn-j) ., (13.8)
]



is bilinearandbounded/}(Z;B) x £P(Z;B') — ¢P(Z;B") whenerer B x B' — B"
is bilinearandboundede.g.,B = B(U,Y), B' = B(Y, Z) andB” = B(U,Z)); see
LemmaD.1.7. By the Fubinitheoremwe have (ax)* = (Aa*)« in the sensehat
(axDb,c) = (b, (Fa*) xc) when, e.g.,a € %, b € ¢P andc € £9. We definethe
isometricisomorphism(multiplicationoperatory € B(¢8, £K) by

1= ((X))jes— (') jes) (13.9)
Obviously, (r'a) xb=r"(axr—b), hence(cf. Remark13.3.9)
T(ax) :=r'(ax)r = (ra)x (13.10)

definesan isometricisomorphism7; : £1x — £ (we identify £+ with £% asa
Banachspace) We identify S— B with {x: Z — B \ xj=O0forall jeZ\S}.

The left shift T = 1 is definedby (Tx); := xj41 for x: Z — B. We set
N:={0,1,2,...}, Z_ :=Z\N = {-1,-2,-3,...}, sothat m" := Ty maps
(Z—-U)— (N—=U)andmrt" + 1 =1, whererr :=1z_ (recallthatmyu:= X\u
for all sequences andsetsN). We setPu := uk (k € Z). ThereflectionA is
definedasin continuougime: (Ax);j := X_j, hence

M=ar?! gr=t1a, arra=11rT, ard=1t1n"t. (13.11)

However, the canonicaldiscrete-timereflectionis the one satisfyingAd_imm" =
T A_1, namelytheonedefinedby (A_1X); := x_1_; (cf. Proposition13.3.5).We
have

™9 1 =A=9,41, A =mA 4, 9 1=9 7% (13.12)

Moreover, 1" = A andfi”; = -1 0n () | Al=9,4a1=94and

ol =X, 17Kl = IDlp, 18- 2Xlp =g, (x: Z = B, 7 > 0).
(13.13)

We definethe Z-transformt:= Zu of u: Z — U by U(2) 1= Yz Zlu; for
thosez for which the sumconverges(oneoftenusesz ! insteadof z to make the
formulaemoreakin to their continuous-timecounterpartst the costof having to
studyfunctionsholomorphicatinfinity).

One easily verifies that the Z-transform maps #2(N;U) onto the Hardy

spaceHrZ_l = H?(r !D;U) throughan isometrictimes /21t isomorphism(i.e.,

”G”Hf/r = /211|u]| 2; useLemmaD.1.15andscaling),and/}(N;U) into HY) =

H*(Dy1/;U) linearlyand1-1,with ||U||Holo/r <|[uf|g2 (notetheexceptionaimeaning
of HY (insteadof H*(C;;U)) in this sectionyrecallthatD, :=rD = {ze C||Z] <

r} and||Ull 2op,u) = [Z|a(ret) |13 dt, hencel|1]|2 = v/2m). It followsthat

Au(z) =U(1/2), Tu=z'a (u:z—=U). (13.14)

We startby definingthe discrete-timecounterpart®f TlI and TIC (cf. Defini-
tions2.1.1and2.1.4):



Definition 13.1.1(ti andtic) Letr > 0. We defineti,(U,Y) to be the (closed)
subspaceof opertors E € B(£?(Z;U),£2(Z;Y)) that are time-invariant i.e.,
T'E = Erl.

We definetic, (U, Y) to bethe(closed)subspacef operatorsD € ti; (U,Y) that
arecausali.e., T Dt = 0.

Finally, ticioc(U,Y) is the setof linear mapsD* : UN — YN that are time-
invariant (1~'D* = D 11) and causal(Tyg D™ 1y 55 1 = 0).

Maps in ti := ti; are called stable mapsin tiep = Ur<1ti; are called
exponentiallystable andmapsin ti. \ ti are calledunstablewheetis := Uy otir.
We settic :=tiCy, tiCexp := tiCNtigxp, tiCe 1= tIC N tic.

If E € tir(U,Y), thenits (noncausalpdjointE* is the ti;; (Y,U) map that
satisfies

%((EU)(H),Y(H» dt = %(U(n), E'Y)(M)dt (uebi(Z;V), y € 1, (Z:Y)),

ne ne
(13.15)
and its causaladjointis E¢ := AE*A = A_1E*A_; € i (Y,U), whee (Ax); :=
X_j.

(In theliterature,“exponentiallystable”is oftencalled“power stable”,but we
preferthis analogyto continuougime.)

By Lemma2.1.10 (seeTheorem13.3.13),we have tic = tiCe, N i, tiCexp =
Ur<1tiCy, tiCo = Ursoticy.

LetE € ti;, r > 0. OneeasilyverifiesthatEY € ti, is causal(e tic;) iff E is.
Obviously, T"E = Et". for alln € Z (and1y__n o n 1mEMni1ni2ne3,...) = Oiff
E € tiCo).

If a mapis causalandanti-causalthenit takesthe form of a multiplication
operator:

Lemma 13.1.2(Static D) LetD,D* € tic,. ThenD € B. Moreover, theimbed-
ding B — TIC is isometric,preservesiorms,and commutesvith algebraic oper
ations. 0

(Theproofof Lemmaz2.1.7appliesheretoo; seeRemarkl13.3.9for a stability
shift.)

If D € tice(U,Y), then,obviously, T"Drt™ € ticoc(U,Y) andthe maptice, —
ticioc is injective, hencewe canandwill identify D andtrDmtt. Thus, tic, C
ticg C tiCe C tiCiopc When0 < r < s< o,

Ontheotherhand,if D € ticioc(U,Y), then,obviously, T "D* =D+t " and
T[{O’ly__,n}D"'T[{n+1’n+2’n+3’.__} = Ofor all n € N. Oneeasilyverifiesthattic;oc maps
corresponane-to-onedo linear, causam™ D = 0), time-invariant(t"D = Drt"
for all n € Z) mapsbetweensequenceZ — U andZ — Y whosesupportsare
boundedfrom the left. Obviously, sucha map belongsto tic., iff it is bounded
undersome/? norm; we give anothernecessarynd sufficient conditionin (b)
below:



Lemma 13.1.3(tic mapsare convolutions)

(a) The set ticioc(U,Y) is exactly the set mapsD : UN — YN that have a
(necessarilyunique)representatiorof theform

D= ZwTjT_ja ie, (Du)= ZwTjuk_j (u:N—U, keZz), (13.16)
je j€

equivalentlyD = (Tj) jen*, whee Tj € B(U,Y) forall j € N.

(b) Assume(13.16). ThenTj = P{i}DP{*O} for all j, and the following are
equivalent:

(i) D € tic, (U,Y) for somer > O;
(ii) ||T;|| < Msl! for all j € N andsomes > 0.

(c1) If (i) holds,then]ﬁ(z) =YjeN Tjzl € H®(Dy; B(U,Y)) and (ii) holdsfor
s=r andM = ||D||sc, -

(c2) Corversely if (i) holds,then(i) holdsfor anyr > s (and||D||sic, < M;/SM).
(c3)If D € ticy, thenD € £X(N; B(U,Y))x for all s> r.
(d) Assumethat D € ticoc and r > 0 are s.t. Dupep € Krz for all up € U

(equivalently D € Hgtrong(Dl/r;fB(U,Y))). LetO<s<r <t<o. Then
D € ticy, D[2(N;U) +¢] € £2, D € Hongr~*D; B(U,Y)) and

|IDlltic, < Mg [Py || < o, (13.17)
Dulz < Dm0y Ul < MYy Pry llulle (ue £2N;U)). (13.18)

In particular, D € B(¢£}(Z;U),£2(Z;V)), D* € Qs(éf/r(Z;U), Tr(Z:V),
and Do U — Du andDu — Du in £Z for all u € £3(N;U) +ce.

Thus, ticiec is the setof convolution operatorshaving N — B(U,Y) kernels,
andltic; is its subsebf mapsthatarebounded’? — ¢2. If D € tic;oc(U, Y) satisfies
D[c] C #?, thenD € tic for all r’ > r, by (d).

As we will seefrom Definitions13.3.1and13.3.4,(i) holdsiff D hasawpls
realization;henceall (linear, causalandtime-invariantymapssatisfying(ii) have
awplsrealization.

Proof of Lemma 13.1.3: (a)Forallue N — U, we have

k k
(Du)k = _%(an— jUk = _;(Trka_ jUk (13.19)

J= J
k _ _ k

=Y Dyt luy = § PDPSu_j, (13.20)
2, 2,

i.e., (13.16)holdsfor thisu. Thecorverseis obvious.
(b) Thisfollowsfrom (c1)&(c2).



(c1) Corversely assume(i). The claim on D is obviously true. Let
|ullu = 1, sothat||uey||,2 = 1, whereep := Xo. Then,forary j € N,

. —K -j —j
D, > [IDueo|lzp -:lef (Due )Y > [Ir ™! (Duev) Iy = [Ir ' Tiully,

_ (13.21)
hence|| Tju|ly < r!||D]|sc, . Becauser wasanarbitraryunit vector (i) holdsfor
S=r.

(c2)If (ii) holdsandr > s, then(seeLemmaD.1.7)

(T jez * llie: < 11(Tjezllg < MM, (13.22)

whereM = Sken(r/s) K < 0. (Note that (i) doesnot have to holdr ='s
(e.0. takeT, = 1forall j).)

(c3) By (c1) (and(ii)) and(13.3),D € £2(N;B(U,Y))* C £3(N; B(U,Y))x
forarny s>r.

(d) 1° D € HZ oy Obviously, DR [U] C £2iff (Tjuo)jen € L? forallup € U,
ie,iffDe Hstrong(Dl/r, (U,Y)). Thus,we have theequialence.

2° Now M := [|[DRy || = ||Drygy || < oo, by LemmaA.3.6 (with, e.g., X3 1=
2. = (Z — B)). Therefore,||Tj|| < Mrl for all j € N, by (13.21). Thefirst
inequalityfollows from this.

3° Givenu € £X(N;U), we have

IDukexl = It~ Dukeolle < Mrlullu, (13.23)
by (13.13),hencel[Dullz < M 3ir lulu = Milully < M|z, by (13.3).
If u€ ¢, thent "u € £+(N;U) for somen € N, hencethenDu € /2.
4 Since D € B(LHZ;U),£2(Z;U)), by 3°, we hae D* ¢
B(£3,(Z;V), 47, (Z;V)), by LemmaB.4.15(andLemmaA.3.24).
5° Thelastclaimholds,because

|Du— u||£z<||]Du o) Dull 2 + [T (DU — Dy U)||,2 — 0, (13.24)

ast — oo, for ary u € £2(N;U), sinceD € Qs(lig(N;U),é?). (For u € ¢, thisis
eveneasiel) O

We sometimesusethe following lemmato derive discrete-timefrequeng-
domainresultsfrom continuous-timenes:

Lemma13.1.4 Let1 < p < . DefineT and T~ by

(TH(e ) :=f(s (s€ [0,+) +i[-TL 1)), (13.25)
(T79)(s) :=G(e™) (se CH). (13.26)

Then T maps LP(iR;B) onto LP(4D;B), Lstrong(lR;QS(U,Y)) onto
Strong(aD B(U,Y)), and HP(C*;B) onto HP(D;B) with norm < 1, but none
of thesemap5|s one-to-one
Moreover TT 1 =1, and T 1 mapsL*(dD; B(U,Y)) into L*(iR; B(U,Y))
and Lstrong(aD; B(U,Y)) into Lg"tmng(iR; B(U,Y)) andH®(C*;B) into H*(D; B),



isometrically

Furthermoe, T(f-g) = (Tf)-(Tg) andT~1(f-g) = (T~1f)- (T~1g) for all
f andg.

