Appendix C

Almost Periodic Functions (AP)

An aphorism is never exactly true; it is either a half-truth or one-anda-half truths.

- Karl Kraus

In this appendix we briefly present a few facts about vector-valued almost periodic functions.

Because the Fourier transform of a discrete measure (e.g., of an I/O map consisting purely of delays) is an almost periodic function (by Lemma C.1.2(h2)), this has important applications in control theory. We shall use this theory to combine the MTI_d and $MTIC^{L^1}$ spectral factorization results for ones for MTI in Section 5.2 by using the results of this section.

Definition C.1.1 (AP) *Let B be a Banach space, and let f* : $\mathbf{R} \rightarrow B$ *be continuous. If* $\varepsilon > 0$ *, then a number T* $\in \mathbf{R}$ *is called an* ε -almost period *of f if*

$$\sup_{t \in \mathbf{R}} \|f(t+T) - f(t)\| \le \varepsilon.$$
(C.1)

The function f is called almost periodic $(f \in AP(\mathbf{R}; B))$ if for each $\varepsilon > 0$ there is R > 0 s.t. each interval $(r, r+R) \subset \mathbf{R}$ $(r \in \mathbf{R})$ contains at least one ε -almost period of f.

Lemma C.1.2 (AP) Let B and B_1, \ldots, B_n be Banach spaces. Then we have the following:

- (a) The set $AP(\mathbf{R}; B)$ is a closed subspace of $C_{bu}(\mathbf{R}; B)$ (with the norm $||f|| := \sup_{\mathbf{R}} ||f||_B$). If B is a Banach algebra, then so is $AP(\mathbf{R}; B)$.
- (b) Bochner's criterion A function $f \in C_b(\mathbf{R}; B)$ is AP iff $\{f(\cdot h)\}_{h \in \mathbf{R}}$ is compact in $C_b(\mathbf{R}; B)$.
- (c) If $f_k \in AP(\mathbf{R}; B_k)$ for k = 1, ..., n, then $(f_k)_{k=1}^n \in AP(\mathbf{R}; B_1 \times \cdots \times B_n)$; if, in addition, $\phi \in C(B_1 \times \cdots \times B_n; B)$, then $\phi(f_1, f_2, ..., f_n) \in AP(\mathbf{R}; B)$.
- (d1) If $f \in AP(\mathbf{R}; B)$, then $K := \overline{f[\mathbf{R}]}$ is compact.
- (d2) If f and K are as in (d1), and $\phi \in C(K; B_1)$, then $\phi \circ f \in AP(\mathbf{R}; B_1)$.

- (e) (AP is inverse-closed in C_b :) If $f \in AP(\mathbf{R}; \mathcal{B}(B_1, B_2))$ and f is pointwise invertible on \mathbf{R} with f^{-1} bounded (i.e., $f \in \mathcal{GC}_b$), then $f^{-1} \in AP(\mathbf{R}; \mathcal{B}(B_2, B_1))$ (i.e., $f \in \mathcal{GAP}$).
- (f1) (Bohr transformation) Let $f \in AP(\mathbf{R}; B)$. For each $\lambda \in \mathbf{R}$, the limit

$$f_{\lambda} := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) \mathrm{e}^{-i\lambda t} dt \in B$$
 (C.2)

exists, the values f_{λ} are bounded by $\sup_{\mathbf{R}} ||f||_B$ and determine $f \in AP$ uniquely, at most countably many of them are nonzero, and 0 is the only limit point of the set $\{f_{\lambda}\}_{\lambda \in \mathbf{R}}$ (called the AP-spectrum of f).

We formally denote $f \sim \sum_{\lambda \in \mathbf{R}} f_{\lambda} e^{i\lambda t}$.

- (f2) The function $f \mapsto f_{\lambda}$ is linear and of norm 1.
- (f3) If $f \in AP(\mathbf{R}; B_1)$, $g \in AP(\mathbf{R}; B_2)$, $\phi \in \mathcal{B}(B_1 \times B_2, B)$, and either $\sum_{\lambda \in \mathbf{R}} ||f_\lambda||_{B_1} < \infty$ or $\sum_{\lambda \in \mathbf{R}} ||g_\lambda||_{B_2} < \infty$ (in particular, when either AP-spectrum is finite), then for $\lambda \in \mathbf{R}$ we have

$$\phi(f,g)_{\lambda} = \sum_{\mu \in \mathbf{R}} \phi(f_{\mu}, g_{\lambda-\mu}), \qquad (C.3)$$

In particular, if $B = B_1 = B_2$ is a Banach algebra, then $(fg)_{\lambda} = \sum_{\mu \in \mathbf{R}} f_{\mu}g_{\lambda-\mu}$ for $\lambda \in \mathbf{R}$.

