
Chapter 10

Quadratic Minimization (min )
Alas,I amdyingbeyondmymeans.

— Oscar Wilde (1856–1900)[as he sipped champagneon his
deathbed]

ThroughoutthischapterweassumethatStandingHypotheses9.0.1and10.6.6
hold (i.e., Σ � ��� �� ���
	 WPLS� U � H � Y 
 , ���� is reasonableand “ ���� ” denotes
someULR classadmittingpositivespectralfactorization).Hypothesis10.1.1will
beassumedthroughSection10.1.

We stronglyrecommendthereaderto startby readingtheintroductionto this
chapter(p. 31), wherealso the main results(particularly the LQR problembut
alsothereallemmasandtheH2 problem)areexplained.

Weshallfirst presentsomeminimizationresultsfor costfunctions� ∞
0 ��� x � 2H �� u � 2U 
 dm, � ∞

0 ��� y � 2H � � u � 2U 
 dm andtheir variantsin Section10.1. Theseallow
one to simplify significantly the Riccati equationtheory, and, for � ∞

0 ��� x � 2H �� u � 2U 
 dm, any nonnegative solutionof the LQR-CARE becomesunique,expo-
nentiallystabilizingandminimizing (andalsoaconverseholds),sothatoneonly
hasto find anonnegativesolutionwithout any stabilizationrequirements.

Section10.2 containsa more detailedstudy on minimization for general
WPLSsandcost functions. In Section10.3, we presentseveral conditionsthat
areequivalentto positiveJ-coercivity over � out or over � exp andshow how they
are implied by or equivalent to variousclassicalassumptionsfor minimization
problemsin theliterature.TheH2 problemis solvedin Section10.4.

In Section10.5,we presenttheBoundedRealLemmaandthePositive Real
Lemma,which allow oneto usetheRiccatiequationor theRiccati inequalityto
verify whether ����� TIC � γ or Re��� �!�"� #%$ 0, respectively. We giveour resultsfor
sufficiently regular systemsandsketchcorrespondingmoregeneralresults(the
latterlacknecessityunlessweacceptIAREs in placeof CAREs).

In Section10.6, we presentthe equivalencebetweenthe uniform positivity
of the Popov operator( �&� J �'$ 0), I -spectralfactorization( �(� J � �*) � ) ) and
stabilizing solutionsof the Riccati equationor of the Riccati inequality under
varyingassumptions.Theseareusedfor theminimizationresultsin othersections.
Wealsogivesufficient conditionsfor differentversionsof theequivalence.

In Section10.7,we show how any solutionsof positive Riccatiequationsare
WR andadmissible,evenstabilizingundersuitableconditions.
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Theproofscanmosteasilybereadin theorderSection10.7 + Section10.6+ Section10.2 + theothersections.
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In spiteof thecostof living, it’ s still popular.

— KathleenNorris (1880–1960)

Here we study the Linear QuadraticRegulator (LQR) problem for cost
functions � ∞

0 ��� x � 2H � � u � 2U 
 dm and � ∞
0 ��� y � 2H � � u � 2U 
 dm; or more generally,1 � x0 � u
 : � � y� Qy# L2 � � u � Ru# L2 for someQ � R $ 0; herex : �32 x0 �54 τu, y : �6

x0 � � u. More generalminimizationproblemswill bestudiedin Section10.2,
which also provides further definitions,resultsand explanations. Seealso the
presentationin theintroduction(p. 31).

Givenaninitial statex0 	 H, weminimizethecostfunctionoveraset � �� � x0 

of admissiblecontrols. We are mainly interestedin the classicalcases � �� �� exp : �87 u 	 L2 � R � ;U 
:99 x � y 	 L2 ; and ���� � � out : �37 u 	 L2 � R � ;U 
:99 y 	 L2 ;
(seeDefinition8.3.2).Notethat

1 � x0 � u
 � � ∞ for u <	 � out � x0 
 .
To formulatethe systemandcost function asbefore,we augmentΣ by the

extra row
�

0 I � whenwewish to applytheresultsof theothersections:

StandingHypothesis10.1.1(LQR) Throughoutthis section,weassumethat �
is URor dimU = ∞ and � is WR,andthat J � �

Q 0
0 R
�(	?> � Y @ U 
 andJ $ 0.

By minimizationandCAREs(and IAREs),werefer to theaugmentedsystem
Σaug : �BA Σ

0 I C 	 WPLS� U � H � Y @ U 
 andto theoperator J.

Thus,themaps“C” and“D” in theCARE arereplacedby
�
C
0
� and

�
D
I
� , etc.,

andthecostfunctionbecomes
1 � x0 � u
 : � � y� Qy# L2 � � u � Ru# L2.

For general � ’s (WR or even irregular), one can apply the resultsof Sec-
tion 10.2to obtainresultssimilar to thosein this section.Thereforewe omit the
mostgeneralcaseandstudythe (rathergeneral)casethat � and(at least) ) are
UR.Thisallowsusto rewrite theCAREasfollowsandguaranteethatany solution
is admissible(seeTheorem10.1.4):

Definition 10.1.2(LQR-CARE) Wecall �EDF� S� K 
 (or D ) a nonnegativesolution
of theLQR-CARE iff 0 � D 	G> � H 
 , S 	?> � U 
 , K 	G> � H1 � U 
 ,HIIJ IIK K � SK � A� D � D A � C � QC �

S � R � D � QD � lim
sL � ∞

B�w D
� s M A
ON 1B �
K � M SN 1 � B�w D � D � QC 
�� (10.1)

and limsL � ∞ B�w DP� s M A
 N 1B Q 0 or S $ 0. We usepreficesand suffices(e.g.,
“PB-”) asin Definition9.8.1.

If Σ is ULR, thenwecall D (or �ED�� S� K 
 ) a nonnegativesolutionof theLQR-
B�w-CARE iff 0 � D 	?> � H � Dom� B�w 
"
 and D satisfies

K � SK � A� D � D A � C � QC � (10.2)

where S: � R � D � QD, andK � M SN 1 � B�w D � D � QC 
 .
(OneoftenhasD � 0, sothatthestatefeedbackbecomesK � M SN 1B�w D .)
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Thus, the LQR-CARE is the CARE for Σaug and J with the additional
conditionsthatS Q D �augJDaugor S $ 0 andthatthelimit in Sconvergesuniformly
(i.e., in > � U 
 ; seeLemmaA.3.1(h)). The LQR-B�w-CARE is thecorresponding
B�w-CARE (cf. Definition 9.2.6).If dimU = ∞, thenany WR K (or

��R S � ) is
UR, by Lemma6.3.2(a1)&(a2).

The advantageof the LQR-CARE is that any nonnegative solution is SOS-
stabilizing(in particular, it is admissible):

Lemma 10.1.3

(a) Thenonnegativesolutionsof theLQR-CAREareexactlytheURnonnegative
admissiblesolutionsof theCARE(for Σaug).

Moreover, all of them are SOS-stabilizingand have TVU 1 	 UR, M 	W > � U 
 , X 	 WR, S $ 0 andlimsL � ∞ B�w D
� s M A
 N 1B Q 0.

(b) Anysolutionof theLQR-CAREis a solutionof theCARE.

(c) D is a UR ���� -stabilizingsolutionof theeCAREiff D is a nonnegative �Y�� -
stabilizingsolutionof theLQR-CARE.

(d1) Thenonnegativesolutionsof theLQR-B�w-CAREare exactlythenonnega-
tive solutionsof theB�w-CARE(for Σaug), henceall of themare nonnegative
solutionsof theLQR-CARE.

(d2) If Hypothesis9.2.1holds(for corresponding� �� ), thenthe � �� -stabilizing
solutionsof theLQR-B�w-CAREare exactly thenonnegative �Y�� -stabilizing
solutionsof theLQR-CARE,henceexactly theUR ���� -stabilizingsolutions
of theeCARE.

Note from Proposition9.8.10that the UR nonnegative admissiblesolutions
of the CARE areexactly the UR nonnegative admissiblesolutionsof the IARE
modulo(9.114).

By Theorem9.2.9andthe above lemma,the ���� -stabilizingsolutionsof the
LQR-B�w-CARE are exactly the ���� -stabilizing solutionsof the LQR-CARE if
Hypothesis9.2.1holds.

Proof: Obviously, any solution of the LQR-CARE is a solution of the
CARE (evenUR, by Lemma9.11.5(e)).

(a)&(b) By Proposition10.7.4,anonnegativesolutionof theLQR-CAREis
aUR SOS-stabilizingsolutionof theCARE with S $ 0.

Conversely, any UR admissiblenonnegativesolution �EDF� S� K 
 of theCARE
hasa uniform (not merelyweak)limit in S, eitherbecausedimU = ∞ (so that
weak=uniform)or by Lemma9.11.5(e). Thus, �ED�� S� K 
 satisfiesthe LQR-
CARE (andlimsL � ∞ B�w D
� s M A
 N 1B � S MZ� D � QD � R
�Q 0, by Proposition
9.11.4(c2);in particular, S Q D � QD � R Q R $ 0).

Since)[� : T N 1 is necessarilyUR for suchasolution,wehave TVU 1 	 UR,
M 	 W > � U 
 and X � �\T 	 WR, by Proposition6.3.1(b1)andLemma6.2.5.

(c) By (a), a nonnegative ���� -stabilizingsolutionof the LQR-CARE is a
nonnegative ULR ���� -stabilizing solution of the eCARE.Conversely, a �Y�� -
stabilizing solution �EDF� S� � K F � 
 of the eCARE hasS $ 0, by Lemma



10.1. MINIMIZING ∞
0 y 2

H u 2
U dm (LQR) 551

9.10.3, and D]Q 0, since
1 Q 0 (seeTheorem9.9.1), and X 	 W > � U 
 , by

Proposition6.3.1(b1),henceit is equivalent to a UR �Y�� -stabilizing solution�ED�� S� K ^_
 of theCARE,by Remark9.8.2,henceof theLQR-CARE,by (a).
(d1) By Proposition9.2.7,thesolutionsof theLQR-B�w-CARE areadmis-

sibleULR solutionsof theCAREandtheIARE, henceof theLQR-CAREtoo,
by (a).

(d2) By (d1) andProposition9.2.7(a)&(b),a ���� -stabilizingsolutionof the
LQR-B�w-CARE is a URL � �� -stabilizingsolutionof theCARE; theconverse
follows from Theorem9.2.9, and the secondequivalencefollows from (c).`
Now we statethe connectionbetweenthe LQR-CARE andUR minimizing

statefeedbackoperators:

Theorem 10.1.4(minu � ∞
0 ��� y � 2Y � � u � 2U 
minu � ∞
0 �O� y � 2Y � � u � 2U 
minu � ∞
0 ��� y � 2Y � � u � 2U 
 )

(a1) ( �Y��� ���Y�� ) There is a minimizing UR state feedback operator iff there is a
[nonnegative] ���� -stabilizingsolutionof theLQR-CARE.

(a2) (Uniqueness)Any ���� -stabilizingsolutionof theLQR-CARE,minimizing
control or minimizingstatefeedback operator is unique.

(b1) ( � out� out� out) There is a UR minimizingstate feedback operator over � out iff
there is a minimalnonnegativesolutionof theLQR-CAREandthis solution
satisfies(PB) for � out.

(b2) ( � exp� exp� exp) There is a UR minimizingstatefeedback operator over � exp iff
there is a maximalnonnegativesolutionof theLQR-CAREandthissolution
is exponentiallystabilizing.

(b3)(SmoothΣΣΣ) If Hypothesis9.2.1holds(for thecorrespondingchoiceof � �� ),
thenwecan replacetheLQR-CAREby LQR-B�w-CAREeverywhere in this
theorem.

(b4) (Smooth Σ : � outΣ : � outΣ : � out) Assumethat Hypothesis9.2.1 holds for � �� � � out.
Thenthefollowingareequivalent:

(i) (Min) there is a � y� Qy# � � u � Ru# -minimizing control umin � x0 
 over
u 	 L2 � R � ;U 
 for each x0 	 H;

(ii) (FCC) for each x0 	 H there is u 	 L2 � R � ;U 
 s.t.y 	 L2.
(iii) TheLQR-B�w-CAREhasa nonnegativesolution.
(iv) The LQR-B�w-CAREhas a smallestnonnegative solution, and that

solution correspondsto a (unique) ULR minimizing state feedback
operator over � out.

(We can replaceLQR-B�w-CAREby LQR-CAREin (iii) and (iv).) If, in
addition,D � 0, thentheLQR-B�w-CAREbecomes� B�w Da
 RN 1B�w D � A� D � D A � C � QC (10.3)

(in eithercase, weonly require that0 bcD 	?> � H � Dom� B�w 
d
 ).
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(b5)Wehaveabove(i) e (ii) f (iii) f (iv) f (v) in general.

(b6)(SmoothΣ : � expΣ : � expΣ : � exp) Assumethat � �� � � exp, andthat(1.) Hypothesis9.2.1
holds, or that (2.) 2 B 	 L2 � A 0 � T 
 ; > � U � H 
"
g� Cw

2 	 L1 � A 0 � T 
 ; > � H � Y 
"

andCw

2 B 	 L1 � A 0 � T 
 ; > � U � Y 
"
 . Thenthefollowing areequivalent:

(i) There is a [unique] minimizingcontrol for each x0 	 H.
(ii) There is a [unique] exponentiallystabilizingsolution ��D�� S� K 
 of the

LQR-CARE.
(iii)

� 2 4 � is optimizable, and � aug is I -coercive, i.e., there is ε h 0
s.t.� ir M A
 x0

� Bu0
�%i � Cwx0 � Du0 � Y � � u0 � U Q ε � x0 � H � x0 	 H � u0 	 U � r 	 R 
gj

(10.4)

Let �ED�� S� K 
 be as in (ii). Then S � R � D � QD $ 0, and K is ULR
and the uniqueminimizingstatefeedback operator. In case(2.), we have4 τ �k�
� S 	 MTICL1

∞ and 4ml τ ��Xn�oT 	 MTICL1

ω p UHPR for someω = 0.

(c1) (minu � ∞
0 ��� x � 2H � � u � 2U 
minu � ∞
0 ��� x � 2H � � u � 2U 
minu � ∞
0 ��� x � 2H � � u � 2U 
 : unique D D D )

Assumethat Σ is estimatable(e.g.,C 	G> � H � Y 
 andC � C $ 0).

Thenthere is at mostonenonnegativesolutionof the LQR-CARE.Such a
solution(if any) is strictly minimizingover � out, � sta, � str and � exp, and
exponentiallyq.r.c.-stabilizing.

Moreover, such a solutiondefinesan exponentialnormalizedq.r.c.f. (even
r.c.f. if C 	[> � H � Y 
 ) � � XqT N 1, where rXs� s
 : � D � � C � DK 
t� s M A M
BK 
 N 1B and rT3� s
 : � I � K � s M A M BK 
 N 1B are exponentiallyq.r.c. and
stable, T U 1 	 UR and X � QX � T � RT � I .

(c2)Assumethat Σ is stronglytop row–detectable.

Thenthere is at mostonenonnegativesolutionof the LQR-CARE.Such a
solution(if any)is strictly minimizingover � out, � sta and � str.

(d) A CARE solution ( �EDF� S� K 
 ) of the form mentionedin any of (a1)–(c2)
(exceptin (b4)(iii)) is unique(of thatform)and ���� -stabilizing, andthesame
K is theuniqueminimizingstatefeedback operator.

(Note that (2.) of (b6) is implied by the “Parabolic systemassumption”
Hypothesis9.5.1,by Lemma9.5.2.)

Thus,whenminimizing over � out, we only have to find a minimal solution
andcheckthecondition(PB) for thatsolutiononly, by (b1). Analogously, when
minimizingover � exp, insteadof lookingfor anexponentiallystabilizingsolution,
it sufficesto look for amaximalsolutionandchecktheexponentialstabilityof 2 l
for thatsolutiononly. (If noneexistsor (at least)oneexistsbut doesnot satisfy
(PB), thenthe minimizing control (if any) cannotbe given in thestatefeedback
form.)

By (b3)–(b6),theLQR-CAREcanbereplacedby the“LQR-B�w-CARE” if Σ
is smoothenough,andin this caseany minimizing control is necessarilyof state
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feedbackform (and ULR). SeeTheorems9.2.10–9.2.12for further analogous
results.SeealsoCorollary9.5.10for thecasewhere2 is analytic.

By (c1)&(c2),estimatabilityor strongdetectabilityimpliesthatanonnegative
solutionof theLQR-CAREis uniqueandminimizing. ThesameholdswhenΣ is
exponentiallyq.r.c.-stabilizableor stronglystable,by Theorem10.1.6.

Proof of Theorem 10.1.4: (a1)This follows from Lemma10.1.3(c),and
Corollary9.9.2(a2)&(e1)&(e2).

(a2) By Theorem9.9.1(f2) (Lemma10.1.3(c)),a ���� -stabilizing solution
is unique. By Lemma8.3.8,a minimizing control is unique;consequently, a
compatiblestatefeedbackoperatoris unique(onHB), by Lemma8.3.17(b).

(b1)&(b2) If we droptheminimality/maximalitycondition,thentheequiv-
alencefollowsfrom (a1)andTheorem9.8.5(for (b1)weusedthefactthat D is
SOS-stabilizing,by Lemma10.1.3(a)).

But the minimality in (b1) (resp. maximality in (b2)) is necessary, by
Theorem9.9.1(a2).

(b3) This follows from Lemma10.1.3(d2).(Note that in (b1) (resp.(b2))
wemusthaveHypothesis9.2.1for � out (resp.for � exp) etc.)

(b4)By Theorem9.2.10(b),(ii) implies(iv); therestfollows from (b5).
(b5) Since � aug is positively J-coercive over � out, we have (i) e (ii), by

Theorem8.4.3andLemma10.2.2.
Implication“(i v) i (iii)” is trivial. and“(iii) i (ii)” followsfrom thefactthat

any nonnegativesolutionis SOS-stabilizing,by Lemma10.1.3(d1)&(a).
(b6) This follows from Corollary 10.2.9(case(1.)) or Corollary 10.2.10

(case(2.)),Lemma10.1.3andProposition10.3.2(ii’) (notethatJ $ 0, hence�
is positively J-coercive if f it is [positively] I -coercive).

(Obviously, u � 0 is the uniqueminimizing control for x0
� 0, henceany

minimizingcontrol(for any � �� ) is unique,by Lemma8.3.8.)
(c1) This follows from Proposition10.7.3(d3)except for the last claim,

which is from Theorem10.1.6(if C 	u> � H � Y 
 , thenany exponentiallystabiliz-
ing statefeedbackoperatoris exponentiallyr.c.-stabilizing,by Lemmas6.6.25
and6.6.26,hencethen“q.r.c.” becomes“r.c.”).

(N.B. the lastequationis equivalentto rXv� s
 � Q rXs� s
 � rT3� s
 � R rT3� s
 � I on
iR.)

(c2) (By top row–detectability we mean that some admissibleoutput
injection pair

��w x � makes
� 2zy {ay 4 y � strongly stable. This obviously

holds if Σ is strongly detectable.Actually, it suffices to assumethat ∆SΣ is
top row–detectable,asoneobservesfrom theproof.)

1| Let D be a nonnegative solution of the LQR-CARE, henceSOS-
stabilizing, by Lemma10.1.3(a). By 2| , 2 l is strongly stable,hence D is� str-stabilizing,by Theorem9.8.5,henceuniqueandstrictly minimizing over� str, by (a2).

Let D(^ betheJ-critical costoperatorover � out (recall that � is J-coercive
over � out). Then Dn^ � D , by uniqueness(usethediscreteversionof (c2)). By
Lemma8.3.3, D is (strictly) minimizingover � sta too.

2| 2 l is strongly stable: We prove this in discretetime (note that state
feedbackand output injection pairs can be discretizedand also stability is
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preservedunderdiscretizationin bothdirections).
As at the end of the proof of Lemma 6.7.11(a),we note that also Σ l

has the above detectabilityproperty (note that �H : � M } D M B implies that�{ y � M { y D M 4 y , henceit is stabletoo;by assumption,sois
� 2 y { y 4 y � ).

Thus, 2 l?� { ^ y τ 6 l and { ^ y becomestablefor theoutputinjectionpair ~ H �
0 � ,

whereH ^ : � � } �H � . Consequently, also 2 l is stable(since{ ^ y τt 6 l x0 + 0, as
t + ∞, for all x0 	 H; theproofof this is analogousto thatof Lemma6.6.8(a)).

(d) Sincethesolutionsmentionsaboveare ���� -stabilizing,they containthe
minimizingK.

`
Remark 10.1.5 Thecostis finite for u 	 � out � x0 
 only, henceminimizationover
all (measurable) u : R + U correspondsto minimizationover � out (this was
appliedin Theorem10.1.4(b3)&(b4)).

In Theorem10.1.4(b1)weshowedthatsuch a minimizingcontrol is generated
by anUR statefeedback operator iff there is a (necessarilysmallestnonnegative)� out-stabilizingsolutionof theLQR-CARE.

`
In thestronglystablecasethereis atmostonesolutionof theLQR-CARE(see

alsoTheorem10.1.4(c1)&(c2)):

Theorem 10.1.6( � out� out� out: LQR e r.c.f.e CARE) Assumethat Σ is strongly stable
or exponentiallyq.r.c.-stabilizable. Thenthefollowingareequivalent:

(i) (KKK) There is a [unique] URminimizingstatefeedback operator K over � out.

(ii) (CARE) TheLQR-CAREhasa [unique] nonnegativesolution D .

(iii) (R.c.f.) There is a q.r.c.f. � � XqT N 1 with T 	 UR and X&� QX � T�� RT �
I .

Moreover, thefollowing holds:

(a1)Theaboveconditionsimply(Crit1+WR)–(Crit4+WR)of Theorem10.2.14,
hence(a1)–(g3)of Theorem9.9.10apply(for Σaug andJ).

(a2) The solutionsK of (i) and D of (ii) are unique, UR, strongly q.r.c.-
stabilizing, strictly minimizingover � out, � sta and � str, andequalto those
of Theorem9.1.7(sois thesolutionof (iii) too if werequire thatM � I ).

If Σ is exponentiallyq.r.c.-stabilizable, thenK and D areexponentiallyq.r.c.-
stabilizingandstrictly minimizingover � exp too.

(b1) (B�wB�wB�w-CARE) AssumethatHypothesis9.2.1holdsandD � JD $ 0.

Then(i)–(iii) havesolutions,we mayreplacethe LQR-CAREby the LQR-
B�w-CARE,and � � S �kXP��T U 1 	 ULR.

(b2) Assumethat Σ is stronglystableandsatisfiesHypothesis10.6.1(3.)(resp.
(6.)).

Then(i)–(iii) havesolutions(resp.and(b1)applies).
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(b3) Assumethat Σ hasa UR (resp.URL) exponentiallyq.r.c.-stabilizingstate

feedback operator �K s.t. the resulting closed-loopsystem � ��� ����
aug� � � aug� ���

satisfiesHypothesis10.6.1(3.)(resp.(6.)).

Then(i)–(iii) havesolutions(resp.and(b1)applies).

(b4)Assumethat � 	 ���� andΣ is stronglystable(resp.that � is exponentially
q.r.c.-stabilizablein ���� ).

Then(i)–(iii) havesolutionswith X �oT 	 ���� .

(SeeStandingHypothesis10.6.6for ���� .) Note that (iii) is equivalentto the
existenceof a � J � I 
 -innerq.r.c.f. � aug

� X augT N 1 with T 	 UR (it follows thatX aug
� �g�� � ). For stable(d), this becomesequivalent to the existenceof an I -

spectralfactorization�&� Q� � R ��) � ) , by Lemma6.4.8(a).
If wedropthestability/stabilizabilityassumptionsof thetheorem,thenK andD mustbeassumedto bestronglyq.r.c.-stabilizing(or q.r.c.-SOS-stabilizingand

q.r.c.-SOS-P-stabilizing)in (i) and (ii), and Σ must be assumedto be strongly
q.r.c.-stabilizablein (iii) (or q.r.c.-SOS-stabilizable),by Theorems9.1.7 and
9.9.10(or Corollary10.2.12,whichweakens(b3)).

Recall from Theorem6.7.15(c1)that if Σ is estimatable,then any output-
stabilizingstatefeedbackoperatoris exponentiallyq.r.c.-stabilizing.

Proof of Theorem 10.1.6: 1| (i) e (ii), (a2): This follows from Theorem
10.1.4(b1)&(a2)andProposition10.7.3(d2)&(d3).

2| (iii) e (ii): This follows from Lemma 6.5.7(c) and Theorem 9.1.7
(indeed,a solutionof (ii) is a q.r.c.-stabilizingsolutionof the CARE, by (a2)
andLemma10.1.3;a solutionof (iii) canbechosens.t.X � I , by (a2);on the
otherhand, TVU 1 	 UR for any solutionof (ii) or (iii), by Lemma10.1.3and
1| ).

(It followsthat X aug is � J � S
 -inner, whereS $ 0 is from the(LQR-)CARE;
replaceT by T SN 1� 2 to getS � I .)

(a1)This follows from (a2)andLemma10.1.3.
(b1)–(b4) These follow from Theorem 10.2.14(b1)–(b4)or Corollary

10.2.15(b1)(resp.(b2)) (sincenow ) and henceT : �8) N 1 (by Proposition
6.3.1(b1))is necessarilyUR (resp.ULR and so is � )), Lemma10.1.3 and
Proposition9.2.7(c).