Finally, Lemmasl3.1.5and 13.1.6will showthatT € B(L?(J;U),£3(N;U)),
T € B(TI(U,Y),ti(U,Y)) and T € B(TIC(U,Y),tic(U,Y)) are onto, with norm
<1,and T~ e B(£2(N;U),L2(J;U)), T € B(ti(U,Y), TI(U,Y)) and Tt ¢
B(tic(U,Y), TIC(U,Y)) areisometrieswheke Tuis definedby Tu = T, etc. and
eitherJ=R, & N=NorJ=R & N=2Z. Notethat T(ET ~1u) = (TE)u etc.

We alsousetwo othermethoddo establishconnectiondbetweerndiscrete-and
continuous-timenaps;seeLemmal3.2.1,Theorem13.2.3and Section13.4for
details. . R .

Proof: Note that ||Tf||_rap;8) = [[fllLr(ij—mr:z) @nd [T fllLrap,B) =
| ﬂ||_p(i[_n7n)_|ogr;5); the HP claim follows from these andthe restis obvious,
because — e~° maps[—Tt, 1) — dD and (0, +) +i[—T 1) — D, one-to-one
andonto. O

Theti mapshave Lg;ond0D; *) transferfunctionsin the sameway asthe Tl
mapshave LgiondiR; *) transferfunctions:

Lemma 13.1.5(ti, = Lguong(r=10D, *)) LetE € ti,(U,Y). Thenthereis aunique
transferfunction]fl(z) € L&irond0D1/r; B(U,Y)) st.Eu=Raforallue (2(Z;U).
Moreover, the mappingE — E is anisometricisomorphisnof ti; onto L strong

andit commutesvith adjointsand compositionsjn particular, it is anisometric
B*-algebraisomorphisnwhenU =Y andr = 1.

SeeSection3.1or SectionF.1 for Lgong

Proof: We take r = 1 to simplify the notation. Let F €
B(¢2(dD;U), £2(dD;Y)) betheoperatordefinedby Fa := Eu.

From TheoremF.1.7(b)we obtaineasilythe lemmaexceptfor thefactthat
eachti(U,Y) maphasa transferfunction; hencewe studythis claim only.

This claim is known in the caseof separablé) andY = U (e.g.,Theorem
1 of [FS]), hencein the caseof separabldJ and an arbitrary Y (because
thereis a separablesubspacery C Y s.t. E € ti(U,Yo), i.e., Ef € L%(Z,Yo)
for all f € L2(Z;U), by LemmasA.3.1(a3)andB.3.16). We could prove the
unseparableesultby themethodsof Theorem3.1.3(al) put we have choserto
combinethelatterwith the separabl&aseto obtaina shorterproof.

By the resultsmentionedabove, for eachclosed,separablesubspace/ C
U thereis a transferfunction By € Lgond0D;B(U,Y)), andfor eachG €

TI(U,Y) atransferfunctionG € L%;ondiR; B(U,Y)).
LetE € ti(U,Y). ThenGg : f — £~ 1T-1ZEZ 1T £f is obviouslyin linear
and||Gg [| 3 2) < 1.

To prove that Gg € TI(U,Y), take arbitrary f € L?(R;U) andt € R.
Choosea closed separablesubspace/ c U s.t. f € L2(R;V). Let Ry =



T-1Ey € Lstrond [=TL TD); B(V,Y)) (herewe usedthe separableesult),sothat
£(Cef) =T '® T =R T.

ButRye ' f =e 'R/ f, henceGgt(t) f =1(t)Gg f, for allt € R. Therefore,
G € TI(U,Y), henceG € L;ondiR; B(U,Y)). EquationGg f =T 1(Ey T f)
impliesthat

(TGg)(TH =By TF= 2(Ez1TT) forall f,V. (13.27)

Consequently := TGg € L gtrond9D; B(U,Y)) is thetransferfunctionof E.
The“Moreover” claimsareeasyto prove, cf. the endof the proof of Theo-
rem3.1.3(al). O

Lemma 13.1.6(fic, = H'f/r) LetD € tic;(U,Y). Thenthereis a uniqueD(z) €
H*(Dy/r; B(U,Y)) st.Du=Daforall ue ¢2(N;U), namelythe one definedin
Lemmal3.1.3(c1) Moreover, themappingD — D is anisometricBanad algebra
isomorphisnof tic, onto H‘f/r.
In particular, tic, C ticy for0<r < r. R
Furthermoe, D has the (nontangntial) boundary function D €
strongd0D1/r; B(U,Y)) in the senseof Theoem3.3.1(c)&(e)&(f)

We call D := D(0) € B(U,Y) thefeedthpughopeator of D.
__ Becauseof thelastclaim of the lemma,we may safelyidentify D € H® and
D € Lgyong (Via anisometricBanachalgebraisomorphismandcall both of them
thetransferfunctionof D.

Analogouslyto the continuouscase,we alsoidentify D € tic, andD € tic,
if they (equivalently, their transferfunctions)are extensionsof a singletic (H*)
map.Consequentlytic, C tic, forr <r’.

Proof of Lemma 13.1.6: Obviously, DG =Duon Dy forallte U, hence
for all u € £2, by time-invarianceandcontinuity (alternatvely, by [RR, Theorem
1.15B] and scaling). For r = 1, the isomorphismfrom LemmaD.1.15; the
generakasefollows by scaling.

Thus,tic, C tic,s followsfrom H‘f/r - H‘f/r,.

By (c) and(e) of Theorem3.3.1,D hasa boundaryfunction (L g ong €0ui-
alenceclass,to be exact); thatfunctionis obviously equalto the onegivenin
Lemmal3.1.5. (]

Invertibility in tic., is equivalentto invertibility of thefeedthrougloperator:

Lemma 13.1.7(X™1) LetX € tice := Ursotic;. ThenX € Gtice, < X 1= X(0) €
GB. O

This follows from the fact X is (boundedly)invertible on a neighborhood
of 0 iff X € GB (seeLemmaA.3.3(A2)). Obviously, X~1(0) = X1, because
(XZ)(0) = XZ for any X € tic (U, Y), Z € ticw (Y, Z).



Lemma 13.1.8(9) Letu € ¢2(Z;U) andE € ti(U,Y). Thenfu(z) = t(Z) for
ze 0D. Moreover, ]ﬁ;(z) =E(2)*, FTE\H(Z) =E®@ and]ﬁa(z) —=E(2)* for ze aD.

If D € tic; (U,Y), r > 0, thenDA(2) = D(Z)* for z& Dy, i.e., DI(s) = T2, D2,
whee D(s) = S moDnZ" is the Taylor seriesof D (with D, € B(U,Y) for n € N).
g

(The proof is almostidentical to that of Lemma3.3.8 (with replacements
(13.63))and henceomitted.) SeeDefinition 3.1.1for E* on dD (and Theorem
3.1.3(d),which is applicableon dD too, by Theorem13.2.3). Note thatE* need
not be the pointwiseadjoint of an arbitrary representatie of E, which might be
unboundedndnonmeasurabldyy Example3.1.4.Notealsothatz=1/zondD.

Notes

Much of the convolution and Z-transformtheory at the beginning of this
sectionis probablywell known, and so is Lemma13.1.6 exceptthe boundary
function claim (in the unseparablecase). Also Lemma 13.1.2 and Lemma
13.1.3(a)are well known (see,e.g., [Mal00] or [Sbook]). Furtherresultson
ti, mapsare givenin Theorem13.3.13;seethe correspondingontinuous-time
chapterdor furthernotes.



13.2 The Cayleytransform (<, Q)

Andthusin anguishBeren paid

for thatgreatdoomuponhim laid,
the deathlesgove of Luthien,

too fair for love of mortal Men;
andin hisdoomwasLuthiensnased,
thedeathlessn his dyingshared;
and Fatethemforgeda bindingchain
of living loveand mortal pain.

— J.R.R.Tolkien (1892—-1973)"'The Lay of Leithian"

In this sectionwe presenstandardndfurtherresultsonthe Cayley transform
of functionsandparticularlyonthatof (stable)tic operators.

We will often use compositionwith the Cayley functionto map H*(D;B)
one-to-oneonto H*(C*;B), (C(dD;B) one-to-oneonto C(iR U {»};B), or
L strong(OD; B) one-to-onepntoL g ondiR; B):

Lemma 13.2.1(Cayleyfunction) We definethe Cayley functionby

1-s
Qcaylg - S 1+s (13.28)

(@We have(pggy,q, = Qcayley aNd Pcaylg/(S) = —Pcayle(1/9) (5# 0, —1).

(b) Gcaylegy MapsCt — D, iRU{w} — dD, and C* U {«} — D one-to-one
and onto (and continuouslyin bothdirections,i.e., it is a homeomorphism)
(but C}, 4 Dy for anyw # 0 or r # 1). Moreover, the positivedirection
on iR (+ic to —iw) is mappedto the negative direction on dD, and
f(do0) = —1= f(Lio0).

(©) If it = Geayiey (€°) (i.e., €% = gayigy (it)), then$ = —2(1+1t2) 2.

(d) We have [§(f o @ch ) (€) dm = [ 2(1+t2)1f(it)dt for measuable
f 1iR — [0, 4] andfor f € L1(iR;B), whee B is a Banad space

(el) f — f o cayly MapsH(D; B) one-to-onentoH(C*; B), H*(D; B) one-to-
oneonto H”(C™;B), C(dD;B) one-to-oneonto C(iRU {«};B), LP(iR;B)
one-to-ondnto LP(0D;B), and X(0D; B) one-to-oneonto X(iR;B), whee
X =L"% X =Lgyong X = LiyeakOr X = I-|%c (1<p< ).

Moreover, thismappreserveshe|| - || normontheboundarythesupemum
norm,and nontangntial angles(exceptat —1 € dD).

(e2) Let f € H(C™;B) and g € H(D;B). Then f € HP(C™;B) iff (z—
(1+2)%Pf(32)) € HP(D;B). Analogously g € HP(D;B) iff (s (1+

s)%/Pg(179) € HP(C*:B).

(f) If f € Lib.(iR; B), thenir € Leb(f) iff gcq (i) € Leb(f o geayle)-



(Thereare several differentCayley functionsin the literature, but they only
differ by someadditionalconstantsn the above formulae. The advantageof our
functionis thatit is theinverseof itself. SeealsoLemmal3.2.6.)

Proof: (a)—(c)Theseareobvious.

(d) (Note that if either side corvergesabsolutely then so doesthe other
(replacef by || f||g).) Thisfollowsfrom (c) andLemmaB.4.10.

(e1)1° Becausepcayley and(p(_;;yIey areholomorphic they presere continu-
ousandholomorphicfunctions,by LemmabD.1.2(b4).Trivially, the supremum
normis alsopresered (0D — iRU {0} or D — C,), soH,H%, C arealready
covered(notethatoD andiR U {«} arecompact).

2° By LemmaB.4.10(appliedto @cayig/(—-); cf. (c)), alsothe|| - ||o-norm
is preseredandcasesX = L® andX = L . arecovered.If B= B(U,Y), then
thecasesX = Lgyong X = Lyeax follow from thecaseX = L.

3° LP: Thisfollowsfrom thetheoremon p. 1300f [Hoffman] (whoseproof
appliesalsoto vectorvaluedfunctions).

4° Nontangential angles: (Seep. 967 for nontangentialimits.) Because
Pcayle is conformalC\ {—1} — C\ {—1}, theimagesof (small)nontangential
conesarecontainedn nontangentiatonesjn bothdirections.

(e2) The(scalarcasewith adifferentCayley transform)proofthe Theorem
on p. 130of [Hoffman] appliesmutatismutandis.

