Chapter 10

Quadratic Minimization (min¥)

Alas,| amdyingbeyondmymeans.

— Oscar Wilde (1856-1900)[as he sipped champagneon his
deathbed]

Throughouthis chaptemwe assumehatStandingHypothese®.0.1and10.6.6
hold (i.e., £ = [&}2] € WPLS(U,H,Y), U; is reasonablend“ 4" denotes
someULR classadmittingpositive spectrafactorization) Hypothesisl0.1. 1will
beassumedhroughSection10.1.

We stronglyrecommendhe readerto startby readingtheintroductionto this
chapter(p. 31), wherealso the main results(particularly the LQR problembut
alsothereallemmasandthe H? problem)areexplained.

We shallfirst presensomeminimizationresultsfor costfunctions [y (||x||2 +
ull3) dm, [ (IIylIZ + l|ull3) dm andtheir variantsin Section10.1. Theseallow
one to simplify significantly the Riccati equationtheory and, for [5°(||x|3 +
|ull3) dm, ary nonneyative solution of the LQR-CARE becomesunique, expo-
nentially stabilizingandminimizing (andalsoa corverseholds),sothatoneonly
hasto find a nonn@atie solutionwithout ary stabilizationrequirements.

Section 10.2 containsa more detailed study on minimization for general
WPLSsandcostfunctions. In Section10.3, we presentseveral conditionsthat
areequialentto positive J-coercvity over Ugyt Or over Uep andshov how they
areimplied by or equialentto variousclassicalassumptiongor minimization
problemsin theliterature. The H2 problemis solvedin Section10.4.

In Section10.5, we presentthe BoundedReal Lemmaandthe Positve Real
Lemma,which allow oneto usethe Riccati equationor the Riccatiinequalityto
verify whether||D||tic <y or Re(D,-) > 0, respectiely. We give our resultsfor
sufficiently regular systemsand sketch correspondingnore generalresults(the
latterlack necessityunlesswe accepiAREs in placeof CARES).

In Section10.6, we presentthe equivalencebetweenthe uniform positivity
of the Popw operator(D*JD > 0), |-spectralfactorization(D*JD = X*X) and
stabilizing solutionsof the Riccati equationor of the Riccati inequality under
varyingassumptionsTheseareusedfor theminimizationresultsn othersections.
We alsogive sufficient conditionsfor differentversionsof the equivalence.

In Section10.7,we shav how ary solutionsof positive Riccatiequationsare
WR andadmissiblegvenstabilizingundersuitableconditions.
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The proofscanmosteasilybereadin the orderSection10.7 — Section10.6
— Sectionl10.2— theothersections.



10.1 Minimizing [ (IylIZ + [[ul3)dm (LQR)

In spiteof the costof living, it’ s still popular
— KathleenNorris (1880-1960)

Here we study the Linear Quadratic Regulator (LQR) problem for cost
functions [5°(|Ix|3 + ||lull3) dm and f3(|lyllZ + |Jull3)dm; or more generally
I (Xo,u) :=(y,Qy), 2 + (u,RU, > for someQ,R > 0; herex := Axg + Btu, y =
Cxo + Du. More generalminimizationproblemswill be studiedin Section10.2,
which also provides further definitions, resultsand explanations. Seealso the
presentatiomn theintroduction(p. 31).

Givenaninitial statexp € H, we minimizethe costfunctionoverasetU; (Xo)
of admissiblecontrols. We are mainly interestedin the classicalcasesU; =
Uep = {u€ L?(Ry;U) |xy € L%} and U; = Uoyr:={u€ L?(Ry;U) |y € L%}
(seeDefinition 8.3.2).Notethat 7 (Xp, u) = +oo for u ¢ Upui(Xo)-

To formulatethe systemand costfunction as before,we augment> by the
extrarow [ O | | | whenwe wishto applytheresultsof the othersections:

Standing Hypothesis10.1.1(LQR) Throughoutthis section,we assumehat D
is URor dimU < o andD is WR,andthatd = [2 2] € B(Y xU) andJ > 0.

By minimizationand CAREs(and IARES),we referto the augmentedystem
Zaug:=[ o7, ] € WPLS(U,H,Y xU) andto the opertor J.

Thus,themaps*C” and“D” in the CARE arereplacedby [§] and [?], etc.,
andthe costfunctionbecomeg (xo, u) := (y, Qy) 2 + (U, R, 2.

For generalll’s (WR or even irregular), one can apply the resultsof Sec-
tion 10.2to obtainresultssimilar to thosein this section. Thereforewe omit the
mostgeneralcaseandstudythe (rathergeneral)casethatD and (at least)X are
UR. Thisallowsusto rewrite the CARE asfollowsandguarante¢hatary solution
is admissiblegseeTheoreml10.1.4):

Definition 10.1.2(LQR-CARE) Wecall (?,S K) (or P) a nonngativesolution
of theLQR-CAREIff 0< P € B(H), Se B(U), K € B(H1,U),

K*SK = A*P + PA+C*QC,
S=R+D"QD+ lim B;P(s—A)"'B, (10.1)

andlims_, 1 B}, P(s—A)~1B > 0 or S>> 0. We usepreficesand sufices(e.g.,
“PB-") asin Definition9.8.1.

If Z is ULR,thenwecall P (or (©, S K)) a nonngativesolutionof the LQR-
B;,-CAREIff 0 < ? € B(H,Dom(B,)) and P satisfies

K*SK = A*P+ PA+C*QC, (10.2)
whee S:= R+D*QD, andK = —-S1(B;,? + D*QC).

(OneoftenhasD = 0, sothatthe statefeedbackrecome« = —S 1B, P.)



Thus, the LQR-CARE is the CARE for %5,y and J with the additional
conditionsthatS> DiuglDaugor S>>0 andthatthelimit in Scorvergesuniformly
(i.e.,in B(U); seeLemmaA.3.1(h)). The LQR-B;,-CARE is the corresponding
B;,-CARE (cf. Definition 9.2.6).If dimU < «, thenary WRK (or [ K | F ])is
UR, by Lemma6.3.2(al)&(a2).

The advantageof the LQR-CARE is that any nonngative solutionis SOS-
stabilizing(in particular it is admissible):

Lemma 10.1.3

(a) Thenonngativesolutionsof the LQR-CAREare exactlytheUR nonngative
admissiblesolutionsof the CARE(for Xag).

Moreover, all of them are SOS-stabilizingand have M*! € UR, M ¢
GB(U),N € WR, S>> 0andlims_,,BP(s—A)~'B> 0.

(b) Anysolutionof the LQR-CARES a solutionof the CARE.

(c) P is a UR U;-stabilizingsolutionof the eCAREiff P is a nonngative U} -
stabilizingsolutionof the LQR-CARE.

(d1) Thenonnegativesolutionsof the LQR-EB),-CAREare exactlythe nonnga-
tive solutionsof the By, -CARE(for X4,¢), henceall of themare nonngative
solutionsof the LQR-CARE.

(d2) If Hypothesi®.2.1holds(for correspondingty), thenthe 7} -stabilizing
solutionsof the LQR-B},-CAREare exactly the nonngative U;-stabilizing
solutionsof the LQR-CAREhenceexactly the UR U} -stabilizingsolutions
of theeCARE.

Note from Proposition9.8.10that the UR nonngative admissiblesolutions
of the CARE are exactly the UR nonngative admissiblesolutionsof the IARE
modulo(9.114).

By Theorem9.2.9andthe above lemma,the U} -stabilizing solutionsof the
LQR-B},-CARE are exactly the U;-stabilizing solutionsof the LQR-CARE if
Hypothesi.2.1holds.

Proof: Obviously, ary solution of the LQR-CARE is a solution of the
CARE (evenUR, by Lemma9.11.5(e)).

(a)&(b) By Propositionl0.7.4,anonngative solutionof the LQR-CAREis
aUR SOS-stabilizingsolutionof the CARE with S>> 0.

Corversely ary UR admissiblenonngative solution(?, S K) of the CARE
hasa uniform (not merelyweak)limit in S, eitherbecauselimU < « (sothat
weak=uniform)or by Lemma9.11.5(e). Thus, (?,SK) satisfiesthe LQR-
CARE (andlims_, B}, P(s— A) 1B = S— (D*QD+R) > 0, by Proposition
9.11.4(c2)jn particular S> D*QD+ R > R > 0).

SinceX =: M1 is necessarilyJR for sucha solution,we hare M*! € UR,
M e GB(U) andN =DM € WR, by Proposition6.3.1(b1)andLemma6.2.5.

(c) By (a), a nonngyative U;-stabilizing solutionof the LQR-CARE is a
nonngatve ULR €}-stabilizing solution of the eCARE. Corversely a U;-
stabilizing solution (?,S, [ K | F ]) of the eCARE hasS>> 0, by Lemma



9.10.3,and ? > 0, since 7 > 0 (seeTheorem9.9.1),and X € GB(U), by
Proposition6.3.1(b1),henceit is equivalentto a UR U}-stabilizing solution
(?,S K’) of the CARE, by Remark9.8.2,henceof the LQR-CARE, by (a).

(d1) By Proposition9.2.7,the solutionsof the LQR-B;,-CARE areadmis-
sible ULR solutionsof the CARE andthelARE, henceof the LQR-CAREtoo0,
by (a).

(d2) By (d1) andPropositiom9.2.7(a)&(b),a U;-stabilizingsolutionof the
LQR-B;,-CARE is a URL ;-stabilizingsolutionof the CARE; the corverse
follows from Theorem9.2.9, and the secondequialencefollows from (c).

0

Now we statethe connectionbetweenthe LQR-CARE and UR minimizing
statefeedbacloperators:

Theorem 10.1.4(miny Jo ([IYII§ + |ull3))

(@l) (Uy) Thee is a minimizing UR state feedbak opemator iff ther is a
[nonnegative] U -stabilizingsolutionof the LQR-CARE.

(a2) (Unigueness)Any U} -stabilizing solutionof the LQR-CARE minimizing
control or minimizingstatefeedba& operator is unique

(b1) (Uout) Ther is a UR minimizing state feedbak opemator over Upyyt iff

there is a minimalnonngativesolutionof the LQR-CAREandthis solution
satisfieqdPB) for Ugyt.

(b2) (Uexp) Theee is a UR minimizing state feedbak opemtor over Ueyp iff
there is a maximalnonngativesolutionof the LQR-CAREandthis solution
is exponentiallystabilizing

(b3) (SmoothZ) If Hypothesi®.2.1holds(for thecorrespondinghoiceof ),
thenwe canreplacethe LQR-CARBEby LQR-EB,-CAREeverywhee in this
theoem.

(b4) (Smooth X : Ugyt) Assumehat Hypothesis9.2.1 holdsfor U} = Upyt.
Thenthefollowing are equivalent:

(i) (Min) there is a (y,Qy) + (u,Ry-minimizing control umin(Xp) over
ue L?(Ry;U) for eadixg € H;

(ii) (FCC) for each xg € H thereisu € L?(R,;U) s.t.y € L2,

(i) TheLQR-B,-CAREhasa nonn@ativesolution.

(iv) The LQR-B,-CARE has a smallestnonngative solution, and that
solution correspondsto a (unique) ULR minimizing state feedbak
operator over Upyt.

(We can replaceLQR-B;,-CARE by LQR-CAREin (iii) and (iv).) If, in
addition,D = 0, thenthe LQR-B;,-CAREbecomes

(Bi,P)RIB;,P = A*P+ PA4+C*QC (10.3)
(in eithercase weonlyrequire that0 < P € B(H,Dom(B},))).



(b5) We haveabove (i) < (i) «(iii) <(iv)<=(v) in geneal.

(b6) (SmoothZ : Uep) Assumehat U; = Uexp, andthat(1.) Hypothesi®.2.1
holds, or that (2.) AB € L2([0,T); B(U,H)), CyA € LY([0,T); B(H,Y))
andCyAB € L1([0,T); B(U,Y)). Thenthefollowing are equivalent:

(i) Theris a[unique] minimizingcontrol for eat xp € H.

(i) Theris a [unique] exponentiallystabilizingsolution (P, S K) of the
LQR-CARE.

(i) [ A | B ] is optimizable and Dayg is I-coecive i.e., theris € > 0
s.t.

(ir —A)Xo=Buy = ||CwXo+Duplly +||Uo||lu > €||%o|lH (Xo€H, UpeU, r eR).
(10.4)

Let (P,SK) beasin (i). ThenS= R+ D*QD > 0, and K is ULR
and the unique minimizingstatefeedbak opermator. In case(2.), we have
Bt,D,F € MTIC(';,l andBsT,N.M € MTIC(';,l C UHPRfor somew < 0.

(c1) (miny Jo (IXII§ + |ull): unique )
Assumehat  is estimatablge.g., C € B(H,Y) andC*C > 0).

Thenthere is at mostone nonngative solution of the LQR-CARE Sut a
solution (if any)is strictly minimizingover Uy, Ustar Ustr aNd Uexp, and
exponentiallyg.r.c.-stabilizing

Moreover, sud a solution definesan exponentialnormalizedg.r.c.f. (even
rc.f if Ce B(H,Y)) D=NM1, whee N(s) := D+ (C+ DK)(s—A—
BK)~1B and M(s) := | + K(s— A— BK)~1B are exponentiallyq.r.c. and
stable M*! € UR andN*QN+M*RM = |,

(c2) Assumehat 2 is stronglytop row—detectable

Thenthere is at mostone nonngative solution of the LQR-CARE Sut a
solution(if any)is strictly minimizingover Upyt, Ustaand Ustr.

(d) A CARE solution ((?,S K)) of the form mentionedin any of (al)—(c2)
(exceptin (b4)(iii)) is unique(of thatform)and ¢} -stabilizing andthesame
K is theuniqueminimizingstatefeedbak operator.

(Note that (2.) of (b6) is implied by the “Parabolic systemassumption”
Hypothesi€D.5.1,by Lemma9.5.2.)

Thus,whenminimizing over Uy, we only have to find a minimal solution
andcheckthe condition(PB) for thatsolutiononly, by (b1). Analogously when
minimizing over Uexp, insteadf looking for anexponentiallystabilizingsolution,
it sufficesto look for amaximalsolutionandchecktheexponentialstability of A<
for thatsolutiononly. (If noneexists or (at least)oneexists but doesnot satisfy
(PB), thenthe minimizing control (if any) cannotbe givenin the statefeedback
form.)

By (b3)—(b6),the LQR-CARE canbereplacedoy the“LQR-B},-CARE” if
is smoothenoughandin this caseary minimizing controlis necessarilyof state



feedbackform (and ULR). SeeTheorems9.2.10-9.2.1Zor further analogous
results.SeealsoCorollary9.5.10for the casewhereA is analytic.

By (c1)&(c2), estimatabilityor strongdetectabilityimpliesthata nonngative
solutionof the LQR-CARE s uniqueandminimizing. The sameholdswhenX is
exponentiallyq.r.c.-stabilizableor stronglystable by Theorem10.1.6.

Proof of Theorem 10.1.4: (al) This follows from Lemmal0.1.3(c),and
Corollary9.9.2(a2)&(el)&(e2).

(a2) By Theorem9.9.1(f2) (Lemma10.1.3(c)),a U;-stabilizing solution
is unigue. By Lemma8.3.8,a minimizing control is unique; consequentlya
compatiblestatefeedbackoperatoiis uniqgue(on Hg), by Lemma8.3.17(b).

(b1)&(b2) If we dropthe minimality/maximalitycondition,thenthe equiv-
alencefollowsfrom (al)andTheoren®.8.5(for (b1l) we usedthefactthat ? is
SOS-stabilizingby Lemmal0.1.3(a)).

But the minimality in (b1) (resp. maximality in (b2)) is necessaryby
Theoren9.9.1(a2).

(b3) This follows from Lemma10.1.3(d2). (Note thatin (bl) (resp.(b2))
we musthave Hypothesi9.2.1for Ugyt (resp.for Uep) etc.)

(b4) By Theorem9.2.10(b),(ii) implies(iv); therestfollows from (b5).

(b5) SinceDyy is positively J-coercie over Uy, We have (i)<(ii), by
Theorem8.4.3andLemmal0.2.2.

Implication®(iv)=-(iii)” istrivial. and“(iii) =(ii)” followsfrom thefactthat
ary nonng@ative solutionis SOS-stabilizingby Lemmal10.1.3(d1)&(a).

(b6) This follows from Corollary 10.2.9(case(1.)) or Corollary 10.2.10
(casg2.)),Lemmal0.1.3andProposition10.3.2(ii") (notethatJ > 0, henceD
is positively J-coercvie iff it is [positively] | -coercie).

(Obviously, u = 0 is the uniqueminimizing control for xo = 0, henceary
minimizing control (for ary ;) is unique,by Lemma8.3.8.)

(c1) This follows from Proposition10.7.3(d3)except for the last claim,
whichis from Theoreml0.1.6(if C € B(H,Y), thenary exponentiallystabiliz-
ing statefeedbackoperatoris exponentiallyr.c.-stabilizing,by Lemmas6.6.25
and6.6.26 hencethen“q.r.c’ becomesr.c’). R R

(N.B. thelastequationis equivalentto N(s)*QN(s) + M(s)*RM(s) = | on
iR.)

(c2) (By top row—detectabilitywe mean that some admissible output
injection pair [%] makes [ A; | Hy B; | strongly stable. This obviously
holdsif X is strongly detectable.Actually, it suficesto assumethat ASY. is
top row—detectableasoneobsenesfrom the proof.)

1° Let P be a nonngative solution of the LQR-CARE, hence SOS-
stabilizing, by Lemma10.1.3(a). By 2°, A is strongly stable,hence? is
Ust-stabilizing, by Theorem9.8.5,henceuniqueandstrictly minimizing over
Ustr, by (a2).

Let 7’ bethe J-critical costoperatorover Uqy: (recallthatD is J-coercie
over Uyyy). Then?' = P, by uniquenessgusethe discreteversionof (c2)). By
Lemma8.3.3,P is (strictly) minimizing over Us, toO.

2° A is strongly stable: We prove this in discretetime (note that state
feedbackand output injection pairs can be discretizedand also stability is



preseredunderdiscretizationn bothdirections).

As at the end of the proof of Lemma6.7.11(a),we note that also 2
hasthe above detectability property (note that H := —HD — B implies that
H; = —HyD — By, hencait is stabletoo; by assumptionsois [ A; | Hy By |).
Thus, A —|—]HI"1TCO and]HI"i becomestablefor the outputinjection pair (%’)

whereH’ := [H ﬁ}. ConsequentlyalsoAs is stable(sinceHart(Coxo —0,as
t — oo, for all xg € H; theproofof thisis analogougo thatof Lemma6.6.8(a)).

(d) Sincethe solutionsmentionsabove are U} -stabilizing,they containthe
minimizing K. O

Remark 10.1.5 Thecostis finite for u € Uyyi(Xo) only, henceminimizationover
all (measuable) u: R — U correspondsto minimizationover Uqy: (this was
appliedin Theoem10.1.4(b3)&(b4)).

In Theoem10.1.4(b1)weshowedhat sut a minimizingcontrol is genemated
by an UR statefeedbak operator iff there is a (necessarilysmallesihonngative)
Upur-stabilizingsolutionof the LOQR-CARE. 0

In thestronglystablecasethereis atmostonesolutionof the LQR-CARE (see
alsoTheoreml10.1.4(c1)&(c2)):

Theorem 10.1.6(Upyt: LOQR < r.c.f.<<CARE) Assumehat  is strongly stable
or exponentiallyg.r.c.-stabilizable Thenthefollowing are equivalent:

() (K) Theris a[unique] UR minimizingstatefeedbak operator K over Ugyt.
(i) (CARE) TheLQR-CAREhasa [unique] nonngativesolution?.

(iii) (R.c.f.) Theeisaq.r.c. D =NM~1 withM € UR andN*QN+M*RM =
l.

Moreover, thefollowing holds:

(al) Theaboveconditionsimply (Crit1+WR)—(Crit4+WR)of Theoem10.2.14,
hence(al)—(g3)of Theoem?9.9.10apply (for Z5ugandJ).

(a2) The solutionsK of (i) and ¢ of (ii) are unique UR, strongly g.r.c.-
stabilizing strictly minimizingover Upyt, Usta and Usy, and equalto those
of Theoem9.1.7(sois the solutionof (iii) tooif werequirethatM =1).

If Z is exponentiallyg.r.c.-stabilizablethenK and P are exponentiallyg.r.c.-
stabilizingandstrictly minimizingover Uexp t0O0.

(b1) (By,-CARE) Assumehat Hypothesi®.2.1holdsandD*JD > 0.

Then(i)—(iii) havesolutions,we mayreplacethe LQR-CAREby the LQR-
B:-CARE,andD,F,N,M*! € ULR.

(b2) Assumehat  is strongly stableand satisfiesHypothesisl 0.6.1(3.)(resp.
(6.)).
Then(i)—(iii) havesolutions(resp.and(bl)applies).



(b3) Assumehat = hasa UR (resp.URL) exponentiallyg.r.c.-stabilizingstate

feedbak opemtor K s.t. the resulting closed-loopsystem[ﬁﬁ'ﬁi;}
satisfieHypothesisl0.6.1(3.)(resp.(6.)).

Then(i)—(iii) havesolutions(resp.and(bl)applies).

(b4) AssumehatD € ﬁt andZ is stronglystable(resp.thatD is exponentially
g.r.c.-stabilizablan 4.,).

Then(i)—(iii) havesolutionswith N,M € 4.

(SeeStandingHypothesis10.6.6for 4...) Notethat (iii) is equivalentto the
existenceof a (J,1)-innerq.r.c.f. Dag = NaygM 1 with M € UR (it follows that
Nawg = [I{‘}H]). For stable(d), this becomesequivalentto the existenceof an |-
spectrafactorizationD* QD+ R = X*X, by Lemma6.4.8(a).

If we dropthe stability/stabilizabilityassumptionsf thetheoremthenK and
P mustbe assumedo be stronglyq.r.c.-stabilizing(or g.r.c.-SOS-stabilizingind
g.r.c.-SOS-P-stabilizingin (i) and (ii), andZ mustbe assumedo be strongly
g.r.c.-stabilizablein (iii) (or g.r.c.-SOS-stabilizable)py Theorems9.1.7 and
9.9.10(or Corollary 10.2.12 which wealens(b3)).

Recall from Theorem6.7.15(cl)that if Z is estimatablethen arny output-
stabilizingstatefeedbaclkoperatoiis exponentiallyq.r.c.-stabilizing.