For (b4) we notethat if � 	 ���� (resp.X���T 	 ���� ), then � aug 	 ���� (resp.� aug� � � � �� � 	 ���� ). Thus,wecouldequivalentlyposetheassumptiononΣaug.`
Notes
Oneoften calls any minimizationproblems(with a quadraticcost function)

Linear Quadratic Regular (LQR) problems,and the problemsof this section
(thosesatisfyingHypothesis10.1.1)are thencalledstandard LQR problemsor
somethingsimilar.

Since the LQR problem is perhapsthe most popular subject in infinite-
dimensionalcontroltheory, wecanonly try to giveapictureof somemostgeneral
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currentresults. The earlier history of infinite-dimensionalRiccati equationsis
documentedin thenotesto Section6 of [CZ].

Most of our resultsareknown for severalspecialcases(see,e.g.,Section6.2
of [CZ] for WPLSswith boundedB andC andTheorems3.3 and3.4 of [PS87]
for Pritchard–Salamonsystems;thesetreatboth � out and � exp to someextent).

For ���� � � out, the casecoveredby Proposition9.7.6wassolved in [FLT]
(with a“generalizedCARE” andpossiblynon-well-posedfeedback;for parabolic
systemstheseissuesarewell settledandtheresultsverygeneral,see[LT00a]).A
similar result for generalWPLSswas given in [Zwart], and the regular stable
minimization problem was solved independentlyin [S97b] and [WW] (with
roughlytheimplication“(iii) i (i)&(ii)” of Theorem10.1.6for stableWPLSswith�Y�� � � out). Theorem10.1.4(c2)generalizesTheorem3.3.2of [Oostveen](which
assumedboundedB andC); see[Oostveen]for its physicalapplications.Seealso
thenoteson p. 571
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10.2 Generalminimization (LQR)

Incidis in Scyllam,cupensvitareCharybdim.

— Homer

In this sectionwe shall presentsomeapplicationsof the CARE theory to
minimizationproblems,whereonewishesto find aminimizingcontroloversome
set ���� of allowablecontrols,in statefeedbackform (i.e., to find a [regular] state
feedbackoperatorK or a pair

��R S � that producesa minimizing control).
Thus,this is ageneralizationof Section10.1.

Sincethis sectionis rathertechnical,lengthyandboring (dueto the reasons
explainedbelow Corollary10.2.3),acasualreadermightwishto justhaveaglance
at Subsections10.2.1–10.2.10(or less)andthenproceedto thenext section.

Most resultsbecomeessentiallysimplerunderHypothesis9.2.1,asillustrated
in Section9.2(in particular, in Theorems9.2.10–9.2.12),or in their discrete-time
forms,asillustratedin Section15.1.

Therefore,in this sectionwe have theemphasison generalWPLSresultsand
onresultsfor MTIC I/O maps.Thismakesseveralclassicalresultsrathercompli-
cated,andalmosteachpieceof simplicity mustbeobtainedat thecostof general-
ity. Consequently, we give certainresultsundersomedifferentassumptions,and
leave it to the readerto extra- andinterpolatefurther resultsunderotherkind of
assumptions,usingtheresultsof Sections8.3–8.4,Chapter9, andtherestof this
chapter.

Weusetheword “minimizing” in thesamewayastheword “J-critical”:

Definition 10.2.1(Minimizing
��R S ���R S ���R S � and KKK) We call umin 	 � �� � x0 
 a

[strictly] minimizingcontrol (over ���� ) for x0 	 H (andΣ andJ) if
1 � x0 � umin 
 �1 � x0 � u
 for all u 	 ���� � x0 
 [and umin is unique].

Let
��R S � be an admissiblestatefeedback pair for Σ with closed-loop

systemΣ l . Thenwecall
��R S � minimizing (over ���� for Σ andJ) iff

R l x0 is
minimizingfor each x0 	 H. In this case, wesaythat theminimizingcontrol is of
statefeedbackform.

Wecall a WRadmissiblestatefeedback operator K 	u> � H1 � U 
 minimizing if�
K 0 � generateminimizingpair

��R S � for Σ.

Consequently, ucrit 	 L2 � R � ;U 
 is [strictly] minimizingfor x0 over � out (resp.� exp) if f y : � 6 x0 � � u 	 L2 (resp.and x : �*2 x0 �54 τu 	 L2) and u [strictly]
minimizesthe costfunction

1 � x0 � u
 : � � ∞
0 � y � t 
g� Jy � t 
k# Y dt amongsuchcontrols.

SeeDefinition9.1.4(or Definition6.6.10)for K,
��R S � , andΣ l .

Notethat“minimizing over ���� ” doesnot affect theotherattributes(prefices)
andviceversa,i.e.,“minimizing exponentiallystabilizingstatefeedbackpairover� out” producesacontrolthatis minimizingoverall elementsof � out � x0 
 for each
x0 	 H, not justover thoseproducedby exponentiallystabilizingstatefeedback.

Lemma 10.2.2(Min e Je Je J-crit. & pos.) Let x0 	 H. A control u 	 ���� � x0 
 is
[strictly] minimizingfor x0 iff u is J-critical for x0 and ��� η � J � η#�Q 0 [ h 0] for
all η 	 ���� � 0
�� 7 0 ; .
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Thus,if thereis a [strictly] minimizingcontrolfor any x0, then0 is a [strictly]
minimizing controlfor x0

� 0 (since
1 � 0 � η 
 � ��� η � J � η# ).

If thereis a minimizing control for all x0, thenwe maycall theJ-critical cost
operatorD � D � 	u> � H 
 (theonefor which

1 � x0 � umin � x0 
"
 � � x0 ��D x0#�� x0 	 H 
 ,
as in Theorem8.3.9(b1))the minimal cost operator. Recall that it is equal to
the (unique) ���� -stabilizing solution of the Riccati equation(if any, i.e., if a
minimizing controlis of statefeedbackform).

Proof of Lemma 10.2.2: Proof1: Corollary8.1.8andRemark8.3.4.
Proof2: “If ”: This follows from Lemma8.3.7(ii). “Only if ”: This follows

from Lemma8.3.6andLemma8.3.7(ii).
`

At their best,our minimizationresultsfor generalcostfunctionslook like the
following one:

Corollary 10.2.3(Minimization for boundedB) Assume that B 	�> � U � H 
 ,
dimU = ∞. Thenthefollowingareequivalent:

(i) there is a uniqueminimizingcontrol for each x0 	 H;

(ii)
1 � 0 �d��
mQ 0, D � JD $ 0, andthe“B-CARE”� B� D � D � JC
 � � D � JD 
ON 1 � B� D � D � JC
 � A� D � D A � C � JC (10.5)

hasa (unique) �Y�� -stabilizingsolution D .

(iii) there is a uniqueminimizingstatefeedback operator for Σ.

Moreover, if (ii) holds,thenminimizingstatefeedback is givenby umin � t 
 �
KL � sx � t 
 a.e., where K : � Ms� D � JD 
 N 1 � B��D � D � JC
 is URL, theminimalcostis1 � x0 � umin 
 � � x0 ��D x0# etc.as in Proposition9.9.1. If ���� � � exp, thenalso the
following is equivalentto (i):

(iv) Σ is positivelyJ-coerciveandoptimizable.

(Condition
1 � 0 �"��
�Q 0 is redundantatleastfor ���� � � exp, byCorollary10.2.6.

TheoperatorKL � s canbereplacedby any of its extensions,suchasKL �w, Ks and
Kw.)

We recall from Theorem9.8.5that “ � exp-stabilizing” means“exponentially
stabilizing”,whereas“ � out-stabilizing” is rathercomplicatedfor generalunstable
Σ. If Σ is q.r.c.-SOS-stabilizable(e.g., jointly stabilizableand detectable)and
J-coercive, thenthelattercasecanbeslightly simplified,asin Corollary10.2.12–
Theorem10.2.14.

Proof of Corollary 10.2.3: By Proposition10.3.2(e2)&(i)&(v),we have
“(ii) i (iv) i (i)” for ���� � � exp. The rest follows from Lemma10.2.2and
Theorem9.9.6(seealsoTheorem9.9.1(a2)&(e2)etc.).

`
Insteadof B beingbounded,we canassumethatHypothesis9.2.1holdsand

thatD � JD $ 0, by Theorem9.2.9(thenB� mustbereplacedby B�w, andwemust,
additionally, require D AH C p Dom� B�w 
 in (ii)). Sincethegeneratorsof a wpls (a
discrete-timesystem)arebounded,Corollary10.2.3alwaysholdsin discretetime
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(we just have to replaceequationsfor D , D � JD andK by theDARE; this follows
from Theorem15.1.2,asin theabove proof). Unfortunately, for generalWPLSs,
thesituationis not asnice(in continuoustime):

(1.) If B is unbounded,thenB�tD is not definedin general,andevenB�w D need
not alwaysbebounded(it is definedat leaston Dom� Amin 
 when � is WR,
by Theorem9.7.3(b)).

Thus, the “B-CARE” (10.5) must be replacedby the more complicated
CARE (for whichD � JD is replacedby thelimit S).

(2.) Even worse, the minimizing statefeedbackneednot be regular (even
when � were ULR, by Proposition9.13.1(c1)),hencethe CARE must
be replacedby the IARE (or onemust usediscretization)and the unique
minimizing state feedbackoperatormust be replacedby an essentially
uniqueminimizing statefeedbackpair.

(3.) Still worse: for generalWPLSswe do not evenknow whether(i) implies
(ii) and(iii), i.e.,whetheraminimizingcontrolis of statefeedbackform(it is
of thegeneralized,non-well-posedsenseof Definition 8.3.15,by Theorem
8.3.9); thus, insteadof the IARE we mustusethe “generalizedIARE” of
Theorem9.7.1 (or the “CARE on Dom� Amin 
 ” of Theorem9.7.3 if � is
regular).

(4.) If dimU � ∞, thenthe IARE (resp.CARE) mustbe replacedby eIARE
(eCARE),sinceweonly know thatS h 0 (eventhoughB werebounded).

We shallpresentbelow someresultsfor generalWPLSandthenusedifferent
assumptionsto getrid of someof theaboveproblems.

By usingHypothesis9.2.1,we get rid of (2.), (3.) and most of (1.); some
correspondingresultsaregivenSection9.2;see,e.g.,Theorems9.2.10–9.2.12.

A setof weaker assumptionsis given in Hypothesis10.6.1;they allow us to
get rid of (2.) and(3.) (anda partof (1.)), asshown in severalresultsbelow and
in Section10.1.Also Corollaries10.2.10and9.5.10presentsimilar resultsunder
differentassumptions.

For stable(or suitablystabilizable)systems,thepositivespectralfactorization
resultof Lemma6.4.7(a)canbeusedto avoid problem(3.) for generalWPLSs;
seeCorollaries10.2.6–10.2.13.

Sometimeswe useJ-coercivity or analogousassumptionsto overcome(4.).
Undersufficient regularity assumptionswe have S � D � JD, hencethenwe can
makeS invertiblejust by assumingthatD � JD $ 0.

In Section10.1,we give someanalogousresultsfor the morespecificLQR
problem,and in Section10.6, we give further minimization and [e]IARE and
[e]CAREresults.

Naturally, onecanobtainseveralanalogoustheoremsby combiningtheresults
of this and the previous chapterin different ways; we hopethat the following
resultsprovideahelpfulguideline.

Standardcoercivity assumptionsguaranteetheexistenceof auniqueminimiz-
ing control:
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Lemma 10.2.4 Let Zs be reflexive, and let � be positivelyJ-coercive, i.e., let
therebeε h 0 s.t. ��� u � J � u#qQ ε � u � 2���� � u 	 � �� � 0
"
gj (10.6)

If x0 	 H is s.t. � �� � x0 
&<� /0, thenthere is a uniqueminimizingcontrol for x0.
`

(This follows from Theorem8.2.5,Lemma8.2.3andLemma10.2.2through
Remark8.3.4.RecallthatZs is reflexive for � exp and � out.)

Thus,if � �� � x0 
 <� /0 for all x0 	 H (i.e., theFinite CostConditionholds)and� is positively J-coercive (seeSection10.3for severalequivalentconditionsfor�Y�� � � out and ���� � � exp), thenthereis a uniqueminimizing control for each
x0 	 H (providedthatZs is reflexive). Theminimizingcontrolandcorresponding
state,outputandcostarethengivenin WPLSform by Theorem8.3.9

However, as noted above, without further assumptionswe do not know
whethertheuniqueminimizing control is of statefeedbackform. We givebelow
differentformulationsof sufficientconditions.

We now recall the basicminimizationresultsfrom Chapter9 (do not forget
our definitions:we requirethesolutionsof Riccatiequationsto beself-adjoint):

Corollary 10.2.5(Minimizing control e eCARE/eIARE) Let
1 � 0 �"��
\Q 0. Then

thefollowing hold:

(a) There is a minimizingstatefeedback pair
��R S � for Σ iff theeIAREhas

a ���� -stabilizingsolution �ED�� S� � R S � 
 .
(b) Let � beWR.Thenthere is a minimizingWRstatefeedback operator K for

Σ iff theeCARE HIIJ IIK K � SK � A� D � D A � C � JC�
S � D � JD � w-lim

sL � ∞
B�w DP� s M A
ON 1B �

SK � Mv� B�w D � D � JC
�� (10.7)

hasa ���� -stabilizingsolution �EDF� S� � K 0 � 
 .
If such a solutionexistsand x0 	 H, thenthe minimizingcontrol umin � x0 

is given by umin � x0 
t� t 
 � Kwx � t 
 a.e., where x �32 x0 �54 τumin � x0 
 is the
correspondingstate.

(c) Let D be a ���� -stabilizing solution of the eIARE(resp.eCARE,henceof
both).

Then D is unique, S Q 0, and
��R S � is thepair determinedby D (resp.

generatedby
�

K 0 � ). Thecontrol
R l is strictly minimizingiff S h 0.

Alsoparts (f1)–(k)of Theorem9.9.1apply to �EDF� S� ��R S � 
 ; in particu-
lar, theminimalcostis givenby

1 � x0 � umin � x0 
"
 � � x0 ��D x0# .
If
1 � ���d��
nQ 0 and ���� � � out, then D is the smallestnonnegative output-

stabilizingsolutionof theeIARE(resp.eCARE).

(d) If �Y�� � � exp, then“
1 � 0 �"��
�Q 0” canbedroppedfromthis corollary if we

require thesolutionsof theeIAREandtheeCAREto satisfyS Q 0.
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In particular, (b)–(d)applyto the( ���� -stabilizing)solutionsof theeCARE(for
Σ) mentionedin otherresultsof this chapter.

Proof: (a)–(c)This is a combinationof Theorem9.9.1(a2)&(f1)–(k)and
Corollary9.9.2.

(d) If thereis a minimizing control for any x0 	 H, then
1 � 0 �"��
nQ 0, by

Lemma10.2.2,hencethenS Q 0, by (c). Conversely, any solutionwith S Q 0
is minimizing,by Theorem9.9.1(k).

`
By combining (a)&(b)&(d) of Corollary 10.2.5 with Theorem9.8.5, we

obtain:

Corollary 10.2.6( � exp� exp� exp-min e e e eIARE) There is a minimizing state feedback
pair over � exp iff theeIAREhasanexponentiallystabilizingsolutionwith S Q 0.

Let � be WR.Thenthere is a minimizingWR statefeedback operator over� exp iff theeCAREhasan exponentiallystabilizingsolutionwith S Q 0.
`

If D is sucha solutionandS $ 0 (equivalently, � is J-coercive over � exp,
by Proposition9.9.12),then D is the greatestadmissiblesolutionof the eIARE
having S Q 0, by Corollary15.1.3.Naturally, alsoCorollary10.2.5(c)applies.

Next wenotesome“anomalies”(seeSection9.13for more):

Example 10.2.7 1. Wemayhave DZb 0 (this is trivial; seeExample9.13.13).
2. All minimizingcontrolsneednotbeof thestatefeedbackform eventhough

oneof themis (seeExample9.13.6). ¡
To startwith a simplecase,we first generalizeTheorem16.3.3of [LR] (see

Proposition10.3.1(d)for (10.87)andpositiveJ-coercivity):

Corollary 10.2.8 AssumethatΣ is optimizableandestimatable, � is positivelyJ-
coerciveover � out, and(1.), (2.) or (4.) of Hypothesis9.2.2holds.Thenthere is
a uniqueexponentiallystabilizingsolution ��D�� S� K 
 of theB�w-CARE.Moreover,

(a)
1 � x0 � u
 � � x0 ��D x0# for all x0 	 H;

(b) For each x0 	 H, there is a strictly minimizingcontrol over � out
� � exp,

namelythatgivenby thestatefeedback operator K.

(c) K is ULRandexponentiallystabilizing.

(d) If (10.87)holdsfor someε h 0, then D is theuniquenonnegativesolution
of theB�w-CARE.

(e) D is thegreatestsolutionof theB�w-CARE.

SeeProposition10.3.1for necessaryandsufficient conditionsfor positive J-
coercivity over � out.

Proof: By Lemma8.3.3,wehave � out
� � exp. By Lemma9.2.17,wehave

D � JD $ 0. By Corollary 10.2.9, �ED�� S� K 
 existsandclaims(b) and(c) hold;
we thenobtain (a) from Theorem9.9.1. Claim (d) follows from Proposition
10.7.3(d3)andclaim(e) follows from Corollary9.2.11.

`
Undersufficient regularity, minimizationover � exp is easy:
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Corollary 10.2.9( � exp� exp� exp: Unique minimum e B�wB�wB�w-CARE e J-coercive)
AssumethatHypothesis9.2.1holdsfor ���� � � exp, andthatD � JD $ 0. Thenthe
following areequivalent:

(i) There is a uniqueminimizingcontrol over � exp � x0 
 for each x0 	 H.

(ii) TheB�w-CARE(9.13) hasan exponentiallystabilizingsolution D � D � 	> � H � Dom� B�w 
"
 .
(iii) Σ is optimizableand � is positivelyJ-coerciveover � exp (i.e., any(hence

all) of Proposition10.3.2(i)–(iii) holds).

If (ii) holds,thenK : � Ms� D � JD 
 N 1 � B�w D � D � JC
 is theuniqueminimizingstate
feedback operator over � exp andULR.

If J Q 0, then the word “unique” is redundant in (i). If π ¢ 0 � 1£ 2 B 	
L1 � A 0 � 1C ; > � U � H 
"
 then“D � JD 	 W > � U 
 ” is redundantin (iii).

Furtherresultsaregivenin Theorems9.2.10–9.2.12.SeeCorollary9.5.10for
applicationsof this andthefollowing corollaryfor parabolicproblems.

Recall that if D is a solutionof the B�w-CARE (which requiresthat D � JD 	W > � U 
 , by Definition 9.2.6),thenAl : � A � BK generatesaC0-semigroup2 l ;
theadditionalrequirementin (ii) is thatthissemigroupsatisfies� 2 l � t 
�� � MeN εt

(t Q 0) for someε h 0 andM = ∞.
If J $ 0, then � is positively J-coerciveover � exp if f thereis ε h 0 s.t.� ir M A
 x0

� Bu0
�%i � Cwx0 � Du0 � Y Q ε � x0 � H � x0 	 H � u0 	 U � r 	 R 
gj

(10.8)
(Note that � ir M A
 x0

� Bu0
i x0 	 HB p Dom� Cw 
 .) The sameholds for

Corollary10.2.10.
Proof of Corollary 10.2.9: Set ���� : � � exp.
1| (i) e (ii) e (iii): By Theorem9.2.16,(i) and(iii) imply (ii). If (ii) holds,

then we obtain Theorems9.2.16 and 9.9.1(k)&(a2) that (i) holds, � is J-
coerciveand

1 � 0 �"��
:Q 0, hence� is positivelyJ-coercive,hencealso(iii) holds.
2| Proposition 10.3.2(i)–(iii): By Proposition 10.3.2(c)&(g1), any of

Proposition10.3.2(i)–(iii) implies Proposition10.3.2(i). Conversely, if (iii)
holds, then(ii) holds,hencethenΣ hasan exponentiallystabilizingULR K,
henceProposition10.3.2(i)–(iii)areequivalent(hencethey all hold),by Propo-
sition10.3.2(e2)(sinceD � JD $ 0).

3| The uniquenessof K follows from Proposition6.6.18(g). The “J Q 0”
claim follows from Lemma9.3.7(1+). If π ¢ 0 � 1£ 2 B 	 L1 � A 0 � 1C ; > � U � H 
"
 , then
“D � JD 	 W > � U 
 ” is redundantin (iii) by Proposition10.3.2(e2).

`
We now establishCorollary 10.2.9under“weaker” assumptions(this forces

usto replacetheB�w-CARE by theCARE):

Corollary 10.2.10( � exp� exp� exp: Unique minimum e CARE e J-coercive) Assume
that 2 B 	 L2 � A 0 � 1
 ; > � U � H 
"
�� Cw

2 	 L1 � A 0 � 1
 ; > � H � Y 
"
 , and Cw
2 B 	

L1 � A 0 � 1
 ; > � U � Y 
"
 .
Thenthefollowingareequivalent:
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(i) there is a [unique] minimizingcontrol over � exp � x0 
 for each x0 	 H, and
D � JD $ 0;

(ii) there is a [unique] exponentiallystabilizingsolution �EDF� S� K 
 of theCARE,
andS $ 0 (or D � JD $ 0);

(iii)
� 2 4 � is optimizable, and � is positivelyJ-coercive over � exp (i.e.,

any(henceall) of Proposition10.3.2(i)–(iii) holds).

Moreover, any solution of (ii) is as in Theorem 9.2.18 (in particular, S �
D � JD $ 0), and K is ULR and the uniqueminimizingstatefeedback operator
over � exp. If J Q 0, thentheword “unique” is redundantin (i).

ForL1 in placeof L2 above,wehaveananalogouscorollaryof Theorem9.2.18
(thus,thenwemustassumepositiveJ-coercivity andwemayremove“D � JD $ 0”
from (i) and(ii)).

Proof: 1| (i) i (ii)&(iii): Assume(i). By Corollary 9.2.19,(ii) and (iii)
aresatisfied(andS � D � JD $ 0) except for the word “positively”, which is
obtainedfrom Proposition9.9.12(b).

2| (iii) i (i): This follows from Corollary 9.2.19, since D � JD $ 0, by
Lemma9.2.17.

3| (ii) i (i): If D � JD $ 0, thenthis is trivial. If S $ 0, thenwe obtain(iii)
from Corollary9.2.19,andProposition9.9.12(b),hence(i) holds,by 2| .

4| Proposition10.3.2(i)–(iii): UseProposition10.3.2(e2)in 2| of theproof
of Corollary10.2.9.

5| Final claims: By Corollary9.2.19,any solutionof (ii) is asin Theorem
9.2.18The uniquenessof K follows from Proposition6.6.18(g).The “J Q 0”
claim follows from Lemma9.3.7(1+).

`
For generalWPLSs,theaboveproblembecomesrathertricky, andwe cannot

saymuchmorethanin Corollary 10.2.5. To make our resultneater, we assume
thatJ Q 0 andstartwith thecasedimU = ∞:

Theorem 10.2.11( � exp� exp� exp: Unique
��R

min
S

min � e IARE e J-coercive)
Assumethat J Q 0, dimU = ∞ and � �� � � exp. Then(i)–(iii) areequivalent.

(i) There is a unique(modulo(9.114))minimizingstatefeedback pair for Σ.

(ii) TheIAREhasanexponentiallystabilizingsolution.

(iii) Σ is exponentiallystabilizableand[positively] J-coercive.

Moreover, thefollowinghold:

(a) If (ii) holds, then this exponentiallystabilizing solution is the greatest
nonnegativeadmissiblesolutionandstrictly minimizing.

(b) If Σ hasanSR(resp.ULR)exponentiallystabilizingstatefeedback operator

with closed-loopsystem � � � � �� � � � � satisfyingHypothesis10.6.1(1.) (resp.

(6.)), thentheIAREis equivalentto theCARE(resp.andto theB�w-CARE),
andalso(i’)–(iii’) belowbecomeequivalentto (i)–(iii).

Thus, then there is a uniqueWR (resp.ULR) minimizingstate feedback
operator iff any(henceall) of thesehold.
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(c) (dimU � ∞dimU � ∞dimU � ∞) Drop the assumptionthat dimU = ∞. Thenall of the above
holds if we add to (i) and (i’) the requirement“and � is J-coercive” (or
“and ��� u � J � u#\Q ε � u � 22 for someε h 0 andall u 	 � exp � 0
 ”).
Theoriginal (i) holdsiff theeIAREhasanexponentiallystabilizingsolution
with S h 0.

(Webelieve thatimplication(iii) i (i) doesnot hold in theindefinitecase.)
SeeProposition10.3.2for equivalent conditionsfor (positive) J-coercivity.

For (b) wenotethatwhendimU = ∞ (but not in case(c)), theconceptWR (resp.
WLR) is equivalentto SR(resp.SLR) andto UR (resp.ULR) (for statefeedback
operatorsandpairsandsolutionsof theAREs),by Lemma6.3.2(a1)&(a2).

