Chapter 7

Dynamic Stabilization

Andwhenwindsare at war with the ocean,
Asthebreastd believedin with me

If their billows excite an emotion,

It is thatthey bearmefromthee

— Lord Byron (1788-1824),Stanzado Augusta"

In this chaptemwe shall studydifferentforms of dynamicstabilization,extend
standarctlassicaresults(seee.g.,pp. 15-17and26—470of [Francis])for WPLSs
andsupplementhemwith new ones.

We assumehatwe aregivena fixedplant, e.g.,an1/O mapD € TIC,(U,Y)
(alternatvely, a WPLS) that we wish to control. In the caseof dynamicoutput
feedbak (cf. pp. 36—420f [Francis])the output(y) of the plantis fed backto the
input (u) througha DynamicOutputFeedbak& Contmller (DF-controller) in order
to stabilizeandcontrolthe plant,asin Figure7.1. Hereu, is theactualinputand
y asthefinal output;y;. canbeconsideredisthedisturbancen thefeedbackoop
andu asthe controller output. (In the literature,one sometimesusesthe word
“compensator’or “regulator”in placeof “controller”.)

By DF-stabilization of D € TIC«(Y,U) we mean that we chooseQ €
TIC«(U,Y) sothatthemap[y-] — [y] (equivalently (luxw — [2 ®]) L[]~
[y]; cf. Figure7.1) becomesstable;oneoften alsowishesto minimize the norm
UL = Yllszr,0),L2(R )

In Section7.1 we shall extend several classicalfinite-dimensionakesultson
DF-stabilizationto generaWPLSs;theseresultsinclude the Youla parametriza-
tion of all stabilizing controllers(Corollary 7.1.8) basedon a doubly coprime
factorization(d.c.f.) of D. However, it is notknown whethereachDF-stabilizable
map hasa d.c.f. (unlessdimU,dimY < o, seeLemma?.1.4), hencewe also
presenta theory for generalTIC, maps. (This appliesto Sections7.2 and7.3
too.)

In DF-stabilization, we require that the controller (Q) is well-posed (or
proper i.e., Q € TIC). In finite-dimensionatheory one sometimesallows for
impropercontrollers(*Q € H*/H*", i.e.,Q is allowedto have a pole atinfinity)
while the closed-loopmap ((lu xw — [H% ‘%})*1) is always requiredto be well-
posed.Theinfinite-dimensionatounterparbf this concepta DF-controller with
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internal loop, wasintroducedin [WC], by Geoge WeissandRuth Curtain. This
generalizatiorof the conceptof DF-controllerswill betreatedn Section7.2.1.

In the H* Four-Blodk Problem(H” 4BP) of Chapterl2, the controller may
useonly a part (y) of the of the output([¥]) asits input andit can control only
a part (u) of theinput ([y]) of the plant, asin Figure 7.8. Sucha controlleris
calleda DynamicPartial OutputFeedbak Controller (DPF-contoller) (cf. pp.
26—36and42-47of [Francis]). We developthe theoryfor DPF-controllergwith
or without internalloop) in Section7.3. However, if D € TIC,(U x W,Z x Y),
thenary stabilizing DPF-controllerfor D is a stabilizing DF-controllerfor Do,
andunderreasonabl@assumptionslsothe corverseholds,by Lemmas7.3.5and
7.3.6. Thereforemuchof this theoryis obtainedasa corollary of Section7.2.

We have above treatedonly thel/O theory while oneis oftenmoreinterested
in a systemstabilizinganothersystem(alsointernally); cf. Figures7.2and7.9.
However, if 2 is a realizationof the plant (D) and Z is a realizationof the
controller (Q), thenz stabilizesZ exponentiallyiff Q stabilizesD and %~ and
> are optimizableand estimatable(recall from Definition 6.7.3 and Corollary
9.2.13thatatleastif X is sufficiently regular, thenthisis equivalentto exponential
stabilizability and detectability),oy Theorems7.2.3and7.3.11. We alsopresent
somefurtherresultson“Z stabilizing”.

We give mostof our resultsfor (non-eponential)stabilization,becausehe
exponentialanalogiesof such results can be obtainedthrough shifting, as in
Remarks7.2.19and 7.3.24 (but the corverseis not true). However, thereare
someresultsthatseemto hold for exponentialstabilizationonly; suchresultsare
givenexplicitly.

Remark 7.0.1 Almostall 1/O resultsin this chapter are purely algebraic (and
do not assumecommutativity neithera matrix structure over somecommutative
ring), hencethey are valid whenwe replaceTIC, by 2’ andTIC by 4, whee 4
and .4’ (and X) areasin Remark6.5.11.

Thus,one can havea givenplantD € 4'(U,Y) (U,Y € X) and seekfor a
Qe 4/(Y,U) thatmalesD € 4, i.e., “stable”; seeDefinitions7.1.1,7.2.1,and
7.3.1for details.

This holdsfor the resultsconcerningthe I/O mapsonly, i.e., the frequency-
domain results; the generlization of state-spaceesultsrequires, of coursg
further assumptiongwhich are oftensimple cf. Chapter13 for a discrete-time
application).

7.1 Dynamic feedback(DF) stabilization

A fail-safecircuit will destoy others.
— Klipstein

As explainedabove, in this sectionwe generalizeseveral classicaldynamic
outputfeedback DF) results(cf. [Francis,Section4]) to theinfinite-dimensional
case(seee.g., Theorem7.1.7);mostothersaregeneralizedn Section7.2.
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Figure7.1: DF-controllerQ for D € TIC.(U,Y)

Every DF-stabilizablerationaltransferfunctionhasa d.c.f.,andclassicaDF-
stabilizationtheoryis basedon d.c.f!s. We believe thatnot every DF-stabilizable
D € TIC, hasa d.c.f. (cf. Lemma7.1.4), thereforewe also develop a DF-
stabilizationtheoryfor generalTIC, maps(andfor generaWPLSS).

In Figure7.1,we have

u 0 Q] [u+u
= 7.1
o= o bl "
or, by settingu:=u+u., y:=y+V.,
[;} _ []IOD %] [;] 4 [;:: . orequivalently, (7.2)
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providedthatQ is anadmissibleDF-controllerfor D, i.e.,thatl — [ 3 2] € GTIC.,
whichis equvalentto | - DQ € GTIC, (by LemmaA.1.1(d1)).

Notethatthis corresponds$o L = | in the settingof Definition 6.6.1 (applied
with substitutionsD — D° := [39], y— [y], u — [Jt]; compare(7.1) and
(6.123)—(6.124)with xg = 0), hencethe solvability (in TIC,) of the above
equationsis, indeed, equvalent to the admissibility of L, i.e., to condition
| — []g ‘%] € GTIC,. Weconcludehatthecorrespondinglosed-loopmapis given
by Df. Analogously for the settingof Figure7.4,the correspondinglosed-loop

. . ~ T ~ T .
systemis givenby thesystem=P: [xo % uL y.] — [x X u y] defined
below.

Thereforewe define:

Definition 7.1.1(DF-stabilization) We call Q € TIC(Y,U) an admissiblgsta-
bilizing] (DF-)controllerfor D € TIC(U,Y) if L = | is admissible[stabilizing]
for D := [ 9].

We call £ = [g g} e WPLS(Y,H,U) an admissible [stabilizing] (DF-
)controllerfor X = [%%] € WPLS(U, H,Y) [and we saythat & (DF-)stabilizes
2] if L =1 is admissiblgstabilizing] for the (permutatedparallel connection

A O|B O

so._ |0 A]O B € WPLSU x Y,H x H,U xY) (7.4)
0C|oO
C 0|D O

(weusepreficesasin Definition6.6.4).
We call D (resp.X) DF-stabilizablef it hasa stabilizingcontroller Q (resp.



Figure7.2: DF-controllers. for & € WPLS(U, H,Y)
f), andwe usepreficesasin Definition6.6.4.

We usually say “stabilizing” instead of “admissible stabilizing” (for ary
meaningof thesetwo words usedin this monograph).Note that by “controller
for D" wereferto al/O map(Q) andby “controllerfor Z” we referto system().
In classicatheoryoneoftendoesnot make ary differencefor thesetwo concepts
(but we do).

Thus, Q is admissible[stabilizing] for D iff the closed-loopsystemin Fig-
ure7.1lis well-posedandstable,i.e.,u,y € L2 for all u,y,. € L?]. Analogously
> is admissiblgstabilizing] for Z iff the closed-loopsystemin Figure7.2is well-
posedandstablej.e.,u,y € L2 andx andX areboundedor all u,y, € L2(R+; %),
Xo € H and% € H]. By LemmaA.4.5and Lemma6.1.10(a1)§ is exponentially
stabilizingfor X iff x,X € L? (andhenceu,y € L2) for all u.,y, € L?, xo € H and
Xo € H.

Obviously, D° andhenceD} arethe samein both settings(i.e., in the setting
of Figure7.1andin thatof Figure7.2). Thus,s is I/O-stabilizingfor Z iff Q is
stabilizingfor D. An analogousommentappliesto Definitions7.2.1and7.3.1
too.

Recallfrom Definition 6.6.10thatwe follow thestandaraornventionto usethe
word “stabilization” for state-feedbacktabilization. Therefore we have chosen
theterm“DF-stabilization”for dynamicoutputfeedbackbut wedrop“DF-" when
thereis no dangerof misinterpretation.

In some classicaltexts, one loosely speaksof “Q stabilizing 2", but one
thenusuallymeanghe concept*X stabilizingZ” for a suitablerealizationof Q.
However, we pay someattentionto this “concept”’in Remark12.5.8.

Fromtheabove definitionandDefinition6.6.1we obserethatQ is admissible
for D iff £ is admissiblefor . We list here several additional equivalent
conditions:

Lemma 7.1.2(DF-admissibility) A mapQ € TIC«(Y,U) is admissible[stabi-

lizing] for D € TIC(U,Y) iff [_'D ’|Q} € GTICx(U xY) [and [_'D |Q]1 €

TIC(U xY)]; or equivalentlyif theclosed-lood/O mapD? : [y-] — [y], givenby



(cf. Figure7.1)

1 Y- 9 (-9 -

_[r -, _[0-ap)t-1 (-@D)'Q
B [—D ! ] o [D(l -Qp)~*t (I —DQ)‘l—l]
is well-posedand stable(i.e., Df € TIC)].
Moreover, Q is admissiblefor D (equivalently = is admissiblefor %) iff
| —QD € GTIC(U) (equivalentlyl —DQ € GTIC(Y)). For D,Q € ULR this
is equivalento | —DQ € GB(Y).

(7.5)

Proof: We have | — LD° = [ : *Q}, hencethe first paragraphfollows

D |
from Definition 6.6.1andProposition6.6.2. UseLemmaA.1.1(d1)(notealso
(A.12)) andProposition6.3.1(c)for thesecondparagraph. O

Therolesof D andQ (resp.= and%), areidentical;e.g.,Q stabilizesD iff D
stabilizesQ. Thiswill notbethecasen thedynamicpartial (output)feedbackijn
Section7.3,wheretheinput of Q is only a partof the outputof D, andtheinput
of D consistonly partially of the outputof Q.

Unlike for admissibility b3 beingstabilizingfor Z is a strongerconditionthan
Q being stabilizingfor D, sincein Figure 7.2 thereare more signals(or maps
betweersignals)to be stabilized(by thechoiceof %) thanin Figure7.1.

Indeed, £ 1/O-stabilizess iff Q stabilizesD. In this chapter we will
concentrateon |/O-stabilization, becausefor optimizable and estimatableZ
and Z, 1/O-stabilizationis equivalentto exponentialstabilization,by Theorem
7.2.3(d)&(cl).(Seethetheoremfor severalanalogousesults.)

If D hasa d.c.f. and Q stabilizesD, thenD and Q have jointly [strongly]
stabilizableanddetectableealizationspy Theoren6.6.28andProposition7.1.6.

If £ andZ aresuchrealizationsandwe connectheirinputsandoutputs(asin
Figure7.2 andDefinition 7.1.1),thenthe resultingcombinedclosed-loopsystem
becomegstrongly] stable by Theorem7.2.3. (If D hasanexponentiald.c.f. and
Q stabilizedD exponentially thenwe canchoose> andZ sothatthe closed-loop
systembecomesxponentiallystable.)

Notethatwe have assumed) to bewell-posedthatis, in TIC (i.e.,@ € HY).
SeeSection7.2for non-well-posedontrollers.

A stablemap(or system)is stabilizedby ary sufficiently small stablepertur
bation:

Lemma 7.1.3(Small Gain Theorem) Let ||D||ticwu,y)l|Qllmic(vu) < 1. ThenQ
stabilizesD.

If £ and = are [SOS-/stongly/exponentially]stablerealizationsof D and Q,
respectivelythenZ [SOS-/stongly/exponentially]stabilizess.

Proof: 1° Q stabilizesD: Now | —DQ € GTIC, by LemmaA.3.3(A0),
henceg(7.5)is stable.

2° 5 stabilizesS: This follows from Theorem?.2.3(d)&(a)&(b). O



Wewill oftenassumeéhatD hasad.c.f. If U andY arefinite-dimensionalthen
this doesnot reducegenerality(we suspecthatthis is notthe casein general):

Lemma7.1.4(D.c.f) If D € TIC,(C",C™) is DF-stabilizable thenD hasad.c.f

However, not all distributed scalar systems(functions f/g, where f,g €
H®(C™) and g # 0) have coprime factorizations,becauseH® is not a Bezout
domain(see[Vid]), althoughwe do not know if this appliesalsoto well-posed
scalartransferfunctions(thosewith f/g boundedn someright half-plane).

If D hasar.c.f., thenit hasat leasta DF-stabilizingcontrollerwith internal
loop, by Corollary7.2.13;seealsoProposition7.1.6(b1).

If D € TIC,(C) hasar.c.f.,, thenthereis a stablestabilizing DF-controller
for . Indeed,if N,M € H*(C") arecoprime,thenM — QN € GH®(C™"), for
some@ € H®(C™), by [Treil92], hencethenQ € TIC(C) is stabilizingfor D, by
Proposition7.1.6(b1).(This would not bethe casef the scalarfield wasreal,see
[S92].)

Naturally, possibleextensionsof this “stable (Bass)rank” result by Sege
Treil for multi- or infinite-dimensionalHilbert spaceswvould extend the above
conclusioncorrespondingly

Proof of Lemma 7.1.4: Now D = NM~1, whereN := D(I —QD)~! and
M := (I — QD) ! arestable,by (7.5). Thus,D = NM ! € H*/H® (andD

is DF-stabilizable),so by [Smith, Theorem1], D hasa generalized-.c.f. and
~—1~
agenerallzed c.f. in the sensethat D = NlM‘ andD = Ml N7 for some

Nl,Ml,Nl,Ml € TIC with N1,M; r.c. anle,Ml l.c.
By Lemma6.5.4(d2),M € GTIC,, and D = NyM. 1 _ thisis ar.c.f.

Similarly, DY = N¢(Mg)Lisar.c.f.,i.e., D= M; Ny isal.c.f.. Thus,they can
becompletedo ad.c.f.,by Lemma6.5.8. O

Lemma7.15Let D = NM ! and Q = YX ! be rcfs. Then [J?] =
[2Y][M 0] isar.c.t (of [29]). Moreover, we havethefollowing:

(a) TheDF-contoller Q is admissiblefor D iff [M Y] € GTIC,; if thisis the
Nx] €6

casethen
1
o [1 _Jo ¥ Y
DP := [_D =Ix o (7.6)
(b) TheDF-contmller Q stabilizesD iff [M ¥] € GTIC; if thisis thecase and
weset

1
- ﬁgﬁ fg] , (7.7)

thenM,X € GTICw, M 'Nisal.c.f. of D, andX 1Yisal.c.f. of Q.




Theobviousdual resultsfor I.c.f!s are true aswell.

Soif Q stabilizesD andthesemapshave coprimefactorizationsdrom same
side,thenwe actuallyhave thed.c.f.(7.7); cf. Proposition7.1.6(a).

Proof: Clearly[39] = [9 ¥] [¥ 9] ‘isar.c.f.,so(a)andtheequivalence
in (b) hold by Lemma6.6.6 (and LemmaA.1.1(c3)) (recall that L = | in
Definition7.1.1). o

Assumenow that Q DF-stabilizesD ThenM,X € GTIC,, by Lemma
A.1.1(c1)(becaus&V, X do), and(7.7) shavs thatM N=NM !, X 1y =
YX 1, andthatthesefactorizationsarecoprime.

By taking (causal)adjoints,onegetsthe dualresults. O

Proposition7.1.6 LetD € TIC.(U,Y).

(a) AnystabilizingDF-controller of D hasa l.c.f. (resp.r.c.f) iff D hasar.c.f.
(resp.l.c.f.).

(b) If D hasar.c.i D = NM~1, then(b1)—(b3)hold.

(b1) A mapQ € TIC, DF-stabilizesD iff Q hasal.c.f. Q = XY s.t.
XM—-YN=I.If XandY are sud, then

X=M-QN) ! Y=M-QN)!Q, and (7.8)

DY = MX —| MY , [UL} — [u] ) (7.9)
NX NY YL y
(b2) Let Q = X~1Y beal.c.f. ThenQ DF-stabilizesD iff XM — YN €

GTIC.
(b3)LetQ = YX ! bear.c.f ThenQ DF-stabilizesD iff [} ¥] € GTIC.

() If D hasal.c.f. D = M !N, then(c1)—(c3)hold.

(c1) AmapQ € TIC, DF-stabilizesD iff Q hasar.c.f Q = YX~! st.
MX-NY =|. If XandY are sud, then

X=M-NQ) !, Y=M-NQ Q. (7.10)

(c2) LetQ = YX~! bear.c.f ThenQ DF-stabilizesD iff MX — NY €
GTIC.

(c3) Let Q = X-1Y bea l.c.f. ThenQ DF-stabilizesD iff [_X& = ] c
GTIC.

(d) LetQ DF-stabilizeD. ThenD hasad.c.f iff Q hasad.c.t

Notethat[f% g] e GTIC & [1%%] € GTIC, by LemmaA.1.1(c3).
In (bl),clearly[JD *IQ} = [IEN% Ilzg] W] — [g]



Proof: (a) Thisfollowsfrom (b1) and(cl), becausave caninterchangehe
rolesof D andQ. B _ L

(bl) 1° Let D have ar.c.f. (N,M) andSM —-TN =1, T,S € TIC. LetQ
stabilizeD, sothatl —QD =1 -QNM ! € GTIC,, andD € TIC, in particular
M—-QN € GTIC.

The stability of DM(M — QN)™1] = D(I — QD)= and DM(M —
QN)1Q] = D(I - QD) 'Q = (I = DQ)~* -1, from (7.5) (and Lemma
A.1.1(f6)),impliesthatof X := (M—QN) ! = M1 [M(M — QN) 1] andY :=
(M- QN)~1Q, by Lemma6.5.6(b). ClearlyXM — YN = (M — QN)~} (M —
QN) =1, soX € GTIC., andY arel.c.

2° Corverselyif Q =X"1Yisal.c.f.andXM— YN =1, then(l —QD) 1 =
[X-1(XM—YN)M 1]~ = MX etc.,hence(7.9) holds,soDP € TIC, i.e.,Q s
stabilizing. N N

3° By Lemma 6.4.5(d), the X and Y constructedin 1° are uniquely
determinedy Q. L

(b2) By Lemma6.4.5,all l.c.f’s of Q aregiven by (UY,UX) with U €
GTIC, Therefore,Q hasa l.c.f. of the form describedn (a) iff XM — YN €
GTIC.

(b3) Thisfollows from Lemma7.1.5.

(c) This is proved analogously(or by taking (causal)adjointsin (b)). Of
coursewe couldwrite adualformulafor Df too.

(d) Thisfollowsfrom (a) andfrom thefactthatawell-posednaphasad.c.f.
iff it hasar.c.f.andal.c.f. [Lemma6.5.8].

