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Chapter 2

TI and MTI Operators

Gatheryerosebudswhile yemay,
Old Timeis still a-flying:
Andthis sameflowerthat smilestoday
Tomorrowwill bedying.

— RobertHerrick (1591–1674)

Throughoutthis chapter, H, Hk, U , W, Y, Yk andZ (k � N) denoteHilbert
spacesof arbitrarydimensions(unlessotherwisespecified).(Many resultsof this
chapteralsohold for Banachspacesandfor Lp in placeof L2; see[Sbook] for
details.)

In Section2.1weshallstudythebasictheoryof TIω
�
U � Y � , theboundedlinear

time-invariantoperatorsL2
ω
�
R;U ��� L2

ω
�
R;Y � (ω � R). Section2.2 treatsthe

invertibility of TIω operatorswith emphasison thecausalones,TICω.
Section2.3 lists sufficient conditionsfor a TIC operatorto be static, that is,

to be the multiplication operatorinducedby an elementof � � U � Y � . We also
give certainresultsthat will be usedin connectionwith the signature operators
of optimization problems,Riccati equationsand spectralfactorizations;such
operatorsarefurther treatedin Section2.4. Section2.5 treatstheconcept

�
J � S� -

losslessness.
In Section2.6 we definethesubspaceMTIω

�
U � Y � (andits subspaces)corre-

spondingto TIω
�
U � Y � mapsof form u �� µ � u, whereµ is a measureconsisting

of a function f � L1
ω
�
R; � � U � Y �	� plus a discretepart (this includesthe Callier–

DesoerclassandtheWienerclass).We list thebasicpropertiesof theseclasses.
For mostreadersit sufficesjust to haveaglanceatsubsections2.1.1–2.1.7and

possiblyalso2.6.3–2.6.4,andthenreturnto this chapteronly whenpointedby a
reference.

The book [RR] is a standardreferencefor TIC (or “causalshift-invariant”)
operators;seealso[Nikolsky] and[Sbook]. (Dueto Lemma2.1.3,TIC (or TIC∞)
operatorsare sometimescalled “Toeplitz operators”;seep. 56 for the correct
definition.)

Weshallsometimesreferto Chapter3, whichdoesnotdependon thischapter
excepton thebasicpropertiesof TI andTIC operators.
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48 CHAPTER2. TI AND MTI OPERATORS

2.1 Time-invariant operators (TI)

Weepno more, nor sigh,nor groan;
Sorrowcallsno timethat’sgone;
Violetspluckedthesweetestrain
Makesnot freshnor growagain.

— JohnFletcher(1579–1625)

In this section, we define the class TI of time-invariant boundedlinear
operatorsL2 � R; �
��� L2 � R; �
� andseveralof its subclasses,andstudytheir basic
properties.

Westartwith notation.For any ω � R, p �
� 1 � ∞ � andameasurablesetJ � R,
we set

Lp
ω
�
J;U � : ��� u � Lp

loc

�
J;U ������ t �� e� ωtu

�
t ��� � Lp � J;U ����� eω ��� Lp � J;U � ;

(2.1)
in particular,  u  Lp

ω
: �! e� ω � u  Lp. Thus, eω � : � eω � becomesan isometric

isomorphismLp �� Lp
ω, andwe have (recall that τtu : � τ

�
t � u : � u

� ��" t � , Ru �
u
�$# � � )
τ
�
t � eω � � eωteω � τ � t �%�  τ � t � u  Lp

ω
� eωt  u  Lp

ω
� � t � ω � R � u � Lp

ω
�
R;U �	�%& (2.2)

Moreover, πEu : � χEu, whereχE is thecharacteristicfunctionof E � R, π ' : �
πR ( andπ � : � πR ) � I

#
π ' . It follows that

R� 1 � R� R*+� π2
E � πE � π *E � RπE R� π � E � (2.3)

τ
�
t � * � τ

��#
t �%� τ

�
t � τ � s�,� τ

�
t " s�%� Rτ

�
t �,� τ

��#
t � R� πEτ

�
t �,� τ

�
t � πE ' t � (2.4)

andthatany L � � � U � Y � commuteswith τt , RandπE in � � L2 � R;U �-� L2 � R;Y �.� .
We will oftenusethe fact that if / un 0 � L2

α 1 L2
ω, un � u in L2

α, andun � v
in L2

ω, then u � v (a.e.), by TheoremB.3.2. On of its consequencesis that
L2

ω
�
R ' ;U �2� L2

α
�
R ' ;U � , continuously, for ω 3 α. Finally, wehave u  L2

ω
� lim

r 4 ω '  u  L2
r

�
ω � R � u � L2

loc
�
R ' ;U �	�-� (2.5)

by theMonotoneConvergenceTheorem.

Definition 2.1.1(TI, TIC) Let ω � R. We defineTIω
�
U � Y � to be the (closed)

subspaceof operators 5 � � � L2
ω
�
R;U � ;L2

ω
�
R;Y �.� that are time-invariant, i.e.,

τ
�
t �657�85 τ

�
t � for all t � R.

WedefineTICω
�
U � Y � to bethe(closed)subspaceof operators 9 � TIω

�
U � Y �

thatarecausal, i.e., π � 9 π '
� 0, or, equivalently, 9 π ' L2
ω � π ' L2

ω.
WesetTI : � TI0, TI∞ : �;: ω < RTIω, TIexp : �;: ω = 0TIω, TIC : � TIC0, TIC∞ : �

TIC 1 TI∞ and TICexp : � TIC 1 TIexp. For 5 � TIω
�
U � Y � we set 5 t : �

π > 0 ? t @ 5 π > 0 ? t @ � � � L2 � R;U �%� L2 � R;Y �	� .
We call mapsbelongingto TICexp exponentiallystable, thosebelongingto

TIC � TIC0 stable, andthosebelongingto TIC∞ A TIC unstable.
We extendany 9 � TIC∞

�
U � Y � as follows: if u � L2

loc

�
R;U � and π � u � L2

ω,
thenwe setπ B � ∞ ? T @ 9 u : � π B � ∞ ? T @ 9 π B � ∞ ? T @ u (T � R) (by causality, 9 u becomes
uniquelydefined(a.e.) onR).
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By Lemma2.1.10,we have TIC � TIC∞ 1 TI, TIC∞ �C: ω < RTICω, TICexp �: ω = 0TICω. SeeRemark2.1.9for theconceptTIa 1 TIb for a D� b.
For any 9 � TICω we obviously have 9 π 'E� π '�9 π ' , π � 9C� π � 9 π � , and

π B � ∞ ? t @ 9;� π B � ∞ ? t @ 9 π B � ∞ ? t @ . We will oftenusethesefactsaswell asthefact that
R� L2

ω
�
R;U �$�F� L2� ω

�
R;U � .

Theorem 2.1.2(Transfer functions) Let ω � R. For each 9 � TICω
�
U � Y �

there is a unique function G9 � H∞ � C 'ω ; � � U � Y �	� , called the transferfunction
(or symbol or Laplace transform) of 9 , s.t. H9 u � G9 û on C 'ω for all u �
L2

ω
�
R ' ;U � . The mapping 9I�� G9 is an isometric isomorphismof TICω

�
U � Y �

ontoH∞ � C 'ω ; � � U � Y �	� . J
(Thetheoremis obtainedfrom Theorem2.3of [W91a]by translationby ω (cf.

Remark2.1.6).Thattheoremalsocontainsasimilarclaimfor Lp (1 3 p K ∞) and
BanachspaceU andY, but in thatcasetheisometricisomorphismontobecomes
merelya linearinjectioninto, by Example3.3.4.)

Recallthat Gu denotestheLaplacetransformGu � s� : �ML R e� stu
�
t � dt of u.

We often identify functionsandcorrespondingmultiplication operators,i.e.,
we consider G9 � H∞ � C 'ω ; � � U � Y �	� both as a function and as an operatoronN O � L2

ω
�
R ' ;U �$�P� H2 � C 'ω ;U � (seeTheorem3.3.1(b)).

A causaltime-invariantmap 9 : L2 � R;U �RQ Dom
� 9��S� L2 � R;Y � is called

well-posedif f 9 � TIC∞
�
U � Y � , i.e., if f thereareω � R andM K ∞ s.t.  T9 u  L2

ω
3

M  u  L2
ω

for all u � Dom
� 9�� andDom

� 9�� 1 L2
ω is densein L2

ω
�
R;U � .

Thus, if G9 � H
�
Ω; � � U � Y �	� for someopenΩ � C, then the multiplication

map Gu �� G9 Gu determinesa (necessarilyunique)well-posedmap 9 � TIC∞
�
U � Y �

if f G9 is defined and boundedon some right half-plane (i.e., if f G9 � H∞
∞ : �: ω < RH∞ � C 'ω ; �
� ). Therefore,“well-posed”is anextensionof theclassicalconcept

“proper” (recall thata properrationalfunction is onethat is boundedat infinity).
We shallstudytransferfunctionsof TIC∞ mapsin detail in Section3.3andthose
of TI∞ mapsin Section3.1.

We concludefrom Theorem2.1.2that theextensionmentionedat theendof
Definition2.1.1extendsany 9 � TICω to auniqueTICω U operatorfor eachω V
W ω;
we identify thesetwo operators.Thus,TICω � TICω U . TheTIω operatorsarenot
nestedin a similar way, but they are also uniquely determinedby any TIω U to
which they belong;seeRemark2.1.9for details.

A causalmap 9 � TIC∞ is determinedby its Toeplitzoperator π 'X9 π ' :

Lemma 2.1.3 For each 9�' � � � L2
ω
�
R ' ;U �%� L2

ω
�
R ' ;Y �	� s.t. τ � t 9��Y9 τ � t for

t Z 0, there is 9 � TICω
�
U � Y � s.t. 9�'[� π '�9 π ' . This correspondenceis an

isometricisomorphism.

Proof: (Recall that we identify functionson R ' to their zeroextensions,
henceτ � t f is zeroon � 0 � t � for eachf : R '\�]� .)

Extend 9�' to � � X � L2 � , where X : �^: T < RL2
ω
� � T � " ∞ � ;U �	�_� L2

ω, by9�' τTu : � τT 9�' u for T Z 0, u � π ' L2
ω. Oneeasilyverifiesthat the resulting

operatoris well-definedand time-invariant. Becausethis doesnot alter the
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normof 9`' , by (2.2),we canextend 9�' to L2
ω, by density. By continuity, the

resultingoperatoris time-invariant.Theconverseis obvious. J
Definition 2.1.4 If 5 � TIω

�
U � Y � (ω � R), thenits (noncausal)adjoint 5 * is the

TI � ω
�
Y� U � mapthat satisfiesa

R b � 5 u� � t �%� y � t �dc dt � a
R b u � t �%� � 5 * y� � t �dc dt

�
u � L2

ω
�
R;U �-� y � L2� ω

�
R;Y �	�%&

(2.6)
Wecall 5 d : � R5 * R� TIω

�
Y� U � thecausaladjointof 5 � TIω

�
U � Y � .

(Weusedheretheidentity τ
�
t �65 * � � 5 τ

��#
t �.� * � � τ ��# t �652� * �e5 * τ � t � .)

Obviously, it is enoughto verify (2.6)for u � y �gf ∞
c
�
R;Y � , by TheoremB.3.11.

Notethat 5��d5�V � TIω h � 5�5�Vi� * �85XV * 5 * . SeealsoLemma2.1.10(b).
Note that the adjoint is not taken w.r.t. the L2

ω inner product(which would
imply 5 * � TIω

�
U � Y � ) but w.r.t. the L2 � L2

0 inner product (so that 5 * �
TI � ω

�
U � Y � ). Thisway theadjointdoesnot dependon thechoiceof ω.

By duality we usuallymeanthatoneappliesknown resultsto theduals(i.e.,
adjoints)of theoperatorsinvolved(cf. alsoLemma6.1.4).

Lemma 2.1.5 Let ω � R. If 9 � TICω
�
U � Y � , then 9 d � TICω

�
Y� U � . Let5 � TIω

�
U � Y � . Then5 �kj � � L2

ω
�
R;U �%� L2

ω
�
R;Y �	� iff 5 �lj TIω

�
U � Y � . J

(We leave thesimpleproof to thereader.)
Thus,theinverse(if any) of a time-invariantmapis necessarilytime-invariant.

The inverseof a causalmap neednot be causal(e.g., τ
�$#

1� � TIC, τ
�
1�m�

τ
��#

1� � 1 � TI A TIC). However, the “causaladjoint” of a causalmap is always
causal,asshown in thelemma.

Remark 2.1.6(Shifting stability) Let α � ω � R. Let n α bethestability shift (or
scalingoperator) 5o�� eα � 5 e� α � . Thenn α is anisometricisomorphismof TIω onto
TIω ' α andof TICω ontoTICω ' α (because� π 'p� L2

ω ' α � eα � � π 'p� L2
ω, isometrically).

Obviously, n απ q\� π qrn α, n ατ
�
t �p� τ

�
t �Tn α (t � R), andwehaven α

� 5�st��� � n α 5r� � n α s,�%� n α
�
β 5 " γ sr��� β n α 5 " γ n α su� (2.7)� n α 5r��� 1 �Mn α 5�� 1 � � n α 5t� * �Cn � α 5 * � (2.8)� n α 5r� d �Mn α 5 d � vn α 5l� τ

��#
α ��G5�& (2.9)J

(The formula vn α 58� G5 � � # α � refersto Theorem3.1.3(a1);for 5 � TIC∞ it
alsocoversTheorem2.1.2.)

Notethatα W 0 decreasesstability, i.e.,shiftsthetransferfunctionto theright.
SeealsoRemark6.1.9.

If 9 � TI is causal,then,obviously, 9 * is anti-causal, i.e.,π '�9 * π � � 0. If 9
is bothcausalandanti-causal,thenwecall 9 static. We identify D � � � U � Y � and
the multiplication mapMD : u �� Du (note that MD

� TIC
�
U � Y � , M � 1

D � MD ) 1

if either inverseexists, and M *D � MD w ). The static TIC mapsare exactly the
(multiplication)mapsof this form:
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Lemma 2.1.7(Static 9 ) Let 9 � TIC∞
�
U � Y � and 9 * � TIC∞

�
Y� U � . Then 9 �� � U � Y � . Moreover, the imbedding �x�� TICω preservesnormsand commutes

with algebraic operations(for anyω � R).

Thus, 9 � TIC∞ & π '�9 π � � 0 h 9 � � . SeeSection2.3 for moreon static
operators.