- (f4) If H is a Hilbert space, then $||f||_{\overline{AP}} := \sum_{\lambda} ||f_{\lambda}||_{H}^{2} = (||f||_{H}^{2})_{0} \le \sup_{\mathbf{R}} ||f||_{H}^{2}$, and $(f,g) := (\langle f,g \rangle_{H})_{0}$ makes $AP(\mathbf{R};H)$ an inner product space (i.e., a pre-Hilbert space), whose completion " \overline{AP} " is isomorphic to $\ell^{2}(\mathbf{R};H)$. (Note that $||f|| := ||f||_{\infty}$, and that we write $||f||_{\overline{AP}}$ when we refer to this Besicovitch space norm.)
- (f5) Let $F \in AP(\mathbf{R}; \mathcal{B}(B, B_2))$. Then, in \overline{AP} , $f \mapsto Ff$ has the norm $\|F\|_{\mathcal{B}(\overline{AP}(\mathbf{R}; B), \overline{AP}(\mathbf{R}; B_2))} \leq \|F\|_{\infty}$.
- (g) If $f \in AP(\mathbf{R}; B)$ and $\varepsilon > 0$, then there are $n \in \mathbf{N}$, $b_k \in B$, $\lambda_k \in \mathbf{R}$ (k = 1, ..., n)s.t. $||f - \sum_{k=1}^n b_k e^{i\lambda_k \cdot}||_{\infty} < \varepsilon$ and $f_{\lambda_k} \neq 0$ for k = 1, ..., n.
- (h1) Periodic functions are almost periodic.
- (h2) Let $(a_{\lambda})_{\lambda \in \mathbf{R}} \in \ell^{1}(\mathbf{R}; B)$. Then $f := \sum_{\lambda \in \mathbf{R}} a_{\lambda} e^{i\lambda t}$ is in AP $(\mathbf{R}; B)$ and $f_{\lambda} = a_{\lambda}$ for all $\lambda \in \mathbf{R}$ (this characterizes f uniquely, by (f1)).
- (i) The class of treated in (h2) is inverse-closed AP and in C_{b} .

Proof: (a)–(d2) We have $AP \subset C_{bu}$, by Property 2 of [LZ, Section 1.1]. By Property 6, AP is a vector space, and by Property 3 it is closed. By Properties 7, 4 and 6, claims (c), (d1) and (d2) hold, respectively; by Theorem 1.2.1, (b) holds.

By Property 7, the first claim in (c) holds; combine this with (d2) to observe that $\phi \circ (f_1, f_2, \dots, f_n) \in AP(\mathbf{R}; B)$, i.e., that the rest of (c) holds too.

Now (c) implies that the rest of (a) holds.

(e) This follows from (d2), because $K \subset \mathcal{GB}$ by Lemma A.3.3(A3). Part (f1) follows from [LZ, pp. 22–24]; part (f2) is obvious. (f3) Clearly $[\phi(ae^{i\mu t}, be^{i\nu t})]_{\lambda} = \phi(a, b)(e^{i(\mu+\nu)t})_{\lambda} = \phi(a, b)\chi_{\{\lambda\}}(\mu+\nu)$, when $\lambda, \mu, \nu \in \mathbf{R}, a \in B_1, b \in B_2$.

Therefore, (C.3) holds for f, g with a finite AP-spectrum. For such a fixed g, both sides of (C.3) are continuous functions of f from AP to B (because the sum on the right is finite) for each $\lambda \in \mathbf{R}$, hence (C.3) holds whenever the AP-spectrum of g is finite, by (g).

If $\sum_{\lambda \in \mathbf{R}} ||f_{\lambda}|| < \infty$, then (C.3) holds for each *g* with a finite AP-spectrum and both sides of (C.3) are a continuous function of *g*, hence (C.3) holds for any *g*.

The case for $\sum_{\lambda \in \mathbf{R}} ||g_{\lambda}|| < \infty$ follows by exchanging the roles of *f* and *g*.

(We have no need to study whether these ℓ^1 conditions are necessary; at least they are not when *B* is a Hilbert space: Choose $P_n \to f$ as in (g). By (f4), $(g_{\lambda})_{\lambda \in \mathbf{R}} \in \ell^2$ and $((P_n)_{\lambda} - f_{\lambda})_{\lambda \in \mathbf{R}} = ((P_n - f)_{\lambda}))_{\lambda \in \mathbf{R}} \to 0$ in ℓ^2 , hence also the right side of equation (C.3) with P_n in place of *f* converges as $n \to \infty$ (because $\|\phi(f_{\mu}, g_{\lambda-\mu})\|_B \leq M \|f_{\mu}\| \|g_{\lambda-\mu}\|$ for some $M < \infty$).)

(f4) The first claim is given on p. 31 of [LZ] and it implies the isomorphism to $\ell^2(\mathbf{R}; B)$ (the trigonometric polynomials map naturally to a dense subspace of $\ell^2(\mathbf{R}; B)$); the rest is obvious (note that $\langle f, g \rangle \in AP$ by (c) and (d2)).

(f5) Let $f \in AP$. By (c) and (d2), we have $Ff \in \overline{AP}$. Obviously, $(\|Ff\|_{H}^{2})_{0} \leq \|F\|_{\infty}^{2}(\|f\|_{H})_{0}^{2}$. Since $f \in AP$ was arbitrary, we conclude from (f4) that $\|F\|_{\mathcal{B}(\overline{AP}(\mathbf{R};B),\overline{AP}(\mathbf{R};B_{2}))} \leq \|F\|_{\infty}$.

(g) See pages 17-18 and 24 of [LZ].

(h1) This is obvious (take R = 2T in Definition C.1.1).

(h2) By (c), we have $a_k e^{it_k} \in AP(\mathbf{R}; B)$ for all k, hence $\sum_{k \in \mathbf{N}} a_k e^{it_k} \in AP(\mathbf{R}; B)$, by (a).

(i) Combine Wiener's Lemma (11.6 of [Rud73] or Theorem 4.1.1(a) for MTI_d) with (c).

Notes

All results in this section are well known. A canonical reference on almost periodic functions is [LZ]. Further questions have been treated in [Basit] and [Zhang] and in the articles that they refer to.