O

In mostcontroltheoryonestudiegproperrationaltransferfunctions(i.e.,those
with a (WPLS) realizationwith dimU,dimH,dimY < o); they always have a
d.c.f. If dimU,dimY < o, thenD € TIC.(U,Y) musthave ad.c.f. in orderto
be DF-stabilizable,by Lemma7.1.4. SeeLemma6.5.10for further sufficient
conditionsfor theexistenceof ad.c.f.

For thesereasons,we shall often assumethe existenceof a d.c.f. This
assumptiorenablesusto generalizethe Youla parameterizationf all stabilizing
controllers:

Theorem 7.1.7(Stabilizing DF-controllers) Let D € TIC(U,Y) havea r.c.f
andal.c.f. D = NM~! = M~!N. ThenD hasthed.c.

M T
N S
for someT, S, T,Sv € TIC, andthefollowing are equivalent:

(i) Q DF-stabilizedD.
(i) [M¥] € GTIC,X € GTIC, andQ = YX 1.

(i) [_3% —g] € GTIC,X € GTIC, andQ = X1,

S -T
N M

S -T
N M

N S

[M T} (7.11)



(iv) Qhasad.cfQ=YX!=X"1Ys.t

¥ 3] -

X -Y
N X '

3 & (7.12)

(v) [Youla] Q = (T+MU)(S +NU)~* for someU € TIC s.t. S +NU € GTIC...
(vi) [Youla] Q = (S+UN)~Y(T+UM) for someU € TIC 5.t.S+UN € GTICo.

(vii) Q = YX~1, whee [¥] = [MT][V] andU e TICiss.t.X=S+NU €
GTICo.

(viil) Q = XY, whee [x ¥] = [1 U] [ ] andU e TICiss.t.X=S+UN €
GTIC..

Moreover, for U € TIC wehaveS +NU € GTIC, < S+UN € GTIC., and
if eitheris true, then

(T+MU)(S +NU)~* = (S+UN) (T + UM). (7.13)

Thus,any D € TIC, having a d.c.f. (denotedby (7.11)) is DF-stabilizable
iff S+ NU € GTIC, for someU € TIC, or equivalently, iff the S in (7.11) can
be chosensothatS € GTIC., NTIC. Thosefactorizationg7.11),in which S ¢
GTIC,, canbe thoughtas defining non-well-posedimproper) DF-controllers;
seeTheorem/.2.14for ageneralizatiortontainingalsosuchcontrollers.

Onefacesthe sameproblemin the finite-dimensionatheory (i.e., the theory
for rational transferfunctionswith dimU,dimY < «): unlessS + NU € GHg,
the controller Q is ill-posed (i.e., not proper thatis, unboundedn ary rlght
half-plane). If del(S—|— NU) = 0, thenQ is not definedanywhere. However,
regardlessof det(S + NIU), the combinedclosed-loopcondition (in Figure 7.1)
is well-posed.This kind of non-well-posedtontrollers(“controllerswith internal
loop”) aretreatedn Section7.2.

Notethatall factorization®f Q (andD) in thetheorerrareobvlously coprime.

We recallfrom LemmaA.l.l(cS)that[_N } e GTIC iff [ } e GTIC.

Proof: The d.c.f. (7.11) exists, by Lemma6 5.8. Thus, ary stabilizing
controllerof D hasad.c.f.,by Proposition7.1.6(d).

“(i) < (ii)": This follows from Lemma7.1.5(b). Note that [} Y] € GTIC
impliesthatY andX arer.c.

“(il) < (iii)”": Theseareadjointsof eachother

“(ii) < (vii) < (iv)": By Lemma6.5.9(b),all completions| | suchasin (ii)

aregivenby [gi’fw} with U € TIC andV € GTIC. Thestabilizingcontrollers

are,by (ii), theonescorresponglngo SV+NU € GTICw, so,by Lemma6.4.5,
we maytake V = | (andU := UV~ € TIC arbitrary)without altering@Q, and
thuswe obtainthe equivalentparametrizatiorfvii). Moreover, in this case

S+UN —(T+UM)

M T-+MU ‘1: (7.14)
N M ’ '

N S+NU

by Lemma6.5.9(c).



Claim (v) is areformulationof (vii); claims(viii) and(vi) arethe dualsof
(vii) and(v), respectrely.

To prove the final claim about Youla parametrizationwe note that, by
(7.14)andLemmaA.1.1(c1),S+ NU € GTIC, < S+ UN € GTIC. More-
over, (7.14)implies(7.13)if S+NU € GTIC. O

Directly from thetheoremwe get:

Corollary 7.1.8(You[§-pzirametrization) LetD € TIC»(U,Y) havear.c.f. and
al.c.f. D=NM ! =M"IN. ThenD hasthed.c.f

¥ 3

for someﬂI‘,S,T,g e TIC.
Moreover, thefollowing are equivalent:

(i) D is DF-stabilizable
(i) [M¥] € GTIC for someX,Y s.t.X € GTICo.

(iii) [f% _Mﬂ € GTIC for someX, Y s.t.X € GTICa.

(vi) [Youla] S +NU € GTIC, for someU € TIC.
(vii) [Youla] S+ UN € GTIC., for someU € TIC.

S —T
N M

S -T
N M

N §

[M T} . (7.15)

Finally, if theseconditionsare satisfied thenall DF-stabilizingcontrollers of
D are parametrizedoy

Q = (T+MU)(S +NU)~! = (S+UN)~}(T + UM). (7.16)

!vheler rangesover thoseU € TIC for which S+ NU € GTIC. (equivalently
S+ UN € GTIC).
An alternative parametrizationis Q = YX~! s.t. [M¥] € GTIC andX €

. ; e — X1V X -Y X
GTICa; athirdoneis Q=X ¥ st.| X V] e gTIcandX e 6TICa.

Given certainregularity, we canmake the controllercorrespondingdo ar.c.f.
well-posed:

Corollary 7.1.9 LetD havear.cfD=NM"1, XM— YN =1 s.t.X,M € ULR.
ThenD is DF-stabilizable

Proof: Define
S=M1+X-MMX, T:=Y-MMY (7.17)

to obtainthatSM —TY =1, S€ ULR andS=M"14+X -X =M-1e GB
(by Proposition6.3.1(c)),henceS € GTIC.. Thus,S~T DF-stabilizesD, by
Proposition7.1.6(b1). O

Naturally, Youlaparametrizatiortanbe appliedalsowhenoneonewishesto
work in asubclas®f TIC:



Proposition 7.1.10 Assumeéhat B cAcC ULRNTIC (eg.,A=MTIC or 4 =
ULRNTIC, seeDefinition 6.2.4). Assuméhat D hasa d.c.f over 4, i.e, (7.11)
holdswith M, N, S, T, M N S T e A.

Thenall stabilizing DF-controllers of D are parametrizedn Theoem7.1.7,
andtheonesthathavead.c.f over 4 are exactlythosewhoseparameter(sprein
A4, i.e., which satisfyany (henceall) of thefollowing equivalentconditions:

(i) QhasarcfQ=YX1stXY €4,
(i) Q hasal.cf Q=X"1YstX,Y € 4;
(V)U € 4 in (v), (vi), (vii) or (viii) of Theoem7.1.7.

If 4 C ULR, thenD hasstabilizingDF-controllers.

Notethat 42 = MTIC and4 = ULRNTIC satisfyall above assumptiongcf.
Definition 6.2.4). Seealso(the Corona)Theorenmd.1.6(d)for suchd.c.f's.
Proof: Theorem7.1.7 parametrizesll DF-stabilizingcontrollersof D, in
particular by (vi’), (vi”) and(7.13)of Theorem7.1.7,they satisfy

M Y| _M TN U [ X Y| _[ U] § T
N x|~ |N s|lo 1|?_§ m| = o | N M
(7.18)

for someU € TIC. If U € 4, thenclearly XY, §§ Y € 4. Con/ersely if
X, Y € 4,then[} V] = [ SN ;v}r} [MY] & 4 (analogouslyU € 4 iff X,Y € 4).
If 4 C ULR, thenthe existenceof a stabilizing controlleris guaranteed,

by Corollary 7.1.9. (Alternatively, We cantake U := —M 1T, becausehen

(S+UN)(+©) = M~1(MS—TN) = M~! € GB(U), by (7.11)+w)11 and
Proposition6.3. l(c).) O
Notes

The connectionbetweencoprimefactorizationand dynamicstabilization(in
Theorem7.1.7 and Corollary 7.1.8) is well-known; see, e.g., pp. 36—42 of
[Francis]or Chapterl2 of [ZDG] for classicalpresentationand [CWW96] and
[CWWO1] for resultsfor WPLSs.O. Stafanshasrecentlyincludedsomefurther
resultsin [Sbook].

The classof matrix-valued“H®/H* transferfunctions” is not containedin,
nordoest containtheclassmatrix-valuedwell-posedransferfunctions.(Remark
7.2.20sketchesaninfinite-dimensionatheorythatcoversbothclasses.)

The dynamicl/O-stabilizationtheorybasedon fractionalrepresentationg/as
first introducedin [DLMS] for rational functions. Also more generalcases
have beenstudiedextensvely; see,e.g., [GS] for the generalcaseof matrix-
valued“H* /H” transferfunctions”,[CZ] for the specialcaseof a Callie—Desoer
class(from [CD78]), and [Logemann93]for certain other specialcases(with
applicationsto PS-systems).An excellent classicalreferenceis [Vid], which
coversall theseclassedo someextent. Seethe notesto Chaptersy and9 of [CZ]
for furtherhistoricalnotes(thesealsocover theresultspostponedo Section7.2).



Above we have presentechereonly the core resultsof the theoryandthose
resultsthatrequirethe controllerto be well-posed.In the restof this chapterwe
shallpresenfurtherresultson DF-stabilizationrundermoregeneralassumptions.
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Figure7.3: DF-controllerQ with internalloopfor D € TIC.(U,Y)
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7.2 DF-stabilization with internal loop (|B 0' 0"
, -stabilization with internal loop (|3 0 0 1)

It's notan opticalillusion, it justlookslike one
— Phil White

TherestrictionX € GTIC, (orS+NU € GTIC.) intheYoulaparametrization
of Theorem?7.1.7 might feel someavhat artificial: it is only neededn orderto
have the open-loopmapQ : y — u of the controllerwell-posed(or proper i.e.,
Q € TICw), but evenwithout thatcondition,all closed-loopmapsarewell-posed
(oncewe connecthe controllerto the plant).

Thereforejn finite-dimensionatheory onesometimesllowsfor improper(or
non-well-posedontrollers. To cover suchcontrollersin additionto the proper
ones,G. WeissandR. CurtainintroducedDF-contmllers with internal loop in
[WC].

This conceptallows us to have mathematicallymore beautiful formulae
and offers a solution to certain problemsthat cannotbe solved by well-posed
controllers(seethe exampleat the beginning of [CWWO0L1]). Neverthelessin our
mostimportantresults,we alsopoint out whensucha controllercanbe replaced
by awell-posedcontroller

Well-posedcontrollers,i.e., thoseof Section7.1, are a subsetof controllers
with internalloop (andsoareall H* /H* fractionalcontrollers seeRemark7.2.8),
hencemary resultsconcerninghemwereomittedin the previous sectionandare
presentedhereunderwider generality

Ontheotherhand,the proofsof mostresultsfor controllerswith internalloop
couldbereducedo thewell-posedcasepy Lemma7.2.6.

A map0O = [8;1 8;2] € TIC,(Y x =,U x =), where= is anarbitraryHilbert

space becomesa DF-controllerwith internalloop whenwe connectits second
outputto its secondinput, asin Figure7.3. This resultingcontroller neednot
be well-posed,i.e., closingthe internal (§) loop only neednot be an admissible
operation(whenQ is uncoupledrom D); it is enoughthatthe combinedclosed-
loop systemof Figure7.3becomesvell-posed.
As above, a DF-controller with internal loop has an internal signal & €

L%C(R; =), where= is someHilbert space.Note thatwhereasa given plantfixes
the signalspaced) andY of ary of its controllers,the space= may be different

for differentcontrollers.



In Figure7.3,we obviously have

u 0 O1n On2f [u4uL u+up
yf=|D O 0 y+y | =D° |y+y |. (7.19)
3 0 O O [E+&L &+EL

As under(7.1), we obsenre that the correspondingslosed-loopmapis given by
DX = (I —D°)~1DP, andthatthecorrespondinglosed-loogsystemis givenby =9
givenbelow. Thereforewe make the following definitions:

Definition 7.2.1(DF-stabilization with internal loop) LetD € TIC,(U,Y). A
mapQ = [8; g;ﬂ € TIC.(Y x Z,U x =) (whee also = is a Hilbert space)is
an admissiblg[stabilizing] (DF-)controllerwith internalloop for D if the output

feedbak operator L = | is admissibldgstabilizing] for

0 On @12-|
D°:=|D 0 O |eTICu(UxYxZI). (7.20)
0 Oa @22J

We call 5 = [é;%} € WPLSY x =,H,U x =) an admissible[stabilizing]

(DF-)controllerwith internalloop for £ = [&{2] € WPLS(U,H,Y) if L=1is
admissiblgstabilizing] for the (permutated)parallel connection

A 0O|/B 0 O
0 A0 B B
5= 0 C |0 Oy Op | EWPLSU XY xZ,HxH,UxY xZ).
C 0|/D 0 O
| O C |0 On 022 |

(7.21)

We usepreficesasin Definition6.6.4with = in placeof %, .

We call D (resp.Z) DF-stabilizablewith internalloop if there is a stabilizing
contmller with internalloop for D (resp.for %), andwe usepreficesasabove

We call two admissibleDF-contollers for D (resp.for %) with internal loop
equialentfor D (resp.for ) if the corresponding(1-2, 1-2)-blocks of D :=
(1 —=D°)~1—1 areequal,i.e., if they determinesamemapsfromu,y; tou,y.

If O = [% 3] € TIC(Y x Z,U x =), thenwe mayremave the words “with
internalloop” everywhee in this definitionandidentifyQ with Q11 € TIC«(Y,U)
(cf. Lemmar.2.7).

Naturally, “[DF-]stabilizes’ means'is stabilizingfor”, in ary of the above
settings.

NotethatDy maps(uL, Yy, &) — (u,y,§). SeealsoFigures7.3and7.4andthe
commentdelov Definition 7.1.1andSummary6.7.1.

Lemma 7.2.2(DF-Admissibility and equivalence) LetD € TIC«(U,Y). Amap

0= [&1 &g} € TICx(Y x Z,U x =) isanadmissiblgstabilizing] controller with

internal loop for D iff the connectionf Figure 7.3 is well-posedand stable i.e.,
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Figure7.4: DF-controller with internalloop for £ € WPLS(U, H,Y)

u,y,& € L2 for all u,y,,&_ € L?], equivalentlyiff | —D° € GTICu(U x Y x )
[and (I —D°)~t € TIC].

Moreover, = = [%—%} is admissiblewith internalloopfor = = [412] iff O is

admissiblewith internal loop for D.

Finally, if two admissiblecontrollers for X are equivalentfor Z (i.e., their I/O
mapsare equivalentfor D), thenthe mapsfromxg, u,y. to X, u,y are equalfor
thetwo closed-loopsystems.

Analogouslyf is admissiblgstabilizing] for Z iff the closed-loopsystemin
Figure7.4is well-posedandstable,i.e., u,y,& e L? andx andX areboundedor
allu.,y, & € L2(R+; %), Xo € H andXp € ﬁ]. (We notethatexponentialstability
is equivalentto x, X € L? (andhenceu,y,& € L?) forall u.,y. &L € L?, X € H and
X € H, by LemmaA.4.5andLemma6.1.10(al).)

We obsere that only the mapsconcerningX, Xo, § and & may differ for
equialentcontrollersfor Z; thus,thereis no differencefrom the partof X visible
for .

Proof: Theclaimon| —D° andthe “moreover claim” follow from Defini-
tions7.2.1and6.6.1.Thereferenceo Figure7.3is obvious(cf. (6.122)—(6.124)
and(6.127)).

The final claim (which could be obsered from Figure 7.4) follows by
computingZP from (6.125)and observingthatits first, third and fourth rows

and columns dependonly on = and [} 93] DP [199]" (use the fact that
DP :=D°(1 —D°)~1 = (1 —D°)~1—1). O

The identification of [@51 8] and Q11 is natural: all open-loopand closed-
loop signalsin Figures7.3 and 7.1 becomeequal(exceptthatin Figure7.3, we
have the additional,nggligible signals¢ = 0 and& = &, ). Thus,a (well-posed)
stabilizing controller (in the senseof Definition 7.1.1) is a specialcaseof a
stabilizing controller with internalloop (seealsoLemma7.2.7). The situation
with systemss the same(cf. Figures7.4and7.2).

We stressthat we mention the words “internal loop” explicitly wheneer
we speakof such controllers; all other mapsare assumedo be well-posed,
i.e., € TIC, (which is also statedexplicitly in theoremsand definitions),so no
confusionshouldarise. The sameappliesto mapswith coprimeinternal loop



(Definition 7.2.11)andalsoelsavhereis this chapter

In connectionwith the H* Four-Block Problem, however, the theory for
controllerswith internalloop becomeamore naturaland beautiful thanthe part
restrictedto well-posedcontrollers. Therefore,in Chapterl2, contraryto the
practice of this chapter a “[stabilizing] controller” is allowed to possessan
internalloop, and“well-posed”is alwayswritten explicitly, nevertacitly.

Trivially, X 1/0-DF-stabilizess. iff O DF-stabilizesD (i.e., iff DY becomes
stable). Under standardassumptionsthis is also equialent to the stronger
conditionthat> DF-stabilizes> (i.e., thatthewhole 2P becomestable):

Theorem7.2.3(Z stabilizesZ <> O stabilizesD) Let = = [AB] ¢
WPLS(U, H,Y) and% = [%@] € WPLS(Y x =,H,U x ).

(a) Supposéhat = gndf are SOS-stabilizableThenZ SOS-stabilizeZ with
internal loopiff Z I/O-stabilizesx with internal loop.

(b) ([Strong] stability) Supposé¢hat any of the following conditionsholds:

(1.) bothZ and= are [[e xponentially]strongly] g.r.c.-stabilizable;
(2.) bothZ andZ are [[e xponentially]strongly] q.l.c.-detectable;

(3.) both = and £ are SOS-stabilizabl@nd [[e xponentially] strongly]
detectable;

(4.) bothZz and % are detectableand [exponentially]stabilizable

ThenZ [[e xponentially]strongly] stabilizess with internal loop iff £ 1/O-
stabilizesz with internalloop.

(c1) (Exponential stability) The systemZ stabilizesZ exponentially with
internal loop iff Z 1/0O-stabilizesZ with internal loop and ~ and Z are
optimizableand estimatable

(c2) Supposehat any of thefollowing conditionsholds:

(1.) both= and < are optimizableand estimatable;

(2.) bothZ and= are optimizableandinput-detectable;
(3.) bothZ and are estimatableand output-stabilizable;
(4.) bothZ and £ are optimizableandg.r.c.-stabilizable;
(5.) bothZ and < are estimatableand.|.c.-detectable

ThenZ stabilizesE exponentiallywith internal loop iff £ 1/0O-stabilizess
with internalloop.

(d) (Well-posed controllers) Suppose that, instead, P [é g} €

WPLS(Y,H,U). Then(a)—(c2) hold if we deletethe words “with inter-
nal loop” everywhee in thistheoem.

Thus, all mapsbetweensignals(i.e., =} : Xo, %o, UL, Y1, &L — X, X, u,Y,§ (and
— U,Y,&)) in Figure7.4 are (SOS-/strongly/eponentially/...)stableiff the maps



fromug, y and§_ to u, y and¢§ arestableandx andZ have the corresponding
stabilizability listedabove.

