
Chapter 7

Dynamic Stabilization

Andwhenwindsareat war with theocean,
AsthebreastsI believedin with me,
If their billows excitean emotion,
It is that they bearmefromthee.

— Lord Byron (1788–1824),"Stanzasto Augusta"

In this chapterweshallstudydifferentformsof dynamicstabilization,extend
standardclassicalresults(see,e.g.,pp.15–17and26–47of [Francis])for WPLSs
andsupplementthemwith new ones.

We assumethatwe aregivena fixedplant, e.g.,an I/O map
���

TIC∞
�
U � Y �

(alternatively, a WPLS) that we wish to control. In the caseof dynamicoutput
feedback (cf. pp.36–42of [Francis])theoutput(y) of theplant is fed backto the
input(u) throughaDynamicOutputFeedback Controller (DF-controller) in order
to stabilizeandcontroltheplant,asin Figure7.1. HereuL is theactualinput and
y asthefinal output;yL canbeconsideredasthedisturbancein thefeedbackloop
andu as the controlleroutput. (In the literature,onesometimesusesthe word
“compensator”or “regulator” in placeof “controller”.)

By DF-stabilization of
���

TIC∞
�
Y� U � we mean that we choose � �

TIC∞
�
U � Y � sothatthemap � uL

yL 	�
� � uy 	 (equivalently,
�
IU 
 W ��� 0 ��

0 � ��� 1 : � uL
yL 	�
�� uy 	 ; cf. Figure7.1) becomesstable;oneoften alsowishesto minimize thenorm�

uL 
� y
�����

L2
�
R � ;U ��� L2

�
R � ;Y � � .

In Section7.1 we shall extendseveral classicalfinite-dimensionalresultson
DF-stabilizationto generalWPLSs;theseresultsincludetheYoulaparametriza-
tion of all stabilizing controllers(Corollary 7.1.8) basedon a doubly coprime
factorization(d.c.f.) of

�
. However, it is notknown whethereachDF-stabilizable

map hasa d.c.f. (unlessdimU � dimY ! ∞, seeLemma7.1.4), hencewe also
presenta theory for generalTIC∞ maps. (This appliesto Sections7.2 and7.3
too.)

In DF-stabilization, we require that the controller ( � ) is well-posed(or
proper, i.e., � �

TIC∞). In finite-dimensionaltheory, onesometimesallows for
impropercontrollers(“ "� �

H∞ # H∞”, i.e., � is allowedto have a poleat infinity)
while the closed-loopmap (

�
IU 
 W �$� 0 ��

0 � ��� 1) is always requiredto be well-
posed.Theinfinite-dimensionalcounterpartof this concept,a DF-controller with
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282 CHAPTER7. DYNAMIC STABILIZA TION

internal loop, wasintroducedin [WC], by GeorgeWeissandRuthCurtain. This
generalizationof theconceptof DF-controllerswill betreatedin Section7.2.1.

In the H∞ Four-Block Problem(H∞ 4BP) of Chapter12, the controllermay
useonly a part (y) of the of the output ( � zy 	 ) as its input and it cancontrol only
a part (u) of the input ( � u

w 	 ) of the plant, as in Figure7.8. Sucha controller is
calleda DynamicPartial OutputFeedback Controller (DPF-controller) (cf. pp.
26–36and42–47of [Francis]).We developthetheoryfor DPF-controllers(with
or without internal loop) in Section7.3. However, if

���
TIC∞

�
U % W� Z % Y � ,

thenany stabilizingDPF-controllerfor
�

is a stabilizingDF-controllerfor
�

21,
andunderreasonableassumptionsalsotheconverseholds,by Lemmas7.3.5and
7.3.6.Therefore,muchof this theoryis obtainedasacorollaryof Section7.2.

We have above treatedonly theI/O theory, while oneis oftenmoreinterested
in a systemstabilizinganothersystem(also internally); cf. Figures7.2 and7.9.
However, if Σ is a realizationof the plant (

�
) and &Σ is a realizationof the

controller ( � ), then &Σ stabilizesΣ exponentially if f � stabilizes
�

and Σ and&Σ are optimizableand estimatable(recall from Definition 6.7.3 and Corollary
9.2.13thatat leastif Σ is sufficiently regular, thenthis is equivalentto exponential
stabilizabilityanddetectability),by Theorems7.2.3and7.3.11.We alsopresent
somefurtherresultson “ &Σ stabilizingΣ”.

We give mostof our resultsfor (non-exponential)stabilization,becausethe
exponentialanalogiesof such resultscan be obtainedthrough shifting, as in
Remarks7.2.19and 7.3.24(but the converseis not true). However, thereare
someresultsthatseemto hold for exponentialstabilizationonly; suchresultsare
givenexplicitly.

Remark 7.0.1 Almostall I/O resultsin this chapter are purely algebraic (and
do not assumecommutativity, neithera matrix structure over somecommutative
ring), hencethey are valid whenwereplaceTIC∞ by ')( andTIC by ' , where '
and '*( (and + ) areasin Remark6.5.11.

Thus,one can havea given plant
�,� ' ( � U � Y � (U � Y � + ) and seekfor a� � '*( � Y� U � that makes

� o
I

� ' , i.e., “stable”; seeDefinitions7.1.1,7.2.1,and
7.3.1for details.

This holds for the resultsconcerningthe I/O mapsonly, i.e., the frequency-
domain results; the generalization of state-spaceresults requires, of course,
further assumptions(which are oftensimple, cf. Chapter13 for a discrete-time
application).

7.1 Dynamic feedback(DF) stabilization

A fail-safecircuit will destroyothers.

— Klipstein

As explainedabove, in this sectionwe generalizeseveral classicaldynamic
outputfeedback(DF) results(cf. [Francis,Section4]) to theinfinite-dimensional
case(see,e.g.,Theorem7.1.7);mostothersaregeneralizedin Section7.2.
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Figure7.1: DF-controller� for
�5�

TIC∞
�
U � Y �

EveryDF-stabilizablerationaltransferfunctionhasa d.c.f.,andclassicalDF-
stabilizationtheoryis basedon d.c.f.’s. We believe thatnot every DF-stabilizable�6�

TIC∞ has a d.c.f. (cf. Lemma 7.1.4), thereforewe also develop a DF-
stabilizationtheoryfor generalTIC∞ maps(andfor generalWPLSs).

In Figure7.1,wehave 7
u
y8:9 7

0 ��
0 8 7

u ; uL

y ; yL 8 � (7.1)

or, by setting &u : 9 u ; uL � &y : 9 y ; yL,7 &u&y8 9 7
0 ��

0 8 7 &u&y8 ; 7
uL

yL 8 ; or equivalently, (7.2)7 &u&y8 9�< I � 7
0 ��

0 8>= � 1

7
uL

yL 8 (7.3)

providedthat � isanadmissibleDF-controllerfor
�

, i.e.,thatI �?� 0 ��
0 � �A@

TIC∞,
which is equivalentto I � � � �B@

TIC∞ (by LemmaA.1.1(d1)).
Note that this correspondsto L 9 I in thesettingof Definition 6.6.1(applied

with substitutions
� 
� � o : 9 � 0 ��

0 � , y 
� � uy 	 , uL 
� � uL
yL 	 ; compare(7.1) and

(6.123)–(6.124)with x0 9 0), hencethe solvability (in TIC∞) of the above
equationsis, indeed, equivalent to the admissibility of L, i.e., to condition
I � � 0 ��

0 � �C@
TIC∞. Weconcludethatthecorrespondingclosed-loopmapis given

by
� o

I . Analogously, for thesettingof Figure7.4, thecorrespondingclosed-loop

systemis given by the systemΣo
I : � x0 &x0 uL yL � T 
� � x &x u y� T

defined
below.

Therefore,wedefine:

Definition 7.1.1(DF-stabilization) We call � �
TIC∞

�
Y� U � an admissible[sta-

bilizing] (DF-)controllerfor
���

TIC∞
�
U � Y � if L 9 I is admissible[stabilizing]

for
� o : 9 � 0 ��

0 � .
We call &Σ 9 -EDF DGDH � . �

WPLS
�
Y� &H � U � an admissible [stabilizing] (DF-

)controllerfor Σ 9 � F GH � � �
WPLS

�
U � H � Y � [and wesaythat &Σ (DF-)stabilizes

Σ] if L 9 I is admissible[stabilizing] for the(permutated)parallel connection

Σo : 9 IJJKML 0 N 0
0 &L 0 &N
0 &O 0 �O

0
�

0

PRQQS �
WPLS

�
U % Y� H % &H � U % Y � (7.4)

(weusepreficesasin Definition6.6.4).
We call

�
(resp.Σ) DF-stabilizableif it hasa stabilizingcontroller � (resp.
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T
Σ

&L &N τ&O �
/0 0&y 1 y2yL 3

u 3 /0 02 uL

4 &ux0

4x2
&x0

4&x2
Figure7.2: DF-controller&Σ for Σ

�
WPLS

�
U � H � Y �&Σ), andweusepreficesasin Definition6.6.4.

We usually say “stabilizing” insteadof “admissible stabilizing” (for any
meaningof thesetwo wordsusedin this monograph).Note that by “controller
for

�
” wereferto a I/O map( U ) andby “controller for Σ” wereferto system( &Σ).

In classicaltheoryoneoftendoesnot makeany differencefor thesetwo concepts
(but wedo).

Thus, � is admissible[stabilizing] for
�

if f the closed-loopsystemin Fig-
ure7.1 is well-posed[andstable,i.e., u � y �

L2 for all uL � yL
�

L2]. Analogously,&Σ is admissible[stabilizing] for Σ if f theclosed-loopsystemin Figure7.2 is well-
posed[andstable,i.e.,u � y �

L2 andx and &x areboundedfor all uL � yL
�

L2 �
R 0 ; VW� ,

x0
�

H and &x0
� &H]. By LemmaA.4.5 andLemma6.1.10(a1),&Σ is exponentially

stabilizingfor Σ if f x � &x �
L2 (andhenceu � y �

L2) for all uL � yL
�

L2 � x0
�

H and&x0
� &H.

Obviously,
� o andhence

� o
I arethesamein bothsettings(i.e., in thesetting

of Figure7.1 andin thatof Figure7.2). Thus, &Σ is I/O-stabilizingfor Σ if f � is
stabilizingfor

�
. An analogouscommentappliesto Definitions7.2.1and7.3.1

too.

Recallfrom Definition6.6.10thatwefollow thestandardconventionto usethe
word “stabilization” for state-feedbackstabilization.Therefore,we have chosen
theterm“DF-stabilization”for dynamicoutputfeedback,but wedrop“DF-” when
thereis nodangerof misinterpretation.

In someclassicaltexts, one loosely speaksof “ � stabilizing Σ”, but one
thenusuallymeansthe concept“ &Σ stabilizingΣ” for a suitablerealizationof � .
However, wepaysomeattentionto this “concept”in Remark12.5.8.

FromtheabovedefinitionandDefinition6.6.1weobservethat � is admissible
for

�
if f &Σ is admissiblefor Σ. We list here several additional equivalent

conditions:

Lemma 7.1.2(DF-admissibility) A map � �
TIC∞

�
Y� U � is admissible[stabi-

lizing] for
�X�

TIC∞
�
U � Y � iff - I � �� �

I . �5@
TIC∞

�
U % Y � [and - I � �� �

I . � 1 �
TIC

�
U % Y � ]; or equivalently, if theclosed-loopI/O map

� o
I : � uL

yL 	Y� � uy 	 , givenby
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(cf. Figure7.1)� o
I 9 7

0 ��
0 8 < I � 7

0 ��
0 8�= � 1 9�< I � 7

0 ��
0 8>= � 1 � I9 7

I � �� �
I 8 � 1 � I 9 7 �

I � � � ��� 1 � I
�
I � � � ��� 1 �� �

I � � � ��� 1 �
I � � �Z��� 1 � I 8 (7.5)

is well-posed[and stable(i.e.,
� o

I
�

TIC)].

Moreover, � is admissiblefor
�

(equivalently, &Σ is admissiblefor Σ) iff
I � � �X�[@

TIC∞
�
U � (equivalently, I � � � �[@

TIC∞
�
Y � ). For

� �\� �
ULR this

is equivalentto I � DQ
�]@_^ �

Y � .
Proof: We have I � L

� o 9 - I � �� �
I . , hencethe first paragraphfollows

from Definition 6.6.1andProposition6.6.2. UseLemmaA.1.1(d1)(notealso
(A.12)) andProposition6.3.1(c)for thesecondparagraph. `
Therolesof

�
and � (resp.Σ and &Σ), areidentical;e.g., � stabilizes

�
if f

�
stabilizes� . Thiswill notbethecasein thedynamicpartial(output)feedback,in
Section7.3,wherethe input of � is only a partof theoutputof

�
, andthe input

of
�

consistsonly partiallyof theoutputof � .
Unlike for admissibility, &Σ beingstabilizingfor Σ is a strongerconditionthan� being stabilizing for

�
, sincein Figure7.2 thereare more signals(or maps

betweensignals)to bestabilized(by thechoiceof &Σ) thanin Figure7.1.
Indeed, &Σ I/O-stabilizes Σ if f � stabilizes

�
. In this chapter, we will

concentrateon I/O-stabilization, becausefor optimizable and estimatableΣ
and &Σ, I/O-stabilizationis equivalent to exponentialstabilization,by Theorem
7.2.3(d)&(c1).(Seethetheoremfor severalanalogousresults.)

If
�

hasa d.c.f. and � stabilizes
�

, then
�

and � have jointly [strongly]
stabilizableanddetectablerealizations,by Theorem6.6.28andProposition7.1.6.

If Σ and &Σ aresuchrealizationsandweconnecttheir inputsandoutputs(asin
Figure7.2andDefinition 7.1.1),thentheresultingcombinedclosed-loopsystem
becomes[strongly] stable,by Theorem7.2.3. (If

�
hasanexponentiald.c.f. and� stabilizes

�
exponentially, thenwe canchooseΣ and &Σ sothattheclosed-loop

systembecomesexponentiallystable.)
Notethatwehaveassumed� to bewell-posed,thatis, in TIC∞ (i.e., "� �

H∞
∞).

SeeSection7.2for non-well-posedcontrollers.
A stablemap(or system)is stabilizedby any sufficiently smallstablepertur-

bation:

Lemma 7.1.3(Small Gain Theorem) Let
� � �

TIC
�
U �Y � � � �

TIC
�
Y�U � ! 1. Then �

stabilizes
�

.
If Σ and &Σ are [SOS-/strongly/exponentially]stablerealizationsof

�
and � ,

respectively, then &Σ [SOS-/strongly/exponentially]stabilizesΣ.

Proof: 1a:� stabilizes
�

: Now I � � � �b@
TIC, by LemmaA.3.3(A0),

hence(7.5) is stable.
2a Σ stabilizes&Σ: This follows from Theorem7.2.3(d)&(a)&(b). `
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Wewill oftenassumethat
�

hasad.c.f. If U andY arefinite-dimensional,then
this doesnot reducegenerality(wesuspectthatthis is not thecasein general):

Lemma 7.1.4(D.c.f.) If
�c�

TIC∞
�
Cn � Cm� is DF-stabilizable, then

�
hasa d.c.f.

However, not all distributed scalar systems(functions f # g, where f � g �
H∞ �

C
0 � and g de 0) have coprimefactorizations,becauseH∞ is not a Bezout

domain(see[Vid]), althoughwe do not know if this appliesalsoto well-posed
scalartransferfunctions(thosewith f # g boundedonsomeright half-plane).

If
�

hasa r.c.f., thenit hasat leasta DF-stabilizingcontrollerwith internal
loop,by Corollary7.2.13;seealsoProposition7.1.6(b1).

If
�f�

TIC∞
�
C � hasa r.c.f., then thereis a stablestabilizingDF-controller

for
�

. Indeed,if "g �h"i �
H∞ �

C
0 � arecoprime,then "i � "�j"g��?@

H∞ �
C

0 � , for
some "� �

H∞ �
C

0 � , by [Treil92], hencethen � �
TIC

�
C � is stabilizingfor

�
, by

Proposition7.1.6(b1).(This would not bethecaseif thescalarfield wasreal,see
[S92].)

Naturally, possibleextensionsof this “stable (Bass)rank” result by Serge
Treil for multi- or infinite-dimensionalHilbert spaceswould extend the above
conclusioncorrespondingly.

Proof of Lemma 7.1.4: Now
� 9 gki � 1, where

g
: 9 � �

I � � � � � 1 andi
: 9 �

I � � � ��� 1 are stable,by (7.5). Thus, "� 9 "g "i � 1 �
H∞ # H∞ (and "�

is DF-stabilizable),so by [Smith, Theorem1], "� hasa generalizedr.c.f. and

a generalizedl.c.f. in the sensethat "� 9 "g 1 "i � 1
1 and "� 9 "&i � 1

1
"&g 1 for someg

1 � i 1 � &g 1 � &i 1
�

TIC with
g

1 � i 1 r.c. and &g 1 � &i 1 l.c.
By Lemma 6.5.4(d2),

i �l@
TIC∞ and

� 9 g
1
i � 1

1 — this is a r.c.f.
Similarly,

� d 9 &g d
1

� &i d
1 � � 1 is ar.c.f., i.e.,

� 9 &i � 1
1 &g 1 is a l.c.f.. Thus,they can

becompletedto a d.c.f.,by Lemma6.5.8. `
Lemma 7.1.5 Let

� 9 gki � 1 and � 9nmpo � 1 be r.c.f.’s. Then � 0 ��
0 � 9� 0 qr

0 � �\s 0
0 t � � 1

is a r.c.f. (of � 0 ��
0 � ). Moreover, wehavethefollowing:

(a) TheDF-controller � is admissiblefor
�

iff � s qr t � �u@
TIC∞; if this is the

case, then � o
I : 9 7

I � �� �
I 8 � 1 � I 9 7

0 mg
0 8 7 i � m� g o 8 � 1

(7.6)

(b) TheDF-controller � stabilizes
�

iff � s qr t � �]@
TIC; if this is thecase, and

weset v &o � &m� &g &ixw : 9 7 i mg o 8 � 1 � (7.7)

then &i � &o �B@
TIC∞, &i � 1 &g is a l.c.f. of

�
, and &o � 1 &m is a l.c.f. of � .
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Theobviousdual resultsfor l.c.f.’sare trueaswell.

So if � stabilizes
�

andthesemapshave coprimefactorizationsfrom same
side,thenweactuallyhave thed.c.f. (7.7);cf. Proposition7.1.6(a).

Proof: Clearly � 0 ��
0 � 9 � 0 qr

0 � � s 0
0 t � � 1

is ar.c.f.,so(a)andtheequivalence
in (b) hold by Lemma 6.6.6 (and Lemma A.1.1(c3)) (recall that L 9 I in
Definition7.1.1).

Assumenow that � DF-stabilizes
�

Then &i � &o ��@
TIC∞, by Lemma

A.1.1(c1)(because
i � o do), and(7.7) shows that &i � 1 &g 9 gki � 1, &o � 1 &m59mpo � 1, andthatthesefactorizationsarecoprime.

By taking(causal)adjoints,onegetsthedualresults. `
Proposition 7.1.6 Let

�5�
TIC∞

�
U � Y � .

(a) AnystabilizingDF-controller of
�

hasa l.c.f. (resp.r.c.f.) iff
�

hasa r.c.f.
(resp.l.c.f.).

(b) If
�

hasa r.c.f.
� 9 gki � 1, then(b1)–(b3)hold.

(b1) A map � �
TIC∞ DF-stabilizes

�
iff � hasa l.c.f. � 9 &o � 1 &m s.t.&o i � &m g 9 I . If &o and &m aresuch, then&oy9 � i � � g � � 1 � &my9 � i � � g � � 1 �z� and (7.8)� o

I 9 v i &o � I
i &mg &o g &m w :

7
uL

yL 8 � 7
u
y8|{ (7.9)

(b2) Let � 9 &o � 1 &m be a l.c.f. Then � DF-stabilizes
�

iff &o i � &m gl�@
TIC.

(b3)Let � 9ympo � 1 bea r.c.f. Then� DF-stabilizes
�

iff � s qr t � �B@
TIC.

(c) If
�

hasa l.c.f.
� 9 &i � 1 &g , then(c1)–(c3)hold.

(c1) A map � �
TIC∞ DF-stabilizes

�
iff � hasa r.c.f. � 9�m}o � 1 s.t.&i o � &g mc9 I . If o and m aresuch, theno?9 � &i � &g �~� � 1 � my9 � &i � &g ��� � 1 � { (7.10)

(c2) Let � 9�m}o � 1 be a r.c.f. Then � DF-stabilizes
�

iff &i o � &g m �@
TIC.

(c3) Let � 9 &o � 1 &m be a l.c.f. Then � DF-stabilizes
�

iff - Dt � Dq� Dr Ds . �@
TIC.

(d) Let � DF-stabilize
�

. Then
�

hasa d.c.f. iff � hasa d.c.f.

Notethat - Dt � Dq� Dr Ds . �]@
TIC � - Dt DqDr Ds . �B@

TIC, by LemmaA.1.1(c3).

In (b1),clearly - I � �� �
I . 9 - s Dt s Dqr Dt s Dt . : � uL

yL 	h� - DuDy . .
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Proof: (a)This follows from (b1)and(c1),becausewecaninterchangethe
rolesof

�
and � .

(b1) 1a Let
�

have a r.c.f.
� g � i � and & � i � &�}g 9 I , &� � & � �

TIC. Let �
stabilize

�
, sothatI � � � 9 I � � g�i � 1 ��@

TIC∞ and
� o

I
�

TIC, in particular,i � � g���@
TIC∞.

The stability of
� � i � i � � g ��� 1 	 9 � �

I � � � ��� 1 and
� � i � i �� g ��� 1 � 	 9 � �

I � � � ��� 1 � 9 �
I � � ����� 1 � I , from (7.5) (and Lemma

A.1.1(f6)),impliesthatof &o : 9 � i � � g � � 1 9 i � 1 � i � i � � g � � 1 	 and &m : 9� i � � g ��� 1 � , by Lemma6.5.6(b). Clearly &o i � &m g 9 � i � � g ��� 1 � i �� g � 9 I , so &o ��@
TIC∞ and &m arel.c.

2a Conversely, if � 9 &o � 1 &m is al.c.f. and &o i � &m g 9 I , then
�
I � � � � � 1 9� &o � 1 � &o i � &m g � i � 1 	 � 1 9 i &o etc.,hence(7.9)holds,so

� o
I

�
TIC, i.e., � is

stabilizing.
3a By Lemma 6.4.5(d), the &o and &m constructedin 1a are uniquely

determinedby � .
(b2) By Lemma6.4.5, all l.c.f.’s of � are given by

��� &m � � &o � with
� �@

TIC, Therefore,� hasa l.c.f. of the form describedin (a) if f &o i � &m gl�@
TIC.

(b3)This follows from Lemma7.1.5.
(c) This is proved analogously(or by taking (causal)adjointsin (b)). Of

course,wecouldwrite adualformulafor
� o

I too.
(d) Thisfollowsfrom (a)andfrom thefactthatawell-posedmaphasad.c.f.

if f it hasa r.c.f. anda l.c.f. [Lemma6.5.8]. `
In mostcontroltheoryonestudiesproperrationaltransferfunctions(i.e.,those

with a (WPLS) realizationwith dimU � dimH � dimY ! ∞); they always have a
d.c.f. If dimU � dimY ! ∞, then

�f�
TIC∞

�
U � Y � musthave a d.c.f. in order to

be DF-stabilizable,by Lemma7.1.4. SeeLemma6.5.10for further sufficient
conditionsfor theexistenceof ad.c.f.