Proof of Theorem 10.1.6: 1° (i)<(ii), (a2): This follows from Theorem
10.1.4(b1)&(a2xandProposition10.7.3(d2)&(d3).

2° (iii)«<(ii):  This follows from Lemma 6.5.7(c) and Theorem9.1.7
(indeed,a solutionof (ii) is a g.r.c.-stabilizingsolutionof the CARE, by (a2)
andLemmal0.1.3;a solutionof (iii) canbechosers.t. X = I, by (a2); onthe
otherhand,M*! € UR for ary solutionof (ii) or (iii), by Lemma10.1.3and
1°).

(It followsthatNay is (J, S)-inner, whereS>> 0 is from the (LQR-)CARE;
replaceM by MS /2 to getS=1.)

(al1) Thisfollows from (a2)andLemmal0.1.3.

(b1)—(b4) These follow from Theorem 10.2.14(b1)—(b4)or Corollary
10.2.15(b1)(resp. (b2)) (sincenow X andhenceM := X~ (by Proposition
6.3.1(b1))is necessarilyUR (resp.ULR andsois D)), Lemma10.1.3and
Propositior9.2.7(c).

For (b4) we notethatif D € 4, (resp.N,M € 4. ), thenDayq € 4. (resp.
Daugy = [2;] € 4+). Thus,we couldequivalentlyposetheassumptiomn Zayg

U

Notes

One often calls any minimization problems(with a quadraticcostfunction)
Linear Quadmatic Regular (LQR) problems,and the problemsof this section
(thosesatisfyingHypothesis10.1.1)are then called standad LQR problemsor
somethingsimilar.

Since the LQR problemis perhapsthe most popular subjectin infinite-
dimensionatontroltheory we canonly try to give a pictureof somemostgeneral



currentresults. The earlier history of infinite-dimensionaRiccati equationsis
documentean the notesto Section6 of [CZ].

Most of our resultsareknown for several specialcaseqsee,e.g.,Section6.2
of [CZ] for WPLSswith boundedB andC and Theorems3.3 and 3.4 of [PS87]
for Pritchard—Salamosgystemsthesetreatboth Uyt and Ueyp to SOmeextent).

For U} = Uoyt, the casecoveredby Proposition9.7.6 wassolved in [FLT]
(with a“generalizedCARE” andpossiblynon-well-posedeedbackfor parabolic
systemghesessuesarewell settledandtheresultsvery generalsee[LT00a]). A
similar resultfor generalWPLSswas given in [Zwart], and the regular stable
minimization problem was solved independentlyin [S97b] and [WW] (with
roughlytheimplication®(iii) =(i)&(ii)” of TheoremlO0.1.6for stableWPLSswith
U; = Uoyy). Theoreml0.1.4(c2generalizeIheoren.3.20f [Oostween](which
assumedboundedB andC); see[Oostween]for its physicalapplications.Seealso
thenotesonp. 571



10.2 General minimization (LQR)

Incidisin Scyllam,cupensvitare Charybdim.
— Homer

In this sectionwe shall presentsomeapplicationsof the CARE theory to
minimizationproblemswhereonewishesto find a minimizing controlover some
set U} of allowablecontrols,in statefeedbackiorm (i.e., to find a[regular] state
feedbackoperatorK or a pair [ K | F | that producesa minimizing control).
Thus,thisis ageneralizatiorof Section10.1.

Sincethis sectionis rathertechnical,lengthyandboring (dueto the reasons
explainedbelowv Corollary10.2.3),acasuateademightwishto justhaveaglance
at Subsectiond40.2.1-10.2.1@or less)andthenproceedo the next section.

MostresultsbecomeessentiallysimplerunderHypothesi€.2.1,asillustrated
in Section9.2 (in particulayr in Theorem$.2.10-9.2.12)or in their discrete-time
forms,asillustratedin Section15.1.

Thereforejn this sectionwe have the emphasi®n generaWPLSresultsand
onresultsfor MTIC I/0O maps.This makessereralclassicaresultsrathercompli-
cated,andalmosteachpieceof simplicity mustbe obtainedatthe costof general-
ity. Consequentlywe give certainresultsundersomedifferentassumptionsand
leave it to thereaderto extra- andinterpolatefurther resultsunderotherkind of
assumptions,singthe resultsof Sections8.3—-8.4,Chapter9, andtherestof this
chapter

We usetheword “minimizing” in the sameway astheword “ J-critical”:

Definition 10.2.1(Minimizing [ K | F ] andK) We call umin € Ui (%) a
[strictly] minimizing control (over U;) for xo € H (and X andJ) if J(Xo, Umin) <
J(Xo,u) for all ue U (xo) [and umin is unique].

Let [ K | F | be an admissiblestate feedbak pair for = with closed-loop
systen®s. Thenwecall [ K | F | minimizing (over 7Z; for  andJ) iff KisXo is
minimizingfor ead xg € H. In this case we saythat the minimizingcontrol is of
statefeedbackorm.

We call a WRadmissiblestatefeedbak opefator K € B(H1,U) minimizing if
[ K | 0] geneateminimizingpair [ K | F ] for Z.

Consequentlyugit € L?(R.;U) is [strictly] minimizingfor xo over Uyt (resp.
Uexp) iff y:= Cxo +Du € L? (resp.and x := Axg + Btu € L?) and u [strictly]
minimizesthe costfunction 7 (xo,u) := [y (y(t),Jy(t)), dt amongsuchcontrols.
SeeDefinition 9.1.4(or Definition 6.6.10)for K, [ K | F |, and=s.

Notethat“minimizing over U}” doesnot affectthe otherattributes(prefices)
andviceversaj.e.,“minimizing exponentiallystabilizingstatefeedbackpair over
Uout” producesa controlthatis minimizing overall elementof Uyyi(Xo) for each
Xo € H, notjustoverthoseproduceddy exponentiallystabilizingstatefeedback.

Lemma 10.2.2(Min < J-crit. & pos.) Let xo € H. A contol u € U (X) is
[strictly] minimizingfor xg iff u is J-critical for xo and(Dn,JDn) > 0 [> 0] for
alln € u;(0)\ {0}.



Thus,if thereis a[strictly] minimizing controlfor ary xg, thenO is a[strictly]
minimizing controlfor xo = 0 (sinceJ(0,n) = (Dn,JDn)).

If thereis a minimizing controlfor all xo, thenwe may call the J-critical cost
operator? = P* € B(H) (theonefor which J(xo, Umin(X0)) = (X0, PXo0) (Xo € H),
asin Theorem8.3.9(b1))the minimal costopemtor. Recallthatit is equalto
the (unique) U;-stabilizing solution of the Riccati equation(if ary, i.e., if a
minimizing controlis of statefeedbackorm).

Proof of Lemma 10.2.2: Proofl: Corollary8.1.8andRemark8.3.4.
Proof2: “If . Thisfollows from Lemma8.3.7(ii). “Only if . This follows
from Lemma8.3.6andLemma8.3.7(ii). O

At their best,our minimizationresultsfor generalcostfunctionslook like the
following one:

Corollary 10.2.3(Minimization for boundedB) Assumethat B € B(U,H),
dimU < . Thenthefollowing are equivalent:

() there is a unigueminimizingcontrol for ead X € H;
(i) 7(0,) > 0,D*JD > 0, andthe“B-CARE”"

(B*?+D*JC)*(D*JD)"}(B*P+D*JC) = A*P+ PA+C*JC  (10.5)
hasa (unique) U} -stabilizingsolution P.
(i) thereis a uniqueminimizingstatefeedbak operator for .

Moreover, if (i) holds,thenminimizingstatefeedba& is givenby umin(t) =
K_eX(t) a.e, whee K := —(D*JD)~1(B*? + D*JC) is URL, the minimal costis
(X0, Umin) = (X0, PXg) etc.asin Proposition9.9.1. If U} = Uep, thenalsothe
following is equivalentto (i):

(iv) Z is positivelyJ-coercive and optimizable

(Condition7(0,-) > Ois redundanatleastfor U; = Uexp, by Corollary10.2.6.
The operatorK,_ s canbereplacedoy ary of its extensionssuchasK, , Ks and
Kw-)

We recall from Theorem9.8.5that* Uep-stabilizing” means‘exponentially
stabilizing”, whereas Uyy-stabilizing”is rathercomplicatedor generalunstable
2. If Z is q.r.c.-SOS-stabilizablée.g., jointly stabilizableand detectable)and
J-coercve, thenthelattercasecanbeslightly simplified,asin Corollary10.2.12—
Theoreml10.2.14.

Proof of Corollary 10.2.3: By Proposition10.3.2(e2)&(i)&(v), we have
‘i) =(iv)=()" for U; = Uexp. The restfollows from Lemma10.2.2and
Theoren9.9.6(seealsoTheoren9.9.1(a2)&(e2ktc.). O

Insteadof B beingboundedwe canassumehat Hypothesis9.2.1holdsand
thatD*JD > 0, by Theorem?.2.9(thenB* mustbereplaceddy By, andwe must,
additionally require?[H] C Dom(B,) in (ii)). Sincethe generator®f awpls (a
discrete-timesystem)areboundedCorollary10.2.3alwaysholdsin discretetime



(we just have to replaceequationdor ¢, D*JD andK by the DARE; this follows
from Theorem15.1.2,asin theabove proof). Unfortunately for generaWPLSs,
thesituationis notasnice (in continuougime):

(1.) If Bis unboundedthenB* P is not definedin generalandevenB;,? need
not alwaysbe boundedit is definedatleaston Dom(Amin) whenD is WR,
by Theorem9.7.3(b)).

Thus, the “B-CARE” (10.5) must be replacedby the more complicated
CARE (for whichD*JD is replacedoy thelimit S).

(2.) Even worse, the minimizing statefeedbackneednot be regular (even
when D were ULR, by Proposition9.13.1(c1)),hencethe CARE must
be replacedby the IARE (or one mustusediscretization)and the unique
minimizing state feedbackoperatormust be replacedby an essentially
uniqueminimizing statefeedbackpair.

(3.) Still worse:for generaWPLSswe do not evenknow whether(i) implies
(ii) and(iii), i.e.,whethermaminimizingcontrolis of statefeedbacKorm (it is
of the generalizednon-well-posedsenseof Definition 8.3.15,by Theorem
8.3.9); thus, insteadof the IARE we mustusethe “generalized ARE” of
Theorem9.7.1 (or the “CARE on Dom(Amin)” of Theorem9.7.3if D is
regular).

(4.) If dimU = oo, thenthe IARE (resp.CARE) mustbe replacedby elARE
(eCARE),sincewe only know thatS> 0 (eventhoughB werebounded).

We shallpresenbelonv someresultsfor generaWPLS andthenusedifferent
assumption$o getrid of someof theabove problems.

By using Hypothesis9.2.1, we getrid of (2.), (3.) andmostof (1.); some
correspondingesultsaregivenSection9.2; seee.g.,Theorem®.2.10-9.2.12.

A setof wealer assumptionss givenin Hypothesis10.6.1;they allow usto
getrid of (2.) and(3.) (andapartof (1.)), asshavn in severalresultsbelov and
in Section10.1. Also Corollaries10.2.10and9.5.10presensimilar resultsunder
differentassumptions.

For stable(or suitablystabilizable)systemsthe positive spectrafactorization
resultof Lemma6.4.7(a)canbe usedto avoid problem(3.) for generaMWPLSs;
seeCorollaries10.2.6-10.2.13.

Sometimeswve use J-coercvity or analogousassumptiongo overcome(4.).
Under sufficient regularity assumptionsve have S= D*JD, hencethenwe can
malke Sinvertiblejust by assuminghatD*JD >> 0.

In Section10.1, we give someanalogougesultsfor the more specificLQR
problem,andin Section10.6, we give further minimization and [e]IARE and
[e]CARE results.

Naturally, onecanobtainseveralanalogousheoremsy combiningtheresults
of this andthe previous chapterin differentways; we hopethat the following
resultsprovide a helpful guideline.

Standardtoercvity assumptionguarante¢he existenceof a uniqueminimiz-
ing control:



Lemma 10.2.4 Let Z° be reflexive, and let D be positively J-coecive, i.e., let
therebege > 0s.t.
(Du,JDu) > flul|Z; (ue U (0)). (10.6)

If xo € H is s.t. U (x0) # 0, thenthere is a uniqgueminimizingcontrol for xg.

(This follows from Theorem8.2.5,Lemma8.2.3andLemmal0.2.2through
Remark8.3.4.RecallthatZ® is reflexive for Uex, and Uout.)

Thus,if U} (Xo) # 0 for all Xo € H (i.e., the Finite CostConditionholds)and
D is positively J-coercie (seeSection10.3for several equivalentconditionsfor
U; = Uoyt and U; = Uexp), thenthereis a uniqueminimizing control for each
Xo € H (providedthatZs is reflexive). The minimizing controlandcorresponding
state outputandcostarethengivenin WPLSform by Theorem3.3.9

However, as noted above, without further assumptionsve do not know
whetherthe uniqgueminimizing controlis of statefeedbackorm. We give belov
differentformulationsof sufficientconditions.

We now recall the basicminimizationresultsfrom Chapter9 (do not forget
our definitions:we requirethe solutionsof Riccatiequationgo be self-adjoint):

Corollary 10.2.5(Minimizing control<<eCARE/elARE) Let 7(0,-) > 0. Then
thefollowing hold:

(a) Theeis a minimizingstatefeedbak pair [ K | F | for X iff theelAREhas
a U;-stabilizingsolution(?,S, [ K | F ]).

(b) LetD be WR.Thenthere is a minimizingWRstatefeedbak operator K for
> iff theeCARE

K*SK = A*P + PA+C*IC,
Nk i * . -1
S=D JD+VSV_>I|+r0rJ By P(s—A) B, (10.7)
X = —(B,?+D*JC),
hasa ;-stabilizingsolution(?,S | K | 0 ).

If sudh a solutionexistsand Xy € H, thenthe minimizingcontrol umin(Xo)
is given by umin(xo) (t) = KwX(t) a.e, whee x = Axg + Btumin(Xo) is the
correspondingstate

(c) Let P be a U;-stabilizing solution of the elARE (resp.eCARE ,henceof
both).

Then? is unique S> 0, and [ K | F | is the pair determinecby 2 (resp.
geneatedby [ K | 0 ]). Thecontmwl K is strictly minimizingiff S> 0.
Also parts (f1)—(k) of Theoem9.9.1applyto (?,S,[ K | F ]); in particu-
lar, the minimal costis givenby 7 (Xo, Umin(Xo0)) = (X0, PXo)-

If 9(-,-) > 0 and U} = Uout, then P is the smallestnonngative output-
stabilizingsolutionof the el ARE(resp.eCARE).

(d) If Uy = Uexp, then* 7(0,-) > 0" canbe droppedfromthis corollary if we
require the solutionsof the elAREandthe eCAREO satisfyS> 0.



In particular (b)—(d)applyto the (U} -stabilizing)solutionsof thee CARE(for
>) mentionedn otherresultsof this chapter
Proof: (a)—(c) This is a combinationof Theorem9.9.1(a2)&(f1)—(k)and
Corollary9.9.2.
(d) If thereis a minimizing control for ary xo € H, then 7(0,-) > 0, by
Lemmal0.2.2,hencethenS > 0, by (c). Corversely ary solutionwith S> 0
is minimizing, by Theorem9.9.1(k). O

By combining (a)&(b)&(d) of Corollary 10.2.5 with Theorem9.8.5, we
obtain:

Corollary 10.2.6(Uep-min < elARE) Thee is a minimizing state feedbak
pair over Ueyp iff theelAREhasan exponentiallystabilizingsolutionwith S> 0.

LetD be WR. Thenthere is a minimizingWR statefeedbak operator over
Uexp iff theeCAREhasan exponentiallystabilizingsolutionwith S> 0. 0

If 2 is sucha solutionandS>> 0 (equialently, D is J-coercve over Uep,
by Proposition9.9.12),then P is the greatestadmissiblesolution of the elARE
having S> 0, by Corollary 15.1.3.Naturally, alsoCorollary10.2.5(c)applies.

Next we notesome“anomalies”(seeSection9.13for more):

Example 10.2.7 1. We mayhave P < O (thisis trivial; seeExample9.13.13).
2. All minimizing controlsneednot be of the statefeedbackorm eventhough
oneof themis (seeExample9.13.6). <

To startwith a simple case,we first generalizeTheorem16.3.30f [LR] (see
Proposition10.3.1(d)for (10.87)andpositive J-coercvity):

Corollary 10.2.8 Assumehat is optimizableandestimatableD is positivelyJ-
coerciveover Uqy, and(1.), (2.) or (4.) of Hypothesi®.2.2holds. Thenthere is
a unigueexponentiallystabilizingsolution(?, S, K) of the B},,-CARE.Moreover,

(@) I (xo,u) = (X0, Pxo) for all xo € H;

(b) For eath xg € H, there is a strictly minimizingcontmol over Uyt = Uexp,
namelythat givenby the statefeedbak opemator K.

(c) K is ULR and exponentiallystabilizing

(d) If (10.87)holdsfor somee > 0, thenP is the uniguenonngative solution
of the Bj,-CARE.

(e) P is thegreatestsolutionof the Bj,-CARE.

SeeProposition10.3.1for necessanandsufficient conditionsfor positive J-
coercvity over Ugyt.

Proof: By Lemma8.3.3,we have Uyt = Uexp. By Lemma9.2.17 we have
D*JD > 0. By Corollary 10.2.9,(?, S K) existsandclaims(b) and(c) hold;
we thenobtain (a) from Theorem9.9.1. Claim (d) follows from Proposition
10.7.3(d3)andclaim (e) follows from Corollary9.2.11. O

Undersufficient regularity, minimizationover Uep is easy:



Corollary 10.2.9(Uep: Unique minimum < Bj,-CARE« J-coercive)
AssumehatHypothesi®.2.1holdsfor U} = Uep, andthatD*JD > 0. Thenthe
following are equivalent:

(i) Theris a uniqueminimizingcontrol over Uep(Xo) for eadi xo € H.

(i) TheB;,-CARE(9.13) hasan exponentiallystabilizing solution ? = P* €
B(H, Dom(B;,))-

(i) Z is optimizableandD is positivelyJ-coercive over Uep (i.€., any (hence
all) of Proposition10.3.2(i)—(iii) holds).

If (i) holds,thenK := —(D*JD) (B}, + D*JC) is the uniqueminimizingstate
feedbak opemator over Uep andULR.
If J > 0, then the word “unique” is redundantin (i). If 1o )AB €

L1([0,1]; B(U,H)) then“D *JD € GB(U)" is redundanin (jii).

Furtherresultsaregivenin Theorem®.2.10-9.2.12SeeCorollary9.5.10for
applicationsof this andthe following corollaryfor parabolicproblems.

Recallthatif ©? is a solutionof the Bj,-CARE (which requiresthat D*JD €
GB(U), by Definition 9.2.6),thenA := A+ BK generates Co-semigroupAs;
theadditionalrequirementn (ii) is thatthis semigrougsatisfieg| A (t)|| < Me™#
(t > 0) for somee > 0 andM < co.

If J>> 0, thenD is positively J-coercve over Ueyp iff thereise > 0 s.t.

(ir —A)xo = Bup = ||CyXo+Duolly > €||%olln (X0 €H, upeU, r eR).
(10.8)
(Note that (ir — A)Xo = Bup = X9 € Hg € Dom(Cy).) The sameholds for
Corollary10.2.10.
Proof of Corollary 10.2.9: SetU; := Uexp.
1° (i) (i) <(ii): By Theorem9.2.16,(i) and(iii) imply (ii). If (ii) holds,
then we obtain Theorems9.2.16 and 9.9.1(k)&(a2) that (i) holds, D is J-
coercveandj(0,-) > 0, henceD is positively J-coercie, hencealso(iii) holds.
2° Proposition 10.3.2(i)—(iii)): By Proposition 10.3.2(c)&(gl), arny of
Proposition10.3.2(i)—(iii) implies Proposition10.3.2(i). Cornversely if (iii)
holds, then (ii) holds, hencethenX hasan exponentiallystabilizing ULR K,
hencePropositionl0.3.2(i)—(iii) areequivalent(hencethey all hold), by Propo-
sition 10.3.2(e2)sinceD*JD > 0).
3° The uniquenes®f K follows from Proposition6.6.18(g). The“J > 0”
claim follows from Lemma?9.3.7(1+). If 15 1)AB € L1([0,1];B(U,H)), then
“D*JD € GB(U)" isredundantn (iii) by Proposition10.3.2(e2). O

We now establishCorollary 10.2.9under“weaker” assumptiongthis forces
usto replacethe B}, -CARE by the CARE):

Corollary 10.2.10(Uexp: Unique minimum < CARE & J-coercive) Assume
that AB € L?([0,1); B(U,H)), CyA € L([0,1);B(H,Y)), and CuAB ¢
L1([0,1); B(U,Y)).

Thenthefollowing are equivalent:



(i) there is a [unique] minimizingcontrol over Uexp(Xo) for eat xo € H, and
D*JD > 0,

(i) thereis a [unique] exponentiallystabilizingsolution(?, S K) of the CARE,
andS> 0 (or D*JD > 0);

(i) [ A | B | is optimizable and D is positively J-coecive over Uey (i.€.,
any (henceall) of Proposition10.3.2(i)—(iii) holds).

Moreover, any solution of (ii) is asin Theoem 9.2.18(in particular, S=
D*JD > 0), andK is ULR and the unique minimizing statefeedbak opermator
over Uep. If J > 0, thentheword “unique” is redundanin (i).

ForL1in placeof L2 above,wehave ananalogousorollaryof Theoren9.2.18
(thus,thenwe mustassumepositive J-coercvity andwe mayremove“D*JD > 0”
from (i) and(ii)).

Proof: 1° (i)=-(ii)&(ii)): Assume(i). By Corollary 9.2.19, (ii) and (iii)
are satisfied(and S= D*JD > 0) exceptfor the word “positively”, which is
obtainedirom Proposition9.9.12(b).

2° (iii)=-(i): This follows from Corollary 9.2.19, since D*JD > 0, by
Lemma9.2.17.

3° (ii)=-(i): If D*ID > 0, thenthisis trivial. If S>> 0, thenwe obtain(iii)
from Corollary9.2.19,andProposition9.9.12(b) hence(i) holds,by 2°.

4° Proposition10.3.2(i)—(iii): UsePropositionl0.3.2(e2)n 2° of the proof
of Corollary10.2.9.