Therefore,we can often concentrateon the I/O theory E.g.,if Z is jointly
stabilizableanddetectableandwe find a stabilizingcontrollerfor D, thenary of
its g.r.c.-stabilizablerealizations(cf. Theorems7.2.14and 6.6.28)stabilizesz.
Analogousclaimshold underotherassumption$or .

Proof of Theorem 7.2.3: (a)&(b)&(c2) By Lemma6.7.18(and Lemma
6.7.17with G = [? | ]), Z° inheritsthe stabilizability and detectabilityproper
tiesof = andZ. Thereforetheabove assumptiongmply, by Proposition6.7.14,
thatL = | is (SOS-/strongly/feponentially dependingon the assumptionsjta-
bilizing for Z° iff it is I1/O-stabilizing.

(cl) This is Theorem7.4 of [WROO] (alternatvely, “if " follows from
Theorem6.7.10(d)(viii),andthe corversefrom (6.126)for optimizability (note
thatZ° is obviously optimizableiff ~ andZ areoptimizable)andby duality for
estimatability(seeLemma6.7.2(e")).

(d) Theabave proofsstill apply (useQ = [2 9] etc.). 0O

We cannow extendthe standardresult (cf. p. 303 of [ZDG] and Theorem
7.3.12)to infinite-dimensionasystemgalthoughthecorversein (b) isincomplete
andthosein (c) and(d) do not cover all WPLSSs):

Theorem 7.2.4(Exp. DF-stabilizable < opt. & est) Let X = [A|F] €
WPLS(U,H,Y).

(a) If Z is exponentiallyDF-stabilizable[with internalloop], thenZ is optimiz-
ableandestimatable

(b) Corversely if Z is jointly [[exponentially] strongly] stabilizableand de-
tectable thenZ is [[e xponentially] strongly] DF-stabilizablewith internal
loop.

(c) Assumethat ABug, A*C*yg € LL (R4;H) for all up € U andyp € Y, and
thatDD is ULR. Thenthefollowing are equivalent:

(i) Z is exponentiallyDF-stabilizable;

(i) Z is exponentiallyDF-stabilizablewith internal loop;

(i) X is optimizableandestimatable;

(iv) Z is exponentiallyjointly stabilizableand detectable;

(v) Z is exponentiallyjointly stabilizableanddetectabldoy somebounded
K andH.

Moreover, if (v) holds,then(d) applieswith thesameK andH (hencg6.169)
and(7.22)becomdJLR).

(d) If K andH are [[exponentially] strongly] jointly stabilizing with (6.169)
beingSR,andl — G € GTICx(Y) (thisholdsif (6.169)is ULR), then

A+BKs+HCs+HDKs | —H
( K | o

) € WPLS(Y,H,U) (7.22)



is a [[exponentially] strongly] DF-stabilizing controller for <. Moreover,
(7.22) is SR and [[exponentially] strongly] jointly stabilizable and de-
tectable

Note that the assumptionsf (c) hold if B and C are bounded(or if A is
someavhat smoothing,e.g.,if Hypothesis9.5.1 holds), hencealwaysin discrete

time.

A wealer form of the exponential part of the theoremis well-known for
Pritchard—Salamosystemsg.g., Theorem2.30of [Keu] is a specialcaseof (d)
(sincePS-systemsire ULR and stabilizability (and detectability)are definedin
avery strongsensdor PS-systemsseeRemark6.6.15). However, the result(c)
seemdo benew in this generality
If wedroptherequirement| — G| ¢ GTIC,” from (d), then®(7.22)” canstill
be formulatedasa controllerwith internalloop; seeProposition5.3 of [WC] for
anexponentialversionof this claim (or modify our proof slightly).

Proof: (a) Thisfollowsfrom Theorem7.2.3(cl).

(b) By the proof of Theorem6.6.28,we have the d.c.f. (6.172),and Z is
[strongly]r.c.-stabilizable Consequently

il® AL |0 H
G =| -K_ |0 —-F_ (7.23)
C | I G

is anl/O-stabilizingcontrollerwith internalloop for Z (i.e., @ DF-stabilizesD
with internalloop), by, e.g., Theorem7.2.14(i)(or thedualof Lemma7.2.10(a);
we coulduse(7.13)insteadf onewould assumehatl — G € GTIC(Y), i.e.,
thatQ werewell-posed).

But (7.23) is [[exponentially] strongly] stable, hence [strongly] r.c.-
stabilizable[[and optimizableandestimatable]|henceit DF-stabilizes>. [[ex-
ponentially]strongly]with internalloop, by Theorem7.2.3(b)[(c1)].

(c) By Corollary9.2.13,(iii)—(v) areequivalentandthe “moreover’-claim
holds(with theULR-propertyfrom Lemma6.3.16(d));n particular (v) implies
(1), by (d). Implication*®(i) =(ii)” is trivial, and“(ii) =(iii)” wasgivenin (a).

(d) (Notethatwe have adoptedhe notationof Definition 6.6.21.Naturally,
thesignsof K andH canbeinterchanged.)

If (6.169)is ULR, UR, SLR, UVR or SVR, thenso are all systemsand
mapsappearingbelon (including (7.22)), by Proposition6.3.1(b2); for the
samereasonall of themarealwaysSR.(SeealsoLemma6.6.27.)

1° When(6.169)is ULR: If (6.169)is ULR, thenl — G is invertible, by
Proposition6.3.1(c),sincethe I/0O map of (6.169) (and henceof (6.170)and
(6.171))correspondingo K andH is givenby [J2]; in particular G = 0(=
G).

2° DF-stabilizing@Q: By the proof of Theorem6.6.28,we have the d.c.f.
(6.172). By (6.172)andLemma6.5.9(al)the invertibility of | — G implies
thatof | —IF;. By (7.13)(with U = 0), themap

Q:=-FEL(1-GL) = —(1-F;)'E; € TICu(Y,U) (7.24)



is a DF-stabilizingcontrollerfor D and(7.24)is a [[exponential]]d.c.f.

3 (7.22)is a SRWPLSwith /O mapQ: By Definition 6.6.21,L := [§ 9]
is admissiblefor 1o Assumptionl — G € GTIC,, saysthatL := (89 is
admissiblgor (Ztota))L; from (6.125)we obsenethatthecorrespondingystem
(Zrotal) 47 = (Zotal) has| ‘g i] asits I/O map.

Apply (6.142)(andProposition6.6.18(alandProposition6.3.1(a3)xwice
to obsene thatthe generatoref (Ztota)| aregivenby

A+ BKs+ HCs+ HDKg \ H B+HD
Cs+ DK 0 D (7.25)
Ks 0 0
We concludethat(7.22)is a SRWPLSwith I/O mapQ.
4° Therest:
Let 3’ bethe systemgeneratedby
A+ BKs+ HCs+ HDKg \ —-H —(B+HD)
Cs+ DK 0 D (7.26)
Ks 0 0

ThenZ’ with its secondandthird columnsmultiplied by —1 equals(Ztotal); -
From(6.126we obserethat(Z’). with its secondandthird columnsmultiplied
by —1 equals((Ztota)i)-L (= (Z7otal);, by Lemma6.6.3),andthat (') with
its secondandthird columnsmultiplied by —1 equals((Ztotar)1) 1 = (ZTotal)L-

Fromthis and(7.26)we obsere thatCs + DKs and— (B -+ HD) are[[expo-
nentially] strongly]jointly stabilizingfor (7.22)(with “E = 0”). In particular
(7.22) is [[exponentially] strongly] r.c.-stabilizable by Theorem6.6.28 (and
Lemma6.6.22). By this, 2° and Theorem7.2.3(b)(1.),(7.22) [[exponentially]
strongly] DF-stabilizes. O

Formally, a controller @ with internalloop mapsy — u = (011 + O12(l —
@22)_1(0)21)y. (If 1 =022 € GTIC(=), thenthis formulais not merelyformal,
by Lemma7.2.7.)

Thus,alsothecontrollersof form “right coprimeH® /H*” (of form YX~1 with
X,Y € TIC beingr.c.) canbewritten ascontrollerswith internalloop, by taking
0= [9,%]. Wewill call suchcontrollersmapswith r.c. internalloop (they are
thecanonicakontrollersof [CWWOL1]); seeDefinition7.2.11for details.Herewe
requireneitherX nor X to beinvertible,it is enoughthatthe systembD{ produced
by closingthetwo loopssimultaneouslys well-posed.

The surprisingfactis thatall stabilizingcontrollersare of this form (modulo
equivalence)wheneerD hasal.c.f. Thisfactis themaintheoremof [CWWO01],
but we give here (part (b) belon) a shorterproof insteadof the original seven
pagedong one. We alsogive a necessarnandsufficient condition((a) or its dual
(@) in thegenerakase:

Proposition 7.2.5(1/0-DF-stabilizing controller with IL) LetD € TIC«(U,Y)

andO = [821; g;;} € TICx(Y x =,U x Z).



(@) O is admissiblewith internal loop for D iff H := ['__%31“ 79821;} €

GTIC.(Y x =). Moreover, O is [exponentially] stabilizing with internal
loop iff the correspondingclosed-loopmap

D
lu+ [0 Op]H!? [O] [O11 O] H? uL u-+uL
(I-D°) 1= D DI = [yt
H-1 [O] H-1 &L &+ &L
(7.27)
is [exponentially]stable
(@) O is admissiblewith internal loop for D iff R = [l:&fﬂﬂg |1%22} €

GTIC,(U x =). Moreover, O is [exponentially] stabilizing with internal
loop iff the correspondingclosed-loopmap

ly+[D OR? [gﬂ] D R [w Y4y
o 21 Cfu| = fudu|  (7.28)
R‘l[ 11] R AR
021

is [exponentially]stable

(b) Let D havea |.c.f. D =M~N. ThenO is admissiblewith internal loop
for D iff F:= [M:gz‘?ll ﬁ%j] € GTIC«(Y x =), andO is stabilizingwith
internalloopiff F~1, [0O11 O12] F-1 € TIC.
Moreover, if O is stabilizingwith internal loop for D andwe set

[Q = [%1 Q(ﬂ F m’ (7.29)

then®' :=[?, %] € TIC(Y xY,U xY), MX—NY = ly, ¢/ isanequivalent

(to Q) stabilizingcontroller with internal loop for D, andQ = Y, X5 1! is a
r.c.f,wheeX, :=F ! andY, := QF ! (in particular, OF * € TIC).

Of course the correspondinglual resultholdsfor D havingar.c.f.

(c) O is admissiblgresp.[exponentially]stabilizing)with internal loop for D
iff O is admissible(resp.[exponentially]stabilizing)for [ 2].

(d) O is admissiblgresp.[exponentially]stabilizing)with internalloop for D
iff 09 is admissible(resp.[exponentially] stabilizing) for DY with internal
loop.

(e)0 andO € TIC, (Y x =,U x =') areequivalenfor D iff (H1) 13 = (H )11
and([O11 O] H1)q = ([@11 (5)12} H-1);, where H correspondgo O
asin (a).

If O is merelyadmissiblein (b), thenone obseresfrom the proof that the
conclusionof (b) still hold exceptthat®' € TIC., (insteadof TICp) andthatQ/
neednot be stabilizing(but it is admissiblepecausdt is equivalentto Q).



Proof: (a) This follows by applyingLemmaA.1.1(d1)to A:=1 —D° (so
thatH = Az — Ap1A[ A1)

(N.B. two admissiblecontrollerswith internalloop areequialentfor D iff
they producesamemaps(H )11 and([011  O12] H1)4, sincethenthe (1~
2,1-2)-blocksof (7.27)arethesame.)

0

(@) Now we setA:=T(I —D°)T, whereT := [6
A.1.1(d1)asin (a) (notethatR = Agp — Ap1A A1)

-1
(b) 1° Clearly H = [1\319] F, so H € GTICo & F € GTICw. The
correspondinglosed-loopmapis

oo—

(3] , andapply Lemma

N | + [©1;?1[§I}IF1 [ISI] (011 F@jz]{%l?[}l\(/)ﬂ ﬂ . (7.30)

soF 1, [0 O] F1 € TIC is clearlysuficientfor (I —D°)~! € TIC.
2° Forthe corverse,notethat(hereMS ~NT=1,S,Te€ TIC)

AR ol om

sothe stability of (7.30)impliesthatof F-* and [011 Q1] F~1. Therefore,
alsoQ is stablein this case.

3° For the restof the proof, we will assumethat O stabilizesD. Now
the (2,2)-block of | = (I —D°)(1 —D°)~! givesl = —DYM + XM +0, i.e.,
| = MX - NY. UsingLemmaA.1.1(d1),oneobtainsthat®’ is admissibleand
(wesetA :=X-DY =M1)

| + YA 1D YA YA

(1+DYA D 1+DYA ! DYA!?
AD AL AL

(1-DQ,) 1= , (7.32)

whereD?, is asD°, exceptthatQ is replaceddy (. This shovsthatQ' is also
stabilizing.

4° O is equivalentto O, becauséhe (1-2 1-2)-block of (7.32)equalsthat
of (7.30):

| + YA~'D =1+ YN, YA~ = YM;
(7.33)
(I +M™INYM)D = M~%(I + NY)N = XN, | + DYM = XM.
5° SetM, = [%41 ﬂ Ny = [%T ?] to obtainF = M, — N, O, sothat

MoF ! —N,OF ! =1, (7.34)

i.e., X, andY, arer.c. (becausé7.34)impliesthatthelowerrow of Y, is stable,
andtheupperrow wasprovedstablein 2°).



Thedualresultcanbe provedanalogoushyfrom (a’) (alternatvely, use(d)).

(c) 0° First proof: Oneway to prove therestis to interchangehe second
andfourth columnsandthe secondandthird rows of “I —D°” corresponding
to [B 9], andthenapply (A.11) (with the rows and columnsof A and A~1
interchangedo theresultingmatrix

Il -0 -0n 0
-D 0 | 0

0 —Op —On | (7.35)
[0 1 0 iy

to obtainthattheinvertibility of “I —D°” (i.e., theadmissibilityof O for [3 9])
is equivalentto the invertibility of | — D°, andthatboth inversesare stableiff
eitheris (since” (I —D°)” consistof | —D° andsomecopiesof its elements).

However, for Lemma7.2.6we needthe alternatve proofgivenin 1°-3°:

1° The admissibility claim follows from (a), becausédl = | — DO, where
D:=[37].

2° Assumethat (7.27) is [exponentially] stable, so that also (7.28) is
[exponentially]stable.Then,by LemmaA.1.1(f6),
[]D) 0

0 J (I—-0oD)to=H"1-1, (7.36)

which is [exponentially] stable, hence [0 1] (I —OD) 0 = [0 1]O(I —
DO) ! = [0 O] H ! is [exponentially] stable. Combinethis with the
right top cornerof (7.27)to obsere that OH 1 is [exponentially] stable. By
(7.27),sois alsoH 'D (becaussoareH ! [B] andH 1).

SinceR = | — OD, we analogouslybsene from (7.28)that (I — OD) 1 is
[exponentially]stable,hencesois (7.5) (with substitutionsQ — O, D — D),
equialently, themap

. T11 Tiz Ti2 Tis
| -0l [R? OH 1] |Ts Ts3 T3z Tsz—| (7.37)
-D | T |HD H |7 [T Tes T Tos '

T3y Tz Tz Tss

(hereT := (I —D°)~1; we have used(7.27)and(7.28)above).

3° Corverselyif (7.37)is [exponentially]stable thensois T = (I —D°) 1,
hencesois (7.27).

(d) This follows from (a) and(a’). (Note that (d) is containedin Lemma
6.7.2(e"),but this secondoroofwill beusefullater)

(e) We obsere from (7.27)that [ 99]DP [L99]" (equivalently the first
andsecondows andcolumnsof (7.27)=DP + 1, becaus@®? = (I - D°)~1 1)
depend®n (H™1);1and([On1 O] H 1)1 N

Part (a) alsoshaws that [B] = ST (i.e., “H*/H®") with S,T € TIC. If U
andY arefinite-dimensionalwe canwrite alsoD in “H®/H*” form (i.e., asthe
inverseof a stable,(TIC-)invertible determinantimesa stablematrix), but we



do notknow whetherthesefactorscanbe choserto be coprime,asthey arein the
caseof well-posedcontrollers by Lemma7.1.4.

We give herethe equivalentsof (c) and(d) for systems:

Lemma7.2.6(%: DF-IL vs.DF) Let £ = [%}%] € WPLSU,H,Y) and = =
[%%] € WPLS(Y x =,H,U x =).

Theng is admissible(resp. [exponentially] stabilizing) with internal loop
for Z iff Z is admissible(resp. [exponentially] stabilizing) for Z := [% Q} €
WPLSU x =,H,Y x =). All preficesapply. B

Moreover, £ is admissibleresp [exponentially]stabilizing)with internalloop
for Z

iff =9 is admissiblgresp.[exponentially]stabilizing)for Z¢ with internal loop.

Thus,dynamicfeedbackvith internalloop canbereducedo (proper)dynamic
feedback(this could alsobe obsened directly from Figures7.4 and7.3 or from
equations/.19: asu goesthroughD backto O, we let ¢ gothroughl backto Q).

As noted belov Lemma®6.7.2, the prefix “strongly” doesnot apply to the
duality claim but severalothersdo.

Proof: 1° Z: The admissibilityclaim is containedn Proposition7.2.5(c),

-1
whoseproofshavsthatDf +1 = [JD _l@ — | containsDf plussomecopies

of partsof it (plus oneidentity operator).We shall shov below thatthe same
holdsfor AP, Bf andC?; this provestheclaim.
From(7.37)we obsenrethat

100
CP= [8?5} ¢ and BY =T [0570]. (7.38)
001 0100

It followsthatAP = A +B°1CP = A + B°ItCP = AD.
2° Duality: Thisis containedn Lemma6.7.2(e’)(seethelastclaim of the
lemma— or its proof). O

The closed-loopmap u,y;. — u,y correspondsto that of a well-posed
controlleriff | — Qg2 € GTIC:

Lemma 7.2.7(Well-posedQ = O11 + O12(I — 02)~10;;) LetO= [8; %ﬂ c

TIC(Y x =,U x =) beadmissiblewith internalloop for D € TIC.(U,Y).

ThenQ is equivalento a well-poseccontroller iff | — Q22 € GTIC; if thisis
the case thenthatwell-posedccontroller is givenby Q11 + 012 (1 — Q22) ™10y (in
particular, it is unique).

This is exactly what one would have expected: the internal loop can be
openediff L := [J?] is admissiblefor O, andin that case,O is equialentto
(OL)11 =011+ O12(1 — 022) "0 (s€€(6.125)).

Two differentwell-posedcontrollersinducedifferentclosedioop mapsD, =

-1
[,'D ]Q} — | € TIC, becausénversesareunique.



Proof: 1° For ary Q € TIC«(Y,U), the maps D, [593] (1 -
]1)0)*1[(')?8} —1:[yt] = [y] exist and are equal iff the mapsD + 1 =

[_'D ]Q} ~and[}99] (1 —D°)~1 [ 99]" existandareequal.