For thesereasons,we shall often assumethe existenceof a d.c.f. This
assumptionenablesusto generalizetheYoulaparameterizationof all stabilizing
controllers:

Theorem 7.1.7(Stabilizing DF-controllers) Let
���

TIC∞
�
U � Y � have a r.c.f.

anda l.c.f.
� 9 gki � 1 9 &i � 1 &g . Then

�
hasthed.c.f.7 i �g � 8 v & � � &�� &g &i w 9 I 9 v & � � &�� &g &i w 7 i �g � 8 (7.11)

for some
� � � � &� � & � �

TIC, andthefollowingareequivalent:

(i) � DF-stabilizes
�

.

(ii) � s qr t � ��@
TIC, o �]@

TIC∞ and � 9ym}o � 1.

(iii) - Dt � Dq� Dr Ds . �]@
TIC, &o �B@

TIC∞ and � 9 &o � 1 &m .
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(iv) � hasa d.c.f. � 9cmpo � 1 9 &o � 1 &m s.t.7 i mg o 8 � 1 9 v &o � &m� &g &i w { (7.12)

(v) [Youla] � 9 � � ; i � � � � ; g � ��� 1 for some
� �

TIC s.t. � ; g � ��@
TIC∞.

(vi) [Youla] � 9 � & � ; � &g ��� 1 � &� ; � &i � for some
� �

TIC s.t. & � ; � &g5�C@
TIC∞.

(vii) � 9�mpo � 1, where � q t � 9 � s��ru� � �\� I � and
� �

TIC is s.t. o�9 � ; g � �@
TIC∞.

(viii) � 9 &o � 1 &m , where � Dt Dq 	 9 � I � 	 - D � D�Dr Ds . and
� �

TIC is s.t. &ou9 & � ; � &gl�@
TIC∞.

Moreover, for
� �

TIC wehave � ; g � �[@
TIC∞ � & � ; � &g,�u@

TIC∞, and
if eitheris true, then� � ; i � � � � ; g � � � 1 9 � & � ; � &g � � 1 � &� ; � &i � { (7.13)

Thus, any
�X�

TIC∞ having a d.c.f. (denotedby (7.11)) is DF-stabilizable
if f � ; g � �y@

TIC∞ for some
� �

TIC, or equivalently, if f the � in (7.11)can
be chosenso that � �y@

TIC∞ � TIC. Thosefactorizations(7.11), in which � d�@
TIC∞, can be thoughtas defining non-well-posed(improper)DF-controllers;

seeTheorem7.2.14for ageneralizationcontainingalsosuchcontrollers.
Onefacesthesameproblemin thefinite-dimensionaltheory(i.e., the theory

for rational transferfunctionswith dimU � dimY ! ∞): unless" � ;b"g "� �b@
H∞

∞,
the controller � is ill-posed (i.e., not proper, that is, unboundedin any right
half-plane). If det

� " � ;�"g "� � e 0, then "� is not definedanywhere. However,
regardlessof det

� " � ; "g "� � , the combinedclosed-loopcondition (in Figure7.1)
is well-posed.This kind of non-well-posedcontrollers(“controllerswith internal
loop”) aretreatedin Section7.2.

Notethatall factorizationsof � (and
�

) in thetheoremareobviouslycoprime.

Werecallfrom LemmaA.1.1(c3)that - Dt � Dq� Dr Ds . ��@
TIC iff - Dt DqDr Ds . ��@

TIC.

Proof: The d.c.f. (7.11) exists, by Lemma6.5.8. Thus, any stabilizing
controllerof

�
hasad.c.f.,by Proposition7.1.6(d).

“(i) � (ii)”: This follows from Lemma7.1.5(b). Note that � s qr t � �y@
TIC

impliesthat m and o arer.c.
“(ii) � (iii)”: Theseareadjointsof eachother.
“(ii) � (vii) � (iv)”: By Lemma6.5.9(b),all completions � q t � suchasin (ii)

aregivenby - ��� 0 s D�� � 0 r D� . with &� �
TIC and� ��@

TIC. Thestabilizingcontrollers

are,by (ii), theonescorrespondingto � �); g &� ��@
TIC∞, so,by Lemma6.4.5,

we may take � 9 I (and
�

: 9 &� ��� 1 �
TIC arbitrary)without altering � , and

thusweobtaintheequivalentparametrization(vii). Moreover, in this case7 i � ; i �g � ; g � 8 � 1 9 v & � ; � &g � � &� ; � &i �� &g &i w � (7.14)

by Lemma6.5.9(c).
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Claim (v) is a reformulationof (vii); claims(viii) and(vi) arethedualsof
(vii) and(v), respectively.

To prove the final claim about Youla parametrization,we note that, by
(7.14)andLemmaA.1.1(c1), � ; g � �y@

TIC∞ � & � ; � &g$�c@
TIC∞. More-

over, (7.14)implies(7.13)if � ; g � �B@
TIC∞. `

Directly from thetheoremweget:

Corollary 7.1.8(Youla-parametrization) Let
���

TIC∞
�
U � Y � havea r.c.f. and

a l.c.f.
� 9 gki � 1 9 &i � 1 &g . Then

�
hasthed.c.f.7 i �g � 8 v & � � &�� &g &i w 9 I 9 v & � � &�� &g &i w 7 i �g � 8 { (7.15)

for some
� � � � &� � & � �

TIC.
Moreover, thefollowing areequivalent:

(i)
�

is DF-stabilizable.

(ii) � s qr t � ��@
TIC for someo � m s.t. o �B@

TIC∞.

(iii) - Dt � Dq� Dr Ds . �]@
TIC for some&o � &m s.t. &o ��@

TIC∞.

(vi) [Youla] � ; g � �]@
TIC∞ for some

� �
TIC.

(vii) [Youla] & � ; � &g��B@
TIC∞ for some

� �
TIC.

Finally, if theseconditionsare satisfied,thenall DF-stabilizingcontrollersof�
areparametrizedby� 9 � � ; i � � � � ; g � � � 1 9 � & � ; � &g � � 1 � &� ; � &i � { (7.16)

where
�

rangesover those
� �

TIC for which � ; g � �y@
TIC∞ (equivalently,& � ; � &g��B@

TIC∞).
An alternativeparametrizationis � 9�mpo � 1 s.t. � s qr t � ��@

TIC and o �@
TIC∞; a third oneis � 9 &o � 1 &m s.t. - Dt � Dq� Dr Ds . �]@

TIC and &o ��@
TIC∞. `

Givencertainregularity, we canmake thecontrollercorrespondingto a r.c.f.
well-posed:

Corollary 7.1.9 Let
�

havea r.c.f.
� 9 gki � 1, &o i � &m g 9 I s.t. &o � i��

ULR.
Then

�
is DF-stabilizable.

Proof: Define& � : 9 M � 1 ; &o � M � 1 i &o � &� : 9 &m � M � 1 i &m (7.17)

to obtain that & � i � &� m�9 I , & � �
ULR and &S 9 M � 1 ; &X � &X 9 M � 1 �b@�^

(by Proposition6.3.1(c)),hence& � �u@
TIC∞. Thus, & � � 1&� DF-stabilizes

�
, by

Proposition7.1.6(b1). `
Naturally, Youlaparametrizationcanbeappliedalsowhenoneonewishesto

work in asubclassof TIC:
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Proposition 7.1.10 Assumethat
^��

a
' �

a
ULR � TIC (e.g., ' 9 MTIC or ' 9

ULR � TIC, seeDefinition6.2.4). Assumethat
�

hasa d.c.f. over ' , i.e., (7.11)
holdswith

i � g � � � � � &i � &g � & � � &�B� ' .
Thenall stabilizingDF-controllers of

�
are parametrizedin Theorem7.1.7,

andtheonesthathavea d.c.f. over ' areexactlythosewhoseparameter(s)are in' , i.e., which satisfyany(henceall) of thefollowing equivalentconditions:

(ii) � hasa r.c.f. � 9?m}o � 1 s.t. o � m � ' ;

(iii) � hasa l.c.f. � 9 &o � 1 &m s.t. &o � &m � ' ;

(v)
� � ' in (v), (vi), (vii) or (viii) of Theorem7.1.7.

If ' �
a

ULR, then
�

hasstabilizingDF-controllers.

Note that ' 9 MTIC and ' 9 ULR � TIC satisfyall above assumptions(cf.
Definition6.2.4).Seealso(theCorona)Theorem4.1.6(d)for suchd.c.f.’s.

Proof: Theorem7.1.7parametrizesall DF-stabilizingcontrollersof
�

, in
particular, by (vi’), (vi”) and(7.13)of Theorem7.1.7,they satisfy7 i mg o 8 : 9 7 i �g � 8 7

I
�

0 I 8 and

v &o � &m� &g &i w : 9 7
I � �
0 I 8 � 1

v & � � &�� &g &i w
(7.18)

for some
� �

TIC. If
� � ' , then clearly o � m � &o � &m � ' . Conversely, ifo � m � ' , then � I �0 I � 9 - D � � D�� Dr Ds . � s qr t � � ' (analogously,

� � ' if f &o � &m � ' ).

If ' �
a

ULR, then the existenceof a stabilizingcontroller is guaranteed,

by Corollary 7.1.9. (Alternatively, we can take
�

: 9 � M � 1T, becausethen� & � ; � &g � � ; ∞ � 9 M � 1 �
M &S � T &N � 9 M � 1 ��@�^ �

U � , by (7.11)
� ; ∞ � 1 � 1 and

Proposition6.3.1(c).) `
Notes
The connectionbetweencoprimefactorizationanddynamicstabilization(in

Theorem7.1.7 and Corollary 7.1.8) is well-known; see, e.g., pp. 36–42 of
[Francis]or Chapter12 of [ZDG] for classicalpresentationsand[CWW96] and
[CWW01] for resultsfor WPLSs.O. Staffanshasrecentlyincludedsomefurther
resultsin [Sbook].

The classof matrix-valued“H∞ # H∞ transferfunctions” is not containedin,
nordoesit containtheclassmatrix-valuedwell-posedtransferfunctions.(Remark
7.2.20sketchesaninfinite-dimensionaltheorythatcoversbothclasses.)

ThedynamicI/O-stabilizationtheorybasedon fractionalrepresentationswas
first introducedin [DLMS] for rational functions. Also more generalcases
have beenstudiedextensively; see,e.g., [GS] for the generalcaseof matrix-
valued“H∞ # H∞ transferfunctions”,[CZ] for thespecialcaseof aCallier–Desoer
class(from [CD78]), and [Logemann93]for certain other specialcases(with
applicationsto PS-systems).An excellent classicalreferenceis [Vid], which
coversall theseclassesto someextent.Seethenotesto Chapters7 and9 of [CZ]
for furtherhistoricalnotes(thesealsocover theresultspostponedto Section7.2).
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Above we have presentedhereonly the coreresultsof the theoryandthose
resultsthat requirethecontrollerto bewell-posed.In therestof this chapterwe
shallpresentfurtherresultson DF-stabilizationundermoregeneralassumptions.
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/0 0&y 1yL 3 2 y 3u /0 02 uL

4 &u3ξ /0 0 ξL2&ξ4
Figure7.3: DF-controllerU with internalloop for

�5�
TIC∞

�
U � Y �

7.2 DF-stabilization with internal loop ( � 0�
0

U 11
0U 21

U 12
0U 22 � )

It’ s notan optical illusion, it just lookslikeone.

— Phil White

Therestrictiono ��@
TIC∞ (or � ; g � ��@

TIC∞) in theYoulaparametrization
of Theorem7.1.7 might feel somewhat artificial: it is only neededin order to
have the open-loopmap � : &y 
� u of the controllerwell-posed(or proper, i.e.,� �

TIC∞), but evenwithout thatcondition,all closed-loopmapsarewell-posed
(onceweconnectthecontrollerto theplant).

Therefore,in finite-dimensionaltheory, onesometimesallowsfor improper(or
non-well-posed)controllers. To cover suchcontrollersin additionto the proper
ones,G. WeissandR. Curtain introducedDF-controllers with internal loop in
[WC].

This conceptallows us to have mathematicallymore beautiful formulae
and offers a solution to certainproblemsthat cannotbe solved by well-posed
controllers(seetheexampleat thebeginningof [CWW01]). Nevertheless,in our
mostimportantresults,we alsopoint out whensucha controllercanbereplaced
by awell-posedcontroller.

Well-posedcontrollers,i.e., thoseof Section7.1, area subsetof controllers
with internalloop(andsoareall H∞ # H∞ fractionalcontrollers,seeRemark7.2.8),
hencemany resultsconcerningthemwereomittedin theprevioussectionandare
presentedhereunderwider generality.

Ontheotherhand,theproofsof mostresultsfor controllerswith internalloop
couldbereducedto thewell-posedcase,by Lemma7.2.6.

A map U 9 -�� 11 � 12� 21 � 22 . �
TIC∞

�
Y % Ξ � U % Ξ � , whereΞ is anarbitraryHilbert

space,becomesa DF-controllerwith internal loop whenwe connectits second
output to its secondinput, as in Figure7.3. This resultingcontroller neednot
be well-posed,i.e., closingthe internal(ξ) loop only neednot be an admissible
operation(when U is uncoupledfrom

�
); it is enoughthat thecombinedclosed-

loopsystemof Figure7.3becomeswell-posed.
As above, a DF-controller with internal loop has an internal signal ξ

�
L2

loc

�
R;Ξ � , whereΞ is someHilbert space.Note thatwhereasa givenplantfixes

thesignalspacesU andY of any of its controllers,thespaceΞ maybedifferent
for differentcontrollers.
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In Figure7.3,weobviouslyhaveIK
u
y
ξ

PS 9 IK
0 U 11 U 12�

0 0
0 U 21 U 22

PS IK
u ; uL

y ; yL

ξ ; ξL

PS 9 :
� o

IK
u ; uL

y ; yL

ξ ; ξL

PS { (7.19)

As under(7.1), we observe that the correspondingclosed-loopmapis given by� o
I 9 �

I � � o � � 1 � o, andthatthecorrespondingclosed-loopsystemis givenby Σo
I

givenbelow. Therefore,wemake thefollowing definitions:

Definition 7.2.1(DF-stabilization with internal loop) Let
�,�

TIC∞
�
U � Y � . A

map U 9 - � 11 � 12� 21 � 22 . �
TIC∞

�
Y % Ξ � U % Ξ � (where also Ξ is a Hilbert space)is

an admissible[stabilizing] (DF-)controllerwith internalloop for
�

if the output
feedback operator L 9 I is admissible[stabilizing] for� o : 9 IK

0 U 11 U 12�
0 0

0 U 21 U 22

PS �
TIC∞

�
U % Y % Ξ � { (7.20)

We call &Σ 9 -�DF DGDH � . �
WPLS

�
Y % Ξ � &H � U % Ξ � an admissible[stabilizing]

(DF-)controllerwith internal loop for Σ 9 � F GH � � �
WPLS

�
U � H � Y � if L 9 I is

admissible[stabilizing] for the(permutated)parallel connection

Σo : 9 IJJJJJK L 0 N 0 0
0 &L 0 &N 1 &N 2

0 &O 1 0 U 11 U 12O
0

�
0 0

0 &O 2 0 U 21 U 22

PRQQQQQS �
WPLS

�
U % Y % Ξ � H % &H � U % Y % Ξ � {

(7.21)
Weusepreficesasin Definition6.6.4with Σo

I in placeof ΣL.
We call

�
(resp.Σ) DF-stabilizablewith internalloop if there is a stabilizing

controller with internal loop for
�

(resp.for Σ), andweusepreficesasabove.
We call two admissibleDF-controllers for

�
(resp.for Σ) with internal loop

equivalent for
�

(resp.for Σ) if the corresponding
�
1–2 � 1–2� -blocks of

� o
I : 9�

I � � o ��� 1 � I areequal,i.e., if they determinesamemapsfromuL � yL to u � y.
If U 9 � � 11 0

0 0 � �
TIC∞

�
Y % Ξ � U % Ξ � , thenwemayremove the words “with

internal loop” everywherein thisdefinitionandidentify U with U 11
�

TIC∞
�
Y� U �

(cf. Lemma7.2.7).

Naturally, “ [DF-]stabilizes” means“is stabilizing for”, in any of the above
settings.

Notethat
� o

I maps
�
uL � yL � ξL � 
� �

u � y� ξ � . SeealsoFigures7.3and7.4andthe
commentsbelow Definition7.1.1andSummary6.7.1.

Lemma 7.2.2(DF-Admissibility and equivalence) Let
�b�

TIC∞
�
U � Y � . A mapU 9 -�� 11 � 12� 21 � 22 . �

TIC∞
�
Y % Ξ � U % Ξ � is anadmissible[stabilizing] controller with

internal loop for
�

iff theconnectionif Figure 7.3 is well-posed[and stable, i.e.,
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T
Σ

&L &N 1τ &N 2τ&O 1 U 11 U 12&O 2 U 21 U 22

/0 01&y 2 yyL 3
3u /0 02 uL

4 &ux0

4x2
3ξ /0 0 ξL2&ξ4&x0

4&x2
Figure7.4: DF-controller&Σ with internalloop for Σ

�
WPLS

�
U � H � Y �

u � y� ξ �
L2 for all uL � yL � ξL

�
L2], equivalently, iff I � � o �c@

TIC∞
�
U % Y % Ξ �

[and
�
I � � o � � 1 �

TIC].

Moreover, &Σ 9 - DF DGDH � . is admissiblewith internal loop for Σ 9 � F GH � � iff U is

admissiblewith internal loop for
�

.
Finally, if two admissiblecontrollers for Σ are equivalentfor Σ (i.e., their I/O

mapsare equivalentfor
�

), thenthe mapsfromx0 � uL � yL to x � u � y are equalfor
thetwo closed-loopsystems.

Analogously, &Σ is admissible[stabilizing] for Σ if f theclosed-loopsystemin
Figure7.4 is well-posed[andstable,i.e.,u � y� ξ �

L2 andx and &x areboundedfor
all uL � yL � ξL

�
L2 �

R 0 ; VW� , x0
�

H and &x0
� &H]. (Wenotethatexponentialstability

is equivalentto x � &x �
L2 (andhenceu � y� ξ �

L2) for all uL � yL � ξL
�

L2 � x0
�

H and&x � &H, by LemmaA.4.5andLemma6.1.10(a1).)
We observe that only the mapsconcerning&x, &x0, ξ and ξL may differ for

equivalentcontrollersfor Σ; thus,thereis no differencefrom thepartof &Σ visible
for Σ.

Proof: Theclaim on I � � o andthe“moreover claim” follow from Defini-
tions7.2.1and6.6.1.ThereferencetoFigure7.3is obvious(cf. (6.122)–(6.124)
and(6.127)).

The final claim (which could be observed from Figure 7.4) follows by
computingΣo

I from (6.125)andobservingthat its first, third andfourth rows

and columns dependonly on Σ and � I 0 0
0 I 0 � � o

I � I 0 0
0 I 0 � T

(use the fact that� o
I : 9 � o �

I � � o � � 1 9 �
I � � o � � 1 � I ). `

The identificationof � � 11 0
0 0 � and U 11 is natural: all open-loopand closed-

loop signalsin Figures7.3 and7.1 becomeequal(exceptthat in Figure7.3, we
have the additional,negligible signalsξ 9 0 and &ξ 9 ξL). Thus,a (well-posed)
stabilizing controller (in the senseof Definition 7.1.1) is a specialcaseof a
stabilizing controller with internal loop (seealso Lemma7.2.7). The situation
with systemsis thesame(cf. Figures7.4and7.2).

We stressthat we mention the words “internal loop” explicitly whenever
we speakof such controllers; all other mapsare assumedto be well-posed,
i.e.,

�
TIC∞ (which is alsostatedexplicitly in theoremsanddefinitions),so no

confusionshouldarise. The sameappliesto mapswith coprimeinternal loop
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(Definition 7.2.11)andalsoelsewhereis this chapter.
In connectionwith the H∞ Four-Block Problem, however, the theory for

controllerswith internal loop becomesmorenaturalandbeautiful thanthe part
restrictedto well-posedcontrollers. Therefore,in Chapter12, contrary to the
practice of this chapter, a “[stabilizing] controller” is allowed to possessan
internalloop,and“well-posed”is alwayswrittenexplicitly, never tacitly.

Trivially, &Σ I/O-DF-stabilizesΣ if f U DF-stabilizes
�

(i.e., if f
� o

I becomes
stable). Under standardassumptions,this is also equivalent to the stronger
conditionthat &Σ DF-stabilizesΣ (i.e., thatthewholeΣo

I becomesstable):

Theorem 7.2.3(&Σ&Σ&Σ stabilizesΣ �xUΣ ��UΣ ��U stabilizes
� � �

) Let Σ 9 � F GH � � �
WPLS

�
U � H � Y � and &Σ 9 - DF DGDH � . �

WPLS
�
Y % Ξ � &H � U % Ξ � .

(a) Supposethat Σ and &Σ are SOS-stabilizable. Then &Σ SOS-stabilizesΣ with
internal loop iff &Σ I/O-stabilizesΣ with internal loop.

(b) ([Strong] stability) Supposethatanyof thefollowing conditionsholds:

(1.) bothΣ and &Σ are [[exponentially]strongly] q.r.c.-stabilizable;
(2.) bothΣ and &Σ are [[exponentially]strongly] q.l.c.-detectable;
(3.) both Σ and &Σ are SOS-stabilizableand [[exponentially] strongly]

detectable;
(4.) bothΣ and &Σ aredetectableand[exponentially]stabilizable.

Then &Σ [[exponentially]strongly] stabilizesΣ with internal loop iff &Σ I/O-
stabilizesΣ with internal loop.

(c1) (Exponential stability) The system &Σ stabilizesΣ exponentially with
internal loop iff &Σ I/O-stabilizesΣ with internal loop and Σ and &Σ are
optimizableandestimatable.

(c2)Supposethatanyof thefollowingconditionsholds:

(1.) bothΣ and &Σ areoptimizableandestimatable;
(2.) bothΣ and &Σ areoptimizableandinput-detectable;
(3.) bothΣ and &Σ areestimatableandoutput-stabilizable;
(4.) bothΣ and &Σ areoptimizableandq.r.c.-stabilizable;
(5.) bothΣ and &Σ areestimatableandq.l.c.-detectable.

Then &Σ stabilizesΣ exponentiallywith internal loop iff &Σ I/O-stabilizesΣ
with internal loop.

(d) (Well-posed controllers) Suppose that, instead, &Σ 9 -�DF DGDH � . �
WPLS

�
Y� &H � U � . Then(a)–(c2) hold if we deletethe words “with inter-

nal loop” everywhere in this theorem.

Thus,all mapsbetweensignals(i.e., Σo
I : x0 � &x0 � uL � yL � ξL 
� x � &x � u � y� ξ (and
��&u � &y � &ξ)) in Figure7.4 are(SOS-/strongly/exponentially/...)stableif f themaps
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from uL, yL andξL to u, y andξ arestableandΣ and &Σ have the corresponding
stabilizabilitylistedabove.

Therefore,we canoften concentrateon the I/O theory. E.g., if Σ is jointly
stabilizableanddetectable,andwe find a stabilizingcontrollerfor

�
, thenany of

its q.r.c.-stabilizablerealizations(cf. Theorems7.2.14and 6.6.28)stabilizesΣ.
Analogousclaimsholdunderotherassumptionsfor Σ.

Proof of Theorem 7.2.3: (a)&(b)&(c2) By Lemma6.7.18(andLemma
6.7.17with G 9 � 0 I

I 0 � ), Σo inheritsthestabilizabilityanddetectabilityproper-

tiesof Σ and &Σ. Thereforetheaboveassumptionsimply, by Proposition6.7.14,
thatL 9 I is (SOS-/strongly/exponentially, dependingon theassumptions)sta-
bilizing for Σo if f it is I/O-stabilizing.