By (a), it sufficesto find a maximalnonnegative admissiblesolution(if any)
andcheckwhetherit is exponentiallystabilizing(if none/not,then(i)–(iii) do not
hold).

In additionto the equivalencebetween(i)–(iii), we have an equivalencebe-
tweenthe following, weaker conditionscorrespondingto a minimizing, possi-
bly non-well-posed“statefeedback”(still underthe assumptionsthat J Q 0 and
dimU = ∞):

(i’) Thereis auniqueminimizingcontrolfor Σ over � exp � x0 
 for eachx0 	 H.

(ii’) ThediscretizedIARE hasanexponentiallystabilizingsolution.

(iii’) Σ is optimizableand[positively] J-coerciveover � exp.

(Any of theseis equivalent to the existenceof a uniqueminimizing control in
WPLSform, seeTheorems8.3.9.) If � is SRandD � JD h 0, then(ii’) becomes
equivalent to the Dom� Acrit 
 -CARE (9.67) having an exponentiallystabilizing
solution(cf. Remark9.7.7(b2)).

(Modify theproofof Proposition9.9.12to observethatthediscrete“S” is $ 0
to obtain(i’) e (iii’). Equivalence(i’) e (ii’) follows from the above proposition
(in its discrete-timeform) andTheorem14.1.6. If � is SR andD � JD h 0, then� (andhencealso � d) is UR andD � JD $ 0 (sincedimU = ∞), so that the last
equivalencefollows from Remark9.7.7(b2).)

If Hypothesis9.2.1 holds for � �� � � exp andD � JD $ 0, then any of (i’)–
(iii’) is equivalentto (i)–(iii), aswell asto theB�w-CAREhaving anexponentially
stabilizingsolution,by Corollary10.2.9,evenfor generalJ andU . Thesituation
in discretetime is aboutthesameasfor boundedB (with theexceptionthatD � JD
mustbereplacedby S � D � JD � B��D B).

Proof of Theorem 10.2.11: 1| (i) e (ii): This follows from Theorem
9.9.1(a2)&(e1)&(f2)(for “(i) i (ii)” we note that S h 0 implies that S $ 0;
for “(ii) i (i)” wenotethat D � 6 �l J

6 l $ 0 andJ Q 0 imply thatS Q 0, hence
S $ 0).

2| (ii) i (iii): This follows from Proposition9.9.12,sinceJ Q 0 implies
thatJ-coercivity is equivalentto positiveJ-coercivity (andtheinvertibility of S
impliesthatof ¤ t ).

3| (iii) i (i): Assume(iii). Let
��R ^ S ^ � be exponentiallystabilizing

for Σ with closed-loopsystemΣ � , so that Σ � is positively J-coercive over� Σ �
exp
� � Σ �

out, by Theorem8.4.5(d),i.e., �(�� J � � $ 0, by Lemma8.4.11(a2).
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By Corollary10.2.13(b)(whoseproof is independentof this), theIARE for
Σ � hasanexponentiallystabilizing,minimizingsolution,hencesohastheIARE
for Σ, by Lemma9.12.3(d1). The uniquenessclaim follows from Theorem
9.9.1(f2).

(a) Since J Q 0, we have S Q 0, henceS $ 0 (becauseS 	 W > � U 
 ,
by 1| ) and the solution is the greatestnonnegative solution, by Theorem
9.9.1(a2)&(e1)&(f2).

(b) Let �K be a SR (resp.ULR) statefeedbackoperatorfor Σ with closed-

loopsystemΣ � having � � 	 ���� . Let � �R �S � bethecorrespondingpair.

Assume(iii’). ThenΣ1� : � � � � � �� � � � � is (exponentiallystableand)positively

J-coercive over � Σ �
exp

� � Σ �
out, by Theorem8.4.5(d). By Theorem10.6.3(f1)

(resp.(a)), thereis a (unique)exponentiallystabilizingsolution �EDF� S� K ¥¦
 of
theCARE (resp.andtheB�w-CARE) for Σ1� . SetK : � �K � K ¥ . By Proposition
9.12.4(b), ��D�� S� K 
 is anexponentiallystabilizingsolutionof theCARE (resp.
andtheB�w-CARE,by Proposition9.3.5(a).(By (a),K is strictly minimizing.)

(c) Parts1| –3| still hold exceptthat now “S $ 0” in 1| mustbe deduced
from Lemma9.9.7(c3)&(c4)(notethatnecessarilyD � 6 �l J

6 l $ 0). Thelast
claim follows from Corollary10.2.5(a)&(c).

Theproofsof (a) and(b) donotusetheassumptiondimU = ∞ (this is why
wewrite “SR” insteadof “WR” or “UR” in (b)).

`
For most of the rest of this section,we shall presentresult for � out (recall

that � exp
� � str

� � sta
� � out when Σ is estimatableor exponentiallyq.r.c.-

stabilizable,by Lemma8.3.3).
Whenminimizing over � out, we cannotwe cannotreducetheproblemto the

stablecaseasin Theorem10.2.11,(unlesswe chooseto useTheorem8.4.5(f)),
asillustratedin Example9.13.2.However, if thesystemis q.r.c.-SOS-stabilizable
(e.g.,SOS-stable),thenthe reductionwill succeed.This fact will be appliedin
mostresultsbelow. We first give two resultson the IARE andthentwo on the
CARE.

Corollary 10.2.12( � out� out� out: Unique
� R

min
S

min � e IARE e J-coercivee r.c.f.)
Thenthefollowing conditionsare equivalentto each otherandstronger thanthe
conditions(Crit1)–(Crit4) of Theorem9.9.10:

(Crit1+) (Minimizing
��R S ���R S ���R S � ) There is a [strictly] minimizingq.r.c.-SOS-

stabilizing statefeedback pair for Σ over � out, and � is J-coercive over� out.

(Crit2+) (IARE) The IARE (9.111) has a q.r.c.-SOS-P-stabilizingsolutionD � Da� 	u> � H 
 s.t.S $ 0.

(Crit3+) (JJJ-coercivity) Σ is positively J-coercive over � out and q.r.c.-SOS-
stabilizable.

(Crit4+) (R.c.f.) The map � hasa � J � I 
 -inner q.r.c.f. � � X\T N 1, and Σ is
q.r.c.-SOS-stabilizable.
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If any of thesehasa solution, thenthat solutionsolvesthe other conditions
and(Crit1)–(Crit4), and(a1)–(g3)of Theorem9.9.10apply.

SeeTheorem10.2.14for correspondingCAREs.
Werecallthat � is positively J-coerciveover � out if f thereis ε h 0 s.t.��� u � J � u#qQ ε §g� u � 22 � ��� u � 22 ¨ � u 	 � out � 0
d
gj (10.9)

Proof: 1| (Crit1+) e (Crit2+) e (Crit4+): Exceptfor (Crit3+),Thisfollows
from Theorem9.9.10(e2)(usenormalizationX�^ : � X SN 1� 2, T©^ : � T SN 1� 2 for
implication(Crit2+)&(Crit4) i (Crit4+)).

2| (Crit1+) e (Crit3+): Obviously, (Crit1+) implies (Crit3+) (positiveJ-
coercivity followsfrom Lemma10.2.2).For theconverse,assume(Crit3+) and
let Σ � bethecorrespondingclosed-loopsystem.By Lemma8.4.11(c),� � is J-
coercive over � out, hencethereis a minimizing q.r.c.-SOS-stabilizingpair for� ��� �ª�� � � � � , by (theproofof) Corollary10.2.13.By Theorem8.4.5(g1)&(a),there

is a minimizingq.r.c.-SOS-stabilizingpair for Σ too.
3| Thefinal claimsfollow from Theorem9.9.10(a1)–(a3).

`
In thestablecase,onemoreequivalentconditionis theuniform positivity of

thePopov operator(which is obtained,e.g.,by addingε � u � 2 to thenonnegative
costfunction):

Corollary 10.2.13( � out� out� out:
��R

min
S

min � — Stablecase) Let Σ 	 SOS. The
following conditionsare equivalentto andhavethesamesolutionsas (Crit1+)–
(Crit4+) of Corollary 10.2.12:

(Crit1SOS+)There is a stableuniformly minimizingSOS-stabilizingfeedback
pair

��R S � for Σ over � out;

(Crit2SOS+)theIAREhasa stableP-SOS-stabilizingsolutionhavingS $ 0;

(Crit3SOS+)�(� J ��$ 0;

(Crit4SOS+)� � J � ��) � ) for some) 	 W TIC � U 
 .
Moreover,

(a) If Σ satisfiesHypothesis10.6.1(1.)(resp.(6.)), thenwecanreplacetheIARE
by theCARE(resp.B�w-CARE)above.

(b) If Σ is exponentiallystable, then solutionsof (Crit1SOS+)–(Crit2SOS+)
are exactly theminimizingpairs over � exp, equivalently, the exponentially
(equivalently, I/O-)stabilizingsolutionsof theIAREhavingS $ 0.

Recall from Lemma8.4.11(a2)that (Crit3SOS+)holdsif f � is positively J-
coerciveover � out.

By a “uniformly minimizing” umin we meanherethat
1 � x0 � umin � x0 
 � η 
:M1 � x0 � umin 
�Q ε � η � 22 for all η 	 L2 � R � ;U 
 . If dimU = ∞, thenwe couldreplace

“uniformly minimizing” by “strictly minimizing” in (Crit2SOS+),becausethen
S $ 0 e S h 0 (cf. the proof below). The minimizing pair is givenby (9.140),
i.e.,by � R S � : � � M π

� ) N �ª�&� J 6 I M ) � � (10.10)
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where) is asin (Crit4SOS+).
If Σ is [strongly] stable, then “SOS-” [and “P-”] can be removed from

conditions (Crit2SOS+)and (Crit3SOS+) [and “strongly” can be added], by
Corollary6.6.9.

Proof of Theorem 10.2.13: By Theorem10.6.3(f2)&(b), (Crit2SOS+)–
(Crit4SOS+)and (Crit2+) are equivalent (and the (unique) solutions D of
(Crit2+) areexactly theonesof (Crit2SOS+)).

Finally, we obtain (Crit1+)e (Crit1SOS+), i.e., the fact that the controlR l x0 is uniformly minimizing if f S $ 0, by settingul : � T N 1η in Theorem
9.9.10(e1),becauseS $ 0 if f T N � ST N 1 $ 0 (note that T � � I M S 
 N 1 	W

TIC).
(a) This follows from Theorem10.6.3(b)&(f1).
(b) This follows from Theorem9.9.10(c1)&(c2).

`
Thatwasthecasewith IAREs,but wewould liketo usetheCAREsinsteadof

IAREs. Therefore,we shallassumefurtherregularity. Oneway for this is to use
the class ���� (seeStandingHypothesis10.6.6and(b3) below) ���� to formulate
conditionsunderwhich auniqueminimizingcontrolnecessarilycorrespondsto a
( ���� -stabilizing)solutionof theCARE,henceto aWR statefeedbackoperator.

Theorem 10.2.14( � out� out� out: Unique Kmin eKmin eKmin e CARE e Je Je J-coercive e e e r.c.f.) Let���� � � out. Assumethat � is WR.Thenthe following conditionsare equivalent
to each other and stronger than the conditions(Crit1+)–(Crit4+) of Corollary
10.2.12:

(Crit1+WR) (Minimizing K) There is a WR[strictly] minimizingq.r.c.-SOS-
stabilizingstatefeedback operator for Σ, and � is J-coercive.

(Crit2+WR) (CARE) TheCAREhasa q.r.c.-SOS-P-stabilizingsolutionhaving
S $ 0.

(Crit4+WR) (WR r.c.f.) Themap � hasa � J � I 
 -inner q.r.c.f. � � XqT N 1 with) : � T N 1 beingWRwith X 	 W > � U 
 , andΣ is q.r.c.-SOS-stabilizable.

Moreover, thefollowinghold:

(a) If any of (Crit1+WR)–(Crit4+WR) has a solution, then that solution
solvestheotherconditionsand(Crit1+)–(Crit4+) of Corollary 10.2.12and
(Crit1)–(Crit4), andthen(a1)–(g3)of Theorem9.9.10apply.

(b1) Assumethat Σ hasa SR(resp.URL) q.r.c.-SOS-stabilizingstatefeedback

operator �K s.t.theresultingclosed-loopsystem� ��� ���� � � � � satisfiesHypothesis

10.6.1(1.)(resp.(6.)).

Then (Crit7+WR) (resp.and (Crit6+WR)) is equivalentto (Crit1+WR)–
(Crit4+WR):

(Crit6+WR) (B�wB�wB�w-CARE) TheB�w-CAREhasq.r.c.-SOS-P-stabilizingso-
lution.

(Crit7+WR) � is positivelyJ-coercive(equivalently, �(�� J � � $ 0).
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(b2) (B�wB�wB�w-CARE) AssumethatHypothesis9.2.1holdsandD � JD $ 0.

Thenconditions(Crit1+WR)–(Crit6+WR)areequivalent.

(b3)(MTIC) AssumethatΣ is q.r.c.-SOS-stabilizablein ���� , then(Crit1+WR)–
(Crit4+WR)areequivalentto (Crit7+WR),andimply that X���T 	 ���� .

(b4) In (b1)–(b3),conditions(Crit1+WR)–(Crit4+WR)and(Crit1+)–(Crit4+)
(and(Crit1)–(Crit4) in (b2))areall equivalentto each other.

(c) If Σ is exponentially[q.]r .c.-stabilizable, thenany I/O-stabilizingor input-
stabilizing solution of the CARE having S $ 0 is exponentially[q.]r .c.-
stabilizingandminimizingover � exp

� � str
� � sta

� � out. (SeeTheorem
6.7.15for further reductions.)

If Σ is estimatable,thenany minimizingpair over � out is exponentiallyq.r.c.-
stabilizingandminimizingover � exp

� � str
� � sta

� � out, by Theorem9.9.1(d).
Therefore,thenwe get furtherequivalentconditionsfrom theresultsfor � exp in
thefirst partof this section.

Proof: Theequivalenceand(a)follow from Corollary10.2.12andTheorem
9.9.10(d1)(notethatthe ) of (d1) is replacedby S1� 2 ) ).

(a) This follows from theaboveandCorollary10.2.12.
(b1) 1| (1.): By Proposition 9.12.4(c) the (unique) solutions of

(Crit2+WR) correspond1-1 to the q.r.c.-SOS-P-stabilizingsolutionsof the

CARE for � ��� ���� � � � � . By Corollary 10.2.15(b1)(and (Crit2stable+WR)and

(Crit2stable+WR’)),sucha solutionexists if f � �� J � � $ 0, i.e., if f � is posi-
tively J-coercive (by Lemma8.4.11(b1)).

2| (5.): This is containedin 1| exceptfor the B�w-CARE claim which can
beobtainedasin theproof of Proposition9.3.5.

(Note that Hypothesis9.2.1 would not necessarilyguaranteethat the
minimizingK is q.r.c.-stabilizing.)

(b2) By the above, we have (Crit1+WR)–(Crit4+WR)i (Crit1-4+). By
Theorem9.9.10(d2),(Crit6+WR) is weaker than any of the above, and by
Theorem9.2.9,(Crit6+WR)implies(Crit2+WR).

(b3) This is containedin (b1) except for the fact that X���T 	 ���� , which
follows from Lemma10.6.7(b).

(b4) For (b2), this was noted in the proof of (b2). Obviously, (Crit3+)
implies(Crit7+WR),hencealsotheclaimson (b1)and(b3)hold.

(c) By Theorem6.7.15(b1),any I/O-stabilizing solution of the CARE is
exponentially[q.]r.c.-stabilizing.The restfollows from (Crit2+WR) (and(a))
andLemma8.3.3.

`
Thestablecaseis abit simpler:

Corollary 10.2.15( � out� out� out: KminKminKmin — Stablecase) Let ���� � � out. Assumethat � is
WRandΣ is stronglystable. Thenthefollowingconditionsareequivalentto each
otherandto (Crit1+WR)–(Crit4+WR).

(Crit1stable+WR)(Minimizing K) There is a WR[strictly] minimizingstable,
stabilizingstatefeedback operator for Σ, and � is J-coercive.
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(Crit2stable+WR)(CARE) TheCAREhasa stable, stabilizingsolutionhaving
S $ 0.

(Crit2stable+WR’)(CARE) The CAREhas a solution having T stableand
S $ 0.

(Crit4stable+WR)(WR SpF) We have � � J � �«) � ) for someWR ) 	 W TIC
havingX 	 W > � U 
 .

Moreover, thefollowinghold:

(a) If any of (Crit1stable+WR)–(Crit4stable+WR)has a solution, then that
solutionsolvesthe other conditions,(Crit1+WR)–(Crit4+WR)of Theorem
10.2.14,(Crit1+)–(Crit4+) of Corollary 10.2.12and (i)–(iii) of Theorem
9.1.7, and then (a1)–(g3) of Theorem 9.9.10 apply. In particular, such
solutionsarestableandstronglyr.c.-stabilizing.

(b1) (MTIC) If Σ satisfiesHypothesis10.6.1(1.) (seeLemma10.6.2), then
(Crit1stable+WR)–(Crit4stable+WR)are equivalentto (Crit1+)–(Crit4+)
andto

(Crit7stable+WR)� � J ��$ 0.

(b2) (B�wB�wB�w-CARE) If Σ satisfiesHypothesis10.6.1(6.),then(Crit1stable+WR)–
(Crit7stable+WR)areequivalent:

(Crit6stable+WR)D � JD $ 0 and(theB�w-CARE)� B�w D � D � JC
 � � D � JD 
�N 1 � B�w D � D � JC
 � A� D � D A � C � JC
(10.11)

has a solution D � D � 	*> � H � Dom� B�w 
"
 s.t. s ¬+ Kw � s M3� A �
BKw 
d
 N 1B is in H∞ � C � ; > � U 
"
 , where K : � Mv� D � JD 
 N 1 � B�w D �
D � JC
 .

(equivalently, s.t.K is stableandstabilizing).

Proof: (The labelsof equivalentconditionsfollow roughly thoseof Theo-
rem9.9.10andCorollary10.2.13.)

The above equivalenceis that of Corollary 10.2.13with the additional
requirementthat )­� I M S is WR andX 	 W > � U 
 . (Notethatwe couldagain
removetheJ-coercivity assumptionfrom thefirst conditionif werequiredK to
beuniformly minimizing.)

(a) This follows from theaboveandCorollary10.2.13(a).
(b1)This follows from Theorem10.6.3(f1)&(i)&(iv)&(i v’).
(b2)This follows from (b1)andTheorem10.6.3(i)&(iv)&(i v’).

`
We extendonemoreclassicalresult: if Σ is (approximately)observableand

thecostfunctionis somewhatstandard,then D­h 0:

Lemma 10.2.16(D®h 0D®h 0D�h 0) If Σ is observable, J h 0,
1 � x0 � u
�h 0 for all x0 	 H and

all nonzero u 	 �Y�� � x0 
 , and there is a minimizingcontrol for each x0 	 H, thenD�h 0, where D is theminimalcostoperator.
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Proof: Obviously, u � 0 is strictly minimizing for x0
� 0, hencethe

minimizing control is uniquefor eachx0 	 H, by Lemma8.3.8. By Theorem
8.3.9(b1),wecandefinetheminimal costoperatorD .

If x0 	 H and 0 Q8� x0 ��D x0# � 1 � x0 � ucrit � x0 
"
 , then ucrit � x0 
 � 0, by the
assumption.But then � 6 x0 � J 6 x0 # � 1 � x0 � 0
 � 0, hencethen � J1� 2 6 x0 � 2 � 0,
i.e.,x0 	 Ker� 6 
 �*7 0 ; , hencethenx0

� 0. Weconcludethat D�h 0.
`

Naturally, all of the above theory can be applied to the dual of the LQR
problem(which wasformulatedin [WR00]):

Remark 10.2.17(Final stateestimation problem) Let Σ : � �E� �� � � 	
WPLS� U � H � Y 
 . In the Optimal Final State Estimation Problem (OFSEP)
we wish to find an estimator { l 	Z> � L2 � R � ;U 
g� H 
 s.t. { l � is an optimal
estimatefor

6
, i.e., � 4 M { l ��� is minimal.

Thedual problemof this is the optimal open-loopL2-stabilizationproblem,
where wewishto find a controller

R l 	?> � H � L2 � R � ;U 
"
 s.t. � R l is minimizes6
, i.e., � 6 � � R l � is minimal (the solutionsof this problemcorrespondone-

to-one to those of the OFSEP for Σd through { l � M R dl ); this obviously
correspondsto a minimizingcontrol in WPLSform (i.e., thecorrespondingstate
feedback neednot bewell-posed;cf. Theorem8.3.9).

If onerequires { l to be generatedby someweaklyregular H 	¯> � H N 1 � U 

that stabilizesΣ, equivalently, if onerequires

R l to begeneratedbysomeweakly
regular K 	°> � U � H1 
 that stabilizesΣ, thenoneendsup with our LQRproblem,
henceonecanuseapplicabletheoremsandcorollaries fromabove. In particular,
theOFSEPCAREbecomes(here J � I )HIIJ IIK HSH � � AD � D A� � BJB� �

S � DJD � � w-lim
sL � ∞

Cw DP� s M A� 
 N 1C �w �
H � M SN 1 � Cw D � DJB� 
gj (10.12)

In any case, onecan find a solutionfor the OFSEPby usingthe theorythis

section.If weminimize� � � N w�± �w ± � � asin [WR00],thedualcostfunctionbecomes

thatof Section10.1; in particular, then(thedualsof) Theorems10.1.4and10.1.6
apply. (Cf. alsoDefinitions6.6.10and6.6.21.)

`
Section5 of [WR00] exploresthe connectionbetweenthe OFSEPandesti-

matability (in the open-loopform only, excluding closed-loopsystems,factor-
izationsandCAREs). The main ideaof this formulation (OFSEP)of the dual
problemis to guaranteetheexistenceof asolutionregardlesswhetherthesolution
is of outputinjectionform or not.

For WPLSswith boundedC (e.g.,for finite-dimensionalsystems;see[IOW]),
oneoften definesthe systemandthe cost function without any referenceto the
output:
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Remark 10.2.18(BoundedC) Let
��� �� ���¯	 WPLS� U � H � Y 
 , and let C be

bounded.Set�J : � �
C D � � J �C D � �³² C � JC C � JD

D � JC D � JD ´ 	G> � H @ U 
gj (10.13)

Then � y� Jy# � � A xu C � �J A xu C # , where x : �Z2 x0 �°4 u, y : � 6 x � � u � Cx � Du.
Theconverseis trivial: given 2 , 4 and �J, onemayjusttakeC : � �

I
0 � , D : � �

0
I
�

to gety �8A xu C , andsetJ : � �J to obtainthesamecostfunctionasabove.
If weminimizeover � exp, thenwedo not haveto knowy; knowledge on x, u

and
1 � x0 � u
 is enough,hencethenit is not a problemthat different

6
, � and J

mayresultin same �J.
`

The above remarkcanbe usedwhentranslationour resultsto the language
of several of the articles where a boundedoutput operator is assumed,and
conversely. Note that the above remarkcanbe generalizedto arbitrary regular
WPLSs.

Notes
Thespecialcaseof astandardcostfunction(asin Section10.1)wasexplained

in thenoteson p. 555. Implications“(Crit4SOS+)i (Crit1SOS+)–(Crit3SOS+)”
of Corollary 10.2.13and the SR caseof “(Crit4stable+)i (Crit1stable+WR)–
(Crit2stable+WR’)”aremoreor lessimplicitly containedin [S97b] and[WW].
Thesewere extendedfor jointly stabilizableand detectablesystemsin [S98b]
(cf. Theorems10.2.11and10.2.14). See[WR00] for the first the paragraphsof
Remark10.2.17.All theseresultstreatonly thecase� �� � � out.

Corollary10.2.9generalizesTheorem3.10of [Keu],which replacesHypoth-
esis 9.2.1 by the strongerassumptionthat Σ is a Pritchard–Salamonsystem;
mostclassicalfinite-dimensionalresults(includingTheorem16.3.3of [LR], Sec-
tion 14.3of [ZDG], Section5.2.2of [GL] andCorollary4.5.7of [IOW]) arespe-
cial casesof Corollary10.2.9or of Corollary10.2.8,all theseresultsassumepos-
itiveJ-coercivity or somethingstronger, asonecanshow by applyingProposition
10.3.2.All theseresultstreatonly thecase���� � � exp.

In a sense,Corollary10.2.9usestheweakestpossiblecoercivity assumption
(positive J-coercivity; this canbe relaxed if eCAREs(D � JD <$ 0) areallowed).
We do not know analogousresultsfor more generalsystems(than Pritchard–
Salamonsystems),but thereare someresultswith strongercoercivity or stabi-
lizability assumptionsfor several subsetsof WPLSs,asexplainedabove and in
thenoteson p. 555.
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10.3 Standard assumptions

Euclid taughtmethat withoutassumptionsthere is no proof. There-
fore, in anyargument,examinetheassumptions.

— Eric TempleBell (1883–1960)

In this sectionwe study popularassumptionsof LQR (minimization) prob-
lems; moreexactly, we list sufficient (andnecessary)conditionsfor positive J-
coercivity over � exp or � out.