-1
If thisis thecasethen [JD *IQ} equalsthe (1-2 1-2)-block of

| -0y -0 171 ruw U+
| —p°)y1—|_ L VYL | . 7.
( ) [ éD—‘fl)zl |—%22:| [EL} ~ |: ELL:| (7.39)
1
Therefore by LemmaA.1.1(c1)(with A:= | —D° sothatB;1 = [JD _lQ} ),

-1
from [_'D —IQ] € GTIC., we obtain that (Azz =)l — Oz € GTIC., and

I —Q -1 .
(311=)[7D | } is equalto theinverseof

[0 =821 (1 - 0z0) Mo -0n] = | | ~Ou-Ol-02)70n ] (7.40)
hence—Q = —011 — O12(1 — @22)—1@)21 (thisalsoshawvsthat@Q is unique).
2° Corversely if | — Oy € GTIC., andonedefinesQ = O11 + O12(l —
022) 1021, thenQ and O determinesameclosed-loopmaps[y-] — [‘;,ii‘,t]
(i.e., they areequialent),asonecanseeby reversingthe above calculations.
O

Remark 7.2.8(“Q € H*/H®") As one easily observesrom the proof, Lemma
7.2.7actuallycovers a more geneal classof system&ndcontollers: If there are
O € TIC., and a holomorphicfunction Q@ € H(Q; B(Y,U)) with Q c C open,

st. 0, [ | —I“} and (I _]D)O) are invertible at somesy € C and [ ) |Q]_

equalsthe (1-2,1-2)-block of (I — ) 1 on a neighborhoodof sy, thenQ =
O11+O012(1 — @22) 10p1. Obwouslythecorverseholdstoo

Thus,if | —((])22 and(l — ) 1 arelnvertlbleat anysp € C, thenthetransfer
functionof the contller definedoy O is Q11 + O12(1 — 022) 1051 (onthe open
subsebf C whee theseinversesexist).

Theefore, controllers with internal loop cover (but are not covered by) all
controllers whosetransferfunctionsare of the form @11 + @12(I — @22) 1@21
(andwell-definedht leastat onepointsy € C), where O € TIC; in particular, all
“H*/H>*" transferfunctionsare covered.

We now showv by a simple examplethat the transferfunction of the internal
loop of acontrollerneednot beinvertibleanywhere:

Example 7.2.9 (2Q) Take]lA)(s) =(s—1)/(s+1), 0= []ﬁfll —11] (exponentially
stable) sothat

R 1 Dt 1] [o -D! Bl
1-D°)*=D 1 o =|0 0O 1 (7.41)
0O 1 o0 1 Dt o




(cf. Proposition7.2.5(a))is stable becaus®—! € H®.

However, 1 — Oy, = 0 is nowhereinvertible, so onecannotclosetheinternal
loop in the controllerif one doesnot connectthe controller to the plantD to
be controlled; neithercan one closethe upperloop only (admissibly),because
011 = | is notadmissiblefor D (I — DO411 = 0); the settingbecomeswvell-posed
only whenbothloopsareclosed.

By Proposition7.2.5(b), the correspondingnap with coprimeinternalloop
is YX~1 = —1(0)7%, i.e,, @ = [? !] is equialentto ©; this 0~ shaws that
the controllerhassomethingresemblinga shortcircuit. In fact,in Example2.3
of [CWWO01] exactly this map with coprimeinternalloop (in its adjoint form)
is usedasa shortcircuit regulatingan electricalcircuit (whosetransferfunction
2/(1+ e~2) hasinfinitely mary poleson theimaginaryaxis).

By Lemma7.2.7,neitherQ nor @/ is equivalentto ary well-posedcontroller
Thisis notreally surprisingbecauseave havey=0(y=¢.,i.e.,y= -y  +§&_ If
thereis anexternalinput§ into theinternalloop), andthis posegherequirement
“(I - DQ)~! = 0” (by formula(7.5),which hasanextra—I), whichis impossible
for a well-posedcontrollerandevenfor controllersof the form “H® /H*” (even
for thosewith (1 — ]ﬁ)@)—l well-definedon any opensubsebf thecomples plane,
cf. Remark7.2.8). Note that also the outputscancelthe correspondingnputs
completely(i.e., the diagonalof (7.41)is zero),which could not be achierzed by
anadmissiblewell-posedcontrollereithet <

For physically motivated examples, see, e.g., Example 2.3 of [CWWO01].
Example4.8 of [CWWO01] illustratesa problemthatcanonly be solved by using
anon-well-posecaontrollet

By Proposition7.2.5(b),it is enoughto studythe controllersof thefollowing
form (if we excludemapsthatdo not have coprimefactorizations):

Lemma7.2.10 LetO = } e TIC(Y xU,U xU) andD € TIC,(U,Y).

e

(@ Themap O = [YI IX] € TIC is admissiblewith internal loop for D

iff A :=X—YD € GTIC.; it is stabilizing with internal loop for D iff
A1DAleTIC.

(b) Let O be stabilizing ThenX andY arel.c.,ie, “X Yisa stabilizing
DF-contwoller for D with I.c. internal loop”. Moreover then, with M :=
A~1, N := DM, the factorizationD = NM~! is a r.c.f of D, it satisfies
XM — YN = I, and the (1-2,1-2) blocks of the closed- -loopmap D =
D° (I —D°)~t are givenby

_ [M[sz:u Mﬁjz] : M . H (7.42)
NX NY| [W% yl’ '
asin thewell-poseccasei.e., in (7.9)(cf. (7.5)).

(c) Corversely if D = NM 1 is ar.c.f. with XM — YN = I, thenO stabilizesD
with internalloop.



(d) If X € GTIC., thenO is admissiblefor D iff X-1Y is an admissible(well-
posed)DF-controller for D. If O is admissibleand Q is an admissible
(well-posed)DF-contmoller for D, thenthe closed-loopmapsu,y, +— u,y
determinedy O andQ are identicaliff X e GTICw andQ = X 1V.

Thecorrespondinglual claims(with A := X— DY) hold aswell.

Proof: (a)&(b)&(c) 1° With the notation of Proposition? 2.5, we have
H— [ o ] By LemmaA.1.1(d1),we have H € GTIC., < A € GTICq, SO
theadmissibilityclaimfollows from Proposition7.2.5(a)aswell astheformula

[ | +AYD Ay Al

(1-D°) 1= DI +A7YD) 1+DA'Y DA? (7.43)
A-1YD Ay Al

[ M§~§ M§( M up u

=| NX NY+I! N [yL] [Z (7.44)

MX—-1 MY M| [& &

(for the seconddentity, we have setM := A1, N:=DM andused(7.45)).

2° If (7.43)is stable,then M := A~ and N := DM _are also stable.
Moreover, D=NMtisar.c.f.,becaus&M— YN = X(X - YD)~ - YD(X —
YD)~! = I. Formula(7.42)follows from this.

3° Corverselyif D=NMtisar.c.f.andQis S.tXM—YN=| (asabove),
then(7.43)is stable because¢hen

| +A" YD =A"1(A+ YD) =A" X e TIC, (7.45)

andD(l +A~1YD) = DA-1X e TIC.
(d) Thisfollowsfrom Lemma7.2.7. 0

If aplanthasa (right or left) coprimefactorizationthenall of its stabilizing
controllersare equivalent to someof the form studiedin Lemma7.2.10, by
Proposition7.2.5(b)(or its dual). Thereforethelatteroneswerecalled“canonical
controllers” in [CWWO01]. To be able to extend the Youla parametrization
(Theorem?7.2.14)and relatedresultsto cover alsothe non-well-posedtase , we
shalldefinethe conceptmapwith coprimeinternal loop belov astheequivalence
classof a“canonicalcontroller’modulo“being equal”.

It follows that, for a plant having a coprime factorization,eachstabilizing
controllerswith internalloopis equivalentto oneandonly onemapwith acoprime
internalloop, by Lemma7.2.12(c).

Definition 7.2.11(Maps with coprime internal loop) Let (Y,X) be r.c. and
(Y,X) bel.c. We call the (equivalenceclass(moduloequality; seebelow) of

the)map[I | x} (resp. [YI X]) a mapwith r.c. internalloop (resp.a mapwith

|.c. internalloop) anddenoteit by YX 1 (resp.by X—1Y).



Figure7.5: ControllerYX—1 with r.c. internalloop

y u &

—1 +|+ = Y11 — v
Y | - X Xu=Yy

Figure7.6: ControllerX—1Y with I.c. internalloop

If, in addition, X, Y, X and Y can be extendedo satisfythe doublycoprime

product
ﬁg g {M Y} (7.46)

N X
in TIC(U x Y) for someM, N, M, N, thenwe considerYX—! andX~1Y equaland
call YX~1 = X~1Y a mapwith d.c.internalloop. We addthewords* over 2", if
A4 C TIC andtheelement®f (7.46)canbechosenfrom 4.

We considerthe maps YX~1 and Yoxal with r.c. internal loop equal if
(Yo, ) = (YU,XU) for someU € GTIC. We considerthe mapsX~1Y and
X5 1Yo with I.c. internal loop equalif (Yo, Xo) = (UY, UX) for someU € GTIC.

If X € GTIC, thenweidentify YX~1 in theusualsensgin TIC.,) and YX~1
asa mapwithr.c. internalloop; we dothe analogousidentificationfor mapswith
l.c. internalloop too.

A mapwith coprimeinternalloop meansa mapwith r.c. or I.c. internal loop.
A controller with internal loop for Z € WPLSis calleda controllerwith coprime
internalloopif its I/O mapis a representativef a mapwith coprimeinternalloop.

LetQ bea mapwith coprimeinternalloop. Thenwe saythatQ is admissible
[stabilizing] for D € TIC,(U,Y) [or that Q stabilizesD] if some(henceany,
by Lemma7.2.12(c))of its representativess admissiblegstabilizing] for D with
internal loop. We usepreficesasin Definition7.2.1.

X -Y
-N M

X -Y|_
-N M

At this stagethe seriousreaderhas several seriousquestionsabout this
definition andits justification. Lemma7.2.12belov answerghesequestionsn
the expectedway.

Thus, given r.c. mapsY and X s.t. [?,%] € TIC(Y xU,U x U), the
equialenceclassof [?,¥;] (moduloequality in the collection of all mapsof
the sameform) is givenby {[9, ¥J,] |U € GTIC(U)} (cf. Lemma7.2.12(al)).
Analogousclaimshold for mapswith |.c. or d.c.internalloop.

Recallfrom Definition6.4.4(f)that(7.46)is calledajoint d.c.f of D and YX™ 1
(or of D andX 1Y) if D = NM ! (equivalently D = MN).



We warnthe readerthatif the left equationfrom (7.46)wereremoved, then
“equality” would not be an equivalencerelation. Evenif both YX~! andX-1Y
were mapswith d.c. internalloop, andXY = YX, thesetwo mapsneednot be
equal;a necessanand sufficient condition can be seenfrom LemmaA.1.1(e4)
(althoughthat is not neededhere). From (7.46) one can also note that a pair
Y, X definesamapwith d.c.internalloop iff it canbe extendedo a invertiblepair
[MY] € GTIC; LemmaA.1.1(e)givessome(necessarand)suficientconditions
for this.

The lastidentificationabove correspondgo the equivalenceof [?, ¥] and

[Y%‘l 9] notedin Lemma7.2.7 (andis henceustified). Thisidentificationmakes
mapswith coprimeinternalloop a naturalextensionof well-posedmapshaving
ar.c.f. or al.c.f. However, onecanshowv by a simple example,thatif X were
not assumedo bein GTIC., thenQX =Y (for generalr.c. (Y,X) andsome
Q € TICw(Y,U)) would not guaranteghat YX~* andQ were equivalentfor all
D € TIC.(U,Y); in fact, with thoseassumption& might be nowhereinvertible
(althoughX is necessarilyeft-invertibleon TIC) andYX might stabilizedifferent
plantsthanQ.

By Lemma7.2.10,a well-posedD hasar.c.f. (resp.al.c.f.) iff it canbe
stabilizedby a mapwith I.c. (resp.r.c.) internalloop.

From this on, we shall often use the word “map” of both membersof a
map (equivalenceclass)and of the classitself whenthereshouldbe no risk of

ambiguity

Lemma 7.2.12(Equal; well-posed) Let YX 1, YoX,* andX 1Y be mapswith
coprimeinternalloopandletD € TIC,(U,Y). We havethefollowing:

(al) Beingequalis an equivalenceelation.
(a2) Two well-posedmapswith coprimeinternal loop are equal iff they are

equalin TIC..
(a3) A well-posednapis a mapwith coprimeinternalloopiff it hasal.c.f. or a
r.c.f

(a4) If a well-posedmnapanda mapwith coprimeinternal loop are equivalent
contollersfor D, thenthey are equal. (See(c) for the corverse)

(b) If YX~1 = YoX5 2, thenX € GTICs & Xo € GTIC. If YX 1 = YoX; 1,
thenX € GTIC., < Xp € GTIC. If YX~1 =X-1Y, thenX € GTIC, &
Xe GTICo. In particular, YX~1 is well-posedff X € GTIC...

(c) LetQ and@ bemapswith coprimeinternalloop.

(c1)If Q andQ' areequal,theneitherbothare admissiblefor D or neither
is admissiblefor D.

(c2) If Q and @ are admissiblefor D, thenthey are equaliff they are
equivalentthat s, iff they determinethe samemapu,y, — u,y. In
particular, Q is stabilizingfor D iff Y/ is.

Thus, Definition 7.2.11 is justified (its last identification was justified in
Lemma7.2.7).



By (c), equvalenceof mapswith coprimeinternalloop doesnot dependon
theplantD (exceptthatequivalences not definedfor non-admissiblenaps).By
(b), amapis well-posedff ary (henceall) of its representatiesis well-posed.

Proof: (al) The only nonolvious requirementis transitvity (of being
equal),sowe take alook atit:
1° If YX 1 is amapwith d.c.internalloop andequalto X 1Y, then

U 0
o]
for any U € GTIC, henceary mapwith |.c. internalloop equalto X~1Y is equal
to YX~1 (insert [U 9] and[U;" 9] into (7.46)). (Thusthe concept'map with
d.c.internalloop” is well defined:if amapis such,thensois arny equalmap.)
Corversely the (b) (and(d)) of Lemma6.5.9 (with the columnsandrows

interchangedkhaws that all map with r.c. internalloops equalto YX-1 are
equalto X1y (in particular they have d.c.internalloops).

(Thus,(6.121)givesall doublycoprimeproductdor ary left andright maps
equalto NM1.)

2° If YX ! doesnot have a d.c. internal loop, then neither does ary
equalmapwith a coprimeinternalloop by 1°, andtransitwvity is obvious(i.e.,
[3]=[¥]U, UegTIC,and[§] = [§] V, Ve GTICimply that[§] = [¥| W
for someW e GTIC (namelyfor W = UV)). Thedualclaimis analogous.

(a2) This follows from (b) combinedwith Lemma6.4.5in the left or right
caseandwith Lemma6.5.8in theleft-right case.

(a3) Thisis arestatemenof thelastidentificationin Definition 7.2.11.

_ (a4d)Letthetwo mapsbeQ € TICs and YX~1, respectiely (the casefor
X~1Y is analogous)By Lemma7.2.7,X € GTIC, andQ = YX !

(b) Thefirst two claimsfollows from X = XU € GTICw < Xg € GTICw.
soX € GTIC» & X e GTICe, Thethird onefollows from LemmaA.1.1(cl).
Thus,YX 1 is equalto awell-posedmapiff X € GTIC..

(c1) If Q and@ have l.c. (resp.r.c.) internalloops, thenthis is obvious
(becausehe admissibilityis equivalentto A := X — YD € GTIC., (resp.A:=
X—-DY € GTICs), by Lemma7.2.10(a)).Thus,we assumg7.46). Then

o 1% - x5 ] 1)

in TICw, S0X—DY € GTIC, < X—YD € GTIC,, by LemmaA.1.1(c1).

(c2) 1° We startfrom the caseof two mapswith I.c. internalloop. The
formula (7.43) shows that mapsug,y. — U,y are equalfor Q= X-1Y and
Q’ Xolyo iff the correspondlngermsA ly and A, Yo are equal le.,
Y = UYo, whereU := — At € GTIC. ButthenA X = | +A~1YD = A5 X,
i.e., X =UXy. Soif themapsu,y. — u,y areequal,thenU € TIC (by thedual
of Lemma6.5.1(c1)) becaus&X andY arel.c.,andU ! € TIC, becaus& and
Yo arel.c.; thus,thenX 1Y = X;1¥,,.

X -Y
-N M

UX -UY

8w € GTIC (7.47)

X -Y
-N M




Corversely if [ﬁ}v{ 5&} = U[?o Xo] with U € GTIC, thenA = UAp and
henceA 1Y = A;1Yo, sothemapsuy,y. — u,y areequal,asnotedabore.

2° From(7.32)onegetsthe correspondingight resultanalogously

3°_Similarly, from (7.32) and (7.43) one noticesthat Q = YX~! and
Q =X"1Y determinghesameu,y; — u,yiff Y(X—DY) ! = (X- YD) 1Y,
ie.,iff XY = YX.

Thus, equalityimplies equivalence,so we assumeequialenceand prove
thatQ andQ' areequal. BecauseXY = YX, asnotedabove, we may choose
M,N,M,N asin LemmaA.1.1(el) (interchangethe rows and columns)to

R e - (5 A 9 Y

_ (7.48)
By LemmaA.1.1(e5)andthe assumednvertibility of A andA, we have

[ oMY | 0

T |-D I||N X -D |
in TICs, hencewe have (7.46) in TIC,, soit musthold in TIC too, by the
densityof (7. O

X -Y

X -Y
-N M

—N

X -Y
-N M

We now parametrizeall stabilizing controllers by combining Proposition
7.2.5(b)andLemma7.2.10(a):

Corollary 7.2.13 LetD € TIC.(U,Y). Thenthefollowing claimsandtheir duals
hold:

(al)If D hasar.c.f D = NM~1, thenead stabilizingcontoller with internal
loop for D is equivalento a uniquemapwith I.c. internal loop

X 1Y suhthat XM-YN=1 (7.49)
(in particular, a different pair (X Y) definesa different stabilizing map
X~1Y). Thedualresultfor I.c.f’sD = M~!N holdsaswell.

(@2) Themapwith l.c. internal loop X‘lY is admissible(resp.stabilizing)for
Diff A:=X—YD € GTIC,(U) (resp.A 1, DA 1 € TIC).

(a2’) Themapwith r.c. internalloop YX~1 is admissible(resp.stabilizing)for
D iff A:=X—DY € GTIC»(U) (resp.A~1,A7ID € TIC).

(@3) If D = NM~! is a r.c.f, then the map X~1Y with I.c. internal loop
is admissible(resp. stabilizing) for D iff XM — YN € GTIC(U) (resp.
€ GTIC(U)).

(b) Thefollowing are equivalent:

() D hasar.c.f. (resp.al.c.f.,,ad.c.f);
(i) D is stabilizableby a mapwith I.c. (resp.r.c.,d.c.) internalloop;



Moreover, if (i) holds,thenead stabilizing controller for D with internal
loopis equivalento onewith I.c. (resp.r.c.,d.c.) internal loop.

Unfortunatelywe donotknow, whetherary D thatis stabilizablewith internal
loop hasar.c.f. (or al.c.f.), soit may be that somepathologicalplants (having
no stabilizing controllerswith coprimeinternalloop) might not meetthe above
requirements.

Proof: (We obtainthedual claimsby takingthe adjointsof (al)—(b);thisis
explicitly illustratedin (a2).)

(1) This follows from Proposition7.2.5(b). The definition of equality
[Definition 7.2.11]shonvs thatXM — YN = | determinegX, Y) uniquely

(@2)Thisis (mostof) Lemma7.2.10(ajand(a2’) is its dual.

(a3) Now AM = XM — YN, so the stability of its inverseM—1A-1 is
equivalentto thatof DA, by Lemma6.5.6(b),andclearlyimpliesthe stability
of A~1, sowe get(a3)from (a2).

(b) “(iif) =(ii)”:  Any map with l.c. [r.c.] internalloop that stabilizesD
definesar.c.f.[l.c.f.] of D, by Lemma7.2.10(b).

“(i)=(i))":  This follows from (al) (andthe definition of mapswith d.c.
internalloop: justtake thefactorsX,Y,X,Y € TIC of ary d.c.f.of D); andso
doesthe“moreover” claim. O

Now we can presentfive equialent parametrizationgor all (modulo being
eguialent) stabilizing controllerswith internal loop for ary fixed D € TICq
havingad.c.f..