Proof: For 9y�d9 * � TIC, this is statedin [RR, Theorem5.2C,p. 96] (we
do not know their proof; a proof consistsof PropositionD.1.20combinedwith
Theorems2.1.2and3.3.1;see[Sbook]for amoregeneralresultandits system-
theoreticproof).

In the general case, where 9��z9 * � TICω for some ω � R, we have9 � ω : �en � ω 9 � TIC0 and
� 9 � ω � * �8n ω 9 * � TIC0, henceD : �{9 � ω

� � � U � Y �
and 98�Mn ω 9 � ω � D. J
The Hankel operator1 π ' � π � of a TIC∞ mapdeterminesthe mapuniquely

moduloastaticoperator:

Corollary 2.1.8(π 'X9 π �π 'p9 π �π 'X9 π � ) Let 9��+|9 � TIC∞
�
U � Y � . Thenπ '�9 π � � π '�|9 π � iff98� |9 " D for someD � � � U � Y � . J

(Apply Lemma2.1.7to 9 # |9 .) Notethatit sufficesthatπ '�9 π � φ � π ' |9 π � φ
for all φ �}f ∞

c , by TheoremB.3.11.
As notedabove,a TICa mapis alsoa (i.e.,extendsto a unique)TICb mapfor

any b W a. If the restrictionof a TIa maponto L2
b 1 L2

a is continuousin the L2
b

norm(to L2
b), thenit extendsto a uniqueTIb map(anda uniqueTIr mapfor any

r �k� a � b� ), aswill be notedin the remarkandlemmabelow. The corresponding
technicaldetailsaregivenin PropositionE.1.8.

Remark 2.1.9(TIa 1 TIbTIa 1 TIbTIa 1 TIb) Leta K b. Assumethat ~ is thesetof simplefunctions
R � U, or ~�� L2

a
�
R;U � 1 L2

b

�
R;U � or ~�� f ∞

c
�
R;U � .

If(f) 5 � ~^� L2
a
�
R;Y � is time-invariant, linear and boundedL2

a � L2
a and

L2
b � L2

b, or equivalently, 5 is linear andthere is M K ∞ s.t. 	5 φ  L2
a
3 M  φ  L2

a
�� 	5 φ  L2

b
3 M  φ  L2

b
and 5 τ

�
t � φ � τ

�
t ��5 φ for all t � R � φ � ~7�

(2.10)
then 5 extendsto a uniqueoperator 5 � TIr

�
U � Y � for all r �8� a � b� , and 5 is

uniquelydefinedon : r < > a ? b� L2
r
�
R;U � , byPropositionE.1.8.

Therefore, if 5 a
� TIa

�
U � Y � and 5 b

� TIb
�
U � Y � are s.t. 5 a �;5 b on ~ , then

weidentify 5 a and 5 b.
Thus,by“ 5 � TIa

�
U � Y � 1 TIb

�
U � Y � ” wemeansuch a map(i.e., 5��{5 a �{5 b,

where 5 a and 5 b areasabove).
Analternativecharacterizationis that 5 : L2

a
�
R;U � " L2

b

�
R;U ��� L2

a
�
R;Y � "

L2
b

�
R;Y � is linear ands.t. 5m� L2

a

� � � L2
a � L2

a � , 5m� L2
b

� � � L2
b � L2

b � and 5 τt � τt 5 for

all t � R (seeDefinitionE.1.3). J
1Sometimesπ �
� π � is calledtheHankel operatorandπ �P� π � theanti-Hankel operatorof � ;

our choiceis dueto [S97b].
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If 5 is a linearmapwhoserestrictionto Dom
� 5r� 1 L2

a extendsto auniqueTIa

map(asabove), thenwe identify this TIa mapwith 5 .
By translation-invarianceanddensity, it is enoughto verify (2.10) for func-

tionsφ � ~ having their supporton,e.g.,R ' .

Lemma 2.1.10(TIa 1 TIbTIa 1 TIbTIa 1 TIb) Let 5 � TIa
�
U � Y � 1 TIb

�
U � Y � , a K b. Then the

following hold:

(a1) 5 � TIr
�
U � Y � for all r �7� a � b� , and 	5m TI r � : Mr 3 M1 � θr

a Mθr
b 3 max/ Ma � Mb 0 �

r �7� a � b���%� (2.11)

where θr : � � r # a�.� � b # a� .
(a2) If 5 � TIC∞

�
U � Y � , then 5 � TICr

�
U � Y � for all r �
� a � ∞ � .

(b) 5 * � TI � r
�
Y� U � , 5 d � TIr

�
Y� U � and 5 � 1 � TIr

�
Y� U � are independentof r.

(c) Wehaves��;� � TIa 1 TIb if s � TIa, � � TIb, s φ �8� φ for all φ � ~ , and~ is s.t.thetranslationsof ~ spana densesubsetof bothL2
a andL2

b (e.g., ~
is asin Remark2.1.9or ~��C/ χ > 0 ? 1� 0 or ~���/ e� � � 2 0 (byLemmaD.1.25)).

(d) Let 9 � TICr
�
U � Y � , r � R. Then 9 � TICr U � U � Y � and  T9� TICr U 3� T9� TICr

for all r V�Z r. Moreover, 9 * � TI � r U � Y� U � , 9 d � TICr U � Y� U � and 9 � 1 � TI.

(e) Let 9 � TIC∞
�
U � Y � , and let ω � R. Then 9 � TICω iff 9 u � L2

ω for all
u � L2

ω
�
R ' ;U � .

(f) LetT � R, |5 � TIa and 9 � TICa. Let ω � R. Then, �|5� TIω : �Y �|5� T� B L2
ω @ �� π >T ?∞ @ |5 π >T ?∞ @  T� B L2

ω @ � lim
t 4 ' ∞

 �|5 t  T� B L2
ω @ (2.12)� sup

u <+� ∞
c
B R ( ;U @�?�� u �

L2
ω � 1

 π >T ?∞ @ |5 u  L2
ω
� and (2.13) T9� TICω : �Y T9� T� B L2

ω @ � lim
t 4 ' ∞

 T9 t  T� B L2
ω @ (2.14)� lim

r 4 ω '  T9� TIC r � sup
r � ω

 T9� TICr (2.15)

(thenormsmaybeinfinite for ω D� a; recall that |5 t : � π > 0 ? t @ |5 π > 0 ? t @ ).
(g) Let s � TIr for all r � � a � b� . ThenM : � supr < B a ? b@  	s� TI r K ∞ iff s �

TIa 1 TIb. If this is thecase, thenM � max/� 	s  TI a �¡ 	s  TI b 0 .
To givethereaderabetterintuition onTI∞ operators,wementionafew results

thatwill beshown later: theFourieror Laplacetransform(“transferfunction” or
“symbol”) of aTIa

�
U � Y � mapis in L∞

strong
�
a " iR; � � U � Y �	� (Theorem3.1.3),that

of a TIa 1 TIb map is also in H
�	�

a � b� ; � � U � Y �	� (Theorem3.1.6),and that of a
TICa mapalsoin H∞ � C 'a ; � � U � Y �	� (Theorem2.1.2).

Proof: Recall that simple functions(henceL2
a 1 L2

b) are densein L2
r for

r �
� a � b� , by TheoremB.3.11.
(a1)SeePropositionE.1.8andRemark2.1.9.
(a2)Now π � 5 π '7� 0 onany L2

r (r �7� a � b� ), by continuity. From(d) weget
that 5 � TICr for any r Z a.
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(b) It is obviousfrom (2.6)that
� 5 r � * � � 5 a � * onL2� a 1 L2� r , hence5 *r �l5 *a,

(by definition(or by (c)).
Consequently, R5 *a R� R5 *r R(onL2

a 1 L2
r ).

Finally, if 5 is invertible in TIrk andin TIrk (rk
�k� a � b� ) for k � 1 � 2, then5 � 1 mapsL2

r1 1 L2
r2

onto itself (asdoes 5 too); in particular, 5 � 1
r1
�M5 � 1

r2
(on

L2
r1 1 L2

r2
).

(c) This followsalmostdirectly from Remark2.1.9(theFouriertransforms
of χ > 0 ? 1� 0 ande� � � 2 are D� 0 a.e.;cf. LemmaD.1.25).

(d) By Theorem2.1.2, 9 extendsto aTICr U mapfor r V¢Z r. Therestfollows
from (b).

(Notethatτ
��#

1� � TIC 1 j TI A j TIC∞, sinceτ
�
1� is noncausal.)

(e) “Only if ” is trivial, so assumethat 9 � TICα, α Z ω, and 9 u � L2
ω

for all u � L2
ω
�
R ' ;U � . The continuousinclusion π ' L2

ω � L2
α implies that9 u � � � π ' L2

ω � L2
α � , hence9 u � � � π ' L2

ω � L2
ω � , by LemmaA.3.6. Thus,(2.10)

is satisfied,hence9 � TIω. By (a2), 5 � TICω.
(f) Obviously, we canw.l.o.g. assumethat ω � 0 (cf. Remark2.1.6)and

T � 0 (usetime-invariance).By Remark2.1.9,we have |5_ r� sup
u <+� ∞

c
B R;U @�?�� u �

L2
ω � 1

 	5 u  L2
ω
& (2.16)

Assume,thatM K� |5_ . Chooseu ��f ∞
c
�
R;U � s.t.  u  2 � 1 and  |5 u   W M. By

CorollaryB.3.8,we have  π ' |5 τ � tu  £W M for t big enough;take t sobig that
we alsohave τ � tu �¤f ∞

c
�
R ' ;U � to establish(2.13). Obviously, (2.12)follows

from (2.13).
Thefirst two equalitiesfor  T9� follow from theabove. Also the 9 t claim

follows from CorollaryB.3.8,soonly (2.15)remainsto beproved.
Let  u  L2 � 1. Then  T9 u  L2

r
�� u  L2

r
�  T9 u  L2 , by (2.5), hence  T9� ¥3

supr � ω  T9� TICr . But  T9� TICr is decreasingin r, by (d), hence  T9� is givenby
(2.15).

(g) (In fact,wemayreplace
�
a � b� by any D � R s.t.a � b � D̄.) This follows

from LemmaE.1.9. J
If(f)  T9� TI α is (finite and)bounded,asα � " ∞, then 9 is causal:

Lemma 2.1.11 Let 9 � TIω
�
U � Y � , ω � R. Thenthefollowingareequivalent:

(i) 9 � TICα for someα Z ω;

(ii) 9 � TICα for all α Z ω;

(iii) 9 � TIα and  T9� TI α 3I T9� TI ω for all α Z ω;

(iv) 9 � TIα for all α Z ω, ande� αε  T9� TI α � 0 for all ε W 0.

Thus, if  T9� TI α doesnot grow with an exponentialspeed,asα � " ∞ (cf.
(iv)), thenit is boundedand 9 is causal.

On theotherhand,τt � TIω
�
U � for all t � ω � R, but τt D� TIC∞ for t W 0 (τt is

not causalbecauseit mapsbackwardsin time),and  τt  TIα � eαt , by (2.2),sothe
estimatein (iv) is the“bestpossibleone”.
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Proof: 1¦ “(ii) h (i)” and“(iii) h (iv)”: This is trivial.
2¦ “(i) h (ii)&(iii)”: This follows from Lemma2.1.10(d).
3¦ “(iv) h (i)”: Assumethat(i) doesnothold,sothaty : � π � 9 π ' u D� 0 for

someu � L2
ω
�
R ' ;U � .

Chooseε W 0 s.t.r : �Y π B � ∞ ? � ε @ y  L2
ω
W 0. Then,by (2.2), y  L2

α
: �Y e� α � y  2 Z e

B α � ω @ ε  y  L2
ω
Z eαεδ V � (2.17)

whereδ V : � e� ωεr W 0. Consequently,  T9� TI α Z eαεδ (α Z ω), whereδ : �
δ V§�� u  L2

ω
W 0, because u  L2

ω
ZI u  L2

α
W 0 (α Z ω).

It follows thate� αε  T9� TI α Z δ D� 0, so that (iv) doesnot hold. Therefore,
(iv) implies(i). J

Lemma 2.1.12( 9 is closed) Let 9 � TIC∞
�
U � Y � and ω � R. Then 9 is closed

on L2
ω
�
R ' ;U � (herewesetDom

� 9`� : ��/ u � L2
ω
�
R ' ;U �p�� 9 u � L2

ω 0 ).
Proof: Chooseα W ω s.t. 9 � TICα. If un � u and 9 un � y in L2

ω, then
un � u in L2

α, hence9 un �¨9 u in L2
α, hencey �[9 u a.e.,by TheoremB.3.2.J

We setL2
c
�
R;U � : �I/ u � L2 � R;U � �� suppu is bounded0 . If 9 � L2

c �,� L2, then9 is “almoststable”(cf. Lemma6.1.11andTheorem3.3.1(a4)&(c3)):

Lemma 2.1.13(9 L2
c � L29 L2
c � L29 L2
c � L2) Let 9 � TIC∞

�
U � Y � and ω � R, and let there be

T W 0 s.t. 9 π > 0 ? T @ u � L2
ω for u � L2

c. ThenM : �� T9 π > 0 ? T @  T� B L2
ω ? L2

ω @ K ∞, and T9� TICβ 3 Mβ ?ω ? TM
�
β W ω �%� (2.18) T9 u  L2

ω
3 Mα ?ω ? TM  u  L2

α

�
α K ω � u � L2

α
�
R ' ;U �	�-& (2.19)

Thus, then 9 � L2
c � � L2

ω and 9 π > 0 ? t @ u � 9 u and 9 t u � 9 u in L2
ω for all u �

L2
α
�
R ' ;U � " L2

c, α K ω. Moreover,
�
s " r " ω � � 1 G9 � H2

strong
�
C 'ω ; � � U � Y �.� for

all r W 0; in particular, G9 � 1 � �1' � � � H2
strong

�
D; � � U � Y �	� if ω K 1.

(SeeDefinition13.2.2for G© .)
Proof: (In fact, thelemmaholdsevenfor TICloc (seeSection8 of [Sbook]

for thedefinition)in placeof TIC∞, with virtually thesameproof.)
Except for the H2

strong claims, this follows from Lemma 13.1.3 through
discretization.(RecallthatL2

c
�
R;U �p�M: T � 0L2 � � # T � T � ;U � .)

Since G9 � s " r " ω � � 1u0
� H2

ω for all u0
� U (notethat

N O � 1 � s " r " ω � � 1u0
�

L2
ω � r � 2; see also Theorem3.3.1(b) and Theorem2.1.2) we have

�
s " r "

ω � � 1 G9 � H2
strong

�
C 'ω ; � � U � Y �	� , by LemmaF.3.3(a1).