5° Final claims: By Corollary9.2.19,ary solutionof (ii) is asin Theorem
9.2.18The uniquenes®f K follows from Proposition6.6.18(g). The“J > 0”
claim follows from Lemma9.3.7(1+). O

For generaWPLSs,the above problembecomesathertricky, andwe cannot
saymuchmorethanin Corollary 10.2.5. To make our resultneatey we assume
thatJ > 0 andstartwith thecasedimU < co:

Theorem 10.2.11(Uexp: Unique | Knin | Fmin | < IARE < J-coerive)

AssumehatJ > 0, dimU < o« and U; = Uexp. Then(i)—(iii) are equivalent.

() Theris aunigue(modulo(9.114))minimizingstatefeedbak pair for Z.

(i) ThelAREhasan exponentiallystabilizingsolution.

(i) X is exponentiallystabilizableand [positively] J-coercive

Moreover, the following hold:

(a) If (i) holds, then this exponentially stabilizing solution is the greatest
nonngativeadmissiblesolutionand strictly minimizing

(b) If Z hasan SR(resp.ULR) exponentiallystabilizingstatefeedbak operator
with closed-loopsystem[%,}'%} satisfyingHypothesis10.6.1(1.) (resp.
(6.)), thenthe lARE s equivalento the CARE(resp.andto the B}, -CARE),
andalso(i")—(iii") belowbecomeesquivalento (i)—(iii).

Thus, then there is a uniqgue WR (resp. ULR) minimizing state feedbak
openator iff any (henceall) of thesehold.



(c) (dimU = o) Drop the assumptiorthat dimU < «. Thenall of the above
holdsif we add to (i) and (') therequirement‘and D is J-coercive” (or
“and (Du,JDu) > €||u||3 for somee > 0 andall u € Uexp(0)”).

Theoriginal (i) holdsiff theelAREhasan exponentiallystabilizingsolution
with S> 0.

(We believe thatimplication (iii) =-(i) doesnot holdin theindefinitecase.)

SeeProposition10.3.2for equivalent conditionsfor (positive) J-coercvity.
For (b) we notethatwhendimU < « (but notin case(c)), theconceptWR (resp.
WLR) is equialentto SR (resp.SLR) andto UR (resp.ULR) (for statefeedback
operatorsandpairsandsolutionsof the ARES),by Lemma6.3.2(al)&(a?2).

By (a), it sufficesto find a maximalnonneative admissiblesolution (if ary)
andcheckwhetherit is exponentiallystabilizing(if none/notthen(i)—(iii) do not
hold).

In additionto the equivalencebetween(i)—(iii), we have an equivalencebe-
tweenthe following, wealer conditionscorrespondingo a minimizing, possi-
bly non-well-posedstate feedback”’(still underthe assumptionshatJ > 0 and
dimU < ):

(") Thereis auniqueminimizing controlfor > over Uexp(Xo) for eachxy € H.

(i") ThediscretizedARE hasanexponentiallystabilizingsolution.
(ii") Z is optimizableand[positively] J-coercve over Uexp.

(Any of theseis equialentto the existenceof a unique minimizing control in
WPLSform, seeTheorems8.3.9.) If D is SRandD*JD > 0, then(ii") becomes
equivalentto the Dom(A¢it)-CARE (9.67) having an exponentially stabilizing
solution(cf. Remark9.7.7(b2)).

(Modify theproofof Propositior9.9.12to obsene thatthediscreteé'S’ is > 0
to obtain (i") < (ii"). Equivalence(i’) <(ii’) follows from the above proposition
(in its discrete-timeform) and Theorem14.1.6. If D is SRandD*JD > 0, then
D (andhencealsoD) is UR andD*JD >> 0 (sincedimU < ), sothatthe last
equialencefollows from Remark9.7.7(b2).)

If Hypothesis9.2.1 holdsfor U} = Uep andD*ID >> 0, thenary of (i")-
(iii") is equivalentto (i)—(iii), aswell asto the B},-CARE having anexponentially
stabilizingsolution,by Corollary 10.2.9,evenfor generall andU. The situation
in discretetime is aboutthe sameasfor bounded (with the exceptionthatD*JD
mustbereplacedy S= D*JD + B*PB).

Proof of Theorem 10.2.11: 1° (i)<(ii): This follows from Theorem
9.9.1(a2)&(el1)&(f2)(for “(i) =(ii)” we notethat S > 0 implies that S>> 0;
for “(ii) =(i)” we notethat? = C;JC > 0 andJ > 0imply thatS> 0, hence
S>0).

2° (i)=-(iii): This follows from Proposition9.9.12,sinceJ > 0 implies
thatJ-coercvity is equialentto positive J-coercvity (andtheinvertibility of S
impliesthatof TY).

3° (iii)=(i): Assume(iii). Let [ K' | F' | be exponentially stabilizing
for ¥ with closed-loopsystemZ,, so that %, is positively J-coercve over
Uz = Uy, by TheoremB.4.5(d),i.e., I; ID, >> 0, by Lemma8.4.11(a2).



By Corollary10.2.13(bXwhoseproofis independentf this), the IARE for
2, hasanexponentiallystabilizing,minimizing solution,hencesohasthe|ARE
for Z, by Lemma9.12.3(d1). The uniqguenes<laim follows from Theorem
9.9.1(f2).

(a) Sinced > 0, we have S> 0, henceS > 0 (becauseS € GB(U),
by 1°) and the solution is the greatestnonnegative solution, by Theorem
9.9.1(a2)&(el1)&(f2).

(b) Let K bea SR (resp.ULR) statefeedbackoperatorfor = with closed-
loop systen>, having D, € 4. Let [ K|F } bethe correspondingair.

Assume(iii’). ThenZI;L = [%ﬂ%ﬂ is (exponentiallystableand)positively

J-coercve over ‘ué'zp = ‘ugﬂt, by Theorem8.4.5(d). By Theorem10.6.3(f1)
(resp.(a)), thereis a (unique)exponentially stabilizing solution (2, S,K;) of
the CARE (resp.andthe B;,-CARE) for Zg. SetK := K + Ky. By Proposition
9.12.4(b),(, S K) is anexponentiallystabilizingsolutionof the CARE (resp.
andtheBj,-CARE, by Proposition9.3.5(a).(By (a), K is strictly minimizing.)

(c) Parts1°-3 still hold exceptthatnow “S>> 0” in 1° mustbe deduced
from Lemma9.9.7(c3)&(c4)notethatnecessarily? = Cfy JC5 > 0). Thelast
claim follows from Corollary10.2.5(a)&(c).

Theproofsof (a) and(b) do notusetheassumptiordimU < o (thisis why
we write “SR” insteadof “WR” or “UR” in (b)). O

For most of the rest of this section,we shall presentresultfor Uy (recall
that Uexp = Usr = Usta= Uout When Z is estimatableor exponentiallyg.r.c.-
stabilizable py Lemma8.3.3).

Whenminimizing over Uqyt, We cannotwe cannotreducethe problemto the
stablecaseasin Theorem10.2.11,(unlesswe chooseto use Theorem8.4.5(f)),
asillustratedin Example9.13.2.However, if thesystemis g.r.c.-SOS-stabilizable
(e.g.,SOS-stable)thenthe reductionwill succeed.This factwill be appliedin
mostresultsbelon. We first give two resultson the IARE andthentwo on the
CARE.

Corollary 10.2.12(Uout: Unique [ Kmin | Fmin | < IARE < J-coercives r.c.f.)
Thenthe following conditionsare equivalento eat otherand stronger thanthe
conditions(Crit1)—(Crit4) of Theoem9.9.10:

(Crit1+) (Minimizing [ K | F ]) Thee s a [strictly] minimizingg.r.c.-SOS-
stabilizing state feedba& pair for ~ over Uy, and D is J-coercive over
Uout-

(Crit2+) (IARE) The IARE (9.111) has a q.r.c.-SOS-P-stabilizingolution
P =P* c B(H)s.t.S> 0.

(Crit3+) (J-coercivity) X is positively J-coercive over Uy, and q.r.c.-SOS-
stabilizable

(Crit4+) (R.c.f) ThemapD hasa (J,1)-innerqg.rc.t D = NM1, and X is
g.r.c.-SOS-stabilizable



If any of thesehasa solution, thenthat solutionsolvesthe other conditions
and(Critl)—(Crit4), and (al)—(g3)of Theoem9.9.10apply:.

SeeTheoreml0.2.14for correspondingCARES.
We recallthatD is positively J-coercve over Uqy iff thereis e > 0 s.t.

(Du,JDu) > & (||u[|3+IDul3)  (u€ Uou(0)). (10.9)

Proof: 1° (Critl+) < (Crit2+) < (Crit4+): Exceptfor (Crit3+), Thisfollows
from Theorem9.9.10(e2)usenormalizationN' := NS™1/2 M’ := MS/2 for
implication (Crit2+)&(Crit4)=-(Crit4+)).

2° (Critl+)<(Crit3+): Obviously, (Critl+) implies (Crit3+) (positive J-
coercvity followsfrom Lemmal0.2.2).For thecorverse assumgCrit3+) and
let ¥, bethe correspondinglosed-loopsystem.By Lemma8.4.11(c),D, is J-
coercve over Uy, hencethereis a minimizing g.r.c.-SOS-stabilizingpair for

[%H%] , by (theproofof) Corollary10.2.13.By TheorenB.4.5(g1)&(a) there

is aminimizing g.r.c.-SOS-stabilizingair for Z too.
3° Thefinal claimsfollow from Theoren9.9.10(al)—(a3). O

In the stablecase one moreequialentconditionis the uniform positivity of
the Popos operator(which is obtained.e.g.,by addinge||ul|? to the nonneative
costfunction):

Corollary 10.2.13(Uout: [ Kmin | Fmin ] — Stablecase) Let = € SOS The
following conditionsare equivalentto and havethe samesolutionsas (Crit1+)—
(Crit4+) of Corollary 10.2.12:

(CritlSOS+)The is a stableuniformly minimizingSOS-stabilizindeedbak
pair [ K | F | for = over Uous

(Crit2SOS+)the IARE hasa stableP-SOS-stabilizingolutionhavingS > 0;
(Crit3SOS+)D*JID > 0;
(CritdSOS+)D*ID = X*X for someX € GTIC(U).

Moreover,

(a) If Z satisfieHypothesid0.6.1(1.)(resp.(6.)),thenwecanreplacethe|ARE
by the CARE(resp.B},-CARE)above

(b) If Z is exponentiallystable then solutionsof (Critl1SOS+)—(Crit2SOS+)
are exactly the minimizingpairs over Uep, equivalently the exponentially
(equivalentlyl/O-)stabilizingsolutionsof the IARE havingS>> 0.

Recallfrom Lemma8.4.11(a2}hat (Crit3SOS+)holdsiff D is positively J-
coercve over Upyt.

By a “uniformly minimizing” umin we meanherethat J(xo, Umin(Xo) +1n) —
7 (X0, Umin) > €||n||3 for all n € L2(R4;U). If dimU < o, thenwe could replace
“uniformly minimizing” by “strictly minimizing” in (Crit2SOS+),becausehen
S> 0« S> 0 (cf. the proof belon). The minimizing pair is given by (9.140),
i.e.,by

[K|F]:=[-mX*DJC | I-X], (10.10)



whereX is asin (Crit4SOS+).

If % is [strongly] stable, then “SOS-" [and “P-"] can be removed from
conditions (Crit2SOS+) and (Crit3SOS+) [and “strongly” can be added], by
Corollary6.6.9.

Proof of Theorem 10.2.13: By Theorem10.6.3(f2)&(b), (Crit2SOS+)—
(Crit4SOS+)and (Crit2+) are equialent (and the (unique) solutions P of
(Crit2+) areexactly theonesof (Crit2SOS+)).

Finally, we obtain (Critl+)x=(Crit1SOS+),i.e., the fact that the control
KXo is uniformly minimizing iff S>> 0, by settingu s := M~ in Theorem
9.9.10(el),becauseS > 0 iff M*SM~! >> 0 (notethat M = (I —F)~! ¢
GTIC).

(a) Thisfollows from Theorem10.6.3(b)&(f1).

(b) Thisfollows from Theoren9.9.10(c1)&(c2). O

Thatwasthe casewith IAREs, but we would lik e to usethe CAREsinsteadof
IARESs. Therefore we shallassumdurtherregularity. Oneway for thisis to use
the class4,. (seeStandingHypothesis10.6.6and (b3) belov) 4., to formulate
conditionsunderwhich a unigueminimizing controlnecessarilyorrespondso a
(‘Ut-stabilizing)solutionof the CARE, henceto a WR statefeedbacloperator

Theorem 10.2.14(Uout: Unique Knin & CARE & J-coercive & r.c.f) Let

U = Uoyt- Assumehat D is WR.Thenthe following conditionsare equivalent
to eadh other and stronger than the conditions(Crit1+)—(Crit4+) of Corollary
10.2.12:

(Critl+WR) (Minimizing K) There is a WR[strictly] minimizingq.r.c.-SOS-
stabilizingstatefeedbak opemator for Z, andD is J-coercive

(Crit2+WR) (CARE) TheCAREhasa qg.r.c.-SOS-P-stabilizingolutionhaving
S> 0.

(Crit4+WR) (WR r.c.f.) ThemapD hasa (J,1)-innerg.r.c.f D = NM ! with
X := M1 beingWRwith X € GB(U), andZ is g.r.c.-SOS-stabilizable

Moreover, thefollowing hold:

(a) If any of (Critl+WR)—(Crit4+WR) has a solution, then that solution
solvestheotherconditionsand (Crit1+)—(Crit4+) of Corollary 10.2.12and
(Critl)—(Crit4), andthen(al)—(g3)of Theoem9.9.10apply:.

(b1) Assuméhat =~ hasa SR(resp.URL) g.r.c.-SOS-stabilizingtatefeedbak
operator K s.t.theresuItingclosed-loomysten{%ﬂ%ﬁ] satisfiedHypothesis
10.6.1(1.)(resp.(6.)).

Then (Crit7+WR) (resp.and (Crit6+WR)) is equivalentto (Critl+WR)—
(Crit4+WR):

(Crit6+WR) (By,-CARE) TheB;,-CAREhasq.r.c.-SOS-P-stabilizingo-
lution.
(Crit7+WR) D is positivelyJ-coerive (equivalentlyD; JD, > 0).



(b2) (By,-CARE) Assumehat Hypothesi®.2.1holdsandD*JD > 0.
Thenconditions(Crit1+WR)—(Crit6+WR)are equivalent.

(b3)(MTIC) Assumehaty is g.r.c.-SOS-stabilizabl@ 4., , then(Crit1+WR)—
(Crit4+WR) are equivalento (Crit7+WR),andimply thatN,M € 4.

(b4) In (b1)—(b3),conditions(Crit1+WR)—(Crit4+WR)and (Crit1+)—(Crit4+)
(and(Crit1)—(Crit4) in (b2)) are all equivalento ead other

(c) If Z is exponentially[q.]r.c.-stabilizable thenany I/O-stabilizingor input-
stabilizing solution of the CARE having S > 0 is exponentially[q.]r.c.-
stabilizingand minimizingover Uep = Usyr = Usta= Uout. (Se€Theoem
6.7.15for furtherreductions.)

If 2 is estimatablethenarny minimizing pair over Ugy is exponentiallyqg.r.c.-
stabilizingandminimizing over Uep = Ustr = Usta= Uout, by Theorend.9.1(d).
Therefore thenwe getfurther equivalentconditionsfrom the resultsfor Ueyp, in
thefirst partof this section.

Proof: Theequivalenceand(a)follow from Corollary10.2.12andTheorem
9.9.10(d1)notethatthe X of (d1)is replacedry SV/2X).

(a) Thisfollows from theabove andCorollary 10.2.12.

(b1) 1° (1.): By Proposition 9.12.4(c) the (unique) solutions of
(Crit2+WR) correspondl-1 to the g.r.c.-SOS-P-stabilizingolutions of the
CARE for [gﬁ%’g] By Corollary 10.2.15(b1)(and (Crit2stable+WR)and

(Crit2stable+WR?)),sucha solution exists iff D) JD), > 0, i.e., iff D is posi-
tively J-coercve (by Lemma8.4.11(b1)).

2° (5.): Thisis containedn 1° exceptfor the B},-CARE claim which can
be obtainedasin the proof of Propositior9.3.5.

(Note that Hypothesis9.2.1 would not necessarilyguaranteethat the
minimizing K is g.r.c.-stabilizing.)

(b2) By the above, we have (Critl+WR)—(Crit4+WR)}-(Critl-4+). By
Theorem9.9.10(d2), (Crit6+WR) is wealer than ary of the above, and by
Theoren®.2.9,(Crit6+WR) implies (Crit2+WR).

(b3) This is containedin (b1) exceptfor the factthat N,M € 4., which
follows from Lemmal0.6.7(b).

(b4) For (b2), this was notedin the proof of (b2). Obviously, (Crit3+)
implies(Crit7+WR), hencealsotheclaimson (b1) and(b3) hold.

(c) By Theorem6.7.15(b1),ary I/O-stabilizing solution of the CARE is
exponentially[qg.]r.c.-stabilizing. The restfollows from (Crit2+WR) (and(a))
andLemma8.3.3. 0

Thestablecaseis a bit simpler:

Corollary 10.2.15(Uout: Kmin — Stablecase) Let U} = Uyyt. AssumehatD is
WRandZ is stronglystable Thenthefollowing conditionsare equivalento eac
otherandto (Crit1+WR)—(Crit4+WR).

(Critlstable+WR)Minimizing K) Theeis a WR(strictly] minimizingstable
stabilizingstatefeedbak opermator for Z, andD is J-coercive



(Crit2stable+WR)YCARE) TheCAREhasa stable stabilizingsolutionhaving
S>0.

(Crit2stable+WR’)(CARE) The CAREhas a solution havingM stableand
S>0.

(Crit4stable+tWR)YWR SpF) We haveD*JD = X*X for someWRX € GTIC
havingX € GB(U).

Moreover, the following hold:

(a) If any of (Critlstable+WR)—(Crit4stable+WRhas a solution, then that
solutionsolvesthe other conditions,(Crit1+WR)—(Crit4+WR)of Theoem
10.2.14,(Critl+)—(Crit4+) of Corollary 10.2.12and (i)—(iii) of Theoem
9.1.7, and then (al)—(g3) of Theoem 9.9.10apply. In particular, sut
solutionsare stableandstronglyr.c.-stabilizing

(b1) (MTIC) If X satisfiesHypothesisl0.6.1(1.) (seeLemmal0.6.2),then
(Critlstable+WR)—(Crit4stable+WRare equivalentto (Critl+)—(Crit4+)
andto

(Crit7stable+WR)D*JD > 0.

(b2) (By-CARE) If X satisfiesHypothesisl0.6.1(6.) then(Critlstable+WR)—
(Crit7stable+WR)are equivalent:

(Critéstable+WR)D*JD >> 0 and(the B},-CARE)

(B, ?+D*JC)*(D*ID) (B}, P+ D*JC) = A*P + PA+C*IC
(10.11)
has a solution ? = P* € B(H,Dom(B},)) s.t. s+— Ky(s— (A+
BKw)) 1B is in H*(C*;B(U)), whee K := —(D*JD)~}(B,? +
D*JC).

(equivalentlys.t.K is stableandstabilizing).

Proof: (The labelsof equivalentconditionsfollow roughly thoseof Theo-
rem9.9.10andCorollary10.2.13.)

The above equivalenceis that of Corollary 10.2.13with the additional
requirementhatX =1 —F is WR andX € GB(U). (Notethatwe couldagain
removethe J-coercvity assumptiorfrom thefirst conditionif we requiredK to
be uniformly minimizing.)

(a) Thisfollows from theabove andCorollary 10.2.13(a).

(b1) Thisfollowsfrom Theorem10.6.3(f1)&(1)&(iv)&(i Vv’).

(b2) Thisfollowsfrom (b1) andTheoreml10.6.3(i)&(iv)&(i v'). O

We extendone moreclassicalresult: if Z is (approximately)obsenableand

the costfunctionis somevhatstandardthen?® > 0:

Lemma 10.2.16(? > 0) If X isobservableJd > 0, J(Xo,u) > Ofor all Xo € H and
all nonzeo u € U} (xp), andthere is a minimizingcontmol for eat xg € H, then
P > 0, whee P is theminimal costoperator.



Proof: Obviously, u = 0 is strictly minimizing for xg = 0, hencethe
minimizing controlis uniquefor eachxy € H, by Lemma8.3.8. By Theorem
8.3.9(b1) we candefinethe minimal costoperator?.

If xo € H and0 > (xo, Px0) = (X0, Ucrit(X0)), then ugit(Xo) = O, by the
assumptionBut then(Cxg, JCxo) = 7(x0,0) = 0, hencethen||J%2Cxgl|> = 0
i.e., %o € Ker(C) = {0}, hencethenxy = 0. We concludethat? > 0. O

Naturally, all of the above theory can be appliedto the dual of the LQR
problem(which wasformulatedin [WROO]):

Remark 10.2.17(Final stateestimationproblem) Let = = [&]F] ¢

WPLSU,H,Y). In the Optimal Final State Estimation Problem (OFSEP)
we wish to find an estimatorHs € B(L?(R.;U),H) s.t. HsD is an optimal
estimatefor C, i.e., ||B— HDJ|| is minimal.

The dual problemof this is the optimal open-loopL 2-stabilizationproblem
whee wewishto find a contoller Kis € B(H,L%(R,;U)) s.t. DK is minimizes
C, i.e, ||C+ DKl is minimal (the solutionsof this problemcorrespondone-
to-one to those of the OFSEP for =9 through Hs = —Kg); this obviously
correspondgo a minimizingcontrol in WPLSform (i.e., the correspondingstate
feedbak neednot bewell-posedcf. Theoem8.3.9).

If onerequiresH,s to be genemted by someweaklyregular H € B(H_1,U)
that stabilizes>, equivalentlyif onerequiresK to begeneatedby someweakly
regular K € B(U,Hs) that stabilizesz, thenoneendsup with our LQR problem,
henceonecanuseapplicabletheoemsandcorollaries fromabove In particular,
the OFSEPCAREbecomeghere J =1)

HSH* = AP + PA* + BJB*,
. % o T _ Ax\— 1k
S=DJID" +w-imCyP(s—A") "G, (10.12)
H=-s}C,?+DJB").