Theorem 7.2.14(All stabilizing controllers) LetD € TIC(U,Y) havethed.c.f

i 1] o

N S
Thenead contoller that stabilizesD with internalloopis equivalento a unique
mapwith d.c.internalloop (in thesensehatbothcontmollers determinghe same
closed-loopmapu,y, — u,y).

Thefollowing parametrizationsare alternative(equivalent)parametrizations
of all controllers Q with d.c. internal loop that stabilizeD, and eac parameter
((X)Y) in (i) and(iii), (Y,X) in (i"), andU in (ii) and(ii’); theseall are required
to be stable)determines different(nonequal)map@Q with d.c.internal loop.

S -T
-N M

S -T
-N M

(i) Q = YX~! suhthatMX—NY =1.

(") Q=X 1Y suhthatXM— YN =1,

(i) (Youla) Q = (T+MU)(S+NU) ! (e, [¥] = [MT][V]). whee U €
TIC(U).

(i) Q= (S+NU)"L(T+MU) (e, [x %] =[I v] [ ]), whee U € TIC(U).

Zim

{

(iii) Q = YX~1 (= X-1¥), wheee [M¥] ' = [f% e GTIC(U xY).

2L,



Thewell-posednes(if any)are exactlythosefor which the“denominator” in
IS GTIC (cf. Theoem7.1.7).

Moreover, for any U € TIC we have (identity as equal mapswith coprime
internal loop)

(T+MU)(S +NU) ! = (S+NU)"{T+MU). (7.51)
Finally, if (i) and (i) hold, thenthe (1-2, 1-2)-block of the closed-loopmap
DP :=D°(1 —D°)~tis givenby

R AR AR A

Recallfrom Lemma7.2.12(c2),that the maps(7.52) depend(of course)on
D and@Q only, not of the particularcoprimefactors(X, Y, X, Y, N,M, N, M) of Q
andD (exceptthat(i) and(i’) arerequiredto hold).

Proof: The first claim is from Proposition7.2.5(b) (and its dual). The
parametrization§) and(i’) areCorollary7.2.13(al).

For ary stablepair (Y,X) thereare Y and X satisfying (iii) iff (Y,X)
satisfies(i), by Lemma6.5.8. Now the parametrizationgii) and (ii’) and
equation(7.51)follow from (iii) andLemma6.5.9(c).

The well-posednesslaim is Lemma7.2.12(b),and (7.52) is from (7.42)
(alternatvely, directly fromDP = (1 —D°)~1—1). O

To checkwhethera given controllerwith coprimeinternalloop stabilizesD,
onecanusethefollowing corollary:

Corollary 7.2.15 LetD e TIC»(U,Y) havethed.c.f (7.50).LetX Y,X, YeTIC.
ThenYX 1! (resp.X1Y) is a mapwith d.c.internal loop andstabilizesD iff any
(henceall) of (i)—(iii) (resp.(i")—(iii")) holds:

(i) MX—NY € GTIC(Y);

(i) [M¥] e gTIC(U xY);

(iii) Theeisar.cfD=NoM,® s.t. [111?3 Q e GTIC.

(") XM—YN € GTIC(U) andQ = X~1Y for someX, Y € TIC.

(ii") [§ gﬂ} € GTIC andQ = X1 for someX, Y € TIC.

oy . =1y X -Y

(iii) Therisal.c.f. D=M,N s.t. [_KIO Mo] e GTIC.
_ Moreover, the map YX~* (resp.X~1Y) is well-posediff X € GTIC (resp.
X € GTIC.).

Proof: Any of the conditionsshows that YX 1 (respi*lﬂ?) arecoprime.
If it stabilizesD, thenit isd.c.,by Theorem7.2.14.



Theparametrization§) and(i’) arefrom Corollary7.2.13(a3)andits dual.
Part (ii) definesa d.c.f. of D, henceit is sufficient (take U = 0 in Theorem
7.2.14(ii)). Corversely if YX 1 is stabilizing,then

M Y| [l O M YV
[N X] [o V} = [N XV} cgric
for someV € GTIC, by Theorem7.2.14(iii), hencethen [M {] € GTIC, i.e.,
(ii) holds.Condition(ii’) is thedualof (ii).
(iif) The condition(iii) is sufficient, by Theorem?7.2.14(iii). Corversely if

(i) holds(andhence(i’) too;thussituationis asin the“furthermore”claim)and
we set

[No 1\7110} — (MX—NY)~? [N M}, [MO] — [M] (XM-YN)~!, (7.53)

No N
; X -Y]| [My Y] _ :
then, otinouisly, [—NOMOHNO X] = |, and the dual equation
Mo i X V| =
[No x} [—No Mo] I foIIO\./vs_from LemmaA.1.1(eb).
Thewell-posednesslaimis Lemma7.2.12(b). O

Next we given two lemmasthat are useful when one wantsto work in a
subalgebraf TIC (e.qg.,in MTIC; cf. Theoren¥.1.1):

Lemma 7.2.16(Predeterminingthe joint d.c.f. of D and Q) LetD = NM~?!
M~!N bead.c.f, andlet 2 c TIC beinverseclosed.

(@) If N,M, M N X Yea andQ := = X~1Y stabilizesD, thenthed.c.f D =
NM-! = M-1N is over 4, evenjoint with Q.

(b) If Q stabilizesD, thenfor anyr.c.f Q = YX~! andl.cf. Q= X-1Y, thereis

-1
.. My Y _ X -Y _ . .-
ajomtd.c.f.N[NNo X} = [—No Mo} € GTICof D and YX~1: if, in addition,

M,N, X, Y,X,Y € 4, thenwe cantake My, NO,MO No € 4.

LetD = NM~1 = MIN € TIC«(U,Y). Assumehat Q = X~1Y stabilizes
D. If N, M M N X Y € 4 and 4 C TIC is inverse closed, then the d.c.f
D=NM1 M 1N is over 4.

Proof: (a) Set [32’ ?’] = (XM— ST(N)*1 [5{ %v(] € 4. Thenequation

M gf]fl = [f% —g'] is ajoint d.c.f. of D andQ for someX',Y' € TIC, by

o ~qil
Lemma6.5.8.Becaused is inverseclosed we have | X. _1\;1{’} € 4 too.

(b) Theproofis similarto thatof (a) and henceomitted. O

Proposition7.2.17(4 case) Let D havea d.c.f over 4, whee 4 C TIC (cf.
Proposition7.1.10).

If the element®f (7.50)are chosenfrom 4, thenall stabilizingcontmwllers of
D witha(d.c.) internalloop aretheonesparametrizedn Theoem7.2.14,andthe



Figure7.7: The control[er(@7 =Y(X+EY) !:y—uforD+E

oneswith d.c.internal loop over 4 are exactlythosewith U € 4. If, in addition,
B C A C ULRNTIC, thentheonewith U = —M~1T is well-posed. 0

(The proofis virtually a subsetof the proof of Proposition7.1.10andhence
omitted.)

Recall from Theorem4.1.6(d), that if D = NM ! is ar.c.f. andN,M €
MTIC1z(C"Y), thenD hasad.c.f.overMTICtz, hencethenD hasawell-posed
stabilizingcontrollerhaving ad.c.f.over MTIC 1z, by theabove proposition.

Lemma7.2.18(D=0w.l.o.g) LetD € TIC»(U,Y). LetE € B(U,Y).

ThenQ = YX~! = X~1Y is a stabilizingDF-contmoller with d.c.internalloop
for D iff ¢ = Y(X+EY)™! = (X + YE)~1Y is a stabilizingDF-controller with
d.c.internal loop for D + E. Thecorrespondingclosed-loopmapsy; + u (see
(7.52))areidentical.

Thecontwoller Q' canberealizedby addingto Q an outputfeedbak through
—E, asin Figure 7.7.

If onereplacedd+ E by a parallelconnectiorof D andE in Figure7.7,then
it becomesobvious that E and —E canceleachother and we are left with the
original connectiorof Q andD; this allows oneto write down thecorrespondence
betweerthe original andperturbedsettings.SeealsoLemma7.3.23.

(Notealsothatoneshoulddrav someexternalinputs“z_andy; ” to Figure7.7

(just before—E andjust beforeQ) andtheinternalloop (thesignals¢, & and§)
of Q if Q is non-well-posed.)

Naturally, oneof Q and@ may be non-well-posedevenif the otheris well-
posed(but the closed-loopsystemsarebothwell-posedf oneis).

If Q € TIC(Y,U) andl + EQ € GTIC«(Y), thenonemoreformulafor Q' is
obviously givenby @ = (I + QE)™1Q (= Q(I +EQ)™).

Proof: 1° Givenary joint d.c.f.(7.46)of D of Q, ajoint d.c.f.of D+ E and
@ is obviously givenby

_%TI%'EE) ?1\7? € GTICU xY).  (7.54)

M Y ]
N+EM X+EY|

By exchangingD and D + E, we obtain from Theorem7.2.14(iii) that the
stabilizing DPF-controllersfor D and D + E correspondo eachotherasin
the statemenof thelemma.

Given Q, the mapYM MY YL+ u is commonfor both closed-loop
systems by (7.52) (since M, M,Y,Y are unafected). (N.B. if we fix some



representatioX 1Y of Q, then [MRE' M“fl] ; [%ﬂ — [£] is unafected,by
(7.44).)

2° Thus, the “rigorous” part of the proof is complete,andwe only have
to shav that @ is a model for the map in Figure 7.7, i.e., that the maps
uL,yL — u,y for @ andD-+ E becomeequalto thoseobtainedby solvingthe
equationsnodeledn thefigure.

By writing theequationdor U, y andg, oneobtains

u+uL UL
(1=D%) |y+w|=|_ % ; (7.55)
E+EL EL+Y(Y +Ez)

(atthemomentwe arenotinterestedn theadditionalinputsz_andy| ) where

00 I '|

D% := |D 0 0 , (7.56)
0 Y I- (X-l—YE)J

i.e.,D° hasD+E in placeof D andQ/ = [% |—(>~gl+§(E)} (arepresentatie of
@) in placeof O = [g{ |15~§:| (arepresentatie of Q).

But oncewe let the additionalinputsy, andz_be zero, equation(7.55)

u u
becomeg! — D) [%’] =D [%’t} i.e., theequation(7.19)for D+ E and(.
L

Thus,we canconsider®’ asamodelfor thecontroller(in thedashedquare)n
Figure7.7. Summarizingthe mapQ — Q' correspondso anoutputfeedback
through—E. O

FromRemark6.7.19we deducethatif D is replacedby 7, andQ by 7,Q
for somew € R, thenDp becomeseplacedy 7,DP. Fromthis we concludethe
following:

Remark 7.2.19(Exponential stabilization) By Remark6.7.19,fromany claims
in this section(and others), we can deducethe correspondingresultsabout w-
stabilizationfor somew € R (insteadof the (0-)stabilizationtreatedin mostabove
results) hencealsofor exponentialstabilization.

For example assumehat D € TIC,, hasan exponentiallystabled.c.f, say
(7.50) (i.e., the mapsin (7.50) belongto TICep). Thenthe mapsDF-stabilize
D exponentially with internal loop are exactly the mapswith (exponentially)
d.c. internal loop parametrizedin Theoem 7.2.14 (where we mustrequire the
parametesto be exponentiallystable).

Remark 7.2.20(Plantswith internal loop) We could, of course study more
generl plants, thosewith internal loop. One easily (though sometimeswith
tediousapplicationsof LemmaA.1.1) generlizesmostresultsof this sectionto
the casewhee both D and Q haveinternal loops,e.g., if D = NM-1 is a map
with |.c. internal loop, thenQ = YX ! stabilizesD iff MX — NY € GTIC. This
way one could cover all “H”/H*” transferfunctions(the quotientfield of H*)
andmore.



Notes

Controllerswith internal loop were first introducedin [WC], which covers
alsosomecorrespondingtate-spacéheoryfor regular WPLSs. This notionwas
further developedin the frequeng-domainarticle [CWWO01]. Our theorywas
built on an early form of [CWWOL1], which we were givenin late 1996. The
actualarticlewill be publishedate2001.

Part (c1) of Theorem7.2.3is Theorem7.4 of [WR00]. Lemma7.2.7is
at leastpartially containedin Section6 of [WC]. Proposition7.2.5(b),Lemma
7.2.10(a)&(b), Corollary 7.2.13 and Corollary 7.2.15 are at least implicitly
containedn [CWWO01] (someof themwith differentproofs).Part(d) of Theorem
7.2.4was written as a generalizatiorof the correspondingclassicalresult (see,
e.g.,Lemmal2.1lof [ZDG]). Proposition5.3 of [WC] seemgo beits analogyfor
exponentialDF-stabilizatiorwith internalloop.



Figure7.8: DPF-controllerQ for D € TIC, (U x W,Z xY)

7.3 DPF-stabilization (%,(D,Q))

Sir, it’ svery possiblethis asteoid is not stable
— C3PO

In Section7.1, we studieddynamicoutput-feedbaclstabilizationby a well-
posedcontrollerand,in Section7.2,thatby a controllerwith internalloop (such
controllerscontainall well-posedcontrollers).

In this sectionwe shallusethoseresultsto obtainatheoryfor dynamicpartial
feedbacKwith internalloop; we alsogive somefurtherresultsfor thespecialcase
of awell-posedcontroller).

A generalDPF-controllerdiffers from the specialcaseof a DF-controllerin
the sensdhattheformerhasonly a partialaccesgo theinputsandoutputsof the
plant,asillustratedin Figure7.8(cf. to Figure7.1).

In the importantH* Four-Block Problem (H* 4BP) (or the standardH”
problem)of Chapterl2, onetriesto find a DPF-controllerthatstabilizesthe plant
andmakesthenorm||w— Z|| in Figure7.8lessthana givenconstanty > 0. This
problemis the main motivator of the theory of this chapter The signaly can
be consideredas a measureaccessibldor the controllerandu asthe controller
output,whereasw oftenrepresentshe disturbances a systemandz standsfor
theactual(objective) output.

Our choiceto have u beforew is contraryto the standardpracticein DPF-
stabilizationandthe H® 4BPtheory(this correspondso [gzlg gﬂ] in placeof ),
which s bettersuitedfor DPFduality results.

However, our choiceis the standardpracticein the H* FICP theory (see
Chapterll), beingmore naturalfor thattheory(e.qg.,it allows usto have I’'s on
thediagonalin several FICP and4BPformulae).

Thereforewhencomparingheformulaeto moststudieson DPF-stabilization
(e.g.,[Francis],[Keu], [Green]or [ZDG]), one hasto interchangehe (second)
indicescorrespondingi andw, whereaghe FICP results(e.g.,[S98d], [Green],
[CG97],[LTOOa])candirectly becompared.

If wedeletetherestof D exceptDs; in Figure7.10,we endupwith Figure7.3.
Thereforethe mapsu,y. — u,y becomethe sameasin the DF-stabilizationof
D»1, andthemapof u,w,y. to z y,u is obtainedfrom this andthe equation

gl

y w

In particular the controlleris admissiblefor D iff it is admissiblefor Dy, .



(Note that we usew insteadof wi = w, becausédhereis no feedbackto the
disturbancesignalw. Models shouldcontainadditionalinputsrepresentinghe
disturbancesn eachloop, but sincethereis no feedback(loop) for w, suchan
additionalinput would beredundantThesituationwith zis similar.)

However, it is easiesto identify any DPF-controllerQ € TIC«(Y,U) with the

DF-controllerQ : m — [w] of form Q = [8 ‘fg] € TICx(Z x Y,U x W) (sothat
@ € TIC«(Y,U) mapsy — u, andZ andw are uncoupledfrom the controller).
Obviously, this definition is equialentto the one above. Its rigorousform is
containedn thefollowing definition (the case® = [«g g} € TICx(Y x Z,U x 2)),
which alsocoversthe casewith internalloop:

Definition 7.3.1(DPF-stabilization [with internal loop], #(D,Q)) Let D =
[f,?g; &g] € TICw(U xW,Z xY). Wecall O € TIC« (Y x =,U x =) (wher also=
is a Hilbert space)an admissible(resp.stabilizing) DPF-controllerwith internal

loop for D if

(0 O11 Or2
Opp:=10 0 O |€eTICu((ZxY)x=Z,(UXxW)xZ=) (7.58)
10 O 02
is anadmissible(resp.stabilizing) DF-controller with internal loop for D.

Wecall = = %—%] € WPLY(Y x =, H,U x =) anadmissiblgresp.stabilizing)
DPF-controllemwith internalloop for = = [2{2] € WPLS(U x W,H,Z x Y) if

Ao B, B
SoF = ‘%1 8@011 @32 EWPLS(Z XY xZ,H,UXWxZ) (7.59)

C2 |0 Oy O

is anadmissiblgresp.stabilizing) DF-contmoller with internal loop for Z.

In eithercase by (D, 0) wedenotethemapw — z of D (see(7.64),(7.68)
and(7.98)).

We call two admissibleDPF-contiollers with internal loop for D (resp.for %)
equvalentfor D (resp.for %) if they determinesamemapsfromu,y; tou,y.

We call D (resp.2) DPF-stabilizablavith internalloop if there is a stabilizing
DPF-contoller with internal loop for D (resp.for X). and we use preficesas
above (We usepreficesasin Definition7.2.1.)

If Opr is a well-posedDF-contmller (equivalently® = [ % 3] € TICq(Y x
=,U x 2)), thenwemayremwethewords“with internalloop” everywhee above
in this definitionandidentify @ with Q11 € TIC«(Y,U).

If Q is a map with coprime internal loop, then we call Q an admissible
(resp.stabilizing) DPF-controllerwith coprimeinternalloop for I if [8 %} is an
admissiblgresp.stabilizing) DF-controller with coprimeinternal loop for D.

As before,”[DPF-]stabilizes’ means'is [DPF-]stabilizingfor”, in ary of the
above settings.(We usethe prefix “DPF-" wheneer thereis arisk of confusion.)
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Figure7.10: DPF-controlleiO with internalloopfor D € TIC,(U x W,Z x Y)

Lemma?.3.10shavsthatalsothecoprimepartof Definition 7.3.1is justified.

Note thatDP maps(u,,w,z.,yi,&L) — (U,w,zY,&) (cf. (7.63)andrecallthat
DP = (I —D°)~1—1). Therefore,O stabilizesD iff u,(w,)zy,& € L2 for all
u.,W,z,y,& € L2 SeealsoFigures7.10 and 7.11 and the commentsbelow
Definition 7.1.1andSummary6.7.1.

Thecombinedopen-loopsystemof (7.21)correspondingo the DF-controller
SpF With internalloop for Z (i.e., the DPF- controllers with internalloop for %),
is obviously givenby

A O|B B O 0O O ]
0O A| O 0 0 B B
0 C 0 0O 0 O11 02
= 0 0/ 0 O O O O (7.60)
C; 0|Dy Dipb 0 0 O
C, O | Dy Dy, O O 0
| 0 C2| 0 0 0 Oy Opp |

e WPLSU xW xZxY xZ,H xH,UxWxZxY xZ). Thus,Z isanadmissible
[stabilizing] DPF-controllerwith internal loop for X iff %7 is well-posed[and
stable](cf. Definition 6.6.4);see(6.125)for the closed-loopsystemz?.

If O = [% 0], thenwe cansimplify theabove definitionasfollows:
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Figure7.11: DPF-controllerz with internalloopfor £ € WPLS(U x W, H,Z xY)

Lemma 7.3.2(Well-posedDPF-controllers) A (well-posed) DPF-contoller
Q € TIC«(Y,VU) is admissiblgstabilizing] for D € TIC,(U xW,Z x Y) iff L := |

00
is admissiblgstabilizing] for [ 8%} TICo (U xW xY,U x Z xY); all prefices

0
D
apply. _ N
A (well-posedPPF-contoller ~ € WPLSY,H,U) is admissibldstabilizing]
for 2 € WPLS(U xW,H,Z xY) iff L := | is admissibldstabilizing] for

(A O|B 0 O]
0 Al 0O0B
=10 C|0 0 Q| €EWPLSUxWxZxY,HxH,UxWxZxY);
0 00 0O
C O/D OO

(7.61)
all preficesapply. In either setting admissibility is equivalentto condition
| —QDy1 € GTIC,(U).