() This follows from LemmaB.5.5. (Here we have identified 0D with
[-m,m) (via € — t); identification with [0,2m) would affect the point
(pgéy, (i0) = 1, unlesswe would usethe periodicextensionof f o (pggqu o€
onR. O

Thereference®f Theoremb.1.6will usethe following fact (asthe definition
of 1tt): Theoperatortt hasthe standardsingularintegral presentation
—~ flzg 1 f(s)

for f e L2(dD;H); this follows by applying scalarcase(from, e.g., [Garnett])
to Af for eachA € H* (becauseATtt = 1ttA\). One getsthe corresponding

presentatiorfor ™ analogously
Next we shall constructan isomorphism® : Tl — ti that can be usedto
transformresultsfrom continuoudime to discretetime andvice versa.

Definition 13.2.2(Tl (—)ID We define the (signal) Cayley transform < :
L2(R;U) — £2(Z;U) by & F =y (To gy ) i€,
(01 (@ =YD (Fogene)@ (f €LA(RU)), (13.30)
wheey(z) = vV2/(1+2).
The (map) Cayley transformQ is definedby OE := <>y]E<>L_,1 :4%(Z,U) —
2(Z;Y) for E: L?(R;U) — L2(R;Y).

(Seetheproof of Theorem13.2.3(a)or details.)



Next we show thatthe map< is unitary ((a)), that® = - o cpggyle/ ((b3)), and
thatti o cayle = T1 ((b2)):

Theorem 13.2.3(Q : Tl + ti)
(a) Themap<) is an isometricisomorphisnof L?(R;U) onto ¢%(Z;U) and of
L2(R4;U) ontof?(N;U)).
Indeedforu:Z — U wehave

2n .
Jul =3 lulls = (2m [ (&) e (13.30)

=en [TI@Ra= [ e HolEd (13.32)

Moreover, for u € L?(R;U) theformula(13.30)holdson D too.

(b1) ThemapQ is an isometricisomorphismof B(L2(R;U),L2(R;Y)) onto
B(I?(Z;U),£%(Z;Y)). Moreover, © commuteswith adjoints and valid
composition®f operators. Thus,

Q(EF) = (VE)(VF), OE!=(VE)~! OFE' =(VE)*, (13.33)
for E € B(L?(R;U),L?(R;Y)) andF € B(L%(R;Y),L?(R;H)).

(b2) Themap® is anisometricisomorphisnof Tl ontoti andof TIC ontotic.

(b3) LetE € TI, F := QK. ThenF =Eo (PE§y|q in Lgirong 1-€., 0N 0D (andin
H%,i.e.,,onD, if E € TIC).

(c)omy =10, Om =10, $A=9_10 =19, VA=9_1 =14.

(c2) TG = &(Gcayie)*, T = (@eayg), O1(1) =13, Or(t) = ..

(c3)VL=LforL € B(U,Y).

(c4)VEY = (VE)? for E € TI.

(d) LetE € B(L%(R;U)). Thent.Emn. is invertible on 1. L2 iff et (QE) et is
invertible on Tt £2,

(e)LetE,P € B(L?(R;U)). ThenQE > 0[>> 0] on (VP)£2iff E > 0> 0] on
PL2.

Notethattheseresultsdo notholdin theunstablecase(seeLemmal3.2.1(b)).
However, Section13.4treatsanotherway to relateTl andti, discretization that
handlesalsothe unstablecase.

Proof: (a) By Lemmal3.2.1(d)we have

M o2 _ -1 2290 12
|10 @) Pde = [ 21+ itRlain)> G di= [ an)|2d (13.34

for measurabld : iR — U.
This provesthefirst “=" signin (13.31);the two following “=" signsare
from LemmaD.1.15.



It follows that ¢» is an isometricisomorphismof L2 onto ¢2. The fact
thatt ¢ = {1, follows from the scalarcase(givenon, e.g.,pp. 104—1060f
[Hoffman]). (Indeed,our @cayigy Usesanextraz+— —zon oD comparedo that
of [Hoffman], hencethis transformshe ascendingrder(positive orientation)
of oD to theascendingrderon —o. .. 4 ), becausephviously, AQy = O\
for A € U*. Notethatif ue L?(R;U), thenu € L?(R;U) < Aue L?(R,;C)
for all A € U*, andthatananalogouslaim holdsfor £2.)

(b1) This follows from (a) exceptfor OE* = (VE)*, which is obtainedas
follows:

(E*u,v) = (U, Bv) = (Gu, DEGV) = (O HQE)* Gu, V). (13.35)

(b2) Thisfollowsfrom (b1)and(b3).
(b3)LetE € TI(U,Y). Then

OEO = y((B0) 0 Ggayie) = (B0 @5k V(@0 Geayig) = (Eo @5l ) 0T (13.36)

for all ue L2(R;U). Therefore GEG 1 = Eo @l (cf. alsoLemmal3.1.6).
(cl) Thefirst identity on 1. wasproved in the proof of (al); the second
identity follows from thefirst.. By Lemmal3.1.8,
1-1/z
1+1/z
for ze dD. Becausé& = zandd_; = 15, we obtainthethird identity; thefourth
identity follows from thethird.
(c2) Becausd @cayly) o Gcayly = 2= T, we have & ((@cayly)<0) = 2400,
G,

) = M@~ = 255u(z) (13.37)

AGU(2) = du(1/2) = Y(1/2)(

—_—

i.e., the first (and hencethe second)identity holds. Moreover, T(t)u = e*
henceQ/r(T) — dcaye(2) 35,

(c3) Thisis obvious.

(c4) Thisfollows from (c1) andtheformulaQE* = (QE)* from (b1).

(d) By (b), G, Emn, = i, = m,En, G for someG € B(m.L?) (we
may identify G with .Gty € B(L?) iff (VG (VE)T = it =

T (VE)t (VG).
(e) Now (QEQPG T, QPO f) > 0 for all Hf € £2 iff (EPT,Pf) > 0 for all
f € L2. By replacingE by E— ¢l we getthe“>> 0” claim. O

We remarkthatlosslessnes®efinition 2.5.1)is O-invariant:

Corollary 13.2.4LetJ=J* € B(Y)andS=S" € B(U). LetE€ TIC,F:=QE €
tic.
ThenF is (J,S)-losslessff E is (J, S)-lossless

Proof: Thisfollowsfrom (13.33)andTheorem13.2.3(e). O

It hasbeenshavn in Chapterl1 of [Sbook]thatfor every ¥ = [4{2] € wpls;

with A contractve and A + | one-to-one thereis ¥/ = [%%]' € WPLS s.t.
IY = Q1D (andcorversely).



We now partextendDefinition 13.2.2for unstableD for later use(alsomuch
moreis true):

Proposition 13.2.5(Q: unstableD) If Q ¢ C is openandD € H(Q; B(U,Y)),
thenwesetDu := £ D, for all u € L2(R_;U) s.t. DG e H2(C*;U). Moreover,
wesetOD = SyvDOjL.

Analogously if Q' c D is openand F € H(Q'; B(U,Y)), thenwe setFu :=
z~1Fafor all u € £2(N;U) s.t.Fa e H2(D;U).

Thefollowing holds:

(b1)If D is asabove, thendD = Do (pggqu,.
(b2) Q(DD) = (VD)(YD) for D € H(Q; B(H,U)).

(b3) D[H?3) c H2 = D e H®) If D is definedon whole L2(R4;U), thenD €
TIC(U,Y) and VD coincideswith that of Definition13.2.2.

Proof: (Note that DU € H2 meansthat DU has a (unique, by Lemma
D.1.2(e))extensionto CT, andthatthis extensionis in H2.)

(b1)If u,Du e L?, then(@)\ou = (Iﬁ)o(pg;yw)&l, by (13.36).Corversely
if (]ﬁ)o(pggyw)()ﬁ € H2 for someu € L4(R;;U), thenDa € H2, by (13.36)and
Theoreml3.2.3(a).

(b2) Thisis obviousfrom the definition. R

(b3) Fix andopenQ’ c Q s.t. 0 # Q' C Q, sothatD € H*(Q'; B(U,Y)).
Now D € B(H?, H*(Q';Y)), H* C H*(Q'}Y) (by LemmaF.3.2(a)&(b)) and
D[H?] c H2, henceD € B(H2,H?),i.e.,D € B(LZ(R,;U),L2(R4;Y)).

SinceDe! = e'D for all t € R, D commuteswith translations,.e., D €

TIC(U,Y).
Obviously, the map OD of this definition is equalto the restriction to
£2(N;U) of themap¥D of Definition 13.2.2. ]

Sometimesve wish to mapo to someotherpoint of dD thanto —1. Thenwe
cancombinethe Cayley transformwith arotation:

Lemma 13.2.6(Differ ent Cayley) Proposition13.2.5and Theoem 13.2.3 ex-
ceptpossiblythe claimson 5, T and ()9 (in (c1), (c2) and (c4)) hold evenif we
replace@cayiey bY @cayle © Ry for somen € dD, whee (R0)(2) := G(az) (equiva-
lently, Ru, := akuy (k € 2)) for all zandu.

Proof: Obviously, Ru(z) = S Zaku, = (R0)(2) for all zandu, R is an
isometricisomorphismon ¢2, Ritt = 11" R etc. Part of the propositionand of
thetheoremfollows directly from this andthe rest(with the above exceptions)
caneasilybe verified. O

Notes
Theorem13.2.3(a)is essentiallygiven in [RR], whereone canfind further
informationon this transform(alternatvely, seeSection11.40f [Sbook]).



13.3 Discrete-timesystems(wpls(U,H,Y))

Do youthink whentwo representativesolding diametricallyoppos-
ing views get togetherand shale hands,the contradictionsbetween
our systemsvill simplymeltaway?Whatkind of a daydeamis that?

— Nikita Khrushche (1894-1971)

In this sectionwe presentwpls’s, the discretecounterpartof WPLSs. We
will presentthe main definitionsandresultsof the continuous-timepart of this
monographcorvertedto the discrete-timeform; this sectioncovers mainly the
theory of Chapters2—7. Thus, generators Z-transformsof maps,stability and
feedback. Lessstraight-forvard results(on stabilizability) are presentedht the
end of this section,and mostof main resultsare containedn Theorem13.3.13,
whichcoversthediscretecounterpart®f almostall continuous-timeesultsin this
monographgseethe otherchapterdor details).

We startwith the definition:

Definition 13.3.1(wpls) Letr > 0. Anr-stablediscrete-timewell-posedinear
system(r-stablewpls)on (U,H,Y) is aquadruple[%%} of operators for which

(1.) A€ B(H), andsupey ||rkA¥|| < o;

(2.) B € B(#?(Z_;U),H) satisfiesBrr = AB;
(3.) C € B(H,£?(N;Y)) satisfiesCA = T 1C;
(4.) D e tic,(U,Y) andt' D = CB;

wewrite [£-12] € wpls (U, H,Y) to expressthis, andwe setwpls := Uy owpls;.
If [242] € wpls, and (3.) and (4.) hold for r = 1, then [ 2] is a stable-

D
outputsystem([%%] € s09.

If [[&42] € wpls, and] r=IAlx — 0 strongly (resp.weakly)as j — o for
all x € H, then| [%'Hg]‘and] A is strongly (resp.weakly) r-stableand [%}%] is
strongly(resp.weakly)internallyr-stable

We call Athestatemap B thereachabilitymap C theobsenability mapand
D the /O mapof 442 ]; themapA (resp.B, C, D) is r-stableif (1.) (resp.(2.),
(3.),(4.)) holds.