(c1) This is Theorem7.4 of [WR00] (alternatively, “if ” follows from
Theorem6.7.10(d)(viii),andtheconversefrom (6.126)for optimizability (note
thatΣo is obviouslyoptimizableif f Σ and &Σ areoptimizable)andby duality for
estimatability(seeLemma6.7.2(e’))).

(d) Theaboveproofsstill apply(useU 9 � � 0
0 0 � etc.). `

We can now extend the standardresult (cf. p. 303 of [ZDG] and Theorem
7.3.12)to infinite-dimensionalsystems(althoughtheconversein (b) is incomplete
andthosein (c) and(d) donot coverall WPLSs):

Theorem 7.2.4(Exp. DF-stabilizable � � � opt. & est.) Let Σ : 9 � F GH � � �
WPLS

�
U � H � Y � .

(a) If Σ is exponentiallyDF-stabilizable[with internal loop], thenΣ is optimiz-
ableandestimatable.

(b) Conversely, if Σ is jointly [[exponentially] strongly] stabilizableand de-
tectable, thenΣ is [[exponentially]strongly] DF-stabilizablewith internal
loop.

(c) Assumethat L Bu0 � L�� C � y0
�

L1
loc

�
R 0 ;H � for all u0

�
U and y0

�
Y, and

that
�

is ULR.Thenthefollowing areequivalent:

(i) Σ is exponentiallyDF-stabilizable;
(ii) Σ is exponentiallyDF-stabilizablewith internal loop;
(iii) Σ is optimizableandestimatable;
(iv) Σ is exponentiallyjointly stabilizableanddetectable;
(v) Σ is exponentiallyjointly stabilizableanddetectablebysomebounded

K andH.

Moreover, if (v) holds,then(d) applieswith thesameK andH (hence(6.169)
and(7.22)becomeULR).

(d) If K and H are [[exponentially] strongly] jointly stabilizingwith (6.169)
beingSR,andI �A� L

�]@
TIC∞

�
Y � (thisholdsif (6.169)is ULR), then< A ; BKs ; HCs ; HDKs � H

K 0 = �
WPLS

�
Y� H � U � (7.22)
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is a [[exponentially]strongly] DF-stabilizingcontroller for Σ. Moreover,
(7.22) is SR and [[exponentially] strongly] jointly stabilizable and de-
tectable.

Note that the assumptionsof (c) hold if B andC are bounded(or if L is
somewhat smoothing,e.g., if Hypothesis9.5.1holds),hencealwaysin discrete
time.

A weaker form of the exponentialpart of the theoremis well-known for
Pritchard–Salamonsystems;e.g.,Theorem2.30of [Keu] is a specialcaseof (d)
(sincePS-systemsareULR andstabilizability (anddetectability)aredefinedin
a very strongsensefor PS-systems;seeRemark6.6.15).However, the result(c)
seemsto benew in this generality

If wedroptherequirement“ I �j� L d� @
TIC∞” from (d), then“(7.22)” canstill

be formulatedasa controllerwith internalloop; seeProposition5.3 of [WC] for
anexponentialversionof this claim(or modify our proof slightly).

Proof: (a)This follows from Theorem7.2.3(c1).
(b) By the proof of Theorem6.6.28,we have the d.c.f. (6.172),andΣ is

[strongly] r.c.-stabilizable.Consequently,v &L &N&O U w : 9 IK L L 0 ¡ L�_¢ L 0 �¤£ LO
L I � L

PS (7.23)

is anI/O-stabilizingcontrollerwith internalloop for Σ (i.e., U DF-stabilizes
�

with internalloop),by, e.g.,Theorem7.2.14(i)(or thedualof Lemma7.2.10(a);
wecoulduse(7.13)insteadif onewouldassumethatI �¥� L

�B@
TIC∞

�
Y � , i.e.,

that � werewell-posed).
But (7.23) is [[exponentially] strongly] stable, hence [strongly] r.c.-

stabilizable[[and optimizableandestimatable]],henceit DF-stabilizesΣ [[ex-
ponentially]strongly]with internalloop,by Theorem7.2.3(b)[(c1)].

(c) By Corollary9.2.13,(iii)–(v) areequivalentandthe “moreover”-claim
holds(with theULR-propertyfrom Lemma6.3.16(d));in particular, (v) implies
(i), by (d). Implication“(i) ¦ (ii)” is trivial, and“(ii) ¦ (iii)” wasgivenin (a).

(d) (Notethatwehaveadoptedthenotationof Definition6.6.21.Naturally,
thesignsof K andH canbeinterchanged.)

If (6.169) is ULR, UR, SLR, UVR or SVR, then so are all systemsand
mapsappearingbelow (including (7.22)), by Proposition6.3.1(b2); for the
samereason,all of themarealwaysSR.(SeealsoLemma6.6.27.)

1a When(6.169)is ULR: If (6.169)is ULR, then I � � L is invertible, by
Proposition6.3.1(c),sincethe I/O mapof (6.169)(andhenceof (6.170)and
(6.171))correspondingto K andH is givenby � 0 D

0 0 � ; in particular, GL 9 0
� 9

G� .
2a DF-stabilizing � : By the proof of Theorem6.6.28,we have the d.c.f.

(6.172). By (6.172)andLemma6.5.9(a1),the invertibility of I ��� L implies
thatof I �¨§ DL . By (7.13)(with

� 9 0), themap� : 9 �¤£ L
�
I �A� L � � 1 9 � �

I �©§ DL � � 1£ DL �
TIC∞

�
Y� U � (7.24)
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is aDF-stabilizingcontrollerfor
�

and(7.24)is a [[exponential]]d.c.f.
3a (7.22) is a SRWPLSwith I/O map � : By Definition 6.6.21,L : 9 � 0 0

0 I �
is admissiblefor ΣTotal. AssumptionI ��� L

�y@
TIC∞ saysthat &L : 9 � 0 0

0 I � is
admissiblefor

�
ΣTotal� L; from (6.125)weobservethatthecorrespondingsystem�

ΣTotal� L
0 DL 9 �

ΣTotal� I has � �l�� � � � asits I/O map.
Apply (6.142)(andProposition6.6.18(a1)andProposition6.3.1(a3))twice

to observe thatthegeneratorsof
�
ΣTotal� I aregivenbyIK

A ; BKs ; HCs ; HDKs H B ; HD

Cs ; DKs 0 D
Ks 0 0

PS { (7.25)

Weconcludethat(7.22)is aSRWPLSwith I/O map � .
4a Therest:
Let Σ ( bethesystemgeneratedbyIK

A ; BKs ; HCs ; HDKs � H � �
B ; HD �

Cs ; DKs 0 D
Ks 0 0

PS { (7.26)

ThenΣ ( with its secondandthird columnsmultiplied by � 1 equals
�
ΣTotal � I .

From(6.126weobservethat
�
Σ (ª� L with its secondandthird columnsmultiplied

by � 1 equals
�«�

ΣTotal� I � � L ( 9 �
ΣTotal� DL, by Lemma6.6.3),andthat

�
Σ ( � DL with

its secondandthird columnsmultipliedby � 1 equals
�«�

ΣTotal� I � � DL 9 �
ΣTotal� L.

Fromthis and(7.26)weobserve thatCs ; DKs and � �
B ; HD � are[[expo-

nentially] strongly] jointly stabilizingfor (7.22)(with “E 9 0”). In particular,
(7.22) is [[exponentially] strongly] r.c.-stabilizable,by Theorem6.6.28(and
Lemma6.6.22). By this, 2a andTheorem7.2.3(b)(1.),(7.22) [[exponentially]
strongly]DF-stabilizesΣ. `
Formally, a controller U with internal loop mapsy 
� u 9 � U 11 ;[U 12

�
I �U 22 ��� 1 U 21 � y. (If I � U 22

�y@
TIC∞

�
Ξ � , thenthis formula is not merelyformal,

by Lemma7.2.7.)
Thus,alsothecontrollersof form“right coprimeH∞ # H∞” (of form m}o � 1 witho � m �

TIC beingr.c.) canbewritten ascontrollerswith internalloop, by takingU 9 � 0 q
I I � t � . We will call suchcontrollersmapswith r.c. internalloop (they are

thecanonicalcontrollersof [CWW01]); seeDefinition7.2.11for details.Herewe
requireneithero nor &o to beinvertible,it is enoughthatthesystem

� o
I produced

by closingthetwo loopssimultaneouslyis well-posed.
Thesurprisingfact is thatall stabilizingcontrollersareof this form (modulo

equivalence),whenever
�

hasa l.c.f. This fact is themaintheoremof [CWW01],
but we give here(part (b) below) a shorterproof insteadof the original seven
pageslong one.We alsogive a necessaryandsufficient condition((a) or its dual
(a’)) in thegeneralcase:

Proposition 7.2.5(I/O-DF-stabilizing controller with IL) Let
���

TIC∞
�
U � Y �

and U 9 -�� 11 � 12� 21 � 22 . �
TIC∞

�
Y % Ξ � U % Ξ � .
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(a) U is admissiblewith internal loop for
�

iff ¡ : 9 - I � � � 11 � � � 12� � 21 I � � 22 . �@
TIC∞

�
Y % Ξ � . Moreover, U is [exponentially] stabilizing with internal

loop iff thecorrespondingclosed-loopmap�
I � � o � � 1 9 IJJK

IU ; � U 11 U 12 � ¡ � 1

7 �
0 8 � U 11 U 12 � ¡ � 1¡z� 1

7 �
0 8 ¡z� 1

PRQQS :

IK
uL

yL

ξL

PS 
� IK
u ; uL

y ; yL

ξ ; ξL

PS
(7.27)

is [exponentially]stable.

(a’) U is admissiblewith internal loop for
�

iff ¬ : 9 - I � � 11
� � � 12� � 21
�

I � � 22 . �@
TIC∞

�
U % Ξ � . Moreover, U is [exponentially] stabilizing with internal

loop iff thecorrespondingclosed-loopmapIJJK
IY ; � � 0� ¬ � 1

7 U 11U 21 8 � � 0� ¬ � 1¬�� 1

7 U 11U 21 8 ¬¤� 1

PRQQS :

IK
yL

uL

ξL

PS 
� IK
y ; yL

u ; uL

ξ ; ξL

PS (7.28)

is [exponentially]stable.

(b) Let
�

havea l.c.f.
� 9 &i � 1 &g . Then U is admissiblewith internal loop

for
�

iff § : 9 - Ds � Dr � 11 � Dr � 12� � 21 I � � 22
. �[@

TIC∞
�
Y % Ξ � , and U is stabilizingwith

internal loop iff § � 1 � � U 11 U 12 � § � 1 �
TIC.

Moreover, if U is stabilizingwith internal loop for
�

andweset7 mo 8 : 9 7 U 11 U 12

IY 0 8 § � 1

7
IY
0 8 � (7.29)

then U|( : 9 � 0 q
I I � t � �

TIC
�
Y % Y� U % Y � , &i o � &g mB9 IY, U|( is anequivalent

(to U ) stabilizingcontroller with internal loop for
�

, and U 9bm o o � 1
o is a

r.c.f., where o o : 9 § � 1 and m o : 9 U § � 1 (in particular, U § � 1 �
TIC).

Of course, thecorrespondingdual resultholdsfor
�

havinga r.c.f.

(c) U is admissible(resp.[exponentially]stabilizing)with internal loop for
�

iff U is admissible(resp.[exponentially]stabilizing)for � � 0
0 IΞ � .

(d) U is admissible(resp.[exponentially]stabilizing)with internal loop for
�

iff U d is admissible(resp.[exponentially]stabilizing)for
� d with internal

loop.

(e) U and &U �
TIC∞

�
Y % Ξ (­� U % Ξ (®� areequivalentfor

�
iff

� ¡¯� 1 � 11 9 � &¡z� 1 � 11

and
� � U 11 U 12 � ¡¯� 1 � 1 9 � - &U 11 &U 12 . &¡¯� 1 � 1, where &¡ correspondsto &U

asin (a).

If U is merelyadmissiblein (b), thenoneobserves from the proof that the
conclusionsof (b) still hold exceptthat U|( �

TIC∞ (insteadof TIC0) andthat U|(
neednot bestabilizing(but it is admissible,becauseit is equivalentto U ).
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Proof: (a) This follows by applyingLemmaA.1.1(d1)to A : 9 I � � o (so
that ¡ 9 A22 � A21A � 1

11 A12).
(N.B. two admissiblecontrollerswith internalloop areequivalentfor

�
if f

they producesamemaps
� ¡ � 1 � 11 and

� � U 11 U 12 � ¡ � 1 � 1, sincethenthe
�
1–

2 � 1–2� -blocksof (7.27)arethesame.)

(a’) Now we setA : 9 T
�
I � � o � T, whereT : 9 - 0 I 0

I 0 0
0 0 I

. , andapplyLemma

A.1.1(d1)asin (a) (notethat ¬ 9 A22 � A21A � 1
11 A12).

(b) 1a Clearly ¡ 9 - Ds 0
0 I . � 1 § , so ¡ �,@

TIC∞ � § �X@
TIC∞. The

correspondingclosed-loopmapis�
I � � o � � 1 9 IJJK

I ; � U 11 U 12 � § � 1

7 &g
0 8 � U 11 U 12 � § � 1

7 &i 0
0 I 8§ � 1

7 &g
0 8 § � 1

7 &i 0
0 I 8

P QQS � (7.30)

so § � 1 � � U 11 U 12 � § � 1 �
TIC is clearlysufficient for

�
I � � o � � 1 �

TIC.

2a For theconverse,notethat(here &i � � &g°� 9 I , � � �C�
TIC)7 &i 0

0 I 8 7 � 0
0 I 8 � 7 &g

0 8 � � 0� 9 7
I 0
0 I 8 � (7.31)

so thestability of (7.30) implies thatof § � 1 and � U 11 U 12 � § � 1. Therefore,
also U_( is stablein this case.

3a For the rest of the proof, we will assumethat U stabilizes
�

. Now
the

�
2 � 2� -block of I 9 �

I � � o � �
I � � o ��� 1 givesI 9 � � m &i ; I o &i ; 0, i.e.,

I 9 &i o � &g m . UsingLemmaA.1.1(d1),oneobtainsthat U¤( is admissibleand
(weset∆ : 9yo � � m�9 &i � 1)�

I � � o�²± � � 1 9 IK
I ; m ∆ � 1 � m ∆ � 1 m ∆ � 1�

I ; � m ∆ � 1 � � I ; � m ∆ � 1 � m ∆ � 1

∆ � 1 �
∆ � 1 ∆ � 1

PS � (7.32)

where
� o� ± is as

� o, exceptthat U is replacedby U_( . Thisshows that U¤( is also
stabilizing.

4a³U|( is equivalentto U , becausethe
�
1–2� 1–2� -blockof (7.32)equalsthat

of (7.30):

I ; m ∆ � 1 � 9 I ; m &g � m ∆ � 1 9ym &i ;�
I ; &i � 1 &g m &i � � 9 &i � 1 �

I ; &g m � &g 9?o &g � I ; � m i 9yo i { (7.33)

5a Set &i o : 9 - Ds 0
0 I . � &g o : 9 - Dr 0

0 I . to obtain § 9 &i o � &g o U , sothat&i o § � 1 � &g o U § � 1 9 I � (7.34)

i.e., o o andm o arer.c.(because(7.34)impliesthatthelowerrow of m o is stable,
andtheupperrow wasprovedstablein 2a ).
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Thedualresultcanbeprovedanalogouslyfrom (a’) (alternatively, use(d)).
(c) 0a First proof: Oneway to prove the rest is to interchangethe second

andfourth columnsandthe secondandthird rows of “ I � � o” corresponding
to � � 0

0 I � , and then apply (A.11) (with the rows and columnsof A and A � 1

interchanged)to theresultingmatrixIJJK IK
I � U 12 � U 11� �

0 I
0 � U 22 � U 21

PS IK
0
0
I

PS� 0 I 0� � I

PRQQS (7.35)

to obtainthattheinvertibility of “ I � � o” (i.e., theadmissibilityof U for � � 0
0 I � )

is equivalentto the invertibility of I � � o, andthatboth inversesarestableif f
eitheris (since“

�
I � � o � ” consistsof I � � o andsomecopiesof its elements).

However, for Lemma7.2.6weneedthealternativeproofgivenin 1a –3a :
1a The admissibilityclaim follows from (a), because¡ 9 I � � U , where�

: 9 � � 0
0 I � .

2a Assumethat (7.27) is [exponentially] stable, so that also (7.28) is
[exponentially]stable.Then,by LemmaA.1.1(f6),7 �

0
0 I 8 �

I � U � � � 1 U 9 ¡ � 1 � I � (7.36)

which is [exponentially] stable, hence � 0 I � �
I � U � ��� 1 U 9 � 0 I � U �

I �� U~��� 1 9 � U 21 U 22 � ¡¯� 1 is [exponentially] stable. Combinethis with the
right top cornerof (7.27) to observe that U¤¡´� 1 is [exponentially]stable. By
(7.27),sois also ¡¯� 1 �

(becausesoare ¡:� 1 � �0 � and ¡z� 1).
Since¬ 9 I � U �

, we analogouslyobserve from (7.28)that
�
I � U � � � 1 is

[exponentially]stable,henceso is (7.5) (with substitutions� 
� U ,
� 
� �

),
equivalently, themap7

I � U� �
I 8 � 1 9 7 ¬ � 1 U_¡ � 1¡z� 1 � ¡¯� 1 8µ9 IJJK � 11

�
13

�
12

�
13�

31
�

33
�

32
�

33 � I�
21

�
23

�
22

�
23�

31
�

33
�

32
�

33

PRQQS (7.37)

(here
�

: 9 �
I � � o � � 1; wehaveused(7.27)and(7.28)above).

3a Conversely, if (7.37)is [exponentially]stable,thensois
� 9 �

I � � o ��� 1,
hencesois (7.27).

(d) This follows from (a) and(a’). (Note that (d) is containedin Lemma
6.7.2(e’),but this secondproofwill beusefullater.)

(e) We observe from (7.27) that � I 0 0
0 I 0 � � o

I � I 0 0
0 I 0 � T

(equivalently, the first
andsecondrowsandcolumnsof (7.27)9 � o

I ; I , because
� o

I 9 �
I � � o ��� 1 � I )

dependson
� ¡ � 1 � 11 and

� � U 11 U 12 � ¡ � 1 � 1. `
Part (a) alsoshows that � �0 � 9 & � � 1&� (i.e., “H∞ # H∞”) with & � � &�c�

TIC. If U
andY arefinite-dimensional,we canwrite also

�
in “H∞ # H∞” form (i.e., asthe

inverseof a stable,(TIC∞-)invertibledeterminanttimesa stablematrix), but we
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donotknow whetherthesefactorscanbechosento becoprime,asthey arein the
caseof well-posedcontrollers,by Lemma7.1.4.

Wegiveheretheequivalentsof (c) and(d) for systems:

Lemma 7.2.6(&Σ&Σ&Σ: DF-IL vs.DF) Let Σ 9 � F GH � � �
WPLS

�
U � H � Y � and &Σ 9-EDF DGDH � . �

WPLS
�
Y % Ξ � &H � U % Ξ � .

Then &Σ is admissible(resp. [exponentially] stabilizing) with internal loop
for Σ iff &Σ is admissible(resp. [exponentially] stabilizing) for Σ : 9 � Σ 0

0 IΞ � �
WPLS

�
U % Ξ � H � Y % Ξ � . All preficesapply.

Moreover, &Σ is admissible(resp.[exponentially]stabilizing)with internal loop
for Σ
iff &Σd is admissible(resp.[exponentially]stabilizing)for Σd with internal loop.

Thus,dynamicfeedbackwith internalloopcanbereducedto (proper)dynamic
feedback(this couldalsobe observeddirectly from Figures7.4 and7.3 or from
equations7.19:asu goesthrough

�
backto U , we let ξ go throughI backto U ).

As notedbelow Lemma6.7.2, the prefix “strongly” doesnot apply to the
duality claimbut severalothersdo.

Proof: 1a Σ: The admissibilityclaim is containedin Proposition7.2.5(c),

whoseproofshowsthat
� o

I ; I 9 - I � �� �
I . � 1 � I contains

� o
I plussomecopies

of partsof it (plus oneidentity operator).We shall show below that thesame
holdsfor L o

I , N o
I and

O o
I ; this provestheclaim.

From(7.37)weobserve thatO o
I 9 7

I 0 0
0 0 I
0 I 0
0 0 I 8 O o

I and N o
I 9 N o

I - I 0 0 0
0 0 I 0
0 I 0 0 . { (7.38)

It follows that L o
I 9 L ;CN oτ

O o
I 9 L ;�N oIτ

O o
I 9 L o

I .
2a Duality: This is containedin Lemma6.7.2(e’)(seethelastclaim of the

lemma— or its proof). `
The closed-loopmap uL � yL 
� u � y correspondsto that of a well-posed

controllerif f I � U 22
�B@

TIC∞:

Lemma 7.2.7(Well-posed� 9 U 11 ;�U 12
�
I � U 22 ��� 1 U 21� 9 U 11 ;�U 12
�
I � U 22 � � 1 U 21� 9 U 11 ;�U 12
�
I � U 22 ��� 1 U 21) Let U 9 -�� 11 � 12� 21 � 22 . �

TIC∞
�
Y % Ξ � U % Ξ � beadmissiblewith internal loop for

�b�
TIC∞

�
U � Y � .

ThenU is equivalentto a well-posedcontroller iff I � U 22
�B@

TIC∞; if this is
thecase, thenthatwell-posedcontroller is givenby U 11 ;CU 12

�
I � U 22 ��� 1 U 21 (in

particular, it is unique).

This is exactly what one would have expected: the internal loop can be
openedif f L : 9 � 0 0

0 I � is admissiblefor U , and in that case, U is equivalent to� U L � 11 9 U 11 ;�U 12
�
I � U 22 ��� 1 U 21 (see(6.125)).

Two differentwell-posedcontrollersinducedifferentclosedloopmaps
�

L : 9- I � �� �
I . � 1 � I

�
TIC∞, becauseinversesareunique.
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Proof: 1a For any � �
TIC∞

�
Y� U � , the maps

�
L � � I 0 0

0 I 0 � �
I �� o ��� 1 � I 0 0

0 I 0 � T � I : � uL
yL 	¶
� � uy 	 exist and are equal if f the maps

�
L ; I 9- I � �� �

I . � 1
and � I 0 0

0 I 0 � �
I � � o � � 1 � I 0 0

0 I 0 � T
exist andareequal.

If this is thecase,then - I � �� �
I . � 1

equalsthe
�
1–2� 1–2� -blockof�

I � � o � � 1 9 7
I � � 11 � � 12� �

I 0
0 � � 21 I � � 22 8 � 1

: - uL
yL
ξL

. 
� 7
u
0

uL
y
0

yL
ξL 8 { (7.39)

Therefore,by LemmaA.1.1(c1)(with A : 9 I � � o sothatB11 9 - I � �� �
I . � 1

),

from - I � �� �
I . � 1 ��@

TIC∞ we obtain that (A22 9 )I � U 22
��@

TIC∞, and

(B11 9 ) - I � �� �
I . � 1

is equalto theinverseof- I � � 11� �
I . ��� � � 12

0 � �
I � U 22 � � 1 � 0 � � 21 	 9 - I � � 11 � � 12

�
I � � 22 �¸· 1 � 21� �
I . � (7.40)

hence� � 9 � U 11 � U 12
�
I � U 22 � � 1 U 21 (thisalsoshows that � is unique).

