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Preface

For H∞, H2, LQR andseveralotherlinear time-invariant controlproblems,it
is well known thattheexistencesof

(I) asolution of thatcontrolproblem,
(II) acorrespondingcoprimeor spectralfactorizationand
(III) a stabilizing solution of thecorrespondingRiccatiequation

are, roughly speaking,all equivalent in the finite-dimensional setting,andfrom
oneof themthe otherscanbe computed.Therefore,control problemsareoften
solvedby computingthesolutionsof thecorrespondingRiccatiequations.

Theseresultshave beenextendedto infinite-dimensional(semigroup)control
systemswith boundedinput andoutputoperators,and in the eightiesandearly
ninetiesalsoto thelargerclassof Pritchard–Salamonsystemsandto certainother
specialcasesof oursetting.

Themainpurposeof this monographis to generalizetheseresultsto infinite-
dimensional (weaklyregular)well-posedlinearsystems(WPLSs)in thesenseof
G. Weiss. This is donein Chapters8–12; seepp. 21–24for an introduction to
WPLSs.

We also develop correspondingdiscrete-timeresults(Chapters13–15 and
Sections11.5and12.2),WPLS theory(Chapters6–7, includingregularity, state
feedback,output injection and dynamic feedback),and an extensive theory
of independentinterestfor time-invariant operators(“Toeplitz operators”)and
someof their subclasses(such as extendedCallier–Desoerclassesand other
convolutions with measures),transferandboundaryfunctionsandspectraland
coprime factorization(Chapters2–5 and Sections6.4–6.5). A more detailed
descriptionof someof the main resultsof this monographandsomehistorical
remarksare provided in Sections1.1 and 1.2 and in the “notes” partsof each
section.

WPLSscover all linear time-invariant systems that mapthe initial stateand
inputcontinuously to thestateandoutput(with inputsandoutputs in L 2

loc; seepp.
21); in particularall settingsmentionedabovearecovered.Moreover, any transfer
function that is boundedandholomorphic on someright half-plane(i.e., that is
well-posedor proper) hasa WPLSrealization.Theinputandoutputoperatorsof
a WPLS maybeasunboundedasfor Pritchard–Salamonsystems independently
of eachotheraslongasthetransferfunctionis well posed,thusallowing roughly
twiceasmuchirregularity.

Weakregularitymeanstheexistenceof a feedthroughoperatorin averyweak
sense;an equivalentconditionis that the transferfunctionhasa limit at infinity
alongthepositive realaxis. In particular, all I/O mapswhoseimpulse responseis
a (uniform, strongor weak)L p functionplussomedelays(or any vector-valued
measure)andseveralothersareweaklyregular.

Much of our theoryon WPLSscover thegeneralcase,but Riccati equations
cannotbedefinedwithout feedthroughoperators(exceptin a veryweaksense,as
in Section9.7).

We generallyallow theinput,stateandoutputspacesof WPLSsto beHilbert
spacesof arbitrarydimensions,andsomeresultsaregivenevenin aBanachspace



setting. In addition to exponentially stabilizing controllersand exponentially
stabilizingsolutions of Riccati equations,we alsostudystabilizing andstrongly
stabilizing ones; part of theseresultsmay be new even for finite-dimensional
systems.

During the last four decades,the literaturehasbecomeabundantin infinite-
dimensional(or distributed) systemsarisingin physics, engineering,economics,
mechanics,environmentalmodeling, biomedicalengineering,evolution dynam-
ics, geophysicsandothersciences,and the systems can representsemiconduc-
tor devices,animalpopulations,fluid dynamics,microwave circuits,vibrationof
stringsor membranes,heatdiffusion,computerharddiscs,CD playersandmany
otherdevices.

For some particular systemsand problems, there are now rather mature
theories.Thepurposeof thismonographis tosolvetheproblemsin averygeneral,
unifying framework — in theframework of WPLSs.

Our presentationis abstractand theory-oriented;nevertheless,many of our
resultscanbeunderstoodwithout thefunctionalanalyticknowledgeprovidedby
theappendices.Thebookis ratherself-containedandit canbereadwithout any
prior knowledgein systemor control theory, althoughexpertsareconsideredas
themainaudienceandsomeproofsmaybedemanding.
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