The prefix “1-" is often omitted, e.g., systemsn wpls; are called stable
System#n wpls, for somer < 1 are called exponentiallystable similarly, if (1.)
holdsfor somer < 1, wecall A exponentiallystable

Exponentiallystableoperatorsare often called power stable,but we wish to
have our terminology compatiblewith the continuous-timenotation; hencewe
sometimeslsowrite A(t) ;= Al := A,

We shalloftenusethe basicidentitiesBtmt = AKB, CAK = it tC.



Lemma 13.3.2(wpls, C wpls,) Let [Z18] € wpls, for somer > 0. Then
[%%] ewpls, forall r’ >r. .

(The proofis analogoudo thatof Lemma6.1.2andomitted.) In fact,if Ais

r-stablethen [Z|2] isr’ stablefor all ' > r, by Lemma13.3.8.

Oneusuallydefinesdiscretesystemdy (13.40)below. Thisis notaproblem,
becauseavpls’s correspond -1 to the solutionsof (13.40):

Lemma 13.3.3(Generatorsof a wpls)

(a) For each X := [%}%} € wpls, there is a unique quadrupleof operators
[&12] € B(H xU,H xY), called the generatorsf [%%], s.t.for x € H
andu € c¢(N;U) wehave

00 -1
Bu=S ABu j 1= A 1By,
j; k:Zoo
(CX)x = CA* (ke N),
00 ) k—1 )
(Du)y = %CA‘BLk,j,l-i—Duk = 5 (t7)7'CBuUj)(K) +Duk (ke 2).
= =0
(13.38)
Moreover, (13.38)hold for anyu € £2 ([n, +);U) +£2(Z;U), n € Z andr
iss.t.Z € wpls,. Wealsohave(her g := Xy (k€ 2))

Bu=B(ue_1)), Cx= (Cx)o, Du= (D(ue))o= D(0) forue U, x€ H.
(13.39)

Moreover, the uniquesolution(on N) of the differenceequationpair

Xj+1 = AXj + BUj, (13.40)
yj = CXj +Duj,
with initial valuexp € H andinputu € c(N;U) is givenby
xj] _[A BU] [x] ,.
[y}_[c pllyl =12 (13.41)
(formula(13.41)determines[%'%] uniquelyon H x c¢(N;U), henceasa

wpls).

(b) Corversely for each [%%} € B(H x U,H xY), the openators definedby
(13.38)are the uniquesolutionof (13.40)(and (13.41)),and they extendto
a (unique)wpls. Theresultingwplsis r-stable(andD € ¢}) for anyr > p(A)
(andfor nor < p(A)). We call this wplsthe wpls generatedby [%}—g], and

wewrite (418) = [&15].

() Let (&}2) = [&15] € wpls:(U,H,Y). Then (13.41)is the solution of
(13.40)for anyxp € H andu € N — U (theinitial valuesetting. Similarly,



xj = Btu, y = Du is a solutionof (13.40)for anyu € £2(Z;U) (the time-
invariantsettingsatisfyingx; — 0 as j — —o. Moreover, we have

t—1 t—1
Blu:=Bt'rttu= y ABu 1 = > A—1KBy (u:Z—U),
=) Ko

(13.42)

D = D +CBt (13.43)

(D*u) = Z)B*(A*)jA*unHH—I—D*uk (13.44)
]:

(ue?,(Z;U)oru: (—wo,n)—U, neZ). (13.45)

Note that (b) shows that the whole wpls is exponentiallystableiff A is (cf.
Lemma6.1.10);equivalently, iff p(A) < 1,i.e.,iff 6(A) C D (seeLemmal3.3.7).

As above, we will denotethe generator®f operatorsandfeedthrouglopera-
torsof tic., operatordy correspondingordinary)letters.

Proof: (a)&(b) Exceptfor the claimsproved below, the stablecaseof this
follows from Section4 of [S99], see[Mal00] for proofs,andthe generalcase

follows by scaling(seeRemark13.3.9); alsothe readercan easily verify the
results.

The equationlﬁ)(O) = D follows easilyfrom (13.38).

Equationg13.41)defineawpls uniquely because; is densen £2.

The conditionr > p(A) impliesthat||r~KAX|| < 1 for big k, hencel|r —<AK||
is then bounded(similarly, it is unboundedfor r < p(A)). Replacingr by
r' € (p(A),r) above, we seefrom (13.38)thatB, C, D arer-stableandD € .

(c) Obviously, (13.41)solves (13.40)in both cases. On the other hand,
Btlu= B tly, andr t/lu— 0asj — —o. Theformulaefor B', D andD*
arestraightforvard. O

Any tic, maphasarealization:

Definition 13.3.4(Realization) LetD € tic, (U,Y). If [%}%] e wpls(U,H,Y) for
someHilbert spaceH, thenwecall [%}%} (togetherwith H) a realizationof D.
We call the (stronglyr-stable)system

[n*t\rﬁ]l)n”}_ ! | mh(D-e_q)
] D | \mg| D

) ewpls, (U, £3(N;Y),Y) (13.46)

the exactly obsenablerealizationof .

We now statethediscreteversionof dualsystemsThisrequireg13.12),hence
we have to usef_; insteadof A (recall that (A_1X)x := x_1-k). Fortunately
A_1D*A_1 = At 1D*19 = AD*9 =: DY; but for the dualsof B and C the
differencebetweerd andA_1 is meaningful:



Proposition 13.3.5(Dual system) Let [ 2] = (4}5) € wpls;, r > 0. Thenits
(causal)dual system(or (causal)adjoint system)

ABY ()] [ (&) | CHAa
C|p| | B! [D | | A4B | DA,
, , S g1dy\d : 1 gqd fl ot
is alsoin wpls,. Moreover, ([&15]7)" = [&42] and [21E]" = (5-1S0).
Heretheadjointsaretakenwith respecto the 2 innerproduct(i.e., withouta
weightfunction),e.g.,for C € B(H,£2(N;Y)) we have thatC* € @(Zl/r(N;Y), H)
and(Cx,y) = (x,C*'y)forxe H, y € él/r(N,Y).
Notethat¢? , isthedualof Ifrz with respecto the(weightlessy? innerproduct.
Proof of Proposition 13.3.5: Using (13.12)and (13.11) one can verify
that (1.)—(4.) of Definition 13.3.1hold (e.g.,C*A 1 € B(¢?>(Z ;Y),H), and

equationA*C*A_; = (M1C)*A 1 =--- = C*A_311r is easilyverified).
Theclaim on generatorgollows easilyfrom (13.38). O

(13.47)

Next we write outthe symbols(“Z-transforms”)of thecomponent®f awpls:

Lemma 13.3.6 Let (4}5) = [&42] € wpls(U,H,Y), r > 0. Then,for |z <
1/p(A) andup € U, wehave

A=(1-zA 1= f AL (13.48)
k=0

B(z)=z(1-zA B=(z*-A) B= iAkzk“B, (13.49)

C(z)=C(1—zA~ z CAKZ, (13.50)

D(z) = D+Cz(l — zA)~ 1B= D+C(z1-A'B (13.51)

=D+ i CA*BZ*! = D+ C(2)Bz= D +CB(2) (13.52)

B(2)uo = B(z " W), Dz 'ug =2z D(2)u. (13.53)

in thesensethatA/x\o = &xo, Bru = ]ﬁﬁ, ((/Ix\o = @xo andDu = Dad on Dyr for all
X0 € H andu € £2(N;U).

Thus, C is stableiff C € HZong i.€., iff C(I —zA"Ixg € H3(D;Y) for all
Xo € H. AnalogouslyB is stableiff B* (I —zA")™ Ixo € H2(D;U) for all xg € H.
Proof: Theequationdor A IB (C D arestralghtforvxard
Setthenu :=z""up, sothatu € £2(Z U) +£2.(N;U). Obviously, I@(z)uo =
B(z "up), hence

D(2)ug = Dup+CBu = (Du)o (13.54)
Sincet‘u = z-¥u, we have (Du)y = (Dt*u)(0) = z*D(2)ug (k € Z). O



Lemma 13.3.7(Exp. stable) Thefollowing are equivalentor A € B(H):

(i) Ais exponentiallystablg i.e., sup||r ~KAX|| < c for somer < 1.

(i) Axg € L2(Ry;H) for all X9 € H;

(i) (s (I —sA)Ixg) € H3(D; B(H)) for all xg € H;

(iil) |35 Awln < M[l@l]2 for all g€ co(N;H);

(iv) p(A) < 1, wher p(A) :=limy e [|A]| ¥ = infi_,o || AX[|/K = max|o(A)| <
[IAIl;

(v)o(A) C D.

Thevaluep(A) is calledthe spectal radiusof A (seeLemmaA.3.3).

Proof: By Lemma A.3.3(r1)&(s1), we have (iv)<(v). Equialence
“(i) < (iv)” is almosttrivial. We obtain®(ii) <(ii")” from (13.48)and"(ii) < (i)”
from [W89d] (which shavs thattheweakform of (ii) is sufficient). Implication
“() < (iii)” follows asin the proof of LemmaA.4.5. O

Lemma 13.3.8(Stability) Let> = [&{2] € wpls(U,H,Y) and0 < r <r’ < o,
Then

(al) Z is exponentiallystableiff A is exponentiallystable

(a2) If A is r-stable (or p(A) <r), thenX € wpls,, Bt € ticy(U,H), and
D € £5(N; B(U,Y))x.

(b1) If B is r-stable thenBt andD is r’-stable

(b2) If Bt isr-stable thenB andD arer-stable

(b3) If C is r-stable thenD € tic, N B(£F,£2), DF € fB(éf/r(Z;U),ET/r(Z;U)),
D € HZondr ~'D; B(U,Y)) andLemmal3.1.3(d)applies.

Thus,X is r-stablefor all r > p(A).

Proof: (al)If Z is exponentiallystable thensois A, by definition. Assume
that A is exponentially stable,i.e., that ||AX|| < Mr¥ for all k € N for some
M < o, r < 1. By usingLemmal3.3.3(b),oneeasilyverifiesthat | Axp||2 <
M(1-r2)~Yxo||? and [Z}2] € wplsis exponentiallystable.

(a2) By Remarkl3.3.9,we canw.l.0.g.assumehatr’ = 1, hencewe obtain
this from (al) for = (seeLemmal3.3.7(v)&(i) for p(A)). By applying(al)
with C =1 andD = 0, we getBt ="D" € tic(U,H).

Finally, chooses € (r,1) to obtain D € ticy (by (al)). Then D €
Z4(N; B(U,Y)) for ary t > s, particularlyfor t = 1, by Lemma13.1.3(c3).

(b2) Thisfollows from (13.43)for D; takeC =1,D = O0to getBt = D.

(b3) AssumethatC is r-stable.By (13.38),Dupey = Dugeg+ 1 1CBueg €
¢2 for eachup € U, hencewe getthe claimsfrom Lemma13.1.3(d).

(b1) If B is r-stable thensois BY andhencethenD® andD arer’-stable,
by (b3); applicatiorwith C = | andD = 0 showsthatalsoBrt isr’-stable. O

Now we areableto presenthediscretecounterparof Remark6.1.9(seg(13.9)
for r: (xj) — (r'x;j)):



Remark 13.3.9(Stability shift) Let (415) = [&12] € wplsy(U,H,Y). Thenthe

stability shift (or scalingoperator) 7; : (412) — (‘512 satisfies

c
yr [%%} = ( rC,:A r[I)B ) = [ ) r]ﬁlr)r } e wplss(U,H,Y). (13.55)

Thus,7; : wplss — wpls,4 is a bijection.

Moreover, Z; : E — r'Er " is anisometricisomorphisnti; (U,Y) — ti,s(U,Y)
aswell asti(Z; B(U,Y))* — £3(Z;B(U,Y))x. O

(We leave the simpleproofto thereader(cf. (13.10)).)