Set t : � r " ω to observe from Lemma13.2.1(e2)that z �� �
1 " z� � 1 � z

1' z
"

t ��G© G9 � H2
strong

�
D; � � U � Y �	� , i.e., � 1 " t " � t # 1� z�$G© G9 � H2

strong
�
D; � � U � Y �	� , for

all t W ω. If ω K 1, we cantake t � 1 to obtainthat G© G9 � H2
strong

�
D; � � U � Y �	� .J
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Lemma 2.1.14(9 t * 9 t 3 γ2I h  T9� TIC 3 γ9 t * 9 t 3 γ2I h  T9� TIC 3 γ9 t * 9 t 3 γ2I h  T9� TIC 3 γ) Let 9 � TIC∞
�
U � Y � andγ � R. If9 t * 9 t 3 γ2I for all t W 0 � (2.20)

then 9 � TIC
�
U � Y � and  T9� TIC 3 γ. If J ª 0 is s.t. that 9 t * J 9 t 3 γ2I for all

t W 0, then 9 � TIC
�
U � Y � . J

Proof: (Obviously, thetheoremalsoholdswith TI in placeof TIC.)
The first claim follows from (2.14). If J Z εI , ε W 0, then 9 t * J 9 t * Z

ε 9 t * 9 t * , hencealsothesecondclaim holds. J
Lemma 2.1.15(

� 9 u� � t � � est G9 � s� u0
� 9 u� � t � � est G9 � s� u0
� 9 u� � t � � est G9 � s� u0) Let 9 � TICω and let Res W ω. If u0

� U
andu � es� u0, then

� 9 u� � t � � est G9 � s� u0 for all t � R. J
(This is Lemma6.10of [S98c],originatingfrom [W91a].) Note that π � u �

L2
ω, andthat 9 wasextendedasexplainedin Definition2.1.1.

Notes
Theorem2.1.2is from [W91a]. Corollary2.1.8,Lemma2.1.15andmuchof

Definitions2.1.1and2.1.4andof our notationarefrom [S97a]and[S98c]. The
caseω � 0 of Lemma2.1.7is Theorem5.2Con p. 96 [RR].

A standardreferencefor thetheoryon time-invariantoperatorsis [RR].
The main new contributionsof this sectionarethe theoryof TIω 1 TIω U (see

2.1.9–2.1.11and3.1.6,andthe fact that 9 is “almost stable” if 9 π > 0 ? T @ L2 � L2

(seeLemma2.1.13andthereferencesabove it).

2.2 TIC — invertibility

Andthat invertedBowl wecall TheSky,
Whereundercrawlingcoop’t welive anddie,
Lift not thyhandsto It for help– for It
Rollsimpotentlyon asThouor I.

— OmarKhayyam(1048–1131)

In this sectionwe studythe invertibility propertiesof TI∞ operators.Invert-
ibility andleft invertibility (andright invertibility, by duality) arefurtherstudied
in Chapter4. Westartfrom thegeneral(noncausal)case:

Lemma 2.2.1 LetU � Y beHilbert spaces,ω � R, andε W 0.

(a1)Let 5 � TI
�
U � Y � . Then5 * 5{ª 0 iff «�5e� I for some« � TI

�
Y� U � .

(a2)Let 5 � TIω
�
U � Y � . Then5 �kj TIω ¬ 5 �kj � � L2

ω
�
R;U �%� L2

ω
�
R;Y �	� .

(b) «­��5 � TIω
�
Cn � & «�5e� I � h 5X«®� I .

(c1) 5 � TI
�
Cn � & 5 * 5{ª 0 � h 5 �lj TI

�
Cn � & 5u5 * ª 0.

(c2) 5 � TI
�
U � Cn � & 5 * 5{ª 0 � h dimU 3 n (and 5 �kj TI ¬ dimU � n).

(c3) 5 � TI
�
U � Y � & 5 * 5{ª 0 � h dimU 3 dimY.
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(c4) 5 �{j TIω
�
U � Y �y� h dimU � dimY.

(d) 9 � TIC∞
�
U � Y � & 9 t * 9 t Z εI for all t W 0 � h dimU 3 dimY.

By dimH we meanthe cardinalityof an arbitraryHilbert basisof H. (E.g.,
dim ¯ 2 � N ��K dim ¯ 2 � R � ; cf. LemmaB.3.16.) Naturally, alsothe shiftedversions
of theabove resultshold; (e.g.,if some5 � TIω

�
U � Y � is coercive, thendimU 3

dimY).
Proof: We use here Theorem2.1.2 and the separablecaseof Theorem

3.1.3(a)&(c)(both areknown resultsin that extent). We take ω � 0 w.l.o.g.
(seeRemark2.1.6).

(a1)If 5 * 57ª 0, then « : � � 5 * 5t� � 1 5 * � TI
�
Y� U � and «�5k� I . Conversely,

if «�58� I , thenb u ��52*�5 ucX�Y 	5 u  2 Z ε  u  2 for all u � L2 � R � U �%� (2.21)

whereε : � 1�� T«� 2 W 0, i.e., 5 * 5EZ εI .
(a2) “Only if ” is trivial, soassumethat 5 � TI 1 j � � L2 � R;U �-� L2 � R;Y �	� .

Then 5 � 1τt � � τ � t 5r� � 1 � � 5 τ � t � � 1 � τt 5 � 1 for all t � R, hencethen 5 � 1 �
TI
�
Y� U � .
(b) G«_�$G° � L∞ � Cn ± n � and G« � it ��G° � it �r� I a.e.on iR, hence G° � it �¡G« � it �t� I

a.e.on iR.
(N.B. Thiswouldnotholdevenfor static(constant)operatorsif theHilbert

spaceCn werereplacedby aninfinite-dimensionalone.)
(c1) Take « : � � 5 * 5r� � 1 5 anduse(b).
(c2) U is separablesince 5 * D is densein L2 � R;U � for any D densein

L2 � R;Cn � (because5 * is onto). By Theorem3.1.3, G5 � L∞
strong

�
iR; � � U �	�

and G5 * G5²Z εI a.e. on iR. If it � iR is such that G5 � it � * G5 � it ��Z εI , thenG5 � it � � � � U � Cn � is coercive,hencedimU 3 n, by LemmaA.3.1(a4).
If dimU � n, then ³¢5 � 1 by (c1), otherwise G5 � it � is coercive a.e. and

nowhereonto,henceit can’t haveaninverse.
Remark:Thereare 5��z« � � � L2 � U �%� L2 � Cn �.� for s.t. 5 * 5Eª 0, « * «[ª 0,5 �[j � � L2 � U �%� L2 � Cn �	� and « is not onto, by LemmaB.3.16, for any n �/ 1 � 2 � 3 �	&	&	& 0 andany separableU . Therefore,time-invarianceis notsuperfluous

in (b)–(c4).
(c3) By (c2), we mayassumethatdimY is infinite, so thatdimL2 � R;Y �r�

dimY, by LemmaB.3.16. By LemmaA.3.1(a4),the coercivity of 5 implies
that dimL2 � R;U �­3 dimL2 � R;Y � . Consequently, dimU 3 dimL2 � R;U �­3
dimL2 � R;Y �X� dimY.

(c4) Now 5 * 5
ª 0 and 5�5 * ª 0, hencedimU � dimY, by (c3).
(d) By Lemma2.2.4(a),we have G9 * G9YZ εI on C 'ω , whereω Z 0 is s.t.9 � TICω. Consequently, dimU 3 dimY, by LemmaA.3.1(a4) J

For any 5 � TI, we denotebelow the Toeplitz operator(or Wiener–Hopf
operator)π 'p5 π ' of 5 by T ´ .

Lemma 2.2.2(Toeplitz operators) Let 5 � TI
�
U � and «­�zµ � TIC

�
U � . Then

T ´ w � T *´ , andthefollowing is true:
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(a1) If T ´ is invertible, thensoare 5 , T ´ w andπ � 5 dπ � .

(a2)T ¶ is invertibleiff « �kj TIC.

(b) Let «y�zµ �lj TIC
�
U � . ThenT ´ invertibleiff T · w ´ ¶ is invertible.

(c1) If 5 �kj TI, thenfollowing areequivalent:

(i) T ´ is invertible;

(ii) π � 5 � 1π � is invertible;

(iii) 5 π ' " π � �kj � � L2 � ;
(iv) π '�5 " π � �{j � � L2 � ;
(v) Reb 5�¸ u � uc¹Z δ  u  22 for all u � L2 for somȩ ��j � � π ' L2 � andsome

δ W 0.

(c2) (“No equalizing vectors” condition) Let 5 � MTIL1 �
Cn � , n � N. If5 �8j TI (i.e., detG5 � ir �SD� 0 for all r � R :o/ ∞ 0 ), thenT ´ is invertible iff

Ker
�
T ´ �X��/ 0 0 .

(d) Wehave5oª 0 ¬ T ´ ª 0; in particular, 5oª 0 impliesthatT ´ is invertible.

See[DS] for further equivalentconditionsfor the invertibility of 5 (andthe
existenceof anon-TI spectralfactorization)in amoregeneral(non-TI)setting.

Proof: (In thelemma,“L 2” denotesL2 � R ' ;U � .)
(a1)By Lemma4.4of [S98c],theinvertibility of T ´ impliesthatof 5 . (The

conversedoesnothold: τ
�
1� �lj TI but Tτ B 1@ is notonto.)

Let T ´ be invertible. Becauseπ *' � π ' , we have
�
π ',5 π 'R� * � π 'p5 * π ' ;

henceT � 1´ w � T � *´ . Moreover, π � 5 dπ � � Rπ '�5 * π ' Rimpliesthe invertibility
of π � 5 dπ � (on π � L2).

(a2) If « �Ej TIC, then « π 'k� π 'p« π ' " π � « π '{� π 'X« π ' , by causality,
hencethen

π 'X« � 1π ' π '�« π '7� π '�« � 1 « π '7� π '\� Iπ ( L2 � π '�« π ' π '�« � 1π '�& (2.22)

Conversely, if π 'X« π ';�I« π ' is invertible, then « �Mj TI, by (a1), and
π ' L2 �²« π ' L2, hencethen « � 1π ' L2 �²« � 1 « π ' L2 � π ' L2, i.e., « � 1 is
causal.

(b) Now T ¶ and T · w are invertible, by (a2), so the claim follows from
equation

T · w ´ ¶ : � π 'Xµ * 5u« π '
� π '�µ * π ',5 π '�« π '7� T · w T ´ T ¶ & (2.23)

(c1) (N.B. (v) holdsif f
� 5�¸�� " � 5�¸�� * ª 0.)

Claims(iii) and(iv) areequivalentto (i) by equations5 π ' " π � �»º π '�5 π ' 0
π � 5 π ' π ��¼ � π 'p5 " π � �½º π '�5 π ' π ',5 π �

0 π � ¼ (2.24)

(on L2 � π ' L2 ¾ π � L2), respectively. Multiply the former to the left by 5 � 1

to obtain π � " 5 � 1π � to obtain the equivalence“(iii) ¬ (ii)”. Equivalence
“(i) ¬ (v)” is [DS, Theorem3] combinedwith (a1).
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(c2) (Nonzeroelementsof Ker
�
T ´�� arecalledequalizingvectors.This “No

equalizingvectors”conditionwasestablishedfor rationaltransferfunctionsin
[Meinsma].)

This proved in [IZ01] (seealso Theorem4.1.1(a)(ii)&(v’)). (“Only if ”
is trivial, “if ” follows by noting that the middle elementof the standard
factorizationof 5 (seeTheoremII.6.3 of [CG81]) mustbeconstant.)

Remark:It is not possibleto extendthis resultto anarbitraryHilbert space
H in placeof Cn by usingclassicalfactorizationresults(collectedin Theorem
5.1.6).(And wedo notknow whethersuchanextensionis true.)

Indeed,Theorem5.1.6(a)requiresthe additional assumptionthat T ´ is
a Fredholmoperator(note that for self-adjoint 5 , this additionalassumption
togetherwith Ker

�
T ´ ���²/ 0 0 is equivalent to the invertibility of T ´ for any5l�e5 * � TI, notmerelyfor 5 �kj MTIL1

, by LemmaA.3.1(c7)&(c2)(ii)).
(d) This is Lemma4.4of [S98c]. J

Lemma 2.2.3( j j j TIC) Let « � TI
�
U � . Thenthefollowingareequivalent:

(i) « �{j TIC;

(ii) « d �kj TIC;

(iii) « � TIC andπ 'p« π ' is invertibleon π ' L2;

(iv) « �kj � � L2 � and « π ' L2 � π ' L2;

(v) « �kj � � L2 � and « * π � L2 � π � L2;

(vi) « � TIC, « * «8ª 0 andπ 'X« π ' « * π '\ª 0 on π ' L2;

(vii) « � TIC, «�« * ª 0 andπ � « * π � « π � ª 0 on π � L2.

If dimU K ∞, thenonemore equivalentconditionis that π '�« π '�« * π '�ª 0;
equivalently, wemayacceptright invertibility in (iii).

SeealsoProposition2.2.5andTheorem4.1.1(b).
Proof: 1¦ Theequivalence:Because« � TIC h « d � TIC, we obviously

have “(i) ¬ (ii)”. Theequivalence“(i) ¬ (vi) ¬ (vii)” is Lemma4.11of [S98c],
and“(i) ¬ (iii)” is Lemma2.2.2(a2).

“(i) ¬ (iv)”: Clearly(i) and(iii) imply (iv) and(iv) implies(iii).
“(ii) ¬ (v)”: Apply “(i) ¬ (iv)” to « d �kj � � L2 � to obtain« d �{j TIC ¬ π ' L2 �¿« dπ ' L2 � R« * Rπ ' L2 � R« * π � L2 & (2.25)

2¦ Case dimU K ∞: If π 'X« π ' « * π '�ª 0, then there is ε W 0 s.t. π > t ? ' ∞ @ « * π > t ? ' ∞ @ u  �Z ε  � t � " ∞ � u  for u � L2 andt � 0. By time-invariance,
this holds for all t � R; by continuity,  T« * u  ÀZ ε  u  for all u � L2. If
dimU K ∞, then « * �Áj TI, by Lemma2.2.1(a)&(b),hencethen(vi) holds.The
converseis trivial. (Ourfavoritecounter-example«k� τ � 1 � TIC 1 j TI A j TIC
shows thatleft-invertibility is not sufficient.) J
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Lemma 2.2.4(9 t * 9 t Z εI h G9 * G9[Z εI9 t * 9 t Z εI h G9 * G9MZ εI9 t * 9 t Z εI h G9 * G9[Z εI )

(a) If ω Z 0, 9 k
� TICω

�
U ���
� (k � 1 � 2 � 3 � 4) and 9 t

1 * 9 t
2 Z{9 t

3 * 9 t
4 for all t W 0,

then G9 1
�
s�	* G9 2

�
s�rZ G9 3

�
s�	* G9 4

�
s� �

Res W ω �%& (2.26)

(b) If 9 k
� TIC

�
U ���
� (k � 1 � 2 � 3 � 4), thenthefollowingareequivalent:

(i) 9 t
1 * 9 t

2 Zk9 t
3 * 9 t

4 for all t W 0;
(ii) π > � t ? 0@ 9 *1π > � t ? 0@ 9 2π > � t ? 0@ Z π > � t ? 0@ 9 *3π > � t ? 0@ 9 4π > � t ? 0@ for all t W 0;

(iii) 9 d
1

t 9 d
2

t * ZÂ9 d
3

t 9 d
4

t * for all t W 0;
(iv) π � 9 *1π � 9 2π � Z π � 9 *3π � 9 4π � ;

(v) π '�9 d
1π '�9 d

2
* π '�Z π 'p9 d

3π 'X9 d
4
* π ' .