2a Conversely, if I � U 22
�?@

TIC∞ andonedefines� : 9 U 11 ;]U 12
�
I �U 22 ��� 1 U 21, then � and U determinesameclosed-loopmaps � uL

yL 	²
� � u
0

uL
y
0

yL �
(i.e., they areequivalent),asonecanseeby reversingthe above calculations.`

Remark 7.2.8(“ � �
H∞ # H∞� �
H∞ # H∞� �
H∞ # H∞”) As one easily observesfrom the proof, Lemma

7.2.7actuallycoversa moregeneral classof systemsandcontrollers: If thereareU �
TIC∞ and a holomorphicfunction "� �

H
�
Ω;

^ �
Y� U �«� with Ω

�
C open,

s.t. "� , - I ��¹�� ¹� I . and
�
I �?º� o � are invertible at somes0

�
C and - I ��¹�� ¹� I . � 1

equalsthe
�
1–2 � 1–2� -block of

�
I � º� o ��� 1 on a neighborhoodof s0, then � 9U 11 ;�U 12

�
I � U 22 ��� 1 U 21. Obviouslytheconverseholdstoo.

Thus,if I � "U 22 and
�
I � º� o ��� 1 are invertibleat anys0

�
C, thenthetransfer

functionof thecontroller definedby U is "U 11 ;b"U 12
�
I � "U 22 ��� 1 "U 21 (on theopen

subsetof C where theseinversesexist).
Therefore, controllers with internal loop cover (but are not covered by) all

controllers whosetransferfunctionsare of the form "U 11 ; "U 12
�
I � "U 22 � � 1 "U 21

(andwell-definedat leastat onepoints0
�

C), where U �
TIC∞; in particular, all

“ H∞ # H∞” transferfunctionsarecovered.

We now show by a simpleexamplethat the transferfunction of the internal
loop of a controllerneednotbeinvertibleanywhere:

Example 7.2.9 ( d» "�d» "�d» "� ) Take "� �
s� : 9 �

s � 1� # �
s ; 1� , "U 9 - ¹� · 1 � 1� 1 1 . (exponentially

stable),sothat�
I � º� o � � 1 9 IK

1 � "� � 1 1"� 1 0
0 1 0

PS � 1 9 IK
0 � "� � 1 "� � 1

0 0 1
1 "� � 1 0

PS (7.41)
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(cf. Proposition7.2.5(a))is stable,because"� � 1 �
H∞.

However, 1 � "U 22
e 0 is nowhereinvertible,soonecannotclosethe internal

loop in the controller if one doesnot connectthe controller to the plant
�

to
be controlled;neithercan oneclosethe upperloop only (admissibly),becauseU 11 9 I is not admissiblefor

�
(I � � U 11 9 0); thesettingbecomeswell-posed

only whenbothloopsareclosed.
By Proposition7.2.5(b),the correspondingmap with coprimeinternal loop

is m}o � 1 9 � 1
�
0� � 1, i.e., U ( 9 � 0 � 1

1 1 � is equivalent to U ; this 0 � 1 shows that
the controllerhassomethingresemblinga shortcircuit. In fact, in Example2.3
of [CWW01] exactly this map with coprimeinternal loop (in its adjoint form)
is usedasa shortcircuit regulatingan electricalcircuit (whosetransferfunction
2# �

1 ; e� 2s� hasinfinitely many poleson theimaginaryaxis).
By Lemma7.2.7,neither U nor U ( is equivalentto any well-posedcontroller.

This is not really surprising,becausewe have &y e 0 ( &y 9 ξL, i.e.,y 9 � yL ; ξL if
thereis anexternalinputξL into theinternalloop),andthisposestherequirement
“
�
I � � �Z� � 1 9 0” (by formula(7.5),whichhasanextra � I ), which is impossible

for a well-posedcontrollerandeven for controllersof the form “H∞ # H∞” (even
for thosewith

�
I � "� "����� 1 well-definedonany opensubsetof thecomplex plane,

cf. Remark7.2.8). Note that also the outputscancelthe correspondinginputs
completely(i.e., thediagonalof (7.41) is zero),which couldnot beachievedby
anadmissiblewell-posedcontrollereither. ¼

For physically motivated examples,see,e.g., Example2.3 of [CWW01].
Example4.8of [CWW01] illustratesa problemthatcanonly besolvedby using
anon-well-posedcontroller.

By Proposition7.2.5(b),it is enoughto studythecontrollersof thefollowing
form (if weexcludemapsthatdonothavecoprimefactorizations):

Lemma 7.2.10 Let U 9 - 0 IDq I � Dt . �
TIC

�
Y % U � U % U � and

�5�
TIC∞

�
U � Y � .

(a) The map U 9 - 0 IDq I � Dt . �
TIC is admissiblewith internal loop for

�
iff &∆ : 9 &o � &m �½��@

TIC∞; it is stabilizing with internal loop for
�

iff&∆ � 1 � � &∆ � 1 �
TIC.

(b) Let U be stabilizing. Then &o and &m are l.c., i.e., “ &o � 1 &m is a stabilizing
DF-controller for

�
with l.c. internal loop”. Moreover then, with

i
: 9&∆ � 1,

g
: 9 �¶i

, the factorization
� 9 g¶i � 1 is a r.c.f. of

�
, it satisfies&o i � &m g 9 I , and the

�
1–2 � 1–2� blocks of the closed-loopmap

� o
I : 9� o �

I � � o ��� 1 aregivenby9 v i &o � I
i &mg &o g &m w :

7
uL

yL 8 
� 7
u
y8 � (7.42)

asin thewell-posedcase, i.e., in (7.9)(cf. (7.5)).

(c) Conversely, if
� 9 gki � 1 is a r.c.f. with &o i � &m g 9 I , then U stabilizes

�
with internal loop.
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(d) If &o �]@
TIC∞, then U is admissiblefor

�
iff &o � 1 &m is an admissible(well-

posed)DF-controller for
�

. If U is admissibleand � is an admissible
(well-posed)DF-controller for

�
, thenthe closed-loopmapsuL � yL 
� u � y

determinedby U and � are identicaliff &o �B@
TIC∞ and � 9 &o � 1 m .

Thecorrespondingdual claims(with ∆ : 9?o � � m ) holdaswell.

Proof: (a)&(b)&(c) 1a With the notation of Proposition7.2.5, we have¡ 9 - I � �� Dq Dt . . By LemmaA.1.1(d1),we have ¡ �]@
TIC∞ � &∆ �]@

TIC∞, so

theadmissibilityclaimfollowsfrom Proposition7.2.5(a)aswell astheformula�
I � � o � � 1 9 IJK

I ; &∆ � 1 &m � &∆ � 1 &m &∆ � 1� �
I ; &∆ � 1 &m � � I ; � &∆ � 1 &m � &∆ � 1&∆ � 1 &m � &∆ � 1 &m &∆ � 1

PRQS (7.43)

9 IJK i &o i &m ig &o g &m ; I
gi &o � I

i &m i P QS :

IK
uL

yL

ξL

PS 
� IK &u&y&ξ PS (7.44)

(for thesecondidentity, wehaveset
i

: 9 &∆ � 1,
g

: 9 �¶i
andused(7.45)).

2a If (7.43) is stable, then
i

: 9 &∆ � 1 and
g

: 9 �¶i
are also stable.

Moreover,
� 9 gki � 1 is ar.c.f.,because&o i � &m g 9 &o � &o � &m � ��� 1 � &m � � &o �&m � � � 1 9 I . Formula(7.42)follows from this.

3a Conversely, if
� 9 gki � 1 is ar.c.f.and U is s.t. &o i � &m g 9 I (asabove),

then(7.43)is stable,becausethen

I ; &∆ � 1 &m � 9 &∆ � 1 � &∆ ; &m � � 9 &∆ � 1 &o �
TIC � (7.45)

and
� �

I ; &∆ � 1 &m � � 9 � &∆ � 1 &o �
TIC.

(d) This follows from Lemma7.2.7. `
If a planthasa (right or left) coprimefactorization,thenall of its stabilizing

controllersare equivalent to someof the form studied in Lemma 7.2.10, by
Proposition7.2.5(b)(or its dual).Therefore,thelatteroneswerecalled“canonical
controllers” in [CWW01]. To be able to extend the Youla parametrization
(Theorem7.2.14)andrelatedresultsto cover also the non-well-posedcase,we
shalldefinetheconceptmapwith coprimeinternal loopbelow astheequivalence
classof a “canonicalcontroller”modulo“beingequal”.

It follows that, for a plant having a coprimefactorization,eachstabilizing
controllerswith internalloopisequivalentto oneandonly onemapwith acoprime
internalloop,by Lemma7.2.12(c).

Definition 7.2.11(Maps with coprime internal loop) Let
� m � o � be r.c. and� &m � &o � be l.c. We call the (equivalenceclass(moduloequality; seebelow) of

the)map � 0 q
I I � t � (resp. - 0 IDq I � Dt . ) a mapwith r.c. internalloop (resp.a mapwith

l.c. internalloop) anddenoteit by m}o � 1 (resp.by &o � 1 &m ).



7.2. DF-STABILIZA TION WITH INTERNAL LOOP 307m
I � o/00y 1 ¾ 414 &ξξL 1 u 3

y 9?o &ξ
u 9ym &ξ

Figure7.5: Controller mpo � 1 with r.c. internalloop

&m I � &oy1 /0X03 2u
4¾ 1 ξL1 &o u 9 &m y

Figure7.6: Controller &o � 1 &m with l.c. internalloop

If, in addition, o , m , &o and &m canbeextendedto satisfythedoublycoprime
product 7 i mg o 8 v &o � &m� &g &i w 9 I 9 v &o � &m� &g &i w 7 i mg o 8 (7.46)

in TIC
�
U % Y � for some

i � g � &i � &g , thenweconsidermpo � 1 and &o � 1 &m equaland
call mpo � 1 9 &o � 1 &m a mapwith d.c.internalloop. Weaddthewords“ over ' ”, if' �

TIC andtheelementsof (7.46)canbechosenfrom ' .
We consider the maps m}o � 1 and m 0 o � 1

0 with r.c. internal loop equal if� m 0 � o 0 � 9 � m � � o � � for some
� �5@

TIC. We considerthe maps &o � 1 &m and&o � 1
0 &m 0 with l.c. internal loopequalif

� &m 0 � &o 0 � 9 ��� &m � � &o � for some
� �B@

TIC.
If o �B@

TIC∞, thenweidentify mpo � 1 in theusualsense(in TIC∞) and mpo � 1

asa mapwith r.c. internal loop; wedotheanalogousidentificationfor mapswith
l.c. internal loop too.

A mapwith coprimeinternalloop meansa mapwith r.c. or l.c. internal loop.
A controller with internal loop for Σ

�
WPLS is calleda controllerwith coprime

internalloop if its I/O mapis a representativeof a mapwith coprimeinternal loop.
Let � bea mapwith coprimeinternal loop. Thenwesaythat � is admissible

[stabilizing] for
�X�

TIC∞
�
U � Y � [or that � stabilizes

�
] if some(henceany,

by Lemma7.2.12(c))of its representativesis admissible[stabilizing] for
�

with
internal loop. Weusepreficesasin Definition7.2.1.

At this stagethe seriousreaderhas several seriousquestionsabout this
definition andits justification. Lemma7.2.12below answersthesequestionsin
theexpectedway.

Thus, given r.c. maps m and o s.t. � 0 q
I I � t � �

TIC
�
Y % U � U % U � , the

equivalenceclassof � 0 q
I I � t � (modulo equality, in the collectionof all mapsof

the sameform) is givenby ¿ � 0 q �I I � t � �ÁÀÀ � �c@
TIC

�
U �ÃÂ (cf. Lemma7.2.12(a1)).

Analogousclaimshold for mapswith l.c. or d.c.internalloop.
Recallfrom Definition6.4.4(f)that(7.46)is calleda joint d.c.f. of

�
and mpo � 1

(or of
�

and &o � 1 &m ) if
� 9 g¶i � 1 (equivalently,

� 9 &i � 1 g
).
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We warn the readerthat if the left equationfrom (7.46)wereremoved, then
“equality” would not be an equivalencerelation. Even if both m}o � 1 and &o � 1 &m
weremapswith d.c. internal loop, and &o_m�9 &m_o , thesetwo mapsneednot be
equal;a necessaryandsufficient conditioncanbe seenfrom LemmaA.1.1(e4)
(althoughthat is not neededhere). From (7.46) one can also note that a pairm � o definesamapwith d.c.internalloop if f it canbeextendedto a invertiblepair� s qr t � ��@

TIC; LemmaA.1.1(e)givessome(necessaryand)sufficientconditions
for this.

The last identificationabove correspondsto the equivalenceof � 0 q
I I � t � and� qÄt · 1 0

0 0 � notedin Lemma7.2.7(andis hencejustified).This identificationmakes
mapswith coprimeinternalloop a naturalextensionof well-posedmapshaving
a r.c.f. or a l.c.f. However, onecanshow by a simpleexample,that if o were
not assumedto be in

@
TIC∞, then � oÅ9lm (for generalr.c.

� m � o � and some� �
TIC∞

�
Y� U � ) would not guaranteethat mpo � 1 and � wereequivalentfor all���

TIC∞
�
U � Y � ; in fact,with thoseassumptions"o might benowhereinvertible

(althougho is necessarilyleft-invertibleonTIC) and mpo mightstabilizedifferent
plantsthan � .

By Lemma7.2.10,a well-posed
�

hasa r.c.f. (resp.a l.c.f.) if f it can be
stabilizedby amapwith l.c. (resp.r.c.) internalloop.

From this on, we shall often use the word “map” of both membersof a
map(equivalenceclass)andof the classitself whenthereshouldbe no risk of
ambiguity.

Lemma 7.2.12(Equal; well-posed) Let mpo � 1 � m 0 o � 1
0 and &o � 1 &m bemapswith

coprimeinternal loopandlet
�5�

TIC∞
�
U � Y � . Wehavethefollowing:

(a1)Beingequalis anequivalencerelation.

(a2) Two well-posedmapswith coprimeinternal loop are equal iff they are
equalin TIC∞.

(a3)A well-posedmapis a mapwith coprimeinternal loop iff it hasa l.c.f. or a
r.c.f.

(a4) If a well-posedmapanda mapwith coprimeinternal loop are equivalent
controllers for

�
, thenthey areequal.(See(c) for theconverse.)

(b) If mpo � 1 9bm 0 o � 1
0 , then o �u@

TIC∞ � o 0
�[@

TIC∞. If &m &o � 1 9 &m 0 &o � 1
0 ,

then &o �c@
TIC∞ � &o 0

�c@
TIC∞. If mpo � 1 9 &o � 1 &m , then o �u@

TIC∞ �&o �B@
TIC∞. In particular, m}o � 1 is well-posediff o �]@

TIC∞.

(c) Let � and �_( bemapswith coprimeinternal loop.

(c1)If � and �|( areequal,theneitherbothareadmissiblefor
�

or neither
is admissiblefor

�
.

(c2) If � and �_( are admissiblefor
�

, then they are equal iff they are
equivalent,that is, iff they determinethe samemapuL � yL 
� u � y. In
particular, � is stabilizingfor

�
iff �¤( is.

Thus, Definition 7.2.11 is justified (its last identification was justified in
Lemma7.2.7).
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By (c), equivalenceof mapswith coprimeinternal loop doesnot dependon
theplant

�
(exceptthatequivalenceis not definedfor non-admissiblemaps).By

(b), amapis well-posedif f any (henceall) of its representativesis well-posed.
Proof: (a1) The only nonobvious requirementis transitivity (of being

equal),sowe takea look at it:
1a If mpo � 1 is a mapwith d.c.internalloopandequalto &o � 1 &m , thenv � &o � � &m� &g &i w 9 7 �

0
0 I 8 v &o � &m� &g &i�w �]@

TIC (7.47)

for any
� ��@

TIC, henceany mapwith l.c. internalloopequalto &o � 1 &m is equal
to m}o � 1 (insert � � 0

0 I � and � � · 1 0
0 I � into (7.46)). (Thusthe concept“map with

d.c.internalloop” is well defined:if amapis such,thensois any equalmap.)
Conversely, the (b) (and(d)) of Lemma6.5.9(with thecolumnsandrows

interchanged)shows that all map with r.c. internal loops equalto mpo � 1 are
equalto &o � 1 &m (in particular, they haved.c.internalloops).

(Thus,(6.121)givesall doublycoprimeproductsfor any left andright maps
equalto

gki � 1.)
2a If mpo � 1 does not have a d.c. internal loop, then neither does any

equalmapwith a coprimeinternalloop by 1a , andtransitivity is obvious(i.e.,� �Æ � 9 � tq � �
,
� �A@

TIC, and ��Ç� � 9 � �Æ � � , � ��@
TIC imply that ��Ç� � 9 � tq �hÈ

for someÈ ��@
TIC (namelyfor È 9 � � )). Thedualclaim is analogous.

(a2)This follows from (b) combinedwith Lemma6.4.5in the left or right
caseandwith Lemma6.5.8in theleft-right case.

(a3)This is a restatementof thelastidentificationin Definition7.2.11.
(a4) Let the two mapsbe � �

TIC∞ and m}o � 1, respectively (the casefor&o � 1 m is analogous).By Lemma7.2.7, o �]@
TIC∞ and � 9?mpo � 1.

(b) Thefirst two claimsfollows from o?9?o 0
� �[@

TIC∞ � o 0
�B@

TIC∞.
so o �[@

TIC∞ � &o �[@
TIC∞, Thethird onefollows from LemmaA.1.1(c1).

Thus, mpo � 1 is equalto awell-posedmapiff o �B@
TIC∞.

(c1) If � and �|( have l.c. (resp.r.c.) internal loops, then this is obvious
(becausetheadmissibilityis equivalentto &∆ : 9 &o � &m ���u@

TIC∞ (resp.∆ : 9o � � m ��@
TIC∞), by Lemma7.2.10(a)).Thus,weassume(7.46).Then7

I 0� �
I 8 7 i mg o 8 9 7 i mg � �|i o � � m 8 9ÊÉ v &o � &m� &g &i w 7

I 0�
I 8ÌË � 1

in TIC∞, so o � � m ��@
TIC∞ � &o � &m �5�]@

TIC∞, by LemmaA.1.1(c1).
(c2) 1a We start from the caseof two mapswith l.c. internal loop. The

formula (7.43) shows that mapsuL � yL 
� u � y are equal for � 9 &o � 1 &m and�¤( 9 &o � 1
0 &m 0 if f the correspondingterms &∆ � 1 &m and &∆ � 1

0 &m 0 are equal, i.e.,&m]9 � &m 0, where
�

: 9 &∆ &∆ � 1
0

��@
TIC∞. But then &∆ � 1 &o]9 I ; &∆ � 1 m � 9 &∆ � 1

0 &o 0,
i.e., &o[9 � &o 0. Soif themapsuL � yL 
� u � y areequal,then

� �
TIC (by thedual

of Lemma6.5.1(c1)),because&o and &m arel.c., and
� � 1 �

TIC, because&o 0 and&m 0 arel.c.; thus,then &o � 1 &my9 &o � 1
0 &m 0.
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Conversely, if - &m &o . 9 � - &m 0 &o 0 . with
� �y@

TIC, then &∆ 9 � &∆0 and

hence&∆ � 1 &my9 &∆ � 1
0 &m 0, sothemapsuL � yL 
� u � y areequal,asnotedabove.

2a From(7.32)onegetsthecorrespondingright resultanalogously.
3a Similarly, from (7.32) and (7.43) one notices that � 9�m}o � 1 and� ( 9 &o � 1 &m determinethesameuL � yL 
� u � y if f m � o � � m � � 1 9 � &o � &m � � � 1 &m ,

i.e., if f &o�mc9 &m�o .
Thus,equality implies equivalence,so we assumeequivalenceandprove

that � and � ( areequal.Because&o_mb9 &m_o , asnotedabove, we maychoosei � g � &i � &g as in Lemma A.1.1(e1) (interchangethe rows and columns) to
obtain

I 9 v &o � &m� &g &i w 7 i mg o 8 9 v &o � &m� &g &i w 7
I 0�

I 8 7
I 0� �

I 8 7 i mg o 8 {
(7.48)

By LemmaA.1.1(e5)andtheassumedinvertibility of ∆ and &∆, wehave

I 9 7
I 0� �

I 8 7 i mg o 8 v &o � &m� &g &i w 7
I 0� �

I 8
in TIC∞, hencewe have (7.46) in TIC∞, so it must hold in TIC too, by the
densityof Í ∞

c . `
We now parametrizeall stabilizing controllers by combining Proposition

7.2.5(b)andLemma7.2.10(a):

Corollary 7.2.13 Let
�?�

TIC∞
�
U � Y � . Thenthefollowingclaimsandtheir duals

hold:

(a1) If
�

hasa r.c.f.
� 9 gki � 1, theneach stabilizingcontroller with internal

loop for
�

is equivalentto a uniquemapwith l.c. internal loop&o � 1 &m such that &o i � &m g 9 I (7.49)

(in particular, a different pair ( &o � &m ) definesa different stabilizing map&o � 1 &m ). Thedual resultfor l.c.f.’s
� 9 &i � 1 &g holdsaswell.

(a2) Themapwith l.c. internal loop &o � 1 &m is admissible(resp.stabilizing)for�
iff &∆ : 9 &o � &m �5��@

TIC∞
�
U � (resp.&∆ � 1 � � &∆ � 1 �

TIC).

(a2’) Themapwith r.c. internal loop mpo � 1 is admissible(resp.stabilizing)for�
iff ∆ : 9yo � � m ��@

TIC∞
�
U � (resp.∆ � 1 � ∆ � 1 �5�

TIC).

(a3) If
� 9 gki � 1 is a r.c.f., then the map &o � 1 &m with l.c. internal loop

is admissible(resp.stabilizing) for
�

iff &o i � &m gÅ��@
TIC∞

�
U � (resp.�]@

TIC
�
U � ).

(b) Thefollowing areequivalent:

(i)
�

hasa r.c.f. (resp.a l.c.f., a d.c.f.);
(ii)

�
is stabilizablebya mapwith l.c. (resp.r.c.,d.c.) internal loop;
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Moreover, if (i) holds, theneach stabilizingcontroller for
�

with internal
loop is equivalentto onewith l.c. (resp.r.c.,d.c.) internal loop.

Unfortunately, wedonotknow, whetherany
�

thatis stabilizablewith internal
loop hasa r.c.f. (or a l.c.f.), so it may be that somepathologicalplants(having
no stabilizingcontrollerswith coprimeinternal loop) might not meetthe above
requirements.

Proof: (We obtainthedualclaimsby takingtheadjointsof (a1)–(b);this is
explicitly illustratedin (a2’).)

(a1) This follows from Proposition7.2.5(b). The definition of equality
[Definition 7.2.11]shows that &o i � &m g 9 I determines

� &o � &m � uniquely.
(a2)This is (mostof) Lemma7.2.10(a)and(a2’) is its dual.
(a3) Now &∆ i 9 &o i � &m g

, so the stability of its inverse
i � 1 &∆ � 1 is

equivalentto thatof
� &∆ � 1, by Lemma6.5.6(b),andclearlyimpliesthestability

of ∆ � 1, soweget(a3)from (a2).
(b) “(iii) ¦ (ii)”: Any map with l.c. [r.c.] internal loop that stabilizes

�
definesa r.c.f. [l.c.f.] of

�
, by Lemma7.2.10(b).