We let 7y also denoteits componentgnote that this is in accordancewith
TE:=rEr— for E =D € tic).

In Sections6.6—6.7 and Chapter7, we reducedall kinds of feedbacksto
static output feedbackfor WPLSs. Next we shall do the samefor wpls’s. As
in Section6.6, we replacethe input u by u_ + Ly, whereu is an externalinput
andL € B(Y,U) is astaticfeedbacloperator(seeFigure6.2) to obtainequations

Xj+1 = AXj + B(Lyj + (u)j),
Yj =Cxj+D(Ly;+ (u)j), jeZ.

(13.56)

Thesearealgebraicallythe sameas (6.123)—(6.124)in particular they have
auniquesolution(i.e., they arewell-posed)iff | — DL is invertible. If thatis the
casewe call thefeedbackadmissible:

Definition 13.3.10(Admissible static output feedback) Let (412) = [&42] €
wpls(U,H,Y). Anoperator L € B(Y,U) is calledan admissible(static) output
feedbacloperatorfor [£42] if | —LD € Gtice(U).

We call L r-stabilizingif £, € wpls; etc.,asin Definition6.6.4.

By LemmasA.1.1(f6) and13.1.7 eachof the conditions‘l —LD € GB(U)”,
“I| —=DL € GB(Y)”", andl —DL € Gtic,(Y) is equialentto | — LD € Gtic(U).
Thecorrespondinglosed-loopsystemis givenbelow:
Lemma13.3.11Let (512) = [242] € wplsy(U,H,Y) and | — LD € GB(U).
Then

AL|BLY. ([ A+BL(I-DL)"!C|B(I-LD)™*

B [ AL | B } .| A+BLOI-DL)"'C | B(I —LD)™!
N CL ‘ D T

(I-bL)y'c | (1-DL)'D
Moreover Al — Al =BTILC, =Bt/L(I —DL)~1C =B LtC for j > 0.
Proof: By solving (13.56),we obtain (13.57). By Lemma13.3.3(b),the

operatorg13.57)generat@awpls, whosestatemapis necessarily , andwhose
reachability obsenability, andl/O mapsB; ,C| ,D{ canbefoundby solving

-1 B o v

€ wpls(U,H,Y).

(13.58)



Butfrom (13.59)and”“u = u_ + Ly’ we obtain

X; Al +BU/LC, Bt .
M - [ o L HI]_)L } [Xﬂ (i=12..). (13.60)

Thus,B, =B, C, = C_ andD{ =D, andA! — Al =BtiLC_ ; thelastequation
follows LemmaA.1.1(f6). O

Thus,theformulafor statefeedbackdefinedasin Definition 6.6.10 takesthe
following form:

Lemma 13.3.12A state feedbak pair ( K | F ) is admissiblefor [£|2]
A|B

(ch) e wplsiff | —F € GB. If thisis the case thentheresultingclosed-loop
systenis givenby (hee M := (I —F)~1)

A +Bt(-)MK | BM A+BMK | BM
= C—i—DMK‘ DM |.  (13.61)

2, = C+ DMK DM
MK M-I MK M —1

O

Thepair ( MK | 0 ), whereM := (I — F)~1, is equivalentto ( K | F ) in
the sensethat it is admissibleor stabilizingiff ( K | F ) is, andthe resulting
closed-loopsystemis

A+BMK | B
C+DMK | D |- (13.62)
MK |0

We identify K € B(H,U) as a state feedbak opemtor to the (admissible)
statefeedbackpair [ K | 0 ]. Thus,K € B(H,U) is exponentiallystabilizing
iff A+ BK is exponentiallystable etc. SeealsoLemmal3.3.16.

Also otherdefinitionsof Section6.6 canbe corvertedto thediscreteime case
analogouslytheresultscanbe corvertedin a similar way:

Theorem 13.3.13(WPLS resultshold for wpls’s) If we male the following
replacementghere CT refersto continuousand DT to discretetime):



WPLS+— wpls, SOS— sos Tl +—ti, WR,SRULR,TIC — tic
MTIC! — OMTIC!, L2 —¢2, ¥ Ce, T =TT, TL — 10,9 A_g;
R—Z, R;—N, R —Z , iR—adD\{-1}, iRU{w}—0dD, C"—D, Ctu{w}—D;

to—1

t2
fta,to] s [tr, to — 1], / -y
ty -

A A, A(t) = A T(t) =1 Cw,Cs,CLw,CLs,Cc C etc.;
anyregularity assumption/statemeah a mapor system— atrue assumption/statement
(thesameappliesto the boundednessf input and outputoperators) ;
Dom(A), Hg, Hé,K, Hi1,HI, — H;
“[e]IARE”, "[e] CARE","[e]B |,-CARE” — “[e]D ARE",
[e]IARE,[e]CARE(theequations)— [e]DARE(thecorrespondindT equation);
S=D*JD+~ S=D*"JD+B*PB (similarly for anythingbasedon equationS= D*JD);
(s—A) 1= (-sA1 (s—A) BB—s(l-sA L
(2,S[K |F ])— (?,SK) (for solutionsof theelARE),
Stability indicesw andLaplace/Z-transfornargumentss:
“‘w>0'—=*w>1" “w>0—~“w>1",
“‘W=0"r—“w=1" “0#0"—“we (0,o)\{1}";
“Res> w' =" s¢€ D’l’/w, O-stabilizing— 1-stabilizing; s= 4o +—s=0
ety ot e 0, W+ aw, S—arsas, ir —d"
(13.63)
(naturally, theabove changesapplyalsoanyotherstability index (resp.transform
argument,elementof iR, time value) in place of w (resp.s, ir, t), any other
systemn placeof X etc.),thenthe following definitionsare still applicableand
thefollowing results(amongothers) still hold:
LemmaA.4.2(h1),PropositionE.1.8; Sections2.1 (note that Lemma2.1.15
now saysthat (D(s up)) (k) = s‘D(s)up for all D € tic,(U,Y), ke Z, se rD,
Up €U),2.2,2.4and2.5.
Chapter4 exceptpossiblyLemmagt.1.3and4.1.5.
Section$.4and6.5exceptLemmab.5.10(c)and possiblythe claimsonp.r.c.
(probablyalso they are true); Section6.6 and 6.7 exceptProposition6.6.18(in
fact, even6.6.18it is true exceptfor its partsthat are meaninglesi thediscrete-
time case)and Example6.6.23.

SeeTheoremsl4.1.3,15.1.1,11.5.2and 12.2.2for Chapters8—12; (mainly)
Section14.3for Chapter5 andLemmal3.3.19for Lemma6.3.20.

Of course alsothe (non-italic) text betweersubsectionss almostcompletely
applicabletoo (althoughthe regularity problemsdisappeain this discrete-time
case).

Moreover, mostMTIC resultscanalsoberewrittenfor discreteimefor classes
Ei*, ticexp €tc.(seeLemmal4.3.5)in placeof MTIC classegbut the®S# D*JD”
requiremenbdbf HypothesisB8.4.8is not satisfiedby theseclasses)Therearesome



CARE resultsthatimplicitly or explicitly have D*JD in placeof S. As explained
above, the CAREsmustbe replacedoy DARES, hencethis term mustalwaysbe
replacedby S:= D*JD + B*PB while writing the resultsin their discrete-time
forms (thus,most“D*JD” termsandtheir simplified forms mustbe replacedby
“D*JD + B*PB", whereasary lims_, B, P(s— A)~!B termsmay be removed,;
this makesresultssuchas Theorem10.2.9and Proposition9.9.12(c)(3.) much
lessusefulin their discrete-timeforms (sincethey arebasedon “S= D*JD")).
Most of thetime the reademeednot be concernedaboutthis sincethis hasbeen
explicitly writteninto theresultsfollowing thetheoremdistedabove.

As notedaroundExamplel14.2.9,thereis no discreteequialentfor the B}, -
CARE theoryof Section9.2 (in particular we almostalways have S# D*JD);
thesameholdslargely for the Dom(Ait)-CARE theoryof Section9.7 (sincenow
Dom(Acrit) = H = Dom(A); notethatmostof thetheoryholdswith Sin placeof
D*JD).

Proof of Theorem 13.3.13: All proofshold in discretetime too, mutatis
mutandis, usually the discretetime versionsbecomesimpler Thus, the
referencesdrom discretetime to continuoustime are always non-essential.
However, someresultsareprovedin discretetime only, andtheresultsarethen
transferredto continuoustime by discretization. Therefore,if onewishesto
verify the proofslinearly, oneshouldverify theentiremonographn its discrete
time form beforeverifying the continuougime forms (alternatvely, onecould
readboth settingssimultaneoushbut go somavhat furtherin discretetime in
suchplaces).

Thereis a shortcut: by usingTheorem13.2.3,0necancorvert the results
correspondingo TIC mapsonly. Someotherresultsareimplied by Remark
6.5.11(mainly the onesconcerningTIC., mapsonly). By discretization,one
can corvert uniquenessesultsfrom discretetime and existenceresultsfrom
continuoudime.

For therest,onemustmake the correspondinghangesn proofstoo. Some
proofscontainreferencesvhich eithercanbereplacedy thediscreteresultsof
this monograptor whoseproofsmustbeverifiedin the sameway; we mention
thatwe have verifiedfor thediscretecase[S97b,Lemma21], all of [S98a]and
[S98c] (including the partsof [S98b] that are containedn [S98c] (andmore),
in particular Subsectiond—3.4,3.9(i), 4.1-4.7,and Chapter5 apply) (with
replacement§l3.63),bothwith Remark6.1.15andwithoutit.

All this is quite straightforvard (the explicit resultsabove containall the
nonstraightforvard parts).We sketchbelow the hardesproofs:

The proof of Lemma2.2.7doesnot needthe referencao LemmabD.1.8in
this (discrete)case.

The CoronaTheoremfor 4 = ti follows directly (useTheorem13.2.3(b1)
for (iv)); case4 = ¢! follows asshown in the proof of caseq = MTlq (take
4 =017, prove thetheoremthenmake thereplacements).

Propositiond.1.7:%(iii) < (iv)<(iv)<(iv?)” followsfrom Theoreml3.2.3,
therestby transformingthe original proof.

Lemma4.1.8: If D € tic(U,Y) andD*D # ¢l for ary € > 0, thenwe can
constructl € H2\ H? asin the proof, but for F := T—D, with |r;| < 1/2 (see



Lemmal3.1.4).

Thenv := Tu satisfiesV € H(D;U), hencev € H?(rD;U) for all r < 1, but
1|2 = 1|8l 20y = - However, Dv = T(Fu) € L. Thus,thenD is not
guasi-left-irvertible. This shows (a); the restcanbe showvn asin the original
proof.

Theorem 6.7.10(d): 1° (i)=(i): Assume that s(I — sA™IB ¢
H*(D; B(U,H)) (i.e., Bt € tic) andthat X is optimizable, henceexponen-
tially stabilizable,by Proposition13.3.14. Thus, thereis K € B(H,U) s.t.
A = A+ B1K is exponentiallystable hence

(1=sA 1= (1 —sAs) 1 =s(l —sAIBK(I —sAs) "t e H*(D; B(H)). (13.64)

Thus, A is exponentiallystable,by Lemma13.3.7(ii"). 2° (viii)=-(v): This
follows from Proposition13.3.14. (The restof the proof of Theorem6.7.10
doesnot requireclarification.)

TheDT versionof partof Chapte is verifiedin Theoreml14.1.3.