In any case onecan find a solutionfor the OFSEPby usingthe theorythis

section.If weminimize|| [B’H%D] || asin [WRO00], thedual costfunctionbecomes

thatof Sectionl0.1;in particular, then(thedualsof) Theoems10.1.4and10.1.6
apply. (Cf. alsoDefinitions6.6.10and6.6.21.) 0

Section5 of [WRO0O0] exploresthe connectionbetweenthe OFSEPand esti-
matability (in the open-loopform only, excluding closed-loopsystems factor
izationsand CARES). The main ideaof this formulation (OFSEP)of the dual
problemis to guarante¢he existenceof a solutionregardlessvhetherthesolution
is of outputinjectionform or not.

For WPLSswith boundedC (e.g.,for finite-dimensionasystemssee[IOW]),
one often definesthe systemandthe cost function without ary referenceto the
output:



Remark 10.2.18(BoundedC) Let [&12] € WPLSU,H,Y), and let C be
bounded Set
C*JC C*JD

J:=[c D]"J[C D}:[D*JC D* 1D

} € B(H xU). (10.13)
Then(y,Jy) = ([¥],J[X]), whee x := Axg + Bu, y := Cx+ Du = Cx+ Du.
Theconverseistrivial: givenA, B andJ, onemayjusttakeC:= [{], D := [{]
to gety = [¥], andsetJ := J to obtainthe samecostfunctionasabove
If we minimizeover Uep, thenwe do not haveto knowy; knowled@ on x, u
and J(xo,u) is enough.hencethenit is not a problemthat different C, D and J
mayresultin sameJ. 0O

The above remarkcan be usedwhentranslationour resultsto the language
of several of the articles where a boundedoutput operatoris assumed,and
cornversely Note that the above remarkcan be generalizedo arbitrary regular
WPLSs.

Notes

Thespecialcaseof astandardostfunction(asin Sectionl10.1)wasexplained
in the noteson p. 555. Implications“(Crit4SOS+)=(Crit1SOS+)—(Crit3SOS+)”
of Corollary 10.2.13and the SR caseof “(Crit4stable+}=(Critlstable+WR)—
(Crit2stable+WR’)”are more or lessimplicitly containedin [S97b]and [WW].
Thesewere extendedfor jointly stabilizableand detectablesystemsin [S98b]
(cf. Theoremsl0.2.11and 10.2.14). See[WRO0Q0] for the first the paragraph®f
Remark10.2.17.All theseresultstreatonly thecasel} = Upyt.

Corollary10.2.9generalize§ heorem3.100f [Keu], which replacedHypoth-
esis 9.2.1 by the strongerassumptionthat Z is a Pritchard—Salamorsystem;
mostclassicalfinite-dimensionatesults(including Theorem16.3.30f [LR], Sec-
tion 14.30f [ZDG], Section5.2.20f [GL] andCorollary4.5.70of [[OW]) arespe-
cial casesf Corollary10.2.90r of Corollary10.2.8,all theseresultsassumepos-
itive J-coercvity or somethingstrongerasonecanshow by applyingProposition
10.3.2.All theseresultstreatonly the caseU; = Uexp.

In asenseCorollary 10.2.9usesthe wealestpossiblecoercvity assumption
(positive J-coercvity; this canberelaxedif eCAREs(D*JD % 0) areallowed).
We do not know analogousresultsfor more generalsystems(than Pritchard—
Salamonsystems) but thereare someresultswith strongercoercvity or stabi-
lizability assumptiongor several subsetof WPLSs,asexplainedabove andin
thenoteson p. 555.



10.3 Standard assumptions

Euclid taughtmethat withoutassumptionshere is no proof. Thete-
fore, in anyargumentgxaminethe assumptions.

— Eric TempleBell (1883-1960)

In this sectionwe study popularassumption®f LQR (minimization) prob-
lems; more exactly, we list sufficient (and necessaryfonditionsfor positive J-
coercvity over Uexp OF Uout.

In classicalresults (in particular in most minimization results for finite-
dimensional[LR] [GL] [ZDG] [IOW] or Pritchard—Salamorsystems[Keu]
[LW]), oneusuallyassumesomeof (i)—(iv) of Proposition10.3.2(seealsoRe-
mark 10.3.3)or somethingstronger and shavs thatthe CARE hasan exponen-
tially stabilizingsolutioniff the systemis exponentiallystabilizable,andthatin
eithercasethe solutionleadsto the uniqueminimizing statefeedbackover Uep.
In thoserareresultswherethe assumptionsrewealer thanpositive J-coercvity,
the CARE doesnot needto have a solution, althoughthe e CARE or something
similar might have (asin Corollary10.2.5).

Sometimeghe minimizationis doneover Uyt andthe assumptioris one of
(ai)—(biv) of Proposition10.3.1. The purposeof this sectionis to shav thatall
theseassumptionsre equialentto or strongerthan positive J-coercvity. This
alsoleadsto alist of differentwaysto verify the positive J-coercvity of a given
WPLS andthusmalke the minimizationresultsof Section10.2moreapplicable.

Popularclassicalassumptiongor LQR, H2 andH® problemsinclude condi-
tions“no invariantzeroson iR U {}” (see(iii) far belowv) and“no transmission
zerosoniRU{e}” ((aiv) below); for minimalfinite-dimensionasystemsheseare
equialent,asshovn below. We startby shaving thatthelatterconditionis equiv-
alentto | -coerciity over Toyt (recallthat Uou(0) == {u€ L?(Ry;U) | Du € L?}):

Proposition 10.3.1(Uout: Y€ L2=>u€ L?) Let 3 := [212] € WPLSU,H,Y)
andJ = J* € B(Y). Considerthefollowing conditions:

(ai) 7(0,u) > € (||ull3+||Dul|3) for somee > 0 andall u € Uoyu(0);
i.e., D is positivelyJ-coercive over Ugyt.
(aii) ||Dul|2 > €||ul|l2 (u€ L?(Ry;U)) for somee > 0.
(aiii) D(s)*D(s) > ¢l for all s€ iR U {} andsomee > 0.
(aiv) D(s)up # O for all s€ iRU{w} andall nonzeo up € U.
(bii) (Du,IJDu) > €||ul|3 (U € Uou(0)) for somee > 0.
(biii) IIA)(S)*J]ﬁ)(s) > ¢l for all s€ iRU {0} andsomee > 0.
(biv) D(s)*ID(s) > Ofor all s€ iRU {}.
(bv) D*JC=0,D*ID > 0,C*JC> 0.
We havethefollowing implications:

(@) (3> 0) Assumethat J > 0. Then (ai)<(aii)<(bii). If, in addition,
dimU x H xY < o, then(ai)—(biv) are equivalent.



(b) (Rational ﬁ) Assume that dimU x H x Y < oo, Then
(ai)<(bii)<(biii) < (biv)<(bv).

If, in addition, Z is exponentiallystabilizableand exponentiallydetectable
(e.g., minimal),thenalso(i)—(vi) of Proposition10.3.2are equivalento (ai)
(seeProposition10.3.2(d)).

(c) (D € TIC) Assumethat D is stable Then(ai) < (bii) < D*JD > &l <
(D(s)uo, JD(S)Ug)y > €||uol|g a.e, for all ug € U.

If U is separble or ]ﬁ) is piecavise continuous,then a fifth equivalent
conditionis that (D)*JD > ¢l a.e

(d) AssumehatJ:= [C D]*J[C D] =: [N\ ] satisfies] > 0, R>> 0, and
dimKer(J) = dimKer(Q), anddimU x H x Y < .

Thenther is € > 0 s.t. ({{2],J[{]) > €||up||3 for all xo € H, up € U.
Theeefore, 7(xo,u) > €||u||3 for all measuableu: R, — U andall xo € H.
In particular, then(bii)—(biv) hold.

(Consequentlyif wewishto optimizeover all measuable controls, we may
replace[C D] by JY/2 andJ by | € B(H x Y) to male Upu(Xo) equalto
{u] 7(x0,u) < w}; thenew systenis observablef [§] is.)

Condition (aiv) is the standarchssumptiorthat]f)) hasa full columnrankon
iRU {eo}. Equivalently, onecansaythatD hasnotransmissiorzensoniR U {o}
(seee.g.,Lemma3.270of [ZDG]).

Notethat,whenJ > 0, D is J-coercveiff D is positively J-coercve; for stable
D this holdsiff D*JD > 0 (cf. (c)). Note alsothat(ai) is includedin (a) and(c)
only (since(bii)—(biv) do notrequirethat(Du, JDu) > €||Dul|3).

WhenJ >> 0, the conditionin (bii) holdsfor all u € Uy(0) iff it holdsfor all
ueLl..
WhendimU x H x Y < o, thefunctionD is rational,henceﬁ‘iR is thenwell

definedalsofor unstableD. In thiscasewe define(Duo, JDug) asthelimit of itself
atthepolesof A, e.qg.,if ]ﬁ(-)uo hasapoleatsy, it is considerecﬂhat||113>(so)uo|| =00
(in (aiii), (aiv), (biii) and(biv)). Thus,(aiii) holdsiff ||Iﬁ>(s)uo|| > €||up|| forup e U

ands € iR\ o(A). Naturally D(+) = D (whendimH < ). Notealsothat, in

this finite-dimensionakase,a minimal systemis exponentiallystabilizableand
detectabldse€[LR, p. 91]).

Proof of Proposition 10.3.1: (a) By Lemma 8.4.11(d2), we have
(ai)=(bii).  Trivially, (Du,JDu) = o > ¢||ul|2 whenerer u € L2(R;,U) \
Uout(0), hence(aii)< (bii). Therestof (a) follows from (b).

(b) We assumehatdimU x H x Y < o anddivide the proofin parts.

1° “If u,Du € L2(Ry;*), then£Du = DU a.e oniR™ (In fact, this holds
alsowheneer, e.g. thesetN below is atmostcountablgthishappensvheneer
Ais compact)r D is stable(then£Du = Dia.e.oniR, by (3.36)).)

BecausedimH < o, the setN := o(A) is finite, andthereis w € R s.t.
D € TIC, andD € H(C\ N; B(U,Y)).



SetQ := C*\ N. ThefunctionsDt € H(Q;Y) andG := Du € H2(C*;Y)
coincideon C{;, hencethey areidenticalon Q, by LemmaD.1.2(e). Conse-
quently ﬁﬁiR € L2 is the boundaryfunction of G € H? a.e.,by (a1)(1.) and
(a2)of Theorem3.3.1.)

(Notethatif, e.g.,D(s) = (s— 1)1, thenthemapl — Dl oniR inducesa
Tlo mapthatis differentfrom D (whichis in TIC \ TIC). Above we shaved
thatthesetwo mapscoincideon the set{u € L?| Du € L2}. Anotherexample
in thisdirectionis providedbelovy Example3.3.10.)

2° (biii)=-(biv): Thisis trivial.

3° (biii)=(bii): Assume(biii). Letu € Uyu(0). ThenLDu = DG a.e.on
iR, by 1°, hence

(Du,IDu) = (2 Y4Da,IDG) > (2r) /2e|0]|5 = €]|ull3, (10.14)

by the PIanchereTI’heorerr(see(D.36)). Thus,(bii) holds.

4° (bii)=(biii): SetF —]D>( 7*J]13), sothatF € H(N®; B(U)),whereN Cc C
is finite, andF = D* JD oniR U {eo}.

Assumethat (biii) is false (we aim to shav that thenalso (bii) is false).
Thentherearee’,e” < ¢, irg € IRU{e}, Up € K := {up € U | [|up|| = 1} s.t.
G(iro) < € < €, whereG(ir) := (up, F (ir)ug) (r € R). We may assumethat
iro € iR\ N (alterrg slightly if necessary).

NotethatG € H(N®) andG(ir) e R for allr € R. Let

g(s) :==[](s—p)/(s+p+2), (10.15)
P

wherep runsover the polesof Dug on C*,, countingmultiplicities.

ThengDup € H*(C*,;Y), § € H*(Ct,) and || < 1on Ct,. Seta:=
[d(iro)|, M := ||3]||IDGuo||, so that |G||§2 < M on CT U {w}, M < « and
a> 0. Givengg € (0,a), thereis 6 > 0 s.t.a—¢gp < |g(ir)| < a+€p on
Js :=i(r—98,r+9).

For eacht € (0,9), we choosef; € L2(R,) asin LemmaD.1.24,andset
h = fig € H2(C™), sothat Dhyup € H2; in particular u; ;= hyup € Uou(0).
Now

R:= Zn(Dhtuo,JDmuo),_z(RJr;Y) :/R(ﬂuo, Fﬁtuo>u dm:/RG|§ﬂ|2dm
| |
(10.16)
g/ e’(a+so)2|ﬂ|2dm+/\ M|f;|2dm < 2re/(a+€0)?+ Mg,  (10.17)
‘]6 iR Ja

whereg; — 0 ast — 0+. By choosingt smallenoughwe getR < 21" (a+
) and ||ht||2 > 2m(a— £9)2. Becausegp € (0,a) was arbitrary we have
(Dht Up, JDht Ug) < g"||htUo||3 for go andt small enough. Therefore,(bii) does
nothold.
5° (ai)=-(bii): Thlsfollowsfrom Lemma8 4. 11(d1)
6° (biv)=(ai): SetF := ]D>( 7*J]D) sothat F = D*JD oniRU {e} and
F € H(NS B(U)) (in fact,F is rational),whereN C C is finite.



6.1° “(biv) =(biii)” whenD is exponentiallystable: Now F(i-) € (,(iRU
{};B(U)). Assume(biv).

Obviously, (r,up) — (uo, F(ir )ug) is continuousR U {eo} x U — (0, +00).
Therefore, € := MiN;giru{w}, upek (Uo, F(ir)Ug) exists, where K = {up €
U [[Juo|| = 1}. By (biv), we have € > 0, hence(biii) holds(with thise).

6.2° (biv)=-(ai): Assume(biv). Beingrational,]ﬁ hasan(exponential).c.f.
D = NM—1 (by Lemma6.5.10(b)).Since

0 < (DMuy, JDMus) = (Nugs, JNUs) (U € L3(R4;U)), (10.18)

we have N*JN > ¢l for somee > 0, by 5.1°. By Lemma8.4.11(a2)&(b1),t
follows thatD (resp.N) is positively J-coercve over Ugyt (resp.‘ugﬁt), hence
(ai) holds.

7° (bv)=(biv): Assume (bv). Then D(s)*JD(s) = D*JD + B*(s —
A)~*C*JC(s—A)~!B > D*JID > Ofor all s€ iRU{ e}, hencethen(biv) holds.

8° (i)—(vi): Proposition10.3.2(d)providesthelastequivalence.

(c) Now Uput(0) = L2(R;U), henceD*JD > ¢l is equivalentto (bii), by
Lemma6.4.6. Trivially, (ai)=-(bii); the cornversealso holds since ||Du||2 <
|ID||||ull2. By Theorem3.1.3(e2)alsotheremainingtwo equivalencesold.

(d) Finding € > 0: Assume(iv). We have J = P* [g g} P = E*E, where

Q:= Q— NRIN*, P := [_FQlN* ﬂ € GB(H x U) (henceQ > 0), E =

[6(1)/2 R?/z] P. Thus,0 < (z,Q2 < (z,Q2 for all ze€ H x U, henceKer(Q) C

Ker(Q). ButdimKer(Q) = dimKer(Q) < =, by (iv), henceKer(Q) = Ker(Q).
Becausd < 6 we musthave

Ker(Q) c Ker(NR IN*) = Ker(N*). (10.19)

Therefore, Ker(Q) C Ker(N*), henceKer(QY2) c Ker(N*). By Lemma
A.3.1(f), we have LQY/2 = —R~IN* for someL € B(U). Chooseeg > 0 s.t.
R > g&l. Givenxg € H andup € U, setvp := up— R"*N*xo, sothat

cante) = [12] 3]y = . R + b B9 = E [2] 12 (2020
To obtaina contradiction,assumehatxy € H andup € U ares.t. ||ug||
1 but |E[i2]I? < € := min{er/2,1/4||L||?} > 0. Then ||v|u < eeg"
1/2, hence||R"IN*xo|| > 1/2, henceQY2xq > 1/2||L||, hencek (o, Uo)
1/4]|L||2 > €, acontradiction asrequired.Thus,J > «l.
2° Theotherclaims: Sincey = Cx+ Du, wherex := Axg + Btu, we have

J(xO,u):/Ow<m ,jmmmz gul2  (ueL2(Ry;V)). (10.21)

<
>

Thus, the secondclaim holds. Condition (bii) follows from this, by (b) also
(biii) holds(and(biv) if J > 0).

Let usnow studythe new systemwith [C' D'] := JY/2. As shavn abore,
J(Xo,u) = oo for all u ¢ L2. With this new setting, 1. «(Xo) (for ') consists



of all u € L?(Ry;U) for which (10.21)is finite; in particular we may have
Cxo+Du ¢ L? (but C'xo+D'u € L?). Thus, U, includesthe original Uoyt.

Then(C')*C’ = Q, hencethentheobsenability of [ 5] impliesthatof [5],

by the Hautustest(seep. 7 of [[OW]; obviously, rank[(é‘,}%} < rank[)‘g,A]).

(]

Next we studyJ-coerciity over Ueq(0) := {u € L*(Ry;U)|Brtu € L%} (we
shallhave C; := C,, D¢ := D for mostapplications):

Proposition 10.3.2(Uexp: Y € L2=> u,x € L?) Let > = [&R] e
WPLSU,H,Y) have compatible geneators (C¢,D¢). Let J = J* € B(Y),
andset

K(Xo, Ug) := ((CcXo+ Dclp),J(CeXo + Dclp)),  J(0,u) := (Du,JDu). (10.22)

We have the following implications betweenthe conditions (i)—(iii’) given
below:

(al) Condition(i) is invariantunderadmissiblestatefeedbak (in thesensehat
if =, is the correspondingclosed-loopsystemthen [%H%] satisfies(i) iff
[215] satisfieg(i)).

(a2) Conditions(i)—(iii’) are invariant under admissiblestate feedba& by a
compatiblestate feedbak operator K. (in the above sense with (C))c :=
Cc+DKe, (Dy)c := Dg).

(b) If X is estimatablethen Uyt = Uexp, hencethen(i) becomesquivalento
(ai) of Proposition10.3.1.

(c) ()= (") <(ii)«(iii) =(iii") (withoutfurther assumptions).

(d) (dim< e) AssumehatdimU x H x Y < co. Then(iii) < (iii") <(vii).
Assumein addition, that Z is exponentiallystabilizable Then(i)—(vi) are
equivalentto eat other(andto (ai) and (bii)—(biv) of Proposition10.3.1if
> is exponentiallydetectable) Moreover; in (ii), (i), (iii) and(iv), we may
replace’r € R” by“r € E”, wheeE C Risdense

(el) (BWCARE) Assumehat Hypothesi9.2.1holdsfor U} = Uep, Z hasa
compatibleexponentiallystabilizingstatefeedbak& operator, and D, = D.
Then (vV)<=(") &(ii") & Vi)=()<(") < (i) <(ii) =(ii’). If, in addition,
D*JD > 0, then(i)—(iii), (v) and(vi) are equivalent.

(e2) (Bounded or smoothing B) Assumethat 1 1)AB € L([0,1); B(U,H)),
D € ULR, Z is optimizableandD. = D.

Then (i)—(iii) are equivalent. If, in addition, Hypothesis9.2.1 holds for
Uy = Uexp, then(i)—(iii), (v) and(vi) are equivalent.

(f) If Z hasan exponentiallystabilizingcompatiblestatefeedbak operator, then
(N (i), and(i)<(i") < (i) < (i) =(ii’).

(g1)If DisULRandD¢ = D, then(i") = (i), and (ii’) =(ii).



(92) If £ hasan exponentiallystabilizing compatiblestatefeedbak operator
s.t.D, € SHPR(or B,T € SHPRandD € SLR), then(ii)=-(ii"), and(i)=-(i")
(with De = Dy).

(i) 7(0,u) > € (||ul|3+ || Btul|3) for somee > 0 andall u € Uep(0);
I.e., D is positivelyJ-coercive over Ueyp.

(") 7(0,u) > €||Brul|3 for somee > 0 andall u € Uep(0), andDEID. > 0.
(") 7(0,u) > € (||ul|3+ ||Btu||3 + ||Dul|3) for somee > 0 andall u € Uexp(O0).
(i) Theeise > 0s.t.
(ir — A)xo = Buy = K(Xo,Uo) > £([|Xo||& +|Uoll3) (X0 €H, up€U, reR).
(10.23)
(i) DEIDe > 0andthereise > 0s.t.
(ir —A)xo = Bup = K(Xo,Up) > €Xo||3 (X0 €H, upe U, reR).
(10.24)
(i) Theeise>0s.t. Ty [ 9] Tr > el (r € R) onH x U, whee T :=
A—ir B
a8l
(i) T [' 9] T >0 (r € R). Equivalently

reR & [J]#[W]eHxU & (ir — A)xg=Buy => K(Xo, Up) > 0.
(10.25)

(iv) Theris € > 0 s.t. (uo, D(8)*ID(s)ug) > € (||uoll3 + I|(s— A)~Buo||3) for
a.e seiR.

(v) Theris a uniqueminimizingu € Uexp(Xo) for ead1 xo € H, andD*JD >> 0.
(vi) TheB;,-CAREhasan exponentiallystabilizingsolutionand D*JD >> 0.
(vii) (C,A) hasnounobservabl@odesoniR, J =1, D*D > 0andD*C = 0.

In classicalLQR results,the assumptiongre usually written in someof the
following forms:

Remark 10.3.3 Obviously any J >> 0 is equivalentto J = | in all above con-
ditions. Theeefore, for J > 0, we get the following equivalentforms of above
conditions:

() IDull2 > ([|Brull2 + [[ull2);

(ii) (ir —A)xo = Bug = [|CeXo+ Deuolly > €(|[%ollH +[Uollu);

(i") DEDe>> 0, and (ir — A)xo = Bug = ||CcXo + Dclo|ly > €[|Xo||H;

(i) Ty = [Agcir gc] :H x U — H x Y hasa full columnrank (i.e., T T > 0)
forallr € R;

(iv) [|ID(s)uolly > €(||uollu +||(s—A)~1Buw||n) for a.e se iR andall up € U.

Recallthatwe set||X||x = o for xZ X, hence||Ts[ i3] [[xy = © > €|| [18] |[Hxu
for all xo € H\ Hg, € > 0. In (iv) and(iv’), the valuesof ||(s— A) 1Bu||1,



||lﬁ>(s)uo||u and(uo,ﬁ(s)*Jﬁ(s) uo) aredefinedby continuityat e andatthe poles
of (s— A)~1 (in particular the value+ is allowed).