In classicalresults (in particular, in most minimization results for finite-
dimensional [LR] [GL] [ZDG] [IOW] or Pritchard–Salamonsystems[Keu]
[LW]), oneusuallyassumessomeof (i)–(iv) of Proposition10.3.2(seealsoRe-
mark 10.3.3)or somethingstronger, andshows that the CARE hasan exponen-
tially stabilizingsolutionif f the systemis exponentiallystabilizable,andthat in
eithercasethesolutionleadsto theuniqueminimizing statefeedbackover � exp.
In thoserareresultswheretheassumptionsareweaker thanpositiveJ-coercivity,
the CARE doesnot needto have a solution,althoughthe eCAREor something
similar might have(asin Corollary10.2.5).

Sometimestheminimizationis doneover � out andthe assumptionis oneof
(ai)–(biv) of Proposition10.3.1. The purposeof this sectionis to show that all
theseassumptionsareequivalentto or strongerthanpositive J-coercivity. This
alsoleadsto a list of differentwaysto verify thepositive J-coercivity of a given
WPLSandthusmake theminimizationresultsof Section10.2moreapplicable.

Popularclassicalassumptionsfor LQR, H2 andH∞ problemsincludecondi-
tions “no invariantzeroson iR µ 7 ∞ ; ” (see(iii) far below) and“no transmission
zeroson iR µ 7 ∞ ; ” ((aiv) below); for minimalfinite-dimensionalsystemstheseare
equivalent,asshown below. Westartby showing thatthelatterconditionis equiv-
alentto I -coercivity over � out (recallthat � out � 0
 : �®7 u 	 L2 � R � ;U 
:99 � u 	 L2 ; ):
Proposition 10.3.1( � out� out� out: y 	 L2 i u 	 L2y 	 L2 i u 	 L2y 	 L2 i u 	 L2) Let Σ : � ��� �� ���
	 WPLS� U � H � Y 

andJ � J � 	G> � Y 
 . Considerthefollowingconditions:

(ai)
1 � 0 � u
qQ ε § � u � 22 � ��� u � 22 ¨ for someε h 0 andall u 	 � out � 0
 ;

i.e., � is positivelyJ-coerciveover � out.

(aii) ��� u � 2 Q ε � u � 2 (u 	 L2 � R � ;U 
 ) for someε h 0.

(aiii) r�¶� s
"�ªr�s� s
\Q εI for all s 	 iR µ 7 ∞ ; andsomeε h 0.

(aiv) r�v� s
 u0 <� 0 for all s 	 iR µ 7 ∞ ; andall nonzero u0 	 U.

(bii) ��� u � J � u#�Q ε � u � 22 (u 	 � out � 0
 ) for someε h 0.

(biii) r�¶� s
 � J r�s� s
\Q εI for all s 	 iR µ 7 ∞ ; andsomeε h 0.

(biv) r�v� s
"� J r�v� s
qh 0 for all s 	 iR µ 7 ∞ ; .
(bv)D � JC � 0, D � JD $ 0, C � JC Q 0.

Wehavethefollowing implications:

(a) (J $ 0J $ 0J $ 0) Assumethat J $ 0. Then (ai) e (aii) e (bii). If, in addition,
dimU @ H @ Y = ∞, then(ai)–(biv) areequivalent.
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(b) (Rational r� r� r� ) Assume that dimU @ H @ Y = ∞. Then
(ai) e (bii) e (biii) e (biv)f (bv).

If, in addition,Σ is exponentiallystabilizableandexponentiallydetectable
(e.g., minimal),thenalso(i)–(vi) of Proposition10.3.2areequivalentto (ai)
(seeProposition10.3.2(d)).

(c) (� 	 TIC� 	 TIC� 	 TIC) Assumethat � is stable. Then(ai) e (bii) e � � J �·Q εI e�Er�v� s
 u0 � J r�¶� s
 u0# Y Q ε � u0 � 2U a.e., for all u0 	 U.

If U is separable or r� is piecewise continuous,then a fifth equivalent
conditionis that � r�¸
d� J r�®Q εI a.e.

(d) Assumethat �J : � �
C D � � J �C D � � :

�
Q N
�

N R
� satisfies �J Q 0, R $ 0, and

dimKer� �J 
 � dimKer� Q
 , anddimU @ H @ Y = ∞.

Then there is ε h 0 s.t. � A x0
u0 C � �J A x0

u0 C #nQ ε � u0 � 2U for all x0 	 H, u0 	 U.
Therefore,

1 � x0 � u
\Q ε � u � 22 for all measurableu : R
� + U andall x0 	 H.

In particular, then(bii)–(biv) hold.

(Consequently, if wewishto optimizeover all measurablecontrols,wemay
replace

�
C D � by �J1� 2 andJ by I 	©> � H @ Y 
 to make � out � x0 
 equalto7 u 99 1 � x0 � u
q= ∞ ; ; thenew systemis observableif

�
A
Q � is.)

Condition(aiv) is the standardassumptionthat r� hasa full columnrank on
iR µ 7 ∞ ; . Equivalently, onecansaythat r� hasno transmissionzeroson iR µ 7 ∞ ;
(see,e.g.,Lemma3.27of [ZDG]).

Notethat,whenJ Q 0, � is J-coerciveif f � is positively J-coercive; for stable� this holdsif f �(� J �®$ 0 (cf. (c)). Notealsothat (ai) is includedin (a) and(c)
only (since(bii)–(biv) donot requirethat ��� u � J � u#qQ ε ��� u � 22).

WhenJ $ 0, theconditionin (bii) holdsfor all u 	 � out � 0
 if f it holdsfor all
u 	 L2

loc.

WhendimU @ H @ Y = ∞, thefunction r� is rational,hencer��¹ iR is thenwell

definedalsofor unstable� . In thiscase,wedefine�Er� u0 � J r� u0# asthelimit of itself
atthepolesof A, e.g.,if r�v� ��
 u0 hasapoleats0, it is consideredthat � r�¶� s0 
 u0 � � ∞
(in (aiii), (aiv), (biii) and(biv)). Thus,(aiii) holdsif f ��r�¶� s
 u0 ��Q ε � u0 � for u0 	 U
ands 	 iR � σ � A
 . Naturally, r�v��º ∞ 
 � D (whendimH = ∞). Notealsothat, in
this finite-dimensionalcase,a minimal systemis exponentiallystabilizableand
detectable(see[LR, p. 91]).

Proof of Proposition 10.3.1: (a) By Lemma 8.4.11(d2), we have
(ai)e (bii). Trivially, ��� u � J � u# � ∞ Q ε � u � 2 whenever u 	 L2 � R � � U 
��� out � 0
 , hence(aii) e (bii). Therestof (a) follows from (b).

(b) WeassumethatdimU @ H @ Y = ∞ anddivide theproof in parts.
1| “If u �k� u 	 L2 � R � ; »¼
 , then ½ ¾�� u � r� ru a.e. on iR”: (In fact, this holds

alsowhenever, e.g.,thesetN below is atmostcountable(thishappenswhenever
A is compact)or � is stable(then ½ ¾�� u � r� ru a.e.on iR, by (3.36)).)

BecausedimH = ∞, the set N : � σ � A
 is finite, and thereis ω 	 R s.t.� 	 TICω and r� 	 H � C � N; > � U � Y 
"
 .
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SetΩ : � C
� � N. The functions r� ru 	 H � Ω;Y 
 andG : �À¿� u 	 H2 � C � ;Y 


coincideon C
�
ω , hencethey are identicalon Ω, by LemmaD.1.2(e). Conse-

quently, r� ru ¹ iR 	 L2 is the boundaryfunction of G 	 H2 a.e.,by (a1)(1.) and
(a2)of Theorem3.3.1.)

(Notethat if, e.g., r�v� s
 � � s M 1
 N 1, thenthemap ru ¬+ r� ru on iR inducesa
TI0 mapthat is differentfrom � (which is in TIC∞ � TIC). Above we showed
that thesetwo mapscoincideon theset 7 u 	 L2 99 � u 	 L2 ; . Anotherexample
in thisdirectionis providedbelow Example3.3.10.)

2| (biii) i (biv): This is trivial.
3| (biii) i (bii): Assume(biii). Let u 	 � out � 0
 . Then ½ ¾m� u � r� ru a.e.on

iR, by 1| , hence��� u � J � u# � � 2π 
ON 1� 2 �Er� ru � J r� ru#ÁQ'� 2π 
ON 1� 2ε � ru � 22 � ε � u � 22 � (10.14)

by thePlancherelTheorem(see(D.36)).Thus,(bii) holds.
4| (bii) i (biii): SetF : � r�v� M �̄�
"� J r� , sothatF 	 H � Nc; > � U 
"
 , whereN p C

is finite, andF � r�&� J r� on iR µ 7 ∞ ; .
Assumethat (biii) is false(we aim to show that then also (bii) is false).

Thenthereareε ^o� ε ^Â^Á= ε, ir0 	 iR µ 7 ∞ ; , u0 	 K : �Ã7 u0 	 U 99 � u0 � � 1 ; s.t.
G � ir0 
&= ε ^Á= ε ^Â^ , whereG � ir 
 : � � u0 � F � ir 
 u0# (r 	 R). We may assumethat
ir0 	 iR � N (alterr0 slightly if necessary).

NotethatG 	 H � Nc 
 andG � ir 
 	 R for all r 	 R. Letrg � s
 : � ∏
p
� s M p
"ÄÅ� s � p � 2
�� (10.15)

wherep runsover thepolesof r� u0 onC
� N 1, countingmultiplicities.

Then rg r� u0 	 H∞ � C � N 1;Y 
 , rg 	 H∞ � C � N 1 
 and ¹ rg ¹ � 1 on C
� N 1. Set a : �¹ rg � ir0 
 ¹ , M : � � J ����r� rgu0 � , so that ¹G ¹�¹ rg ¹ 2 � M on C

� µ 7 ∞ ; , M = ∞ and
a h 0. Given ε0 	 � 0 � a
 , there is δ h 0 s.t. a M ε0 = ¹ rg � ir 
 ¹ = a � ε0 on
Jδ : � i � r M δ � r � δ 
 .

For eacht 	 � 0 � δ 
 , we chooseft 	 L2 � R � 
 asin LemmaD.1.24,andsetrht : � rft rg 	 H2 � C � 
 , so that r�zrhtu0 	 H2; in particular, ut : � htu0 	 � out � 0
 .
Now

R : � 2π ��� ht u0 � J � ht u0# L2 Æ R Ç ;Y £ �®È
iR
�Érhtu0 � F rhtu0# U dm �«È

iR
G ¹ rg rft ¹ 2dm

(10.16)� È
Jδ

ε ^ � a � ε0 
 2 ¹ rft ¹ 2dm � È
iR Ê Jδ

M ¹ rft ¹ 2dm � 2πε ^ � a � ε0 
 2 � Mεt � (10.17)

whereεt + 0 ast + 0� . By choosingt small enough,we get R = 2πε ^Â^o� a �
ε0 
 2 and �Erht � 22 Q 2π � a M ε0 
 2. Becauseε0 	 � 0 � a
 was arbitrary, we have����rht u0 � J ��rht u0# � ε ^Ë^k� htu0 � 22 for ε0 andt small enough.Therefore,(bii) does
nothold.

5| (ai) i (bii): This follows from Lemma8.4.11(d1).
6| (biv)i (ai): SetF : � r�v� M �̄�
"� J r� , so that F � r�&� J r� on iR µ 7 ∞ ; and

F 	 H � Nc; > � U 
d
 (in fact,F is rational),whereN p C is finite.
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6 j 1| “(biv) i (biii)” when � is exponentiallystable: Now F � i ��
 	°Ì b � iR µ7 ∞ ; ; > � U 
"
 . Assume(biv).
Obviously, � r � u0 
�¬+Í� u0 � F � ir 
 u0# is continuousiR µ 7 ∞ ; @ U + � 0 � � ∞ 
 .

Therefore, ε : � minr Î iR ÏÑÐ ∞ Òd� u0 Î K � u0 � F � ir 
 u0# exists, where K : �Í7 u0 	
U 99 � u0 � � 1 ; . By (biv), wehaveε h 0, hence(biii) holds(with thisε).

6 j 2| (biv)i (ai): Assume(biv). Beingrational, r� hasan(exponential)r.c.f.r� � rXÓrT N 1 (by Lemma6.5.10(b)).Since

0 =[���\T ul � J �qT ul # � ��X ul � J X ul #Ô� ul 	 L2 � R � ;U 
d
g� (10.18)

we have rXz� J rX3Q εI for someε h 0, by 5 j 1| . By Lemma8.4.11(a2)&(b1),it
follows that � (resp. X ) is positively J-coercive over � out (resp. � Σ �

out), hence
(ai) holds.

7| (bv)i (biv): Assume (bv). Then r�v� s
"� J r�v� s
 � D � JD � B�Õ� s M
A
 N � C � JC � s M A
 N 1B Q D � JD $ 0 for all s 	 iR µ 7 ∞ ; , hencethen(biv) holds.

8| (i)–(vi): Proposition10.3.2(d)providesthelastequivalence.
(c) Now � out � 0
 � L2 � R � ;U 
 , hence� � J �3Q εI is equivalentto (bii), by

Lemma6.4.6. Trivially, (ai)i (bii); the conversealso holds since ��� u � 2 �������� u � 2. By Theorem3.1.3(e2),alsotheremainingtwo equivalenceshold.

(d) Finding ε h 0: Assume(iv). We have �J � P� ��ÖQ 0
0 R
� P � E � E, where�Q : � Q M NRN 1N � , P : � � I 0N R× 1N

�
I
� 	 W > � H @ U 
 (hence �Q Q 0), E �� ÖQ1Ø 2 0

0 R1Ø 2 � P. Thus,0 � � z� �Qz# � � z� Qz# for all z 	 H @ U , henceKer� Q
 p
Ker� �Q
 . But dimKer� �Q
 � dimKer� Q
�= ∞, by (iv), henceKer� Q
 � Ker� �Q
 .
Because0 � �Q, wemusthave

Ker� Q
 p Ker� NRN 1N � 
 � Ker� N � 
gj (10.19)

Therefore, Ker� �Q
 p Ker� N �g
 , henceKer� �Q1� 2 
 p Ker� N �O
 . By Lemma
A.3.1(f), we have L �Q1� 2 � M RN 1N � for someL 	¯> � U 
 . ChooseεR h 0 s.t.
R Q ε2

RI . Givenx0 	 H andu0 	 U , setv0 : � u0 M RN 1N � x0, sothat

κ � x0 � u0 
 : � � ² x0

u0 ´ � �J ² x0

u0 ´ # � � v0 � Rv0# � � x0 � �Qx0# � � E ² x0

u0 ´ � 2 j (10.20)

To obtaina contradiction,assumethat x0 	 H andu0 	 U ares.t. � u0 � �
1 but � E A x0

u0 C � 2 = ε : � min 7 εR Ä 2 � 1Ä 4 � L � 2 ; h 0. Then � v0 � U = εε N 1
R �

1Ä 2, hence � RN 1N � x0 �vQ 1Ä 2, hence �Q1� 2x0 Q 1Ä 2 � L � , henceκ � x0 � u0 
FQ
1Ä 4 � L � 2 Q ε, acontradiction,asrequired.Thus, �J Q εI .

2| Theotherclaims: Sincey � Cx � Du, wherex : ��2 x0 �°4 τu, wehave1 � x0 � u
 � È ∞

0
� ² x

ú
� �J ² x

ú
# dm Q ε � u � 22 � u 	 L2 � R � ;U 
"
gj (10.21)

Thus, the secondclaim holds. Condition(bii) follows from this, by (b) also
(biii) holds(and(biv) if J Q 0).

Let usnow studythenew systemwith
�
Ĉ D ^ � : � �J1� 2. As shown above,1 � x0 � u
 � ∞ for all u <	 L2. With this new setting, �vôut � x0 
 (for Σ ^ ) consists
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of all u 	 L2 � R � ;U 
 for which (10.21) is finite; in particular, we may have6
x0 � � u <	 L2 (but

6 ^ x0 � ��^ u 	 L2). Thus, �vôut includestheoriginal � out.
Then � Ĉ 
 � Ĉ � Q, hencethentheobservability of

�
A
Q � impliesthatof

�
A
C� � ,

by theHautustest(seep. 7 of [IOW]; obviously, rank � λ N AÆ C �Ù£ � C � � � rank � λ N A
C� � ).`

Next we studyJ-coercivity over � exp � 0
 : �37 u 	 L2 � R � ;U 
:99 4 τu 	 L2 ; (we
shallhaveCc : � Cw, Dc : � D for mostapplications):

Proposition 10.3.2( � exp� exp� exp: y 	 L2 i u � x 	 L2y 	 L2 i u � x 	 L2y 	 L2 i u � x 	 L2) Let Σ : � �k� �� ��� 	
WPLS� U � H � Y 
 have compatible generators � Cc � Dc 
 . Let J � J � 	*> � Y 
 ,
andset

κ � x0 � u0 
 : � �Ú� Ccx0 � Dcu0 
�� J � Ccx0 � Dcu0 
k#E� 1 � 0 � u
 : � ��� u � J � u#�j (10.22)

We have the following implications betweenthe conditions(i)–(iii’) given
below:

(a1)Condition(i) is invariantunderadmissiblestatefeedback (in thesensethat

if Σ � is the correspondingclosed-loopsystem,then � � � � �� � � � � satisfies(i) iff� � �� � � satisfies(i)).

(a2) Conditions(i)–(iii’) are invariant under admissiblestatefeedback by a
compatiblestatefeedback operator Kc (in the above sense, with � C� 
 c : �
Cc � DKc, � D � 
 c : � Dc).

(b) If Σ is estimatable, then � out
� � exp, hencethen(i) becomesequivalentto

(ai) of Proposition10.3.1.

(c) (i) e (i”) f (ii) f (iii) i (iii’) (withoutfurther assumptions).

(d) (dim = ∞= ∞= ∞) AssumethatdimU @ H @ Y = ∞. Then(iii) e (iii’) f (vii).

Assume, in addition, that Σ is exponentiallystabilizable. Then(i)–(vi) are
equivalentto each other(andto (ai) and(bii)–(biv) of Proposition10.3.1if
Σ is exponentiallydetectable).Moreover, in (ii), (ii’), (iii) and(iv), wemay
replace“r 	 R” by “r 	 E”, where E p R is dense.

(e1) (BwCARE) Assumethat Hypothesis9.2.1holdsfor ���� � � exp, Σ hasa
compatibleexponentiallystabilizingstatefeedback operator, andDc

� D.

Then (v)f (i’) e (ii’) e (vi) i (i) e (i”) e (ii) e (iii) i (iii’). If, in addition,
D � JD $ 0, then(i)–(iii), (v) and(vi) areequivalent.

(e2) (Bounded or smoothingBBB) Assumethat π ¢ 0 � 1£ 2 B 	 L1 � A 0 � 1
 ; > � U � H 
"
 ,� 	 ULR, Σ is optimizable, andDc
� D.

Then (i)–(iii) are equivalent. If, in addition, Hypothesis9.2.1 holds for���� � � exp, then(i)–(iii), (v) and(vi) areequivalent.

(f) If Σ hasanexponentiallystabilizingcompatiblestatefeedback operator, then
(i’) e (ii’), and(i) e (i”) e (ii) e (iii) i (iii’).

(g1) If � is ULRandDc
� D, then(i’) i (i), and(ii’) i (ii).
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(g2) If Σ hasan exponentiallystabilizingcompatiblestatefeedback operator
s.t. � � 	 SHPR(or 4 � τ 	 SHPRand � 	 SLR), then(ii) i (ii’), and(i) i (i’)
(with Dc

� D � ).
(i)
1 � 0 � u
mQ ε § � u � 22 � � 4 τu � 22 ¨ for someε h 0 andall u 	 � exp � 0
 ;
i.e., � is positivelyJ-coerciveover � exp.

(i’)
1 � 0 � u
qQ ε � 4 τu � 22 for someε h 0 andall u 	 � exp � 0
 , andD �cJDc $ 0.

(i”)
1 � 0 � u
qQ ε §t� u � 22 � � 4 τu � 22 � ��� u � 22 ¨ for someε h 0 andall u 	 � exp � 0
 .

(ii) There is ε h 0 s.t.� ir M A
 x0
� Bu0

�%i κ � x0 � u0 
:Q ε �O� x0 � 2H � � u0 � 2U 
Û� x0 	 H � u0 	 U � r 	 R 
gj
(10.23)

(ii’) D �cJDc $ 0 andthere is ε h 0 s.t.� ir M A
 x0
� Bu0

�%i κ � x0 � u0 
\Q ε � x0 � 2H � x0 	 H � u0 	 U � r 	 R 
gj
(10.24)

(iii) There is ε h 0 s.t. T �ir � IH 0
0 J
� Tir Q εI (r 	 R) on H @ U, where Tir : �� A N ir B

Cc Dc
� .

(iii’) T �ir � IH 0
0 J
� Tir h 0 (r 	 R). Equivalently,

r 	 R &
�
0
0
� <�BA x0

u0 C 	 H @ U & � ir M A
 x0
� Bu0

�%i κ � x0 � u0 
\h 0 j
(10.25)

(iv) There is ε h 0 s.t. � u0 ��r�s� s
"� J r�v� s
 u0#�Q ε § � u0 � 2U � �Ü� s M A
 N 1Bu0 � 2H ¨ for
a.e. s 	 iR.

(v) There is a uniqueminimizingu 	 � exp � x0 
 for each x0 	 H, andD � JD $ 0.

(vi) TheB�w-CAREhasanexponentiallystabilizingsolutionandD � JD $ 0.

(vii) � C � A
 hasno unobservablenodeson iR, J � I , D � D h 0 andD � C � 0.

In classicalLQR results,the assumptionsareusuallywritten in someof the
following forms:

Remark 10.3.3 Obviously, any J $ 0 is equivalentto J � I in all above con-
ditions. Therefore, for J $ 0, we get the following equivalentforms of above
conditions:
(i) ��� u � 2 Q ε �O� 4 τu � 2 � � u � 2 
 ;
(ii) � ir M A
 x0

� Bu0
i � Ccx0 � Dcu0 � Y Q ε �O� x0 � H � � u0 � U 
 ;

(ii’) D �cDc $ 0, and � ir M A
 x0
� Bu0

i � Ccx0 � Dcu0 � Y Q ε � x0 � H ;

(iii’) Tir : � � A N ir B
Cc Dc

� : H @ U + H @ Y hasa full columnrank (i.e., T �ir Tir $ 0)

for all r 	 R;
(iv) �Õr�v� s
 u0 � Y Q ε ��� u0 � U � �Ü� s M A
 N 1Bu0 � H 
 for a.e. s 	 iR andall u0 	 U.

`
Recallthatweset � x � X � ∞ for x <	 X, hence� Ts

A x0
u0 C � H Ý Y � ∞ Q ε � A x0

u0 C � H Ý U
for all x0 	 H � HB, ε h 0. In (iv) and (iv’), the valuesof �Ü� s M A
 N 1Bu0 � H ,
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 u0 � U and � u0 �"r�s� s
"� J r�¶� s
 u0# aredefinedby continuityat ∞ andat thepoles
of � s M A
 N 1 (in particular, thevalue � ∞ is allowed).

Condition (iii’) saysthat Σ hasno invariant zeros on iR µ 7 ∞ ; (see,e.g.,
Definition3.16of [ZDG]). If A is bounded(this is thecasewhendimH = ∞), then
H � H N 1

� H1, hencethennecessarily
�
A B
C D

� arebounded,Cc
� C andDc

� D.
Whenapplyingtheabove results,we oftenassumethat � is WR, so thatwe

cantakeCc
� Cw, Dc

� D.
Example9.13.5showsthatpositiveJ-coercivity over � out doesnot imply pos-

itive J-coercivity over � exp, not even whenΣ is one-dimensionalandexponen-
tially stabilizablewith D � JD $ 0.

Proof of Proposition 10.3.2: Remarks: The numbersε h 0 in (i)–
(iv) neednot be equal, but they are always independentof x0, u0 and r.

Since � � ÖxÖy � � � IH 0
0 J
� � ÖxÖy � # H Ý U : � � �x � H � � �y � J �y# Y � ∞ for �x 	 H N 1 � H, we have� Tir

A x0
u0 C � � IH 0

0 J
� Tir

A x0
u0 C # H Ý U � ∞ when � A M ir 
 x0 � Bu0 <	 H; in particular, (iii)

needto becheckedfor x0 	 HB only.)
Aboutthe proof: By Lemma6.7.8,(i) is equivalentto (i”) and � exp � 0
 �7 u 	 L2 � R � ;U 
:99 4 τu �k� u 	 L2 ; . Thus,wemayandwill neglect(i”) in therest

of theproof.
We shall use the notation of Definition 6.6.10 when referring to state

feedback.
(a1)This is Theorem8.4.5(d).
(a2) For (i) this follows from (a1); for (i’) this follows from the formula� exp � 0
 � �T·� Σ �

exp � 0
 from Theorem8.4.5(c1)(since � D � 
 c : � Dc, by (6.144)),
so we concentrateon (ii)–(iii’). Let Kc be an admissiblecompatiblestate
feedbackoperatorfor Σ, andlet Σ � be the correspondingclosed-loopsystem.
Then² A M s B

Cc Dc ´ ² I 0
Kc I ´ � ² A � BKc M s B

Cc � DcKc Dc ´ � ² A� M s B�� C� 
 c � D � 
 c ´ � : T �s (10.26)

for all s 	 C, by Proposition6.6.18(d2).
In 1| –4| , we assumea claim for

�E� �� � � (as above), andprove the same

claim for � �Þ� ���� � � � � . Theconverseis alwaysobtainedby using M Kc for � �Þ� �Õ�� � � � �
(seeProposition6.6.18(d2)).