We recommendreading“[ty,to]” as “[ty,t2)” (i.e., [t1,t2 — 1)), so that it
holdsin bothdiscrete-timeandcontinuous-timeases. O

SinceB andC arealwaysboundedn discrete-timeseveralaspect®of system
theorybecomeassimpleasfor finite-dimensionakystems:

Proposition 13.3.14(Opt. < exp.stab) A wplsis optimizableiff it is exponen-
tially stabilizable Thus,a wplsis estimatableff it is exponentiallydetectable

Proof: AssumethatX € wpls(U,H,Y) is optimizable.By Exercise6.34(i)
of [CZ] (with C = 1), thereis K € B(H,U) s.t. A+ BK is stable(useLemma
13.3.7(ii) andthe fact that (A+ BK) xo € £2 for all xg € H). The corverseis
obvious,andthedualclaimfollows, by duality. O

We have u,y € £2 = x € £2 for estimatablesystems:

Theorem 13.3.15(u,y € £2=> x € £2) Let 3 = [2]2] € wpIs(U,H,Y) be esti-
matable Thenther is M < o s.t.if ue £2(R,;U) andxg € H are s.t.y :=
Cxo +Du € £2, thenx := Axg + Brtu € £2 and ||X||2 < M(|[%o||n + ||ull2+ [IYl]2)-

Proof. BecauseZ is exponentially detectable,we have Axg + Btu =
AyXo + Bytu — Hyty, where Z; is the closed-loop system (6.168) corre-
spondingto an exponentially stabilizing output injection pair [%], hence

M = [|Ay || (n,e2) + 1By Tltic + [|Hy T|ic < o, by Lemmal3.3.8. O



It is easyto identify a stabilizingstatefeedbackoperatorto an exponentially
stablesystem:

Lemma 13.3.16(K) Lets = [£|2] € wpls(U,H,Y) beexponentiallystableand
K € B(H,U). Thenthefollowing are equivalent:

(i) K is I/O-stabilizing;

(" K is output-stabilizing;

(") K isinput-stabilizing;

(i) K is exponentiallyr.c.-stabilizing;

(i) o(A+BK) C D, i.e, p(A+BK) < 1,
(iv) | —Kz(l —zA)~1B e GB(U) for ze D.

Proof: Obviously, (i) «(ii) =(iii) =-(i). By Lemma6.7.9,(i') implies(i).

SinceA is exponentiallystable,so areD andF. Therefore,(i) holdsiff
(I =)~ € tic; or equivalently, iff | —F € Gtic. Butl —TF € Gtic impliesthat
theclosed-loopsystemis exponentiallystable,.e., that(iii) holds,by Corollary
6.6.9.0ntheotherhand,condition(l —F)~* ¢ tic is equivalentto (iv), because
the boundednessf X~ follows from the compactnessf D (seealsoLemma
D.1.2(b2)).

If (iii) holds,thenl —TF € Gticexp, hencethen(ii) holds. If (i”) holds,then
(i) holds,by Lemma6.6.8(c). O

Lemma 13.3.17(Jointly stabilizing K & H) Let ~ € wpls(U,H,Y). Thenthe
following holds:

(a) Any admissiblestatefeedba& and outputinjection pairs for Z are jointly
admissible

(b) Any output-stabilizingand exponentiallydetectingpairs for Z are exponen-
tially jointly r.c.-andl.c.-stabilizing

In particular, thefollowing are equivalent:

(i) 2 is exponentiallyjointly r.c.-stabilizableand|.c.-detectable;
(i) < is optimizableand estimatable;

(i) X is output-stabilizableandestimatable;

(iv) Z is optimizableandinput-detectable

(c) Let = be estimatable Then any I/O-stabilizing pair for Z is r.c.-1/O-
stabilizing

Recallthatin classicahrticles(thosewith dimH < oo, i.e., with rationaltrans-
fer functions)the word “stabilizing” meansusually “exponentially stabilizing”,
hencefor themoneusuallymakesthe prefix “r.c.-” (etc.) redundanby assuming
the systemto be “detectable”(thenarny exponentiallystabilizing statefeedback



pair is exponentiallyr.c.-stabilizing,by, e.g.,Lemma6.6.26and (shifted) Theo-
reme6.6.28).

Proof: (a) Assumethat ( K | F ) and (2) areadmissible. Thens’ :=
AlH B

(ﬁ"@) € wpls, by Lemma13.3.3,hence( K | F ) and (2) arejointly
admissible.

(b) By Proposition13.3.14,we have (i)=-(ii) =-(iii); by duality, (iii) <(iv),
sothatonly (iii) =(i) remaingto be proved.

Let [ K | F ] and [2] be asin (ii). By Lemma6.7.9,[ K | F ] is
exponentiallystabilizing. Thus,the (closed-loop)tatemapsA, := A+ B(l —
F)~!K andA+H(l — G)~IC areexponentiallystable hencesoarethe closed-
loopsystemf £’ correspondingo L = [J 9] andL = [} §], by Lemma13.3.7.
Therefore,(i) holds (the coprimeneséollows from the exponentially stable
discreteform (cf. Remark13.3.9and Theoreml13.3.13)of Theorem6.6.28.

(CLet(K|F) and( ) be correspondingairs; by (a), they arejointly

admissible.Thus, if we deflneX Y, X, Y by (6.172), thenX andY are expo-
nentlallystableandXM YN=I (because; is exponentiallystable). O

Lemma 13.3.18(u,x € £2=> y € £2) Let [4{2] € wpls(U,H,Y). If u,x € "¢,
ﬂkerzlaa%/ e 142 and |lyll2 < M(JJull2+ ||X]|2), whee xo € H is arbitrary, [}] :=
(&5 18], andM = max{||C|,|ID|}. O

(This follows from equationy = Cx+ Du, (equation(13.40)).)
The discrete-timeversionof Lemma6.3.20is obvious, but we shall recordit
for futureuse:

Lemma13.3.19 Let [2{2] € wpls(U,H,Y). Assumehatr > 0, u € £Z(N;U),
andx := Btu € £2(N;H). Then(z 1 — A)X(2) = Bii(2) € H for a.e z€ r~1aD.

Assumegin addition,thaty := Du € ¢2. Theny=CX+ DG e Y a.e onr~1aD.
In particular, forr = 1andJ € B(Y) wehave

(DU, DY) 27y, = (27) <[i] ,K[§]> , (13.65)
L2(aD;Y)
wheek = [C D]*J[C D]. O

(Theproofis amuchsimplerversionof the proofof Lemma6.3.20,andhence
omitted.)

Notes

In the form (13.40),thewpls’sin have beenstudiedfor severaldecadestwo
of the cornerstonedeing [KFA] and[Fuhrmann81];whoseSectionslil.1-lIl.5
containafurtherstudyon their realizationgheory

Olof Stafans[S99] hasformulatedstablewpls’s essentiallyasin Definition
13.3.1. JarmoMalinen [Mal00] hasdefinedwpls’s with differentdomainand
rangespacesandpresentech theoryon them; his resultsinclude part of Lemma
13.3.3andLemmal3.3.12.



The monographgSF], [RR], [Nikolsky] and [FF] contain rather general
operatottheoryandharmonicanalysisput mary of theirresultsareapplicablefor
wpls’s. Thearticle [S01] andChapterll of [Sbook]containapplicationsof [SF]
to bothcontinuous-timesystem(especiallyfor oneswith contractve semigroups)
anddiscrete-timesystems.In Chapterll of [Sbook] Stafansshavs how to use
theCayley transformto corvertacompleteWPLSto awplsor viceversawhereas
we have only treatedthe Cayley transformof the I/O map(Theorem13.2.3);that
chaptemwaswritten two yearsafterthis one.

Obsene that Theorem13.3.13(and the theoremsmentionedright below it)
containsthe discrete-timevariantsof mostcontinuous-timeesultsof this mono-
graph. Also for mostothercontinuous-timeesultsthe discrete-timevariantsare
true andrathereasilyverified (usuallythe sameproofsapply, mutatismutandis).
Much of our theoryis well known in the finite-dimensionatase(see,e.g.,[LR]

or [[IOW)).



13.4 Time discretization (A : WPLS — wpls)

Our problemis within ourselves.We havefoundthe meansto blow
theworld physicallyapart. Spiritually, we haveyetto find the means
to puttheworld’s piecesbadk togetheragain.

— ThomasE. Dewey (1902-1971)JS lawyer, politician

In this section,we shall presentdiscretization a methodto converta WPLS
to a wpls (Theorem13.4.4). In other chaptersof this book, we often use
discretizationto deducepropertiesof WPLSsfrom thoseof wpls’s, becausehe
latter oneshave boundedgeneratorsand can hencebe more easily explored.
Note thatdiscretizationdiffers from the methodsof Theorem13.2.3(the Cayley
transform)andof Lemmal3.1.4.

The principleis well-known, andit hasbeenused(implicitly) to deducethat
ary semigrougpontrolsystem(asdefinedn [Sal89])isaWPLS(i.e., thatalocally
L 2-boundedsystemis actuallyboundedw.r.t. L2 for somew € R).

Theorem 13.4.4 describesthe preseration of propertiesof systemsand
Theoreml3.4.50f thoseof I/O maps.

As mentionedabove, U, W, H, Y andZ denoteHilbert spacesof arbitrary
dimensions.

Definition 13.4.1 For u € L2 (R;U) we defineits discretizationA”u : Z —

L2([0,1);U) by (A”U)n := Tio 1) T(Nu (N € Z).

Notethatthis discretizations completelydifferentfrom the Cayley transform
O : TIC 4 tic of Theorem13.2.3.

The map A” is obviously a linear map of LZ. one-to-oneand onto
“¢2 (Z;L2([0,1);U))”, the spaceof all sequenceg€ — L2([0,1);U). We iden-
tify A with its restrictions(to, e.g.,L3(R;U) — £2,(Z;U) or to L3(R,;U) —
¢2,(N;U) for somew € R).

It will beshawnin Theoreml3.4.5thatfor we€ R, r := e andu € L2 (R;U)

loc
we have u € L2 < Au € ¢2, andthat A is an isomorphismof L2 onto ¢2,

i.e., A” € GB(L2,¢?). Beforegoinginto further technicaldetailswe definethe
discretizatiorof systems:
Definition 13.4.2 For ¥ = [&{2] € WPLS(U, H,Y) wedefineits discretization
ASA | ASB
ASC | ASD

wheeU, :=L2([0,1);U), Ya := L2([0,1);Y).

AL | B@S)
APC | APD@AF) 1

NSy — € wpls(Ua,H,Ya),

(13.66)




If ¥ € WPLS, thenASS € wpls; the corverseis not true without additional
assumptions:

Proposition13.4.3Letw € R, r := €. If ¥ € WPLS,(U,H,Y), thenASs ¢
Wpl% (UA7 H7YA)'

Conversely assumethat (515) € wpls, (Upa,H,Ya). ThenX = [22] :=
pst (&12) € WPLS(U,H,Y) iff A= A(1) for someCo-semigoupA, and

AB=Bt', CA'=mn1C, tD=Dt' (te(0,1)). (13.67)
If thisisthecasethenZz € WPLS,,.

However, AS doesnot map WPLS onto wpls; in fact, none of the four
Tauberiarconditionsabove is redundant:

We have (512) € wplsbut AS (512) ¢ WPLSwhen,e.g.,1) Ais s.t.it does
not have a squareroot “A(1/2)” or 2) D is s.t. it is not “causal” on n[o’l)Lz
(seealso Theorem13.4.5(f)),or 3) H = L?(R,), A = T, T, Cxp 1= Xo(1— ) €
B(H,L?([0,1))) (usethe dual of “3)” for the B-condition; we cantake B= 0=
D=Cinl1l),A=0=B=Cin 2)orB=0=D in 3) to guaranteehatonly one
conditionis violated).