Condition (iii") saysthat = hasno invariant zeos on iR U {} (see,e.g.,
Definition3.160f [ZDG]). If Ais boundedthisisthecasevhendimH < «), then
H=H_1 =Hy, hencethennecessaril;{ég}—g} areboundedC; = C andD. = D.

Whenapplyingthe above results,we oftenassumehatD is WR, sothatwe
cantakeC. =C,, D =D.

Example9.13.5shavsthatpositive J-coercvity over Uy, doesnotimply pos-
itive J-coercvity over Uep, NOt evenwhen is one-dimensionahnd exponen-
tially stabilizablewith D*JD > 0.

Proof of Proposition 10.3.2: Remarks: The numberse > 0 in (i)—
(iv) neednot be equal, but they are always independentof Xg, up andr.
Since(m 9] [ﬂ}HXu = ||X]|n + (¥, I}y = o for € H 1\ H, we have
(T (301, [ 9] Tir [0 .y =  When(A—ir)xo+ Buo & H; in particular (iii)
needto bechecledfor xg € Hg only.)

Aboutthe proof: By Lemma6.7.8, (i) is equivalentto (i”) and Uep(0) =
{u€ L?(Ry;U)|Btu,Du € L?}. Thus,we mayandwill neglect(i”) in therest
of the proof.

We shall use the notation of Definition 6.6.10 when referring to state
feedback.

(al) Thisis Theorem3.4.5(d).

(a2) For (i) this follows from (al); for (') this follows from the formula
Uexp(0) = M‘u@p(O) from Theorem8.4.5(c1)(since(D;)¢ := Dg, by (6.144)),
so we concentrateon (ii)—(iii’). Let K; be an admissiblecompatiblestate
feedbackoperatorfor %, andlet %, be the correspondinglosed-loopsystem.
Then

e ol [k 1] =m0 =[fe)0 @)= w0

CC DC KC I CC+ DCKC DC (Cb)c (Db)C
for all s€ C, by Proposition6.6.18(d2).
A

In 1°-4°, we assumea claim for [a%] (asabove), and prove the same

claim for [%H%} Thecorverseis alwaysobtainedby using—K for [%H%}
(seeProposition6.6.18(d2)).

1° Claim (ii) is Kc-invariant: Assume(ii). Givenxg € H, vp € U, set
Uo := X0+ KcVo, Yo := CeXo+ Delp, sothat[[3] = [ ] 3] andyo = (C,)cxo+
(Dy)cVo, by (10.26).

Now K (Xo, Up) = (Yo, JYo) =: K, (X0, Vo), Sothatobtain(ii) for Z, too, because
[1%0l|2 + [|Vo[|? < (Mo + 2)2(||%0l|? + ||uo||?), whereMg is asin Lemma6.3.21
for [212] (notethat||vo|| < [|Xol| + Mol|Uo]l, Sincevo = Xo — Kclig).

2° Claim (ii") is K¢-invariant: Drop thelastpartfrom the above proof.

3° Claim (iii) is Kc-invariant: Assume(iii). Givenxge H,vpe U, r € R,

setug ;= Xg + Kcevp and
X1 .+ [Xo -h | X0
[VO] = [UO] K [VO]’ (1027



asin (10.26).
By (10.29)and(iii), thesum||xq||2 + (Yo, Jyo)y is atleaste(||xo||% + ||Uol|3 ).
henceat least (||xo||3 + [[Voll§ )€/ (Mo + 1)2, asin 1°. Thus, (iii) holds for

33k

4° Claim (iii’) is K¢-invariant: Thisis analogougo 3°.

(b) Thisis givenin Lemma8.3.3.

(c) 1° (ii))=-(ii’): This s trivial. (Moreover, the equivalencein (iii’) is
obviousfrom (10.29).)

2° (ii)=(): Assume(ii). Let u € Uep(0), SO thatu,x,y € LZ(Ry;%),
wherex := Btu andy := Du. By Lemma6.3.20,we have (- — A)X= BU and
y=CX+Dcla.e.oniR. By (3.34),we have

(¥, 99) = /RK(?("),U(")) dr > e(||x13+ [1013) (10.28)

hencef (0,u) = (y,Jy) > &(||x||3+ ||ul|3), by (3.34). Therefore (i) holds.

3° (i) =(ii): Now

(] [o S| [ = Bto— r — Apals + kiow). - 0.29)
Thus, if (A—ir)xo+ Bu = 0, then (iii) implies that K(xo,U) > £(||%o||3 +
|uo||3) for somee > 0 independentf xg andug. Thus,then(ii) holds.

() By (c), we only have to shav the implications*“(i) = (ii) =(iii))", and
“(I") <(i")". Thiswill bedonebelow.

1.1° (ii)=-(iii) for exponentiallystableX: Let Z be exponentiallystable.
Assume(ii) with € € (0,1/2). By LemmaA.4.4(gl), thereis M < o« s.t.
[|(ir — A)~1z0||n < M||zo|| for all r € R andzg € H (becauseo < 0).

Let ||%0]|4 +[|Uo||3 = 1 andr € R. Assumethat

|z2lln < &:=&/3(1+M+][Cl1|3]] + 2 CIIINIDI), (10.30)

wherez; ;= (ir — A)xg — Bup. Setx; := (ir — A)~1z1, Xp := X9 — X, S0 that
(ir — A)x2 = By, i.e.,xp = (ir — A)"1Bup. It followsthat

yo 1= CoX2+ Delp = D(ir)ug  and Cexo = Cexo + C(ir) z, (10.31)

hencex (X2, Uo) = (Yo, Jyo) andk (Xo, Up) = (Yo + C(ir )z1,(yo + C(ir)z1)). Con-
sequently

K(Xo,Up) — K(X2,Up) = (@(ir)zl, J@(ir)zl) + 2Re(@(ir)zl,Jyo) (10.32)
<|IC112)19118%+2||C|[|13[1ID]|5 < €/3 (10.33)

(notethatd < £/3 < 1, henced < &). But ||x2||%+||uo||? > 1+]|%2||2 = ||%o||? >
1-2||x1||||X0|| = 1—2M||z1|| > 1—2¢/3, hence (X2, up) > £(1—2¢/3) > 2¢/3,
by (ii). By (10.32),we obtainthatk (xp, Up) > 2¢/3—¢€/3=¢/3.
Thus,(10.29)> min(&?,£/6) =: €/, hence(iii) holdswith ¢’ in placeof €.
1.2° (if)=-(iii) for £ havingan exponentiallystabilizingK;: Apply 1° and
twice (a2).
2.1° (i)=(ii) for exponentiallystableX: Let Z be exponentiallystableand



assumehat (ii) doesnothold for somey > 0, sothattherearexg € H, ug € U
andrg € R s.t. (iro — A)Xo = B, K(Xo,Up) <y and||Xo||? -+ ||uo||? = 1. Note
thatxg = (iro— A) “1Bup.

Let € € (0,1) be arbitrary Choosed > 0 s.t. K(x:,Ug) <y and ||x||> +
||uo||? > 1— €' for |r —ro| < &, wherex, := (ir —A)~1Bu. Set

M := max{1, ||D|||J]|}. (10.34)

By LemmaD.1.24 thereis f € L?(Ry) s.t. [, .5/ f(ir)[2dr <€'/M and

1]l = 1. Setu:= fup, ¥:= D, sothat||§(ir)|| < |[D|||| f(ir)|| (r € R), and
hence

/ §,39)dr < / M| f]2dr < Me'/M = ¢/, (10.35)
[r—ro|>0 [r—ro|>0
/ (9,Jg)dr :/ K(X:,uo)| f]?dr <y, and (10.36)
[r—ro|<d [r—ro|<d
[ @R+ ar>@1-g) [ [fl2dm>(1-€)?  (2037)
iR [r—ro|<d

In particular 7(0,u) < (y+¢')/2mand||ul|? +||x||? > (1—¢€/)?/2. Because
¢ > 0 wasarbitrary we seethat (i) cannothold for any € > .

Thus, if (i) holdsfor somee > 0, we mustalso have (ii) for the samee
(otherwise(ii) would fail for somey < € too, hence(i) would be falsefor €, a
contradiction).

2.2° (i)=(ii) for Z havingan exponentiallystabilizingK¢: Apply 3.1° and
twice (a2).

3 (") (i) : DefineX’ andJ’ by settingd’ := [} ?],Cl:= [%C} ,Dg = [Pe]
(thus, 7’ = 7+ ||ul|3). Thenfor ', condition i) is satisfied,hencesois (ii),
by 2°. But K/(Xo,Up) = K(Xo,Uo) + ||Uo||3, hence(ii’) is satisfiedoy 7. The
cornverseis analogoususing “(ii) =(i)” (henceit doesnot even require the
stabilizabilityassumption).

(g1) 2° (ii’) =(ii): ToderveacontradictionassumehatD is ULR, Do =D
and(ii’) holdsbut (ii) doesnothold. Choosee’ > 0s.t.D*ID > €'l . Thenthere
are{rn} CR, {xn} CH, {un} CU s.t.|jup]lu =1 (n€N), (irn—A)X, = B
andk (Xp, up) — 0, asn — . Consequentlyx, — O (by (ii")).

Given 6 > 0, we obtain from Lemma 6.3.22 that thereis M < o s.t.
ICwXnlly < M||Xal|1 4+ 9||un|]lu/2 (n € N). Consequentlythereis N5 € N s.t.
||CwXnlly < &for n> Njs. It follows that

K (Xn, Un) = (Un, D*IDUR) + 2Re(CyX, IDUp) + (CyX, ICyX) (10.38)
> &' — 2||DJ|[|3]15— [139]]5. (10.39)

Because > 0 wasarbitrary we have lim inf, . K(Xn, Un) > €/, acontradiction,
asrequired.

2° (") =-(1): To deriveacontradictionassumehatD is ULR, D = D and
(") holdsbut (i) doesnot hold. Choosee’ > 0s.t.D*JD > €/I. Thenthereare
{uUn} C Uexp(0) s.t.||un||2+ |[Xnl|2 = 1 (n € N), and(Du, JDu) — 0, asn — oo,
wherex, := Btu,. Consequently||X,||2 — 0 and||un||2 = 1 (by (i), ash — co.



Given d > 0, chooseM asin 1°. Since (ir — A)Xy(ir) = BUy(ir) for a.e.
r € R, by Lemma6.3.20,we obtainthat

o/ o 5, . .
ICuSa(ir) Iy < M|[Sa(ir) | + S[[Ta(ir)lu forae.r e R (10.40)

andfor all n € N. Consequentlythereis N5 > 0 s.t.||Cy%n(ir) ||y < 9||Tn(ir)|lu
fora.e.r € R andall n > N, hence||CW?n||fz( 21?2 for all n > Nj (because

103 = 2rd]un13 < 2m9. But
2119(0, Un) > (DUn, IDTn), 2 — ||J]][[Cwnll2 — 2/|3]/|| Dn||3]|ICu%nll3,  (10.41)

by (6.90), hence 7(0,un) > €||un||3 — M'8 — M/||un||28 for n > N5, where
M’ := ||J||max{||D||,1}. Consequentijliminf7(0,u,) > &’ — M'&?. Because
d > O wasarbitrary we haveliminf 7(0,u,) > €', acontradictionasrequired.

(g2) Let K¢ be the exponentially stabilizing compatible state feedback
operator NotethatD, € SHPRIn eithercase py theassumptioror by Lemma
6.3.23.

1° CaseK. = 0: Assumethat(i) holds(by (c), thisis thecaseif (ii) holds).
By Lemma6.3.6(c2),we have D;JD, > 0, i.e.,, D*ID > 0. Thus, (") holds
(and(ii’) if (i) holds).

2° (ii)y=(ii"), and (i)=-(") assumingthat K; stabilizes> exponentially
B,T € SHPRand D, € SLR: Assumethat K; is an exponentially stabilizing
compatiblestate feedbackoperatorfor Z. Assumethat the corresponding
closed-loopsystemz;, is s.t. D, € SHPR Assumethat (ii) (resp.(i)) holds
for D =D, =: D.

(By applying twice Proposition6.6.18(d2)(seealso Lemma6.6.14), we
seethat —K is an admissiblecompatiblestatefeedbackoperatorfor %,, and
((C))w — DyK¢, Dy) is acompatiblepair for . Thuscondition(ii) for D; = D,
is well defined.)

Then(ii) (resp.(i)) holdsfor [%H%] by (a2),hence(ii’) (resp.(i’)) holds

for |45, by 1°, hence(ii) (resp.(i)) holdsfor %, by (a2).

(el) Thefirst chainof implicationsfollows from (f), (g1) and(g2) except
for (v) and(vi).

“(i") =(v)”: This follows from Lemma 10.2.4 (since (ii") implies (i)).
“(V)&(vi)=(i)": Thisfollowsfrom Theorem9.2.16“(vi)=-(i")": If (vi) holds,
thenD*JD > 0 and(i) holds,by theabove, hencethen(i’) holds.

(e2)1° (i)=(")—(iii&(v): Assume(i). By Lemma9.2.17andits proof,
D*JD > 0 (hence(i’) holds) andthereis an exponentially stabilizing ULR
K € B(H,U), hence(i)—(iii’) and(v) hold, by (f).

2° (N)/@)/r)/(iii)y =-(i): Thisfollowsfrom (g1)and(f).

3 ()&(") < (vi)<(v) under Hypothesis9.2.1: AssumeHypothesis9.2.1
for Uy = Uep. By Theorem9.2.16, (i)&(") implies (vi) and (v) implies
(vi). Corversely if (vi) holds, then we obtain from Theorems9.2.16 and
9.9.1(k)&(a2) that (v) holds, D is J-coercve and 7(0,-) > 0, henceD is
positively J-coercve,i.e., (i) holds.

(d) AssumethatdimU,dimH,dimY < . (Notethat(iv) is notwell defined

iR}Y)



in generalputit is well definedin this finite-dimensionatase.)
1° (i) =(iii): Then A,;B,C,D are bounded. Let K := {(x,u) € H x
U |[IX|Z -+ [|ull§ = 1}. Thefunction

F(r,%0,U0) == ([301, Tir [49] Tir [{2]) = || A%+ Buo — i Xo||* + K (X0, Up) (10.42)

is continuousonH x U for afixedr € R, henceM := maxyck F (0, X, u) < co.

Obviously, thereis R < « s.t. F(r,x,u) > M for all |r| > R and
(x,u) € K. But F is obviously continuouson [-R/R] x K, henceg :=
minecr, (xuyek F (X, U) exists. By (iii"), € > 0. Apparently (i) holdsfor this
€.

2° (vii)=(iii): Thefirst conditionin (vii) meansthatKer(["-A]) = {0}
for all r € R. If up # 0, thenk(xop,Up) > (Up,D*Dug) > 0. If up =0 and
(ir — A)xo = Bup for somer € R, thenwe have Cxg # 0, hencethenk (xo, Up) =
(CxXo,Cx0) > 0.

3° (i)« (iv): Lete beasin (i), andsetM = ||C|| +|D||. If ir € iR\ 0(A) =
R and (ir — A)Xp = Bup, thenCxg + Dug = ]D(lr)uo, hencethenF = ]D)*J]D)
satisfies(up, F (ir )ug) = K(Xo,Uo), so that (ii) becomesequivalentto (iv) for
ir e R SinceR is densein iR U {}, and both sidesof the inequalitiesin
(i) and(iv) are continuousiR U {eo} — (0,+0], ary ir € iRU {eo} will do.
(Recallthatwe interpretthe valuesastheir limits asR 5 r — rq for ro = o and
for termshaving apoleatirg.)

4° Therestof (d) exceptE: If Z is exponentially stabilizable[and de-
tectable] thenwe getthe otherimplicationsfrom (e) [and (b) andProposition
10.3.1(b)].

5° ThedensesetE C R: In the proof of (ii)<(ii") <(iii) (including the
invarianceof (ii), (ii") and(iii) w.r.t. Kc = K in (a2)), we canrestrictr to any
ECR. ButT € C(iR;B(U x H)), hence(iii) is invariantunderthe replace-
mentof R by its densesubset.The sameholdsfor (iv), becauséoth sidesof
theinequalityin (iv) arecontinuousR — [0, +oo]. O

In conditions(i)—(i") of Proposition10.3.2,we posedrequirementn u €
Uexp(0) only; herewe shav thatevenin thefinite-dimensionatasethisis strictly
wealer thanrequiringthesamefor all u € L?(R;U) (or for all u € Uo(0)), and
thatnoneof (i)—(iv’) impliesthe samefor all u € Uyyi(0) (naturally this cannot
bethe casewhenZ is exponentiallydetectableby (b)):

Example10.3.4LetA=1=B=D,C=0,C=U=H =Y. ThenDu=u
for all u, so that Us(0) = L?%(R;;U), but (s—A) 1B = (s— 1)1, hence
£Btu = (-—1) 70, sothat Ueqp(0) = {u € L?| (1) = 0}. Moreover, then|D| = 1
and|(s—A)~!B| < 1 oniR, hencecondition(ii’) of Proposition10.3.2holdsfor
€ =1, henceg(i)—(iv’) hold, by (d) (because& is exponentiallystabilizable).
Neverthelessye have 7(0,u) = ||ul|3 and ||Btu||2 = o for all u € Uou(0) \
Uexp(0), hencewe cannotallow for arbitraryu € L?(R;U), not even arbitrary
U € Uouy(0) in (i) (norin (i) orin (i")). <



Notes

Many of the above resultsare known for finite-dimensionakystemspart of
themalsomoregenerally The methodof the proof of “(ii’) < (i’)” in Proposition
10.3.2is partially from [K eu, Section3], wherethesetwo conditions,(v) and(vi)
areshowvn to be equialentfor Pritchard—Salamosystems.

The two propositionsshowv that even in the finite-dimensionakcase,several
classicalresultscontainsuperfluousor redundantissumptions Seethe noteson
p. 555for moreon minimizationproblemsandtheir assumptions.

Proposition10.3.1alsoholdsin its discrete-timeform, whereasProposition
10.3.2needsto be rewritten (since S takesthe role of D*JD); seeProposition
15.2.2.
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10.4 The H? problem

Grabel'sLaw:
2 is notequalto 3 — not evenfor large valuesof 2.

In this section,we shallshonv how the solutionfor the minimizationproblem
of Section10.2(for %) providesalsothe solutionof the HZ full informationand
statefeedbaclkproblemg(for %) asacorollary.

Wefirst shawv thatgivenanadditional(boundedjnputoperatoB; € B(W,H),
the norm ||Du + CBawo||2 is minimizedby u(t) = Kx(t) (Theorem10.4.2),i.e.,
thatK solvesthe H? problem. Thenwe allow for unbounded, but requirethat
K is boundedProposition10.4.3).Finally, we give a corollary, whoseregularity,
coercvity andstabilizabilityassumptionguaranteehatK necessarilyexistsand
is boundedsothatit alsosolvesthe H? problem(Corollary 10.4.4).

Standing Hypothesis10.4.1(J =1, B2) Throughoutthis sectionwe assumehe
existenceof an additional WRinputoperator B, € B(W,H_;), sud thatX canbe
extendedo

5. A|lB B € WPLS(U xW,H,Y) with geneators ALB B
T lC|D Dy o ’ cip 0.

(10.43)
We alsoassumehatJ = I.

(By B2 being WR we meanthat D, is WR. The assumptionJ = | implies
that minimization refers to the cost function 7(xo,u) := ||Cxo + Du||3 (see
Section10.2). This couldeasilyberelaxedto obtainamoregeneraH? problem.)

In the H? problem we wish to find a“controller” Q thatminimizesthe norm

||ﬁ@+ﬁ2|ngtron CHBW,Y)) (10.44)
whereD; (s) = C(s— A) 1B, (seeFigure10.1;thisis ageneralizatiorof thetradi-
tional H? problem,by Remark10.4.6). But ||E|l 2 = SURwfw<1 [EW0d0l|2

strong
for ary E € Hg; indeed, the Laplacetransformis an isometric isomorphism
of B(W,L%(Ry;Y)) onto HZ;ondCT: B(W,Y)), by Lemma F.3.4(d). (Here
Ewpdg := f‘l]ﬁwo.) Thus, an equivalentdefinition for the H2 problemasfind-
ing for an arbitrarywg € W a “stabilizing” control (seethe proofs of Theorem



10.4.2andPropositionl0.4.3for explanationsk.t.

Tz (Wo, ) 1= %1 1D0+BawolZacry) (= DU+ CBawo|3if B2 € BW, H))
(10.45)
is minimized. Thus,we are minimizing the enegy of the impulseresponsdthe
outputcorrespondingo “secondinputwgdy”, wheredg is theDiracdeltafunction)
of thesystem.
Thisimpliesthattheassumption

D2 € HZong i B(W,Y)) for some 0> 0 (10.46)

is necessarybecauseDd € H2 for all G e £[L2(Ry;U)], wherew > 9 is s.t.
D e Hg, (andwhered is s.t. the controlsare requiredto be 9-stable),it follows
thatwe musthave Dowg € H2, for all wy € W).

Therefore, [ D Dy | hasa realizationwith a boundedB; (see (6.213),
althoughone is usually more interestedin the original system,where B, may
be unbounded.Usually onealsorequiresthe controllaw Q : wp +— u to be of a
specificform (e.qg.,a statefeedbackcontroller).

Due to the above, we startwith the caseB; € B(W,H) (which implies that
(10.46)holds).As explainedabove, atleastwith suchsystemave endup with the
minimization problemof Section10.2 exceptthattheinitial statesarerestricted
to B,[W]; in particular:

Theorem 10.4.2(U*: LQR = H2) AssumehatB, € B(W,H) andthattheris
a minimizingWRstatefeedbak operator K over U.

ThenK solvestheH? problem(strictly if K is strictly minimizing),i.e., it leads
to theminimizationof the cost(10.45),for eadh wp € W; seeFigure 10.2.

Thus,in this casethe statefeedbackandfull informationH? problemshave a
commonsolution,namelythe minimizing K. SeeSection10.2for sufficientand
necessargonditionsfor the existenceof K.

Assumefor a while that alsoB is bounded. Then a sufficient condition for
the existenceof K is thatZ is positively J-coercve (seeSection10.3)and” U} -
stabilizable(i.e., U (xo) # O for all xo € H) if, e.9., U} = Uout O U; = Uexp.

Moreover, thenK is necessarilyJLR andthe optimal controllerQ becomes
themapQ = K+Bz : W — LZ(R+;U) (sinceCBowg = CBowp + DK (5 By; note
that@ zlfo\z whereF s, € TIC, (€ TIC if U = Uep) is theinverseLaplace
transformof @ asa Hg, function,whereas is theinverseLaplacetransformof
Q € BW,L2(R;U)) (when,e.g., U = Uyt OF U = Ueyp)).