“(i) ¦ (ii)”: This follows from (a1) (and the definition of mapswith d.c.
internalloop: just take thefactorso � m � &o � &m �

TIC of any d.c.f. of
�

); andso
doesthe“moreover” claim. `
Now we canpresentfive equivalentparametrizationsfor all (modulo being

equivalent) stabilizing controllerswith internal loop for any fixed
�Î�

TIC∞
having ad.c.f.:

Theorem 7.2.14(All stabilizing controllers) Let
�?�

TIC∞
�
U � Y � havethed.c.f.7 i �g � 8 v & � � &�� &g &i w 9 I 9 v & � � &�� &g &i w 7 i �g � 8|{ (7.50)

Theneach controller thatstabilizes
�

with internal loop is equivalentto a unique
mapwith d.c.internal loop(in thesensethatbothcontrollersdeterminethesame
closed-loopmapuL � yL 
� u � y).

Thefollowing parametrizationsare alternative(equivalent)parametrizations
of all controllers � with d.c. internal loop that stabilize

�
, and each parameter

(
� o � m � in (i) and(iii),

� &m � &o � in (i’), and
�

in (ii) and(ii’); theseall are required
to bestable)determinesa different(nonequal)map � with d.c.internal loop.

(i) � 9?m}o � 1 such that &i o � &g my9 I .

(i’) � 9 &o � 1 &m such that &o i � &m g 9 I .

(ii) (Youla) � 9 � � ; i � � � � ; g � ��� 1 (i.e., � q t � 9 � s��ru� � � � I � ), where
� �

TIC
�
U � .

(ii’) � 9 � & � ; &g � ��� 1 � &� ; &i � � (i.e., � Dt Dq 	 9 � I � 	 - D � D�Dr Ds . ), where
� �

TIC
�
U � .

(iii) � 9ym}o � 1 ( 9 &o � 1 &m ), where � s qr t � � 1 9 - Dt � Dq� Dr Ds . ��@
TIC

�
U % Y � .
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Thewell-posedones(if any)areexactlythosefor which the“denominator” in
is

@
TIC∞ (cf. Theorem7.1.7).
Moreover, for any

� �
TIC we have(identity as equal mapswith coprime

internal loop) � � ; i � � � � ; g � � � 1 9 � & � ; &g &� � � 1 � &� ; &i &� � { (7.51)

Finally, if (i) and (i’) hold, thenthe
�
1–2 � 1–2� -block of theclosed-loopmap� o

I : 9 � o �
I � � o ��� 1 is givenbyv m &g m &io &g o &i � I

w 9 v i &o � I
i &mg &o g &m w :

7
uL

yL 8 
� 7
u
y8¤{ (7.52)

Recall from Lemma7.2.12(c2),that the maps(7.52) depend(of course)on�
and � only, not of theparticularcoprimefactors( o � m � &o � &m � g � i � &g � &i ) of �

and
�

(exceptthat(i) and(i’) arerequiredto hold).
Proof: The first claim is from Proposition7.2.5(b) (and its dual). The

parametrizations(i) and(i’) areCorollary7.2.13(a1).
For any stablepair

� m � o � there are &m and &o satisfying (iii) if f
� m � o �

satisfies(i), by Lemma 6.5.8. Now the parametrizations(ii) and (ii’) and
equation(7.51)follow from (iii) andLemma6.5.9(c).

The well-posednessclaim is Lemma7.2.12(b),and(7.52) is from (7.42)
(alternatively, directly from

� o
I 9 �

I � � o � � 1 � I ). `
To checkwhethera givencontrollerwith coprimeinternalloop stabilizes

�
,

onecanusethefollowing corollary:

Corollary 7.2.15 Let
�u�

TIC∞
�
U � Y � havethed.c.f. (7.50).Let o � m � &o � &m �

TIC.
Thenm}o � 1 (resp. &o � 1 &m ) is a mapwith d.c. internal loop andstabilizes

�
iff any

(henceall) of (i)–(iii) (resp.(i’)–(iii’)) holds:

(i) &i o � &g m ��@
TIC

�
Y � ;

(ii) � s qr t � ��@
TIC

�
U % Y � ;

(iii) There is a r.c.f.
� 9 g

0
i � 1

0 s.t. - s 0 qr
0 t . �]@

TIC.

(i’) &o i � &m gb�]@
TIC

�
U � and � 9 &o � 1 &m for some&o � &m �

TIC.

(ii’) - Dt DqDr Ds . �]@
TIC and � 9 &o � 1 &m for some&o � &m �

TIC.

(iii’) There is a l.c.f.
� 9 &i � 1

0 &g 0 s.t. - Dt � Dq� Dr 0 Ds 0
. �B@

TIC.

Moreover, the map m}o � 1 (resp. &o � 1 &m ) is well-posediff o �Ï@
TIC∞ (resp.&o ��@

TIC∞).

Proof: Any of theconditionsshows that m}o � 1 (resp. &o � 1 &m ) arecoprime.
If it stabilizes

�
, thenit is d.c.,by Theorem7.2.14.
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Theparametrizations(i) and(i’) arefrom Corollary7.2.13(a3)andits dual.
Part (ii) definesa d.c.f. of

�
, henceit is sufficient (take

� 9 0 in Theorem
7.2.14(ii)).Conversely, if m}o � 1 is stabilizing,then7 i mg o 8 7

I 0
0 ��8M9 7 i m �g o �M8 �B@

TIC

for some� �y@
TIC, by Theorem7.2.14(iii), hencethen � s qr t � �c@

TIC, i.e.,
(ii) holds.Condition(ii’) is thedualof (ii).

(iii) Thecondition(iii) is sufficient, by Theorem7.2.14(iii). Conversely, if
(i) holds(andhence(i’) too; thussituationis asin the“furthermore”claim)and
weset- &g 0 &i 0 . : 9 � &i o � &g m � � 1 - &g &i . � 7 i

0g
0 8 : 9 7 i g 8 � &o i � &m g � � 1 � (7.53)

then, obviously, -�Dt � Dq� Dr 0 Ds 0
. - s 0 qr

0 t . 9 I , and the dual equation- s 0 qr
0 t . -CDt � Dq� Dr 0 Ds 0

. 9 I follows from LemmaA.1.1(e5).

Thewell-posednessclaim is Lemma7.2.12(b). `
Next we given two lemmasthat are useful when one wants to work in a

subalgebraof TIC (e.g.,in MTIC; cf. Theorem4.1.1):

Lemma 7.2.16(Predetermining the joint d.c.f. of
� � �

and � � � ) Let
� 9 gki � 1 9&i � 1 &g bea d.c.f., andlet ' �

a
TIC beinverseclosed.

(a) If
g � i � &i � &g � &o � &m � ' and � : 9 &o � 1 &m stabilizes

�
, thenthe d.c.f.

� 9gki � 1 9 &i � 1 &g is over ' , evenjoint with � .

(b) If � stabilizes
�

, thenfor anyr.c.f. � 9umpo � 1 andl.c.f. � 9 &o � 1 m , there is

a joint d.c.f. - s 0 qr
0 t . � 1 9 - Dt � Dq� Dr 0 Ds 0

. ��@
TIC of

�
and m}o � 1; if, in addition,i � g � o � m � &o � &m � ' , thenwecantake

i
0 � g 0 � &i 0 � &g 0

� ' .

Let
� 9 gki � 1 9 &i � 1 &gl�

TIC∞
�
U � Y � . Assumethat � 9 &o � 1 &m stabilizes�

. If
g � i � &i � &g � &o � &m � ' and ' �

TIC is inverse closed, then the d.c.f.� 9 gki � 1 9 &i � 1 &g is over ' .

Proof: (a) Set - &o ( &m ( . : 9 � &o i � &m g ��� 1 - &o &m . � ' . Then equation� s q ±r t ± � � 1 9 - Dt ± � Dq ±� Dr Ds . is a joint d.c.f. of
�

and � for some o (\� m ( �
TIC, by

Lemma6.5.8.Because' is inverseclosed,wehave - Dt ± � Dq ±� Dr Ds .WÐ 1 � ' too.

(b) Theproof is similar to thatof (a) andhenceomitted. `
Proposition 7.2.17(' case) Let

�
have a d.c.f. over ' , where ' �

a
TIC (cf.

Proposition7.1.10).
If theelementsof (7.50)are chosenfrom ' , thenall stabilizingcontrollers of�

with a (d.c.) internal looparetheonesparametrizedin Theorem7.2.14,andthe
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�Ñ�Ò /0 0&y 1 y2yL 3
u

3 /0Ó0&u4 uL2¾ 4� E2
Figure7.7: Thecontroller � ( : 9ym � o ; E m � � 1 : &y 
� u for

� ; E

oneswith d.c. internal loop over ' are exactly thosewith
� � ' . If, in addition,^��

a
' �

a
ULR � TIC, thentheonewith

� 9 � M � 1T is well-posed. `
(The proof is virtually a subsetof theproof of Proposition7.1.10andhence

omitted.)
Recall from Theorem4.1.6(d), that if

� 9 gÔi � 1 is a r.c.f. and
g � i �

MTICTZ
�
Cn � Y � , then

�
hasad.c.f.overMTICTZ , hencethen

�
hasawell-posed

stabilizingcontrollerhaving ad.c.f.overMTICTZ , by theaboveproposition.

Lemma 7.2.18(D 9 0D 9 0D 9 0 w.l.o.g.) Let
�5�

TIC∞
�
U � Y � . LetE

�A^ �
U � Y � .

Then� 9]m}o � 1 9 &o � 1 &m is a stabilizingDF-controller with d.c.internal loop
for

�
iff � ( 9Ïm � o ; E m � � 1 9 � &o ; &m E � � 1 &m is a stabilizingDF-controller with

d.c. internal loop for
� ; E. Thecorrespondingclosed-loopmapsyL 
� u (see

(7.52))are identical.
Thecontroller �|( canberealizedby addingto � an outputfeedback through� E, asin Figure7.7.

If onereplaces
� ; E by a parallelconnectionof

�
andE in Figure7.7, then

it becomesobvious that E and � E canceleachother and we are left with the
originalconnectionof � and

�
; thisallowsoneto write down thecorrespondence

betweentheoriginal andperturbedsettings.SeealsoLemma7.3.23.
(Notealsothatoneshoulddraw someexternalinputs“zL andy(L” to Figure7.7

(just before � E andjust before � ) andtheinternalloop (thesignalsξ � ξL and &ξ)
of � if � is non-well-posed.)

Naturally, oneof � and �¤( maybenon-well-posedeven if theotheris well-
posed(but theclosed-loopsystemsarebothwell-posedif oneis).

If � �
TIC∞

�
Y� U � andI ; E � �B@

TIC∞
�
Y � , thenonemoreformulafor �¤( is

obviouslygivenby � ( 9 �
I ;�� E � � 1 � ( 9 � �

I ; E �~� � 1).
Proof: 1a Givenany joint d.c.f. (7.46)of

�
of � , a joint d.c.f.of

� ; E and�|( is obviouslygivenby7 i mg ; E
i o ; E m 8 9 v &o ; &m E � &m� � &g ; &i E � &i w � 1 �B@

TIC
�
U % Y � { (7.54)

By exchanging
�

and
� ; E, we obtain from Theorem7.2.14(iii) that the

stabilizing DPF-controllersfor
�

and
� ; E correspondto eachother as in

thestatementof thelemma.
Given � , the map m &i 9 i &m : yL 
� u is commonfor both closed-loop

systems,by (7.52) (since
i � &i � m � &m are unaffected). (N.B. if we fix some
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representation&o � 1 &m of � , then - s Dq � I ss Dq s � I . : - yL
ξL . 
� � u

ξ � is unaffected,by

(7.44).)
2a Thus, the “rigorous” part of the proof is complete,andwe only have

to show that �|( is a model for the map in Figure 7.7, i.e., that the maps
uL � yL 
� u � y for � ( and

� ; E becomeequalto thoseobtainedby solving the
equationsmodeledin thefigure.

By writing theequationsfor &u, &y and&ξ, oneobtains�
I � � o ( � IK

u ; uL

y ; yL

ξ ; ξL

PS 9 IK &uL&yL&ξL ; &m �
y(L ; EzL � PS � (7.55)

(at themomentwearenot interestedin theadditionalinputszL andy(L) where� o ( : 9 IK
0 0 I�

0 0
0 &m I � � &o ; &m E � PS � (7.56)

i.e.,
� o ( has

� ; E in placeof
�

and U ( 9 - 0 IDq I � � Dt 0 Dq E � . (a representative of�¤( ) in placeof U 9 - 0 IDq I � Dt . (a representativeof � ).

But oncewe let the additional inputs y(L and zL be zero, equation(7.55)

becomes
�
I � � o ( �}- u

y
ξ . 9 � o ( - uL

yL
ξL

. , i.e., theequation(7.19) for
� ; E and U|( .

Thus,wecanconsiderU¤( asamodelfor thecontroller(in thedashedsquare)in
Figure7.7. Summarizing,themap � 
� � ( correspondsto anoutputfeedback
through � E. `
FromRemark6.7.19we deducethat if

�
is replacedby Õ ω

�
and � by Õ ω �

for someω
�

R, then
� o

I becomesreplacedby Õ ω
� o

I . Fromthis we concludethe
following:

Remark 7.2.19(Exponential stabilization) By Remark6.7.19,fromanyclaims
in this section(and others), we can deducethe correspondingresultsaboutω-
stabilizationfor someω

�
R (insteadof the(0-)stabilizationtreatedin mostabove

results),hencealsofor exponentialstabilization.
For example, assumethat

�f�
TIC∞ has an exponentiallystabled.c.f., say

(7.50) (i.e., the mapsin (7.50) belongto TICexp). Thenthe mapsDF-stabilize�
exponentiallywith internal loop are exactly the mapswith (exponentially)

d.c. internal loop parametrizedin Theorem 7.2.14(where we mustrequire the
parameters to beexponentiallystable).

Remark 7.2.20(Plantswith internal loop) We could, of course, study more
general plants, thosewith internal loop. One easily (though sometimeswith
tediousapplicationsof LemmaA.1.1)generalizesmostresultsof this sectionto
the casewhere both

�
and � haveinternal loops,e.g., if

� 9 &g &i � 1 is a map
with l.c. internal loop, then � 9bmpo � 1 stabilizes

�
iff &i o � &g m �c@

TIC. This
way onecould cover all “ H∞ # H∞” transferfunctions(the quotientfield of H∞)
andmore.
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Notes
Controllerswith internal loop were first introducedin [WC], which covers

alsosomecorrespondingstate-spacetheoryfor regularWPLSs.This notionwas
further developedin the frequency-domainarticle [CWW01]. Our theory was
built on an early form of [CWW01], which we were given in late 1996. The
actualarticlewill bepublishedlate2001.

Part (c1) of Theorem7.2.3 is Theorem7.4 of [WR00]. Lemma 7.2.7 is
at leastpartially containedin Section6 of [WC]. Proposition7.2.5(b),Lemma
7.2.10(a)&(b), Corollary 7.2.13 and Corollary 7.2.15 are at least implicitly
containedin [CWW01] (someof themwith differentproofs).Part (d) of Theorem
7.2.4waswritten asa generalizationof the correspondingclassicalresult (see,
e.g.,Lemma12.1of [ZDG]). Proposition5.3of [WC] seemsto beits analogyfor
exponentialDF-stabilizationwith internalloop.
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Figure7.8: DPF-controller� for
�5�

TIC∞
�
U % W� Z % Y �

7.3 DPF-stabilization ( ÖØ×ÚÙ,ÛWÜnÝ )
Sir, it’ s verypossiblethis asteroid is not stable.

— C3P0

In Section7.1, we studieddynamicoutput-feedbackstabilizationby a well-
posedcontrollerand,in Section7.2, thatby a controllerwith internalloop (such
controllerscontainall well-posedcontrollers).

In thissectionweshallusethoseresultsto obtaina theoryfor dynamicpartial
feedback(with internalloop;wealsogivesomefurtherresultsfor thespecialcase
of awell-posedcontroller).

A generalDPF-controllerdiffers from the specialcaseof a DF-controllerin
thesensethattheformerhasonly a partialaccessto theinputsandoutputsof the
plant,asillustratedin Figure7.8(cf. to Figure7.1).

In the important H∞ Four-Block Problem (H∞ 4BP) (or the standardH∞

problem)of Chapter12,onetriesto find aDPF-controllerthatstabilizestheplant
andmakesthenorm

�
w 
� z

�
in Figure7.8 lessthana givenconstantγ Þ 0. This

problemis the main motivator of the theory of this chapter. The signal y can
be consideredasa measureaccessiblefor the controllerandu asthe controller
output,whereasw oftenrepresentsthedisturbancesin a systemandz standsfor
theactual(objective)output.

Our choiceto have u beforew is contraryto the standardpracticein DPF-

stabilizationandtheH∞ 4BPtheory(thiscorrespondsto - � 12
�

11�
22

�
21 . in placeof

�
),

which is bettersuitedfor DPFduality results.
However, our choice is the standardpracticein the H∞ FICP theory (see

Chapter11), beingmorenaturalfor that theory(e.g.,it allows us to have I ’s on
thediagonalin severalFICPand4BPformulae).

Therefore,whencomparingtheformulaeto moststudiesonDPF-stabilization
(e.g., [Francis], [Keu], [Green]or [ZDG]), onehasto interchangethe (second)
indicescorrespondingu andw, whereasthe FICP results(e.g.,[S98d], [Green],
[CG97], [LT00a])candirectly becompared.

If wedeletetherestof
�

except
�

21 in Figure7.10,weendupwith Figure7.3.
Therefore,themapsuL � yL 
� u � y becomethesameasin theDF-stabilizationof�

21, andthemapof uL � w� yL to z� y� u is obtainedfrom this andtheequation7
z
y8 9 � 7

u ; uL

w 8 { (7.57)

In particular, thecontrolleris admissiblefor
�

if f it is admissiblefor
�

21.
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(Note that we usew insteadof wL 9 w, becausethereis no feedbackto the
disturbancesignalw. Modelsshouldcontainadditionalinputs representingthe
disturbancesin eachloop, but sincethereis no feedback(loop) for w, suchan
additionalinput wouldberedundant.Thesituationwith z is similar.)

However, it is easiestto identify any DPF-controller&� �
TIC∞

�
Y� U � with the

DF-controller � : - DzDy . 
� � u
w 	 of form � 9 - 0 D�0 0 . �

TIC∞
�
Z % Y� U % W � (so that&� �

TIC∞
�
Y� U � maps &y 
� u, and &z andw are uncoupledfrom the controller).

Obviously, this definition is equivalent to the one above. Its rigorousform is

containedin thefollowing definition(thecaseU 9 - D� 0
0 0 . �

TIC∞
�
Y % Ξ � U % Ξ � ),

which alsocoversthecasewith internalloop:

Definition 7.3.1(DPF-stabilization [with internal loop], ß�à � � �\�Z�ß�à � � �\�M�ß�à � � �\�M� ) Let
� 9- � 11

�
12�

21
�

22 . �
TIC∞

�
U % W� Z % Y � . Wecall U �

TIC∞
�
Y % Ξ � U % Ξ � (wherealsoΞ

is a Hilbert space)an admissible(resp.stabilizing)DPF-controllerwith internal
loop for

�
ifU DF : 9 IK

0 U 11 U 12

0 0 0
0 U 21 U 22

PS �
TIC∞

�«�
Z % Y �Ô% Ξ � � U % W �á% Ξ � (7.58)

is anadmissible(resp.stabilizing)DF-controller with internal loop for
�

.

Wecall &Σ 9 -�DF DGDH � . �
WPLS

�
Y % Ξ � &H � U % Ξ � anadmissible(resp.stabilizing)

DPF-controllerwith internalloop for Σ 9 � F GH � � �
WPLS

�
U % W� H � Z % Y � if&ΣDF : 9 IJJJK &L 0 &N 1 &N 2&O 1 0 U 11 U 12

0 0 0 0&O 2 0 U 21 U 22

P QQQS �
WPLS

�
Z % Y % Ξ � &H � U % W % Ξ � (7.59)

is anadmissible(resp.stabilizing)DF-controller with internal loop for Σ.
In eithercase, by ß�à � � �\UZ� wedenotethemapw 
� zof

� o
I (see(7.64),(7.68)

and(7.98)).
We call two admissibleDPF-controllerswith internal loop for

�
(resp.for Σ)

equivalentfor
�

(resp.for Σ) if they determinesamemapsfromuL � yL to u � y.
Wecall

�
(resp.Σ) DPF-stabilizablewith internalloop if there is a stabilizing

DPF-controller with internal loop for
�

(resp.for Σ). and we usepreficesas
above. (Weusepreficesasin Definition7.2.1.)

If U DF is a well-posedDF-controller (equivalently, U 9 � � 11 0
0 0 � �

TIC∞
�
Y %

Ξ � U % Ξ � ), thenwemayremovethewords“with internal loop” everywhereabove
in this definitionandidentify U with U 11

�
TIC∞

�
Y� U � .

If � is a map with coprime internal loop, then we call � an admissible
(resp.stabilizing)DPF-controllerwith coprimeinternalloop for

�
if � 0 �

0 0 � is an
admissible(resp.stabilizing)DF-controller with coprimeinternal loop for

�
.

As before,“ [DPF-]stabilizes” means“is [DPF-]stabilizingfor”, in any of the
abovesettings.(Weusetheprefix “DPF-” whenever thereis a risk of confusion.)
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Figure7.9: DPF-controller&Σ for Σ

�
WPLS

�
U % W� H � Z % Y ��
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�

12�
21

�
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43ξ /0 0 ξL2&ξ4

Figure7.10:DPF-controllerU with internalloop for
�b�

TIC∞
�
U % W� Z % Y �

Lemma7.3.10showsthatalsothecoprimepartof Definition7.3.1is justified.

Note that
� o

I maps
�
uL � w� zL � yL � ξL � 
� �

u � w� z� y� ξ � (cf. (7.63)andrecall that� o
I 9 �

I � � o ��� 1 � I ). Therefore, U stabilizes
�

if f u � � w�â� z� y� ξ �
L2 for all

uL � w� zL � yL � ξL
�

L2. Seealso Figures7.10 and7.11 and the commentsbelow
Definition7.1.1andSummary6.7.1.

Thecombinedopen-loopsystemof (7.21)correspondingto theDF-controller&ΣDF with internalloop for Σ (i.e., theDPF-controller&Σ with internalloop for Σ),
is obviouslygivenby

Σo : 9
IJJJJJJJJJK L 0 N 1 N 2 0 0 0

0 &L 0 0 0 &N 1 &N 2

0 &O 1 0 0 0 U 11 U 12

0 0 0 0 0 0 0O
1 0

�
11

�
12 0 0 0O

2 0
�

21
�

22 0 0 0
0 &O 2 0 0 0 U 21 U 22

PRQQQQQQQQQS (7.60)

�
WPLS

�
U % W % Z % Y % Ξ � H % &H � U % W % Z % Y % Ξ � . Thus,&Σ is anadmissible

[stabilizing] DPF-controllerwith internal loop for Σ if f Σo
I is well-posed[and

stable](cf. Definition6.6.4);see(6.125)for theclosed-loopsystemΣo
I .

If U 9 � � 0
0 0 � , thenwecansimplify theabovedefinitionasfollows:
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1

�
11

�
12O

2
�

21
�

22

Σ

T
Σ

&L &N 1τ &N 2τ&O 1 U 11 U 12&O 2 U 21 U 22

/0 0&y 1 y2yL 3 z2
u 3 /0 0 uL2 &u

4
w

4
x0

4x2
3ξ /0 0 ξL2&ξ4&x0

4&x2
Figure7.11:DPF-controller&Σ with internalloopfor Σ

�
WPLS

�
U % W� H � Z % Y �

Lemma 7.3.2(Well-posedDPF-controllers) A (well-posed) DPF-controller� �
TIC∞

�
Y� U � is admissible[stabilizing] for

�b�
TIC∞

�
U % W� Z % Y � iff L : 9 I

is admissible[stabilizing] for - 0 0 �
0 0 0�

0 0
. TIC∞

�
U % W % Y� U % Z % Y � ; all prefices

apply.
A (well-posed)DPF-controller &Σ �

WPLS
�
Y� &H � U � is admissible[stabilizing]

for Σ
�

WPLS
�
U % W� H � Z % Y � iff L : 9 I is admissible[stabilizing] for

Σo : 9 IJJJJJK L 0 N 0 0
0 &L 0 0 &N
0 &O 0 0 �
0 0 0 0 0O

0
�

0 0

P QQQQQS �
WPLS

�
U % W % Z % Y� H % &H � U % W % Z % Y � ;

(7.61)
all preficesapply. In either setting, admissibility is equivalentto condition
I � � �

21
�]@

TIC∞
�
U � .