Thelastconditionis equivalentto “I — QD21 € GB(U)” if Q, D21 € ULR, by
Proposition6.3.1(c).

Cf. againFigures7.8and7.9to Figures7.10and7.11,respectrely. Notealso
that(7.61)equalg(7.21)for Z and

A
> i=|C € WPLS(Z x Y,H,U x W) (7.62)
0

o o|lo
oo =

i.e.,it correspondso the DF-controllers’ for 5.
Proof: Denote(7.60) by =°. Obviously, £ = [% J]. Oneeasilyverifies

thatl =1 := ly xwxzxy is admissibldstabilizing]for 2°iff [{ 2 ] is admissible
[stabilizing] for £ (becausez?” = [zo,o 8], by (6.125); from this we also

obsenre thatall preficesof Definition 6.6.4apply).
Conditionl — QDy; € GTIC,(U) canbe obtainedirom Lemmas7.3.5and
7.1.2(or from adirectcomputation). O



Lemma 7.3.3(DPF-controllerswith IL) A map O = [8;1 8;2] € TIC&(Y X

=,U x =) is an admissible[stabilizing] DPF-contoller with internal loop for
D € TIC,(U x W,Z x Y) iff the connectionif Figure 7.10is well-posed[and
stable],equivalentlyiff

0 0 0 O Op2
0 O 0 O 0
D°:= [Dy; Dip O O 0 | €TICH(UXWxXZXY xZ) (7.63)
Dy Dy 0O O 0
0 0 0 Oy Oy
satisfied —D° € GTIC., [and (I —D°)~1 € TIC]. O

(Thisfollowsfrom Lemma7.2.2.)

AnalogouslyZ is admissibldstabilizing] for Z iff theclosed-loosystem(Z?;
cf. (7.60))in Figure7.11is well-posed[and stable,i.e., u,y,z & € L? andx and
X are boundedfor all u_,w,yi,& € L?(R4;%), X € H and% € H] (We note
thatexponentialstability is equivalentto x, X € L2 (andhenceu,y, z & € L?) for all
UL, Wy, &L € L2, xo € H andX € H, by LemmaA.4.5andLemmas6.1.10(al).)

As before, we identify a well-posedcontroller Q € TIC«(Y,U) with the
controller [2 8] € TIC.(Y x Z,U x =) with internal loop. From (7.58) we
obsenre that Q € TIC. is an admissible[stabilizing] DPF-controllerfor D iff
[39] € TICw(Z x Y,U x W) is an admissible[stabilizing] (DF-)controller for
D (obviously, (7.58)is a well-posedDF-controlleriff @ is a well-posedDPF-
controller; seethe endof Definition 7.2.1). This canbe comparedo Figure7.8,
where[¥] = [39] [:4.] + '], whereadi = Q(y+yL) + u_ in Figure7.1;the
differencesare explainedby the factsthatwe needno z. andthatw = w_ =W,
dueto lack of feedbackin theseloops.

Obviously, a (well-posed)map Q € TIC., is admissibleiff (I — D1 Q) €
GTICw. Theclosedlioop mapw — z (from thesecondnputto thefirst output)is
givenby the standardinearfractionaltransformatiorformula

Fo(D,Q) := D12+ DiQ(l — DaQD22 = FH([IDY[%], Q1. (7.64)
Thefull mapu,,w,y_ — u,z Yy is givenby
[ (I —QDyy) 1 (I —QD21) QD2 (I -QD21) Q -|
D11 (1 = QD21) ™t D1z +Dag (1 —QD21) QD2 Dyl —QD21) Q| .
[D21(| —QD21)™t Do+ (1 -DuQ) Dy (I1-DnQt (J7 65)

Thus,all admissibilityresultsof Sections/.2and7.1arevalid (for DPF)with
D»1 in placeof D, but for the stabilizability, we mustaddthe requirementhatthe
mapsto z andthe mapsfrom w alsobecomestable.

We usually study only DPF-controllerswith coprimeinternalloop, because
the standardstabilizability and detectabilityassumptiongor the H* 4BP imply
that no other controllersstabilize the plant (assumingsufficient regularity or a
discrete-timesetting; cf. Section12.5,Lemmasl2.6.6and 12.5.3and Theorem
7.3.19),andbecausehegenerakases rathercomplex, asshavn in thefollowing
proposition:



Proposition 7.3.4(%(D,0)) LetD beasin Definition7.3.1.LetQ :=(7.58).
(@) ThenO is admissiblewith internalloop for I iff

Iz -D11011 -D110r2
H:=]|0 Iy—D21011 —D2012
0 —0nq = — Qoo

equivalentlyiff

lu —O011D21 01D —0y2
0 Iw 0
—021D21 —021D2p 1=2—-022

€ GTICo(ZXY xZ);  (7.66)

R:= € GTICH(U xW x ).

(7.67)

(b) O is [exponentially] DPF-stabilizingwith internal loop for D iff (7.27)is
[exponentially]stable(equivalentlyiff (7.28)is [exponentially]stable).

(c) O is admissible (resp. [exponentially] DPF-stabilizing) with internal
loop for D iff @ is admissible(resp.[exponentially] DPF-stabilizing)for
[Dn 0 Dlz}

Dy; 0Dy |-
01 0
(d) O is admissible(resp.[exponentially] DPF-stabilizing)with internal loop

for D iff 0% is admissible(resp. [exponentially] DPF-stabilizing) with

internal loop for Dy := [g,,%’z gﬁz] If this is the case then %;(D,0Q)9 =
21 Y11

F¢(Dg,07).

(e) If O is admissiblewith internal loop for D, then %,(D,0) : w— zis given
by

Fo(D,0) =D+ (H 1) 12000 = Dip+Dyg (R 12 € TICK (W, Z). (7.68)

Themapw — u is givenby (R™1) 1.

If O = [99] for some Q € TIC«(Y,U) (i.e., O is well-posed), then
Fo(D,0) = D2+ D11Q(I — D21Q)1Dyy, by (7.65). For DPF-controllerswith
d.c.internalloop, a third formulafor ¥, is givenin Corollary7.3.20(c).
Proof: (a)&(b) Substitutg7.58)for Q in Propositior/.2.5(a)&(a’)to obtain
(@)&(b).
(c) By Definition 7.3.1,0 is DPF-admissiblevith internalloop for D iff
(7.58)is DF-admissiblewith internalloop for D. By Proposition7.2.5(c),this

is the caseiff (7.58)is DF-admissiblefor [ ]; equivalently, iff

00 Din 0 Do
is DF-admissibldor |Dy; 0 Doy | =:D. (7.69)
00 O I O

As notedbelow Definition 7.3.1,this is the caseff O is DPF-admissibldor D.
Replace*admissible” by “[exponentially] stabilizing” above to obtainthe
proof of remainingclaims.
(d) We have R € GTIC,, iff RY € GTIC,. Exchangehe first andsecond
rows andexchangethe first andsecondcolumnsof RY to obtainH with Dy in



placeof D andQ in placeof Q. This provestheadmissibilityclaim, andfrom
this we alsoobsere that (Ry, )12 = (Hu}i@ﬂ)cljz’ hence(use(c) twice)

Fo(Dg,0%) = ((Dg)12+ (Hu;j’@ﬂ)lz(Dd)ZZ)d = D12+ D11 (R )12 = Fo(D, 0).
(7.70)
Similarly, oneobseresfrom Proposition7.2.5(a)&(a’)that (7.28)is stable
iff (7.27)is stableafterthe substitutiond) — Dy, O — OF (this requiresusta
bit morereordering).
(Notethatexceptfor (7.70),part(d) is alsocontainedn Lemma6.7.2(f).)
(e) The symbolsof Proposition7.2.5 are now denotedas follows (cf.
Definition 7.3.1): we have u_ — [{], u— [§] andy — [§]. Themap“u_ —

[%’] " givenby H * [B], by (7.27),hencew s zis givenby

E [B])12= (H ) 11D12 + (H ) 12Dz = Dip + (H ) 12Dz, (7.71)

sincenow (H-1)11 = I, by LemmaA.1.1(b1)&(b2). Analogously w — z is
given by Di1 (R™1) 12+ Dip(R71)2 = Dy1(R71) 12+ Dip, by (7.28). Obvi-
ously, W u is givenby (R™1)1, by (7.28). O

For easeof referencewe collectinto a lemmasomeremarksmadeabove
(moreor lessexplicitly):

Lemma 7.3.5(0 DPF-stabilizesD = O DF-stabilizesD,1) Let D =
[&; &;] e TIC(U xW,Zx Y) and O € TICu(Y x Z,U x ). LetZ and S
berealizationsof D andQ, respectivelyThenthefollowing are equivalent:

(i) O is anadmissibleDPF-contoller with internal loop for I
(i) O is anadmissibleDF-controller with internal loop for Dyy;
(i) % is an admissibleDPF-contoller with internal loopfor Z;

(iv) % is an admissibleDF-contmller with internal loopfor 21 := [CA%%} ;
(V)1 =DP € GTIC,(U XxW xZ xY x =).

Moreover, if O DPF-stabilizesD, then O DF-stabilizesDyy; if ¥ DPF-
stabilizesz, thenX DF-stabilizes>»; (all preficesapply, becausehesystent ZP”
for Zp1 and X (cf. (7.21))is a part of thesystent >P” for X and(7.59)).

The corverseto thelastclaim is nottruein generaltake, e.g.,0 = 0 = Dyq,
D unstable;cf. alsoExample7.3.7),but it is true when,e.g.,2>; is optimizable
andestimatableseeLemma?.3.6andTheorem7.3.19.
Proof: (Naturally, thelemmastill remaingrueif we throughouthelemma
removethephraseswith internalloop”, sinceQ is awell-posedPF-controller
for £ iff O is a well-posedDF-controllerfor Z; (iff O = [%t 5]). Notealso

thatthe“resp” partis not definedfor zin placeof OQ.)
Let H € TIC(Y x =) be the map H for O and D; from Proposition
7.2.5(a).



1° Admissibility We obsere from Proposition 7.3.4(a) (and Lemma
A.1.1(b)),thatH € GTIC iff H € GTIC, andthat
Iz [* *]
H = [0] g1 | €TICe(Zx(Yx3)) (7.72)
0

(WhenlﬁI € GTIC(Y x =)). Therefore(i) and(ii) areequivalent.FromLemma
7.2.2(andDefinition 7.3.1)we obtain“(ii) <(v)”, “(ii) <(iv)” and“(iii) <(iv)”
(since(7.58)is thel/O mapof (7.59).

2° We shall showthat ff’ is obtainedby remwing the fourth andfifth rows
andcolumngthosecorrespondingo W andZ) fromZ: (Herei? isthesystem
“3P” for Zp1 andZ (cf. (7.21)),and 20 is the oneof Definition 7.3.1,i.e., the
closed-loopsystemof (7.60). Obviously, the above claim holdsfor 30 ands°
in placeof P and>}.)

Assumethat Q is admissiblefor Dyq. Let D° TICo(U XY x =) bethe
map (7.20) (for Dy; andQ), anddefineD® by (7.63). SetT := (I —D°)~1,
From(7.27)we obsene that
Tz x 0 T2 Tis

O I 0o 0o O
(I1-D°)1= koo bk x L eTICe(UXWXZxY xZ). (7.73)
To1 * 0 T2 Toz
| Tax + O Tz Taz

(This proves2° for D? := (I —D°) 1 —1.) Apply then(6.125)to obserethat
T12C2 T11Ch + Ta3Cy
0 0
Pi=(1-D°)'C=| * x| (7.74)
T22C2 T21Cy 4 T23C
| T32C2  T31C1 +T33Ca

(Remave the secondand third rows to obtain “@?”.) The proof for BY is
analogous. Finally, from (6.125) and (7.4) (for £ and ¥/, so that B° =

B, B, 00 O
[o 0 0B, E])Weobser\ethat

-

A 0] [B. 0 O
0 __ AO 00 __ = ~ -
AP = A +]BT(C|—[O A]+[O B 11332]

B, 0 O
0 B, B
3° Stabilization: We obsere from 2° that 2? € WPLS(U x Y x Z,H x
H,UxY xZ)isapartof 2 € WPLSU xW xZx Y x =,H x H,U x W x
ZxY xZ).
Indeed,D° = (I —D°) "t —| =T —1 is apartof D?, the semigroupA? is

which equalsA? ;= A° + [ } C°, the semigroupof f?.



thesamefor bothsystemsandC? andB? arepartsof C° andB?, respectiely,
asnotedabove.

Thereforejf X is DPF-stabilizingwith internalloop for Z, i.e., 2 is stable,
thenalso2? is stable,sinceit is a partof =0, i.e., thenZ is DPF-stabilizing
for Z21. Analogouslyif O is DPF-stabilizingwith internalloop for D, i.e., D
is stablethensois HNDP. For samereasonsary prefices(e.g.,“exponentially”,
“w-"; for Z also“strongly”, “internally”, “SOS-" etc.) apply. O

It is not exactly the samething to DPF-stabilize>~ and DF-stabilizeZ,1, but
prettyclose:

Lemma7.3.6(Z <> 221)

(@)= [%—%} € WPLS(Y x =,H,U x =) is an exponentiallystabilizingDPF-

contoller with internalloopfor X = [2£] € WPLS(U xW,H,Z x Y) iff b3
is an exponentiallystabilizingDF-contmoller with internal loop for 2.

(b1)If Z21 is exponentiallyjointly stabilizableanddetectablethenthefollowing
are equivalent:

(i) O DPF-stabilizedD exponentiallywith internalloop;
(i) O DF-stabilizesDy; exponentiallywith internal loop;

(i) O hasa realizationthat DPF-stabilizes> exponentiallywith internal
loop.

(b2) If 221 and Z are [strongly] jointly stabilizableand detectable thenthe
following are equivalent:

(i) O DPF-stabilizedD with internalloop;
(i) O DF-stabilizedD»; with internalloop;

(i) O hasa realizationthat DPF-stabilizes [strongly] with internal
loop.

(c) If Z21 is optimizableand estimatablethen(b1)(i)&(ii) are equivalentand
soare (b2)(i)&(ii).

Proof: (a) Thetwo closed-loopsystemsave samesemigroupA?, asnoted
in the proof of Lemma7.3.5, henceeitheris exponentially stableiff AP is
exponentiallystable by Lemma6.1.10(al).

(b1)&(b2) Implication “(iii) =-(i)” is trivial (sinceD} is a partof %), and
“(i)=(ii)" followsfrom Lemma7.3.5.

To completethe equivalence,we assumethat (ii) holds and that >,
and X are [[exponentially] strongly] jointly stabilizableand detectablg[the
assumptioron Z is unnecessaryl]].

By Theorem6.6.28[[(shifted; note that we tacitly apply shifting several

times below t00)]], Dy, hasa [[exponential]] d.c.f.; therefore,so doesD :=
1)



By Proposition7.2.5(c),® DF-stabilizesD [[exponentially]]. By Propo-
sition 7.1.6(d), O hasa [[exponential]]d.c.f. By Theorem6.6.28,0 hasan
[[exponentially]] stronglyjointly stabilizableanddetectableealization.

By Theorem7.3.11(b)(1.)[[(c1)]],this realizationstabilizesZ [[exponen-
tially] strongly]with internalloop. (Herewe neededhe assumptioron Z, or
at leastthe assumptiorthat X is, e.g.,q.r.c.-stabilizablgsince A} is the same
for Z and Z»4, “strongly” is not needecdhere] [[since Z»; is optimizableand
estimatablesois Z]].)

Aremarkfor (b1): It is not sufiicientfor (b1)(i)—(iii) thatQO DPF-stabilizes
D with internalloop: by Corollary 7.3.20,this holdsiff O is equivalentto Q
of Corollary7.3.20(ii)for someU € TIC(U), whereasxponentialstabilization
requiresthatlU € TICgp(U).

(c) 1° Thecorrespondingliscrete-timeclaim holds: By Lemmal3.3.17(b),
221 is exponentiallyjointly stabilizableanddetectablehencesois . There-
fore, (b1)(i)—(iii) areequivalent,andsoare(b2)(i)—(iii).

2° Theoriginal claim holds: Usediscretization(seeTheorem13.4.4(el)).

U

In Lemma7.3.6(b2)(compareo (b1)),the conditionon Z is not superfluous:

Example 7.3.7 (221 and D strongly stable but Z not DPF-stabilizable) Let A
beasin Example6.1.14(a)sothat A andX»; arestronglystablebut B,, C; and
Dy areunstablewhere

AlO I
s:=(1]0 0 | ewpPLs (7.76)
0[0 0

Moreover, no DPF-controller[with internal loop] hasary effect on Z; in
particular = is not DPF-stabilizable,although > := [8«}%] DF-stabilizes>»,
exponentially

Note that ¥ is exponentially jointly stabilizable and detectableand has
bounded‘B andC”, but 21 is only stronglyjointly stabilizableand detectable.
<

(All thisis straightforvard (useExample6.1.14(a),Proposition7.3.4(a)and
Lemma6.6.25.))

Lemma 7.3.8(Equivalent DPF-controllers) Let D = [&1 %g] € TIC(U x

W,ZxY), 0 € TICs(Y x Z,U x =), andQ € TICo(Y x=/,U xZ'). LetZ, £
and X’ be arbitrary realizationsof D, © and@' respectively Thenthe following
are equivalent:

(i) O andQ' are equivalentDPF-contiollers with internal loop for ID;

(i) O andQ’' are equivalentDF-contmllers with internal loop for D1

(iii) Opr andQpg are equivalentDF-contollers with internalloop for D;

(iv) = and¥’ are equivalentDPF-contollers with internal loop for &;



(v) £ and¥’ are equivalentDF-contmollers with internal loop for So1;
(vi) Spor and E’ r are equivalentDF-contmollers with internal loop for

i) [68070]DP (6887 017 [%] — [Y] is unafectedwhen is replacedby
O (equivalentlyZ is replacedby &');

10000 1000077 ru u
(viii) {8(')?8 ]DO [8(')?88] ; ["z"} — ["ZV] is unafectedwhenQ is replaced
00010 00010 n y
by O/,

(ix) the closed-loopmapsZ?, = : Xo,uL, W, (z,)yL — X, U, (W,),y,z are unaf-
fectedwhenZ is replacedcby 3/;

In particular two admissibleDPF-controllersvith coprimeinternalloop are
equaliff they areequialentfor D, equivalently, for D»1, by Lemma7.2.12(c).

Recall that ary well-posedmap is a map with internal loop, and that ary
well-posedcontroller having a (right, left or doubly) coprimefactorizationis a
controllerwith a(right, left or doubly, respectiely) coprimeinternalloop.

The equivalencebetween(iv) and(v) wasexpected:if Z,; doesnot seeary
differencebetweens and ¥/, why would the restof Z seeary; the restof the
equivalencefollows from this.

Condition(ix) saysthatthe two closed-loopmapsare equalexceptpossibly
for secondandseventhrows andcolumns(thosecorrespondingo H and= (or H’
and=")), i.e., only the mapsconcerningx, Xo, & and§, may differ for equivalent
controllersfor Z; thus,thereis no differencefrom the partof X visible for Z.

Consequentlyfor Xo = 0 and§; = 0 (or X, = 0 and¢| = 0), thesignalsx,u,y, z
in Figure7.11are unafectedwhenZ is replacedby an equialentcontroller(as
longasxp, u_,w,y, arefixed).

Proof of Lemma 7.3.8: (See(7.63)for D° and note that DY = D°(I —
D)L =(1-D°)1—1¢€TICo(U xW x ZxY x Z) for ary admissible
controllerwith internalloop for D.)