If (i)–(v) hold, thenπ '�9 *1 9 2π '¤Z π 'X9 *3 9 4π ' and(2.26)holds.

(c) If 0 3 J � � � Y � , 0 3 S � � � U � and 9 � TIC
�
U � Y � , thenthefollowing are

equivalent:

(i) 9 t * J 9 t 3 π > 0 ? t @ Sfor all t W 0;
(ii) π > � t ? 0@ 9 * π > � t ? 0@ J 9 π > � t ? 0@ 3 π > � t ? 0@ Sfor all t K 0;

(iii)
� 9 d � tJ � 9 d � t * 3 π > 0 ? t @ Sfor all t W 0;

(iv) π � 9 * π � J 9 π � 3 π � S;
(v) π '�9 * π ' J 9 π 'Â3 π ' S.

RecallthatP Z Q meansthatP � P* , Q � Q* and b u � PucÃZ b u � Quc for all u.
Wedonot know whether(b)(i)–(v) is impliedby (2.26).

Proof: Whenproving (a)and(b), weassumethat 9 3 � 0 �E9 4 w.l.o.g.(use

substitutions9 1 �� Ä�Å 1Å 3 Æ and 9 2 �� Ä�Å 2� Å 4 Æ ).
(a) Let s � C 'ω andu0

� U be given. Setu : � es� u0
� L2

loc. Thenπ � u �
L2 1 L2

ω, henceπ � 9 ku � L2
ω
�
R � ;Y �u� L2 � R � ;Y � (k � 1 � 2). By Lemma2.1.15,

wehave that
� 9 ku� � t �p� est G9 k

�
s� u0 (t � R). By time-invariance,

0 3 b 9 t
1τ � tu �z9 t

2τ � tucÇ� a 0� ∞ b 9 1π > � t ? 0@ u �z9 2π > � t ? 0@ uc dt
�
t W 0�%& (2.27)

Now π � 9 kπ B � ∞ ? t @ u � 0 in L2
ω, hencein L2 too,ast � " ∞. Therefore,we

canlet t � " ∞ to obtainthat0 3 b G9 1
�
s� u0 �	G9 2

�
s� u0c L 0� ∞ e2t Resdt. Becauseu0

wasarbitrary, wehave0 3 G9 1
�
s� * G9 2

�
s� .

(b) 1¦ (i)–(iii): Equivalence“(i) ¬ (ii)” followsfrom time-invariance(apply
τ � t andτt to differentsidesof the inequality),“(ii) ¬ (iii)” and“(i v) ¬ (v)” by
reflection(apply Rto both sides),andthe implication “(i v) h (ii)” by adding
π > � t ? 0@ to bothsidesof theinequalityin (iv),

2¦ (ii) h (iv): Assume(ii). For any u � L2 � R � ;U � andt W 0, wehave

0 3 b 9 1π > � t ? 0@ u � π > � t ? 0@ 9 2π > � t ? 0@ ucÇ� b 9 1u � π � 9 2uc # b π B � ∞ ? t @ 9 1u � π � 9 2π B � ∞ ? t @ uc�&
(2.28)
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By Corollary B.3.8, b 9 1π B � ∞ ? t @ u � π � 9 2π B � ∞ ? t @ uc­� 0 as t � " ∞, henceb 9 1u �z9 2uc�� b 9 1π � u � π � 9 2π � uc is real andnonnegative. The secondimpli-
cationis obtainedanalogously(becauseπ > � t ? 0@ 9 *1π > � t ? 0@ 9 2π > � t ? 0@ Z 0).

3¦ (i) h π 'X9 *1 9 2π '�Z 0: Let t � " ∞ (asin 2¦ ).
(c) Weprovebelow theimplication“(v) h (i)”. Therestof (c) follows from

(b) by setting9 1 � I , 9 2 � S, 9 3 �89 , 9 4 � J 9 .
Assume(v). Then

π ' S Z π '�9R* π ' J 9 π '
�89 t * J 9 t " π 'X9`* π > t ?∞ @ J 9 π '�� (2.29)

henceπ ' S ZÂ9 t * J 9 t , hence(i) holds.
(We do not have (v) h (i) for J � S 3 0 in general.E.g., if 9C� � τ � k � k < N �

TIC
� ¯ 2 � N �	� , thenπ '�9 * π '�9 π 'k� π ' but b uk �z9 t * 9 t ukcÃ� 0 K b uk � π > 0 ? t @ ukc�� 1

for uk � χ > 0 ? 1@ ek, t Z k Z 1.) J
By the above lemma(and Lemma2.2.3), we have “ « � 1 � TIC h G« * G«²Z

εI ”, but the converserequiresa Tauberiancondition. Five suchconditionsare
presentedbelow:

Proposition 2.2.5( G« * G«MZ εI h « � 1 � TICG« * G«[Z εI h « � 1 � TICG« * G«MZ εI h « � 1 � TIC) Letω � R and « � TICω U � U � Y � for
all ω V
W ω. If

� G«­� * G«ÂZ ε2I onC 'ω (or « t * « t Z ε2Iπ > 0 ? t @ for all t W 0) for someε W 0,
andanyof conditions(1)–(5)belowholds,then « �Âj TIC∞

�
U � Y � , « � 1 � TICω, T« � 1  TICω 3 ε � 1, anddimU � dimY.

(1) « �kj TIC∞;

(2) « �kj TIω U (or «�ÈÉ� I for someÈ � TIω U ) for someω V�W ω;

(3) dimU � dimY K ∞;

(4) � ¶ **­* � �kj TIC∞
�
U ¾ W� Y ¾ Z � , anddimW K ∞;

(5) G« � s0 � �kj � or G« � s0 � is ontoor Ker
� G« � s0 � * �u�x/ 0 0 for somes0

� C 'ω ; (for
uniformlyregular « weallow s0 � " ∞).

If « � TIC, and « t * « t Z ε2Iπ > 0 ? t @ for all t W 0, thenalso the sixth condition«�« * ª 0 impliesthat « �kj TIC
�
U � Y � .

(Note that (1)–(5) arenot superfluous:if dimU � ∞, thenthereis «C� X �� � U � s.t.X is left-invertiblebut not right-invertible.)
Recallthatif « � TICω, then « � TICω U for all ω V W ω.
For ω � 0, Proposition 4.1.7(B)&(C) provide us with several sufficient

conditionsfor
� G«­� * G«MZ ε2I .

Proof: (We take ω � 0 w.l.o.g.)
From(2.26)weobservethatif « t * « t Z ε2Iπ > 0 ? t @ for all t W 0, then G« * G«EZ ε2I

on C ' .
The last claim follows from Lemma 2.2.4(b)(i)&(iv) and Lemma

2.2.3(vii)&(i).
Clearly G« (see Theorem2.1.2) has the left-inverse GÊ � � G« * G«�� � 1 G« * �f

b
�
C ' ; � � Y� U �.� on C ' , i.e., GÊ G«IË I on C ' . Moreover,  GÊ � s�Ì �3 ε � 1 for
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all s � C ' , by LemmaA.3.1(c1)(1). If G« � s0 � �;j � for somes0
� C ' , thenG« � s0 � � 1 �CGÊ � s0 � .

Thus, we only have to show that G« has an inverseon C ' , i.e., that GÊ
is also a right inverseof G« , becauseG« � 1 is necessarilyholomorphic, by
LemmaD.1.2(b2),henceG« � 1 � GÊ � H∞ � GTI (anddimU � dimY, by Lemma
2.2.1(c4)).Theinvertibility proof dependson theextraassumption:

(1) By definitions,(1) implies(2).
(2) Because GÊ � G« �xf

b
�
ω V " iR; � � U �	� , we have « ��j TIω U if f G« �jyf

b
�
ω V " iR; � � U �	� , by Theorem3.1.3(d). Therefore,(2) implies (5) (note

that GÊ is the transformof a left inverseof « � TIω U , hencethe existenceof a
right inverseÈ is equivalentto theinvertibility of « in TIω U ).

(3) dimU � dimY K ∞ impliesthatany left inverseof G« � s� (henceGÊ � s� ) is
aninverse,by LemmaA.1.1(c1).

(4) (The assumptionsmeanthat thereare µ­� ° �dÍ � TIC∞ s.t. Î ¶
·Ï_Ð¤Ñ �j TIC∞
�
U ¾ W� Y ¾ Z � anddimW K ∞.)

By LemmaA.1.1(c1),the left-invertibility of G« implies the invertibility ofG« onC 'ω .
(5) By theuniquenessof the � � U � Y � inverse,wehave

E : �C/ s � C ' �� G« � s� GÊ � s��� I 0 �x/ s � C ' �� G« � s� �{j � � U � Y � 0 � (2.30)

andthelattersetis open,by Lemma6.3.2(d).On theotherhand, G« � s� GÊ � s��� I
holdsin aclosedsubsetof C ' . Now theconnectednessof C ' andthefactthat
E D� /0 (becauses0

� E) imply thatE � C ' (if s0 � " ∞ and « is UR, then G« � s�
is invertiblefor big s � R, by LemmaA.3.3(A2)).

Remark: If U �C¯ 2 � N �`� Y and « is the right shift τ � 1 � � � U � , thenthe
assumptions(except(1)–(5))aresatisfiedandyet «�D�lj TIC∞. J

Corollary 2.2.6(« t * « t Z εI h ³�« � 1 � TIC« t * « t Z εI h ³�« � 1 � TIC« t * « t Z εI h ³�« � 1 � TIC) Assumethat « � TICω
�
U � Y � , ω Z

0, ε W 0 and « t * « t Z ε2Iπ > 0 ? t @ for all t W 0.

If any of (1)–(5) of Proposition2.2.5holds, then « �;j TIC∞
�
U � Y � , « � 1 �

TIC,  T« � 1  TIC 3 ε � 1 anddimU � dimY.

Proof: From(2.26)we observe that G« * G«CZ ε2I on C ' . Thus, « �{j TIC∞,
by Proposition2.2.5. Moreover, ε � 1Iπ > 0 ? t @ Z �.� « � 1 � t � * � « � 1 � t for all t W 0,
hence T« � 1  TIC 3 ε � 1, by Lemma2.1.14.

(Again the right shift is a “counter-example” showing that (1)–(5) arenot
superfluous.) J
If « �Ej TIC

�
U � Y � is exponentiallystable,thenso is « � 1; moreover, if « is

generatedby anexponentiallystablemeasure,thensois its inverse:

Lemma 2.2.7( j TIC 1 TIexp � j TICexp
j TIC 1 TIexp � j TICexp
j TIC 1 TIexp � j TICexp) Let « �Òj TIC

�
U � Y � 1 TI � r

�
U � Y � ,

where r W 0. Then, for someε W 0, we have « � 1 � TIC � ε
�
Y� U � ; thus, « �j TIC � ε

�
U � Y � 1 TIC � r

�
U � Y � .
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If « �®j TIC
�
U � Y � 1 |Ó � r

�
U � Y � , where |Ó � TIC is inverse-closed(as in

Theorem4.1.1(g)),then « �lj |Ó � ε
�
U � Y � 1 |Ó � r

�
U � Y � for someε W 0.

Here |Ó may be MTIC or any other inverse-closedsubclassof TIC, by
Theorem4.1.1(b).

Proof: (We usehereTheorem4.1.1, but this lemma is not usedbefore
Chapter5.)

Let M : �Ô T« � 1  � 1. By LemmaD.1.8(c), thereis ε W 0 s.t.  G« � t " iy � #G« � 0 " iy �+ �K 1� 2M when � t � K ε and y � R. Consequently, G« � t " iy � � 1

exists and its norm is less than 2M for such t and y; in particular, G« � 1 �
H∞ � C � ε; � � Y� U �	� , hence« � 1 � TI � ε

�
Y� U � , by Theorem2.1.2.

Thefinal claimfollowsfrom thefactthat j |Ó � ε is inverse-closedin TIC � ε,
i.e., that |Ó � ε 1 j TIC � ε � j |Ó � ε, by Theorem4.1.1(g1). J
Local causalinvertibility is equivalentto globalcausalinvertibility:

Lemma 2.2.8(« t �{j � ¬ « �{j TIC∞« t �kj � ¬ « �{j TIC∞« t �kj � ¬ « �{j TIC∞) Let « � TIC∞
�
U � Y � and

#
∞ K a K b K

∞. Then« �lj TIC∞ iff π > a ? b@ « π > a ? b@ is invertibleon π > a ? b@ L2.
If « �{j TIC∞, thenthelatter inverseis π > a ? b@ « � 1π > a ? b@ .
However, beinginvertible in a specificTICω is a strongercondition. E.g., ifG« � s� : � � s # 1�	� � s " 1� , then « � TICω

�
C � for any ω W # 1, but « � 1 � TICω for

ω W 1 only, hence« � TIC 1 j TIC∞ A j TIC.
Proof: ThelatterclaimisobviousandtheformeronefollowsfromTheorem

6.1.9(iv)&(v) of [Sbook],but wegivehereanalternativeproof.
SetT : � b

#
a. Take a realizationof « andtransformit into a wpls asin

Theorem13.4.4. Becausethe transformationmapsTIC∞ � tic∞ throughan
isomorphism,which is alsoanalgebraicisomorphism,by Theorem13.4.5(b),
it follows from Lemma13.1.7that « is invertible if f Xd : � π > 0 ? T @ « π > 0 ? T @ (the
I/O operatorof thewpls) is invertible.