Thelastconditionis equivalentto “ I � QD21
�]@�^ �

U � ” if �:� � 21
�

ULR, by
Proposition6.3.1(c).

Cf. againFigures7.8and7.9to Figures7.10and7.11,respectively. Notealso
that(7.61)equals(7.21)for Σ and&Σ ( : 9 IJK &L 0 &N&O 0 �

0 0 0

PRQS �
WPLS

�
Z % Y� &H � U % W � (7.62)

i.e., it correspondsto theDF-controller&Σ ( for Σ.
Proof: Denote(7.60)by Σo ( . Obviously, Σo ( 9 � Σo 0

0 0 � . Oneeasilyverifies
thatL 9 I : 9 IU 
 W 
 Z 
 Y is admissible[stabilizing]for Σo if f � I 0

0 IΞ � is admissible

[stabilizing] for Σo ( (becauseΣo
I ( 9 - Σo

I 0
0 0 . , by (6.125); from this we also

observe thatall preficesof Definition6.6.4apply).
ConditionI � � �

21
�B@

TIC∞
�
U � canbeobtainedfrom Lemmas7.3.5and

7.1.2(or from adirectcomputation). `
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Lemma 7.3.3(DPF-controllers with IL) A map U 9 -�� 11 � 12� 21 � 22 . �
TIC∞

�
Y %

Ξ � U % Ξ � is an admissible[stabilizing] DPF-controller with internal loop for�Å�
TIC∞

�
U % W� Z % Y � iff the connectionif Figure 7.10 is well-posed[and

stable],equivalently, iff� o : 9 IJJJJK 0 0 0 U 11 U 12

0 0 0 0 0�
11

�
12 0 0 0�

21
�

22 0 0 0
0 0 0 U 21 U 22

PRQQQQS �
TIC∞

�
U % W % Z % Y % Ξ � (7.63)

satisfiesI � � o �B@
TIC∞ [and

�
I � � o ��� 1 �

TIC]. `
(This follows from Lemma7.2.2.)
Analogously, &Σ is admissible[stabilizing] for Σ if f theclosed-loopsystem(Σo

I ;
cf. (7.60)) in Figure7.11 is well-posed[and stable,i.e., u � y� z� ξ �

L2 andx and&x are boundedfor all uL � w� yL � ξL
�

L2 �
R 0 ; VW� , x0

�
H and &x0

� &H]. (We note
thatexponentialstability is equivalentto x � &x �

L2 (andhenceu � y� z� ξ �
L2) for all

uL � w� yL � ξL
�

L2 � x0
�

H and &x � &H, by LemmaA.4.5 andLemma6.1.10(a1).)
As before, we identify a well-posedcontroller � �

TIC∞
�
Y� U � with the

controller � � 0
0 0 � �

TIC∞
�
Y % Ξ � U % Ξ � with internal loop. From (7.58) we

observe that � �
TIC∞ is an admissible[stabilizing] DPF-controllerfor

�
if f� 0 �

0 0 � �
TIC∞

�
Z % Y� U % W � is an admissible[stabilizing] (DF-)controller for�

(obviously, (7.58) is a well-posedDF-controller if f U is a well-posedDPF-
controller;seetheendof Definition 7.2.1). This canbecomparedto Figure7.8,
where � Duw � 9 � 0 �

0 0 � � z
y
0

yL � ;?� uL
w 	 , whereas&u 9 � �

y ; yL ��; uL in Figure7.1; the
differencesareexplainedby the factsthat we needno zL andthat w 9 wL 9 &w,
dueto lackof feedbackin theseloops.

Obviously, a (well-posed)map � �
TIC∞ is admissibleif f

�
I � �

21 �~� �@
TIC∞. Theclosedloop mapw 
� z (from thesecondinput to thefirst output)is

givenby thestandardlinearfractionaltransformationformulaß à � � �ã�Z� : 9 �
12 ; �

11 � �
I � �

21 ��� � 22 9 ß à � � 0 I
I 0 	 � d � 0 I

I 0 	 �\� d � d { (7.64)

Thefull mapuL � w� yL 
� u � z� y is givenbyIK �
I � � �

21 � � 1 �
I � � �

21 � � 1 � �
22

�
I � � �

21 � � 1 ��
11

�
I � � �

21 ��� 1 �
12 ; �

11
�
I � � �

21 ��� 1 � �
22

�
11

�
I � � �

21 ��� 1 ��
21

�
I � � �

21 ��� 1 �
22 ; �

I � �
21 �~��� 1 �

22
�
I � �

21 ����� 1

PS {
(7.65)

Thus,all admissibilityresultsof Sections7.2and7.1arevalid (for DPF)with�
21 in placeof

�
, but for thestabilizability, wemustaddtherequirementthatthe

mapsto z andthemapsfrom w alsobecomestable.
We usuallystudyonly DPF-controllerswith coprimeinternal loop, because

the standardstabilizability anddetectabilityassumptionsfor the H∞ 4BP imply
that no other controllersstabilizethe plant (assumingsufficient regularity or a
discrete-timesetting;cf. Section12.5,Lemmas12.6.6and12.5.3andTheorem
7.3.19),andbecausethegeneralcaseis rathercomplex, asshown in thefollowing
proposition:
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Proposition 7.3.4(ß à � � �\UZ�ß à � � �\UM�ß à � � �\UM� ) Let
�

beasin Definition7.3.1.Let U : 9 (7.58).

(a) ThenU is admissiblewith internal loop for
�

iff¡ : 9 IK
IZ � �

11 U 11 � �
11 U 12

0 IY � �
21 U 11 � �

21 U 12

0 � U 21 IΞ � U 22

PS �B@
TIC∞

�
Z % Y % Ξ � ; (7.66)

equivalently, iff¬ : 9 IK
IU � U 11

�
21 � U 11

�
22 � U 12

0 IW 0� U 21
�

21 � U 21
�

22 IΞ � U 22

PS �]@
TIC∞

�
U % W % Ξ � {

(7.67)

(b) U is [exponentially]DPF-stabilizingwith internal loop for
�

iff (7.27) is
[exponentially]stable(equivalently, iff (7.28)is [exponentially]stable).

(c) U is admissible (resp. [exponentially] DPF-stabilizing) with internal
loop for

�
iff U is admissible(resp.[exponentially] DPF-stabilizing)for

7 �
11 0

�
12�

21 0
�

22
0 I 0 8 .

(d) U is admissible(resp.[exponentially]DPF-stabilizing)with internal loop
for

�
iff U d is admissible(resp. [exponentially] DPF-stabilizing) with

internal loop for
�

d : 9 - � d
22

� d
12� d

21
� d

11
. . If this is the case, then ß à � � �\UM� d 9ß�à � �

d �\U d � .
(e) If U is admissiblewith internal loop for

�
, then ß à � � �\UM� : w 
� z is given

byß à � � �\UZ� 9 �
12 ; � ¡ � 1 � 12

�
22 9 �

12 ; �
11

� ¬ � 1 � 12
�

TIC∞
�
W� Z � { (7.68)

Themapw 
� u is givenby
� ¬¤� 1 � 12.

If U 9 � � 0
0 0 � for some � �

TIC∞
�
Y� U � (i.e., U is well-posed), thenß à � � �ãUZ� 9 �

12 ; �
11 � �

I � �
21 �~��� 1 �

22, by (7.65). For DPF-controllerswith
d.c.internalloop,a third formulafor ß à is givenin Corollary7.3.20(c).

Proof: (a)&(b)Substitute(7.58)for U in Proposition7.2.5(a)&(a’)toobtain
(a)&(b).

(c) By Definition 7.3.1, U is DPF-admissiblewith internal loop for
�

if f
(7.58)is DF-admissiblewith internalloop for

�
. By Proposition7.2.5(c),this

is thecaseif f (7.58)is DF-admissiblefor � � 0
0 I � ; equivalently, if f7

0 U
0 0 8 is DF-admissiblefor

IK �
11 0

�
12�

21 0
�

22

0 I 0

PS 9 :
� { (7.69)

As notedbelow Definition7.3.1,this is thecaseif f U is DPF-admissiblefor
�

.
Replace“admissible”by “[exponentially]stabilizing” above to obtainthe

proof of remainingclaims.
(d) We have ¬ �c@

TIC∞ if f ¬ d �c@
TIC∞. Exchangethe first andsecond

rows andexchangethefirst andsecondcolumnsof ¬ d to obtain ¡ with
�

d in
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placeof
�

and U d in placeof U . Thisprovestheadmissibilityclaim,andfrom
this wealsoobserve that

� ¬ � 1� � � � 12 9 � ¡ � 1�
d � � d � d

12, hence(use(c) twice)ß�à � �
d �\U d � d 9 �«� �

d � 12 ; � ¡ � 1�
d � � d � 12

� �
d � 22� d 9 �

12 ; �
11

� ¬ � 1� � � � 12 9 ß�à � � �\UZ� {
(7.70)

Similarly, oneobservesfrom Proposition7.2.5(a)&(a’)that(7.28)is stable
if f (7.27)is stableafterthesubstitutions

� 
� �
d, U 
� U d (this requiresjust a

bit morereordering).
(Notethatexceptfor (7.70),part(d) is alsocontainedin Lemma6.7.2(f’).)
(e) The symbols of Proposition7.2.5 are now denotedas follows (cf.

Definition 7.3.1): we have uL 
� � uL
w 	 , u 
� � u

w 	 andy 
� � zy 	 . The map“uL 
�- y
ξ . ” givenby ¡¯� 1 � �0 � , by (7.27),hencew 
� z is givenby� ¡ � 1 � �0 � � 12 9 � ¡ � 1 � 11

�
12 ; � ¡ � 1 � 12

�
22 9 �

12 ; � ¡ � 1 � 12
�

22 � (7.71)

sincenow
� ¡¯� 1 � 11 9 I , by LemmaA.1.1(b1)&(b2). Analogously, w 
� z is

given by
�

11
� ¬¤� 1 � 12 ; �

12
� ¬¤� 1 � 22 9 �

11
� ¬�� 1 � 12 ; �

12, by (7.28). Obvi-
ously, w 
� u is givenby

� ¬|� 1 � 12, by (7.28). `
For easeof reference,we collect into a lemmasomeremarksmadeabove

(moreor lessexplicitly):

Lemma 7.3.5( U DPF-stabilizes
� ¦ U DF-stabilizes

�
21) Let

� 9- � 11
�

12�
21

�
22 . �

TIC
�
U % W� Z % Y � and U �

TIC∞
�
Y % Ξ � U % Ξ � . Let Σ and &Σ

berealizationsof
�

and U , respectively. Thenthefollowingareequivalent:

(i) U is an admissibleDPF-controller with internal loop for
�

;

(ii) U is an admissibleDF-controller with internal loop for
�

21;

(iii) &Σ is an admissibleDPF-controller with internal loop for Σ;

(iv) &Σ is an admissibleDF-controller with internal loop for Σ21 : 9 - F G
1H

2
�

21 . ;

(v) I � � o �]@
TIC∞

�
U % W % Z % Y % Ξ � .

Moreover, if U DPF-stabilizes
�

, then U DF-stabilizes
�

21; if &Σ DPF-
stabilizesΣ, then &Σ DF-stabilizesΣ21 (all preficesapply, becausethesystem“ Σo

I ”
for Σ21 and &Σ (cf. (7.21))is a part of thesystem“ Σo

I ” for Σ and(7.59)).

Theconverseto the lastclaim is not true in general(take, e.g., U 9 0 9 �
21,�

unstable;cf. alsoExample7.3.7),but it is true when,e.g.,Σ21 is optimizable
andestimatable;seeLemma7.3.6andTheorem7.3.19.

Proof: (Naturally, thelemmastill remainstrueif we throughoutthelemma
removethephrases“with internalloop”, sinceU is awell-posedDPF-controller
for Σ if f U is a well-posedDF-controllerfor Σ21 (if f U 9 � � 11 0

0 0 � ). Notealso

thatthe“resp.” partis not definedfor &Σ in placeof U .)
Let &¡ �

TIC∞
�
Y % Ξ � be the map ¡ for U and

�
21 from Proposition

7.2.5(a).
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1a Admissibility: We observe from Proposition 7.3.4(a) (and Lemma
A.1.1(b)),that ¡ ��@

TIC∞ if f &¡ �]@
TIC∞, andthat¡ � 1 9 IK

IZ � V V �7
0
08 &¡z� 1

PS �
TIC∞

�
Z % �

Y % Ξ ��� (7.72)

(when &¡ ��@
TIC∞

�
Y % Ξ � ). Therefore,(i) and(ii) areequivalent.FromLemma

7.2.2(andDefinition 7.3.1)we obtain“(ii) � (v)”, “(ii) � (iv)” and“(iii) � (iv)”
(since(7.58)is theI/O mapof (7.59).

2a We shall showthat &Σo
I is obtainedby removing thefourth andfifth rows

andcolumns(thosecorrespondingtoW andZ) fromΣo
I : (Here &Σo

I is thesystem
“Σo

I ” for Σ21 and &Σ (cf. (7.21)),andΣo
I is the oneof Definition 7.3.1,i.e., the

closed-loopsystemof (7.60). Obviously, theabove claim holdsfor &Σo andΣo

in placeof &Σo
I andΣo

I .)

Assumethat U is admissiblefor
�

21. Let &� o �
TIC∞

�
U % Y % Ξ � be the

map(7.20) (for
�

21 and U ), anddefine
� o by (7.63). Set &� : 9 �

I � &� o ��� 1.
From(7.27)we observe that�

I � � o � � 1 9 IJJJJJK &� 11 V 0 &� 12 &� 13

0 I 0 0 0V V I V V&� 21 V 0 &� 22 &� 23&� 31 V 0 &� 32 &� 33

PRQQQQQS �
TIC∞

�
U % W % Z % Y % Ξ � { (7.73)

(Thisproves2a for
� o

I : 9 �
I � � o ��� 1 � I .) Apply then(6.125)to observe thatO o

I : 9 �
I � � o � � 1 O o 9 IJJJJJK &� 12

O
2 &� 11 &O 1 ; &� 13 &O 2

0 0V V&� 22
O

2 &� 21 &O 1 ; &� 23 &O 2&� 32
O

2 &� 31 &O 1 ; &� 33 &O 2

PRQQQQQS { (7.74)

(Remove the secondand third rows to obtain “ &O o
I ”.) The proof for N o

I is
analogous. Finally, from (6.125) and (7.4) (for Σ and &Σ ( , so that N o 9- G 1

G
2 0 0 0

0 0 0 DG 1 DG 2
. ) we observe thatL o

I 9 L o ;CN oτ
O o

I 9 7 L 0
0 &L 8 ; 7 N 1 0 0

0 &N 1 &N 2 8 τ

IK � O o
I � 11

� O o
I � 12� O o

I � 41
� O o

I � 42� O o
I � 51

� O o
I � 52

PS � (7.75)

whichequals&L o
I : 9 L o ; 7 N 1 0 0

0 &N 1 &N 2 8 τ &O o
I , thesemigroupof &Σo

I .

3a Stabilization: We observe from 2a that &Σo
I

�
WPLS

�
U % Y % Ξ � H %&H � U % Y % Ξ � is a part of Σo

I
�

WPLS
�
U % W % Z % Y % Ξ � H % &H � U % W %

Z % Y % Ξ � .
Indeed, &� o

I 9 �
I � &� o ��� 1 � I 9 &� � I is a part of

� o
I , the semigroupL o

I is
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thesamefor bothsystems,and &O o
I and &N o

I arepartsof
O o

I and N o
I , respectively,

asnotedabove.
Therefore,if &Σ is DPF-stabilizingwith internalloop for Σ, i.e.,Σo

I is stable,
thenalso &Σo

I is stable,sinceit is a part of Σo
I , i.e., then &Σ is DPF-stabilizing

for Σ21. Analogously, if U is DPF-stabilizingwith internalloop for
�

, i.e.,
� o

I

is stable,thenso is &� o
I . For samereasons,any prefices(e.g.,“exponentially”,

“ω-”; for Σ also“strongly”, “internally”, “SOS-” etc.)apply. `
It is not exactly the samething to DPF-stabilizeΣ andDF-stabilizeΣ21, but

prettyclose:

Lemma 7.3.6(Σ ä Σ21Σ ä Σ21Σ ä Σ21)

(a) &Σ 9 - DF DGDH � . �
WPLS

�
Y % Ξ � &H � U % Ξ � is anexponentiallystabilizingDPF-

controller with internal loopfor Σ 9 � F GH � � �
WPLS

�
U % W� H � Z % Y � iff &Σ

is anexponentiallystabilizingDF-controller with internal loop for Σ21.

(b1)If Σ21 isexponentiallyjointly stabilizableanddetectable, thenthefollowing
areequivalent:

(i) U DPF-stabilizes
�

exponentiallywith internal loop;
(ii) U DF-stabilizes

�
21 exponentiallywith internal loop;

(iii) U hasa realizationthatDPF-stabilizesΣ exponentiallywith internal
loop.

(b2) If Σ21 and Σ are [strongly] jointly stabilizableand detectable, then the
following areequivalent:

(i) U DPF-stabilizes
�

with internal loop;
(ii) U DF-stabilizes

�
21 with internal loop;

(iii) U has a realizationthat DPF-stabilizesΣ [strongly] with internal
loop.

(c) If Σ21 is optimizableandestimatable, then(b1)(i)&(ii) are equivalent,and
soare (b2)(i)&(ii).

Proof: (a)Thetwo closed-loopsystemshavesamesemigroupL o
I , asnoted

in the proof of Lemma7.3.5, henceeither is exponentiallystableif f L o
I is

exponentiallystable,by Lemma6.1.10(a1).
(b1)&(b2) Implication “(iii) ¦ (i)” is trivial (since

� o
I is a part of Σo

I ), and
“(i) ¦ (ii)” follows from Lemma7.3.5.

To complete the equivalence, we assumethat (ii) holds and that Σ21

and Σ are [[exponentially] strongly] jointly stabilizableand detectable[[the
assumptionon Σ is unnecessary]].

By Theorem6.6.28[[(shifted; note that we tacitly apply shifting several
times below too)]],

�
21 hasa [[exponential]] d.c.f.; therefore,so does

�
: 9� � 21 0

0 I � .
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By Proposition7.2.5(c), U DF-stabilizes
�

[[exponentially]]. By Propo-
sition 7.1.6(d), U hasa [[exponential]] d.c.f. By Theorem6.6.28, U hasan
[[exponentially]]stronglyjointly stabilizableanddetectablerealization.

By Theorem7.3.11(b)(1.)[[(c1)]],this realizationstabilizesΣ [[exponen-
tially] strongly] with internalloop. (Herewe neededthe assumptionon Σ, or
at leastthe assumptionthat Σ is, e.g.,q.r.c.-stabilizable[since L o

I is the same
for Σ and Σ21, “strongly” is not neededhere] [[since Σ21 is optimizableand
estimatable,sois Σ]].)

A remarkfor (b1): It is not sufficient for (b1)(i)–(iii) that U DPF-stabilizes�
with internal loop: by Corollary 7.3.20,this holdsif f U is equivalentto �

of Corollary7.3.20(ii)for some
� �

TIC
�
U � , whereasexponentialstabilization

requiresthat
� �

TICexp
�
U � .

(c) 1a Thecorrespondingdiscrete-timeclaimholds:By Lemma13.3.17(b),
Σ21 is exponentiallyjointly stabilizableanddetectable,henceso is Σ. There-
fore, (b1)(i)–(iii) areequivalent,andsoare(b2)(i)–(iii).

2a Theoriginal claim holds: Usediscretization(seeTheorem13.4.4(e1)).`
In Lemma7.3.6(b2)(compareto (b1)), theconditionon Σ is not superfluous:

Example 7.3.7 (Σ21Σ21Σ21 and
� � �

strongly stablebut ΣΣΣ not DPF-stabilizable)Let L
beasin Example6.1.14(a),so that L andΣ21 arestronglystablebut N 2,

O
1 and�

12 areunstable,where

Σ : 9æåç A 0 I

I 0 0
0 0 0 èé �

WPLS{ (7.76)

Moreover, no DPF-controller[with internal loop] has any effect on Σ; in
particular, Σ is not DPF-stabilizable,although &Σ : 9 � 0 0

0 0 � DF-stabilizesΣ21

exponentially.
Note that Σ is exponentially jointly stabilizable and detectableand has

bounded“B andC”, but Σ21 is only strongly jointly stabilizableanddetectable.¼
(All this is straightforward (useExample6.1.14(a),Proposition7.3.4(a)and

Lemma6.6.25.))

Lemma 7.3.8(Equivalent DPF-controllers) Let
� 9 - � 11

�
12�

21
�

22 . �
TIC

�
U %

W� Z % Y � , U �
TIC∞

�
Y % Ξ � U % Ξ � , and U ( �

TIC∞
�
Y % Ξ ( � U % Ξ ( � . Let Σ, &Σ

and &Σ ( bearbitrary realizationsof
�

, U and U ( respectively. Thenthe following
areequivalent:

(i) U and U ( areequivalentDPF-controllerswith internal loop for
�

;

(ii) U and U ( areequivalentDF-controllerswith internal loop for
�

21;

(iii) U DF and U¤(DF areequivalentDF-controllerswith internal loop for
�

;

(iv) &Σ and &Σ ( areequivalentDPF-controllerswith internal loop for Σ;
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(v) &Σ and &Σ ( areequivalentDF-controllerswith internal loop for Σ21;

(vi) &ΣDF and &Σ (DF areequivalentDF-controllerswith internal loop for Σ;

(vii) � I 0 0 0 0
0 0 0 I 0 � � o

I � I 0 0 0 0
0 0 0 I 0 � T

: � uL
yL 	ê
� � uy 	 is unaffectedwhen U is replacedbyU ( (equivalently, &Σ is replacedby &Σ ( );

(viii)

7
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0 8 � o

I

7
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0 8 T

:

7
uL
w
z

yL 8 
� 7
u
w
z
y 8 is unaffectedwhenU is replaced

by U|( ;
(ix) the closed-loopmapsΣo

I � Σo
I ( : x0 � uL � w� � z�â� yL 
� x � u � � w�â��� y� z are unaf-

fectedwhen&Σ is replacedby &Σ ( ;
In particular, two admissibleDPF-controllerswith coprimeinternalloop are

equalif f they areequivalentfor
�

, equivalently, for
�

21, by Lemma7.2.12(c).
Recall that any well-posedmap is a map with internal loop, and that any

well-posedcontrollerhaving a (right, left or doubly) coprimefactorizationis a
controllerwith a (right, left or doubly, respectively) coprimeinternalloop.

The equivalencebetween(iv) and(v) wasexpected:if Σ21 doesnot seeany
differencebetween&Σ and &Σ ( , why would the rest of Σ seeany; the rest of the
equivalencefollows from this.