Proof of Proposition 13.4.3: The otherclaims are obvious, so we only
sketchthe proof of the corverseclaim.

By Theorem13.4.5wehaveB € B(L2,H), C € B(H,L2), m,Dr. = CB,
Dy =0, D = Dt! andCAlxy = 11, T'Cxg for t € Z. Combinethis with
the assumptiongo the get the axiomsof Definition 6.1.1 satisfied(by den-
sity andcontinuity, theaxiomsholdfor wiff they holdfor somew € R). O

Abovewe usedthefactthats € WPLS,(U,H,Y) < ASS € wplsg,(Ua, H, Ya)
(whenZX is knowvnto bea WPLS):

Theorem13.4.4 Let = [2{5] € WPLS(U,H,Y), w€ R, r:=&”. Thenthe
following holds:

A(t)Xo+Br(t)u
Cxo+Du

[ %5108) e to {7 25000 and [§)] =[] becomeequiv

alentto [(’;'_‘)} = [AngDr;S‘)')},whelethediscreteand continuougtime input,

stateand outputcorrespondo ead otherthrough

(al) The equations[x(;)] = [ } becomeequivalentto [}] =

Un = To,y T(N)U, Xn =X(N), Yn = To,1yT(N)Y, (13.68)

(for all n), i.e., (u) = A%u,x :=X(), (y.) = A®y.

(In bothsettingswemusthaveu € L2 (R;U); in theinitial valuesettingwe
assumehat t_u = 0 andxg € H, in thetime-irvariant settingwe musthave
mu € LZ (equivalentlyrt_ASu € £3), whee a is s.t. B andD are a-stable

Also(a2) and(a3) usethe sameassumptions.)



(a2) In bothsettingsdescribedn (al), we have

uel?, &ASuels, yel? onSyelsd, xuel? exbuel?
(13.69)
for any o € R, r' := e, (Here “x € Krz,” meansthat the restriction
(x(n))nez of xto Z (thatis, “the discretizedstate”) belongsto Ifrz,.)

(a3)Letw € R, ' := &, Thenthereis M = My € (0,) s.t.in bothsettings
describedn (al), wehave

X2, 300+ lUlliz, a0y < MUl ) + ||ASU||z§,(N;U)) (13.70)

||X||£r2,(N—|-1;H) + ||ASU||gr2,(N;U) < M(”X”Li),(J;H) + ”u”Lil(J;U))' (13.71)

Here we musttake J = R., N = N in theinitial valuesettingandJ = R,
N = Z in thetime-irvariantsetting(there is noboundfor ||Xo|| in theinitial
valuesetting hencethe“N + 17).

(b1) Thegenertors of AST. are givenby

Al B A1) | Br(U)mgy
= : € B(H xUp,H xYa). (13.72
( C|D ) ( MoyC | Moy Do) (O ). (43.72)

(b2)WehaveD € GB < D € GTIC..

(c) ThediscretizationAS commutesvith valid compositionsand inversionsof
opemtors.

-1 :
(Seealso Theoem13.4.5.Notethat A "By is notvalid for By € B(£2,H),

il 1
henceneitheris AS ' (ByT); ontheotherhand,(ASB)T = (u— BtA® u) =
AS(Br) € tic... Notealsothat the discretizationof [}2] = [212] is not

AlBr
(44}B9) in geneml, whee ( Ag | By ) =AS[ A | B ]).)
(d1) We haveX € WPLS,(U,H,Y) < ASS € wpls, (Up, H, Ya).

(d2) = and AST. havethe samestability properties(seeDefinitions6.1.3and
13.3.1).

To be exact, a componenbdf X is [exponentially/stongly/weakly]w-stable
iff the correspondingcomponenbf ASY is [exponentially/stongly/weakly]
r-stable

(el) Anoutputfeedbak operator L € B(Y,U) is admissibldstabilizing] for
iff L is admissible[stabilizing] for ASZ. If L is admissiblgthen (ASY), =
NS, .

Ananalagousresultholdsfor otherformsof feedbak for Z (but notfor those
for ASY, becausehediscretizationAS : WPLS — wpls is notonto):

Any dynamic feedbak (resp. state feedbak, output injection) for X is
admissiblgstabilizing] for Z iff its discretizationis admissiblgstabilizing]
for ASY.,

The prefices “I1/O-", “SOS-", “weakly”, “strongly”, “exponentially”,
“g.r.c.-” and“q.l.c.-” apply(wheeas'r.c.-”, “l.c.-", “d.c.-” and“jointly”



possiblydo not).

(e2)AS3 hasall the stabilizability propertiesof Z.

(e3) AST is optimizable(resp.estimatable)ff X is optimizable(resp.estimat-
able).

(f1) J- critical control over U) Let xp ¢ H and J = J* e B(Y).

S 2

Then ‘uout (XO) = Ag ‘Uout(XO)a ‘llg(pz(Xo) = A U(Z;(p(xo), usta (XO) 2
AP UZ(x0), ULZ (x0) D AP UZ, (%), wheke the superinde correspondgo
theunderlyingsystem.

The sameequalitiesand inclusionsalso hold for the subsetsof the corre-
spondingJ-critical controls. Thusif sud controls exist for Z andfor eath
Xo € H, then correspondingl-critical costoperators are equalfor ~ and
ASY.
In particular, if [ K| F | is J-critical for = and J over Uy (resp.
Usta Ustr, Uexp), thenAS[ K | F | is J-critical for £ and J over Upyt
(resp.Usta, Ustr, Uexp)-

(f2) (J-critical control over ‘ZIa ]) Let 1%
letd=J* € B(Y). Then

(QR] be asin Definition8.3.2and

2 J AS
A Uy y(%0) = fu[eQ’A]R (ilz)fl](xO) (X0 € H); (13.73)

the sameholdsfor correspondingsubsetSJf J-critical controls. Moreover,
this mapsZ,,— U and U qu >,

(g) ThemapD is [positively] J-coelcwe over Uz, (resp. U, ‘U’-“’ r)) iff ASD
is [positively] J-coerive over U (resp ‘uout ‘U[EQARZ 2. ]) (cf. (f1)-
(2)).

If D is [positively] J -coecive over UZ, (resp.UZ,), thenASD is [positively]
J-coeriveover ‘Ustr (resp. ‘Usta

Because\S mapsWPLS into wpls (but not onto), we can usethe theorem
to obtain continuous-timeanalogiesof uniquenessesults (including equality
of formulaeand stability of operators)only, not of existenceresults(including

words“jointly”, “r.c”, ...). E.g.,theinteractionoperatorandcoprimemultipliers

providedby Lemmal3.3.17neednotbeimagesof arny continuous-timeperators
(their preimagesieednot betime-invariant).Cf. the proof of (el).

By (13.83),we could have madeA? (andhenceAS € B(TIC,,,tic;) too) iso-

metricL2 — £2 by usingL2([0, 1);U)-valuedsequencemsteadof L2([0,1);U)-

valuedones. However, we have chosenthe latter onesin orderto make the dis-

cretizationindependenotf w (cf. Lemmal3.3.2).

Proof of Theorem 13.4.4: (al) Theseclaimsarequite obvious.

(a2) The claimson u andy follow from Theorem13.4.5(al);the lastone
followsfrom (a3).

(a3) (As obvious from the proof, in factary u € L2 (R4;U) will do. On
the otherhand,to seethatwe cannotgeta boundfor ||xo|| in theinitial value



settingletH = ¢%(N) andA'e, = e e, (n € N), sothat||Ae, +B0||2, = 1/2n
eventhough||en||,2 = 1.)

By isomorphismclaim of Theorem13.4.5(al),we have ||u|||_ij(J;U) <
M””ASUHZE,(N;U) and||ASu||Zr2,(N;U) < M”||u||Liy(J;U) for someM” < o andall
ue Lﬁ,. Thereforewe only needupperboundsfor the normsof x.

SetM’ := maxo<t<1{[|A(t) || s(h): 1B | sz} Let Xo, u andx be asin
(eithersettingof) (al) (in theinitial value settingwe extendthemby zeroon
R_andzZ.).

1° Assumethatx, ASu € £, sothatu € L2,. Then,by (6.9),

IX(n-+ )] < [JAXO)]|+ BT < M (x| + [Tnipull2),  (13.74)
hence|| T, n1)Xll2 < M’ ([[X(N)]| + [|Tgn,n+1yull) . for any ne N. Consequently

||A5x||er2' < M/(||x||£r2, + ||Asu||er2’). (13.75)

Thus, M := v2M'M” + M" will do for the first inequality (note that 2(a® +
b?) > (a+ b)?; theaddition+M” is for u).

2° Letx,ue L2, sothatASu € £2. Then
Ix(n+1)]| < min ||At x(n+1—-t)||+ max||]B%t Y| (13.76)

< M (||nnn+1 X||2‘|‘||T[nn+1 U||2) (13.77)
(becausamingetea [X(n+ 1= 1) < [Tyl Thereforelz s 1) <

M’||ASX||€5(N;H) + ||ASX||€r2,(N;U)' Thus,M will dofor thesecondnequalitytoo.

(b1) Thisfollowsfrom (a) (alternatvely, from (13.39)).

(b2) This follows from Lemma13.1.7(which saysthatD € GB < ASD €
Gticw) and(c) (whichsaysthatD € GTIC, < ASD € Gticw).

(c) Thisis obviousfrom the definition (e.g.,(ASC) (ASB) = AS(CB)); note
thatto A(t) thisappliesfor t € Z only.

(d1) Thisfollows from (d2) (recallthatwe have assumedhatZ € WPLYS).

(d2) 1° C andD: Obviously, ASC[H] c ¢? < C[H] c L2, andASD[¢?] C
/2 & D[L2] C L2, sothatthe stability of C (resp.D) equalsthatof ASC (resp.
ASD) (seeLemma6.1.12).

2° ASA and ASB are at leastas stableas A and B: If e “*Alxg (resp.
e~ “Brtu) is boundedr corvergesto zerostronglyor weakly, ast — +oo, then
sodoesr "A"xg (resp.r "Bt"u), asN > n — 4. Thus,we only have to shov
thatASA (resp.ASB) cannotbe morestablethanA (resp.B).

3° ASA is asstableasA: If ||[r"A"|| < M for all n, then

le™ XMW AN — ||r"AMe AR < M nax le™"A"]. (13.78)

Thus, ther-stability of A impliesthe w-stability of A. From (13.78)onealso
obsenesthatif r"Ag — 0 strongly thene “*A(t)xo — 0 strongly

AssumethenthatA is weaklyr-stable,.e., that||r"A"|| < M for all n and
(zg,r "A"%g) — O for xg,2p € H.



Let Xo,20 € H bearbitrary SetK := {e“"A(h)xo | h € [0,1]}, and Tox :=
(z0,r ~"A"X) (thus, T, € H*). It followsthatT,x — 0 uniformly onK, by Lemma
A.3.4(H2),hencegzg, e A(t)Xg) — 0, ast — +o0. Thus,A is weaklyw-stable.

4° ASB is asstableasB: If B(A”) 1 € B(£%;H), thenB € B(L2;H), since
A” € GB(L2,2). Thus,ASB is r-stableiff B is w>-stable.

Assumethat B(A)~1 is strongly r-stable. Let u € L2(R;U). Since
K :={e~®"thu|h € [0,1]} C L2 is compactande “"Bt"v — 0,asN > n — oo,
for all v e K (in fact,for all v e L2), this corvergenceis uniform on K, hence
e A"t Br(n+ h)u|| < € for all n > N andh € [0, 1], sothatB is strongly
w-stable.

The mapB is weakly w-stablewhenever IB%(MZ)—1 is weakly r-stable,as
oneobsenresby addinganarbitrary/A € H* beforeB in theabove proof.