By time-invariancethe invertibility of π > 0 ? T @ « π > 0 ? T @ is equivalent to the
invertibility of π > a ? b@ « π > a ? b@ . J
Notes
It wouldbeinterestingto know whether(2.26)with ω � 0 is sufficient for (i)–

(v) of Lemma2.2.4(b)(it is necessary, by (a)) whenω � 0; our guessis that the
answeris negative — unfortunately, becausea positiveanswerwould provide us
with severaladditionalequivalentconditionsin CoronaTheorems4.1.6and4.1.7.
SeealsoLemma4.1.10.

Conditions(3) and(5) of Proposition2.2.5wereusedin a preprintof [S98d].
Lemma2.2.1(b)andthecase |Ó � TIC of Lemma2.2.7arefrom [Sbook]. Most
of Lemma2.2.4 is from Section6 of [S98c]. Also (at least)Lemma2.2.8and
partsof Lemmas2.2.2and2.2.3areknown, asexplainedin their proofs.Lemma
2.2.1(c3)is oneof themaincontributionsof this section.
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2.3 Static operators

Eppursi muove!

— GalileoGalilei (1564–1642),1633

In this section,weshallpresentfive important(andapparentlynew) technical
lemmasthatwill beusedin connectionwith

�
J � S� -innerfactorizationsandRiccati

equations.Most of the lemmasgive somesufficient resultsfor anoperatorto be
static.

If 5E�M5 * � TI
�
U � , thenπ 'p5 π � � 0 implies that π � 5 π 'E� � π ',5 π � � * � 0,

sothatthen 5 is static,i.e., 5 � � � U � , by Lemma2.1.7.We now prove a similar
claim for “ 5l�89 * J 9 ” when 9 � TIC∞

�
U � Y � is only requiredto bealmoststable

( 9 L2
c � L2), sothat 5 neednotbedefinedat all:

Lemma 2.3.1(9 * J 9e� S9 * J 98� S9 * J 98� S) Let 9 � TIC∞
�
U � Y � andJ � J * � � � Y � . Assumethat9 u � L2 (cf. Lemma2.1.13)and b 9 π ' v� J 9 π � uc�� 0 for all u � v � L2

c. Thenthere
is a uniqueS � S* � � � U � s.t. b 9 v� J 9 ucX� b v� Suc for all u � v � L2

c.

Note that for 9 � TIC the term 9 * J 9 would be well definedandhencethe
proof of thelemmawouldbesimple.

Proof: In thesequelweshallusethefactthatif u � L2
loc and b v� ucF� 0 for all

v � L2
c (or for all v �¤f ∞

c ), thenu � 0 (a.e.),by TheoremB.3.11.This implies,
thatS is unique.

Replaceu by τtu to obtainthat b 9 π > t ?∞ @ v� J 9 π B � ∞ ? t @ uc�� 0 for all u � v � L2
c.

BecauseJ � J * , wehave b 9 π B � ∞ ? s@ v� J 9 π > s?∞ @ ucÇ� 0 for all u � v � L2
c, henceb 9 v� J 9 π > s? t @ uc�� b 9 π > s? t @ v� J 9 π > s? t @ uc � u � L2

c � # ∞ 3 s 3 t 3 " ∞ �%& (2.31)

Set Õ t : � � 9 π > � t ? t @ � * J 9 π > � t ? t @ � � � L2 � � # t � t � ;U �	� (t W 0). Then b v�iÕ tuc,�b 9 v� J 9 uc for u � v � π > � t ? t @ L2, hencefor u � π > � t ? t @ L2 and v � L2
c, by (2.31).

Consequently, Õ Tu �[Õ tu
� π > � t ? t @ L2 for all T W t, sowe candefine Õ u : �[Õ tu

(u � L2 � � # t � t � ;U � ) (for anarbitraryt W 0).
It follows that Õ : L2

c � L2
c, τ ÕÀ�¿Õ τ, and Õ T �;Õ π > � T ? T @ . Therefore, �Õ u  22 �� ∑

n < Z τ � n Õ π > � 1 ? 1@ τnu  2 � ∑
n < Z  �Õ π > � 1 ? 1@ τnu  2 � ∑

n < Z  �Õ π > � 1 ? 1@ τnu  2
(2.32)3I �Õ 1  � B L2 @  ∑

n < Z  π > � 1 ? 1@ τnu  2 �� �Õ 1  � � L2 �Ì u  2 (2.33)

for u � L2
c. Consequently, Õ canbeextendedto a � � L2 � mapthat is TI. From

(2.31)it follows thatπ 'uÕ π � � 0 � π � Õ π ' , henceÕ � � � U � , by Lemma2.1.7.
Obviously, ÕÖ�;Õ * . J
Let 9 � TIC∞. If π '�9 π � � 0, then 9 is static. In fact, insteadof π '�9 π � it

sufficesto observe thatπ > 0 ? t @ 9 π > � ε ? 0@ � 0 for a fixedε W 0:

Lemma 2.3.2 Let 9 � TIC∞
�
U � Y � , andπ > 0 ? t @ 9 π > � ε ? 0@ � 0 for someε W 0 andall

t W 0. Then9 � � � U � Y � .
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Proof: Obviously, π 'p9 π > � ε ? 0@ � 0. Thus,

π '�9 π > � nε ? 0@ � 0 (2.34)

holdsfor n � 1. Assumenow that(2.34)holdsfor n � N � 1 " N. Then

π 'X9 π > � B n' 1@ ε ? � nε @ � τ1π > ε ?∞ @ π 'X9 π > � nε ? � B n � 1@ ε @ τ � 1 � 0 & (2.35)

By induction,π '�9 π � � 0, hence9 � � , by Lemma2.1.7. J
If «­� ° � TIC∞ and « * � ° , then « is static. Often it is easierto verify that

π > 0 ? t @ « * π > 0 ? t @ � π > 0 ? t @ ° π > 0 ? t @ for all t; eventhis is sufficient:

Lemma 2.3.3 Let «y� ° � TIC∞ and « t � ° t * for all t W 0. Then«8� ° * � � .

Recallthat « t : � π > 0 ? t @ « π > 0 ? t @ � � � L2 � (for any « � TIC∞).
Proof: Let ε W 0. Now τε « t τ � ε � π > � ε ? t � ε @ « π > � ε ? t � ε @ , hence

π > 0 ? t � ε @ « π > � ε ? 0@ � π > 0 ? t � ε @ τε « t τ � επ > � ε ? 0@ � π > 0 ? t � ε @ τε ° t * τ � επ > � ε ? 0@ (2.36)� π > 0 ? t � ε @ ° * π > � ε ? 0@ � 0 � � t W ε �%& (2.37)

henceX : �{« � � , by 1¦ . By time-invarianceπ > � t ? t @ ° π > � t ? t @ � π > � t ? t @ X * π > � t ? t @ �
π > � t ? t @ X * (t Z ε), hence

° � X * , by continuityon someL2
ω. J

If J 9 is staticfor somestaticJ, thenJ 9C� JD for somestaticD, at leastto
someextent:

Lemma 2.3.4 Let 9 � TIC∞
�
U � Y � , J � � � Y� H � . If J 9 � � � U � H � , then 9��Ä D1Å 2 Æ � TIC∞

�
U � Y1

¾ Y2 � , whereY1 � Y ×2 , Y2 : � Ker
�
J � . Moreover, J 9e� J Î D1

0
Ñ .

Assume, in addition, that 9 �Ij TIC∞. Then there is D �®j � � U � Y � s.t.
J 9M� JD. If Y � H, thenwecan, in addition, require that 9 t * J 9 t � D * JDπ > 0 ? t @
for all t Z 0.

Proof: 1¦ Let P is be orthogonalprojectionY � Y1, and set 9 1 : � P9 ,9 2 � � I # P�69 . Now J 9 1 � J 9 � � � U � H � , henceJ G9 1 is constant;becauseJ
is one-to-oneonY1, D1 : � G9 1

� � � U � Y1 � .
2¦ Let 9 ��j TIC∞. Then 9 is onto, hence 9 1 is onto, henceD1 is

onto henceD *1 �;j � � Y1 � U1 � , whereU1 � Ran
�
D *1 ��� Ker

�
D1 � × , by Lemma

A.3.1(c1)(iii)&(x)&(c7).
Consequently, E : � D1 �U1

�Éj � � U1 � Y1 � , hence 9 � Î E 0Å 21 Å 22
Ñ �j TIC∞

�
U1
¾ U2 � Y1

¾ Y2 � , whereU2 : � U ×1 , 9 21 : �®9 2Q, 9 22 �®9 2
�
I
#

Q� ,
andQ is theorthogonalprojectionU �� U1.

Thus, 9 22
��j TIC∞

�
U2 � Y2 � , by Lemma A.1.1(b2)(1), hencedimU2 �

dimY2, by Lemma 2.2.1(c4),hence j � � U2 � Y2 � containssomeoperatorF.
Consequently, D : � Î E 0

0 F
Ñ ��j � � U � Y � , JD � JPD � J Î E 0

0 0
Ñ � J Î D1

0
Ñ � J 9 1 �

J 9 .
3¦ CaseY � H: Apply 2¦ for M : �ØÎ J

J w Ñ � � � Y� Y2 � . ThenM 9[� MD for
someD �
j � � U � Y � , henceJ 9E� JD and 9 * J � � J * 9R� * � D * J. Consequently,9 t * J 9 t �89 t * JDπ > 0 ? t @ � D * JDπ > 0 ? t @ (t W 0). J
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We finish the sectionwith a technicalremark that will allow us to prove
certainuniquenessresults(modulo a unit E �Mj � ) on the signatureoperators
of optimizationproblemsandRiccatiequations:

Lemma 2.3.5(« t * S« t � ° t * T ° t« t * S« t � ° t * T ° t« t * S« t � ° t * T ° t) Let «­� ° �^j TIC∞
�
U � , S� T � � � U � and« t * S« t � ° t * T ° t for all t W 0. ThenS � E * TE, S«
� SE � 1 ° , andS* «l� S* E � 1 °

for someE �kj � � U � .
In particular, if Ker

�
S���x/ 0 0 or Ker

�
S* �X�x/ 0 0 (i.e.,S is one-to-oneor onto),

then «e� E � 1 ° .
Proof: Set Ù : ��« ° � 1 �Cj TIC∞

�
U � , |S : �¨Î S

Sw Ñ � |T : �¨Î T
T w Ñ � � � U � U2 � .

Then |SÙ t �;Ù t � * |T for all t W 0 (thesecondrow of theequationis theadjoint
of thefirst one),henceL : � |SÙ8�¿Ù � * |T � � � U � , by Lemma2.3.3.

By Lemma 2.3.4, we have π > 0 ? t @ |T �ÚÙ t * |SÙ t � R* |SRπ > 0 ? t @ for some

R ��j � � U � , hence |T � R* |SR. Set E : � R� 1 to obtain S � E * TE. Fi-
nally, S«8� SÙ ° � SR

°
, andS* «8� S* Ù ° � S* R° . J

Notes
Theabove resultsareapparentlynew. Theorem5.2Cof [RR] (caseω � 0 of

Lemma2.1.7)is theonly known (to us)resultin this direction.
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2.4 The signatureoperator S

To seea World in a grain of sand,
Anda Heavenin a wild flower,
Hold Infinity in thepalmof your hand,
AndEternityin an hour.

— William Blake (1757–1827)

Thesignatureoperatorof a controlproblemis a staticoperatorthatdescribes
the definitenessof the problemw.r.t. the input. E.g., in minimizationproblems,
the cost(to beminimized)is usuallygreaterthanε  u  2L2 for someε W 0, where
u : R '
� U is the control input. In suchproblems,the signatureoperatorS is
uniformly positive (S ª 0), whereasin indefinitecontrolproblemsS is indefinite
(but yet self-adjointand invertible if the problem satisfiesstandardcoercivity
assumptions).

In this section,we shall seehow to write an operatorS � S* �¿j � � U ¾ W �
or an operatorS : �²5 * Î I 0

0 � I
Ñ 5 , 5 ��j TI, in the form S � E * Î I 0

0 � I
Ñ E for

someE �[j � ; we also give somefurther resultson the positive and negative
eigenspacesof self-adjointoperators. In Section2.3, we have derived further
similar results.

In Chapters8–11,theresultsof thisandtheprevioussectionwill beappliedto
the signatureoperatorsof optimizationproblems,Riccati equationsandspectral
factorization.

Asbefore,symbolsH � U � W� Y� Hk � Yk (k � N) denoteHilbert spacesof arbitrary
dimensions.

Lemma 2.4.1 DefineJH � Î I 0
0 � I

Ñ � � � H1
¾ H2 � andJY � Î I 0

0 � I
Ñ � � � Y1

¾ Y2 � .
Thefollowingareequivalent:

(i) dimH1 3 dimY1 anddimH2 3 dimY2,

(ii) JH � V * JYV for someV � � � H1
¾ H2 � Y1

¾ Y2 � ,
(iii) JH �eÛ * JY Û for someÛ � TI

�
H1
¾ H2 � Y1

¾ Y2 � .
Proof: 1¦ “(i) h (ii)”: By LemmaA.3.1(a4)(iii), thereare Tk

� � � Hk � Yk �
satisfying T *k Tk � IHk

�
k � 1 � 2� . Take V � Ä T1 0

0 T2 Æ to obtain V * JYV �Ä T w1 T1 0
0 � T w2 T2 Æ � JH .

2¦ “(ii) h (iii)”: Trivial, because�[� TI.

3¦ “(iii) h (i)”: Define T : � Î I0 Ñ � � � H1 � H1
¾ H2 � and Ä6Ü 1Ü 2 Æ : �ÝÛ .

From JH � Û * JY Û � Û *1 Û 1
# Û *2 Û 2 we get 0 Þ IH1 � T * JHT �� Û 1T � * � Û 1T � #k� Û 2T � * � Û 2T � , hence

� Û 1T � * � Û 1T �uª 0, sodimY1 Z dimH1,
by Lemma 2.2.1(c3), becauseÛ 1T � TI∞

�
H1 � Y1 � . Similarly, by setting

T : � Î 0I Ñ � � � H2 � H1
¾ H2 � , wegetdimY2 Z dimH2. J

When we requireV or Û to be invertible, the inequalitiesin (i) become
equalities:
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Corollary 2.4.2 DefineJH �ÔÎ I 0
0 � I

Ñ � � � H1
¾ H2 � andJY �ÔÎ I 0

0 � I
Ñ � � � Y1

¾ Y2 � .
Thefollowingareequivalent:

(i) dimH1 � dimY1 anddimH2 � dimY2,

(ii) JH � V * JYV for someV �kj � � H1
¾ H2 � Y1

¾ Y2 � ,
(iii) JH �eÛ * JY Û for someÛ �kj TI

�
H1
¾ H2 � Y1

¾ Y2 � .
Proof: 1¦ “(i) h (ii)”: This follows as in Lemma 2.4.1, with Lemma

A.3.1(a5)(iii).
2¦ “(ii) h (iii)”: Trivial, becausej �C� j TI.
3¦ “(iii) h (i)”: This follows from Lemma 2.4.1, becausenow also

JY � � Û � 1 � * JH
� Û � 1 � . J

Lemma 2.4.3 Lemma2.4.1andCorollary 2.4.2alsoholdwith Sin placeof JH if
S � E * JHE for someE �kj � . J

(This is obvious,sinceJH � E � * SE � 1.)
Any self-adjointoperatoron H canbe written in the form E * Î I 0

0 � I
Ñ E w.r.t.

somedecompositionof H:

Lemma 2.4.4 Let S � S* � � � H � . Then H � H '\ß H � s.t. H � � H ×' and
S � E * J1E for someE � � � H � .