Condition(ix) saysthat the two closed-loopmapsareequalexceptpossibly
for secondandseventhrowsandcolumns(thosecorrespondingto &H andΞ (or &H (
andΞ ( )), i.e., only themapsconcerning&x, &x0, ξ andξL maydiffer for equivalent
controllersfor Σ; thus,thereis no differencefrom thepartof &Σ visible for Σ.

Consequently, for &x0 9 0 andξL 9 0 (or &x(0 9 0 andξ (L 9 0), thesignalsx � u � y� z
in Figure7.11areunaffectedwhen &Σ is replacedby an equivalentcontroller(as
longasx0 � uL � w� yL arefixed).

Proof of Lemma 7.3.8: (See(7.63) for
� o and note that

� o
I 9 � o �

I �� o � � 1 9 �
I � � o � � 1 � I

�
TIC∞

�
U % W % Z % Y % Ξ � for any admissible

controllerwith internalloop for
�

.)
1a “(i) � (iv) � (vii)”, “(ii) � (v)” and “(iii) � (vi) � (viii)”: Thesefollow

from Definitions7.3.1,7.3.1and7.3.1,respectively.
2a “(vii) ¦ (iii)”: Assume(vii), i.e., that the maps &� 11 � &� 12 � &� 21 � &� 22 in

(7.73)areequalfor U and U ( . Thenalsothemaps�«�
I � � o � � 1 � 34 9 ���

I � � o � � 1 � I � 34 9 � � o �
I � � o � � 1 � 34 9 �

11 &� 12 (7.77)

areequalfor U and U|( . We concludefrom (7.73)thatthemaps
���

I � � o ��� 1 � i j

areequalfor U and U¤( for i 9 1 � 2 � 3 � 4, j 9 3 � 4. By Proposition7.2.5(e)(cf.
(7.27)),weobtain(iii).

3a “(iii) ¦ (ix)”: This follows from Lemma7.2.2.
Remarkson (ix): Here,aselsewhere,Σo

I andΣo
I ( arethecombinedclosed-

loop systemscorrespondingto &Σ and &Σ ( , respectively; cf. theproof of Lemma
7.3.5. By (ix), they becomeequaloncewe remove their secondandlast rows
andcolumns.

In (xi), wemustinclude“τ” after N o
I and N o

I ( (in Σo
I andΣo

I ( ), cf. theremark
below Definition6.1.5.
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We have z andw in parenthesisin (ix), becausez doesnot affect any other
signalandw is not affectedby any signal.)

4a “(ix) ¦ (viii) ¦ (vii)”: This is trivial. Thus,only (ii) and(v) aremissing
from theequivalence;they areadoptedin 5a –6a below.

5a “(ii) ¦ (vii)”: Assume(ii). Then &� 9 �
I � &� o ��� 1 is unaffectedby the

replacementU 
� U_( . By (7.73),this meansthat(vii) holds.
6a “(i) ¦ (ii)”: Assume(i). With thenotationof theproof of Lemma7.3.5,

wehave� U DF11 U DF12� ¡ � 1 9 7
0 � U 11 U 12 � &¡z� 1

0 � 0 0� 8 �
TIC∞

�
Z % Y % Ξ � U % W � {

(7.78)
By (i) and Proposition7.2.5(e), the map

� � U 11 U 12 � &¡:� 1 � 1 is unaffected
by the replacementU 
� U|( , hence

� � U DF11 U DF12� ¡z� 1 � 1 is unaffectedbyU 
� U|( (equivalently, by U DF 
� U_(DF).
From (7.72) we observe that

� &¡¯� 1 � 11
�

TIC∞
�
Y � is contained in� ¡z� 1 � 11

�
TIC∞

�
Z % Y � . We concludefrom Proposition7.2.5(e) that (ii)

holds. `
Lemma 7.3.9(Well-posed� 9 U 11 ;�U 12

�
I � U 22 ��� 1 U 21� 9 U 11 ;�U 12
�
I � U 22 ��� 1 U 21� 9 U 11 ;�U 12
�
I � U 22 ��� 1 U 21) Let U 9 -�� 11 � 12� 21 � 22 . �

TIC∞
�
Y % Ξ � U % Ξ � be an admissibleDPF-controller with internal loop for���

TIC∞
�
U % W� Z % Y � .

Then U is equivalentto a well-posedDPF-controller for
�

iff I � U 22
�@

TIC∞; if this is the case, then that well-posedDPF-controller is given byU 11 ;�U 12
�
I � U 22 � � 1 U 21 (in particular, it is unique). `

(This follows from Lemma7.2.7 and Lemma7.3.8(i)&(ii), becausea mapU|( �
TIC∞

�
Y % Ξ (­� U % Ξ (®� is a well-posedDPF-controllerfor

�
if f U¤( is well-

posedDF-controllerfor
�

21, i.e., if f U|( 9 � � 0
0 0 � .)

Lemma 7.3.10 Let � 9�m}o � 1 or � 9 &o � 1 &m be a mapwith coprimeinternal
loop. Thensois7

0 �
0 0 8 9 7

0 m
0 0 8 7

I 0
0 o 8 � 1

or

7
0 �
0 0 8 9 7 &o 0

0 I 8 � 1

7
0 &m
0 0 8 � (7.79)

respectively. Thefollowing areequivalent:

(i) � is an admissible[stabilizing] DPF-controller with coprimeinternal loop
for

�
;

(ii) � 0 �
0 0 � is an admissible[stabilizing] DF-controller with coprimeinternal

loop for
�

;

(iii) � 0 q
I I � t � is an admissible[stabilizing] DPF-controller with internal loop

for
�

;

(iv) (7.81)is anadmissible[stabilizing] DF-controller with internal loopfor
�

;

(v) (7.82)is an admissible[stabilizing] DF-controller with internal loop for
�

.
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(Recall Definition 7.2.11 of maps with coprime internal loop.) From
“(i) � (iii)” we concludethatoneneednot first extend � to � 0 �

0 0 � andthentake a
representative(suchas(7.81));onecanalsotakefirst arepresentative U 9 � 0 q

I I � t �
(or U 9 - 0 IDq I � Dt . , respectively) of � , andthenextendit asin (7.58): � is anad-

missible[stabilizing] DPF-controllerwith coprimeinternal loop for
�

if f some
(henceany) of its representatives is an admissible[stabilizing] DPF-controller
with internalloop for

�
.

Proof: We treatther.c. case;thel.c. andd.c.casesareanalogous.
Supposethat � 9�m}o � 1 is a mapwith r.c. internal loop (i.e., m � o �

TIC
arer.c.).

1a (7.79) is a mapwith coprimeinternal loop: This meansthat � 0 q
0 0 � and� I 0

0 t � arer.c. Indeed, &i o � &g mc9 I impliesthat7
I 0
0 &i 8 7

I 0
0 o 8 � 7

0 0&g 08 7
0 m
0 0 8 9 I { (7.80)

2a Theequivalenceof (i)–(v): By Definition 7.2.11,the (canonical)repre-
sentativeof mapof form � 0 �

0 0 � 9 � 0 q
0 0 � � I 0

0 t � � 1
with r.c. internalloop is given

by IJJK 0 0 0 m
0 0 0 0
I 0 0 0
0 I 0 I � o

P QQS �
TIC

�
Z % Y % �

Z % Y ��� U % W % �
Z % Y �«� (7.81)

(notethathere“Ξ” 9 Z % Y, whereasbelow “Ξ” 9 Y). We concludethat (ii) is
equivalentto (iv), by Definition7.2.11.

The DF-controller (7.58) correspondingto the canonicalrepresentativeU 9 � 0 q
I I � t � of themap � with internalloop isIK

0 0 m
0 0 0
0 I I � o PS �

TIC
�
Z % Y % Y� U % W % Y � { (7.82)

By Definition 7.3.1, (iii) standsfor (v), and(i) standsfor (ii). Thus,we can
completetheequivalenceby showing (iv) equivalentto (v).

Let &� o be the map “
� o” of (7.63) that resultsfrom applying the DPF-

controller U to
�

(equivalently, the DF-controller(7.82) to
�

), andlet
� o be

the map“
� o” of (7.20) that resultsfrom applyingthe DF-controller(7.81) to�

.
Then

� o 9 � � o 0
0 I � modulocertainpermutationof rows andandthe same

permutationof columns. Therefore,I � � o ��@
TIC∞ if f I � &� o ��@

TIC∞,
and

�
I � � o � � 1 �

TIC iff
�
I � &� o � � 1 �

TIC. Thus, the admissibility and
stabilizabilityof (7.81)for

�
is equivalentto thatof (7.82).

(An intuitiveproof would go asfollows: (7.82)is obtainedby deletingthe
Z part (not Y part) of ξ (7.81), and this Z part is obviously well-posedand
stable,anddoesnot affectany othersignals.) `
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Trivially, &Σ I/O-DPF-stabilizesΣ if f U DPF-stabilizes
�

(i.e., if f
� o

I becomes
stable). Under standardassumptions,this is also equivalent to the stronger
conditionthat &Σ DPF-stabilizesΣ:

Theorem 7.3.11(&Σ&Σ&Σ DPF-stabilizesΣ ��UΣ �xUΣ �xU DPF-stabilizes
� � �

) Let Σ 9 � F GH � � �
WPLS

�
U % W� H � Z % Y � and &Σ 9 - DF DGDH � . �

WPLS
�
Y % Ξ � &H � U % Ξ � .

(a) Supposethat Σ and &Σ are SOS-stabilizable. Then &Σ SOS-DPF-stabilizesΣ
with internal loop iff &Σ I/O-DPF-stabilizesΣ with internal loop.

(b) ([Strong] stability) Supposethatanyof thefollowing conditionsholds:

(1.) bothΣ and &Σ are [[exponentially]strongly] q.r.c.-stabilizable;
(2.) bothΣ and &Σ are [[exponentially]strongly] q.l.c.-detectable;
(3.) both Σ and &Σ are SOS-stabilizableand [[exponentially] strongly]

detectable;
(4.) bothΣ and &Σ aredetectableand[exponentially]stabilizable.

Then &Σ [[exponentially]strongly] DPF-stabilizesΣ with internal loop iff &Σ
I/O-DPF-stabilizesΣ with internal loop.

(c1) (Exponential stability) Thesystem&Σ DPF-stabilizesΣ exponentiallywith
internal loop iff &Σ I/O-DPF-stabilizesΣ with internal loop andΣ and &Σ are
optimizableandestimatable.

(c2)Supposethatanyof thefollowingconditionsholds:

(1.) bothΣ and &Σ areoptimizableandestimatable;
(2.) bothΣ and &Σ areoptimizableandinput-detectable;
(3.) bothΣ and &Σ areestimatableandoutput-stabilizable;
(4.) bothΣ and &Σ areoptimizableandq.r.c.-stabilizable;
(5.) bothΣ and &Σ areestimatableandq.l.c.-detectable.

Then &Σ DPF-stabilizesΣ exponentiallywith internal loop iff &Σ I/O-DPF-
stabilizesΣ with internal loop.

(d) (Well-posed controllers) Suppose that, instead, &Σ 9 -�DF DGDH � . �
WPLS

�
Y� &H � U � . Then(a)–(c2) hold if we deletethe words “with inter-

nal loop” everywhere.

Thus, under correspondingassumptionsabove, all mapsbetweenthe sig-
nals in Figure 7.11 are (SOS-/strongly/exponentially)stableif f the mapsfrom
uL � w� yL � zL � ξL to u � w� y� z� ξ arestable.

Proof: This followsfrom Theorem7.2.3(andDefinition7.3.1),because(in
thewell-posedcase(d); thecasewith internalloop is analogousandleft to the

reader)if &Σ 9 - DF DGDH � . is a realizationof � , then&ΣDPF : 9 IJK &L 0 &N&O 0 �
0 0 0

PRQS (7.83)
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is a realizationof � 0 �
0 0 � (having thestabilizabilityanddetectabilityproperties

of &Σ, becauseit is aparallelconnection(seeLemma6.7.18)of &Σ and0). `
We cannow almoststatethatexponentialDPF-stabilizabilityis equivalentto

theoptimizabilityandestimatabilityof Σ21:

Theorem 7.3.12(Exp. DPF-stabilizable � � � opt. & est.) Let Σ : 9 � F GH � � �
WPLS

�
U % W� H � Z % Y � .

(a) If Σ is exponentially DPF-stabilizablewith internal loop, then Σ and

Σ21 : 9 - F G
1H

2
�

21 . areoptimizableandestimatable.

(b1)Conversely, if Σ21 is exponentiallyjointly stabilizableanddetectable, then
[Σ and] Σ21 areexponentiallyD[P]F-stabilizablewith internal loop.

(b2) If Σ21 and Σ are [strongly] jointly stabilizableand detectable, thenΣ is
[strongly] DPF-stabilizablewith internal loop and Σ21 is [strongly] DF-
stabilizablewith internal loop.

(c) Assumethat L Bu0 � L�� C � y0
�

L1
loc

�
R 0 ;H � for all u0

�
U and y0

�
Y, and

that
�

21 is ULR.Thenthefollowingareequivalent:

(i) Σ is exponentiallyDPF-stabilizable;
(ii) Σ is exponentiallyDPF-stabilizablewith internal loop;
(iii) Σ21 is exponentiallyDF-stabilizable;
(iv) Σ21 is exponentiallyDF-stabilizablewith internal loop;
(v)

�
A � B1 � is optimizableand

�
A � C2 � is estimatable

(equivalently, Σ21 is optimizableandestimatable);
(vi) Σ21 is exponentiallyjointly stabilizableanddetectable;
(vii) Σ and Σ21 are exponentiallyjointly stabilizableand detectableby

someboundedK andH.

Moreover, if (vii) holds,then(d1)applieswith thoseK andH (hence(6.169)
and(7.84)becomeULR).

(d1) If K andH are exponentiallyjointly stabilizingfor Σ21 ands.t. “(6.169)”

(i.e., - A H B1
C2
K

. ) is SRand “I � � L ”
�y@

TIC∞
�
Y � (this holds if “(6.169)”

for Σ21 is ULR), then< A ; BKs ; HCs ; HD21Ks � H

K 0 = �
WPLS

�
Y� H � U � (7.84)

is anexponentiallyDPF-stabilizingcontroller for Σ. Moreover, (7.22)is SR
andexponentiallyjointly stabilizableanddetectable.

(d2) If K and H are [strongly] jointly stabilizing for Σ21 and s.t. “(6.169)”

(i.e., - A H B1
C2
K

. ) is SRand “I � � L ”
�y@

TIC∞
�
Y � (this holds if “(6.169)”

for Σ21 is ULR), andΣ is jointly stabilizableanddetectable, then(7.84) is
a [strongly] DPF-stabilizingcontroller for Σ. Moreover, (7.22) is SRand
[strongly] jointly stabilizableanddetectable.
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(e) Assumethat Σ is exponentiallyDPF-stabilizablewith internal loop. Then
any map DPF-stabilizes

�
[exponentially] with internal loop iff it DF-

stabilizes
�

21 [exponentially]with internal loop.

Obviously, theassumptionsof (c) hold if B andC arebounded(or Hypothesis
9.5.1holds),hencealwaysin discretetime.

Part (d1) is ageneralizationof aclassicalresult(seeLemma12.1of [ZDG] or
LemmaA.4.2of [GL]).

Also claim (e) is a generalizationof a classicalresult (see[Francis], p. 35;
in fact, Francisonly assumesthat

�
is exponentially DPF-stabilizable(since

a rational H∞ function is H∞� exp for someε Þ 0), but, by Lemma 7.1.4 and
Theorem6.6.28,this implies that

�
hasanexponentiallyjointly stabilizableand

detectablerealization(assumingthat
�

is rational, we could also chooseany
minimal realization),sothat(e)applies).

Proof: (a) By Lemma 7.3.5, Σ21 is exponentially DF-stabilizable[with
internalloop], henceΣ21 is optimizableandestimatable,by Theorem7.2.3(c1).
Therefore,alsoΣ is optimizableandestimatable,by Lemma6.7.4.

(b1)&(b2)This followsfrom Theorem7.2.4(b)andLemma7.3.6(b1)&(b2)
(moreover, from theproofsweobserve that(7.23)will do for Σ too).

(Notefrom Definition7.3.1thatif Σ is DPF-stabilizablewith internalloop,
thenit is DF-stabilizablewith internalloop,by Definition7.3.1.)

(c) This follows from Theorem7.2.4(c)andLemma7.3.6(a).
(d1)&(d2)(Theassumptionson(6.169)and � L referto thosecorresponding

to Σ21 in placeof Σ in Definition 6.6.21.Notethat it sufficesthatK andH are
ULR and exponentially jointly stabilizing for Σ21 (and then (7.84) becomes
ULR).)

Make the assumptionsof (d1) [[(d2)]]. By Theorem7.2.4(d), (7.84)
is SR, [[exponentially] strongly] jointly stabilizableand detectable,and a
[[exponentially]strongly]DF-stabilizingcontrollerfor Σ21, henceit I/O-DPF-
stabilizesΣ, by Lemma7.3.6(b2)[[(b1)]].Consequently, (7.84)DPF-stabilizes
Σ [[exponentially]strongly],by Theorem7.3.11(b)(1.).

(e) This follows from (a)andLemma7.3.6(c). `
For the rest of the section, we concentrateon I/O-stabilization by DPF-

controllerswith d.c.internalloop(equivalently, on thestabilizationof plantswith�
21 having a d.c.f., asthe lemmabelow shows), becausethis seemsto cover all

theinterestingcases(cf. alsothepreceedingsectionsandLemma6.5.10).

Lemma 7.3.13 Let � DPF-stabilize
�Ï�

TIC∞
�
U % W� Z % Y � with internal loop.

Then � hasa d.c.(resp.r.c., l.c.) internal loop iff
�

21 hasa d.c.f. (resp.l.c.f.,
r.c.f.) Moreover, if

�
21 hasa d.c.f. (resp.l.c.f., r.c.f.), thensodoes

�
.

In particular, if anysystemΣ 9 - F GH � . �
WPLS(resp.map

�u�
TIC∞) isDPF-

stabilizableby a [exponentially] jointly stabilizableand detectablecontroller-EDF DGDH D� . (resp.by a map &� with [exponentially] d.c. internal loop), then
�

, &�
and

�
21 have[exponential]d.c.f.’s.
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Rememberthat a map hasa [exponential]d.c.f. if f it hasa [exponentially]
jointly stabilizableanddetectablerealization(by Theorem6.6.28).[SeeTheorem
7.3.12(c)for severalequivalentconditionsfor smoothsystems(in particular, for
finite-dimensionalones).]

Proof: By Lemma7.3.5, � stabilizes
�

21 with internal loop, so the first
conclusionfollows from Corollary7.2.13(b).

If � hasa d.c.(resp.r.c., l.c.) internalloop, thensodoes � 0 �
0 0 � , by Lemma

7.3.10, and � 0 �
0 0 � DF-stabilizes

�
(by the definition of DPF-stabilization),

hence
�

hasa d.c.f. (resp.l.c.f., r.c.f.). Theclaim on Σ follows from this and
Theorem6.6.28. `

Proposition 7.3.14 Let
� 9 - � 11

�
12�

21
�

22 . �
TIC∞

�
U % W� Z % Y � .

Wehave(i) � (ii) � (iii), where

(i)
�

hasa stabilizingDPF-controller with internal loop,and
�

21 hasa d.c.f.;

(ii)
�

hasa stabilizingDPF-controller with d.c.internal loop;

(iii)
�

hasa d.c.f. of theform� 9 7 g
11

g
12g

21
g

22 8 7 i
11

i
12

0 I 8 � 1 9 v
I &i 12

0 &i 22
w � 1 v &g 11 &g 12&g 21 &g 22

w � (7.85)

s.t.
g

21 and
i

11 are r.c.,and &g 21 and &i 22 are l.c.

If dimU � dimY ! ∞ and
�

has a stabilizing (well-posed)DPF-controller, then
(i)–(iii) hold.

Let ' �
TIC. Thenwehave(i’) � (ii’) � (ii*) � (iii’), where

(i’)
�

hasa stabilizingDPF-controller with internal loop, and
�

21 hasa d.c.f.
over ' ;

(ii’)
�

hasa stabilizingDPF-controller � with d.c. internal loop over ' , and�
21 and � havea joint d.c.f. over ' ;

(ii*)
�

hasa stabilizingDPF-controller with d.c. internal loop, and
�

21 hasa
d.c.f. over ' ;

(iii’)
�

hasa d.c.f. of theform(7.85),s.t.
g

21 and
i

11 are r.c.over ' , and &g 21

and &i 22 are l.c. over ' .

If
�

hasa d.c.f. over ' , thenwehave(i’) � (ii’) � (ii*) � (iii’) � (iii”), where

(iii”)
�

hasa d.c.f. over ' of theform(7.85),s.t.
g

21 and
i

11 are r.c. over ' ,
and &g 21 and &i 22 are l.c. over ' .

If
^�� ' �

ULR0, thenthestabilizingDPF-controllers in (i’), (ii*) and(ii’)
canbechosento bewell-posed.
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Proof: Note that the equivalence (i) � (ii) � (iii) follows from
(i’) � (ii’) � (iii’), by taking ' 9 TIC, so we do not needto prove the for-
mer. If

�
hasa stabilizingDPF-controller� �

TIC∞, then it is a stabilizing
DF-controllerfor

�
21, hencethen

�
21 and � have d.c.f.’s, by Lemma7.1.4,

providedthatdimU � dimY ! ∞.
1a The equivalence“(i’) � (ii*)” follows from Lemma 7.3.13. Clearly

(ii’) ¦ (ii*).
2a “(iii’) ¦ (ii’)”: Because

�
21 9 g

21
i � 1

11 is a r.c.f. over ' and
�

21 9&i � 1
22 &g 21 is a l.c.f. over ' , they canbeextendedto a d.c.f. over ' , by Lemma

6.5.8;in particular, wecanfind o � m � &o � &m � ' s.t.7 i
11 mg
21 o 8:9 v &o � &m� &g 21 &i 22

w � 1 �]@ ' { (7.86)

But, by Corollary7.2.15(i), � 0 �
0 0 � 9 � 0 q

0 0 � � I 0
0 t � � 1

DF-stabilizes
�

if fv
I &i 12 o � &g 11 m
0 &i 22 o � &g 21 m w �]@

TIC � (7.87)

i.e.,if f &i 22 o � &g 21 m ��@
TIC (by LemmaA.1.1(b)),andlatteris trueby (7.86),

hence� 9ym}o � 1 9 &o � 1 &m DPF-stabilizes
�

with d.c.internalloopover ' .
3a If (iii’) holds(e.g., (iii) holds),thena map � with an internal loopDPF-

stabilizes
�

iff � DF-stabilizes
�

21: Indeed,if � DPF-stabilizes
�

, then it
DF-stabilizes

�
21, in particular, � hasa d.c. internal loop in eithercase,by

Corollary 7.2.13. For the converse,in 2a it wasnotedthat � DPF-stabilizes�
if f � 9�mpo � 1, where &i 22 o � &g 21 m �b@

TIC, which in turn is true if f �
DF-stabilizes

�
21, by Corollary7.2.15(i).

4a “(ii*) ¦ (iii’)”: Assume(ii*), i.e., that some mpo � 1 9 &o � 1 &m DPF-
stabilizes

�
with d.c. internalloop. It follows from Lemma7.2.16(b),that for

somed.c.f.
� 9 g ( i ( � 1 9 &g ( � &i (ã��� 1 wehave(see(7.79))7

I 0
0 I 8M9 i ( 7 &o 0

0 I 8 � 7
0 m
0 0 8 &g ( � i.e., (7.88)v i (11 &o i (12i (21 &o i (22

w 9 7
I ; m &g (21 m &g (22

0 I 8|{ (7.89)

By Lemma6.5.6(d),
i (22 9 I impliesthat

�
hasa r.c.f. of theform of thefirst

equalityin (7.85); from the
�
1 � 1� -block of Corollary7.2.15(i’) appliedto this

r.c.f. weseethat &o i
11 � &m g

21
�]@

TIC, hence
i

11 and
g

21 arer.c.
Let

�
21 9 � � � 1 be a r.c.f. over ' . Then � g 21

i
11 � 9 � � � � � � for

some
� �]@

TIC, by Lemma6.4.5(c).Thuswe maymultiply r.c.f. in (7.85)by� � · 1 0
0 I � ��@

TIC to theright, to make
g

21 and
i

11 r.c. over ' .