1° “(i) e(iv)<(vi)”, “(ii) <(v)" and “(iii) < (vi)<(viii)”:  Thesefollow
from Definitions7.3.1,7.3.1and7.3.1,respectiely. L

2° “(vii) =(iii)":  Assume(vii), i.e., that the mapsTi1,T12,T21,T22 in
(7.73)areequalfor @ andQ'. Thenalsothe maps

((l —]D)o)_l)34: ((l —]D)O)_l— )34 = (]D)O(| —DO)_1)34: ]D)ll:]flz (7.77)

areequalfor @ and@. We concludefrom (7.73)thatthe maps((I —D°)~1);;
areequalfor @ and@ fori =1,2,3,4, j = 3,4. By Proposition7.2.5(e)(cf.
(7.27)),we obtain(iii).

3° “(iil) =(ix)": Thisfollowsfrom Lemma7.2.2.

Remarkn (ix): Here,aselsavhere,z° andZ? arethe combinedclosed-
loop systemscorrespondindo & and%’, respectiely; cf. the proof of Lemma
7.3.5. By (ix), they becomeequaloncewe remove their secondandlastrows
andcolumns.

In (xi), we mustinclude“t” afterBY andB’ (in £° and={), cf. theremark
belowv Definition 6.1.5.



We have z andw in parenthesii (ix), becausea doesnot affect any other
signalandw is not affectedby ary signal.)

4° “(ix) = (viii)=>(vii)": Thisis trivial. Thus,only (ii) and(v) aremissing
from the equivalence they areadoptedn 5°—6> below.

5° “(ii) =(vii): Assume(ii). ThenT = (I —D°)~! is unafectedby the
replacemen® — @’. By (7.73),this meanghat(vii) holds.

6° “(i) =(ii)": Assume(i). With the notationof the proof of Lemma7.3.5,
we have

o1

8 [O1 [0@15}] H™ e TICa(Zx Y xZ,U xW).

N (7.78)

By (i) and Proposition7.2.5(e),the map ([O11 O12] H™1); is unafected

by the replacemenD — @, hence([Opr11 Obri2) H1); is unafectedby
O — O (equialently, by Opr — Opg).

From (7.72) we obsere that (H1);; € TIC«(Y) is contained in

(H1)11 € TIC»(Z xY). We concludefrom Proposition7.2.5(e) that (ii)

holds. O

[Obr11 Oprig] H ! =

Lemma 7.3.9(Well-posedQ = Q11 + O12(1 — 02)~1021) LetO= [8; 8;;} €
TIC.(Y x Z,U x =) be an admissibleDPF-contoller with internal loop for
DeTIC,(U xW,ZxY).

ThenQ is equivalentto a well-posedDPF-contoller for D iff | — Qo2 €
GTIC.; if this is the case then that well-posedDPF-contoller is given by
O11 +O12(1 — On2) ~1021 (in particular, it is unique). 0O

(This follows from Lemma7.2.7 and Lemma7.3.8(i)&(ii), becausea map
O € TIC.(Y x =/,U x Z/) is a well-posedDPF-controllerfor D iff @’ is well-
posedDF-controllerfor Dy, i.e.,iff & = [§3].)

Lemma7.3.10 LetQ = YX ! or Q = X 1Y be a mapwith coprimeinternal
loop. Thensois

2B Y BY-EILY om

respectivelyThefollowing are equivalent:

() Q is anadmissiblgstabilizing] DPF-contoller with coprimeinternal loop
for D

(i) [8 %} is an admissible[stabilizing] DF-contmller with coprimeinternal
loop for D;

(iii) [? Q@d is an admissible[stabilizing] DPF-contoller with internal loop
for D;

(iv) (7.81)is anadmissibldstabilizing] DF-contmoller with internalloop for I;
(v) (7.82)is an admissiblgstabilizing] DF-controller with internal loop for .



(Recall Definition 7.2.11 of maps with coprime internal loop.) From
“(i) < (ii))” we concludethatoneneednot first extendQ to [8%} andthentake a

representatie (suchas(7.81));onecanalsotakefirstarepresentatie O = [? | ¥y |
YiI-x|°
missible[stabilizing] DPF-controllerwith coprimeinternalloop for D iff some

(henceary) of its representaties is an admissible[stabilizing] DPF-controller
with internalloop for D.

Proof: We treatther.c. casethel.c. andd.c.casesareanalogous.

Supposehat Q = YX~1 is a mapwith r.c. internalloop (i.e., Y,X € TIC
arer.c.).

1° (7.79)is a mapwith coprimeinternal loop: This meansthat [J ¥] and
[4 9] arer.c. Indeed MX — NY = | impliesthat

o w)lo %1% oo o =" (7.0

2° Theequivalenceof (i)—(v): By Definition 7.2.11,the (canonical)epre-
sentatve of mapof form [0Q] = [9¥] [} 9] with r.c.internalloopis given
by

(orO= [0 ! ] respectiely) of Q, andthenextendit asin (7.58): Q is anad-

[ 000 Y
{ (,) 8 8 8 eTIC(ZxY x (ZxY),UxWx (ZxY))  (7.81)
01 0 I-X
(notethathere“="=Z x Y, whereaselown “="=Y). We concludethat (ii) is

eqguvalentto (iv), by Definition 7.2.11.

The DF-controller (7.58) correspondingto the canonicalrepresentatie
0= [9, %] of themapQ with internalloopis

00 Y
00 O e€TIC(ZxY xY,UxW xY). (7.82)
01 1I-X

By Definition 7.3.1, (iii) standsfor (v), and(i) standsfor (ii). Thus,we can
completethe equivalenceby showving (iv) equivalentto (v).

Let D° be the map “D°” of (7.63) that resultsfrom applying the DPF-
controllerO to D (equialently, the DF-controller(7.82)to D), andlet D° be
the map“D°” of (7.20)thatresultsfrom applyingthe DF-controller(7.81) to
D.

ThenD® = [ 9] modulo certainpermutationof rows and and the same
permutationof columns. Therefore,| —D° € GTIC,, iff | —-D° ¢ GTIC,
and (I —DP°) 1 e TIC iff (I —D°) ! e TIC. Thus, the admissibility and
stabilizabilityof (7.81)for D is equivalentto thatof (7.82).

(An intuitive proof would go asfollows: (7.82)is obtainedby deletingthe
Z part (notY part) of & (7.81), and this Z partis obviously well-posedand
stable,anddoesnot affect any othersignals.) O



Trivially, % I/O-DPF-stabilize< iff O DPF-stabilizeD (i.e.,iff DY becomes
stable). Under standardassumptionsthis is also equialent to the stronger
conditionthatZ DPF-stabilizez:

Theorem 7.3.11(Z DPF-stabilizesZ <> @ DPF-stabilizesD) Let> = [4]B] ¢
s _[ilB s
WPLS(U xW,H,Z xY) and% = [aﬁ] € WPLS(Y x =,H,U x ).

(a) Supposehat = and i; are SOS-stabilizableThenZ SOS-DPF-stabilizes
with internalloopiff Z 1/0-DPF-stabilizes> with internalloop.

(b) ([Strong] stability) Supposé¢hat any of the following conditionsholds:

(1.) both= and < are [[exponentially]strongly] g.r.c.-stabilizable;

(2.) bothZ and= are [[e xponentially]strongly] g.l.c.-detectable;

(3.) bothX and < are SOS-stabilizabl@nd [[e xponentially] strongly]
detectable;

(4.) bothZ andZ are detectableand [exponentially]stabilizable

Thens [[e xponentially]strongly] DPF-stabilizesx. with internal loop iff b3
I/O-DPF-stabilizesx with internal loop.

(c1) (Exponential stability) Thesysterrf DPF-stabilizess exponentiallywith
internal loop iff Z I/O-DPF-stabilizes> with internalloopandX and X are
optimizableand estimatable

(c2) Supposehat any of the following conditionsholds:

(1.) bothZ and s are optimizableand estimatable;

(2.) bothZ and £ are optimizableandinput-detectable;
(3.) bothZ and £ are estimatableand output-stabilizable;
(4.) bothZ and  are optimizableandq.r.c.-stabilizable;
(5.) both= and < are estimatableandq.l.c.-detectable

ThenZ DPF-stabilizess exponentiallywith internal loop iff = 1/0-DPF-
stabilizesz with internalloop.

(d) (Well-posed controllers) Suppose that, instead, P [é g} €
WPLS(Y,ﬁ,U). Then (a)—(c2) hold if we deletethe words “with inter-
nal loop” everywhee.

Thus, under correspondingassumptionsabove, all mapsbetweenthe sig-
nalsin Figure 7.11 are (SOS-/strongly/gponentially) stableiff the mapsfrom
u.,W,yp,z,& tou,w,y,z¢ arestable.

Proof: Thisfollowsfrom Theorem7.2.3(andDefinition 7.3.1),becausdin
thewell-posedcase(d); the casewith internalloop is analogousandleft to the

reader)f T= [%—%] is arealizationof Q, then

EDPF = (7.83)

o a2
o o|lo
oL =



is arealizationof [J 9| (having the stabilizability and detectabilityproperties
of £, becausét is aparallelconnection(seeLemmas.7.18)of = and0). O

We cannow almoststatethat exponentialDPF-stabilizabilityis equivalentto
the optimizability andestimatabilityof Z»1:

Theorem 7.3.12(Exp. DPF-stabilizable<> opt. & est.) Let ¥ := [%%] €
WPLS(U x W, H,Z x Y).

(a) If Z is exponentially DPF-stabilizablewith internal loop, then Z and
Sop 1= [%%] are optimizableand estimatable

(b1) Corversely if 221 is exponentiallyjointly stabilizableand detectablethen
[Z and] Z»; are exponentiallyD[P]F-stabilizable with internal loop.

(b2) If 21 and Z are [strongly] jointly stabilizableand detectablethenZ is
[strongly] DPF-stabilizablewith internal loop and %1 is [strongly] DF-
stabilizablewith internal loop.

(c) Assumethat ABuy, A*C*yp € L (R, ;H) for all up e U andyp €Y, and

loc
thatD»; is ULR. Thenthefollowing are equivalent:

(i) Z is exponentiallyDPF-stabilizable;

(i) Z is exponentiallyDPF-stabilizablewith internalloop;

(i) 21 is exponentiallyDF-stabilizable;

(iv) Z21 is exponentiallyDF-stabilizablewith internal loop;

(v) (A,By) is optimizableand (A,Cy) is estimatable
(equivalentlyZ»; is optimizableand estimatable);

(vi) 221 is exponentiallyjointly stabilizableanddetectable;

(vil) Z and 21 are exponentiallyjointly stabilizableand detectableby
someboundedK andH.

Moreover, if (vii) holds,then(d1) applieswith thoseK andH (hence(6.169)
and(7.84)becomdJLR).

(d1n)If K aAndHHBare exponentiallyjointly stabilizingfor 237 ands.t.“(6.169)”
(e, [ﬁfﬂ) is SRand*“l — GL” € GTIC«(Y) (this holdsif “(6.169)”
for 221 1s ULR), then

A+ BKs+HCs+HD21Ks | —H
( K | o
is an exponentiallyDPF-stabilizingcontroller for Z. Moreover, (7.22)is SR
andexponentiallyjointly stabilizableand detectable
(d2) If K and H are [strongly] jointly stabilizing for 2,7 and s.t. “(6.169)”
(e. [ﬁﬂ}) is SRand“l — GL" € GTICa(Y) (this holdsif “(6.169)"
for 221 1Is ULR), and Z is jointly stabilizableand detectablethen(7.84)is

a [strongly] DPF-stabilizingcontroller for . Moreover, (7.22)is SRand
[strongly] jointly stabilizableand detectable

) € WPLS(Y,H,U) (7.84)



(e) Assumdhat Z is exponentiallyDPF-stabilizablewith internal loop. Then
any map DPF-stabilizesD [exponentially] with internal loop iff it DF-
stabilizesD,; [exponentially]with internalloop.

Obviously, theassumptionsf (c) holdif B andC areboundedor Hypothesis
9.5.1holds),hencealwaysin discretetime.

Part(d1) is ageneralizatiorof a classicaresult(seeLemmal2.1of [ZDG] or
LemmaA.4.2 of [GL]).

Also claim (e) is a generalizatiorof a classicalresult (see[Francis], p. 35;
in fact, Francisonly assumeghat D is exponentially DPF-stabilizable(since
a rational H® function is HZ, for somee > 0), but, by Lemma?7.1.4 and
Theorem6.6.28,this impliesthatD hasan exponentiallyjointly stabilizableand
detectablerealization (assumingthat D is rational, we could also chooseary
minimal realization) sothat(e) applies).

Proof: (a) By Lemma7.3.5, 221 is exponentially DF-stabilizable[with
internalloop], henceX,; is optimizableandestimatableby Theorem7.2.3(c1).
ThereforealsoZ is optimizableandestimatableby Lemma6.7.4.

(b1)&(b2) Thisfollowsfrom Theorem?.2.4(b)andLemma7.3.6(b1)&(b2)
(moreover, from the proofswe obsene that(7.23)will dofor Z too).

(Notefrom Definition 7.3.1thatif X is DPF-stabilizablevith internalloop,
thenit is DF-stabilizablewith internalloop, by Definition 7.3.1.)

(c) Thisfollowsfrom Theorem7.2.4(c)andLemma7.3.6(a).

(d1)&(d2) (Theassumptionsn(6.169)andG referto thosecorresponding
to 221 in placeof X in Definition 6.6.21.Notethatit suficesthatK andH are
ULR and exponentiallyjointly stabilizing for 1 (andthen (7.84) becomes
ULR).)

Make the assumptionsof (d1) [[(d2)]]. By Theorem?7.2.4(d), (7.84)
is SR, [[exponentially] strongly] jointly stabilizableand detectable,and a
[[exponentially]strongly] DF-stabilizingcontrollerfor Z»1, henceit I/O-DPF-
stabilizes>, by Lemma7.3.6(b2)[[(b1)]]. Consequently(7.84) DPF-stabilizes
> [[exponentially]strongly],by Theorem7.3.11(b)(1.).

(e) Thisfollowsfrom (a) andLemma7.3.6(c). O

For the rest of the section, we concentrateon I/O-stabilizationby DPF-
controllerswith d.c.internalloop (equialently, on the stabilizationof plantswith
D»1 having a d.c.f., asthelemmabelowv shaws), becausehis seemdo cover all
theinterestingcasegcf. alsothe preceedingectionsandLemma6.5.10).

Lemma 7.3.13 LetQ DPF-stabilizeD € TIC, (U xW,Z x Y) with internal loop.
ThenQ hasad.c.(resp.r.c.,l.c.) internalloop iff D1 hasad.c.f (resp.l.c.f.,
r.c.f) Moreover, if D1 hasad.c.f (resp.l.c.f,r.c.f), thensodoesD.

In particular, if anysystenk = [%%] € WPLS(resp.mapD € TIC,,) is DPF-
stabilizableby a [exponentially] jointly stabilizable and detectablecontmller
[%—%] (resp.by a map@ with [exponentially]d.c. internal loop), then D, @

andD,; have[exponential]d.c.fs.



Remembetthat a map hasa [exponential]d.c.f. iff it hasa [exponentially]
jointly stabilizableanddetectableealization(by Theorem6.6.28).[SeeTheorem
7.3.12(c)for severalequivalentconditionsfor smoothsystemgin particular for

finite-dimensionabnes).]
Proof: By Lemma7.3.5,Q stabilizesD»; with internalloop, so the first

conclusiorfollows from Corollary 7.2.13(b).
If Q hasad.c.(resp.r.c.,l.c.) internalloop,thensodoes[g ‘g] , by Lemma

7.3.10,and [ Q] DF-stabilizesD (by the definition of DPF-stabilization),
henceD hasad.c.f. (resp.l.c.f., r.c.f.). Theclaimon Z follows from this and
Theorem6.6.28. O

Proposition 7.3.14 LetD = [f,?g; &lg] € TICw(U xW,Z x Y).
We have(i) < (i) < (i), whee
(i) D hasa stabilizingDPF-contoller with internalloop,andD»1 hasad.c.f;
(i) D hasa stabilizingDPF-contoller with d.c.internal loop;
(i) D hasad.c.t oftheform

D— [Nn le] [Mn Mlz]lz | My,
Nop Npof | O | 0 My,

1~ -
N1 N2

= . (7.85)
Np1 Npo

s.t.No; andM;4 arer.c.,andNy; andM, arel.c.

If dimU,dimY < o and D hasa stabilizing (well-posed)DPF-contioller, then
()—(iii)) hold.
Let4 C TIC. Thenwehave(i’) < (ii") < (ii*) <(iii’), whee
(i) D hasa stabilizingDPF-contoller with internalloop, andDy1 hasad.c.f
over 4,
(i") D hasa stabilizingDPF-contoller Q with d.c.internal loop over 4, and
D»; andQ haveajoint d.c.f over 4,

(i*) D hasa stabilizingDPF-contoller with d.c.internal loop, andD»; hasa
d.c.f over 4;

(i) D hasad.c.f oftheform(7.85),s.t. N1 andMjy; arer.c.over 4, andf\vlm
andMpy, arel.c. over 4.

If D hasad.c.f over 4, thenwehave(i’) < (ii") < (ii*) <(iii’) <(ii”), whee

(i) D hasad.c.f over 4 of theform (7.85),s.t.No; andMj; arer.c. over 4,
andN,; andMy, arel.c. over 4.

If B C 4 C ULRg, thenthe stabilizingDPF-contollersin (i), (ii*) and (ii’)
canbechosento bewell-posed.



Proof: Note that the equwvalence (i)<(ii)<(iii) follows from
(") < (ii") < (i), by taking 4 = TIC, so we do not needto prove the for-
mer. If D hasa stabilizing DPF-controllerQ € TIC., thenit is a stabilizing
DF-controllerfor D»1, hencethenDy; andQ have d.c.f's, by Lemma7.1.4,
providedthatdimU, dimY < co.

1° The equvalence®(i’) < (ii*)” follows from Lemma 7.3.13. Clearly
(i) =(ii*).

2° “(iii) =(i): BecauseDy; = NpyMy; is ar.c.f. over 4 and Dy =
MEZJ'NZ]_ is al.c.f. over 4, they canbe extendedto ad.c.f. over 4, by Lemma
6.5.8;in particular we canfind X, Y,X,Y € 4 s.t.

-1

XY €GAa. (7.86)

[Mn Y] .
—Np1 My,

N>, X|

But, by Corollary7.2.15(i),[3%] = [3¥] [ 9] * DF-stabilizesD iff

[' MipX =N Y € GTIC, (7.87)

0 Mzzx —N21Y

i.e.,iff MooX— Ny Y € GTIC (by LemmaA.1.1(b)),andlatteris trueby (7.86),
henceQ = YX~! = X~1Y DPF-stabilize® with d.c.internalloop over 4.

3° If (iii") holds(e.g., (iii) holds),thena mapQ with aninternalloop DPF-
stabilizesD iff Q DF-stabilizesD»1: Indeed,if Q DPF-stabilizesD, thenit
DF-stabilizesD-s, in particular Q hasa d.c. internalloop in either case,by
Corollary 7.2.13. For the corverse,in 2° it wasnotedthat Q DPF-stabilizes
D iff Q = YX1, whereMxX — N1 Y € GTIC, which in turn is true iff Q
DF-stabilizedD,1, by Corollary 7.2.15(i).

4 “(ii*) =(iii)”: Assume (ii*), i.e., that some YX-! = X-1Y DPF-
stabilizesD with d.c.internalloop. It follows from Lemma7.2.16(b) thatfor
somed.c.t.D=NM =N (M) ! wehave (see(7.79))

l o] ,[X o] [0 Y]y .

I AT
M X M| _ [I+ YNy YN, . (7.89)
My, X M, 0 |

By Lemma6.5.6(d),MS,, = | impliesthatD hasar.c.f. of theform of thefirst
equalityin (7.85); from the (1, 1)-block of Corollary 7.2.15(i") appliedto this
r.c.f.we seethatﬁiMll — §N21 € GTIC, henceM;1 andNp; arer.c.