If S � S* �{j � � H � , thenwecanhaveE �{j � � H � above.

HereJ1 : �ØÎ I 0
0 � I

Ñ
H (�± H ) : � P' # P� �Âj � � H � , wherePq aretheorthogonal

projectionsof H ontoH q (henceP� � P×' ), henceJ1 � J *1 � J � 1
1 .

(In fact, condition J1 � J *1 � J � 1
1 is equivalent to the fact that henceJ1 �Î I 0

0 � I
Ñ �xj � � H ' ¾ H � � for someclosedsubspacesH ' and H � � H ×' of H,

sinceit implies that σ
�
J1 �`�x/ # 1 � 1 0 , andthat we canlet H ' andH � to be the

eigenspacesfor 1 and
#

1, by Theorems12.26and12.29of [Rud73].)
Proof of Lemma 2.4.4: Applyº�àS( 0 0

0 0 0
0 0 àS) ¼ �Òá àS1â 2( 0 0

0 0 0
0 0 B � àS)
@ 1â 2 ã Ä I 0 0

0 I 0
0 0 � I Æ diag

� |S1� 2' � 0 � ��# |S� � 1� 2 � (2.38)

to LemmaA.3.2(f1) to observe that

E � diag
� |S1� 2' � 0 � �$# |S� � 1� 2 � º P(P0

P) ¼ � � � H � (2.39)

will do in this lemma. If H0 : � Ker
�
S���²/ 0 0 , then the middle row can be

omitted;if S �kj � , then |S1� 2q �{j � � H qr� , sothatthenE �kj � � H � . J
Now we are readyfor the main result (along with Corollary 2.4.2) of this

section:

Theorem 2.4.5 Let ä * Jγ ä®� S � � � U ¾ W � with ä �[j TI
�
U ¾ W � and Jγ : �Ä I 0

0 � γ2I Æ � � � U ¾ W � , γ � γ V W 0. ThenS � E * Jγ U E for someE �kj � � U ¾ W � .
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Note that hereJγ U : � PU
#E�

γ Vå� 2PW is definedby U andW, whereasLemma
2.4.4would only provide uswith an analogousresultfor some(“nonfixed”) H '
andH � in placeof U andW.

Proof: Replaceä by Î I 0
0 γ Ñ ä to get rid of γ (so that S ��ä * J1 ä ). Set

H : � U ¾ W. We have S � S* �Mj TI
�
H � (becauseS �Iä * J1 ä ), henceS �

S* �Ej � � H � . Thus,S � T * JH æ T for someT �Ej � � H � H ' ¾ H � � , by Lemma
2.4.4.

Therefore, S �]ä * J1 ä implies JH æ � Ê * J1
Ê

, with
Ê

: �Òä T � 1 �j TI
�
H ' ¾ H � � U ¾ W � . By Corollary2.4.2,JH æ � V * J1V for someV �ej � ,

henceS � T * JH æ T � � VT � * J1VT � E * J1E, whereE � VT �lj � � H � . J
By allowing ä to benoninvertible,we get the following variantof theabove

theorem:

Lemma 2.4.6 Let ä * Jγ ä{� S �Áj � � U ¾ W � with ä � TI
�
U ¾ W� Z ¾ Y � andJγ : �Ä I 0

0 � γ2I Æ � � � Z ¾ Y � , γ � γ V¢W 0. ThenS � E * Jγ U E for someE � � � U ¾ W� Z ¾ Y � .
Proof: The proof is virtually that of Theorem2.4.5with Lemma2.4.1 in

placeof Corollary2.4.2. J
Notes
For separableU andW, Theorem2.4.5wasgivenin theproof of Lemma5.4

of [S98d].Becausethesymbol Gä of ä neednotbewell-definedanywhereon iR in
theunseparablecasethatproofcannotbegeneralized(in fact,Theorem3.1.3(a1),
whereweshow theexistenceof suchasymbol,seemsto beknown in theseparable
caseonly). This is why all Hilbert spaceswererequiredto beseparablein [S98d];
we shallremovethis restrictionin Corollary11.4.9.
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2.5 Losslessness

Butwhoshall dare
To measure lossandgain in thiswise?
Defeatmaybevictory in disguise;
Thelowestebbis theturn of thetide.

— HenryWadsworth Longfellow (1807–1882)

In this section, we formulate both widely-usedforms of losslessnessand
establishtheir equivalencefor mapswith finite-dimensionalinput spaces. We
alsogivesomenecessaryand/orsufficientconditions.

The importanceof this conceptis basedon the fact that H∞ problemsare
solvableif f certainlosslesscoprimefactorizationsexist, asshown in [Green]and
extendedto WPLSsin Theorems11.2.7and12.3.6.

In state-spacesolutions,oneusuallyrelatestheoptimalcontrol to a nonnega-
tivestabilizingsolutionof theRiccatiequation.SometimesonereplacestheRic-
catiequationby suitablecoprimeor spectralfactorizationof theI/O map;thenthe
nonnegativity conditionmustbereplacedby a losslessnesscondition,cf. Lemma
9.8.14andTheorem6.5of [S98c].

Definition 2.5.1 Let J � J * � � � Y � , S � S* � � � U � and ç � TIC
�
U � Y � . The

operator ç is
�
J � S� -losslessiff ç * J çE� Sand ç * π � J ç¿3 π � S. Theoperator ç is

frequency-domain
�
J � S� -losslessiff ç * J çe� Sand Gç � s� * J Gç � s�r3 Sfor s � C ' .

The (time-domain)losslessnessimplies frequency-domain losslessness,by
Lemma2.5.2.For dimU K ∞ alsotheconverseholds,by Proposition2.5.4.

Both the time-domainand the frequency-domainconcepthave beenwidely
used(underthename“lossless”)in thestudyof H∞ problems;see,e.g.,[BH88]
for losslessnessand[Green]for frequency-domainlosslessness.

Onecaninterpretlosslessnessas“no energy is producednorlost in thesystem,
but someenergy maybe delayed”,if J � I � S, but we usuallytake J � J1 � S

(Jγ : � Ä I 0
0 � γ2I Æ , γ � R), which implies the sameconclusionon çtè , wherethe

directionof thesecondinput andoutputsignalshavebeenreversed;seetheproof
of Lemma2.5.3for details.

Thedelaymentionedabovecannotbenegative(i.e., theenergy putoutbefore
any t W 0 cannotexceedtheenergy put in beforethattime),becauseç * π � J çÂ3 S ¬  �ç u  J ? L2 B�> 0 ? t � ;Y @ 3[ u  S? L2 B�> 0 ? t � ;U @ for all u � π ' L2 � t W 0 � (2.40)

where  u  S : � b u � Suc , by Lemma2.2.4(b)(i)&(iv).
Section6 of [S98c]containsseveralresultsonlosslessnessof stableoperators,

oneof themis givenbelow:

Lemma 2.5.2 Let ç � TIC
�
U � Y � , J � � � Y � andS � � � U � . If ç * π � J çx3 π � S,

then Gç � s� * J Gç � s�r3 Sfor all s � C ' .
Thus,losslessnessimpliesfrequency-domainlosslessness. J
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(This follows from Lemma2.2.4(b).) SeeProposition2.5.4for the converse
underaTauberiancondition.

Next wegiveonemore“almostequivalent”condition:

Lemma 2.5.3 Let ç � TIC
�
U ¾ W� Y ¾ W � andγ � γ V W 0.

If ç * Jγ çe� Jγ U and ç 22
�{j TIC

�
W � , then ç is

�
Jγ � Jγ U � -lossless.

Theconverseis nottrue: ç : ��Î I 0
0 τt Ñ � TIC

�
U ¾ W � is

�
Jγ � Jγ � -lossless(for any

γ � t W 0) but çR� 1
22 D� TIC (cf. the lemmabelow). However, theconverseis true in

thefinite-dimensionalcase,by Proposition2.5.4(1).

Proof: We assumethatγ � 1 � γ V (andreplaceç by Î I 0
0 γ Ñ çeÄ I 0

0 γ U ) 1 Æ in the

generalcase).Wesethere Î�é�êëÀì Ñ : �Eç and çtè : � Îié�ê0 I
Ñ Î I 0ëmì Ñ � 1 (samesystem

with secondinputandoutputsignalsreversed)to clarify theproof. For π � I as
well asfor π � π � wehaveç *è π çtèØ3 π ¬ ºîí Ù

0 I ¼ * π ºîí Ù
0 I ¼ 3 º I 0Õ Ê ¼ * π º I 0Õ Ê ¼ (2.41)¬ ºîí * π í í * π ÙÙ * π í Ù * π Ù " I ¼ 3Øº Õ * π Õ " I Õ * π ÊÊ * π Õ Ê * π Ê ¼ (2.42)¬ ºzí * π í # Õ * π Õ í * π Ù # Õ * π ÊÙ * π í # Ê * π Õ Ù * π Ù # Ê * π Ê ¼ 3 º I 0

0
#

I ¼ (2.43)¬ ç * πJ1 ç[3 πJ1 & (2.44)

Theinequalityin (2.44)holdsfor π � I , by theassumptionç * J1 çe� J1, hence
wehave ç *è ç è^3 I (from (2.41)).But ç *è � π ' " π � ��çtèØ3 I impliesthat

π � ç *è π � çtè π � � π � # π � ç *è π 'Xçtè π � 3 π � � (2.45)

henceπ � ç * π � J1 ç π � 3 π � J1. J
By the above lemma, we can establishthe Tauberianconversementioned

above:

Proposition 2.5.4(Lossless¬ f.-d. lossless)Let ç � TIC
�
U ¾ W� Y ¾ W � and

γ � γ V�W 0. Assumethat (1), (2) or (3) holds,where

(1) dimW K ∞;

(2) Gç 22
�
s0 � �Cj � for somes0

� C ' (for uniformly regular ç we allow for
s0 � " ∞);

(3) dimU K ∞ and çe�^Î Å 11 Å 12
0 I

Ñ « � 1, where 9 11 �z9 12 �d«­�z« � 1 � TIC;

Thenç is
�
Jγ � Jγ U � -losslessiff ç is frequency-domain

�
Jγ � Jγ U � -lossless.

Moreover, if ç is
�
Jγ � Jγ U � -lossless,then ç 22

�kj TIC and  �ç 12 ç � 1
22  `K γ.

One could easily extend the equivalencefor more generalJ and S by a
coordinatetransformof theirpositiveandnegativeeigenspaces(see.,e.g.,Lemma
2.4.4),but Jγ andJγ U satisfyour needs.
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Note that this implies that alsothe correspondingdiscretetime resultholds,
by Corollary13.2.4.

Proof: 1¦ Case ç f.-d. lossless: Let ç be frequency-domain
�
Jγ � Jγ U � -

lossless.The right-bottomcornerof the frequency-domainlosslessnessequa-
tion Gç � s� * Jγ Gç � s��3 Jγ U for all s � C ' showsthatγ2 Gç *22 Gç 22 Z Gç *12 Gç 12

" γ V 2I ª 0
onC ' , so ç 22

�lj TIC, by Proposition2.2.5(useits (4) for (3) above). Conse-
quently, ç is

�
Jγ � Jγ U � -lossless,by Lemma2.5.3.

2¦ Case ç lossless: By Lemma 2.5.2 losslessnessimplies frequency-
domainlosslessness;the conversewasproved in 1¦ . By this and1¦ , we haveç 22

�lj TIC in eithercase,sofrom theequationç *12 ç 12
#

γ2 ç *22 ç 22 � # γ V 2I (2.46)

(this is the
�
2 � 2� -block of ç * Jγ ç8� Jγ U ) we get that  �ç 12 ç � 1

22  RK γ, by Lemma
A.3.1(e2). J
Wenow summarizesomeof theaboveresultsto aconditionthatis neededfor

H∞ problems:

Corollary 2.5.5 Let ç � TIC
�
U1
¾ U2 � Y ¾ U2 � andγ � γ V¹W 0. Thenthefollowing

areequivalent:

(i) ç is
�
Jγ � Jγ U � -losslessand ç 22

�{j TIC∞
�
U2 � ;

(ii) ç is frequency-domain
�
Jγ � Jγ U � -losslessand ç 22

�{j TIC∞
�
U2 � ;

(iii) ç * Jγ çe� Jγ U and ç 22
�{j TIC

�
U2 � . J

(This follows from Proposition2.5.4(2)andLemma2.5.3.)

Notes
In thefinite-dimensionalcase,JosephBall andWilliam Helton(e.g.,[BH88])

have studiedlosslessnessin detailundera chain–scatteringformalism.Thereare
also(finite-dimensional)extensionsof this conceptto time-variantsystems(see
[Gohberg] or [LKS]) andto nonlinearsystems(see[BH92]).

Losslessnesswasadoptedto an infinite-dimensionalsettingin [S98c], from
which Definition 2.5.1and2.5.2areadoptedin thesamegeneralityashere.See
[S98c]for furtherresultsand[BH88] for furthernotionsof losslessnessandtheir
physicalinterpretations.

We believe that losslessnessis strictly strongerthanfrequency-domainloss-
lessness.However, it remainsan openproblemto prove this or the converse.
This problemlies closeto thatof the possibleconversesto Lemma2.2.4(a)and
Proposition4.1.7(C);seealsoLemma2.2.4(b)(i)&(iv).
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2.6 MTI and its subclasses

According to conventionthere is a sweetand a bitter, a hot and a
cold, andaccording to convention,there is an order. In truth, there
areatomsanda void.

— Democritus(460–370B.C.),400B.C.

In this sectionwe shall defineMTI
�
U � Y � andCTI

�
U � Y � (“M” for measures

and “C” for continuity on iR :¤/ ∞ 0 ), which are subspacesof TI
�
U � Y � , and a

numberof their subspaces.We alsolist their basicproperties.RecallthatU and
Y referto Hilbert spacesof arbitrarydimensions.