Proof of Theorem 10.4.2: By definition, the control u := K Bowg
minimizesthe cost||CB,wo + Dul|3 over u € U (Bawo) (Whichin caset; =
Uexp meanghecontrolsu e L2(R+; U) thatmale x := ABywp+Btu (andhence
y := CBywp + Du) stable).(If this minimizationis strictfor all Xo € H in place
of Bowp, thenit is strictfor a particularwg € W.)

N.B. If U} = Uep, thenK is an exponentially stabilizing statefeedback
operator(andit minimizesthe H2 normover all suchoperatorsaswell asover
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Figure10.2: The H? statefeedbackproblem

all u € Uexp(Bowo), for eachwy € W). m

In classicalH? problems,onehas ¥ = Uexp (aNddimMU x H xY < ), and
oneassumethattheoriginal system is exponentiallystabilizableandpositively
J-coercve, sothatthereis aunique(boundedminimizing statefeedbacloperator
Thus,thenTheoreml10.4.2becomespplicable.

Next we droptheassumptiorthatB, is boundedandassumeinsteadthatthe
cost-minimizingstatefeedbackoperatorK is bounded. We againshowv that K
alsosolvesthe H? problem(assuminghat 71 = Uexp andthatthetwo necessary
“Lstmng assumptionsold):

Proposition 10.4.3(Uep: LQR = H?) Assumehat U} = Uep. Assumehat
Tho,1)ABaWo € L2([0,1);H) andryg 1)CwABaWo € L2([0,2);Y) for all wo € W (this
is necessaryor the existenceof admissiblecontrols for ead wg € W).
Assumalsothatthere is a boundedminimizingstatefeedba& opemtor K for
2.
ThenK solvesthe H? problem(strictly if K is strictly minimizing);i.e., the
minimumof | DU+ DaWo|[42(c+vy Over Uep-stabilizingcontols u is equalto

Do2Wollzc+v) = |Ccs BaWoll 2R, v) = [[(Cos)L sAc Bawoll 2 R+'Y) (10.47)

Theabore assumptionsn B, holdiff (-—A) !B, € Hstmng(C )) and
D, € Hairond Cih; B(W,Y)) for somew € R, by Lemma6.8.1(a)&(d1).

Here Uep-stabilizing controlsmeansuchu € L?(R;;U) thatthe stateof =
with “initial stateBowo” is in L2, SinceBtu € L2, the conditionTyg 1)ABawo €
L2([0,1); H) is necessaryit wasshavn above that g 1)CwABawWo € L2([0,1);Y)
(and D2 = 0) is also necessary Thus, the assumptionst the beginning of the
propositiondo not reducegenerality

Note that we cannotrequirethat x € C unlessAB,wy € C(Ry;H) for all
Wo €W (e.g.,B; is bounded)sinceBtu € ¢ (foranyue L2 (R, ;U)); see(lO 50).

Proof of Proposition 10.4.3: 1° 5: SinceK is boundedit extends to

A|B B A|B

Zot'=| C|D D, | € WPLSUxW,H,Y xU) with generators | C | D
K| F F K|O

(10.48)

by Lemma6.3.16(c).It follows from that [¥ ] is aboundedJLR exponentially
stabilizing statefeedbackoperatorfor , by Lemma6.6.11(alternatvely, we



canusethe statefeedbackoperator[9 }] for Zex). The correspondinglosed-
loop systemis givenby

_ A ‘ By B2 A+BsK ‘ BM By, +B;
29:=| Cy | Dy Do | =| C+DsK | DM DsF,+D, | (10.49)
Ks | Fy  Fo2 MK M-I MIF,

(use(6.133)with M = [ MF2] or (6.125)with | — LD = [§ 2]; two left

columnsof Eo areexactly Z s, the closed-loopsystemof Z correspondingo
K).

2° We haveA - Bowo, (Cs)wAcs Bowo € L2: Letwp € W bearbitrary Since
K = KA, we have

A BaWo = AByWo + Bis TKAB, Ug € L2([0,1); H) (10.50)

sinceABawp € L?([0,1);H) andK € B(H,U). By Lemma6.8.1(a),it follows
that A Bowo € L2(R4;U), (sincewy,, < 0). Analogously

DisaWo = Dy Fowp + Dowo = Dis K (- — A) ~1Bowp + Dowo € H2(C:Y) (10.51)

for somew > 0, henceDs2wp € H2(CT;Y) (i.e., (Cs )wAcs Bowg € LA(R;Y)),
by Lemma6.8.1(d1).

3° Uep-stabilizingcontrols u: Letwg € W. Assumethatu € L2(R;;U) is
Uexp-Stabilizing by which we meanthatx € L2, where

X := ABaWp + Btu = A Bowp + By T(Xu — KBawo) (10.52)

(we usedherethefactsthatAs = A+BsTK andBs = BX~1). By assumption,
A Bawo € L2, henceBsTus € L, whereus = Xu— KBawo = u—Kx € L2,
Then(recallthatF,(s) = K(s— A) 1B, = K(s)Bp)
§:= Dawo + DU = Dpwo + Dy KBawo — Dy KBowo + Dis X0 = Dispwo + Des Ues.-
(10.53)
4° Minimumat u = 0: Letwp € W bearbitrary andsetz:= ]ﬁogwo, sothat

2= (Cy)L,sAs Bowo, by Lemma6.8.1(d1).For eachn € N, choosd, € (0,1/n)
. th
S..Xh :=A5Bwp € H. Then

Zn = (Cis)L sA A Bowg = CoXp € X (N€N). (10.54)

But z, = T 11, Tz, hencez, — zin L2(R4;Y) asn — o, by CorollaryB.3.8.
Consequently

(z. Do) 2 = lim (Coxn, DsUs) 2 =0 (U € L?). (10.55)
Thus,if uandu areasin 3°, then(]ﬁozwo,ﬁ;u@)Hz = 0, sothat
ID2wo + DTl|Z, = [[Des2wol|Zz + | Des oo Ze- (10.56)

Consequentlythe minimumis achieved at us = 0. This minimumis strict iff



D is injective (on Uexp-stabilizingcontrolsu, e.g.,on L2(Ry;U)). O

WhenZ is very regular (cf. Theorem9.2.3)andD*C = 0 (or C is bounded),
theassumptionsf the propositionaresatisfied:

Corollary 10.4.4(H2 problemwhen ABu € L2) Assume that U = Uexp,
ABywo € L?([0,1);H) andC,ABwp € L2([0,1);Y) for all wy € W. Assumalso
that Hypothesi®.2.1holds,D*C € B(H,U), andD*D > 0.

Thenthere is a minimizingcontrol for ead Xp € H iff X is optimizableand D
is I-coerive (seeProposition10.3.2).Assumehatthis is thecase

Thenthere is a boundedstrictly minimizing state feedbak opermator K for
> (correspondingto the unigue exponentially stabilizing solution (?,D*D,K)
of the B:,-CARE), and K solvesthe H2 problem strictly; i.e., the minimum
of ||]IA))U+ ]IA))2W0||H2(C+;Y) over Uexp-stabilizing controls u is strict and equal to

[ Des2WollHz(c+y)-

In particular the problemcanbe solvedin the paraboliccase(whenHypothe-
sis9.5.1holds,y< 1/4,3 < —1/2,D*D > 0 andD*C € B(H,U)), by Theorem
9.2.3.

Alternatively, whenB andB; areboundedD*C € B(H,U), D*D > 0 andD
is J-coercve, all assumption®f the corollary are satisfied. In eithercase,also
the statebecomescontinuous. Hypothesis9.2.1is alsosatisfiedin the casethat
ABu € L?([0,1);H) andCyABU € L?(]0,1);Y) for all up € U, i.e., thatalsoB
satisfiegheassumptionposedon By.

Proof of Corollary 10.4.4: By Corollary10.2.9 thereis aminimizingcon-
trol for eachxg € H iff Z is optimizableandD is (necessarilypositively, since
| > 0) I-coercive,andsucha controlis necessarilynique,with (?,D*D,K)
being the unique exponentially stabilizing solution of the Bj,-CARE. Since
D*C € B(H,U), theoperatorK is bounded.Therestfollows from Proposition
10.4.3. O

Remark 10.4.5(Xg # 0) As one observesrom the proofs, the (state feedbak)
contoller [Qo Q] : (X0, W) — U := KesXo + Ky Bowo of Theoem10.4.2,Propo-
sition 10.4.3and Corollary 10.4.4actuallyminimizeghenorm

|Cxo+ D0+ Dawollzc+y) (10.57)
for anyxo € H (notmeteely for X = 0 asin the H? problem).Indeed the “cost”
IC5%o + s 05 + Disawol|2 = [|Co%o + Disawol|2 + B G312, (10.58)

inducedby K corresponddo the control law [Qo Q}, wheee 0 is the external
input. For us € L2(R4;U) Wehave||]1§5@||a2 = (U3, S0s) (whee S=D*Dif =
is regular enoughithisis thecasein Corollary 10.4.4),by (9.162);if D is stable
(e.0., U = Uep), thenthisis thecasefor all us € L2(R;;U).

Thus,not only is there a unique J2-minimizingu for ead wp (and xg = 0),
there is a unique J2-minimizingu for ead wp and X, and this u is of state



feedbak form, namelygeneated by the (7-)minimizing K (in particular, the

(optimal) functionfrom stateto u is static).
AsnotedbelowProposition10.4.3,conditionsABywo, Cy ABoWo € Lﬁ,c (wo €

W) are necessaryor the existenceof a solutionover Ueyp. 0

Remark 10.4.6(Traditional H? problem) Traditionally, in the (finite-
dimensionalH? problemoneminimizeghe (squaed)norm

Doz | = Z)Hﬁozwalﬁz, (10.59)
ge

whee {Wq}qeq is an orthonormalbasefor W (this form is definedas the H2
normof thetraceof 11562]13)@2, seep. 265 of [IOW] for the equivalenceof the two
definitions).

Since'weminimize||]IA)>02Wo||E|2 for eadhwp € W, our solutionafortiori solves
the traditional H? problemprovided that it is solvable i.e., that the norm can
be madefinite (e.g., whendimW < oo and the conditionsof of Theoem10.4.2,
Proposition10.4.3or Corollary 10.4.4are satisfied).Thus,whendimW = oo, we
haveto strengtherour optimizabilityassumptiortheincludethe conditionthat

%HﬁquJrﬁﬁqllﬁz < (10.60)
ge

for somefunctionsug € U (Bawg) (g € Q) to guaranteea solutionalso for the
traditional H2 problem(if B is unboundedye mustextend U} to By[{wq}] asin
3° of the proof of Proposition10.4.3). 0

We have solved above the statefeedbackand full information H? problems
(they have a commonsolution). In classicalliterature, one usually also solves
other specialH? problemsand thenthe generalH? (dynamicpartial feedback)
controlproblemfor a given(evenmoreextended)system

A ‘ B B

C| D D | €eWPLSUxW,H,YxY2) withgenerators| C |D 0

Co | D21 D22 C2| 0 D22
(10.61)

We end this sectionby a brief overvien of the generalH? problem. One

d
usually posesfor [é 11]%2} the sameassumptionsson Z (thus guaranteeing

the solutionfor the LQR problemfor thatsystem).

It seemghatit is straightforward to extendthe classicalresultsfor infinite-
dimensionakystemdy usingthe separationmesultof Proposition10.4.3(andits
proof). (An alternatve approachwould beto formulatethe problemsin 1/0 map
form andsolve themasin Section12.3.)

Indeed,since]I/))(; is (I, D*D)-inner(andit canbemadeinnerby replacingk by
[ K| F" Jwith K" := XK, F':=1—X, X := (D*D)¥/?), thecostfor a (dynamic
partialfeedbackyontrollerQgs : wo — U is equalto 2 = || Deswol|3+ || Qs Wol|3-
Thus, the solutionof the generalH? problemis obtainedby finding the optimal



Qu, i.e., by solvingthe H? outputestimationproblem(OEP)for

A| B B A |B B

K| X -F | €eWPLSUxW,H,UxY) withgenerators| —K || 0

Co | Dy Do C, | 0 D2
(10.62)

Since we cannotuse the theory of Section10.2 directly for the H> OEP
(unlike for the H? full information problem(FIP)), we leave it to the interested
readercompletethe detailsundersuitableregularity assumptionssuchasthose
of Lemma6.8.5for p = 2 = g or thoseof Hypothesis9.5.7(3.) (no special
assumptionseemto be neededn the discrete-timecase).See,e.g.,pp. 316 and
395-3960f [ZDG], Chapte of [IOW] or Chapte/Ill of [DGKF] for detailsfor
finite-dimensionabkystems.

Notes

See,e.g.,[AM90], [AM79], [KS] or [GL, p. 207] for the motivationandthe
historyof theH? problemand[IOW] or [ZDG] for completesolutionsin thefinite-
dimensionatase.Thefirst state-spaceolutionseemgo begivenin [DGKF] and
avery generabnein [[OW].

The classicalassumptiondor the state feedbackand full information H?
problemsare positive J-coercvity, exponentialstabilizability and D*D > 0, so
that correspondingesults are containedCorollary 10.4.4 (since B and C are
boundedor finite-dimensionakystems).

Naturally, by taking causakldjointswe obtaina solutionof the dualproblems,
the H2 output injection and full control problems(see[GL]). Their stochastic
counterparts calledthe Kalmanfilter problem(seee.qg.,[GL] or [LR]).

Also the generalH? problem has a stochasticcounterpart,the so called
Linear Quadmatic GaussianLQG) problem;it hasbeenstudiedalsofor infinite-
dimensionakystemssee[CP78].

Accordingto [Helton85],p. 17, G. Zamesndicatedin thelate 1970show the
H* problemis usually physically bettermotivatedthan the H2 problem. Since
thattime theformerproblem(whosesolutionsaremorecomplicatedhasbecome
muchmorepopularthanthelatterone.



10.5 Reallemmas

Rody’s Lemmaof Innovation Prevention:
Unlesstheresultsare knownin advancefundingagencieswill reject
theproposal.

In this section,we presenthe BoundedRealLemmay(in two forms) andthe
Strict Positve RealLemma,which allow oneto usethe Riccatiequatiorto verify
whether||D||tic <yorRe(D-,-) > 0, respectiely.

We give our resultsfor “L -type” systemsseeTheoreml0.6.5(e)or alterna-
tive regularity assumptionskFor generalkegular systemsonly the sufficiency part
holds (unlesswe acceptlAREs in placeof CARES). SeeTheoremsl5.4.1and
15.4.3and Proposition15.4.2for the discrete-timecounterpartof theseresults
(andto getanoverview of this sectionwithout any regularity considerations).

Our theoremsdo not needary verification of stability/stabilizability; this
is basedon the fact that we may apply the theory of the next sectionin case
“C*JC <07, asoneobsenesfrom the proofs.

Thus, undersufiicient regularity, a uniform Riccatiinequality hasa solution
iff 2 is exponentiallystableand ||D|| < v

Theorem 10.5.1(GeneralizedStrict BoundedReal Lemma) Assumethat y >
0.

(@) If (1.) or (2.) or (5.) of Hypothesi®.2.2holds,or if C is boundedand at
leastoneof thefollowing conditionsholds:

1. dimY < oo;

2. o1)AB € L1([0,1); B(U,H));

3. Tyo,1)ABU € L1([0,1);H) for all up € U andD*C = 0;

4.D*C =0and(D - D)up € HZ,,n{CT; B(U,Y)) for all ug € U;
thenthefollowing are equivalent:

(i) 2 is exponentiallystableand||D|| <;

(i) Theeis P < 0s.t.P[H] ¢ Dom(B},) and

A*?+PA-C*C (B} P-D*C)*
B, P —D*C y’I —D*D

]>>O on Dom(A) x U.

(10.63)
(iii) Theris P < 0s.t.S:=y?| —D*D+s-lims_, . B%,P(s—A) 1B exists
and
AP+ PA—C'C (Bi,P—D*C)*
B: P —D*C S

} >0 on Dom(A) xU.
(10.64)

(b) If THAB € LY([0,t); B(U,H)), TioCwA € LY([0,t);B(H,Y)), and
Tio)CwAB € L1([0,1); B(U,Y)) for somet > 0, then(i) < (iii) <=(ii).



(cl) If D is ULR,thenwe have(i)<=(iii) <(ii).

(c2) Any solutionof (i), (iii), (ii") or (iii") is strictly negative (? < 0). Under
the assumption®f (a), there is an exponentiallystabilizing solution (if (i)
holds).

(d) If D is SR, thenwe have(ii) <(ii") = (iii)) < (iii’), whee

(i") ||D|| <y, andtheris ? < 0s.t.P[H] ¢ Dom(B;,) and

(B%: P —D*C)*(y’| —D*D) (B}, ? — D*C) < A*P+ PA—C*C.
(10.65)
(iii") Theeis P <O0s.t.

= (y*—D*D)+ s-lim B, 7 (a —A)B>0 and (10.66)
(B;,?—D*C)*S}(B;,? - D*C) < AP+ PA-C*C.  (10.67)

We alwaysrequirethat ? € B(H). As in Definition 9.1.5,conditions(iii) and
(iii") includethe requirementghat the termsare defined(in particular that the
limits corverge strongly;asin Remark9.1.6,it follows that ?[Hg] C Dom(By,)).
If B is boundedthenB;, = B* andDom(By,) = H, sothatthen((a) appliesand)
(i) becomesssentiallysimpletr

Recallthat“C*JC< 0" meansthat(xo,C*JC><0)<H1’(H1)*> <Oforallxg e Hy :=
Dom(A). Thephrase‘on Dom(A) x U” refersto theinnerproduct([3it], [i2]) =
<X1’X2>H1,Hjl +(ug, up), sinceH is thepivot spaceandH; := Dom(A).

Note that (10.65) (resp.(10.66)&(10.67))is an “inequality form” of the B},
CARE (resp.of the (stronglyregular) CARE). Hypothesis9.5.1is strongerthan
theassumptiorof (b), andD is ULR wheneertheassumptionsf (a) or (b) hold.

SeeTheorem10.6.5(e)(with Z5ug and Jayg in placeof X andJ, i.e., with
substitutionsC = [ﬂ D= [E], J = diag(—1,Y% ¢)), for alternatie regularity
assumptions.

Notethatwe could alsohave the reallemmasof this sectionbasedon IAREs
insteadof By,-CAREs or CAREs, to make them look like their discrete-time
counterparts.

If onereplaces] by —J in the proof, the operators? < 0 andS>> 0 are
replacedby —? > 0 andS < 0, sothatthe condition(ii) becomes||D|| <y, and
thereis ? > 0s.t. P[H] C Dom(B* ) and

— (B, P+ D*C)* (Y2l — ~1(B}P+D*C) < A*P+PA+C*C"; (10.68)

(specialcase®f) this conditionis commonin theliterature,but we have madethe
choicethatleadsto a positive Popos operatorandto the settingof Section10.6.
Obviously, analogoushangesanbe madeto the otherconditions(multiply the
inequalitiesby —1 andreplaceP by —P).
Proof of Theorem 10.5.1: 1° Define Jayg := [_0' yéﬂ, Caug = [§].
. . [A |B
ID)aLg — I:]]lj)] andZaug: [ng Daugi| .



Then | Dl|nic <Y iff DjgdaugPayy = Y2 —D*D > 0. Moreover, Zqyg is
exponentiallystableff X is, by Lemma6.1.10(a1)andC;ug]au9Caug: -CC<
0 (and D}yglaudCaug = —D*C and DjygdaudPaug = Y| — D*D wheneer D is
regular). Consequentlythe theoremfollows directly from Theorem10.6.5,by
2°.

2° Theassumption®f (a) imply thoseof (a) or (e) of Theoem 10.6.5for
Zaug Obviously, (1.) or (2.) or (5.) of Hypothesis9.2.2for X implies thatfor
Zaug

AssumethenthatC is bounded.Casel. wasgivenin Theorem10.6.5(e).
Case<2., 3., and4. (with (i)) imply (4.), (3.) and(6.) of Hypothesis9.2.2,
respectiely, becausdi) impliesthat||D|| < y (hencethaty? — D*D > 0), by
Lemma6.3.2(e)(thus,we needTheoreml10.6.5(e)n cased.). O

Note that the spectralfactorizationy?l — D*D = X*SX is equialentto the
normalizedfactorizationD = NM~%, MM - NxN =S B(U) 5 S>> 0,
M:=X"1e GTICU),N:=DM € TIC(U,Y).

When one wishesto find an estimatefor D without requiring ~ to be
exponentiallystable,one shouldusethe propositionbelow insteadof the above
theorem(andoneshouldknow, a priori, thatC is stable).

Proposition 10.5.2(Nonexp. ||D||ric <Y) AssumehatD is SRandy > 0.

If (ii) or (iii) holds,thenD € TIC and||D|| <.

Conversely if = € SOS ||D|| <y, and Zaug Jaug Satisfy(2.) (resp.(6.)) of
Hypothesisl0.6.1,then(iii) (resp.(iii) and(ii)) holds(alsowith “ =" in placeof
" >").

Here we havereferredto thefollowing conditions:

(i) [|D|| <y, andthereis P < 0s.t.P[H] ¢ Dom(By,) and

AP+ PA—C'C (B;P—D*C)*

(iii) Theris P < 0s.t.S:=y?| —D*D +s-lims ;1 B}, P(s— A) B> 0, and

AP+ PA—C*C (B},P—D*C)*
[ BLP— D*C S >0 on Dom(A) xU. (10.70)
Moreover, we have (ii) < (ii") = (iii) <(iii’), wheee (ii") and (iii’) are from
Theoem10.5.1(d)with “ <" in placeof “ «”.
If B is stronglystable thenwecanreplace* P <0’ by P = P* everywheein
this proposition.

(Seethe proof of Theorem10.5.1for Z5yg andJaug Note thatherewe may
have P = 0 (take Z = 0) whereasP < 0 in thetheoremsof this section.)

Thus,if C is stableD is SR,andary of (1.)—(10.)(resp.(1.)—(8.)) of Lemma
10.6.2(c)(with D*JC — D*C and D*JD — y? — D*D) holds, then Hypothesis
10.6.1(2.)(resp.(6.)) holds,andwe canestimate|D|| asfollows:

Take somey > 0, andthenverify, whetherthe Riccatiinequalitycondition(iii)
(resp.(ii)) hasary solutions.If so,then||D|| <Yy, otherwise||D|| > y. Thenvary



y andfind anestimatefor ||D|| by, e.g.,a binary search.(Also the corresponding
Riccatiequation(thatis, “=" in placeof “>") canbeused.)