1| Claim (ii) is Kc-invariant: Assume(ii). Given x0 	 H, v0 	 U , set
u0 : � x0 � Kcv0, y0 : � Ccx0 � Dcu0, sothat A x0

u0 C � �
I 0

Kc I � A x0
v0 C andy0

� � C� 
 cx0 �� D � 
 cv0, by (10.26).
Now κ � x0 � u0 
 � � y0 � Jy0# � : κ � � x0 � v0 
 , sothatobtain(ii) for Σ � too,because� x0 � 2 � � v0 � 2 � � M0 � 2
 2 ��� x0 � 2 � � u0 � 2 
 , whereM0 is asin Lemma6.3.21

for
� � �ß à � (notethat � v0 � � � x0 � � M0 � u0 � , sincev0

� x0 M Kcu0).
2| Claim(ii’) is Kc-invariant: Drop thelastpartfrom theaboveproof.
3| Claim (iii) is Kc-invariant: Assume(iii). Givenx0 	 H, v0 	 U , r 	 R,

setu0 : � x0 � Kcv0 and ² x1

y0 ´ : � Tir
² x0

u0 ´ � T �ir ² x0

v0 ´ � (10.27)
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asin (10.26).
By (10.29)and(iii), thesum � x1 � 2H � � y0 � Jy0# Y is at leastε ��� x0 � 2H � � u0 � 2U 
 ,

henceat least ��� x0 � 2H � � v0 � 2U 
 ε ÄÅ� M0 � 1
 2, as in 1| . Thus, (iii) holds for� �Þ� ���� � � � � .
4| Claim (iii’) is Kc-invariant: This is analogousto 3| .
(b) This is givenin Lemma8.3.3.
(c) 1| (iii) i (iii’): This is trivial. (Moreover, the equivalencein (iii’) is

obviousfrom (10.29).)
2| (ii) i (i): Assume(ii). Let u 	 � exp � 0
 , so that u � x � y 	 L2 � R � ; »¼
 ,

wherex : � 4 τu andy : � � u. By Lemma6.3.20,we have � �áM A
 rx � Bru andry � Cc rx � Dc ru a.e.on iR. By (3.34),we have� ry � J ry# �«È
R

κ � rx � ir 
g� ru � ir 
d
 dr Q ε �O� rx � 22 � � ru � 22 
 (10.28)

hence
1 � 0 � u
 � � y� Jy#�Q ε �O� x � 22 � � u � 22 
 , by (3.34).Therefore,(i) holds.

3| (iii) i (ii): Now� ² x0

u0́
� T �ir ² I 0

0 J ´ Tir
² x0

u0́
# � � Bu0 M5� ir M A
 x0 � 2H � κ � x0 � u0 
gj (10.29)

Thus, if � A M ir 
 x0 � Bu0
� 0, then (iii) implies that κ � x0 � u0 
aQ ε ��� x0 � 2H �� u0 � 2U 
 for someε h 0 independentof x0 andu0. Thus,then(ii) holds.

(f) By (c), we only have to show the implications“(i) i (ii) i (iii)”, and
“(i’) e (ii’)”. Thiswill bedonebelow.

1 j 1| (ii) i (iii) for exponentiallystableΣ: Let Σ be exponentiallystable.
Assume(ii) with ε 	 � 0 � 1Ä 2
 . By Lemma A.4.4(g1), there is M = ∞ s.t.�Ü� ir M A
 N 1z0 � H � M � z0 � H for all r 	 R andz0 	 H (becauseωA = 0).

Let � x0 � 2H � � u0 � 2U � 1 andr 	 R. Assumethat� z1 � H = δ : � ε Ä 3 � 1 � M � � r6 � 2 � J � � 2 � r6 ��� J ��� r�Y�g
g� (10.30)

wherez1 : � � ir M A
 x0 M Bu0. Set x1 : � � ir M A
 N 1z1, x2 : � x0 M x1, so that� ir M A
 x2
� Bu0, i.e.,x2

� � ir M A
 N 1Bu0. It follows that

y0 : � Ccx2 � Dcu0
� r�v� ir 
 u0 and Ccx0

� Ccx2 � r6 � ir 
 z1 � (10.31)

henceκ � x2 � u0 
 � � y0 � Jy0# andκ � x0 � u0 
 � � y0 � r6 � ir 
 z1 � J � y0 � r6 � ir 
 z1 
k# . Con-
sequently,

κ � x0 � u0 
ÁM κ � x2 � u0 
 � �Er6 � ir 
 z1 � J r6 � ir 
 z1# � 2Re�Er6 � ir 
 z1 � Jy0# (10.32)� �Õr6 � 2 � J � δ2 � 2 ��r6 ��� J ����r�Y� δ = ε Ä 3 (10.33)

(notethatδ = ε Ä 3 = 1,henceδ2 = δ). But � x2 � 2 � � u0 � 2 Q 1 � � x2 � 2 M¯� x0 � 2 Q
1 M 2 � x1 ��� x0 �qQ 1 M 2M � z1 �qQ 1 M 2ε Ä 3,henceκ � x2 � u0 
:Q ε � 1 M 2ε Ä 3
âh 2ε Ä 3,
by (ii). By (10.32),weobtainthatκ � x0 � u0 
\h 2ε Ä 3 M ε Ä 3 � ε Ä 3.

Thus,(10.29)Q min � δ2 � ε Ä 6
 � : ε ^ , hence(iii) holdswith ε ^ in placeof ε.
1 j 2| (ii) i (iii) for Σ havingan exponentiallystabilizingKc: Apply 1| and

twice (a2).
2 j 1| (i) i (ii) for exponentiallystableΣ: Let Σ beexponentiallystableand
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assumethat(ii) doesnot hold for someγ h 0, sothattherearex0 	 H, u0 	 U
andr0 	 R s.t. � ir0 M A
 x0

� Bu0, κ � x0 � u0 
z= γ and � x0 � 2 � � u0 � 2 � 1. Note
thatx0

� � ir0 M A
 N 1Bu0.
Let ε ^ 	 � 0 � 1
 be arbitrary. Chooseδ h 0 s.t. κ � xr � u0 
 = γ and � xr � 2 �� u0 � 2 h 1 M ε ^ for ¹ r M r0

¹ = δ, wherexr : � � ir M A
 N 1Bu0. Set

M : � max7 1 �g���F� 2 � J � ; j (10.34)

By LemmaD.1.24,thereis f 	 L2 � R � 
 s.t. �¼ã r N r0
ã ä δ
¹ rf � ir 
 ¹ 2dr = ε ^ Ä M and� rf � 2 � 1. Setu : � f u0, ry : � r� ru, so that � ry � ir 
�� � ���F��� rf � ir 
�� (r 	 R), and

hence È ã r N r0
ã ä δ
� ry � J ry# dr � È ã r N r0

ã ä δ
M � rf � 2dr = Mε ^ Ä M � ε ^ � (10.35)È ã r N r0

ã å δ
� ry � J ry# dr � È ã r N r0

ã å δ
κ � xr � u0 
 ¹ rf ¹ 2dr = γ � and (10.36)È

iR
��� ru � 2 � � rx � 2 
 dr hÛ� 1 M ε ^ 
 È ã r N r0

ã å δ
� rf � 2dm h'� 1 M ε ^ 
 2 (10.37)

In particular,
1 � 0 � u
�=B� γ � ε ^!
"Ä 2π and � u � 2 � � x � 2 h8� 1 M ε ^!
 2 Ä 2π. Because

ε ^ h 0 wasarbitrary, weseethat(i) cannothold for any ε h γ.
Thus, if (i) holds for someε h 0, we must also have (ii) for the sameε

(otherwise(ii) would fail for someγ = ε too, hence(i) would be falsefor ε, a
contradiction).

2 j 2| (i) i (ii) for Σ havingan exponentiallystabilizingKc: Apply 3 j 1| and
twice (a2).

3| (i’) e (ii’) : DefineΣ ^ and
1 ^ by settingJ ^ : � �

J 0
0 I
� , Ĉc : � �

Cc
0
� , Dĉ : � �

Dc
I
�

(thus,
1 ^ � 1 � � u � 22). Thenfor

1 ^ , condition(i) is satisfied,henceso is (ii),
by 2| . But κ ^æ� x0 � u0 
 � κ � x0 � u0 
 � � u0 � 2U , hence(ii’) is satisfiedby

1
. The

converseis analogous,using “(ii) i (i)” (henceit doesnot even require the
stabilizabilityassumption).

(g1)1| (ii’) i (ii): To deriveacontradiction,assumethat � is ULR, Dc
� D

and(ii’) holdsbut (ii) doesnothold. Chooseε ^ h 0 s.t.D � JD $ ε ^ I . Thenthere
are 7 rn

; p R, 7 xn
; p H, 7 un

; p U s.t. � un � U � 1 (n 	 N), � irn M A
 xn
� Bun

andκ � xn � un 
�+ 0, asn + ∞. Consequently, xn + 0 (by (ii’)).
Given δ h 0, we obtain from Lemma 6.3.22 that there is M = ∞ s.t.� Cwxn � Y � M � xn � H � δ � un � U Ä 2 � n 	 N 
 . Consequently, thereis Nδ 	 N s.t.� Cwxn � Y = δ for n Q Nδ. It follows that

κ � xn � un 
 � � un � D � JDun# � 2Re� Cwx � JDun# � � Cwx � JCwx# (10.38)Q ε ^ M 2 � D ��� J � δ M[� J � δ2 j (10.39)

Becauseδ h 0 wasarbitrary, wehave lim infnL ∞ κ � xn � un 
mQ ε ^ , acontradiction,
asrequired.

2| (i’) i (i): To derive a contradiction,assumethat � is ULR, Dc
� D and

(i’) holdsbut (i) doesnot hold. Chooseε ^çh 0 s.t.D � JD $ ε ^ I . Thenthereare7 un
; p � exp � 0
 s.t. � un � 2 � � xn � 2 � 1 (n 	 N), and ��� u � J � u#m+ 0, asn + ∞,

wherexn : � 4 τun. Consequently, � xn � 2 + 0 and � un � 2 + 1 (by (i’)), asn + ∞.
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Given δ h 0, chooseM as in 1| . Since � ir M A
 rxn � ir 
 � Brun � ir 
 for a.e.
r 	 R, by Lemma6.3.20,weobtainthat� Cw rxn � ir 
�� Y � M � rxn � ir 
�� H � δ

2
� run � ir 
�� U for a.e. r 	 R (10.40)

andfor all n 	 N. Consequently, thereis Nδ h 0 s.t. � Cw rxn � ir 
�� Y � δ � run � ir 
�� U
for a.e.r 	 R andall n Q Nδ, hence� Cw rxn �áèL2 Æ iR;Y £ 2πδ2 for all n Q Nδ (because� run � 22 � 2π � un � 22 � 2π). But

2π1 � 0 � un 
\Q[� D run � JD run# L2 M[� J ��� Cw rxn � 22 M 2 � J ��� D run � 22 � Cw rxn � 22 � (10.41)

by (6.90), hence
1 � 0 � un 
éQ ε ^�� un � 22 M M ^ δ2 M M ^E� un � 2δ for n Q Nδ, where

M ^ : � � J � max7 � D �Õ� 1 ; . Consequently, lim inf
1 � 0 � un 
&Q ε ^�M M ^ δ2. Because

δ h 0 wasarbitrary, wehave lim inf
1 � 0 � un 
qQ ε ^ , acontradiction,asrequired.

(g2) Let Kc be the exponentially stabilizing compatiblestate feedback
operator. Notethat � � 	 SHPRin eithercase,by theassumptionor by Lemma
6.3.23.

1| CaseKc
� 0: Assumethat(i) holds(by (c), this is thecaseif (ii) holds).

By Lemma6.3.6(c2),we have D �� JD � $ 0, i.e., D � JD $ 0. Thus,(i’) holds
(and(ii’) if (ii) holds).

2| (ii) i (ii’), and (i) i (i’) assumingthat Kc stabilizesΣ exponentially,4 � τ 	 SHPRand � � 	 SLR: Assumethat Kc is an exponentiallystabilizing
compatiblestate feedbackoperatorfor Σ. Assumethat the corresponding
closed-loopsystemΣ � is s.t. � � 	 SHPR. Assumethat (ii) (resp.(i)) holds
for Dc

� D � � : D.
(By applying twice Proposition6.6.18(d2)(seealso Lemma6.6.14),we

seethat M Kc is an admissiblecompatiblestatefeedbackoperatorfor Σ � , and�"� C� 
 w M D � Kc � D � 
 is a compatiblepair for Σ. Thuscondition(ii) for Dc
� D �

is well defined.)

Then(ii) (resp.(i)) holdsfor � � � � �� � � � � , by (a2),hence(ii’) (resp.(i’)) holds

for � ��� ���� � � � � , by 1| , hence(ii’) (resp.(i’)) holdsfor Σ, by (a2).

(e1) The first chainof implicationsfollows from (f), (g1) and(g2) except
for (v) and(vi).

“(ii’) i (v)”: This follows from Lemma 10.2.4 (since (ii’) implies (i)).
“(v) e (vi) i (i)”: This follows from Theorem9.2.16“(vi) i (i’)”: If (vi) holds,
thenD � JD $ 0 and(i) holds,by theabove,hencethen(i’) holds.

(e2) 1| (i) i (i’)–(iii’)&(v): Assume(i). By Lemma9.2.17andits proof,
D � JD $ 0 (hence(i’) holds) and there is an exponentiallystabilizing ULR
K 	G> � H � U 
 , hence(i)–(iii’) and(v) hold,by (f).

2| (i’)/(ii)/(ii’)/(iii) i (i): This follows from (g1)and(f).
3| (i)&(i’) e (vi) e (v) under Hypothesis9.2.1: AssumeHypothesis9.2.1

for ���� � � exp. By Theorem9.2.16, (i)&(i’) implies (vi) and (v) implies
(vi). Conversely, if (vi) holds, then we obtain from Theorems9.2.16 and
9.9.1(k)&(a2) that (v) holds, � is J-coercive and

1 � 0 �"��
�Q 0, hence � is
positively J-coercive, i.e., (i) holds.

(d) AssumethatdimU � dimH � dimY = ∞. (Notethat(iv) is notwell defined
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in general,but it is well definedin this finite-dimensionalcase.)
1| (iii’) i (iii): Then A � B � C � D are bounded. Let K : �ê7 � x � u
 	 H @

U 99 � x � 2H � � u � 2U � 1 ; . Thefunction

F � r � x0 � u0 
 : � � A x0
u0 C � T �ir � I 0

0 J
� Tir

A x0
u0 C # � � Ax0 � Bu0 M ir x0 � 2 � κ � x0 � u0 
 (10.42)

is continuousonH @ U for afixedr 	 R, henceM : � maxx � u Î K F � 0 � x � u
q= ∞.
Obviously, there is R = ∞ s.t. F � r � x � u
Gh M for all ¹ r ¹ h R and� x � u
 	 K. But F is obviously continuouson A M R� RC @ K, hence ε : �

minr Î R � Æ x � u£�Î K F � r � x � u
 exists. By (iii’), ε h 0. Apparently, (iii) holdsfor this
ε.

2| (vii) i (iii’): The first condition in (vii) meansthat Ker� � ir N A
C
� 
 �·7 0 ;

for all r 	 R. If u0 <� 0, then κ � x0 � u0 
éQB� u0 � D � Du0#zh 0. If u0
� 0 and� ir M A
 x0

� Bu0 for somer 	 R, thenwehaveCx0 <� 0, hencethenκ � x0 � u0 
 �� Cx0 � Cx0#âh 0.
3| (ii) e (iv): Let ε beasin (ii), andsetM � � C � � � D � . If ir 	 iR � σ � A
 � :

R and � ir M A
 x0
� Bu0, thenCx0 � Du0

� r�v� ir 
 u0, hencethen F : � r�(� J r�
satisfies� u0 � F � ir 
 u0# � κ � x0 � u0 
 , so that (ii) becomesequivalent to (iv) for
ir 	 R. SinceR is densein iR µ 7 ∞ ; , and both sidesof the inequalitiesin
(ii) and (iv) are continuousiR µ 7 ∞ ; + � 0 � � ∞ C , any ir 	 iR µ 7 ∞ ; will do.
(Recallthatwe interpretthevaluesastheir limits asR ë r + r0 for r0

� ∞ and
for termshaving apoleat ir0.)

4| The rest of (d) except E: If Σ is exponentially stabilizable[and de-
tectable],thenwe get theotherimplicationsfrom (e) [and(b) andProposition
10.3.1(b)].

5| The denseset E p R: In the proof of (ii) e (ii’) e (iii) (including the
invarianceof (ii), (ii’) and(iii) w.r.t. Kc

� K in (a2)),we canrestrictr to any
E p R. But Tì 	¯Ì � iR; > � U @ H 
"
 , hence(iii) is invariantunderthe replace-
mentof R by its densesubset.Thesameholdsfor (iv), becausebothsidesof
theinequalityin (iv) arecontinuousiR + A 0 � � ∞ C . `
In conditions(i)–(i”) of Proposition10.3.2,we posedrequirementson u 	� exp � 0
 only; hereweshow thatevenin thefinite-dimensionalcase,this is strictly

weaker thanrequiringthesamefor all u 	 L2 � R � ;U 
 (or for all u 	 � out � 0
 ), and
thatnoneof (i)–(iv’) implies the samefor all u 	 � out � 0
 (naturally, this cannot
bethecasewhenΣ is exponentiallydetectable,by (b)):

Example 10.3.4 Let A � 1 � B � D, C � 0, C � U � H � Y. Then � u � u
for all u, so that � out � 0
 � L2 � R � ;U 
 , but � s M A
 N 1B � � s M 1
 N 1, hence½ ¾ 4 τu � � �"M 1
 N 1 ru, sothat � exp � 0
 �®7 u 	 L2 99 ru � 1
 � 0 ; . Moreover, then ¹ r� ¹ � 1
and ¹ � s M A
 N 1B ¹ � 1 on iR, hencecondition(ii’) of Proposition10.3.2holdsfor
ε � 1, hence(i)–(iv’) hold,by (d) (becauseΣ is exponentiallystabilizable).

Nevertheless,we have
1 � 0 � u
 � � u � 22 and � 4 τu � 2 � ∞ for all u 	 � out � 0
Å�� exp � 0
 , hencewe cannotallow for arbitraryu 	 L2 � R � ;U 
 , not even arbitrary

u 	 � out � 0
 in (i) (nor in (i’) or in (i”)). ¡
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Notes
Many of the above resultsareknown for finite-dimensionalsystems,part of

themalsomoregenerally. Themethodof theproof of “(ii’) e (i’)” in Proposition
10.3.2is partially from [Keu,Section3], wherethesetwo conditions,(v) and(vi)
areshown to beequivalentfor Pritchard–Salamonsystems.

The two propositionsshow that even in the finite-dimensionalcase,several
classicalresultscontainsuperfluousor redundantassumptions.Seethenoteson
p. 555for moreonminimizationproblemsandtheir assumptions.

Proposition10.3.1alsoholds in its discrete-timeform, whereasProposition
10.3.2needsto be rewritten (sinceS takes the role of D � JD); seeProposition
15.2.2.
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Figure10.1:TheH2 problem

10.4 The H2 problem

Grabel’sLaw:
2 is not equalto 3 – notevenfor largevaluesof 2.

In this section,we shallshow how thesolutionfor theminimizationproblem
of Section10.2(for Σ) providesalsothe solutionof theH2 full informationand
statefeedbackproblems(for �Σ) asacorollary.

Wefirst show thatgivenanadditional(bounded)inputoperatorB2 	�> �W� H 
 ,
the norm ��� u � 6 B2w0 � 2 is minimizedby u � t 
 � Kx � t 
 (Theorem10.4.2),i.e.,
thatK solvestheH2 problem.Thenwe allow for unboundedB2 but requirethat
K is bounded(Proposition10.4.3).Finally, we givea corollary, whoseregularity,
coercivity andstabilizabilityassumptionsguaranteethatK necessarilyexistsand
is bounded,sothatit alsosolvestheH2 problem(Corollary10.4.4).

StandingHypothesis10.4.1(J � I � B2J � I � B2J � I � B2) Throughoutthis section,weassumethe
existenceof anadditionalWRinputoperator B2 	u> �W� H N 1 
 , such thatΣ canbe
extendedto�Σ : � ² 2 4 4 26 � � 2 ´ 	 WPLS� U @ W� H � Y 
 with generators ² A B B2

C D 0 ´ j
(10.43)

Wealsoassumethat J � I .

(By B2 being WR we meanthat � 2 is WR. The assumptionJ � I implies
that minimization refers to the cost function

1 � x0 � u
 : � � 6 x0 � � u � 22 (see
Section10.2).Thiscouldeasilyberelaxedto obtainamoregeneralH2 problem.)

In theH2 problem, wewish to find a “controller”
ð

thatminimizesthenorm��r��rð � r� 2 � H2
strong

Æ C Ç ; ñ ÆW�Y £�£ (10.44)

where r� 2 � s
 � C � s M A
 N 1B2 (seeFigure10.1;this is ageneralizationof thetradi-
tional H2 problem,by Remark10.4.6). But �ªrò � H2

strong

� supó w0
ó
W è 1 � ò w0δ0 � 2

for any rò 	 H∞
∞; indeed, the Laplacetransformis an isometric isomorphism

of > �W� L2 � R � ;Y 
"
 onto H2
strong� C � ; > �W� Y 
"
 , by Lemma F.3.4(d). (Hereò

w0δ0 : � ½ ¾ N 1 rò w0.) Thus,an equivalentdefinition for the H2 problemasfind-
ing for an arbitraryw0 	 W a “stabilizing” control (seethe proofsof Theorem
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10.4.2andProposition10.4.3for explanations)s.t.1
H2 � w0 � u
 : � 1

2π
��r� ru � r� 2w0 � 2H2 Æ C Ç ;Y £ � � ��� u � 6 B2w0 � 22 if B2 	u> � W� H 
"


(10.45)
is minimized. Thus,we areminimizing the energy of the impulseresponse(the
outputcorrespondingto “secondinputw0δ0”, whereδ0 is theDiracdeltafunction)
of thesystem.

This impliesthattheassumptionr� 2 	 H2
strong� C �ω ; > � W� Y 
"
 for some ω h 0 (10.46)

is necessary(becauser� ru 	 H2
ω for all ru 	 ½ ¾ A L2

ϑ � R � ;U 
 C , whereω Q ϑ is s.t.r� 	 H∞
ω (andwhereϑ is s.t. the controlsarerequiredto be ϑ-stable),it follows

thatwemusthave r� 2w0 	 H2
ω, for all w0 	 W).

Therefore,
� � � 2 � has a realization with a boundedB2 (see (6.213),

althoughone is usually more interestedin the original system,whereB2 may
be unbounded.Usually onealsorequiresthe control law

ð
: w0 ¬+ u to be of a

specificform (e.g.,astatefeedbackcontroller).
Due to the above, we startwith the caseB2 	¯> �W� H 
 (which implies that

(10.46)holds).As explainedabove,at leastwith suchsystemsweendupwith the
minimizationproblemof Section10.2exceptthat the initial statesarerestricted
to B2

AW C ; in particular:

Theorem 10.4.2( ������������ : LQR i H2i H2i H2) AssumethatB2 	u> � W� H 
 andthat there is
a minimizingWRstatefeedback operator K over ���� .

ThenK solvestheH2 problem(strictly if K is strictly minimizing),i.e., it leads
to theminimizationof thecost(10.45),for each w0 	 W; seeFigure10.2.

Thus,in this case,thestatefeedbackandfull informationH2 problemshavea
commonsolution,namelytheminimizing K. SeeSection10.2for sufficient and
necessaryconditionsfor theexistenceof K.

Assumefor a while that alsoB is bounded.Thena sufficient condition for
the existenceof K is that Σ is positively J-coercive (seeSection10.3)and“ � �� -
stabilizable”(i.e., � �� � x0 
n<� /0 for all x0 	 H) if, e.g., � �� � � out or � �� � � exp.

Moreover, thenK is necessarilyULR andthe optimal controller
ð

becomes
themap

ð � R l B2 : W + L2 � R � ;U 
 (since
6 l B2w0

� 6 B2w0 � � R l B2; note
that rð � ” ôS l 2”, where

S l 2 	 TIC∞ ( 	 TIC if �Y�� � � exp) is the inverseLaplace
transformof rð asa H∞

∞ function,whereas
ð

is the inverseLaplacetransformofrð 	G> �W� L2 � R � ;U 
"
 (when,e.g., � �� � � out or � �� � � exp)).
Proof of Theorem 10.4.2: By definition, the control u : � R l B2w0

minimizesthecost � 6 B2w0 � � u � 22 over u 	 � �� � B2w0 
 (which in case � �� �� exp meansthecontrolsu 	 L2 � R � ;U 
 thatmakex : �V2 B2w0 ��4 τu (andhence
y : � 6 B2w0 � � u) stable).(If this minimizationis strict for all x0 	 H in place
of B2w0, thenit is strict for aparticularw0 	 W.)