The classMTI consistsof thoseelements5 � TI that are of form (2.50),
that is, a the convolution with a measureconsistingof a discretepart plus an
L1 part. Furtherregularity propertiesof this classarelisted in Proposition6.3.4,
andits spectralfactorizationpropertiesaretreatedin Chapter5 andsummarized
in Theorem5.2.7;seealsoSection8.4.

Whensolvingseveralstandardcontrolproblemsin Part III, we canshow the
sufficiency of classical“necessaryandsufficient” conditions,but theseconditions
arenot necessaryin general(cf. Example11.3.7). However, the spectralfactor-
ization andregularity propertiesandalgebraicpropertiesof MTI (seeTheorems
8.4.9and2.6.4)aremoreor lessthesameasthoseof rationalfunctions.This al-
lowsusto establishalsothenecessityof theconditionsmentionedaboveprovided
thattheI/O mapof thesystembelongsto this class.

By regularity of a map 9 � TIC∞
�
U � Y � we mean the existenceof the

“feedthroughoperator”D : � G9 � " ∞ � : � limr 4 ' ∞ G9 � r � . Theexactdefinitionand
the conceptsULR, UHPR, SLR and SHPRare formulatedin Definition 6.2.3
(seealsoProposition6.2.7),but thereadermayskip theseconceptsuntil they are
neededin laterchapters.

At this point it suffices for most readersjust to have a glanceat Definition
2.6.3andTheorem2.6.4andproceedto thenext chapter.

By CTI
�
U � Y � we meanthe maps 5 � TI

�
U � Y � that are inducedby someG5 �ïf � iR :ð/ ∞ 0 ; � � U � Y �.� through5 u : � G5 Gu for all u � L2 � R;U � (this is aspecial

caseof thesymbolsof Theorem3.1.3(a1)):

Definition 2.6.1(CTIC) We set2 CTI
�
U � Y � : � /�5 � TI �� G5 � f � iR :/ ∞ 0 ; � � U � Y �	� 0 and CTIC

�
U � Y � : � CTI

�
U � Y � 1 TIC

�
U � Y � . We call CTIC

the(timedomain)half-planealgebra. Moreover, weset

CTI
� � � U � Y � : ��/�5 � CTI �� G5 � s� # G5 � ∞ � � � f for all s � iR 0 � (2.47)

CTIC
� � � U � Y � : � CTI

� � 1 CTIC & (2.48)

We equip all these spaces with the TI norm (i.e., with the� � L2 � R;U �%� L2 � R;Y �.� operator norm). If 5 � CTI, we call E : � G5 � ∞ � the
feedthroughoperatorof 5 .

2We equip iR ñmò ∞ ó with its one-point-compactificationtopology; equivalently, the topology
inducedby the topologyof ∂D throughthe Cayley transform(this implies that “ ô i∞ õ7ö i∞”).
Similarly, C � ñ£ò ∞ ó is equippedwith theone-point-compactificationtopology, andthat topology
is inducedby thetopologyof D throughtheCayley transform.
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As above, we alwaysdenotethe “feedthrough”operatorsby thesameletters
asthecorrespondingTI operators.FromLemma2.6.2we observe thattheabove
conceptof feedthroughoperatorscoincideswith thatof Definition6.2.3.

Oneeasilyverifiesthatall thefour spacesdefinedaboveareclosedsubspaces
of TI (becausetheset � f of compact(seep. 871)linearmappingsis closedin � ,
by LemmaA.3.4(B1)).

We call the function φCayley : s �� �
1
#

s�	� � 1 " s� the Cayley transform. It
mapsC ' one-to-oneandontoD, andC ' :ï/ ∞ 0 one-to-oneandontoD, andit is
theinverseof itself. SeeLemma13.2.1for details.

Lemma 2.6.2 The spaceCTI
�
U � Y � consistsof those 5 � TI

�
U � Y � , for which

s �� G5¤÷ φ � 1
Cayley belongsto the set f � ∂D; � � U � Y �	� , equivalently, for which G5 �f � iR; � � U � Y �.� and G5 hasthesamelimit at ø i∞.

The spaceCTIC
�
U � Y � consistsof those 9 � TIC

�
U � Y � , for which s ��G9�÷ φ � 1

Cayley belongsto the(uniform)discalgebraf � D; � � U � Y �	� 1 H
�
D; � � U � Y �	� ,

equivalently, ùCTIC � f � C ' :¥/ ∞ 0 ; � � U � Y �	� 1 H∞ � C ' ; � � U � Y �	� ; a third equiva-
lent conditionis that G9 � ùCTIC iff G9 ��f � C ' ; � � U � Y �.� 1 H∞ � C ' ; � � U � Y �.� andG9 hasa uniformlimit (on C ' ) at infinity (i.e., 9 is uniformlyhalf-plane-regular).

Moreover, 9 � CTIC
� � impliesthat 9 � s� # D � � f for all s � C ' :g/ ∞ 0 .

Finally, if 5 � vCTI
�
U � Y � , then H5 * � G5 * � vCTI

�
U � Y � .

Proof: 1¦ CTI: Theabovecharacterizationsof CTI areobviouslyequivalent
to thefactthat G5 ��f � iR :_/ ∞ 0 ; � � U � Y �.� , whichin turnalwaysdefinesaTI map
(by, e.g.,Theorem3.1.3(a)).

2¦ CTIC: Let 9 � CTIC
�
U � Y � . Let f �{f � iR :o/ ∞ 0 ; � � U � Y �	� and F �

H∞ � C ' ; � � U � Y �	� be its Fourier and Laplace transforms,respectively. By
[Rud73, Theorem11.30(b)], for eachΛ � Y * and u0

� U , there is gΛ ? u0

�
L∞ � iR � s.t. ΛFu0

� H∞ � C ' � is the Poissonintegral Pr � gΛ ? u0

�
i � � [Lemma

D.1.8]. Consequently,
N O

Λ 9 φu0 � gΛ ? u0 Gφu0 on iR for any φ � L2 � R '2� , hence
gΛ ? u0 � Λ f u0 a.e.on iR.

It followsthatΛFu0 � Λ
�
Pr � f � u0 onC ' , still for arbitraryΛ andu0, hence

F
�
ir "E� ��� Pr � f

�
i � � onC ' .

From LemmaD.1.8(a2)it now follows that F
�
ir " t �t� � Pr � f � � t � # D �

Pr � � f # D � � t ��� 0 as � ir " t � � ∞; in particular, G9 �
f � C ' ; � � U � Y �	� (and
in H∞). Now the other two characterizationsof CTIC follow from this. (IfG9 �¤f � C ' ; � � U � Y �	� 1 H∞ � C ' ; � � U � Y �	� is UHPR,then G9 hasa uniform limit
as C '¿ú s (not necessarilyC ' ú s as for UHPR) and � s � � ∞, by Lemma
6.3.6(a1);thus,then G9 is continuousat ∞ too.)

3¦ CTIC
� � : Also this claim follows from thePoissonintegral formula(forG9 # D).

4¦ G5 * : Theequationa
iR b Gf � G5 * Ggc U dm � a

iR b G5 Gf � Ggc Y dm � a
iR b Gf � H5 * Ggc U dm (2.49)

showsthat
� G5 * # H5 * � Gg � L2 � iR;U � is zeroa.e.,by, e.g.,TheoremB.4.12,henceG5 * is the uniqueL∞

strong function (equivalenceclass)correspondingto 5 * (see
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Theorem3.1.3).Obviously, 5 * �\f � iR :g/ ∞ 0 ; � � Y� U �	��� vCTI
�
Y� U � . J

GiventhesystemxV � Ax " Bu, y � Cx " Du, x
�
0�,� 0, wehavey � f � u " Du,

where f : � CeA �B, providedthatA � B � C � D � � .
Even for somewhatunboundedA � B � C � D, the map 9 : u �� y is still of form9 u � µ � u for ameasureµconsistingof aL1

loc partplusafeedthrough(Dδ0, where

δ0 is theunit massatzero(the“delta function”)); thiswill bedenotedby MTICL1

∞
below. If we allow for delays,we endup with (2.50)or “the measureswith no
continuoussingularpart”, MTIC∞.

Theabove motivatesthedefinitionbelow. For mostreaders,it sufficesjust to
notethedefinitionsof MTI, MTIC, MTICL1

andMTICS for S � TZ, T W 0 and
thenproceedto theremarksbelow thedefinition:

Definition 2.6.3(MTI � MTId � MTIL1
MTI � MTId � MTIL1
MTI � MTId � MTIL1

) We defineMTI
�
U � Y � to be the spaceof

operators 5 � TI
�
U � Y � of the form 5 u � � f " ∑∞

k û 0Tkδtk ��� u
�
u � L2 � R;U �	� ,

i.e., � 5 u� � t � � ∞

∑
kû 0

Tku
�
t
#

tk � " a ∞� ∞
f
�
t
#

r � u � r � dr � (2.50)

where f � L1 � R; � � U � Y �	� , Tk
� � � U � Y � for all k, and theMTI norm(“uniform

total variationnorm”)  	5m MTI : �Y f  L1
" ∑

k

 Tk  (2.51)

is finite; here δt � : � δ0
� � # t �T�`� τ

��#
t � is thedelayof timet � R.

For 5 � MTI of theaboveformandS � R weset

ΠL1 5 : � f �¢� ΠS
� 5r� : � � ∑

tk < STkδtk �T�¢� suppd
� 5r� : �¿/ t � R �� Π ü t ý 58D� 0 0 & (2.52)

Thus,ΠS is the projectionto the measure carried on S, andsuppd
� 5r� is the

setof thenonzero atomsof 5 .

By theWienerclass(MTIL1
) MTIL1

wemeanthesubspaceof those5 � MTI
for which suppd

� 5r���®/ 0 0 , and by the discretemeasureclassMTId : � ΠRMTI
the subspaceof those 5 � MTI for which the L1 part is zero (henceMTI �
MTId ß � L1 �
� ).

For thecausalversions( f � π ' f andtk Z 0 for all k) of thesespaces,weadd
theletterC at theend:

MTIC : � MTI 1 TIC � MTICL1
: � MTIL1 1 TIC � and MTICd � MTId 1 TIC &

(2.53)
WedefineMTI

� � � U � Y �r� MTI
�
U � Y � to bethesubspaceof operatorsof form

(2.50) s.t. f � L1 � R ' ; � f � U � Y �.� and Tk
� � f � U � Y � for tk D� 0, and we setÓ � � : � Ó 1 MTI

� � when
Ó

is anyof thespacesdefinedabove.
If S � R, we setMTIS : �Y/�5 � MTI �� suppd

� 5r��� S0 and
Ó

S : � Ó 1 MTIS
when

Ó
is anyof thespacesdefinedabove.

We defineMTIω (ω � R) and its subspaces(with subscriptω) to be the



2.6. MTI AND ITS SUBCLASSES 75

correspondingspacesfor which 	5� MTI ω : �� e� ω � f  1 " ∑
k < N  e� ωtkTk  � B U ?Y @ K ∞ & (2.54)

Finally, wedefinethestrongequivalentsof MTIω andits subspacesbysetting
SMTIω

�
U � Y � : �þ� � U � MTIω

�
C � Y �	� , and analogously for any other spacein

placeof MTIω.

We make below a seriesof remarksconcerningthe above definitions. See
Theorem2.6.4 for more on the propertiesof theseclasses;note in particular
(by (h2)) that MTIω � SMTIω �c TIω (ω � R). More resultson the regularity

of MTICL1
, SMTICL1

andtheir weakequivalentaregivenin Proposition6.3.4.
The set MTId is known as the Almost Periodic Wiener algebra (APW)

by Karlovich, Spitkovsky et al. and as the Wiener–Pitt algebra (WP) by
BabadzhanyanandRabinovich [BR]. For dimU � dimY K ∞, thesetMTIC is the
well-known setdenotedby

Ó
or
Ó �

0� (or sometimesby LA ' � 0� ) in thetexts of
Callier, Desoer, Winkin andothers(see,e.g.,[CD80], [CW99], [CZ]).

Theso calledcausalWienerclassMTICL1
consistsof operatorsof the form5x� f " T1δ0, where f � π ' L1, i.e., of (I/O) maps 5 having an L1 impulse

responseplusa feedthroughoperator. By LemmaD.1.23,transferfunctionsthat
areholomorphicaroundiR 1 / ∞ 0 belongto MTIL1

. TheWienerclass(or “Wiener
algebra”)MTIL1

is denotedby W or ÿ in [CG81] and[CG97], andMTICL1
is

denotedby
Ó

in [CG97].
The MTI norm (“measurenorm”, i.e., total variation) and the SMTI norm

are strongerthan the TI norm ( � � L2 � norm), by Theorem2.6.4(h2); in fact,
they arestrictly stronger, even in the scalarcase,becauseif f � L1 � R " � , then f �£ TI �� Gf  L∞ (by Theorem3.1.3)and  Gf  L∞ maybelessthan  f  1.

Each5 � MTI corresponds(linearlyandisometrically, in particular,  	5y MTI �L R d �µ � ) to a Borel measureµ � f dt " ∑∞
k û 0Tkδtk ( � � U � Y � -valued, countably

additiveandof boundeduniform total variation)consistingof a discrete(atomic)
partandof anabsolutelycontinuouspart (i.e., onewithout a singularcontinuous
part)throughtheformula 5 u � µ � u for all u � L2 (equivalently, through G5{� Gµ).
This correspondenceis anisometricisomorphism(ontoif dimU K ∞ or dimY K
∞, asoneeasilydeducesfrom theresultson pages99 and82 of [DU]). However,
if dimU � ∞, thensomeabsolutelycontinuous� � U � -valuedBorel measuresare
notdifferentiablea.e.(seep. 219& p. 217(3)of [DU]).

Thesetsuppd
� 5r� is denotedby σ

� G5R� (or σ
� Gµ� ) in thetheoryof almost-periodic

functions (seep. 2188 of [RSW]). Clearly the set L1 is an ideal of MTI (we
identify a measure,its derivative andthe correspondingTI operatorwhenthere
is no risc of misconception).

For T � R, the classMTITZ correspondsto MTI “measureswith equally-
spacedatoms”with spaceT. BecauseMTITZ is isomorphicto ¯ 1 � Z � andL1 � is
an ideal of MTITZ , several factorizationand invertibility problemson MTId ? TZ

canbereducedto thoseon ¯ 1 andto thoseonMTIL1
. Dueto this fact(theearliest

applicationof which we have seenin thethesis[Winkin]), we shallusetheclass
MTITZ extensively throughoutthis monograph.
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As the definition shows, by the subscript � f we meanthat G5 # E is � f -
valued. In thecaseof MTI

� � andits subclasses,this meansthat f andTk (for k
s.t. tk D� 0) are � f -valued.TheclassCTIC

� � consistsG5k� E " ĝ, whereE � � ,
ĝ � H∞ � C ' ; � f � 1 f � C ' :g/ ∞ 0 ; � f � , andĝ

�
∞ �X� 0.

