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Preface

For H*, H?, LQR andseveral otherlinear time-irvariant control problems,t
is well known thatthe existenceof
(I) asolutian of thatcontrolproblem,
(I1) acorrespondingoprimeor spectrafactorizationand
(111 astabilzing soluion of the correspondingriccatiequation

are, roughly speaking all equialentin the finite-dimensonal setting,andfrom
one of themthe otherscanbe computed.Therefore,control problemsare often
solved by computingthe solutions of the correspondindriccatiequations.

Theseresultshave beenextendedto infinite-dimensionalsemigroup)ontrol
systemswith boundedinput and outputoperatorsandin the eightiesand early
ninetiesalsoto thelargerclassof Pritchard—Salamosystens andto certainother
specialcase®f our settiry.

The main purposeof this monogaphis to generalize¢heseresultsto infinite-
dimensioml (weaklyregular) well-posedinear systemgWPLSs)in the senseof
G. Weiss. This is donein Chapters8—12; seepp. 21-24for anintroductian to
WPLSs.

We also develop correspondingdiscrete-timeresults (Chapters13—-15 and
Sectionsl1.5and12.2), WPLS theory(Chapters6—7, including regularity, state
feedback, outpu injection and dynamic feedback),and an extensve theory
of independeninterestfor time-invariant operators(“Toeplitz operators”)and
someof their subclassegsuch as extended Callie—Desoerclassesand other
convolutions with measures)transferand boundaryfunctionsand spectraland
coprime factorization(Chapters2-5 and Sections6.4—6.5). A more detailed
descriptionof someof the main resultsof this monographand somehistorical
remarksare provided in Sectionsl.1 and 1.2 andin the “notes” partsof each
section.

WPLSscover all linear time-invariant systens that mapthe initial stateand
inputcontinuowsly to the stateandoutput(with inputsandoutpusin Lﬁ,c; seepp.
21);in particularall settingamenticnedabove arecovered.Moreover, ary transfer
function thatis boundedand holomorphc on someright half-plane(i.e., thatis
well-posedor proper) hasa WPLSrealization.The input andoutputoperatorof
a WPLS may be asunboundedasfor Pritchard—Salamorystens independently
of eachotheraslong asthetransferfunctionis well posedthusallowing roughly
twice asmuchirregularity.

Weakregularity meanghe existenceof afeedthrougtoperatoiin avery weak
sensean equialentconditionis thatthe transferfunction hasa limit at infinity
alongthepositive realaxis. In particular all I/O mapswhoseimpulse responsés
a (uniform, strongor weak) L P function plus somedelays(or ary vectorvalued
measureandseveralothersareweaklyregular.

Much of our theoryon WPLSscover the generalcase but Riccati equations
cannotbe definedwithout feedthrougltoperatorgexceptin avery weaksenseas
in Section9.7).

We generallyallow theinput, stateandoutputspace®f WPLSsto be Hilbert
space®f arbitrarydimensons,andsomeresultsaregivenevenin a Banachspace



setting. In addition to exponenially stabilizing controllersand exponentially
stabilizingsoluions of Riccati equationswe alsostudy stabilzing and strongly
stabilizing ones; part of theseresultsmay be new even for finite-dimensioal
systems.

During the last four decadesthe literaturehasbecomealundantin infinite-
dimensionalor distributed systemsarisingin physcs, engineeringeconomics,
mechanicsgervironmentalmodelirg, biomedicalengineering gvolution dynam-
ics, geophysicsand other sciencesand the systens canrepresensemiconduc-
tor devices,animalpopuhtions,fluid dynamics microwave circuits, vibration of
stringsor membranedheatdiffusion, computetharddiscs,CD playersandmary
otherdevices.

For some particular systemsand problems, there are now rather mature
theories.Thepurposeof thismonographs to solvetheproblemsn averygeneral,
unifying framework — in the frameawvork of WPLSs.

Our presentations abstractand theory-orientedneverthelessmary of our
resultscanbe understoodvithout the functionalanalyticknowledgeprovided by
the appendicesThe bookis ratherself-containedandit canbe readwithout ary
prior knowledgein systemor control theory althoughexpertsare consideredas
themainaudienceandsomeproofsmaybe demanding.
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