N.B. If ���� � � exp, thenK is an exponentiallystabilizingstatefeedback
operator(andit minimizestheH2 normover all suchoperatorsaswell asover
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Σî xî yî u ïu wï
Figure10.2:TheH2 statefeedbackproblem

all u 	 � exp � B2w0 
 , for eachw0 	 W).
`

In classicalH2 problems,onehas ���� � � exp (anddimU @ H @ Y = ∞), and
oneassumesthattheoriginalsystemΣ is exponentiallystabilizableandpositively
J-coercive,sothatthereis aunique(bounded)minimizingstatefeedbackoperator.
Thus,thenTheorem10.4.2becomesapplicable.

Next wedroptheassumptionthatB2 is boundedandassume,instead,thatthe
cost-minimizingstatefeedbackoperatorK is bounded. We againshow that K
alsosolvestheH2 problem(assumingthat ���� � � exp andthatthetwo necessary
“L 2

strong” assumptionshold):

Proposition 10.4.3( � exp� exp� exp: LQR i H2i H2i H2) Assumethat ���� � � exp. Assumethat
π ¢ 0 � 1£ 2 B2w0 	 L2 � A 0 � 1
 ;H 
 andπ ¢ 0 � 1£ Cw

2 B2w0 	 L2 � A 0 � 1
 ;Y 
 for all w0 	 W (this
is necessaryfor theexistenceof admissiblecontrols for each w0 	 W).

Assumealsothat there is a boundedminimizingstatefeedback operator K for
Σ.

ThenK solvesthe H2 problem(strictly if K is strictly minimizing); i.e., the
minimumof � r� ru � r� 2w0 � H2 Æ C Ç ;Y £ over � exp-stabilizingcontrolsu is equalto� r� l 2w0 � H2 Æ C Ç ;Y £ � � 6 l B2w0 � L2 Æ R Ç ;Y £ � �Ü� Cl 
 L � s2 ìl B2w0 � L2 Æ R Ç ;Y £ (10.47)

TheaboveassumptionsonB2 holdif f � �dM A
 N 1B2 	 H2
strong� C �ω ; > � W� H 
"
 andr� 2 	 H2

strong� C �ω ; > � W� Y 
"
 for someω 	 R, by Lemma6.8.1(a)&(d1).
Here � exp-stabilizingcontrolsmeansuchu 	 L2 � R � ;U 
 that the stateof Σ

with “initial stateB2w0” is in L2. Since 4 τu 	 L2
∞, theconditionπ ¢ 0 � 1£ 2 B2w0 	

L2 � A 0 � 1
 ;H 
 is necessary;it wasshown above thatπ ¢ 0 � 1£ Cw
2 B2w0 	 L2 � A 0 � 1
 ;Y 


(and D2
� 0) is alsonecessary. Thus, the assumptionsat the beginning of the

propositiondo not reducegenerality.
Note that we cannotrequire that x 	ZÌ unless 2 B2w0 	ZÌ � R � ;H 
 for all

w0 	 W (e.g.,B2 is bounded),since4 τu 	�Ì (for any u 	 L2
∞ � R � ;U 
 ); see(10.50).

Proof of Proposition 10.4.3: 1| �Σ l : SinceK is bounded,it extends�Σ to�Σext : � õö 2 4 4 26 � � 2R S S
2

÷ø 	 WPLS� U @ W� H � Y @ U 
 with generators õö A B B2

C D 0
K 0 0

÷ø �
(10.48)

by Lemma6.3.16(c).It followsfrom that
�
K
0
� is aboundedULR exponentially

stabilizingstatefeedbackoperatorfor �Σ, by Lemma6.6.11(alternatively, we
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canusethestatefeedbackoperator
�
0 I
0 0
� for �Σext). Thecorrespondingclosed-

loopsystemis givenby�Σ l : � õö 2 l 4ml 4ml 26 l � l � l 2R l S l S l 2

÷ø � õö 2 �ù4(l R 4 T 4ml S 2 �°4 26 � � l R �\T � l S 2 � � 2T R TÀM I T S 2

÷ø
(10.49)

(use(6.133)with T � � �®��à
2

0 I
� or (6.125)with I M L � � �Eú N à 2

0 I
� ; two left

columnsof �Σ l areexactly Σ l , the closed-loopsystemof Σ correspondingto
K).

2| We have 2 l B2w0 �O� Cl 
 w 2 l B2w0 	 L2: Let w0 	 W bearbitrary. SinceR � K 2 , wehave2 l B2w0
��2 B2w0 �°4ql τK 2 B2u0 	 L2 � A 0 � 1
 ;H 
 (10.50)

since 2 B2w0 	 L2 � A 0 � 1
 ;H 
 andK 	?> � H � U 
 . By Lemma6.8.1(a),it follows
that 2 l B2w0 	 L2 � R � ;U 
 , (sinceω �û± = 0). Analogously,r� l 2w0

� ¿� l rS 2w0 � r� 2w0
� ¿� l K � ��M A
 N 1B2w0 � r� 2w0 	 H2 � C �ω ;Y 
 (10.51)

for someω h 0, hencer� l 2w0 	 H2 � C � ;Y 
 (i.e., � Cl 
 w 2 l B2w0 	 L2 � R � ;Y 
 ),
by Lemma6.8.1(d1).

3|
� exp-stabilizingcontrols u: Let w0 	 W. Assumethatu 	 L2 � R � ;U 
 is� exp-stabilizing, by which wemeanthatx 	 L2, where

x : �­2 B2w0 �°4 τu �­2 l B2w0 �°4ml τ � ) u M R B2w0 
 (10.52)

(weusedherethefactsthat 2 l �ü2 ��4(l τ
R

and4ql � 4 ) N 1). By assumption,2 l B2w0 	 L2, hence4ml τul 	 L2, whereul : ��) u M R B2w0
� u M Kx 	 L2.

Then(recall that rS 2 � s
 � K � s M A
 N 1B2
� rR � s
 B2)ry : � r� 2w0 � r� ru � r� 2w0 � ¿� l rR B2w0 M ¿� l rR B2w0 � ¿� l r) ru � r� l 2w0 � ¿� l ul j

(10.53)

4| Minimumat ul � 0: Let w0 	 W bearbitrary, andsetrz: � r� l 2w0, sothat
z � � Cl 
 L � s2 ìl B2w0, by Lemma6.8.1(d1).For eachn 	 N, choosetn 	 � 0 � 1Ä n

s.t.xn : �Z2 tnl Bw0 	 H. Then

zn : � � Cl 
 L � s2 ìl 2 tnl B2w0
� 6 l xn 	¶ý � n 	 N 
gj (10.54)

But zn
� τ N tnπ

�
τtnz, hencezn + z in L2 � R � ;Y 
 asn + ∞, by CorollaryB.3.8.

Consequently,� z�k� l ul # L2
� lim

n
� 6 l xn �k� l ul # L2

� 0 � ul 	 L2 
gj (10.55)

Thus,if u andul areasin 3| , then �Er� l 2w0 � ¿� l ul # H2
� 0, sothat� r� 2w0 � r� ru � 2H2

� � r� l 2w0 � 2H2 � � r� l ul � 2H2 j (10.56)

Consequently, theminimumis achievedat ul � 0. This minimumis strict if f
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 ). `
WhenΣ is very regular (cf. Theorem9.2.3)andD � C � 0 (or C is bounded),

theassumptionsof thepropositionaresatisfied:

Corollary 10.4.4(H2H2H2 problem when 2 Bu0 	 L2) Assume that ���� � � exp,2 B2w0 	 L2 � A 0 � 1
 ;H 
 andCw
2 B2w0 	 L2 � A 0 � 1
 ;Y 
 for all w0 	 W. Assumealso

thatHypothesis9.2.1holds,D � C 	?> � H � U 
 , andD � D $ 0.
Thenthere is a minimizingcontrol for each x0 	 H iff Σ is optimizableand �

is I -coercive(seeProposition10.3.2).Assumethat this is thecase.
Thenthere is a boundedstrictly minimizingstate feedback operator K for

Σ (correspondingto the unique exponentiallystabilizing solution �ED�� D � D � K 

of the B�w-CARE), and K solvesthe H2 problem strictly; i.e., the minimum
of �Õr� ru � r� 2w0 � H2 Æ C Ç ;Y £ over � exp-stabilizing controls u is strict and equal to�Õr� l 2w0 � H2 Æ C Ç ;Y £ .

In particular, theproblemcanbesolvedin theparaboliccase(whenHypothe-
sis9.5.1holds,γ = 1Ä 4, β =ÛM 1Ä 2, D � D $ 0 andD � C 	?> � H � U 
 ), by Theorem
9.2.3.

Alternatively, whenB andB2 arebounded,D � C 	°> � H � U 
 , D � D $ 0 and �
is J-coercive, all assumptionsof the corollary aresatisfied. In eithercase,also
the statebecomescontinuous.Hypothesis9.2.1is alsosatisfiedin the casethat2 Bu0 	 L2 � A 0 � 1
 ;H 
 andCw

2 Bu0 	 L2 � A 0 � 1
 ;Y 
 for all u0 	 U , i.e., thatalsoB
satisfiestheassumptionsposedon B2.

Proof of Corollary 10.4.4: By Corollary10.2.9,thereis aminimizingcon-
trol for eachx0 	 H if f Σ is optimizableand � is (necessarilypositively, since
I Q 0) I -coercive, andsucha control is necessarilyunique,with �ED�� D � D � K 

being the uniqueexponentially stabilizing solution of the B�w-CARE. Since
D � C 	G> � H � U 
 , theoperatorK is bounded.Therestfollows from Proposition
10.4.3.

`
Remark 10.4.5(x0 <� 0x0 <� 0x0 <� 0) As one observesfrom the proofs, the (statefeedback)
controller

� ð
0
ð � : � x0 � w
�¬+ u : � R l x0 � R l B2w0 of Theorem10.4.2,Propo-

sition 10.4.3andCorollary 10.4.4actuallyminimizesthenorm��r6 x0 � r� ru � r� 2w0 � H2 Æ C Ç ;Y £ (10.57)

for anyx0 	 H (notmerely for x0
� 0 asin theH2 problem).Indeed,the“cost”� ¿6 l x0 � ¿� l ¿ulP� ô� l 2w0 � 2H2
� � ¿6 l x0 � ô� l 2w0 � 2H2 � � ¿� l ¿ul � 2H2 (10.58)

inducedby K correspondsto thecontrol law
� ð

0
ð � , where ¿ul is theexternal

input. For ul 	 L2
c � R � ;U 
 wehave � ¿� l ¿ul � 2H2

� � ¿ul � S¿ul # (where S � D � D if Σ
is regular enough;this is thecasein Corollary 10.4.4),by(9.162);if � l is stable
(e.g., ���� � � exp), thenthis is thecasefor all ul 	 L2 � R � ;U 
 .

Thus,not only is there a unique
1

H2-minimizingu for each w0 (and x0
� 0),

there is a unique
1

H2-minimizingu for each w0 and x0, and this u is of state
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feedback form, namelygenerated by the (
1

-)minimizing K (in particular, the
(optimal)functionfromstateto u is static).

AsnotedbelowProposition10.4.3,conditions2 B2w0 � Cw
2 B2w0 	 L2

loc (w0 	
W) arenecessaryfor theexistenceof a solutionover � exp.

`
Remark 10.4.6(Traditional H2 problem) Traditionally, in the (finite-
dimensional)H2 problemoneminimizesthe(squared)norm��r� l 2 � 2 : � ∑

q Î Q �Õr� l 2wq � 2H2 � (10.59)

where 7 wq
;

q Î Q is an orthonormalbasefor W (this form is definedas the H2

normof thetraceof r�&�l 2 r� l 2, seep. 265of [IOW] for theequivalenceof thetwo
definitions).

Sinceweminimize ��r� l 2w0 � 2H2 for each w0 	 W, our solutiona fortiori solves
the traditional H2 problemprovided that it is solvable, i.e., that the norm can
be madefinite (e.g., whendimW = ∞ and the conditionsof of Theorem10.4.2,
Proposition10.4.3or Corollary 10.4.4are satisfied).Thus,whendimW � ∞, we
haveto strengthenour optimizabilityassumptiontheincludetheconditionthat

∑
q Î Q

��r� 2wq � r� ruq � 2H2 = ∞ (10.60)

for somefunctionsuq 	 ���� � B2wq 
 (q 	 Q) to guaranteea solutionalso for the
traditionalH2 problem(if B2 is unbounded,wemustextend � �� to B2

Aþ7 wq
; C asin

3| of theproofof Proposition10.4.3).
`

We have solved above the statefeedbackand full informationH2 problems
(they have a commonsolution). In classicalliterature,oneusually also solves
other specialH2 problemsand then the generalH2 (dynamicpartial feedback)
controlproblemfor a given(evenmoreextended)systemõö 2 4 4 26 � � 26

2 � 21 � 22

÷ø 	 WPLS� U @ W� H � Y @ Y2 
 with generators õö A B B2

C D 0
C2 0 D22

÷ø j
(10.61)

We end this sectionby a brief overview of the generalH2 problem. One

usually posesfor � � �
2�

2
�

22
� d

the sameassumptionsas on Σ (thus guaranteeing

thesolutionfor theLQR problemfor thatsystem).
It seemsthat it is straightforward to extendthe classicalresultsfor infinite-

dimensionalsystemsby usingtheseparationresultof Proposition10.4.3(andits
proof). (An alternative approachwould beto formulatetheproblemsin I/O map
form andsolvethemasin Section12.3.)

Indeed,since ¿� l is � I � D � D 
 -inner(andit canbemadeinnerby replacingK by�
K ^ F ^ � with K ^ : � XK, F ^ : � I M X, X : � � D � D 
 1� 2), thecostfor a (dynamic

partialfeedback)controller
ð l : w0 ¬+ ul is equalto

1
H2
� ��� l w0 � 22 � � ð l w0 � 22.

Thus,the solutionof the generalH2 problemis obtainedby finding the optimal
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2 � 21 � 22

÷ø 	 WPLS� U @ W� H � U @ Y2 
 with generators õö A B B2M K I 0
C2 0 D22

÷ø j
(10.62)

Since we cannotuse the theory of Section10.2 directly for the H2 OEP
(unlike for the H2 full informationproblem(FIP)), we leave it to the interested
readercompletethe detailsundersuitableregularity assumptions,suchasthose
of Lemma 6.8.5 for p � 2 � q or thoseof Hypothesis9.5.7(3.) (no special
assumptionsseemto beneededin thediscrete-timecase).See,e.g.,pp. 316and
395–396of [ZDG], Chapter9 of [IOW] or ChapterVIII of [DGKF] for detailsfor
finite-dimensionalsystems.

Notes
See,e.g.,[AM90], [AM79], [KS] or [GL, p. 207] for themotivationandthe

historyof theH2 problemand[IOW] or [ZDG] for completesolutionsin thefinite-
dimensionalcase.Thefirst state-spacesolutionseemsto begivenin [DGKF] and
a verygeneralonein [IOW].

The classicalassumptionsfor the state feedbackand full information H2

problemsarepositive J-coercivity, exponentialstabilizability andD � D $ 0, so
that correspondingresultsare containedCorollary 10.4.4 (since B and C are
boundedfor finite-dimensionalsystems).

Naturally, by takingcausaladjointsweobtainasolutionof thedualproblems,
the H2 output injection and full control problems(see[GL]). Their stochastic
counterpartis calledtheKalmanfilter problem(see,e.g.,[GL] or [LR]).

Also the generalH2 problem has a stochasticcounterpart,the so called
Linear Quadratic Gaussian(LQG) problem;it hasbeenstudiedalsofor infinite-
dimensionalsystems,see[CP78].

Accordingto [Helton85],p. 17,G. Zamesindicatedin thelate1970show the
H∞ problemis usuallyphysicallybettermotivatedthanthe H2 problem. Since
thattimetheformerproblem(whosesolutionsaremorecomplicated)hasbecome
muchmorepopularthanthelatterone.
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10.5 Real lemmas

Rocky’s Lemmaof InnovationPrevention:
Unlesstheresultsareknownin advance, fundingagencieswill reject
theproposal.

In this section,we presenttheBoundedRealLemma(in two forms)andthe
StrictPositiveRealLemma,whichallow oneto usetheRiccatiequationto verify
whether ���
� TIC � γ or Re��� ���"� #:$ 0, respectively.

Wegiveour resultsfor “L 1-type” systems;seeTheorem10.6.5(e)for alterna-
tive regularity assumptions.For generalregularsystemsonly thesufficiency part
holds(unlesswe acceptIAREs in placeof CAREs). SeeTheorems15.4.1and
15.4.3andProposition15.4.2for the discrete-timecounterpartsof theseresults
(andto getanoverview of this sectionwithout any regularity considerations).

Our theoremsdo not needany verification of stability/stabilizability; this
is basedon the fact that we may apply the theory of the next sectionin case
“C � JC � 0”, asoneobservesfrom theproofs.

Thus,undersufficient regularity, a uniform Riccati inequalityhasa solution
if f Σ is exponentiallystableand �����¸= γ:

Theorem 10.5.1(GeneralizedStrict BoundedReal Lemma) Assumethat γ h
0.

(a) If (1.) or (2.) or (5.) of Hypothesis9.2.2holds,or if C is boundedandat
leastoneof thefollowingconditionsholds:

1. dimY = ∞;
2. π ¢ 0 � 1£ 2 B 	 L1 � A 0 � 1
 ; > � U � H 
"
 ;
3. π ¢ 0 � 1£ 2 Bu0 	 L1 � A 0 � 1
 ;H 
 for all u0 	 U andD � C � 0;

4. D � C � 0 and � r�¯M D 
 u0 	 H2
strong� C � ; > � U � Y 
"
 for all u0 	 U;

thenthefollowing areequivalent:

(i) Σ is exponentiallystableand �����¸= γ;
(ii) There is D � 0 s.t. D AH C p Dom� B�w 
 and² A� D � D A M C � C � B�w DÓM D � C 
 �

B�w D¯M D � C γ2I M D � D ´ $ 0 on Dom� A
m@ U j
(10.63)

(iii) There is D � 0 s.t.S: � γ2I M D � D � s-limsL � ∞ B�w DP� s M A
 N 1B exists
and ² A� D � D A M C � C � B�w DÓM D � C 
 �

B�w D¯M D � C S ´ $ 0 on Dom� A
m@ U j
(10.64)

(b) If π ¢ 0 � t £ 2 B 	 L1 � A 0 � t 
 ; > � U � H 
d
g� π ¢ 0 � t £ Cw
2 	 L1 � A 0 � t 
 ; > � H � Y 
"
 , and

π ¢ 0 � t £ Cw
2 B 	 L1 � A 0 � t 
 ; > � U � Y 
"
 for somet h 0, then(i) e (iii) f (ii).
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(c1) If � is ULR, thenwehave(i) f (iii) f (ii).

(c2) Anysolutionof (ii), (iii), (ii’) or (iii’) is strictly negative( D'= 0). Under
the assumptionsof (a), there is an exponentiallystabilizingsolution(if (i)
holds).

(d) If � is SR,thenwehave(ii) e (ii’) i (iii) e (iii’), where

(ii’) � D �z= γ, andthere is D � 0 s.t. D AH C p Dom� B�w 
 and� B�w D©M D � C 
 � � γ2I M D � D 
�N 1 � B�w DÓM D � C 
%b A� D � D A M C � C j
(10.65)

(iii’) There is D � 0 s.t.

S: � � γ2 M D � D 
 � s-lim
α L � ∞

B�w DP� α M A
ON 1B $ 0 � and (10.66)� B�w D©M D � C 
 � SN 1 � B�w D©M D � C 
�b A� D � D A M C � C j (10.67)

We alwaysrequirethat D 	G> � H 
 . As in Definition 9.1.5,conditions(iii) and
(iii’) include the requirementsthat the termsaredefined(in particular, that the
limits convergestrongly;asin Remark9.1.6,it follows that D AHB C p Dom� B�w 
 ).
If B is bounded,thenB�w � B� andDom� B�w 
 � H, so that then((a) appliesand)
(ii) becomesessentiallysimpler.

Recallthat“C � JC � 0” meansthat � x0 � C � JCx0#oÿ H1 � Æ H1 £ ��� � 0 for all x0 	 H1 : �
Dom� A
 . Thephrase“on Dom� A
q@ U ” refersto theinnerproduct � A x1

u1 C � A x2
u2 C # : �� x1 � x2# H1 �H �× 1 � � u1 � u2# U , sinceH is thepivot spaceandH1 : � Dom� A
 .

Note that (10.65)(resp.(10.66)&(10.67))is an “inequality form” of the B�w-
CARE (resp.of the (stronglyregular)CARE). Hypothesis9.5.1is strongerthan
theassumptionof (b), and � is ULR whenever theassumptionsof (a)or (b) hold.

SeeTheorem10.6.5(e)(with Σaug and Jaug in placeof Σ and J, i.e., with

substitutions�C � � C0
I
� , �D � � DI

0
� , �J � diag� M I � γ2 � ε 
 ), for alternative regularity

assumptions.
Notethatwe couldalsohave thereal lemmasof this sectionbasedon IAREs

insteadof B�w-CAREs or CAREs, to make them look like their discrete-time
counterparts.

If one replacesJ by M J in the proof, the operatorsD � 0 and S $ 0 are
replacedby MFD�Q 0 andS b 0, sothatthecondition(ii) becomes“ � D �&= γ, and
thereis D�Q 0 s.t. D AH C p Dom� B�w 
 andMv� B�w D � D � C 
 � � γ2I M D � D 
ON 1 � B�w D � D � C 
%b A� D � D A � C � C"; (10.68)

(specialcasesof) thisconditionis commonin theliterature,but wehavemadethe
choicethat leadsto a positive Popov operatorandto thesettingof Section10.6.
Obviously, analogouschangescanbemadeto theotherconditions(multiply the
inequalitiesby M 1 andreplaceD by M¸D ).

Proof of Theorem 10.5.1: 1| Define Jaug : � � N I 0
0 γ2I

� , 6 aug : � ���
0
� ,� aug : � � �

I
� andΣaug : � � � ��

aug
�

aug
� .
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Then ����� TIC = γ if f �&�augJaug� aug
� γ2I M©�&�á�8$ 0. Moreover, Σaug is

exponentiallystableif f Σ is, by Lemma6.1.10(a1),andC �augJaugCaug
� M C � C �

0 (and D �augJaugCaug
� M D � C and D �augJaugDaug

� γ2I M D � D whenever � is
regular). Consequently, thetheoremfollows directly from Theorem10.6.5,by
2| .

2| Theassumptionsof (a) imply thoseof (a) or (e) of Theorem10.6.5for
Σaug: Obviously, (1.) or (2.) or (5.) of Hypothesis9.2.2for Σ implies that for
Σaug.

AssumethenthatC is bounded.Case1. wasgiven in Theorem10.6.5(e).
Cases2., 3., and4. (with (i)) imply (4.), (3.) and(6.) of Hypothesis9.2.2,
respectively, because(i) implies that � D � = γ (hencethat γ2 M D � D $ 0), by
Lemma6.3.2(e)(thus,weneedTheorem10.6.5(e)in case4.).

`
Note that the spectralfactorizationγ2I M©�(�ª� �B) � S) is equivalent to the

normalizedfactorization � � XqT N 1, γ2 T � T MZX�»&X � S, > � U 
Pë S $ 0,T : �­) N 1 	 W TIC � U 
 , X : � �\T 	 TIC � U � Y 
 .
When one wishes to find an estimatefor � without requiring Σ to be

exponentiallystable,oneshouldusethe propositionbelow insteadof the above
theorem(andoneshouldknow, apriori, that

6
is stable).

Proposition 10.5.2(Nonexp. ���
� TIC = γ����� TIC = γ����� TIC = γ) Assumethat � is SRandγ h 0.
If (ii) or (iii) holds,then � 	 TIC and ���
� � γ.
Conversely, if Σ 	 SOS, �����s= γ, and Σaug, Jaug satisfy(2.) (resp.(6.)) of

Hypothesis10.6.1,then(iii) (resp.(iii) and(ii)) holds(alsowith “ � ” in placeof
“ Q ”).

Herewehavereferredto thefollowingconditions:

(ii) � D �z= γ, andthere is D � 0 s.t. D AH C p Dom� B�w 
 and² A��D � D A M C � C � B�w DÓM D � C 
"�
B�w DÓM D � C γ2I M D � D ´ Q 0 on Dom� A
�@ U j (10.69)

(iii) There is D � 0 s.t.S: � γ2I M D � D � s-limsL � ∞ B�w DP� s M A
 N 1B $ 0, and² A��D � D A M C � C � B�w DÓM D � C 
"�
B�w DÓM D � C S ´ Q 0 on Dom� A
�@ U j (10.70)

Moreover, we have (ii) e (ii’) i (iii) e (iii’), where (ii’) and (iii’) are from
Theorem10.5.1(d)with “ � ” in placeof “ b ”.

If 4 is stronglystable, thenwecanreplace“ D � 0” by D � D � everywhere in
this proposition.

(Seethe proof of Theorem10.5.1for Σaug andJaug. Note that herewe may
have D � 0 (take Σ � 0) whereasD­= 0 in thetheoremsof thissection.)