All well-posedfractions of exponential WTIC functions have a d.c.f. if
dimU � dimY K ∞, by Theorem2.1 of [CD80]. This follows from the fact that
a functionin H∞

ω for someω K 0 hasonly afinite numberof zeroson C ' .
The MTI spacesdefinedabove are ULR and have beautiful factorization

properties(seeTheorems2.6.4and4.1.6),which make themperfectcandidates
for stabilizationtheory. Moreover, mostof themalsoadmitspectralfactorization
(seeTheorem8.4.9),henceour optimizationtheorybecomesmorecompletefor
suchmapsthanfor generalTI maps.

Next we notethattheseclassesareclosedundercomposition,causaladjoints
andinverses,andwe list someof their furtherproperties:

Theorem 2.6.4(MTI, SMTI, CTI) Let
Ó

be one of the classesCTI, CTI
� � ,

MTI , MTI
� � , MTId, MTI

� �
d , MTIL1

, MTIL1 ? � � , MTIS and MTId ?S, where S �
S
#

S � R. Set |Ó : � Ó 1 TIC.
Let 5 � Ó � U � Y � , s � Ó � Y� Z � andω � ω V � R. Thenthefollowinghold:

(a1)
Ó �

U � Y � is a Banach space,
Ó �

U � is a Banach algebra and �®�
a

Ó �
a

TI (cf. Definition6.2.4); in particular,
Ó_Ó � Ó and |Ó |Ó � |Ó �

a
TIC.

(a2) If
Ó D� CTI � CTI

� � , then 5us is equalto theconvolutionof 5 and s , and G5
is equalto theLaplacetransformof 5 takenin MTI sense(asin (D.22)).

(b1) 5 * �d5 d � Ó and 5�s � Ó .

(b2) If 5��ds � |Ó , then 5 d � |Ó and 5�s � |Ó .

(b3)Wehave /�5 * �� 5 � Ó ω 0 � Ó � ω and  	5m �� ω �� 	5 *  �� ) ω.

(c1) 5 �{j TI
�
U � Y � ¬ 5 �lj Ó � U � Y � .

(c2) 5 �{j TIC
�
U � Y � ¬ 5 �kj |Ó � U � Y � .

(d) If sÁ� F " f � � MTIL1 �
Y� Z � and �®� G " g � � MTIL1 �

U � Y � , then s����
FG " � Fg " f G " f � g��� � MTIL1 �

U � Z � .
(e1) G5 �}f bu

�
iR; � � U � Y �	� and  G5 � s�Ì �3I 	5m TI 3® 	5m � for all s � iR.

(e2) If 5 � |Ó , then G5 �lf bu
�
C ' ; � � U � Y �.� 1 H∞ � C ' ; � � U � Y �	� and  �G5 � s�+ ­3 	5y TI 3I 	5m �� for all s � C ' .

(f) Wehave |Ó � ULR, MTIL1 � CTI andMTICL1 � CTIC � UHPR.

(g1) Assumethat
Ó D� CTI � CTI

� � . Then
Ó

ω � eω � Ó e� ω � and |Ó ω � eω � |Ó e� ω � .
Moreover, |Ó ω �c |Ó ω U for ω V Z ω.

(g2)Assumethat
Ó D� CTI � CTI

� � . Then
Ó *ω � Ó � ω,

Ó d
ω � Ó ω. and |Ó *ω � |Ó � ω.

(h1) Replacetheletters MTI by SMTI everywhere in this theorem.Then(a1)–
(a2) and (d)–(g1)still hold exceptthat G5 neednot be strongly continuous
in (e1)–(e2)andinsteadof (f) weonly havethat |Ó � SLR andSMTICL1 �
SHPR.
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(h2)Wehave  -�� TI ω 3I -�À SMTIω 3® -�ð MTI ω 3 ∞ for all � � TIω.

(i1) If 9 � MTIC∞
�
U � Y � , then  π > 0 ? t @ � 9 # D � π > 0 ? t @  � B L2 B R ( ;U @ @ � 0, ast � 0" .

(i2) If f � L2
loc

�
R ' ; � � U � Y �	� , then  u �� �

f � u� � t �Ì � B L2 B R ( ;U @î?Y @ � 0, as
t � 0" .

(i3) If 9 � SMTIC∞
�
U � Y � , andu � χR ( u0, then 9 u �gf � R ' ;Y � and

� 9 u� � 0�2�
Du0.

(j) If dimU K ∞ or dimY K ∞, then
Ó � � � Ó (sincethen � f � U � Y ���e� � U � Y � ).

Obviously, the formula in (d) holdsmoregenerallytoo. SeeLemmaD.1.12
for adjointsandLaplacetransformsof elementsof MTI. Notealsothatalmostall
above resultshold for BanachspacesU andY too, asshown in thestatementsto
which wereferin thetheoremandits proof.

Chapter4, Proposition6.3.4andLemmasF.2.2–F.2.4alsodescribeproperties
of MTI andSMTI classes.Thecorrespondingspectralandcoprimefactorization
propertiesaregivenin Sections5.2and8.4.

Proof: (c1)&(c2)&CTI-claims: By Theorem4.1.1 and Lemma4.1.3,
Ó

[and |Ó ] is inverseclosedand[causal]adjointclosed,asindicatedin (b1)–(c2).
(Wedo notknow whethertheSMTI classesareinverseclosed.)

The other claims about CTI and its subclassesare easyto prove (e.g.,vCTI
�
U � Y �p� f � iR :À/ ∞ 0 ; � � U � Y �	� hasthepropertiesstatedabove;seeLemma

2.6.2for thehalf-plane-regularityof CTIC maps).Therefore,for therestof the
proof,we assumethat

Ó D� CTI and
Ó D� CTI

� � .
(a2)This follows from LemmaD.1.12(c3).
(a1)&(d) It is clearthat

Ó
is avectorspace.Theisometricisomorphism

MTI
�
U � Y � ú � ∑

r < RTrδr
" f ���£�� �.�

Tr � r < R � f � � ¯ 1 � R; � � U � Y �.� ¾ L1 � R; � � U � Y �	�
(2.55)

shows that MTI is a Banachspace(sinceL1 and ¯ 1 areBanachspaces).It is
easyto verify thatalsothe imageof

Ó
under(2.55) is a Banachspace(recall

that � f is closedin � ), hence
Ó

is aBanachspace.
The compositionof MTI operatorscorrespondsto the convolution of the

correspondingmeasures,by Lemma D.1.12(c1), hence
Ó �

U � is a Banach
algebra(with aunit) and(b1)holds.

Now we have shown that
ÓÖÓ � Ó �

a
TI. SinceTICTIC � TIC �

a
TI, we

have |Ó |Ó � |Ó . Obviously, �x�
a

Ó
.

(b1)&(b2) Thesefollow from Lemma4.1.3and(a1).
(b3)Oneeasilyverifiesthis.
(e1)&(e2)This follows from LemmaD.1.12(a1)&(c2)&(a1’)&(c’).
(f) By Lemma D.1.12(b’), we have |Ó � ULR; by (e), Lemma

D.1.11(a1)&(a1’)and Lemma2.6.2, we have MTICL1 � UHPR, MTICL1 �
CTIC andMTIL1 � CTI.

(g1)By LemmaD.1.12(d),wehave
Ó

ω � eω � Ó e� ω � and |Ó ω � eω � |Ó e� ω � .
Sincee� ω � 3 1 onR ' , it is easyto verify from thedefinitionthat |Ó ω � |Ó ω U .

(SeeRemark2.1.6for furtherresults.)
(g2)This follows from Lemma4.1.3.
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(h1) This follows asabove, by usingLemmasF.2.2andF.2.3. (We do not
know abouttheexcludedclaims.)

(h2)Weomit thesimpleproofof  -�À SMTIω 3; -�� MTI ω; theotherinequality
is givenin (e2)and(h1).

(i1) This follows from thefact thattheMTI normof thepartof 9 lying on�
0 � t � decreasesto zero.We leave thesimpledetailsto thereader.

(i2) This holds because � f � u� � t �Ì Y 3Ø π > 0 ? t @ f  2  π > 0 ? t @ u  , by Lemma
D.1.7,and  π > 0 ? t @ f  2 � 0 ast � 0, by CorollaryB.3.8.

(i3) The proof is analogousto that of (i1) andomitted(notethat 9 � u0
�

MTIC
�
C � Y � ).

(j) SeeLemmaA.3.4(B1). J
We finish this section by a minor technical result that allows us to to

approximate� f -valuedTI mapsby finite-dimensionaloperators:

Lemma 2.6.5 Let 9 � Ó � U � Y � and G9 � " ∞ �£� 0, where
Ó � CTI

� � or
Ó �

MTI
� � . Then there are countableorthogonal sequences/ un 0 ∞

nû 1 � U and/ yn 0 ∞
nû 1 � Y s.t. when Pn [P Vn] is the orthogonal projection of U [Y] onto

span
�
u1 �	&	&	&�� un � [span

�
y1 �	&	&	&�� yn � ], wehavePVn 9 Pn �Ú9 , PVn 9Â�Ú9 , and 9 Pn �Ú9

in
Ó �

U � Y � , asn � ∞.
If U � Y, wecanchoose/ un 0 sothatPn 9 Pn �»9 in

Ó �
U � .

Of course,if 9;� � ∑kTkδtk
" f ��� , thenwe canreplacePVn f Pn (i.e., Ä PUn f Pn 0

0 0 Æ )
by somesmoothor simple function with a compactsupportfor eachn without
losingtheconvergencies(seeTheoremB.3.11).

Proof: CaseCTI: 1¦ Let n � N. For eachs � iR :g/ ∞ 0 , G9 � s� � � f , hence
therearePn ? s andPVn ? s asin LemmaA.3.4(B2),sothat  G9 � s� # PVn ? s G9 � s� Pn ? s  RK
1� n. Theset

Gs : �C/ z � iR :g/ ∞ 0 ��  G9 � z� # PVn ? s G9 � z� Pn ? s  `K 1� n 0 (2.56)

is open,for eachs. By thecompactnessof G9 � iR :g/ ∞ 0 � , thereis afinite subset/ s1 �.&	&	&.� smn 0 � iR :�/ ∞ 0 , sothatiR :�/ ∞ 0 � Gs1 :¥&.&	&$: Gsmn
. Let un ? 1 �	&	&.&�� un ? kn

[yn ? 1 �	&	&.&.� yn ? kUn] be an orthogonalbaseof : mn
j û 1Ran

�
Pn ? sj � [ : mn

j û 1Ran
�
PVn ? sj

� ].
Thus,  ÌG9 � z� # |PVn G9 � z� |Pn  �K 1� n for all z � iR :Á/ ∞ 0 for the corresponding
projections.

2¦ Let u1 � u2 �	&	&	& be the sequenceu1 ? 1 � u1 ? 2 �	&.&	&.� u1 ? k1 � u2 ? 1 � u2 ? 2 �	&	&	& and let
y1 � y2 �.&	&	& be the sequencey1 ? 1 � y1 ? 2 �	&	&.&.� y1 ? kU1 � y2 ? 1 � y2 ? 2 �	&	&	& to obtain  G9 #
PVn G9 Pn  t� 0. Clearly  G9 # PVn G9g and  G9 # G9 Pn  areevensmaller.

If U � Y, we may modify our proof by choosingonly the uk’s, using
the last claim in Lemma A.3.4(B2), or we can as well use the sequence
u1 � y1 � u2 � y3 � u3 �.&	&	& .

CaseMTI : 1¦ Let 9 � s��� �∑∞
k û 0Tkδrk

" f �d� , whereTk
� � f � U � Y � for all k

and f � L1 � R; � f � U � Y �	� . Let j � N " 1.
Then there are m � N " 1, 5x� �∑m

kû 0T Vkδrk
" |f ��� s.t. m � N " 1, T Vk �� f � U � Y � for all k, f � ∑m

k û 0 SkχEk
, where eachSk

� � f � U � Y � is finite-
dimensional,and  T9 # 5_ MTI K 1� j (replaceeachTk by a finite-dimensional
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T Vk (seeLemmaA.3.4(B1)),usethedensityof simplefunctionsin L1 (Theorem
B.3.11(a1))andchoosesuitablem K ∞). Let

U j : � span
�
Ker

�
T V1 � × :ï&.&	&�: Ker

�
T Vm� × : Ker

�
S1 � × :ï&	&	&�: Ker

�
Sm� ×�� � U �

(2.57)

Yj : � span� Ran
�
T V1 ��:ï&	&	&$: Ran

�
T Vm�¹: Ran

�
S1 ��:ï&	&	&$: Ran

�
Sm�.�y� Y& (2.58)

Let |Pj [ |PVj ] betheorthogonalprojectionof U [Y] ontoU j [Yj ]. Then 5�� |PVj 5 |Pj ,
hence T9 # |PVj 9 |Pj  t�� T9 # |PVj 9 |Pj

" |PVj 5 |Pj
# 5� S3® T9 # 5� "  |PVj � 5 # 9­� |Pj  �K 2� j &

(2.59)

2¦ Let u1 �	&.&	&.� uk1 spanU1, add then vectorsuk1 ' 1 �.& & &§� uk2 � U2 so that
u1 �	&	&	&�� uk2 spanthe spacespan

�
U1 : U2 � etc. If |Pj and |PVj arethe projections

definedabovefor somem, thenRan
� |Pj �2� Ran

�
Pn � andRan

� |PVj �u� Ran
�
PVn � for

somen (andeverysubsequentone),hence T9 # PVn 9 Pn   3C T9 # |PVj 9 |Pj  �K 1� j.
Therefore, T9 # PVn 9 Pn   � 0, asn � ∞.

If U � Y, we canreplaceU j andYj by span
�
U j : Yj � to obtaintherequired

projections. J
Notes
TheclassMTIC wasintroducedinto controltheoryin [CD78] and[CD80]. An

excellentreferenceon theclassis [CZ]. TheclassMTICTZ is treatedin [Winkin]
and[CW99], andMTId in [BKRS] and[RSW], amongothers.All theseassume
thatU andY arefinite-dimensional;in thatcaseprobablyall of Theorem2.6.4is
well known. Generalvector-valuedmeasures(with MTIC asa specialcase)are
treatedin [DU] andin [Dinculeanu].
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