The dual part is obtainedanalogouslyfrom � I 0
0 I � 9 � I 0

0 t � &i � g - 0 Dq0 0 . ,

which impliesthat &i 11 9 I (a r.c.f. anda l.c.f. form ad.c.f.,by Lemma6.5.8).
5a From ‘’(i’) � (ii’) � (iii’)” we obtain directly “(i”) � (ii”) ë (iii”)”. As-
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suming(ii”), weobtain(iii”) from 4a asfollows:
Thed.c.f.

� 9 g ( i ( � 1 9 &g ( � &i (ã��� 1 in 4a canbechosento beover ' , hence
socan(7.85),by Lemma6.5.6(d).All theotherclaimsarecontainedin (iii’),
which is equivalentto (ii’), henceaconsequenceof (ii”).

6a If
^X� ' �

ULR0 and (ii’) holds (recall that (i’) � (ii’) � (ii*)), then
thereis a well-posed� thathasa d.c.f. over ' joint with

�
21, by Proposition

7.1.10.Therefore,this � DF-stabilizes
�

21; by 3a , it DPF-stabilizes
�

. `
By combiningLemma7.3.13andProposition7.3.14,we deducethe follow-

ing: if
�

is DPF-stabilizableby a controller � with internalloop, andeither
�

21

or � hasa d.c.f., thenso do all of
�

,
�

21 and � , andthe following hypothesis
holds:

Hypothesis7.3.15 We shall assumethat
� 9 - � 11

�
12�

21
�

22 . �
TIC∞

�
U % W� Z % Y � ,

andthat
�

hasa d.c.f. of theform� 9 7 g
11

g
12g

21
g

22 8 7 i
11

i
12

0 I 8 � 1 9 v
I &i 12

0 &i 22
w � 1 v &g 11 &g 12&g 21 &g 22

w � (7.90)

s.t.
g

21 and
i

11 are r.c. and &g 21 and &i 22 are l.c.

Notethat
�

21 9 g
21

i � 1
11 is a r.c.f. and

�
21 9 &i � 1

22 &g 21 is a l.c.f.
Underthe standardassumptionsof the H∞ Four-Block Problem,Hypothesis

7.3.15is satisfied(cf. Lemmas12.5.4and12.5.5).Undersufficient regularity, the
I/O mapof an exponentiallyDF-stabilizablesystemsatisfiesHypothesis7.3.15
(exponentially),by Theorem7.3.12(c)(1)&(6)andProposition7.3.14.

As notedjustbeforethehypothesis,thishypothesisis atmostslightly stronger
than the assumptionthat

�
is DPF-stabilizable[with internal loop]; it excludes

only the casewhere � and
�

21 have no jointly stabilizableand detectable
realizations(cf. alsoLemma6.5.10).

At least for finite-dimensionalU and Y, any DPF-stabilizable
�Î�

TIC∞
satisfiesthehypothesis,by Lemma7.1.4.

Lemma 7.3.16(
i 9 � �ì�0 I 	 , &i 9 � I �0 � �i 9 � �ì�0 I 	 , &i 9 � I �0 � �i 9 � �ì�0 I 	 , &i 9 � I �0 � � ) Let

� 9 g
u
i

u � 1 bean r.c.f. with
i

u 9� �ì�0 I 	 �B@
TIC∞

�
U % W � . Thenall such r.c.f.’sare givenbyg 9 g

u o � i 9 i
u o � oy9 7 o 11 o 12

0 I 8 �B@
TIC

�
U % W � { (7.91)

For thedual claimwehave &g 9 &ozíg y , &i 9 &o�íi y , &oy9 - I Dt 12

0 Dt 22
. �]@

TIC.

Note that this implies that o 11
��@

TIC
�
U � (by LemmaA.1.1(b2)(2))ando 12

�
TIC

�
W� U � arearbitrary.

Proof: Clearly all r.c.f.’s definedby (7.91)satisfy
i 9 � �ì�0 I 	 . Conversely,

by Lemma6.4.5(c),
g 9 g

u o and
i 9 i

u o�9 � � �t 21 t 22 � , where o �y@
TIC.

Therefore,
i 9 � �ì�0 I 	 impliesthat � o 21 o 22 � 9 � i 21

i
22 � 9 � 0 I � .

Thedualclaim is obtainedanalogously(or by takingadjoints). `
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Corollary 7.3.17 If Hypothesis7.3.15holds,thenall d.c.f.’s of
�

of form (7.90)
satisfyHypothesis7.3.15.

Proof: Let
� 9 g

u
i

u � 1 9îíi y
� 1 íg y be as in Hypothesis7.3.15,and let&ïÄi

u11 � &� íg y21 9 I . Let also
� 9 gki � 1 9 &i � 1 &g bea d.c.f.with

i 9 � �ì�0 I 	 ,&i 9 � I �0 � � . Let o beasin (7.91).Theno � 1
11 &ïÄi

11 � o � 1
11 &� g

21 9yo � 1
11 o 11 9 I { (7.92)

Thedualclaim is obtainedanalogously. `
Remark 7.3.18 The r.c.f. in Hypothesis7.3.15 says (roughly) that

�
can be

stabilizedby measuringthe full output (z and y) and controlling u (i.e., not
affecting w). Similarly, the l.c.f. saysthat

�
can be stabilizedby measuringy

andcontrolling thefull input (u andy).
Thus is an intuitive explanation of the necessity(at least under certain

regularity) of Hypothesis7.3.15for onebeingable to stabilize
�

by measuring
y andcontrolling u; byProposition7.3.14thesearealsosufficient.

It will be shownin Theorem7.3.19that � DPF-stabilizes
�

iff � stabilizes�
21. Indeed,“all thepolesof

�
aresharedby

�
21” (cf. [Francis,p.34]), because� 9 7 g

11
i � 1

11 � g
11

i � 1
11

i
12 ; g

12g
21

i � 1
11 � g

21
i � 1

11
i

12 ; g
22 8 { (7.93)

Therefore, the polesof "� are polesof "i 11, which in turn are exactly the poles
of "� 21, by Lemma6.5.4, henceall thesethree mapshave samepoles (up to
multiplicities).

Thus,stabilizationof either
�

or
�

21 is equivalentto removing thesesingu-
larities.

A simple example of non-DPF-stabilizable
�

is thus any
� 9 � 0 �

12
0 0 � �

TIC∞ ð TIC.
Fromtheabove hypothesis(roughly, theDPF-stabilizabilityof

�
), it follows

thatall stabilizingDPF-controllerswith internalloopfor
�

areexactlythestabiliz-
ing
(DF-)controllerswith d.c. internal loop for

�
21, i.e., the ones given by the

Youlaparametrizationof Theorem7.2.14:

Theorem 7.3.19(DPF-stabilization with IL) AssumeHypothesis7.3.15. Then
thefollowing areequivalentfor a controller � with internal loop:

(i) � DPF-stabilizes
�

with internal loop.

(i’) � DPF-stabilizes
�

with d.c.internal loop.

(ii) � DF-stabilizes
�

21 with internal loop.

(ii’) � DF-stabilizes
�

21 with d.c.internal loop.

(iii) &i 22 o � &g 21 m �]@
TIC

�
Y � and � 9ym}o � 1 for someo � m �

TIC.
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(iii’) &o i
11 � &m g

21
�]@

TIC
�
U � and � 9 &o � 1 &m for some&o � &m �

TIC.

(iv) - s 11 qr
21 t . �B@

TIC and � 9cmpo � 1 for someo � m �
TIC.

(iv’) - Dt � Dq� Dr 21 Ds 22
. �]@

TIC and � 9 &o � 1 &m for some&o � &m �
TIC.

(v) For anyr.c.f. � 9�mpo � 1 and l.c.f. � 9 &o � 1 &m , there are
g

0 � i 0 � &g 0 � &i 0
�

TIC s.t. - s 0 qr
0 t . � 1 9 - Dt � Dq� Dr 0 Ds 0

. is a d.c.f. of
�

21.

The map � is well-posediff the “denominator” ( o or &o ) is invertible in@
TIC∞ in anyof theaboveequivalentconditions.

By (v), � DPF-stabilizes
�

if f � hasa joint d.c.f. with
�

21. (SeeDefinition
7.2.11for mapswith coprimeinternalloop.)

Proof: 1a Thefactthata DPF-stabilizingcontrollerof
�

with internalloop
hasnecessarilyad.c. internalloop,is givenby Lemma7.3.13,hence“(i) � (i’)”
holds.

2a Similarly, “(ii) � (ii’)” follows from Theorem7.2.14.
3a “(i’) � (ii’)”: Thisfollowsfrom part3a of theproofof Proposition7.3.14.
4a By Corollary7.2.15,all theotherconditionsareequivalentto (ii’), and

thetwo final claimshold. `
By combining the above theorem and Theorem 7.2.14, we see that all

stabilizing DPF-controllersfor
�

with internal loop are given by the Youla
parametrization:

Corollary 7.3.20(All stabilizing DPF-controllers with IL) AssumeHypothesis
7.3.15,andchoose

� � � � & � � & � �
TIC s.t.7 i

11
�g

21 � 8 9 v & � � &�� &g 21 &i 22
w � 1 �B@

TIC
�
U % Y � { (7.94)

(Thisis a d.c.f. of
�

21.)
Thefollowing parametrizationsare alternative(equivalent)parametrizations

of all (modulo being equivalent)DPF-controllers � with internal loop that
stabilize

�
, and each parameter(

� o � m � in (i) and (iii),
� &m � &o � in (i’), and

�
in

(ii) and(ii’); theseall arerequiredto bestable)determinesa different(nonequal;
seeDefinition7.2.11)map � with d.c.internal loop.

(i) � 9?m}o � 1 such that &i 22 o � &g 21 mc9 I .

(i’) � 9 &o � 1 &m such that &o i
11 � &m g

21 9 I .

(ii) (Youla) � 9 � � ; i
11

� � � � ; g
21

� ��� 1 (i.e., � q t � 9 - s 11 �r
21

� . �ñ� I � ), where� �
TIC

�
U � .

(ii’) � 9 � & � ; &g 21
� ��� 1 � &� ; &i 22

� � (i.e., � Dt Dq 	 9 � I � 	 - D � D�Dr 21 Ds 22
. ), where

� �
TIC

�
U � .

(iii) � 9ym}o � 1 ( 9 &o � 1 &m ), where - s 11 qr
21 t . � 1 9 - Dt � Dq� Dr 21 Ds 22

. �]@
TIC.
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Moreover, thefollowing holds:

(a) Thewell-posedones(if any)are exactlythose� for which the“denomina-
tor” is in

@
TIC∞ (cf. Theorem7.1.7);they satisfy&o�9 � i

11 � � g
21 � � 1 � &mÓ9 &o � ; oÓ9 � &i 22 � &g 21 �~� � 1 � m�9 � oµ{ (7.95)

(b) For any
� �

TIC we have(identity as equalmapswith coprimeinternal
loop) � � ; i

11
� � � � ; g

21
� � � 1 9 � & � ; &g 21 &� � � 1 � &� ; &i 22 &� � { (7.96)

(c) If m � o � &m � &o are as in (i) and(i’), thentheclosed-loopI/O mapsare given
by v &g 11 ; &ï &g 21 &g 12 ; &ï &g 22o &g 21 o &g 22

w 9 v g
11 &o g

11
ï ; g

12g
21 &o g

21
ï ; g

22
w :

7
uL

w 8 
� 7
z
y8 �
(7.97)

where
ï 9 &m g

22 � &o i
12 and &ï 9 &g 11 m � &i 12 o ; see(7.65) (without the

third (yL) columnandtop(u) row)for alternativeformulaein thewell-posed
case.

In particular, (cf. (7.64))ß à � � �ã�Z� 9 g
11

ï ; g
12 9 &g 12 ; &ï &g 22 { (7.98)

Recallfrom Lemma7.2.12(c2),thatthemaps(7.97)depend(of course)on
�

and � only, not on the particularcoprimefactors( o � m � &o � &m � g � i � &g � &i ) of �
and

�
(thoughwedo require(i), (i’) andHypothesis7.3.15).

TheH∞ 4BP(seeChapter12; Section12.3 in particular)consistsof finding,
for agiven

�
, astabilizingDPF-controller� s.t.thenorm

� ß à �
is lessthanagiven

constantγ (or for agivenΣ a[exponentially]stabilizingcontroller &Σ s.t.
� ß à � ! γ).

Proof: By Lemma6.5.8,it follows from Hypothesis7.3.15that
�

21 hasa
d.c.f. of form (7.94). By Theorem7.3.19,the stabilizingDPF-controllersfor�

with internalloopareexactly theDF-stabilizingcontrollersfor
�

21 with d.c.
internalloop, andtheseparametrizedby Theorem7.2.14,which alsoprovides
thewell-posednessclaim and(7.96).

Formula(7.95)follows from (7.8)and(7.10).
(c) From(7.52)andLemma7.3.10we seethat themap � uL

w 	�
� � zy 	 is given
by

g ( &o ( when
� 9 g ( i ( � 1 is a r.c.f.,&o ( 9 7 &o 0

0 I 8 � &m ( 9 7
0 &m
0 0 8 � and &o ( i ( � &m ( g ( 9 I { (7.99)

This conditioncanbe satisfiedby setting
g ( : 9 g � ,

i ( : 9 i � , where � : 9� &o ( i � &m ( g ��� 1 �B@
TIC

�
U % W � . Therefore,� 9 � I � Ç0 I � � 1 9 � I Ç0 I � � (7.100)

(by (i’)), where � ï 9 &o i
12 � &m g

22. Thus,
g ( &o ( 9 g � &o ( is givenby (7.97).
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Assuming (i), we obtain the dual formula in (7.97) analogouslyfromo ( &g ( 9 � I 0
0 t � &� &g and&� 9 � &i o ( � &g m ( � � 1 9 - I Ds 12 t ± � Dr 11 q

0 I . � 1 9 : - I DÇ0 I . { (7.101)`
Corollary 7.3.21(' case) Let ' �

a
TIC be inverse-closedand let Proposition

7.3.14(iii’) hold.
If the elementsof (7.94) are chosen from ' , then all stabilizing DPF-

controllersof
�

with a (d.c.) internal loopare theonesparametrizedin Corollary
7.3.20,andtheoneswith d.c. internal loop over ' are exactlythosewith

� � ' .
If, in addition,

^��
a

' �
a

ULR, thentheonewith
� 9 � M � 1

11 T is well-posed.

Proof: By Lemma6.5.8,we cantake
� � � � & � � & � � ' . in Corollary 7.3.20;

therestfollowsby combiningCorollary7.3.20andProposition7.2.17. `
As the final I/O resultof this sectionwe notethat the following well-known

criteria (seeTheorem4.2.1, p. 27 of [Francis] or Theorem2.1 of [Green])are
valid for generalWPLSstoo:

Lemma 7.3.22 Let
� 9 - � 11

�
12�

21
�

22 . �
TIC∞

�
U % W� Z % Y � and � �

TIC∞
�
Y� U �

havecoprimefactorizations
� 9 gki � 1 9 &i � 1 &g and � 9cmpo � 1 9 &o � 1 &m . Then

thefollowingareequivalent:

(i) � DPF-stabilizes
�

;

(ii)

7 s 11 s 12 qs 21 s 22 0r
21

r
22 t 8 �B@

TIC
�
U % W % Y � .

(iii)

v Dt 0 DqDr 11 Ds 11 Ds 12Dr 21 Ds 21 Ds 22

w �B@
TIC

�
U % Z % Y � .

Evenif � 9�m}o � 1 9 &o � 1 &m were merely a mapwith d.c. internal loop, then
(i)–(iii) arestill equivalent.

Proof: Let � 9�m}o � 1 be a map with r.c. internal loop. We prove that
(i) � (ii); thecase(i) � (iii) is analogousandthewell-posedcase(theonewhereo � o � 1 �]@

TIC∞) follows from this generalcase(with coprimeinternalloop).
By Lemma 7.3.10, � DPF-stabilizes

�
if f (7.79) DF-stabilizes

�
. By

Corollary7.2.15,this holdsif fIJJK 7 i
11

i
12i

21
i

22 8 7
0 m
0 0 87 g

11
g

12g
21

g
22 8 7

I 0
0 o 8

P QQS (7.102)

is in
@

TIC. Because(7.102)becomesa triangularmatrix by permutingthe
first and third rows andcolumns,we may deleteits third row and third col-
umnto obtainthat(7.102)is in

@
TIC iff (ii) holds,by LemmaA.1.1(b). `
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�
12�

21 ; E
�

22

�Ñ Ò /0 0&y 1 y2yL 3
u

3 /0$0&u4 uL2¾ 4� E2 w

4z2
Figure7.12:Thecontroller �|( : 9cm � o ; E m ��� 1 : &y 
� u for

� ; - 0
E

0
0.

Wesometimeswantto removethefeedthroughtermfrom
�

21, henceweneed
thefollowing lemma:

Lemma 7.3.23(D21 9 0D21 9 0D21 9 0 w.l.o.g.) Let
� 9 - � 11

�
12�

21
�

22 . �
TIC∞

�
U % W� Z % Y � . Let

F 9 � 0 0
E 0 � �¨^ �

U % W� Z % Y � .
Then � 9�m}o � 1 9 &o � 1 &m is a stabilizingDPF-controller with d.c. internal

loopfor
�

iff �¤( 9um � o ; E m ��� 1 9 � &o ; &m E ��� 1 &m is a stabilizingDPF-controller
with d.c.internal loopfor

� ; F . Thecorrespondingclosed-loopmapsw 
� zand
w 
� u (see(7.97))are identical.

Thecontroller � ( canberealizedby addingto � an outputfeedback through� E in thesamewayasin Figure7.12.
Finally, Hypothesis7.3.15holdsfor

�
iff it holdsfor

� ; F .

Thus, when finding such a controller for a regular
�

, (possibly under an
additionalrestrictionsuchas“

�
w 
� z

� ! γ”) we may take D21 9 0 w.l.o.g. (see
Lemma7.2.7 for well-posednessof controllers). Seealso the remarksbelow
Lemma7.2.18.

Proof: Let astabilizing � 9cm}o � 1 9 &o � 1 &m begiven.Let
g � i � &g � &i beas

in Proposition7.3.14.Thenv ò s 11 s 12s 21 s 22 ó ò
0 q
0 0 óò r

11
r

12r
21

r
22 ó 0 ò

0 0
E s 11 E s 12 ó ò

I 0
0 t ó 0 ò

0 0
0 E q ó w 9 IK ò Dt 0

0 I ó 0 ò Dq E 0
0 0 ó � ò

0 Dq0 0 ó�¤ô Dr 11 Dr 12Dr 21 Dr 22 õ ��ô Ds 12E 0Ds 22E 0 õ ô Ds 11 Ds 12Ds 21 Ds 22 õ PS � 1

(7.103)
is a d.c.f. of

� ; F , by Lemma6.5.7(a),hencethen �¤( DPF-stabilizes
� ; F ,

by Theorem7.3.19(iii). Fromthis we obtaintheequivalence(alternatively, we
canobtainit directlyby applyingLemma7.2.18to (7.79)).

Moreover,
ï ( : 9 &m � g

22 ; E
i

12 � � � &o ; &m E � i 12 9 ï
, hence

g
11

ï ; g
12 9g

11
ï (�; g

12 : w 
� z, by Corollary7.3.20(c).
As in the proof of Corollary 7.3.20(c),we can verify that � uL

w 	Ä
� � Duw � is

givenby
i ( &o ( 9 i � &o ( 9 - s 11 Dt s 11 Ç 0 s 12

0 I . , so that
i

11
ï ; i

12 : w 
� u is

unchanged.(Notethatit wouldbemorelogical to havewL in placeof w andto
havew 9 0 andhence&w 9 wL. Dueto historicalreasons,wedenote&w 9 wL by
w.)

(Alternatively, onecanobservethat
�
w 
� u� 9 �

yL 
� u� � 22 and
�
w 
� z� 9�

12 ; �
11

�
yL 
� u� � 22 areunaffected,by Lemma7.2.18.)
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The final claim follows from Proposition7.3.14(ii)&(iii) (alternatively,
from (7.103)). `
Thefollowing remarkis obtainedin thesamewayasRemark7.2.19was:

Remark 7.3.24(Exponential DPF-stabilization) By Remark 6.7.19, for any
claimsin thissection(andothers),wecandeducethecorrespondingresultsabout
ω-stabilizationfor someω

�
R, hencealsofor exponentialstabilization.

For example, if &� DPF-stabilizes
�

exponentiallywith internal loopand &� or�
21 hasanexponentiald.c.f., thensodo &� ,

�
21 and

�
, byLemma7.3.13.Assume

that this is thecase.
ThenHypothesis7.3.15holds and the two r.c.f.’s and l.c.f.’s assumedthere

areexponentialones,anda map � DPF-stabilizes
�

exponentially[with internal
loop] iff � DF-stabilizes

�
21 exponentially[with internal loop] (which in turn is

equivalentfor &i 22 o � &g 21 m beingin
@

TICexp).
Furthermore, all exponentiallystabilizingDPF-controllerswith internal loop

are givenby Corollary 7.3.20,if wechoose(7.94)to be in
@

TICexp require also
theparameters to beexponentiallystable.

For anyoptimizableand estimatablerealizationsof
�

and � (such do exist,
by Theorem 6.6.28), the combinedclosed-loopsystemin Figure 7.10 becomes
exponentiallystable, by Theorem7.3.11(c1).Similar remarksapply to parts (b)
and(c) of thetheoremandtheresultsnotmentionedhere.

Notes
Almost all standardclassicalresultson DPF-stabilization(see,e.g.,pp. 26–

36 and 42–47 of [Francis]) are special casesor simple corollaries of those
presentedhere.Any bookon theH∞ 4BPcontainsat leastsometheoryon DPF-
stabilization(often underthe name“dynamic stabilization”or “chain scattering
transformation”);see,e.g., [ZDG], [IOW] or [GL] for further theory on finite-
dimensionalsystemsand Section2.7 of [Keu] on someresultson Pritchard–
Salamonsystems. While this is being written, most of this sectionand some
extendedresultshavebeenincludedin [Sbook](which is restrictedto well-posed
controllers).Furtherhistoricalnotescanbefoundin [CZ].

Someof theI/O resultsof thissectionhavebeenpresentedin [Green]for well-
posedrational transferfunctionsand later in [CZ] and [CG97] for the Callier–
Desoerclass(seeLemma6.5.10(c)). However, many of their proofscannotbe
extendedto our generality, becausetheCoronaTheorem(seeTheorem4.1.6(c))
only holds for matrix-valuedtransferfunctions,by Lemma4.1.10. (Theorem
4.1.6(c) for TIC is from [Tolokonnikov] (see[Nikolsky], p. 293). It is newer
than [Vid] and it doesnot seemto be well known. Therefore,it might be that
someof theresultsof [CZ] arenot well-known to hold for generalmatrix-valued
transferfunctions.)Nevertheless,thebook[CZ] containsalsosomefurthertheory
on dynamicpartial feedbackandrobustcontrol,someof which canbeextended
to oursetting.
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