Thus,if
6

is stable,� is SR,andany of (1.)–(10.)(resp.(1.)–(8.))of Lemma
10.6.2(c)(with D � JC ¬+ D � C and D � JD ¬+ γ2 M D � D) holds, then Hypothesis
10.6.1(2.)(resp.(6.)) holds,andwecanestimate���
� asfollows:

Takesomeγ h 0, andthenverify, whethertheRiccatiinequalitycondition(iii)
(resp.(ii)) hasany solutions.If so,then ����� � γ, otherwise ���F��Q γ. Thenvary
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γ andfind anestimatefor ���F� by, e.g.,a binarysearch.(Also thecorresponding
Riccatiequation(thatis, “ � ” in placeof “ Q ”) canbeused.)

Proof of Proposition 10.5.2: The proof of Theorem10.5.1applieshere
too,with Proposition10.6.4in placeof Theorem10.6.5.

(If 4 t is strongly stable,then, in the proof of Proposition10.6.4(d),we
have γ2I M?� t � � t Q'M 4 t � D 4 t + 0, which implies that � 	 TIC and ���
� � γ.
Therefore,we do not have to assume� to bestablefor thelastclaim unlike in
Proposition10.6.4(d).)

Remark: As notedin the proof of Proposition10.6.4(b),in the converse
claim we canchooseD � 0 so that it is P-SOS-r.c.-stabilizing(alsowith “ � ”
in placeof “ Q ” in (iii) (resp.in (iii) and(ii)).

`
In classicalliterature,an operator � 	 TIC � U 
 is called strictly positive if

Re��� ���"� #�$ 0, i.e., if � � � � $ 0 (onecanshow thatσ ���&
 p C
�

is a necessary
condition;it is sufficient for normal � ). An equivalentconditionis that r� � r� � Q
εI in L∞

strong� iR; > � U 
"
 for someε h 0. We usethis definition in the following
generalizedextensionof theclassicalStrictly PositiveRealLemma:

Theorem 10.5.3(GeneralizedStrictly Positive (Real) Lemma)

(a) If C is boundedanddimY = ∞, or if (1.) or (2.) or (5.) of Hypothesis9.2.2
holds,thenthefollowing areequivalent:

(i) Σ is exponentiallystableand � is strictly positive;

(ii) There is D � 0 s.t. D AH C p Dom� B�w 
 and² A� D � D A � B�w D � C 
 �
B�w D � C D � D � ´ $ 0 on Dom� A
m@ U j (10.71)

(iii) There is D � 0 s.t. S : � D � D � � s-limsL � ∞ B�w DP� s M A
 N 1B exists
and ² A�gD � D A � B�w D � C 
"�

B�w D � C S ´ $ 0 on Dom� A
m@ U j (10.72)

(b) If π ¢ 0 � t £ 2 B 	 L1 � A 0 � t 
 ; > � U � H 
"
g� π ¢ 0 � t £ Cw
2 	 L1 � A 0 � t 
 ; > � H � Y 
d
 , and

π ¢ 0 � t £ Cw
2 B 	 L1 � A 0 � t 
 ; > � U � Y 
"
 for somet h 0, then(i) e (iii) f (ii).

(c1) If � is ULR, thenwehave(i) f (iii) f (ii).

(c2) Anysolutionof (ii), (iii), (ii’) or (iii’) is strictly negative( D'= 0). Under
the assumptionsof (a), there is an exponentiallystabilizingsolution(if (i)
holds).

(d) If � is SR,thenwehave(ii) e (ii’) i (iii) e (iii’), where

(ii’) D � D � $ 0, andthere is D � 0 s.t. D AH C p Dom� B�w 
 and� B�w D � C 
 � � D � D � 
�N 1 � B�w D � C 
�b A� D � D A (10.73)
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(iii’) There is D � 0 s.t.

S: � D � D � � s-lim
α L � ∞

B�w DP� α M A
ON 1B $ 0 � and (10.74)� B�w D � C 
 � SN 1 � B�w D � C 
�b A� D � D A j (10.75)`
(Theproofof Theorem10.5.1appliesmutatismutandis,with Jaug: � �

0 I
I 0
� (so

that �(�augJaug� aug
� � � �¸� ). Also the commentsbelow Theorem10.5.1apply,

mutatismutandis.)
Wemayalsouseabinarysearchfor findinganestimatefor supremalγ h 0 s.t.

Re��� �!�"� #\Q γ2I ; thena positive real -variantof Proposition10.5.2applies(sucha
resultholdswith thesameproof,mutatismutandis).

We can again rewrite the conditionsfor D8¬+ M¸DÃQ 0, S ¬+ M S b 0 and
J ¬+ M J; e.g.,(ii’) becomes:D � D ��$ 0,andthereis D Q 0 s.t. D AH C p Dom� B�w 

and Ms� B�w DÓM C 
 � � D � D � 
ON 1 � B�w D¯M C 
�b A� D � D A j (10.76)

Notesfor Sections10.5and 10.6
In Section8 of [S98b],it wasshown thatif “(i)” holdsandthecorresponding

spectralfactoris sufficiently regular, then“(iii)” holds;this appliesto both “real
lemmas”.

The results of this section generalizemost analogousresults, including
Theorem3.7.1andProblem3.25of [GL] (finite-dimensionalcase),Section4.5
of [Oostveen](thestronglystabecasewith boundedB andC), andRemark3.14
of [Keu] (exponentiallystablePritchard–Salamonsystems);all theserequireone
to assume,apriori, thatΣ is stronglystable,andto checkwhethertheasolutionis
stabilizing.Oneobtainssuchlemmasby usingTheorem10.6.3(whoseconditions
(iv) and(v) arepopularin theliterature)insteadof Theorem10.6.5in our proofs.

An exceptionto this is theStrictBoundedRealLemmagivenin Section7.1of
[IOW], which equalsTheorem10.5.1(a)restrictedto finite-dimensionalsystems.
Analogously, Theorem10.6.5is the generalizationof Theorems4.6.1–4.6.2of
[IOW]. In both cases,the proofsof [IOW] cannotbe extended,becauseD3= 0
does not imply that D b 0 when dimH � ∞. The strengthof our results
reflectthepower of theintegral notation(

��� �� � � andtheIARE insteadof
�
A B
C D

�
and the CARE), which allows one to observe connectionsnot visible from the
generatornotation.Similar remarksapply to correspondingdiscrete-timeresults
(Section15.4).

Propositions10.5.2 and 10.6.4 might be new even for finite-dimensional
systems. SeeChapter5 for noteson (i)–(ii”) of Theorem10.6.3(a);also the
necessityof theexistenceof asolutionto theCAREis well known [WW] [S97b].
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10.6 PositivePopov operators (0 � � » J� � � » � )

Positive, adj.:
Mistakenat thetopof one’s voice.

— AmbroseBierce(1842–1914),"The Devil’ sDictionary"

In this section,we presentnecessaryandsufficient conditionsfor theuniform
positivity of thePopov operator(i.e., for �&� J �®Q εI for someε h 0; equivalently,r�&� J r�ÛQ εI in L∞

strong� iR; > � U 
"
 ), in termsof [regular] spectralfactorizationsand
Riccati equationsor Riccati inequalities. In the finite-dimensionalsetting, the
connectionbetweentheseconceptsis rathersimple;thesameholdsin theinfinite-
dimensionalsettingwith boundedinput andoutputoperators.Therefore,to have
an nice overview of the contentsof this section,the readermight first wish to
readour correspondingdiscrete-timeresults,namelyLemma15.3.1,Proposition
15.3.2andTheorem15.3.3.

Whenworking with stablefinite-dimensionalor Pritchard–Salamonsystems,
or with stableWPLSshaving � 	 MTIC, the uniform positivity of the Popov
operator( � � J �­$ 0) impliesthatit hasa ULR spectralfactorization(by Lemma
10.6.2(b)). For general(or even for ULR) stableWPLSs,this is not the case,
by Proposition9.13.1(c1),andthereforewe mustsometimesreplacethe CARE
theoryby theIARE theory.

To overcomethis difficulty, we often assumethat � 	 MTIC or that Σ is
otherwisesufficiently regular; that is, we assumesomeof the six alternative
hypothesesbelow:

Hypothesis10.6.1( � admits positive regular SpF) We have � 	 WR � TIC,
andif some) 	 W TIC � U 
 satisfies) � )­� �&� J � , then

(1.) ) 	 WR andX 	 W > � U 
 .
(2.) ) 	 SRandX 	 W > � U 
 .
(3.) ) 	 UR.

(4.) ) 	 ULR.

(5.) ) 	 ULR andX � X � D � JD.

(6.) theB�w-CAREhasa stableP-I/O-stabilizingsolution. Moreover, Σ 	 SOS
and � 	 ULR.

Note that for any � 	 TIC � U � Y 
 , we have ) � ) � � � J � for some ) 	W
TIC � U 
 if f � � J �®$ 0, by Lemma6.4.7(a).Conditions(1.)–(5.) of theabove

hypothesisjust requirethat � and ) (if any) areregular (by Lemma6.4.5(a),all
possible) ’s differ by anunitaryconstant,hencethey areequallyregular).

By Theorem10.6.3(f1)&(i)&(iii)&(d), condition(1.) impliesfor any Σ 	 SOS
that the CARE hasa uniquestableP-I/O-stabilizingsolution D8Q 0; condition
(6.) just saysthat this solutionmustalsosolve the B�w-CARE, i.e., that D AH C p
Dom� B�w 
 .

Next we list sufficient conditionsfor the above hypotheses(seeStanding
Hypothesis10.6.6for ���� ):
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Lemma 10.6.2

(a1)Wehave(6.)i (5.)i (4.)i (3.)i (2.)i (1.) in Hypothesis10.6.1.

(a2) If dimU = ∞, then(1.)–(3.)of Hypothesis10.6.1areequivalent.

(b) If � 	 ���� , then � satisfies(1.)–(4.)of Hypothesis10.6.1.

(c) Assumethat Σ 	 SOSandat leastoneof conditions(1.)–(10.)belowholds.
Then� satisfiesHypothesis10.6.1(1.)–(5.).

(1.) B is bounded(i.e., B 	u> � U � H 
 );
(2.) (Analytic 2 2 2 ) Hypotheses9.5.1and9.5.7hold.
(3.) C � �

C1
0
�&	?> � H � Y1 @ Y2 
 , dimY1 = ∞, and 4 is stable;

(4.) 2 B 	 L1 � R � ; > � U � H 
"
 andC 	?> � H � Y 
 ;
(5.) 2 B 	 L1 � A 0 � 1C ; > � U � H 
"
 ,C 	�> � H � Y 
 and 2 is exponentiallystable;
(6.) C is bounded,D � JC � 0, and � 	G> � U � Y 
 � > � U � L1 � R � ;Y 
"
O» ;
(7.) � 	?> � U � Y 
 � > � U � L2 � R � ;Y 
"
O» ;
(8.) Hypothesis9.2.1(or 9.2.2)is satisfiedandD � JD $ 0;

(9.) � 	 MTICL1
;

(10.) (Analytic 2 2 2 ) Hypothesis9.5.1holdsand 2 is exponentiallystable.

(d) Assumethat Σ is stableand that at leastoneof conditions(1.)–(8.) above
holds.ThenΣ satisfiesHypothesis10.6.1(1.)–(6.).

Assumptions(1.)–(7.) of (c) areroughly the stableversionsof (1.)–(7.) of
Hypothesis9.2.2.

Proof: (a1) Trivially, (5.)i (4.)i (3.), and (2.)i (1.) By Theorem
10.6.3(b)(ii)&(iii), (6.) implies (5.). By Proposition6.3.1(b1),(3.) implies
(2.).

(a2)Use(a1)andLemma6.3.2(a1)&(a2).
(b) This follows from StandingHypothesis10.6.6.
(c) 1| Cases(9.) and (10.): We have � 	 MTICL1

, by Lemma 9.5.2.
Therefore,this follows from Theorem8.4.9(and ) 	 MTICL1 p UHPR).

2| Cases(1.)–(8.)& (d): (N.B. We do not know whetherHypothesis9.2.2
is sufficientwithout theassumptionD � JD $ 0. As shown below, �(� J �ü$ 0 i
D � JD $ 0 underany of (1.)–(8.).)

By Proposition9.2.4,(3.) implies(7.), i.e., that r� 	 H2
strong� C � ; > � U � Y 
"
 .

By Lemma6.8.3(a),(5.) implies (4.). Therefore,any of (1.)–(8.) implies that
Hypothesis9.2.1holds(seeHypothesis9.2.2andTheorem9.2.3).

By Theorem6.9.1(d2),we have r� 	 H2
strong � H∞ � C � ; > � U � Y 
"
 in (1.); the

sameholdsin (7.),hencein (3.) too. In case(2.),wehave � 	 UHPR p SHPR,
by Lemma9.6.3. In cases(4.), (5.) and(6.), we have � 	 SMTICL1 p SHPR,
by Theorem2.6.4(h1).

Assumethat �(� J � $ 0, i.e., that �&� J ��Q εI for some ε h 0. Then
D � JD Q εI , by Lemma6.3.5(cases(1.), (3.) and(7.)) or by Lemma6.3.6(b)
(cases(2.), (4.), (5.) and(6.)) or by assumption(case(8.)). By Lemma6.4.7(a),
we have �&� J � �­) � ) for some) 	 W TIC � U 
 , Therefore,thereis aJ-critical,
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strictly minimizing, stable,SOS-stabilizingstatefeedbackpair
��R S � for

Σ over � out, by Corollary 9.9.11(Crit1SOS)&(Crit4SOS),and
S � I M ) , by

(9.140).
Thus,wecanapplyTheorem9.2.9(v)&(iii) to obtainthattheB�w-CAREhas

asolution �EDF� S� � �R �S � 
 with S � D � JD $ 0, �) : � I M �S 	 ULR and �X � I .

By Theorem9.9.1(a1)&(f2),wehave �)[� E ) for someE 	 W > � U 
 (hencefor
E � X N 1). Consequently, �) 	 W TIC � U 
 .

It followsthat �X : � � �) N 1 is stable,hence�Xz� J �X � S, by Theorem9.9.1(g2),
sothat �z� J � � �) � S�) . By Lemma6.4.5(a),it follows thatS � � E �O
 N 1IE N 1 �
X � X. Thus,D � JD � S � X � X, asrequired.

3| Remarks:Theassumptionthat
6

is stableis superfluous(for (c)) in (4.),
(5.), (9.) and(10.) andtheassumptionthat � is stableis redundantin (4.), (5.),
(6.), (9.) and(10.).

We notethat ) 	 W MTICL1
in cases(4.), (5.), (9.) and(10.) (by 1| ), and) � ) N 1 	¯> � H∞ � H2

strong� C � ; > � U 
"
 in cases(1.), (3.) and(7.). The latter
claim follows from Theorem4.1.6(j), and from the fact that � hasa stable
realizationwith a boundedB, by Theorem6.9.1(a)&(d2)andCorollary6.9.7,
so thatwe canobtain ) for that realizationinsteadof Σ (notethat (1.)–(5.) of
Hypothesis10.6.1dependon � andJ only).

(d) Part “if ” from thelastclaim follows from 2| above; and“only if ” from
Proposition9.8.11.

`
In fact,thesolutionof theB�w-CAREin Hypothesis10.6.1(6.)isactuallystable

andP-SOS-r.c.-stabilizing,andwehavetheclassicalequivalencebetweenpositive
J-coercivity, I -spectralfactorizationandRiccatiequationsin this generalitytoo:

Theorem 10.6.3(�&� J ��$ 0 e�&� J ��$ 0 e�&� J ��$ 0 e SpF e e e CARE) AssumethatΣ isSOSandULR.

(a) If Hypothesis10.6.1(6.) holdsand Σ is strongly stable, then(i)–(iv’) are
equivalent(and(v) if Σ is exponentiallystable).

(i) �&� J �Z$ 0;
(i’) �&� J ��$ 0 andD � JD 	 W > � U 
 ;
(ii) �&� J � ��) � S) for some) 	 W TIC � U 
 andS $ 0;
(ii’) � � J � �Z) � ) for some) 	 W TIC � U 
 ;
(ii”) �&� J � �Z) � ) for some) 	 W TIC � U 
 , and �a� ) 	 ULR andD � JD �

X � X $ 0;
(iii) the B�w-CARE (or CARE or IARE) has a stable P-I/O-stabilizing

solutionwith S $ 0;
(iii’) theB�w-CAREhasa stableP-SOS-r.c.-stabilizingwith S $ 0;
(iv) the B�w-CARE(or CAREor IARE) has a solution with S $ 0 andT 	 TIC;
(iv’) theB�w-CAREhasa stronglystabilizingsolutionwith S $ 0;
(iv”) the B�w-CARE has a stable strongly r.c.-stabilizingsolution with

S $ 0;
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(v) theB�w-CAREhasanexponentiallystabilizingsolutionwith S $ 0.

(b) If Hypothesis10.6.1(6.)holds,then(i)–(iii’) areequivalent.

(c1)Wehave(iii’) i (iii) i (ii’) e (ii) e (i), and(iv) f (iv’) f (iv”) i (iii’) i (ii”) i (i’) i (i).

(c2) If Σ is stronglystable, then(iii’) e (iv’) e (iv”), and(iii) e (iv).

(d) Thesolutionsof theB�w-CAREmentionedin (a)–(b)are uniqueandequal,
andthey solve(ii) (and(ii’) and(ii”) if wereplace) byS1� 2 ) ).

(e) If Σ is strongly stable and the eIARE has a solution with S Q 0, then� � J �®Q 0.

(f1) (CARE) Replace“(6.)” by “(1.)”, andremove(i’) and(ii”) and“ULR”,
and replace“B �w-CARE” by “CARE”, everywhere in this theorem. Then
(a)–(e)still hold.

(f2) (General WPLSs) Remove (i’), (ii”), “ULR” and Hypothesis10.6.1(6.),
andreplace“B �w-CARE” by“IARE”, everywherein this theorem.Then(a)–
(e) still hold.

The propositionprovidesus necessaryandsufficient conditionsfor (i) (i.e.,
for the positive J-coercivity over � out) underdifferent stability and regularity
assumptions.Suchconditionsareneededfor positive andboundedreal lemmas
and for minimization problems;the readercan find hereadditionalequivalent
conditionsfor thoseresultsundersameor differentassumptions.

Recall that S : � D � JD for the B�w-CARE (but not necessarilyfor the CARE
or IARE), andthat any solutionof the B�w-CARE (andany WR solutionof the
eCARE)is asolutionof theeIARE.

In the unstablecase,we have threealternatives for minimization: 1. If Σ
is regular enough,we may use the B�w-CARE resultsof Section9.2. 2. If
Σ is stabilizablewith closed-loopsystemΣ � as in Hypothesis10.6.1(6.) (or
(1.)), we may combinethe above result and Proposition9.12.4 (cf. Theorem
10.2.14(b1)&(b2)).3. In the generalcase,we have to be satisfiedwith results
suchasTheorem10.2.11andCorollaries10.2.5(a),10.2.6and10.2.12.

Proof of Theorem 10.6.3: (a) Trivially, (v) implies (iv’); the converse
(for exponentiallystableΣ) follows from Corollary 6.6.9 (in fact, D is then
exponentiallystableandexponentiallyr.c.-stabilizing).The restfollows from
(b) and(c2).

(b) 1| (i) i (ii’)&(iii’): Assume(i), sothatX � X $ 0 andtheB�w-CAREhas
aP-I/O-stabilizingsolution �ED�� S� K 
 s.t. ) K

� � X � X 
 N 1� 2 ) 	 W TIC � U 
 , wherer) K : � I M Kw � �áM A
 N 1B, ) 	 W TIC � U 
�� ULR, X � X $ 0 and ) � )®� � � J � ,
by thehypothesis.Consequently, (iii’) holds,by Proposition9.8.11.

Since r) K 	 ULR, we have ) 	 ULR and henceX 	 W > � U 
 . From
(9.162),we obtainthat �Ú� X � X 
 1� 2u �O� X � X 
 1� 2v# � � u � Sv# for all u � v 	 L2

c (since� l � � ) N 1
K
� � ) N 1 � X � X 
 1� 2), henceX � X � S; in particular, S $ 0. But

S � D � JD, henceD � JD � X � X $ 0, sothat(ii’) holds.
2| Therestof theequivalencefollows from (c1).
(c1) Implications “(iii’) f (iv”) i (iv’) i (iv)”, “(iii’) i (iii)”, “(ii’) i (ii)”,

and“(i’) i (i)” aretrivial, and“(ii’) i (i’)” is obvious. Equivalence“(i) e (ii)”
follows from Lemma6.4.7(a),
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Weobtain“(iii) i (ii)” from Proposition9.8.11(in particular, astableP-T -
stabilizingsolutionsuffices)(andProposition9.2.7(b)).

Finally, we obtain“(iii’) i (ii’)” from Proposition9.2.7(b)andProposition
9.8.11(c),by replacing) by S1� 2 ) .

(c2) This follows from Proposition9.8.11(b).
(d) This follows from theaboveproofs(especiallyof thatof (c1)).
(e) By (9.160), we have ��� t u � J � t u#nQ Ma� 4 t u ��D 4 t u#�+ 0, as t + � ∞,

because4 is stronglystable(by Lemma6.1.13),hence� � J �3Q 0. (Note that
whenever S Q 0, D � 0, we have ��� t u � J � t u#:Q 0 for all t, sothat � � J �ÛQ 0 if� is stable.)

(f1) This followsasabove(or from (f2)) (notefrom Proposition10.7.2that
any solutionof theCARE with S $ 0 is a WR solutionof theIARE andfrom
Proposition10.7.1thatsuchasolutionis stableif Σ is).

(f2) Also this followsasabove.
`

For aSOS-stablesystem
� � �� � � with sufficientregularity, condition(ii) below

implies that � � J �]Q 0, and, conversely, � � J �8$ 0 implies that (ii) holds (by
(b) below). For several applications,suchas the “strict boundedreal lemma”
of Proposition10.5.2, this “almost equivalence” is in practiceas good as an
equivalence.

Proposition 10.6.4(�n� J �«Q 0 e� � J �«Q 0 e�&� J �«Q 0 e CARI) Assumethat � is SRand C � JC � 0.
Thenwehave(ii) i (iii) i (i) f (iv) for thefollowing conditions:

(i) � t � J � t Q 0 for all t Q 0.

(ii) D � JD $ 0, andthere is D � 0 s.t. D AH C p Dom� B�w 
 and² A� D � D A � C � JC � B�w D � D � JC
 �
B�w D � D � JC D � JD ´ Q 0 on Dom� A
�@ U j (10.77)

(iii) There is D � 0 s.t.S: � D � JD � s-limsL � ∞ B�w DP� s M A
 N 1B $ 0, and² A��D � D A � C � JC � B�w D � D � JC
"�
B�w D � D � JC S ´ Q 0 on Dom� A
�@ U j (10.78)

(iv) � 	 TIC and � � J �«Q 0.

Moreover, thefollowing hold:

(a) If � 	 TIC, thenwehave(i) e (iv).

(b) If Σ 	 SOS, � � J �ü$ 0, and(2.) (resp.(6.)) of Hypothesis10.6.1holds,then
(i), (iii) and(iv) (resp.(i)–(iv)) hold; in fact,wecanhaveequalityin (10.81)
(resp.in (10.79)).

(c) Wehave(ii) e (ii’) i (iii) e (iii’) (evenfor a fixed D ), where

(ii’) D � JD $ 0, andthere is D � 0 s.t. D AH C p Dom� B�w 
 and� B�w D � D � JC
 � � D � JD 
ON 1 � B�w D � D � JC
 � A� D � D A � C � JCj
(10.79)
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(iii’) There is D � 0 s.t.

S: � D � JD � s-lim
α L � ∞

B�w DP� α M A
 N 1B $ 0 � and (10.80)� B�w D � D � JC
 � SN 1 � B�w D � D � JC
 � A� D � D A � C � JCj (10.81)

(d) If � 	 TIC and 4 is stronglystable, thenwecanreplace“ D � 0” by D � D �
everywhere in this proposition.

(Thecommentsbelow Theorem10.5.1applyheretoo,mutatismutandis.See
Theorem10.6.3for moreon (b).)

Proof: (Naturally, condition“C � JC � 0” meansthat � x0 � C � JCx0# � 0 for all
x0 	 Dom� A
 . In theproofbelow, theproofsof (c) and(a)comelogically first.)

We get “(ii) i (iii)” as in the proof of Proposition9.2.7(a). Implication
“(i v) i (i)” follows from (a).

To completethe first claim, assume(iii) (i.e., (iii’)). By Proposition
9.11.9(e)&(c),thereis ) 	 TIC∞ � U 
 s.t. ) t � S) t � � t � J � t �54 t � D 4 t for all
t Q 0, hence� t � J � t Q 0. Thus,(iii) implies(i).

(a) Since C � JC � 0, we have C �sJCs � 0 on Dom� Cs
	� HB (because� Csx0 � JCsx0# Y � limsL � ∞ � Cs� s M A
 N 1x0 � JCs� s M A
 N 1x0# Y � 0 for all x0 	
Dom� Cs
 ). Therefore,for any t Q 0 andu 	 L2 � A 0 � t 
 ;U 
 wehave � ∞

0
� � t

0 � � ∞
t ,

i.e.,��� u � J � u# L2
� � u �æ� t � J � t u# L2 � È ∞

t
� Cs4 τr u � JCs4 τr u# dr � � u �æ� t � J � t u# L2 �

(10.82)
by Theorem6.2.13(a2).Consequently, � � J �3Q 0 implies that (i) holds. The
converseis obvious(useCorollaryB.3.8).