Proof of Proposition 10.5.2: The proof of Theorem10.5.1applieshere
too, with Proposition10.6.4in placeof Theoreml10.6.5.

(If B' is strongly stable,then, in the proof of Proposition10.6.4(d),we
have y?I — DD > —B*PB' — 0, whichimpliesthatD € TIC and||D|| <.
Thereforewe do not have to assumeD to be stablefor thelastclaim unlike in
Proposition10.6.4(d).)

Remark: As notedin the proof of Proposition10.6.4(b),in the corverse
claim we canchoose? < 0 sothatit is P-SOS-ic.-stabilizing(alsowith “="
in placeof “>" in (iii) (resp.in (iii) and(ii)). O

In classicalliterature,an operatorD € TIC(U) is called strictly positive if
Re(D-,-) > 0, i.e.,if D+D* > 0 (onecanshaw thata(D) C C* is anecessary
condition;it is sufficientfor normalD). An equi/alentconditionisthatﬁ+ﬁ* >
el in LgongiR; B(U)) for somee > 0. We usethis definitionin the following
generalizeaxtensionof the classicalStrictly Positve RealLemma:

Theorem 10.5.3(GeneralizedStrictly Positive (Real) Lemma)

(@) If CisboundedanddimY < oo, or if (1.) or (2.) or (5.) of Hypothesi®.2.2
holds,thenthefollowing are equivalent:

() Z is exponentiallystableand D is strictly positive;
(i) Theeis P < 0s.t.P[H] ¢ Dom(B},) and

[A*T+ PA (B,P+C)*

B, P+C D+ D* } >0 on Dom(A) x U. (10.71)

(iii) Theeis P < 0s.t.S:= D+ D* +s-lims, 10 B, P(s— A) "B exists
and

[A*EP+ PA (B;,P+C)*

B, P+C S } >0 on Dom(A) xU. (10.72)

(b) If moyAB € L1([0,t); B(U,H)), T CwA € LY([0,t);B(H,Y)), and
o CwAB € L1([0,t); B(U,Y)) for somet > 0, then(i) < (iii) <(ii).

(c1) If D is ULR,thenwe have(i)<=(iii) <(ii).

(c2) Any solutionof (i), (iii), (ii") or (iii") is strictly negative (? < 0). Under
the assumption®f (a), there is an exponentiallystabilizing solution (if (i)
holds).

(d) If D is SR thenwe have(ii) < (ii") = (iii) < (i), whee

(i") D+D* > 0, andtheris ? < 0s.t.2[H] ¢ Dom(B,) and
(B, ?+C)*(D+D*) (B, P+C) < A*P+ PA (10.73)



(ii") Thereis?<O0s.t.
S:=D+ D*+asji+m B:P(a—A) 1B>0, and (10.74)

(B, P+C)*S{(B;P+C) < AP+ PA, (10.75)
O

(Theproofof Theoreml0.5.1appliesmutatismutandiswith Jaug:= [¢ §] (so
that D}, gJaugPayy = D+ D*). Also the commentsbelov Theorem10.5.1apply,
mutatismutandis.)

We mayalsousea binarysearcHor finding anestimateor supremal > 0 s.t.
Re(D-,-) > y?I; thena positive real -variantof Proposition10.5.2applies(sucha
resultholdswith the sameproof, mutatismutandis).

We can againrewrite the conditionsfor P — —? > 0, S— —S<« 0 and
J— —J; e.g.,(ii") becomesD+D* > 0,andthereis ? > 0s.t.P[H] C Dom(B},)
and

—(B,?—-C)*(D+D*) "B, P -C) < A*P+ PA. (10.76)

Notesfor Sections10.5and 10.6

In Section8 of [S98b],it wasshawvn thatif “(i)” holdsandthe corresponding
spectralfactoris sufficiently regular, then“(iii)” holds;this appliesto both “real
lemmas”.

The results of this section generalizemost analogousresults, including
Theorem3.7.1andProblem3.25 of [GL] (finite-dimensionakase),Section4.5
of [Oostween](the strongly stabecasewith bounded andC), andRemark3.14
of [Keu] (exponentiallystablePritchard—Salamogystems)all theserequireone
to assumea priori, thatZ is stronglystable andto checkwhethertheasolutionis
stabilizing. Oneobtainssuchlemmasby usingTheoreml0.6.3(whoseconditions
(iv) and(v) arepopularin theliterature)insteadof Theorem10.6.5in our proofs.

An exceptionto thisis the Strict BoundedRealLemmagivenin Section7.1 of
[IOW], which equalsTheorem10.5.1(a)restrictedto finite-dimensionakystems.
Analogously Theorem10.6.5is the generalizatiorof Theorems4.6.1-4.6.20f
[IOW]. In both casesthe proofsof [IOW] cannotbe extended,because? < 0
doesnot imply that ? <« 0 when dimH = o. The strengthof our results
reflectthe power of the integral notation([%%} andthe IARE insteadof [%%}
andthe CARE), which allows one to obsene connectionsot visible from the
generatomnotation. Similar remarksapplyto correspondingliscrete-timeresults
(Sectionl5.4).

Propositions10.5.2 and 10.6.4 might be new even for finite-dimensional
systems. SeeChapter5 for noteson (i)—(ii") of Theorem10.6.3(a);also the
necessityof the existenceof a solutionto the CARE is well known [WW] [S97D].



10.6 Positive Popov operators (0 < D*JD = X*X)

Positive, adj.:
Mistakenat thetop of one's voice

— AmbroseBierce(1842-1914), The Devil’ s Dictionary"

In this section,we presennecessargndsufficient conditionsfor the uniform
positivity of the Popar operator(i.e., for D* JD > €l for somee > 0; equivalently,
D*JD > el in LgondiR; B(U))), in termsof [regular] spectrafactorizationsand
Riccati equationsor Riccati inequalities. In the finite-dimensionalketting, the
connectiorbetweertheseconceptss rathersimple;thesameholdsin theinfinite-
dimensionakettingwith boundednput andoutputoperators.Therefore to have
an nice overview of the contentsof this section,the readermight first wish to
readour correspondingliscrete-timeaesults,namelyLemmal5.3.1,Proposition
15.3.2andTheorem15.3.3.

Whenworking with stablefinite-dimensionabr Pritchard—Salamosystems,
or with stableWPLSshaving D € MTIC, the uniform positvity of the Popw
operator(D*JD > 0) impliesthatit hasa ULR spectraffactorization(lby Lemma
10.6.2(b)). For general(or even for ULR) stableWPLSs, this is not the case,
by Proposition9.13.1(c1),andthereforewe mustsometimegeplacethe CARE
theoryby the IARE theory

To overcomethis difficulty, we often assumethat D € MTIC or that X is
otherwisesufficiently regular; that is, we assumesomeof the six alternatve
hypothesebelow:

Hypothesis10.6.1(D admits positiveregular SpF) We have D € WRN TIC,
andif someX € GTIC(U) satisfiesX*X = D*JD, then

(1) XeWRandX € GB(U).
(2.)X e SRandX € GB(U).
(3.) X e UR.

(4.) X € ULR.

(5.) X € ULR andX*X = D*JD.

(6.) the B},-CAREhasa stableP-1/O-stabilizingsolution. Moreover, = € SOS
andD € ULR.

Note that for ary D € TIC(U,Y), we have X*X = D*JD for someX €
GTIC(V) iff D*JD > 0, by Lemma6.4.7(a). Conditions(1.)—(5.) of the above
hypothesigust requirethatD andX (if arny) areregular (by Lemma6.4.5(a),all
possibleX's differ by anunitary constanthencethey areequallyregular).

By Theoreml0.6.3(f1)&(i)&(iii)&(d), condition(1.) impliesfor ary > € SOS
that the CARE hasa unique stableP-1/0O-stabilizingsolution 2 > 0; condition
(6.) just saysthatthis solutionmustalsosolve the B,-CARE, i.e., that P[H] C
Dom(B,).

Next we list sufficient conditionsfor the above hypotheseqsee Standing
Hypothesisl0.6.6for 4..):



Lemma 10.6.2
(al) We have(6.)=(5.)=(4.)=(3.)=(2.)=(1.) in Hypothesisl0.6.1.
(a2)If dimU < oo, then(1.)—(3.)of Hypothesisl0.6.1are equivalent.
(b) If D € 4., thenD satisfieq1.)—(4.) of Hypothesis10.6.1.

(c) Assuméhat = € SOSandat leastoneof conditions(1.)—(10.)belowholds.
ThenD satisfiesHypothesisl0.6.1(1.)—(5.).

(1.) Bisboundedi.e., B € B(U,H));

(2.) (Analytic A) Hypothese®.5.1and9.5.7hold.

(3)C=[%] € B(H,Y1x Y2), dimY1 < 0, andB is stable;

(4.) AB € LY(R,;B(U,H)) andC € B(H,Y);

(5.) AB € LY(]0,1];B(U,H)),C € B(H,Y) andA is exponentiallystable;
(6.) Cis boundedD*JC =0, andD € B(U,Y) + B(U,LY(Ry;Y))*;
(7.)D € BU,Y)+B(U,L*(R;Y))*;

(8.) Hypothesi®.2.1(or 9.2.2)is satisfiedandD*JD > 0;

(9.)D € MTICL;

(10.) (Analytic A) Hypothesi®.5.1holdsand A is exponentiallystable

(d) Assumehat 2 is stableandthat at leastone of conditions(1.)—(8.) above
holds. ThenZ satisfieHypothesisl0.6.1(1.)—(6.).

Assumptiong1.)—(7.) of (c) areroughly the stableversionsof (1.)—(7.) of
Hypothesi®.2.2.

Proof: (al) Trivially, (5.)=(4.)=(3.), and (2.)=(1.) By Theorem
10.6.3(b)(i)&(iii), (6.) implies (5.). By Proposition6.3.1(b1),(3.) implies
(2.).

(a2)Use(al)andLemma6.3.2(al)&(a2).

(b) Thisfollows from StandingHypothesisl0.6.6.

(c) 1° Cases(9.) and (10.): We have D € MTICLl, by Lemma9.5.2.
Thereforethis follows from Theorem8.4.9(andX € MTICL' UHPR).

2° Caseq1.)—(8.)& (d): (N.B. We do not know whetherHypothesi.2.2
is sufficientwithouttheassumptior*JD >> 0. As shavn belov, D*JD > 0=
D*JD > O underary of (1.)—(8.).) R

By Proposition9.2.4,(3.) implies(7.), i.e.,thatD € H§tr0n9(0+; B(U,Y)).
By Lemma6.8.3(a),(5.) implies(4.). Thereforeary of (1.)—(8.) impliesthat
Hypothesis9.2.1holds(seeHypothesi.2.2andTheorenmd.2.3).

By Theorem6.9.1(d2) we have D € Hgtmngm H®(C*;B(U,Y)) in (1.); the
sameholdsin (7.), hencen (3.) too. In casg(2.), wehaveD € UHPRC SHPR
by Lemma9.6.3. In caseg4.), (5.) and(6.), we have D € SMTIC-' ¢ SHPR
by Theorem2.6.4(h1).

Assumethat D*JD > O, i.e., that D*JD > €l for somee > 0. Then
D*JD > ¢l, by Lemma6.3.5(caseq1.), (3.) and(7.)) or by Lemma6.3.6(b)
(caseg2.),(4.),(5.) and(6.)) or by assumptiorfcase(8.)). By Lemma6.4.7(a),
we have D*JD = X*X for someX € GTIC(U), Thereforethereis aJ-critical,



strictly minimizing, stable, SOS-stabilizingstatefeedbackpair | K | F | for
2 over Uy, by Corollary 9.9.11(Crit1SOS)&(CritdSOSpndF = | — X, by
(9.140).

Thus,we canapply Theoren®.2.9(v)&(iii) to obtainthatthe B},-CARE has

asolution(?, S, [ K |F ])with S=D*JD>0,X:=1-FeULRandX =1.

By Theoren®.9.1(al1)&(f2) we have X = EX for someE € GB(U) (hencefor
E = X~1). ConsequenthyX € GTIC(U).

It foIIowsthaiIgl = DX ! isstablehenceN*JN =S, by Theoren®.9.1(g2),
sothatD*JD = X*SX. By Lemma6.4.5(a),it followsthatS= (E*)"IE~! =
X*X. Thus,D*JID = S= X*X, asrequired.

3° RemarksTheassumptiorthatC is stableis superfluougfor (c)) in (4.),
(5.),(9.) and(10.) andtheassumptiorthatD) is stableis redundantn (4.), (5.),
(6.),(9.) and(10.).

We notethatX € gMTICLl in caseq4.), (5.), (9.) and(10.) (by 1°), and
X, X! € B+ H®NHE0nd CT:B(U)) in caseq(1.), (3.) and(7.). The latter
claim follows from Theorem4.1.6(j), and from the fact that D hasa stable
realizationwith a boundedB, by Theorem6.9.1(a)&(d2)andCorollary 6.9.7,
sothatwe canobtainX for thatrealizationinsteadof = (notethat(1.)—(5.) of
Hypothesisl0.6.1dependonD andJ only).

(d) Part“if ” from thelastclaim follows from 2° above; and“only if” from
Proposition9.8.11. 0

In fact,thesolutionof theBy,-CAREin Hypothesisl0.6.1(6.)is actuallystable
andP-SOS-rc.-stabilizing andwe have theclassicakquialencebetweemositive
J-coercvity, | -spectrafactorizationandRiccatiequationsn this generalitytoo:

Theorem 10.6.3(D*JD > 0 & SpF< CARE) Assuméhat is SOSandULR.

(a) If Hypothesisl0.6.1(6.) holdsand X is strongly stable then (i)—(iv’) are
equivalentland(v) if Z is exponentiallystable).

(i) D*JID > O;

(") D*JD > 0andD*JD € GB(U);

(i) D*JD = X*SX for someX € GTIC(U) andS>> 0;

(i) D*JID =X*X for someX € GTIC(U);

(i) D*JD =X*Xfor someX € GTIC(U), andD,X € ULR andD*JD =
X*X > 0;

(i) the By-CARE (or CARE or IARE) has a stable P-1/0O-stabilizing
solutionwith S>> 0;

(ii") theBy,-CAREhasa stableP-SOS-«c.-stabilizingwith S>> 0;

(iv) the B},-CARE (or CAREor IARE) has a solutionwith S>> 0 and
M e TIC;

(iv’) theB},-CAREhasa stronglystabilizingsolutionwith S>> 0;

(iv") the B;,-CARE has a stable strongly r.c.-stabilizing solution with
S>0;



(v) the Bj,-CAREhasan exponentiallystabilizingsolutionwith S>> 0.

(b) If Hypothesisl0.6.1(6.)holds,then(i)—(iii’) are equivalent.
(c)Wehave(iii") =(iii) = (ii") < (ii) < (i), and(iv)<=(iv") <=(iv") =(iii") =(0i") =) =().
(c2) If X is stronglystable then(iii’) < (iv’)<(iv”), and(iii) <(iv).

(d) Thesolutionsof the B}, -CAREmentionedn (a)—(b) are uniqueand equal,
andthey solve(ii) (and(ii’) and(ii”) if wereplaceX by S¥2X).

(e) If Z is strongly stable and the elARE has a solution with S > 0, then
D*JD > 0.

(f1) (CARE) Replacé'(6.)” by*“(1.)”, andremore(i’) and(ii") and“ULR”,
and replace“B ,-CARE” by “CARE”, everywhee in this theoem. Then
(a)—(e)still hold.

(f2) (General WPLSs) Remee (i"), (ii”), “ULR” and Hypothesisl0.6.1(6.),

andreplace'Bj,-CARE”by“IARE”, everywheein thistheoem.Then(a)—
(e) still hold.

The propositionprovides us necessarand sufficient conditionsfor (i) (i.e.,
for the positive J-coercvity over Uy, underdifferent stability and regularity
assumptionsSuchconditionsare neededor positive andboundedreal lemmas
and for minimization problems;the readercan find here additional equivalent
conditionsfor thoseresultsundersameor differentassumptions.

Recallthat S:= D*JD for the Bj,-CARE (but not necessarilyfor the CARE
or IARE), andthatary solutionof the Bj,-CARE (andary WR solutionof the
eCARE)is asolutionof theelARE.

In the unstablecase,we have threealternatves for minimization: 1. If X
is regular enough,we may usethe B},-CARE resultsof Section9.2. 2. If
> is stabilizablewith closed-loopsystemZ, asin Hypothesis10.6.1(6.) (or
(1.)), we may combinethe above result and Proposition9.12.4 (cf. Theorem
10.2.14(b1)&(b2)).3. In the generalcase,we have to be satisfiedwith results
suchasTheoreml0.2.11andCorollaries10.2.5(a),10.2.6and10.2.12.

Proof of Theorem 10.6.3: (a) Trivially, (v) implies (iv’); the corverse
(for exponentially stableX) follows from Corollary 6.6.9 (in fact, P is then
exponentiallystableandexponentiallyr.c.-stabilizing). The restfollows from
(b) and(c2).

(b) 1° (i)=(iN&(iii"):  Assume(i), sothatX*X > 0 andtheB;,-CARE has
aP-1/0-stabilizingsolution(?, S,K) s.t.Xk = (X*X) ¥?X € GTIC(U), where
Xk = —Ky(- —A)"IB, X € GTIC(U) NULR, X*X > 0 andX*X = D*JD,
by the hypothesisConsequentlyiii’) holds,by Propositior8.8.11.

SinceXk € ULR, we have X € ULR and henceX € GB(U). From
(9.162),we obtainthat ((X*X)¥2u, (X*X)¥2) = (u, V) for all u,v € L2 (since
D = DXt = DX 1(X*X)¥?), henceX*X = S in particular S>> 0. But
S=D*JD, henceD*JD = X*X > 0, sothat(ii") holds.

2° Therestof theequivalencefollows from (c1).

(c1) Implications “(iii") <(iv")=-(iv’)=-(iv)", “(iii") =(iii)", “(ii") =(ii)",
and“(i") =(i)" aretrivial, and“(ii") =(i")” is obvious. Equivalence’(i) < (ii)”
followsfrom Lemma6.4.7(a),



We obtain“(iii) =(ii)” from Propositior9.8.11(in particular a stableP-M-
stabilizingsolutionsuffices)(andPropositior9.2.7(b)).

Finally, we obtain“(iii’) =(ii")” from Proposition9.2.7(b)andProposition
9.8.11(c) by replacingX by S'/2X.

(c2) Thisfollows from Propositior9.8.11(b).

(d) This follows from the above proofs(especiallyof thatof (c1)).

(e) By (9.160), we have (D'u,JD'u) > —(Blu, PB'U) — 0, ast — -+,
becauseB is stronglystable(by Lemma6.1.13),henceD*JD > 0. (Note that
wheneer S> 0, P < 0, we have (D'u,JD!u) > 0O for all t, sothatD*JD > O if
D is stable.)

(f1) Thisfollows asabove (or from (f2)) (notefrom Proposition10.7.2that
ary solutionof the CARE with S>> 0 is a WR solutionof the IARE andfrom
Propositionl0.7.1thatsuchasolutionis stableif Z is).

(f2) Also thisfollows asabove. O

For aSOS-stabIesystem[%%] with sufficientregularity, condition(ii) below
implies that D*JD > 0, and, corversely D*JD > 0 implies that (ii) holds (by
(b) below). For several applications,suchas the “strict boundedreal lemma”
of Proposition10.5.2, this “almost equialence”is in practiceas good as an
equialence.

Proposition 10.6.4(D*JD > 0 < CARI) Assumethat D is SRand C*JC < 0.
Thenwe have(ii) = (iii) = (i) «=(iv) for thefollowing conditions:

(i) D*JD! > Oforallt > 0.

(i) D*ID > 0, andthereis ? < 0s.t.?[H] c Dom(B;,) and

[A*P + PA+C*IC (BLP+D*IC)*]
B0 1 D*IC pap |20 on Dom(A) xU. (10.77)

(i) Theris P < 0s.t.S:=D*ID +s-lims ;1 B, P(s—A)~1B>> 0, and

A*P + PA+C*IC (BLP+D*JC)*]
B!, ?+D*JC S | >0 on Dom(A) xU. (10.78)

(iv) D € TIC andD*JD > 0.
Moreover, thefollowing hold:

(@) If D € TIC, thenwe have(i)< (iv).

(b) If e SOSD*JD > 0, and(2.) (resp.(6.)) of Hypothesid 0.6.1holds,then
(1), (iii) and(iv) (resp.(i)—(iv)) hold; in fact, we canhaveequalityin (10.81)
(resp.in (10.79)).

(c) We have(ii) < (ii") =(iii) < (iii’) (evenfor afixedP), whee
(i) D*JD > 0, andthereis P < 0s.t. P[H] ¢ Dom(B,) and

(B, P+ D*JC)*(D*ID) (B, P + D*JC) < A*P+ PA+C*JC.
(10.79)



(ii") Theeis? <O0s.t.
§:=D"JD + s-lim B}, P(a — A)~B>0, and (10.80)
(B:,P+D*JC)*'S (B, P+D*JC) < A*P+ PA+C*JC. (10.81)

(d) If D € TIC andB is stronglystable thenwecanreplace’ ? < 0" by P = P*
everywhee in this proposition.

(Thecommentselov Theoreml10.5.1apply heretoo, mutatismutandis.See
Theoreml10.6.3for moreon (b).)

Proof: (Naturally condition“C*JC < 0" meanghat(xp,C*JCxg) < Ofor all
Xo € Dom(A). In theproofbelow, the proofsof (c) and(a) comelogically first.)

We get “(ii) = (iii)” asin the proof of Proposition9.2.7(a). Implication
“(iv)=(i)” followsfrom (a).

To completethe first claim, assume(iii) (i.e., (iii")). By Proposition
9.11.9(e)&(c),thereis X € TIC»(U) s.t. Xt*SX! < D'*JID! + B PB for all
t > 0, henceD! *JD! > 0. Thus, (i) implies(i).

(@) SinceC*JC < 0, we have C{JCs < 0 on Dom(Cs) D Hp (because
(CsX0,ICsXo)y = liMs 1o (CS(S— A) ~1x0,JCs(s— A)"Ixg)y, < 0 for all xg €
Dom(Cs)). Thereforefor ary t > 0andu e L3([0,t);U) wehave [3° = [5+ /i,
ie.,

(Du, JDU), 2 = (u,D"*ID! u),_z+/ (CsBt" u, JCBT uydr < (u, D' ID ), 2,

t (10.82)
by Theorem6.2.13(a2).ConsequentlyD*JD > 0 impliesthat (i) holds. The
corverseis obvious (useCorollaryB.3.8).