Let Doy = TS~ bear.c.f. over 4. Then [Na1 Mii] = [TU SU] for
someU € GTIC, by Lemma6.4.5(c). Thuswe may multiply r.c.f.in (7.85) by
[Ual 0] € GTIC to theright, to make Np; andMiy; r.c. over 4.

The dual part is obtainedanalogouslyfrom [} 9] = [{ 9]M — N [8%] ,

which impliesthatMll =1 (ar.c.f.andal.c.f. formad.c.f.,by Lemma6.5.8).
5° From “(i") <(ii") <(ii")” we obtaindirectly “(i") <(ii”) <(iii")”. As-



suming(ii”), we obtain(iii”) from 4° asfollows:

Thed.c.f£.D=NM ' =N (M)~!in 4° canbechoserto beover 4, hence
socan(7.85),by Lemma6.5.6(d). All the otherclaimsarecontainedn (iii"),
whichis equialentto (ii"), henceaconsequencef (ii”).

6° If B C 4 C ULRg and (ii") holds (recall that (i") < (ii’) < (ii*)), then
thereis awell-posedQ thathasa d.c.f. over 4 joint with D1, by Proposition
7.1.10.Thereforethis Q DF-stabilizedD»q; by 3°, it DPF-stabilizedD. O

By combiningLemma7.3.13andProposition7.3.14,we deducethe follow-
ing: if D is DPF-stabilizabldy a controller@Q with internalloop, andeitherDy;
or Q hasad.c.f.,,thensodo all of D, Dy; andQ, andthe following hypothesis
holds:

Hypothesis7.3.15 We shall assumehat D = [&1 &ﬂ € TIC»(U xW,Z xY),
andthatD hasad.c.f of theform

1~ -
N1 Ni2

. (7.90)
Np1 Ny

D= [Nll le] [Mll Mlz]lz | N:Ahz
N2z Npzf | O | 0 My

s.t.Np1 andMj; arer.c.andN»; andMb; arel.c.

NotethatDy; = NpyM;1 is ar.c.f. andDy = M;2Ny is al.c.f.

Underthe standardassumption®f the H* Four-Block Problem,Hypothesis
7.3.15is satisfied(cf. Lemmasl2.5.4and12.5.5).Undersufficient regularity, the
I/0 map of an exponentially DF-stabilizablesystemsatisfiesHypothesis7.3.15
(exponentially),by Theorem7.3.12(c)(1)&(6)andProposition7.3.14.

As notedjustbeforethehypothesisthis hypothesiss atmostslightly stronger
thanthe assumptiorthat D is DPF-stabilizabldwith internalloop]; it excludes
only the casewhere Q and D1 have no jointly stabilizable and detectable
realizationgcf. alsoLemma6.5.10).

At leastfor finite-dimensionallU andY, ary DPF-stabilizableD € TIC,,
satisfieghehypothesishy Lemma7.1.4.

Lemma7.3.16M =[], M= L*]) LetD = NyM, ! beanr.c.f with M, =
011 € GTIC»(U xW). Thenall sudr.c.f'sare givenby

X11 Xp2

N=NYX, M=MX, X:[O |

} € GTIC(U x W). (7.91)

For thedual claimwehaveN = XN,, M = XM, X = [(') %ﬂ € GTIC.
Note that this implies that X1; € GTIC(U) (by LemmaA.1.1(b2)(2)) and
Xi2 € TIC(W,U) arearbitrary
Proof: Clearlyall r.c.f’s definedby (7.91) satisfyM = [ |]. Corversely
by Lemma6.4.5(c),N = NyX andM = M X = [x, x,,], WwhereX € GTIC.
ThereforeM = [§ ] impliesthat X1 Xoo] = [Mp1 M| = [0 1].
Thedualclaimis obtainedanalogouslyor by takingadjoints). O



Corollary 7.3.17 If Hypothesis/.3.15holds,thenall d.c.fs of D of form (7.90)
satisfyHypothesis/.3.15.

~ ]~

Proof: Let D = N\M, 1 = My Ny beasin Hypothesis7.3.15,and let

PMy11—QNy,, =1. LetalsoD = NM~! =M~!N bead.c.f.with M =[§}],
M = [}*]. LetX beasin (7.91). Then

XIlllF’Mll — XHL@NZL = XIllxll =1. (7.92)

Thedualclaimis obtainedanalogously O

Remark 7.3.18 The r.c.f. in Hypothesis7.3.15 says (roughly) that D can be
stabilized by measuringthe full output (z and y) and contrlling u (i.e., not
affectingw). Similarly, the l.c.f. saysthat D can be stabilizedby measuringy
andcontrolling thefull input (u andy).

Thus is an intuitive explanation of the necessity(at least under certain
regularity) of Hypothesis7.3.15for one beingable to stabilizeD> by measuring
y andcontolling u; by Proposition7.3.14theseare alsosuficient.

It will be shownin Theoem7.3.19that Q DPF-stabilizesD iff Q stabilizes
Dy»;. Indeed,all thepolesof D are sharedbyD,,” (cf. [Francis,p. 34]), because

_ [NuM! —NuaMp Mo + Ni

D= 2 2 .
NotMi;  —NaiMip; Mo + Na

(7.93)
Theefore, the polesof D are polesof Mll, which in turn are exactly the poles
of D»1, by Lemma6.5.4, henceall thesethree mapshave samepoles (up to
multiplicities).

Thus,stabilizationof eitherD or Dy is equivalentto remaing thesesingu-
larities.

A simple example of non-DPF-stabilizableD is thusary D = [8 D(ﬂ €
TIC, \ TIC.

Fromthe above hypothesigroughly, the DPF-stabilizabilityof ), it follows
thatall stabilizingDPF-controllersvith internalloop for D areexactly thestabiliz-
ing
(DF-)controllerswith d.c. internal loop for D1, i.e., the onesgiven by the
Youlaparametrizatiorof Theorem7.2.14:

Theorem 7.3.19(DPF-stabilization with IL) AssumeHypothesis7.3.15. Then
thefollowing are equivalentfor a controller Q with internal loop:

(i) Q DPF-stabilizesD with internal loop.

(") Q DPF-stabilizesD with d.c.internalloop.

(i) Q DF-stabilizedD,4 with internalloop.

(ii") Q DF-stabilizedD»1 with d.c.internalloop.

(i) My X—Np Y € GTIC(Y) andQ = YX 1 for someX, Y € TIC.



(i) XM — YNp1 € GTIC(U) andQ = XY for someX, Y € TIC.
(iv) [%2111 §] € GTIC andQ = YX~ for someX, Y € TIC.

VA X —{{ _ ~_1"" ~ ~
v) [ £ V] e gTicandg=X1¥ for someX, ¥ e TIC.

(v) For anyr.c.f Q = YX ! andl.c.f Q = X 1Y, ther are Ny, My, No, My €

-1
MoY| " _ [ X -Y];
TIC s.t. [No x} = [NO Mo} isad.c.f of Dys.
The map Q is well-posediff the “denominator” (X or §N§) is invertible in
GTIC, in anyof theaboveequivaleniconditions.

By (v), Q DPF-stabilize® iff Q hasa joint d.c.f. with D,1. (SeeDefinition
7.2.11for mapswith coprimeinternalloop.)

Proof: 1° Thefactthata DPF-stabilizingcontrollerof D with internalloop
hasnecessarilyad.c. internalloop, is givenby Lemma7.3.13,hencé(i) <(i')”
holds.

2° Similarly, “(ii) <(ii")” followsfrom Theorem7.2.14.

3°“(I") < (i")": Thisfollowsfrom part3° of theproofof Proposition7.3.14.

4° By Corollary 7.2.15,all the otherconditionsare equvalentto (ii’), and
thetwo final claimshold. O

By combining the above theoremand Theorem 7.2.14, we see that all
stabilizing DPF-controllersfor D with internal loop are given by the Youla
parametrization:

Corollary 7.3.20(All stabilizing DPF-controllers with IL) AssumeHypothesis
7.3.15,andchooseT, S, T,S € TIC s.t.

~ ~1-1
S T
S - € GTIC(U xY). 7.94

Mj; T
N1 S

(Thisisad.c.f of Dy1.)

Thefollowing parametrizationsare alternative(equivalent)parametrizations
of all (modulo being equivalent) DPF-contiollers Q with internal loop that
stabilizeD, and eat paramete((X,Y) in (i) and (i), (Y,X) in ("), andU in
(i) and(ii"); theseall arerequiredto bestable)determines different(nonequal;
seeDefinition7.2.11)mapQ with d.c.internal loop.

(i) Q = YX~! sudh thatMopX — Nor Y = 1.
Q= X_l§ sudt thatXMll — ?Ngl =1.
(ii) (Youla) Q = (T + M1 U)(S + Ny U)~L (e, [¥] = [%ﬂzlll g] [U]), whee

U e TIC(U).
(i) Q= (S +NoyU)~1(T + MoU) (e, [x ] = [I U] [&i ﬁz]), wher U e
TIC(U).

(i) @ = YX~! (= X-1Y), whee [‘I‘gﬂzlll §]_1: [}? ﬁﬂ e GTIC.



Moreover, thefollowing holds:

(a) Thewell-posedones(if any)are exactlythoseQ for which the “denomina-
tor” isin GTIC, (cf. Theoem7.1.7);they satisfy

X=(My;—QNpp) Y, Y=XQ X=(Mxp-N;Q) !, Y=0QX. (7.95)

(b) For any U € TIC we have (identity as equal mapswith coprimeinternal
loop)

(T+M311U)(S + Ny U) 1 = (S+NxyU) (T + M U). (7.96)
(c) If Y, X,i?{ areasin (i) and(i’), thentheclosed-loopl/O mapsare given
by
Ni1 + PN Niz + PN, Nllg N11P+Ni2

.| UL VA
5]

B B L B (7.97)
whee P = YNy, — XM, andP = N1 Y — M15X; see(7.65) (without the
third (y.) columnandtop (u) row)for alternativeformulaein thewell-posed
case

In particular, (cf. (7.64))
F(D,Q) = Ny1P+Nyp = Nip + PNpo. (7.98)

XN>1 XNo» N21 X Np1P+ Noo

Recallfrom Lemma7.2.12(c2) thatthe maps(7.97)dependof coursejon D
and Q only, not on the particularcoprimefactors(X, Y, X, Y,N,M, N,M) of Q
andD (thoughwe dorequire(i), (i) andHypothesis7/.3.15).
The H” 4BP (seeChapterl2; Section12.3in particular)consistsof finding,
for agivenD, astabilizingDPF-controllerQ s.t.thenorm|| %|| is lessthanagiven
constany (or for agivens a[exponentially]stabilizingcontrollerZ s.t.|| %|| < y).

Proof: By Lemma6.5.8,it follows from Hypothesis7.3.15thatD»; hasa
d.c.f. of form (7.94). By Theorem?7.3.19,the stabilizing DPF-controllersor
D with internalloop areexactly the DF-stabilizingcontrollersfor D1 with d.c.
internalloop, andtheseparametrizedy Theorem7.2.14,which alsoprovides
thewell-posednesslaim and(7.96).

Formula(7.95)follows from (7.8) and(7.10).

(c) From (7.52)andLemma7.3.10we seethatthemap['y | — [7] is given
by NX whenD = NM ~tisar.cf.,

X = Fé (l)] V= [8 ?ﬂ, and XM —Y'N =1. (7.99)

This conditioncanbe satisfiedby settingN' := NG, M’ := MG, whereG :=
(X'M-Y'N)~1 € GTIC(U xW). Therefore,

=[5 =57, (7.100
(by (i")), where—P = XM, — YNy,. Thus,NX' = NGX' is givenby (7.97).



_Assuming (i), we obtain the dual formula in (7.97) analogouslyfrom
X'N = [} ¢]GNand
G = (Mx’ _ Ny’)—l - [I 1\71112X’—1§111Y] . [ f”} (7.101)
= =15 | =147 :

0

I
0

Corollary 7.3.21(4 case) Let 4 c TIC be inverse-closedand let Proposition
7.3.14(ii’) hold.

If the elementsof (7.94) are chosenfrom 4, then all stabilizing DPF-
controllersof D with a (d.c.) internalloop are theonesparametrizedn Corollary
7.3.20,andthe oneswith d.c.internal loop over 4 are exactlythosewith U € 4.
If, in addition, B C 4 ¢ ULR, thentheonewith U = —~M ;T is well-posed.

Proof: By Lemma6.5.8,we cantake T,S,T,S € 4. in Corollary 7.3.20;
therestfollows by combiningCorollary 7.3.20andProposition7.2.17. O

As thefinal 1/0 resultof this sectionwe notethatthe following well-known
criteria (seeTheorem4.2.1, p. 27 of [Francis]or Theorem2.1 of [Green]) are
valid for generaMWPLSstoo:

Lemma7.3.22 Let D = [g; g;;] € TICo(U x W,Z xY) and Q € TICa(Y,U)

havecoprimefactorizationsD = NM~! = M—!N andQ = YX~! = X~1Y. Then
thefollowing are equivalent:
(i) Q DPF-stabilizedD;
oo | Map Mz Y
(i) [le Mg, 0] € GTIC(U xW xY).
No1 Np2 X
| X o0 Y
(|||) Nll NJI]_]_ Mlz € ngC(U X Z X Y)
No1 Ma1 Mpo

Evenif Q = YX~! = X~1Y were meely a mapwith d.c. internal loop, then
()—(iii) are still equivalent.

Proof: Let Q = YX~! be a map with r.c. internalloop. We prove that
()< (ii); thecase(i)< (iii) is analogousndthewell-posedcase(theonewhere
X, X! € GTIC.) follows from this generakcasg(with coprimeinternalloop).

By Lemma7.3.10,Q DPF-stabilizesD iff (7.79) DF-stabilizesD. By
Corollary7.2.15 this holdsiff

[Mll Mo 0Y
Ny Nop | o (7.102)
Np; Ny 0 X

isin GTIC. Becausg7.102)becomesa triangularmatrix by permutingthe
first andthird rows and columns,we may deleteits third row andthird col-
umnto obtainthat(7.102)is in GTIC iff (ii) holds,by LemmaA.1.1(b). O
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We sometimesvantto remove thefeedthrougtiermfrom D»1, hencewe need
thefollowing lemma:

Lemma 7.3.23(Dp1 = 0 w.l.0.g) LetD — [g; g;;] € TICH(U xW,ZxY). Let
F=[29] € BUxW,ZxY).

ThenQ = YX~! = X1V is a stabilizing DPF-contioller with d.c. internal
loopfor D iff @ = Y(X+EY)~! = (X+YE)~1Y is a stabilizingDPF-contoller
with d.c.internalloopfor D+ F. Thecorrespondinglosed-loopmapsw+— zand
w— U (see(7.97))areidentical.

Thecontwoller Q' canberealizedby addingto Q an outputfeedbak through
—E in thesamewayasin Figure 7.12.

Finally, Hypothesis/.3.15holdsfor D iff it holdsfor D+ F.

Thus, when finding such a controller for a regular D, (possibly underan
additionalrestrictionsuchas*||w +— z|| < y") we maytake D21 = O w.l.0.g. (see
Lemma7.2.7 for well-posednes®f controllers). Seealso the remarksbelov
Lemma7.2.18. o o

Proof: LetastabilizingQ = YX ! =X 1Y begiven.LetN,M,N,M beas
in Proposition7.3.14.Then

-1

[y o) 8% sollwel (8%
[Nll N12]+[ 0 0 ] [I O]+[0 0 } - _[15111 @12}_[1\:41125 0} [Igfﬂn 1@12}
No1 Nez ] " |EM1 EMi2 ] 10 X[ 710 EY Np1 Npo|  [M2E O [Mp1 Mpp
(7.103)

isad.c.f.of D+ F, by Lemma6.5.7(a),hencethenQ DPF-stabilized+ F,
by Theorem7.3.19(iii). Fromthis we obtainthe equivalence(alternatvely, we
canobtainit directly by applyingLemma7.2.18to (7.79)).

Moreover, P’ := Y(Np2 + EM;2) — (X+ YE)Mj, =P, henceNy; P+ Njp =
N11P +Nj» : wi— z by Corollary 7.3.20(c).

As in the proof of Corollary 7.3.20(c),we canverify that [\] — [T] is
given by M/ X = MGX' = M%)lx Mll]P’l+M12 , sothatMj 1 P+Mjo : w— uis
unchanged(Notethatit would be morelogical to have wi in placeof w andto
have w = 0 andhencew = w; . Dueto historicalreasonswe denotew = w;_ by
wW.)

(Alternatively, onecanobsenethat(w+— u) = (y_ — u)Dx and(w— z) =
D12 4 D11(yL — u)Dy, areunafected,by Lemma7.2.18.)



The final claim follows from Proposition7.3.14(ii)&(ii)) (alternatvely,
from (7.103)). O

Thefollowing remarkis obtainedn the sameway asRemark7.2.19was:

Remark 7.3.24(Exponential DPF-stabilization) By Remark 6.7.19, for any
claimsin this section(andothers),we candeducehecorrespondingesultsabout
w-stabilizationfor somew € R, hencealsofor exponentialstabilization.

For example if Q DPF-stabilizesD exponentiallywith internalloop andQ or
D»1 hasanexponentiald.c.f, thensodo Q, D1 andD, by Lemmar.3.13.Assume
thatthisis thecase

ThenHypothesis7.3.15holds and the two r.c.f's and |.c.f.s assumedhere
are exponentialones,anda mapQ DPF-stabilizedD exponentiallyfwith internal
loop] iff Q DF-stabilizesD,; exponentiallyjwith internalloop] (whichin turnis
equivalenfor Mx»>X — N1 Y beingin GTICep).

Furthermoe, all exponentiallystabilizingDPF-contiollers with internal loop
are givenby Corollary 7.3.20,if we choose(7.94)to bein GTICep require also
the parametes to be exponentiallystable

For any optimizableand estimatableealizationsof D and Q (sud do exist,
by Theoem 6.6.28), the combinedclosed-loopsystemin Figure 7.10 becomes
exponentiallystable by Theoem7.3.11(c1).Similar remarksapply to parts (b)
and (c) of thetheoemandtheresultsnot mentionechere.

Notes

Almost all standardclassicalresultson DPF-stabilizationsee,e.g.,pp. 26—
36 and 42-47 of [Francis]) are special casesor simple corollaries of those
presentedhere. Any book onthe H* 4BP containsat leastsometheoryon DPF-
stabilization(often underthe name“dynamic stabilization” or “chain scattering
transformation”);see,e.g.,[ZDG], [IOW] or [GL] for further theory on finite-
dimensionalsystemsand Section2.7 of [Keu] on someresultson Pritchard—
Salamonsystems. While this is being written, most of this sectionand some
extendedresultshave beenincludedin [Sbook] (which is restrictedto well-posed
controllers).Furtherhistoricalnotescanbe foundin [CZ].

Someof thel/O resultsof this sectionhave beenpresentedh [Green]for well-
posedrational transferfunctionsand later in [CZ] and [CG97] for the Callier
Desoerclass(seeLemma6.5.10(c)). However, mary of their proofs cannotbe
extendedto our generality becauseéhe CoronaTheorem(seeTheoren4.1.6(c))
only holds for matrix-valuedtransferfunctions, by Lemma4.1.10. (Theorem
4.1.6(c)for TIC is from [Tolokonnikov] (see[Nikolsky], p. 293). It is newer
than[Vid] andit doesnot seemto be well known. Therefore,it might be that
someof theresultsof [CZ] arenotwell-known to hold for generaimatrix-valued
transferfunctions.)Neverthelessthebook[CZ] containsalsosomefurthertheory
on dynamicpartial feedbackandrobust control, someof which canbe extended
to our setting.
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