(b) Obviously, (iv) holds,hencesodoes(i), by (a). By (b)&(f1)&(i)&(iii’)
of Theorem10.6.3,condition (iii’) (resp.(ii’)) above holds (with equality in
(10.81)(resp.in (10.79)))if we canshow that D � 0. By (c), thenthe restof
(b) holdstoo.

ConditionC � JC � 0 impliesthat � 6 x0 � J 6 x0 # L2
� � ∞

0 � 2 t x0 � C � JC2 t x0# dt �
0 for all x0 	 Dom� A
 , hence

6 � J 6 � 0, by density. SinceS $ 0, it follows
that

6 � J 6 M R � SR � 0, henceD � 0, by (9.142).
(Notethatthe D above is P-SOS-r.c.-stabilizing.We coulduse(1.) instead

of (2.) of Hypothesis10.6.1if wewouldhave“w-lim ” in (10.80).)
(c) Implication“(ii) i (iii)” wasshown above. If Dom� A
 � H (i.e., if A is

bounded),thentheequivalencesfollow from LemmaA.3.1(p2)(with columns
androwsinterchanged);evengeneralA, theproofof LemmaA.3.1(p2)applies.

(d) The above proofsstill apply except that the proof of “(iii) i (i)” must
bealteredasfollows: Assume(iii). When 4 t is stronglystable,the inequality) t � S) t � � t � J � t �¯4 t � D 4 t � t Q 0
 implies that � t � J � t Q8M 4 t � D 4 t + 0, as
t + � ∞, i.e., that �&� J �®Q 0. By (a), this is equivalentto (i).

`
Next we show that,undersufficient regularity, theuniform Riccati inequality

hasa solutionif f Σ is exponentiallystableandthe Popov operatoris uniformly
positive:
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Theorem 10.6.5(�&� J ��$ 0 e�&� J ��$ 0 e�&� J ��$ 0 e CARI) AssumethatC � JC � 0.

(a) If any of Hypothesis9.2.2(1.)–(6.)holds(the referencesto Theorem8.3.9
maybeignored),thenthefollowingareequivalent:

(i) Σ is exponentiallystableand � � J ��$ 0.
(ii) There is D � 0 s.t. D AH C p Dom� B�w 
 and² A�gD � D A � C � JC � B�w D � D � JC
"�

B�w D � D � JC D � JD ´ $ 0 on Dom� A
�@ U j
(10.83)

(iii) Thereis D � 0 s.t.S: � D � JD � s-limsL � ∞ B�w DP� s M A
 N 1B exists,and² A�gD � D A � C � JC � B�w D � D � JC
"�
B�w D � D � JC S ´ $ 0 on Dom� A
�@ U j

(10.84)

(b) If π ¢ 0 � t £ 2 B 	 L1 � A 0 � t 
 ; > � U � H 
"
g� π ¢ 0 � t £ Cw
2 	 L1 � A 0 � t 
 ; > � H � Y 
d
 , and

π ¢ 0 � t £ Cw
2 B 	 L1 � A 0 � t 
 ; > � U � Y 
"
 for somet h 0, then(i) e (iii) f (ii).

(c1) If � is ULR, thenwehave(i) f (iii) f (ii).

(c2) Anysolutionof (ii), (iii), (ii’) or (iii’) is strictly negative( D'= 0). Under
the assumptionsof (a), there is an exponentiallystabilizingsolution(if (i)
holds).

(d) If � is SR,thenwehave(ii) e (ii’) i (iii) e (iii’) (evenfor a fixed D ), where

(ii’) D � JD $ 0, andthere is D � 0 s.t. D AH C p Dom� B�w 
 and� B�w D � D � JC
 � � D � JD 
ON 1 � B�w D � D � JC
%b A� D � D A � C � JCj
(10.85)

(iii’) There is D � 0 s.t.HIIJ IIK K � SK b A� D � D A � C � JC on Dom� A
��
S � D � JD � s-lim

sL � ∞
B�w DP� s M A
�N 1B onU �

K � M SN 1 � B�w D � D � JC
 on Dom� A
�j (10.86)

andS $ 0 (for someSandK).

(e) We canreplacetheassumptionsof (a) (resp.of (b)) by anyassumptionthat
togetherwith (i) leadsto Hypothesis10.6.1(6.)(resp.(2.)) (or to D � JD $ 0
andHypothesis9.2.1)for �Σ and �J (seethe proof), for all sufficientlysmall
ε h 0.

Onesuch assumptionis thatC 	?> � H � Y 
 anddimY = ∞.

Seealso the commentsbelow Theorem10.5.1. The casewhere “ $ ” is
replacedby “ Q ” is coveredby Proposition10.6.4.

Proof: (Naturally, condition“C � JC � 0” meansthat � x0 � C � JCx0# � 0 for all
x0 	 Dom� A
 .) Let ���� � � exp.

We shalluse(d) tacitly throughouttheproof.
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1| “(i) i (ii)&(iii)” under Hypothesis9.2.2: Assume(i) and Hypothesis
9.2.2.Then
 : � 4 τ 	 TIC � U � H 
 , by Lemma6.1.10,sothat �(� J ��M ε 
n��
ù$ 0

for someε h 0. Define �Σ : � ~ A BÖC ÖD � 	 WPLS� U � H � Y @ U 
 by �C : � �
C
I
� ,�D : � �

D
0 � , andset �J : � �

J 0
0 N εI � .

Then also �Σ satisfiesHypothesis9.2.2 (including the requirementsof
Theorem8.3.9(b2)). Since ��(� �J �� � �&� J �­M ε 
q��
®$ 0, the B�w-CARE, the
IARE and the CARE for �Σ and �J have an exponentiallystabilizing solution�ED�� S� K 
 with S � D � JD 	 W > � U 
 , by Theorem9.2.9(i) and Proposition
8.3.10.

But theCARE for �Σ and �J equals(10.86)with “ � M εI � ” in placeof “ b ”.
Therefore,we have established(ii’) and (iii’) oncewe show that D � 0 and
S Q 0.

By Theorem9.9.1(a2),S Q 0, henceS $ 0. ConditionC � JC � 0 implies
that � 6 x0 � J 6 x0 # L2

� � ∞
0 � 2 t x0 � C � JC2 t x0# dt � 0 for all x0 	 Dom� A
 , hence6 � J 6 � 0, by density. Since �6 � �J �6 � 6 � J 6 M ε �Á�
�¸= 0, where ��� x0 
t� t 
 : � 2 t x0� t Q 0
 , weobtainfrom (9.142)that D � �6 � �J �6 M R � SR = 0, asrequired(recall

thatS $ 0).
Remark: DB= 0 and D is exponentiallystabilizing for Σ when (i) holds

(since D is exponentially stabilizing for �Σ, hencefor � A � B
 too). (When
the assumptionsof (a) aresatisfiedand (i) holds, thereis onesuchsolution;
however, theinequalities(ii) and(iii) mighthavenon-stabilizingsolutionstoo.)

2| “(ii) i (iii)” (whenever � is SR): This follows from the proof of
Proposition9.2.7(a).

3| “(iii) i (i)” (whenever � 	 ULR): By Proposition9.11.9(e),
�
A B
K 0

�
generateaSRWPLS.SinceA� � M¸Da
 � � M¸Da
 A b 0 and M¸DZQ 0, thesemigroup2 is exponentiallystable(and M¸D�h 0), by Lemma9.12.2(d).

By Proposition9.11.9(d),wehave ) t � S) t � ε 
 t � 
 t � � t � J � t ��4 t � D 4 t for
someε h 0, where 
 : � 4 τ 	 TIC∞ � H � U 
 . SinceS $ 0 and D � 0, we have
ε 
 t � 
 t � � t � J � t , hence�&� J �BQ ε 
q��
 , hence� is positively J-coercive, by
Proposition10.3.2(g1)(with Dc

� D; herewe needthe assumptionthat � is
ULR); in particular�&� J �«Q εI .

4| Remarks: From 1| we observe that the implication “(i) i (ii)” (resp.
“(i) i (iii)”) also holds under a suitablevariant of (6.) (resp. of (2.)) or
Hypothesis10.6.1.

(a) SinceHypothesis9.2.2implies that � is ULR, theequivalencefollows
from 1| –3| .

(b) By Lemma6.8.5, � is ULR, hencewe have (ii) i (iii) i (i). If (i) holds,
then � ��
 	 MTICL1

(hence �� 	 MTICL1
), by Lemma6.8.5(a),hencethen

we obtain“(i) i (iii)” from 1| with Theorem9.2.14(c3)in placeof Theorem
9.2.9(i).

(c1)This follows from 2| and3| .
(c2)This wasobservedin 3| .
(d) Use the proof of Lemma A.3.1(p4) (with rows and columns inter-

changed)for “(ii) e (ii’)” andfor “(iii) e (iii’)”, and2| for “(ii) i (iii)”.
(e) (Notethat � 	 ���� is not sufficient,since �� alsocontains4 τ.)
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1| If Σ is exponentiallystable,C 	ü> � B � Y 
 and dimY = ∞, then �Σ and�J satisfy Hypothesis10.6.1(6.) (and hence(2.)) for all ε h 0, by Lemma
10.6.2(d)(6.).

2| If D � JD $ 0, (i) holds,andHypothesis9.2.1holds for �Σ and �J, then
Hypothesis10.6.1(6.)is satisfiedby �Σ and �J for ε h 0 s.t.D � JD M εI $ 0, by
Lemma10.6.2(d)(8.).

3| UnderHypothesis10.6.1(6.)(resp.(2.)), assumption(i) still impliesthat
the B�w-CARE (resp.the CARE) for �Σ and �J hasan exponentiallystabilizing
solution(cf. 1| (resp.theproof of (b))). Therefore,1| (resp.theproof of (b))
still applies;therestfollows from (c1).

`
Throughoutthis chapter, ���� is assumedto beMTIC or somethingalmostas

regular:

StandingHypothesis10.6.6(Class ������ ����� is ULR and admits positiveSpF)

(1.) > p ���� p a TIC � ULR (seeDefinition6.2.4),and

(2.) if � 	 ���� � U � Y 
 , J � J � 	©> � Y 
 , and � � J �®$ 0, then � � J � �Û) � ) for
some) 	 W ���� � U 
 .

Thus, we have weakenedHypothesis8.4.7 to only cover the positive case;
consequently, all MTIC classesarenow applicablewithout dimensionalitydis-
trictions(see(a1)below):

Lemma 10.6.7( ������������ )

(a1) All classeslistedin Theorem8.4.9andtheir exponentiallystableversions
(see“

�
exp” in theTheorem)satisfyStandingHypothesis10.6.6.

(a2)Hypothesis8.4.7is stronger thanStandingHypothesis10.6.6.

(a3)TheclassTIC satisfies(2.) of StandingHypothesis10.6.6.

(b) Let � � XqT N 1 be a q.r.c.f. with X �oT 	 ���� . Then the following are
equivalent

(i) Xz� J X[$ 0;
(ii) Xz� J X ��) � ) for some) 	 W ���� ;

(iii) � hasa � J � I 
 -innerq.r.c.f. � � X ^ T ^ N 1.

Moreover, wehaveX ^ ��T ^ 	 ���� andM ^ 	 W > � U 
 for any � J � »¼
 -innerq.r.c.f.� � X�^¦TÓ^ N 1 of � .

Proof: (a1)By Theorem5.2.8,wemaynow allow for dimU � ∞ in (β) too;
therestfollows from (a2)andTheorem8.4.9.

(a2)Assumethat �&� J �­$ 0, i.e., thatπ
� �&� J � π

� $ 0 (seeLemma6.4.6),
sothat �&� J � �ü) � S) for someS 	 W > � U 
 . ThenS Q 0, henceS $ 0. Replace) by S1� 2 ) to satisfyStandingHypothesis10.6.6.

(a3)This is Lemma6.4.7(a).
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(b) This follows as in the proof of Corollary 8.4.14 (seealso Lemma
8.4.11).

`
(Seethenoteson p. 595.)
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10.7 PositiveRiccati equations( - 0 ��� 0 �
0)

I madeit a rule to forbearall directcontradictionsto thesentiments
of others,andall positiveassertionof myown. I evenforbademyself
the useof every word or expressionin the language that imported
a fixedopinion, such as "certainly", "undoubtedly",etc. I adopted
insteadof them"I conceive","I apprehend",or "I imagine"a thing to
besoor so; or "so it appears to meat present".

— Autobiographyof BenjaminFranklin(1706–1790)

In this section,we shallgive additionalauxiliary resultsfor Riccatiequations
in the positive (minimization)case,where

1 � 0 �"��
�Q 0 (e.g.,J Q 0). Recallfrom
Lemma10.2.2,that

1 � 0 �"��
(Q 0 implies that a control is minimizing if f it is J-
critical.

Suchasolutionis of statefeedbackform iff it correspondsto a �Y�� -stabilizing
solutionof the eIARE. Sincesucha solutionis necessarilynonnegative, we are
only interestedin nonnegative solutionsof theeIARE (or of theeCARE)in this
section.

In Proposition10.7.2(resp.10.7.1)weshow thatasolutionof theCARE(resp.
the IARE for a stablesystem)with S $ 0 is WR (resp.well-posedandstable).
Analogousresultsfor Riccati inequalitiesweregivenin Proposition9.11.9.

In the two latterpropositionswe show that for standardLQR costfunctions,
solutions of the IARE or CARE are well-posed, admissibleand stabilizing
providedthatcertainadditionalassumptionshold.

Proposition 10.7.1(S $ 0S $ 0S $ 0) Let Σ be[strongly] stable. Assumethat theIAREfor
Σ andJ hasa solution �EDF� S� � R S � 
 s.t.S $ 0.

Then
R

and
S

are stable, and ) � S)3� �&� J � � s-limt L � ∞ τ � M t 
 4 �¼D 4 τ � t 

[ ) � S)Z� �&� J � ].

Proof: By Lemma 9.10.1(b4), the eIARE implies that (9.153)–(9.161)
hold. The stability of ) follows from (9.160) as that of X in Proposition
10.7.3(a);similarly, we obtain the stability of

R
from (9.159). The claim on) � S) follows from Proposition9.12.7(a).

`
We recall from Proposition9.11.8thata solutionof theCARE with S $ 0 is

WR:

Proposition 10.7.2(S $ 0S $ 0S $ 0) Let Σ be WR. If the CAREhas a solution D with
S $ 0, then D is a WRsolutionof theIARE.

`
For J $ 0, any admissiblenonnegative solution is at least

� 6 � � -
stabilizing; for the standardLQR cost function with C � C $ 0, sucha solution
is exponentiallystabilizing:

Proposition 10.7.3(J $ 0J $ 0J $ 0) Assumethat the eIARE for Σ and J $ 0 has an
admissiblesolution D­Q 0. Then(a)–(c3)hold:



10.7. POSITIVERICCATI EQUATIONS( 0 0) 607

(a) Themaps
6 l and � l arestableandS Q 0.

(b) Conversely, anyminimizingsolutionis nonnegative.

(c1) If
6 � � �

1
0
� , � � � �

1
I
� , andJ � �

Q 0
0 R
� $ 0, then(10.87)is satisfied.

(c2) If � 	 SRand
�
C D � � J �C D � Q ε

�
0 0
0 I
� onH1 @ U for someε h 0, then

(10.87)is satisfied.

(c3) If C 	©> � H � Y 
 , C � C $ 0 and
�
C D � � J �C D � Q ε

�
0 0
0 I
� on H1 @ U for

someε h 0, then(10.87)is satisfiedand Σ is estimatable, hencethen(d3)
applies,and D is theuniquenonnegativeadmissiblesolutionof theeIARE
andminimizingover � exp (and � out, � sta and � str) andexponentiallyr.c.-
stabilizing.

Assume, in addition,that there is ε h 0 s.t.� 6 x0 � � u � J � 6 x0 � � u
k# L2 Æ R Ç ;Y £ Q ε � u � 22 � x0 	 H � u 	 L2� �∞ 
gj (10.87)

(d) Then� is positivelyJ-coerciveover � out, S $ 0, D is SOS-stabilizing, and
there is a uniqueminimizingcontrol over � out for each x0 	 H. Moreover,
(d1)–(d6)hold:

(d1) If the minimizingcontrol over � out is givenby somestatefeedback
pair

��R S � , then
��R S � is the pair (modulo E 	 W > � U 
 )

determinedby the smallestnonnegative admissiblesolution of the
eIARE.

(d2)Assumethat Σ is [strongly[exponentially]] stable.

Thenso are Σext and Σ l . In particular, then D is stable, [strongly
[exponentially]] r.c.-stabilizing [and strictly minimizing over � out,� sta and � str [and � exp], and D is theuniquenonnegativeadmissible
solution].

(d3)AssumethatΣ is estimatableor exponentiallyq.r.c.-stabilizable. ThenD is theuniquenonnegativeadmissiblesolution,andit is exponentially
q.r.c.-stabilizingandstrictlyminimizingover � out, � sta, � str and � exp.

Thus, in the casedescribedin (c3), we only have to find one nonnegative
solutionandcheckwhetherit is exponentiallystabilizing. If not, thenthereis no
minimizing statefeedbackpairoverany of � out– � exp.

The assumptionin (c1) is equivalent to having the cost function
1 � x0 � u
 �� u � Ru# � � y1 � Qy1# , wherey1

� 6
1x0 � � 1u, R $ 0, Q $ 0 (notethatherey �ÛA y1

u C ).
SeealsoTheorem9.2.10andCorollary15.1.6.

Althoughtheassumptionsin (d) or (c) (andtheexistenceof D ) imply thatthere
is auniqueminimizingcontrolover � out, wedonotknow in generalwhethersuch
a controlcanbegivenin thefeedbackform (not evenwhetherthereis a minimal
controlamongsuchcontrols),neitherwhethera smallestsolutionwould becost-
minimizing. In discretetimewehavenosuchproblems,see,e.g.,Corollary15.1.6
(neitherin continuoustime when,e.g.,B is bounded;seeTheorems9.9.6,9.2.10
and10.1.4(b4)&(b6)).
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Proof of Proposition 10.7.3: (a) 1|&X : � � l is stableandS Q 0: For all
u 	 π

�
L2, t h 0, wehave

0 � ��X t u � J X t u# � � u � Su# � � S��� u � 22 � (10.88)

by (9.157), hence � J1� 2 X t u � 22 � � S��� u � 22. But �OX t u � 22 � M2 � J1� 2 X t u � 22 for
someM = ∞, hence �OXF� � M � S� 1� 2 = ∞, i.e., X � � l is stable,by Lemma
6.1.12.From(10.88)wealsoobserve thatS Q 0 (takeu � u0χ ¢ 0 � 1£ ).

2| 6 l is stable: By (9.155) and the MonotoneConvergenceTheorem,� J1� 2 6 l x0 � 2 � � x0 �ÚD x0# (x0 	 H), hence
6 l is stable.

(b) This followsfrom equationD � 6 �l J
6 l (seeTheorem9.9.1(a2)&(g2)).

(In fact,any
6

-P-stabilizingsolutionis nonnegative,by Lemma9.10.1(d1).)
(c1) Now

1 � x0 � u
\Q[� u � Ru#ÁQ ε2 � u � 22 for someε2 h 0.
(c2)Now y : � 6 x0 � � u � Csx � Du a.e.,hence� y� Jy# Q ε � u � 22, wherex : �2 x0 ��4 τu (notethat � �Cs D � A x0

u0 C � J �Cs D � A x0
u0 C #ÅQ ε � u0 � 2U canbeextendedto

Dom� Cs 
�@ U , by first replacingx0 by r � r M A
 N 1x0, andthenletting r + � ∞).
(c3) BecauseC � C $ 0, we have � C � C 
 N 1C � C � I , henceΣ is estimatable

by a bounded} , by Lemma6.6.25. Consequently, (d3) applies(by (c2)). By
Lemma6.6.26,

��R S � is exponentiallyr.c.-stabilizing(jointly with } ).
(d) (Naturally, weallow thevalue � ∞ for thenorms.)
1|&D is SOS-stabilizing:Let ul 	 L2 � R � ;U 
 , x0 	 H. Set

u : � R l x0 � T ul � y : � 6 x0 � � u � 6 l x0 � � l ul j (10.89)

By (a),y is stable,hencesois u. Consequently,
R l andT arestable,byLemma

6.1.12.Thus,Σ l 	 SOS.
2| S $ 0 and � is positivelyJ-coercive over � out: Thesefollow from

Proposition10.3.1(a)andLemma9.10.3.
3| Uniqueminimizingcontrol over � out: BecauseD is SOS-stabilizing,we

have
R l x0 	 � out � x0 
 consequently, � out � x0 
 <� /0, for eachx0 	 H. Thus,by

Theorem8.4.3,thereis auniqueminimizing controlfor eachx0.
(d1) This follows from Theorem9.9.1(a2),sinceany admissiblenonnega-

tivesolutionis output-stabilizing,by (d).
(d2) If Σ is [strongly[exponentially]]stable,thensois Σext, by Proposition

10.7.1,andΣ l , by Corollary 6.6.9(here“ I M L � ” � ) 	 W TIC) andLemma
6.6.8(c). Now �a� ) � ) N 1 are [[exponentially]] stable, hence

��R S � is
[strongly[exponentially]]r.c.-stabilizing.

[By Theorem9.9.10(e2)&(c1)&(b), D is minimizing over � out, � sta and� str [and � exp], henceunique.]
(d3) A nonnegative admissible solution ��Dn^o� Ŝ¦� � R ^ S ^ � 
 is SOS-

stabilizingandhasŜ�$ 0, by (d), henceit is exponentiallyq.r.c.-stabilizing,
by Theorem6.7.15(c2)&(b1),henceminimizingover � out, � sta, � str and � exp

andunique,by Theorem9.9.10(e2)&(c1)&(b). `
In usualquadraticminimizationproblems,oneneednot checkwhether D is

admissible(seeSection10.1for applications):
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Proposition 10.7.4(
1 � � y� Qy# � � u � Ru#1 � � y� Qy# � � u � Ru#1 � � y� Qy# � � u � Ru# ) Let Σ � �E� �� ���s	 WPLS� U � H � Y 
 be

WR.Let Y ��� @ U,
6 � � �

1
0
� , � � � �

1
I
� , J � �

Q 0
0 R
� , Q Q 0, R $ 0. Assume

that � 	 UR or dimU = ∞.
Let theCARE HIIJ IIK K � SK � A� D � D A � C � JC�

S � D � JD � lim
sL � ∞

B�w D
� s M A
ON 1B �
K � M SN 1 � B�w D � D � JC
 (10.90)

havea solution D 	G> � H 
 , D­Q 0 s.t. limsL � ∞ B�w D
� s M A
 N 1B Q 0 or S $ 0.
Then D is UR andadmissible.
If Q $ 0, then D is SOS-stabilizingand Proposition 10.7.3 applies; in

particular, if Σ is estimatable, then D is theuniquenonnegativesolution,strictly
minimizingover � out andexponentiallyq.r.c-stabilizing.

Note that for dimU = ∞ (resp. � 	 UR), the limit in CARE converges
uniformly (asrequiredabove) if f the limit in CARE convergesweakly (resp.if fS 	 UR, by Lemma9.11.5(e)).

Proof: Choosesomeω h max� 0 � ωA 
 . If limsL � ∞ B�w D
� s M A
 N 1B Q 0, then
S Q D � JD � D �1QD1 � R Q R $ 0. Therefore,S $ 0 undereitherassumption.

By Proposition10.7.2,D is aWR solutionof theCARE.Themap ) is UR,
by Lemma6.3.2(a1)&(a2)or Lemma9.11.5(e).

Substitutez � s into (9.188)to observe thatr) � s
 � Sr) � s
qQÛr�¶� s
 � J r�v� s
 � s 	 C
�
ω 
 (10.91)

(becauseD·Q 0). But r�¶� s
"� J r�v� s
 � r� 1 � s
"� Q r� 1 � s
 � R Q R $ 0 (s 	 C
�
ω ),

hencer) � s
d� Sr) � s
qQ R $ 0.
By Proposition2.2.5,we have ) 	 W TIC∞ � U 
 (this is why we wanted )

to beUR). Thus, D is alsoadmissible,andS $ 0. Therestfollows now from
Proposition10.7.3.

`
If, e.g., Hypothesis 9.5.1 holds, then we have � sB�Õ� s M A
 N ��DP� s M

A
 N 1B � ñ Æ U £ + 0, as s 	 C
�
ω , ¹ s ¹ + ∞, by Lemma9.4.2(k). Therefore,in that

case,self-adjoint solutionsare UR and admissibleeven without the nonnega-
tivity assumption(since then we have, insteadof (10.91), that r) � s
 � Sr) � s
éQr�¶� s
 � J r�v� s
âM εI Q R M εI for someε h 0, whenRes is big enough,by (9.188),
hencealsothen r) 	 W H∞

∞).

Notes
Part of Proposition10.7.3 is well known for certain subclasses;see,e.g.,

Theorem3.3 of [PS87] or Section6.2 of [CZ]. In the finite-dimensionalcase,
[LR] is acomprehensivereferencefor bothgeneralandpositiveRiccatiequations
andinequalities.
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