(b) Obviously, (iv) holds,hencesodoes(i), by (a). By (b)&(f1)&(i)&(iii’)
of Theorem10.6.3,condition (iii") (resp.(ii’)) above holds (with equalityin
(10.81)(resp.in (10.79)))if we canshaw that? < 0. By (c), thentherestof
(b) holdstoo.

ConditionC*JC < 0 impliesthat(Cxo, JCXo), 2 = [y (A'xo, C*ICAlxg)dt <
0 for all xo € Dom(A), henceC*JC < 0, by density SinceS>> 0, it follows
thatC*JC— K*SK < 0, hence? < 0, by (9.142).

(Notethatthe P above is P-SOS-c.-stabilizing.We coulduse(1.) instead
of (2.) of Hypothesisl0.6.1if we would have “w-lim” in (10.80).)

(c) Implication*“(ii) =(iii)” wasshavn above. If Dom(A) = H (i.e.,if Ais
bounded)thenthe equivalencedollow from LemmaA.3.1(p2)(with columns
androwsinterchanged)evengeneralA, theproofof LemmaA.3.1(p2)applies.

(d) The above proofsstill apply exceptthat the proof of “(iii) =(i)” must
be alteredasfollows: Assumeiii). WhenB' is stronglystable the inequality
X'sxt < DHID + BB (t > 0) impliesthatDHID! > —BUPB — 0, as
t — +oo, i.e.,thatD*JD > 0. By (a), thisis equialentto (i). O

Next we show that, undersufficient regularity, the uniform Riccatiinequality
hasa solutioniff X is exponentiallystableandthe Popos operatoris uniformly
positive:



Theorem 10.6.5(D*JD > 0 & CARI) AssumehatC*JC < 0.

(a) If any of Hypothesi®.2.2(1.)—(6.)holds (the refeencesto Theoem8.3.9
maybeignored),thenthefollowing are equivalent:

() 2 is exponentiallystableand D* JD > 0.
(i) Thereis ? < 0s.t.P[H] € Dom(B},) and
A*P+PA+C*IC (B),P+D*JC)*

[ B:, P+ D*JC D*ID >0 on Dom(A) x U.
(10.83)
(i) Theeis P < 0s.t.S:=D*ID+s-lims_, 1 B, P(s— A) 1B exists,and
[A*fP—i— PA+C*JC (B;,P+D*JC)*

B:, P+ D*JC S } >0 on Dom(A) x U.

(10.84)
(b) If ToyAB € LY([0,t); B(U,H)), TopnCwA € LY([0,t); B(H,Y)), and
o CwAB € L1([0,1); B(U,Y)) for somet > 0, then(i) < (iii) <=(ii).
(cl) If D is ULR,thenwe have(i)«=(iii) <(ii).

(c2) Any solutionof (i), (iii), (ii") or (iii") is strictly negative (? < 0). Under
the assumption®f (a), there is an exponentiallystabilizing solution (if (i)
holds).

(d) If D is SR,thenwehave(ii) <(ii") = (iii) <(iii") (evenfor afixed?), whee
(i) D*JD > 0, andthereis P < 0s.t. P[H] ¢ Dom(By,) and
(B%, P+ D*JC)*(D*ID) (B}, P+ D*JC) < A*P+ PA+C*IC.

(10.85)
(iii") Theeis P <O0s.t.
K*SK < A*"P+ PA+C*IC onDom(A) ,
S= D*JD+§_->ILrgB\‘;,T(s—A)_1B onU , (10.86)
K =-S(B;,?+D*JC) onDom(A) .
andS>> 0 (for someSandK).

(e) We canreplacethe assumptionsf (a) (resp.of (b)) by anyassumptiorthat
togetherwith (i) leadsto Hypothesisl0.6.1(6.)(resp.(2.)) (or to D*JD>> 0
and Hypothesi®.2.1)for Z and J (seethe proof), for all suficiently small
e>0.

Onesud assumptions thatC € B(H,Y) anddimY < .

Seealso the commentsbelov Theorem10.5.1. The casewhere “>" is
replacedby “>" is coveredby Proposition10.6.4.
Proof: (Naturally condition“C*JC < 0” meanghat(xp, C*JCxo) < Ofor all
Xo € Dom(A).) Let U} = Uexp.
We shalluse(d) tacitly throughouthe proof.



1° “(i) =(i)&(iii)” under Hypothesis9.2.2: Assume(i) and Hypothesis
9.2.2.ThenL:=Bt € TIC(U,H), by Lemma6.1.10,sothatD*JD—eL*L > 0
for somee > 0. Define := (%%) € WPLS(U,H,Y x U) by C:= [§],
D:=[3], andsetd:= [ 9].

Then also £ satisfies Hypothesis9.2.2 (including the requirementsof
Theorem8.3.9(b2)). SinceD*JD = D*JD — eL*L >> 0, the B,-CARE, the
IARE and the CARE for = andJ have an exponentially stabilizing solution
(?,S K) with S=D*ID € GB(U), by Theorem9.2.9(i) and Proposition
8.3.10.

But the CARE for = andJ equals(10.86)with “= —el+” in placeof “<”.
Therefore,we have establishedii’) and (iii’) oncewe show that ? < 0 and
S>0.

By Theorem9.9.1(a2),S> 0, henceS>> 0. ConditionC*JC < 0 implies
that (Cxo, JCxo) 2 = [ (Alxg,C*JCAlxg)dt < O for all Xo € Dom(A), hence
C*JC < 0, by density SinceC* JC = C*JC—eJ*J < 0, where(Ixo) (t) 1= Alx
(t > 0), we obtainfrom (9.142)that? = C*JC—K*SK < 0, asrequired(recall
thatS>> 0).

Remark: ? < 0 and  is exponentially stabilizing for = when (i) holds
(since P is exponentially stabilizing for 2, hencefor (A,B) too). (When
the assumption®f (a) are satisfiedand (i) holds, thereis one suchsolution;
however, theinequalitieq(ii) and(iii) mighthave non-stabilizingsolutionstoo.)

2° “(ii) =(iii)” (wheneer D is SR): This follows from the proof of
Proposition9.2.7(a).

3° “(iii) =(i)” (wheneer D € ULR): By Proposition9.11.9(e), [%}%}
generat@ SRWPLS.SinceA*(—P)+ (—P)A < 0and—2 > 0, thesemigroup
A is exponentiallystable(and—2 > 0), by Lemma9.12.2(d).

By Propositior9.11.9(d) we have Xt *SX 4 et *IL! < DH*JD' + B PB! for
somee > 0, whereLL := Bt € TIC»(H,U). SinceS>> 0 and? < 0, we have
eV < DHIDY, henceD*JD > €L*L, henceD is positively J-coercive, by
Proposition10.3.2(g1)(with D = D; herewe needthe assumptiorthatDD is
ULR); in particularD*JD > el.

4° Remarks: From 1° we obsenre that the implication “(i) =-(ii)” (resp.
“(i)=(iii)") also holds under a suitablevariant of (6.) (resp.of (2.)) or
Hypothesisl0.6.1.

(a) SinceHypothesis9.2.2impliesthatD is ULR, the equivalencefollows
from 1°-3°.

(b) By Lemma6.8.5,D is ULR, hencewe have (ii) = (iii) =(i). If (i) holds,
thenD,L € MTICL" (henceD € MTICL"), by Lemma6.8.5(a), hencethen
we obtain“(i) =(iii)” from 1° with Theorem9.2.14(c3)in placeof Theorem
9.2.9(i).

(c1) Thisfollowsfrom 2° and3°.

(c2) Thiswasobsenredin 3°.

(d) Use the proof of Lemma A.3.1(p4) (with rows and columnsinter-
changedjor “(ii) < (i’ )” andfor “(iii) < (iii")", and2° for “(ii) =(iii)".

(e) (NotethatD € 4., is notsuficient, sinceD alsocontainsBr. )



1° If ¥ is exponentiallystable,C € B(B,Y) anddimY < «, then and
J satisfy Hypothesis10.6.1(6.) (and hence(2.)) for all € > 0, by Lemma
10.6.2(d)(6.). N B

2° If D*JD > 0, (i) holds, and Hypothesis9.2.1holdsfor = andJ, then
Hypothesis10.6.1(6.)is satisfiedby = andJ for € > 0 s.t. D*JD —¢l >> 0, by
Lemmal0.6.2(d)(8.).

3° UnderHypothesisl0.6.1(6.)(resp.(2.)), assumptiori) still impliesthat
the Bj,-CARE (resp.the CARE) for = andJ hasan exponentiallystabilizing
solution(cf. 1° (resp.the proof of (b))). Therefore,1° (resp.the proof of (b))
still appliesitherestfollowsfrom (c1). O

Throughoutthis chaptey 4. is assumedo be MTIC or somethingalmostas
regular:

Standing Hypothesis10.6.6(Class 4, is ULR and admits positive SpF)
(1) BC A4 C TICNULR (seeDefinition6.2.4),and

(2) ifDe 4, (U,Y),J=J* € B(Y), andD*ID >> 0, thenD*ID = X*X for

someX € GA4(U).

Thus, we have wealenedHypothesis8.4.7 to only cover the positive case;
consequentlyall MTIC classesare now applicablewithout dimensionalitydis-
trictions (see(al)belaw):

Lemma 10.6.7(44)

(al) All classedistedin Theoem8.4.9andtheir exponentiallystableversions
(se€" Aexp” in the Theoem)satisfyStandingHypothesisl0.6.6.

(a2) Hypothesis3.4.7is stronger than StandingHypothesisl0.6.6.

(a3) TheclassTIC satisfieq2.) of StandingHypothesisl0.6.6.

(b) Let D = NM~! be a g.rc.f. with NNM € 4,. Thenthe following are
equivalent

(i) N*IN > O;
(i) N*JN = X*X for someX € G4,
(i) D hasa (J,1)-innerq.rc.f D = Nm

Moreover, wehaveN' ,M' € 4, andM’ € GB(U) for any(J, *)-innerg.r.c.f
D=NM 'ofD.

Proof: (al)By Theorenb.2.8,we maynow allow for dimU = o in (3) too;
therestfollows from (a2)andTheorem3.4.9.

(a2) AssumethatD*JD > 0, i.e., thatt, D* Dty > 0 (seeLemma6.4.6),
sothatD*JD = X*SX for someSe G‘B(U). ThenS> 0, henceS>> 0. Replace
X by SY2X to satisfyStandingHypothesisl0.6.6.

(a3) Thisis Lemma6.4.7(a).



(b) This follows as in the proof of Corollary 8.4.14 (see also Lemma
8.4.11). O

(Seethenoteson p. 595.)



10.7 Positive Riccati equations(7(0,-) > 0)

| madeit a rule to forbearall directcontradictionsto the sentiments
of others, andall positiveassertionof myown. | evenforbademyself
the use of every word or expressionin the language that imported
a fixed opinion, sud as "certainly”, "undoubtedly”,etc. | adopted
insteadof them"l conceive",'l apprehend"or "l imagine"athingto

besoor so; or "soit appeasto meat present”.

— Autobiographyof BenjaminFranklin (1706—1790)

In this section,we shallgive additionalauxiliary resultsfor Riccatiequations
in the positive (minimization) case where 7(0,-) > 0 (e.g.,J > 0). Recallfrom
Lemmal0.2.2,that 7(0,-) > O implies that a control is minimizing iff it is J-
critical.

Suchasolutionis of statefeedbaclkform iff it correspondso a U-stabilizing
solutionof the elARE. Sincesucha solutionis necessarilynonngative, we are
only interestedn nonngative solutionsof the elARE (or of the eCARE)in this
section.

In Propositionl0.7.2(resp.10.7.1)we shav thatasolutionof the CARE (resp.
the IARE for a stablesystem)with S>> 0 is WR (resp.well-posedand stable).
Analogousresultsfor Riccatiinequalitieswveregivenin Proposition9.11.9.

In the two latter propositionswe show thatfor standard_QR costfunctions,
solutions of the IARE or CARE are well-posed, admissibleand stabilizing
providedthatcertainadditionalassumptiongold.

Proposition 10.7.1(S> 0) LetZX be[strongly] stable Assumehatthe lAREfor
> andJ hasasolution(?,S [ K | F ]) s.t.S> 0.

ThenK and F are stable and X*SX = D*JD + s-limy_, ;o T(—t)B* PB1(t)
[X*SX = D*JD).

Proof: By Lemma9.10.1(b4),the elARE implies that (9.153)—(9.161)
hold. The stability of X follows from (9.160) as that of N in Proposition
10.7.3(a);similarly, we obtainthe stability of K from (9.159). The claim on
X*SX follows from Propositior9.12.7(a). O

We recallfrom Proposition9.11.8thata solutionof the CARE with S>> 0 is
WR:

Proposition 10.7.2(S> 0) Let ~ be WR. If the CARE has a solution ? with
S>> 0, then? is a WRsolutionof the IARE. 0

For J > 0, ary admissible nonngative solution is at least [ C | D ]-
stabilizing; for the standardLQR costfunction with C*C > 0, sucha solution
is exponentiallystabilizing:

Proposition 10.7.3(J > 0) Assumethat the elARE for ~ and J > 0 has an
admissiblesolution®? > 0. Then(a)—(c3)hold:



(&) ThemapsCs andD are stableandS> 0.
(b) Corversely any minimizingsolutionis nonngative
eHIfC=[%], D=[2],andI= [ 2] > 0, then(10.87)is satisfied.

(c2)if De SRand[C D]|"J[C D] >¢€[39] onHyx U for somee > 0, then
(10.87)is satisfied.

(c3)If Ce B(H,Y),C*C>0and[C D]"J[C D] >e[89] onHyxU for
somee > 0, then(10.87)is satisfiedand Z is estimatable hencethen(d3)
applies,and P is the uniguenonngative admissiblesolution of the elARE
and minimizingover Uexp (and Uout, Usta @nd Usy) and exponentiallyr.c.-
stabilizing

Assumein addition,thattherise > 0 s.t.
(Cx0+Du,J(Co+DU)) 2, vy > ellull3 (0eH, uell,).  (10.87)

(d) ThenD is positivelyJ-coerciveover Uyyt, S>> 0, P is SOS-stabilizingand
there is a unigueminimizingcontrol over Uqy: for eat xg € H. Moreover,
(d1)—(d6)hold:

(d1) If the minimizingcontrol over Uyt is givenby somestatefeedbak
pair [ K | F |, then[ K | F | is the pair (moduloE € GB(U))
determinedby the smallestnonngative admissiblesolution of the
elARE.

(d2) Assumehat X is [strongly[exponentially]] stable

Thenso are Zg¢ and Z5. In particular, then P is stable [strongly
[exponentially]] r.c.-stabilizing[and strictly minimizing over Ugyt,
Ustaand Usy [and Uexp], and P is the uniqguenonngativeadmissible
solution].

(d3)Assumehat is estimatableor exponentiallyg.r.c.-stabilizable Then
P istheuniquenonngativeadmissiblesolution,andit is exponentially
g.r.c.-stabilizingandstrictly minimizingover Ugut, Usta, Ustr aNd Uexp.

Thus, in the casedescribedin (c3), we only have to find one nonneative
solutionandcheckwhetherit is exponentiallystabilizing. If not, thenthereis no
minimizing statefeedbackpair overary of Uyr—Uexp.

The assumptiorin (cl1) is equivalentto having the costfunction 7(Xp,u) =
(u,RU+(y1,Qw1), wherey; = C1x9+D1u, R> 0, Q> 0 (notethatherey = [%1]).
SeealsoTheorenm9.2.10andCorollary15.1.6.

Althoughtheassumptiong (d) or (c) (andtheexistenceof ) imply thatthere
is auniqueminimizing controlover Uy, we donotknow in generalwhethersuch
acontrolcanbegivenin the feedbackiorm (not evenwhetherthereis a minimal
controlamongsuchcontrols),neitherwhethera smallestsolutionwould be cost-
minimizing. In discreteimewe have nosuchproblemsseeg.g.,Corollary15.1.6
(neitherin continuougime when,e.g.,B is boundedseeTheorem$.9.6,9.2.10
and10.1.4(b4)&(b6)).



Proof of Proposition 10.7.3: (a) 1° N := Dy is stableand S> 0: For all
ue L2 t>0,wehave

0 < (N'u, IN'U) < (u, Su) < [|S]]Jull3; (10.88)

by (9.157), hence||JY2Ntu||3 < [|S]|||ull3. But ||Ntul|3 < M?||3%/Ntu||3 for
someM < =, hence||N|| < M||F|Y/2 < o, i.e.,N = D is stable,by Lemma
6.1.12.From(10.88)we alsoobserethatS> 0 (take u = UoX|o,1))-

2° C is stable: By (9.155) and the Monotone Corvergence Theorem,
[ 912C s %0||2 < (X0, PXo) (X0 € H), henceC, is stable.

(b) Thisfollowsfrom equation? = Cf, JC (seeTheoren®.9.1(a2)&(g2)).
(In fact,any C-P-stabilizingsolutionis nonngative,by Lemma9.10.1(d1).)

(c1) Now 7 (xo,u) > (u,R0) > €2||u||3 for someg? > 0.

(c2) Now y := Cxo + Du = Csx+ Du a.e.,hencely, Jy) > €||u||3, wherex :=
Axo +Brtu (notethat([Cs D] [2],J[Cs D] [9]) > €||ug||3 canbeextendedo
Dom(Cs) x U, by first replacingxo by r (r — A)~1xo, andthenlettingr — +oo).

(c3) Because&C*C > 0, we have (C*C)~1C*C = |, henceX is estimatable
by a boundedt, by Lemma6.6.25. Consequently(d3) applies(by (c2)). By
Lemma6.6.26,[ K | F | is exponentiallyr.c.-stabilizing(jointly with H).

(d) (Naturally, we allow the value+ for thenorms.)

1° P is SOS-stabilizingLet us € L2(R;U), Xo € H. Set

U= KesXo+Mugs, Y:=Cxo+Du=CsXo+ Dy Us. (10.89)

By (a),yis stable hencesois u. ConsequentlyK s andM arestable py Lemma
6.1.12.Thus,2 € SOS

2° S>> 0 and D is positively J-coercive over Uy, Thesefollow from
Proposition10.3.1(a)andLemma9.10.3.

3° Unigueminimizingcontmol over Uy, BecauseP is SOS-stabilizingywe
have Ksxo € Uout(Xo) consequentlyUoyui(Xo) # 0, for eachxg € H. Thus,by
TheoremB.4.3,thereis a uniqueminimizing controlfor eachxg.

(d1) This follows from Theorem9.9.1(a2) sinceary admissiblenonnga-
tive solutionis output-stabilizingpy (d).

(d2) If X is [strongly[exponentially]] stable thensois Zet, by Proposition
10.7.1,and %, by Corollary 6.6.9 (here”l —LD"= X € GTIC) andLemma
6.6.8(c). Now D,X,X™! are [[exponentially]] stable, hence[ K | F | is
[strongly[exponentially]]r.c.-stabilizing.

[By Theorem9.9.10(e2)&(c1)&(b),P is minimizing over Ugyt, Usta @and
Ustr [and Uexp], henceunique.]

(d3) A nonngative admissible solution (7',S,[ K | F' |) is SOS-
stabilizingandhasS > 0, by (d), henceit is exponentiallyq.r.c.-stabilizing,
by Theorem6.7.15(c2)&(b1) henceminimizing over Uoyt, Usta, Ustr aNd Uexp
andunique,by Theorem9.9.10(e2)&(c1)&(b).

0

In usualquadraticminimization problems,one neednot checkwhether? is
admissiblg(seeSection10.1for applications):



Proposition 10.7.4(J = (y,Qy)+(u,RU) Let X = [é 2] € WPLS(U,H,Y) be
WR.LetY =9 xU, C=[G], D=[™],1=[32], Q>0 R> 0. Assume
thatD € UR or dimU < oo.

Letthe CARE
K*SK = A*P 4 PA+C*JIC,
A : * - -1
S=D"JD+ lim B;P(s—A)"'B, (10.90)
K =-SB},2+D*JC)

havea solution® € B(H), P > 0s.t.lims 1B}, P(s—A) B> 0o0r S>> 0.
Then? is UR andadmissible
If Q> 0, then P is SOS-stabilizingand Proposition 10.7.3 applies; in
particular, if X is estimatablethen? is the uniquenonngative solution,strictly
minimizingover Uyt and exponentiallyg.r.c-stabilizing

Note that for dimU < o« (resp.D € UR), the limit in CARE corverges
uniformly (asrequiredabove) iff the limit in CARE corvergesweakly (resp.iff
F € UR, by Lemma9.11.5(e)).

Proof: Choosesomew > max(0,wp). If lims .« B%,P(s—A)~1B > 0, then
S> D*JD = D]QD1+R> R>> 0. Therefore S>> 0 undereitherassumption.

By Proposition10.7.2,? is aWR solutionof the CARE. ThemapX is UR,
by Lemma6.3.2(al)&(a2)or Lemma9.11.5(e).

Substitutez = sinto (9.188)to obsene that

X(9)*SX(s) > D(5)*ID(s) (s€ Cf) (10.91)

(becauseP > 0). But D(s)*JD(s) = D1 (s)*QD1(s) + R> R>> 0 (s € C),
henceX(s)*SX(s) > R>> 0.

By Proposition2.2.5,we have X € GTIC(U) (this is why we wantedX
to be UR). Thus, P is alsoadmissibleand S>> 0. Therestfollows now from
Proposition10.7.3. O

If, e.g., Hypothesis 9.5.1 holds, then we have ||sB'(s— A)~*P(s—
A)~1B|lu) — 0, ass € Cf, | — =, by Lemma9.4.2(k). Therefore,in that
case, self adjomtsolutlons are UR and admissibleeven without the nonnea-
tivity assumption(sincethen we have, insteadof (10.91), that X(s)*SX(s) >
]D( S)* J]D>( s) —el > R—e¢l for somee > 0, whenRes is big enough by (9.188),
hencealsothenX e GHg).

Notes

Part of Proposition10.7.3is well known for certain subclassessee,e.g.,
Theorem3.3 of [PS87]or Section6.2 of [CZ]. In the finite-dimensionalcase,
[LR] is acomprehensiereferencdor bothgenerabndpositive Riccatiequations
andinequalities.