(el) This follows from (c), (d2) and Theorem13.4.5(g)(it is enoughto
verify this for static output feedback,becauseother forms of feedbackand
injectioncanbereducedo staticoutputfeedbackasin Summary6.7.1.

(Notethatprefices'r.c”, “.c.”, “d.c” and“jointly” wouldrequireexistence
of certainkinds of TIC or tic operators. BecauseASX € tiCe, % X € TIC
(cf. Theorem13.4.5),existenceresultsfor AST do not necessarilyell anything
aboutz. If [ K | F | and [%] admissiblefor £, thensoareAS[ K | F | and
AS [%} , they areevenjointly admissiblepy Lemma13.3.17(a)but we do not
know whether[ K | F | and [&] arethenjointly admissible. Even if they
were jointly admissiblewith someE € TICw, andAS| K | F | andAS [E]
werejointly stabilizing, we do not know whether[ K | F ] and [&] would
thenbe jointly stabilizing (unlessAS| K | F | andAS[Z] areknown to be
jointly stabilizingwith someASE’, whereE' € TIC,).)

(e2) This follows easilyfrom (el) and(d2). (Note thatthe corverseholds
(atleast)for staticfeedback.)

(e3) For optimizability this follows from (f). For estimatability onecould
very carefully verify this directly, but the easiestway is to note that the final
stateestimatiornproblemsFSEPsYor ~ andAS3. areobviously equialent.(By
Theorenmb.3of [WRO00], the FSEPfor X hasa solutioniff Z is estimatableit is
eveneasierto verify thisin discretetime.)

(f1)&(f2) The equalitiesandinclusionsfollow from (a2); alsothe restof
(f) follows easilyfrom (a)—(d1)andTheorem13.4.5(a1)&(a2)(NotethatA€2x
maybeboundedevenif x is unboundedhencewe canstatemereinclusionsfor
Usta and Usy in both (f1) and(f2).)

(@) This follows from the facts that the norms || - ”‘”[SQ R] and

||Af2 : ||(ues’Asz are obviously equivalent (use Theorem 13.4.5(al))
(@ r@a?)]

(they are equalif § = 0), and that, similarly, | -7, = 1A [ 2o

2 2 2
I Wty = 18° e 1 Ny > 187 - Ny, @nd - [y, > 1A% - 115y, (see

Lemma8.4.2for thenorms) O



We endthis sectionby listing the basicpropertiesof the discretizationof 1/0
maps:

Theorem 13.4.5(L3(R;U) £ £3,(Z;L2([0,1);U))) Letw € R, and setr := €*.
Thenthefollowing holds:

(al)Letue L2 (R;U). Thenue L2 & A ue £2, andue L2 = Au e c.

Moreover, A is anisomorphisnof L2 onto£2 (i.e., A” € GB(L2, £2)). For
w = 0 thisisomorphismis anisometry

(a2) We have(A” f, A®g) = (f,g) for f € L(R;U), g€ L2 ,(R;U).

(b1) ThemapaS _, : E — AUE(AS )1 is anisomorphisnof B(L2,L2) onto
B(£2,42). For w = 0 thisisomorphisnis anisometry

(b2) Moreover, AS commutesvith (anticausal)adjointsandvalid compositions
of operators. Thus,

ASE* = (ASE)*, AS(EF) = (ASE)(ASF), ASE~!=(ASE)~! (13.79)
for E € B(L3(R;U),L3(R;Y)) and F € B(L2(R;Y),L3(R;H)). (But
ASEY # (ASE)Y in geneal.)

(b3) ThemapAS is anisomorphisnof Tl into ti andof TIC into tic.
() A%my = TeEA?, AST, =1, APT(n) =10, ASt(n)=1".
(d) LetE € B(LZ(R;U)). Thenm.Erm. is invertibleon e, L2 iff e (ASE) et is
invertible on 142,
(e) LetE,P € B(L?(R;U)). ThenASE > 0 [>> 0] on (ASP)£2 iff E > 0 [>> 0]
onPL2.
(f) AS is an isomorphismof Tl,(U,Y) into ti;(L2([0,1);U),L2([0,1);Y)).
Moreover, if E € Tl (U,Y) for somew € R, then
E e TlyU,Y) < ASEcti;, Ee GTl,< ASE e Gti, (13.80)
E € TIC, < ASE e ticy, E e GTIC, < ASE € Gtic,, (13.81)
E € B(U,Y) < ASE € B(Up,Ya). (13.82)

However, thetime-invariance(resp.staticity) of ASE doesnot imply that of
EE for geneal E € B(L?,L?).

(g) OpematorsN € TIC(U,Y) andM e TIC(U) are g.r.c. iff ASN and ASM are
g.r.c.

(h1)LetD € TI(U,Y), J = J* € B(Y). ThenD is minimaxJ-coecive iff ASD
minimaxJ-coercive

(h2)LetD € TIC(U,Y), J =J* € B(Y). ThenD is [positively] J-coercive over
Uowt iff ASD [positively] J-coerive over Ugyt.

(M) (MTICq— £Y) Let T > 0. LetE := y;A;djr* € B(LA(R;U),LA(R;Y))
and F := y;Ajejx € B(¢2,£2), whee A} € B(U,Y), 5;|Aj] < «, and



& = X{j) € £4(2) (i-e., (6 *9)k = g(k— j) for all g € £3(Z;U,)). Redefine
A6 u.= (T(nT)T[[nT,nT+1) u).

ThenASE = F, and ]E( it/T) = A(e“) for t € R; in particular, ]E(ir +
|2n/T) (e Ty for aII reR. If Aj=0for j <0, thenwe also have
E(s) = E(s+i2m/T) =F(e ) for all s€ CT U {oo}.

Theresultshold alsowhenweuse[0, T) for arbitrary T > O insteadof T =1
(thisis illustratedin (m)); exceptfor (e), (a2) andthe adjoint formulaof (b2), we
canevenletU andY bearbitrary Banad spaces.

However, A_1AS # ASA #£ AAS andASE? £ (ASE)Y in general.

Becauseof the (algebraicandtopologic)isomorphism things suchasexpo-
nential stability and coprimenessre presered underthe discretization(in both
ways).

Theformulas— 75T in (m) mapsary stripof C* U {co} of helght2n/T one-
to-0 oneandontoD. However, for generalD € TIC, the connectiorbetweerD and
ASD seemgdo berathercomplicated.

Note alsothe differenceso Theorem13.2.3: the transformA?’ (or AS) treats
alsotheunstablecaseandcommuteswith time-shifts,but it doesnotmapTI onto
ti, it doesnot commutewith time reflection,andU andY aredifferentfrom Up
andYa.

Thus,the Cayley transformis usuallybetterfor transferringstablel/O results,
whereaghe discretizationcanbe usedto transformuniquenessesults(including
equalityresults)from discreteimeto continuougime (andexistenceresultsin the
otherdirection),includingtheunstableesultsandthoseconcerningnorethanjust
thel/O mapsof systems.

Also systemgnot merely /O maps)canbe mappedto eachotherby using
the Cayley transform(see,e.g., p. 212-213and 331-3320f [CZ]). However,

the transformof (%) requiresthat | + Ay € G‘B, and we only know the

preseration of I/O-stability and exponential stability, not, e.g., internal [P-
]stability. Moreover, this does not apply to continuous-timesystemswith
unboundedyenerators.

Proof of Theorem 13.4.5: (al) Clearly u — (Af2 u)k € L2([0,1);V) is

linear, continuousandonto. Obviously, u € L2 < A u e c.. Forue L2 .(R;U)
we have

2 e
8% = 3 IFmo.t u||2—;/ Ny 2dt,  (13.83)

||u|||_% = ez S |le“u(t)||2dt, andthe quotiente™®t /e~@" = gt js
betweenl ande~® = r—1. Therefore(al)holds.(Notethatthereareno norm
equk/alenceconstantshatwouId suitfor everyw € R.)
(a2)Now (A F,A8G)p 12 =30 [T H(F, gy dt =(f,0) 22 (cf. (13.83)).
(b1) This follows from (al) and (a2): AS has the inverse
B(I2(Z;Yp),£2(Z;Up)) 3 E  (AS) EAY € B(L2,L2) and it is isomet-



ric by the equation||ASFAY f|| = |ASTFf|| = |[Ff||, valid for f € L2(R;U),
F € B(L?,L?).

(b2) This is obvious from the definition except for ASE* = (ASE)*,
which holds becausethe equation (Ef,g) = (f,E*g) is equialent to
(BSE)A” f,0%g) = (A, (ASE")A”g), by (a2).

(b3) Thisfollows from (b1) and(g).

(c) TheAfJ2 formulaeareobvious,the AS formulaefollow. It is obviousthat
A” doesnot commutewith time reflection.

(d) By (b), G, Em, = 1, = ,Em, G for someG € B(m.L2) (we
may identify G with .G, € B(L2)) iff (ASG)m™ (ASE)Tt = mh =
T (ASE) 1T (ASG).

(e) Now (ASEASPAY £, ASPAY ) > O for all A f € £2iff (EPf, Pf) > O for
all f € L2. By replacingE by E— el we getthe*>> 0” claim.

(f) By (c), AS preseres time-invariance, hence (see (b) too) AS is an
isomorphism(into).

Becausef (b), the*=" partsof (13.80)andthefirst “«" aretrivial. The

second' <" follows from thefirst, becaus& ! € GB(L?) inheritsthe time-
invarianceof E (sincet € GB).

BecauseAST_Em, = 1 (ASE)t (by (b)), the next two equivalences
follow.

By theaboveresults,E € TICNTIC* < E € ticntic*. By Lemmas2.1.7
and13.1.2,TICNTIC* = B andticNtic* = B.

The counterexampleis obtainedby choosinga staticASE sothatit is not
“time-invarianton g ;) L%", e.g. take E = 1 1)1%2110 1) € B(Uy), (Bu)(t) :=
Eu(t) (t € 2).

(9) Thisfollowsfrom (al).

(h1) Thisfollowsfrom (al),(e),andDefinition 11.4.1.

(h2) Thisfollowsfrom (al),(e)andLemma8.4.11(al)&(a2).

(m) We have

[AS(ABT)|AG T = AEAST+ T = AGAT(—|T)f
= (k= DT 7,0-+21)A) Piez
= A5 Dicikez = Ajej+A T,
for eachf € L2(R;U), i.e.,for eachAl; f € ¢2(Z;U,). ThereforeASE = F.
We have (£8j7)(s) = e T8 = (e TS)] = (Ze))(e ™) for eachj € Z
and s € iR (or for eachs € C+ U {w} if Aj = 0 for j < 0), hence

(£E)(s) = (2F)(e~Ts) for suchs; in particular(£E)(—it/T) = (ZF) (e ") for
allt € R (sets:= —it/T). O

Justto simplify the notation, we have used T = 1 above, althoughthe
discretizatiorcould be written for agenerall0, T):



Remark 13.4.6(Discretization over [0, T)) As obviousfrom the proofs, all re-
sultsof this sectioncould be formulatedfor discretizationover [0, T) (T > 0) in-
steadof[0,1) (e.g., (A”U)n = o) T(NT)u(ne 2), henceA’” mapsl 2 (R;U) —
£2 (Z;L2([0,T);U))). M

loc

(An alternatve proofwould beto compressime; theoperatorZr € (L2, L2 /T)
definedby (Zru)(t) := u(Tt) is anisomorphismwith inverse7; ;1; see[Shbook]
for details.)

Notes

Time discretizationhas more or less implicitly beenusedin [Sal89] and
[W94a]. Somebasicfactsaregivenin Section2.4 of [Sbook], but mostof this
sectionseemgo benew.



