Part |

Tl Operator Theory

45






Chapter 2
Tl and MTI Operators

Gatheryeroseludswhile ye may

Old Timeis still a-flying:

Andthis sameflowerthat smilestoday
Tomorrowwill bedying

— RobertHerrick (1591-1674)

Throughoutthis chapter H, Hy, U, W, Y, Yx andZ (k € N) denoteHilbert
space®f arbitrarydimensiongunlessotherwisespecified).(Many resultsof this
chapteralsohold for Banachspacesandfor LP in placeof L2; see[Sbook] for
details.)

In Section2.1we shallstudythebasictheoryof Tl,(U,Y), theboundedinear
time-invariantoperatorsL2(R;U) — L2(R;Y) (w € R). Section2.2 treatsthe
invertibility of Tl operatorswvith emphasi®nthecausabnes,TIC,.

Section2.3 lists sufficient conditionsfor a TIC operatorto be static, thatis,
to be the multiplication operatorinducedby an elementof B(U,Y). We also
give certainresultsthatwill be usedin connectionwith the signatue operators
of optimization problems, Riccati equationsand spectralfactorizations;such
operatorsarefurthertreatedin Section2.4. Section2.5 treatsthe concept(J, S)-
losslessness

In Section2.6 we definethe subspacéTl,(U,Y) (andits subspacesjorre-
spondingto Tl,(U,Y) mapsof form u — p*u, wherep is a measureonsisting
of afunction f € L(R; B(U,Y)) plus a discretepart (this includesthe Callier
Desoerclassandthe Wienerclass).We list the basicpropertiesof theseclasses.

For mostreaderst sufficesjustto have aglanceatsubsectiong.1.1-2.1.7and
possiblyalso2.6.3—-2.6.4andthenreturnto this chapteronly whenpointedby a
reference.

The book [RR] is a standardreferencefor TIC (or “causalshift-invariant”)
operatorsseealso[Nik olsky] and[Sbook]. (Dueto Lemma2.1.3,TIC (or TIC)
operatorsare sometimescalled “Toeplitz operators”; seep. 56 for the correct
definition.)

We shallsometimesgeferto Chapter3, which doesnotdependon this chapter
exceptonthe basicpropertiesof TI andTIC operators.
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2.1 Time-invariant operators (TI)

Weepno more, nor sigh,nor groan;
Sorrow calls notimethat’'s gone;
Violets pluckedthe sweetestain
Makesnot freshnor grow again.

— JohnFletcher(1579-1625)

In this section, we define the class Tl of time-invariant boundedlinear
operatord 2(R; ) — L2(R; x) andseveralof its subclassesandstudytheir basic
properties.

We startwith notation.For ary w € R, p € [1,»] andameasurableet] C R,
we set

LO(JU) == {ue LR (JU) | (t— e Pu(t)) eLPJ;U) } =€ -LP(J;U);
(2.1)
in particulay ||ufl_p := [le"“ul[Le. Thus, & = & becomesan isometric
isomorphismLP — LY, andwe have (recall that t'u := t(t)u:= u(- +t), Au =
u(—-))
(e =e%e1(t), [l =e*lullp, (LweR, ueLy(RV)). (2.2)

Moreover, TieU := XgU, WhereXg is the characteristidunctionof E C R, Ty 1=
TR, andrL :=TR_=I|—1.. It followsthat

Al=a=9" m =1 =T, ATEA = TE, (2.3)
(1) =1(-t), T()T1(s) = T(t+9), AT(t) =1(-)A, TET(t) =T(t) T4, (2.4)

andthatary L € B(U,Y) commuteswith T, A andTe in B(L%(R;U),L3(R;Y)).

We will oftenusethefactthatif {u,} € L3NL2, uy — uin L3, andu, — v
in L2, thenu = v (a.e.),by TheoremB.3.2. On of its consequenceis that
L2(Ry;U) c LA(Ry;U), continuouslyfor w < a. Finally, we have

lull .z = lim fluflz (0€R, ue Lioe(R+;U)), (2.5)

by the MonotoneCorvergenceTheorem.

Definition 2.1.1(Tl, TIC) Letw € R. We defineTl,(U,Y) to be the (closed)
subspaceof opemators E € B(L2(R;U);L2(R;Y)) that are time-invariant i.e.,
T(t)E=Et(t) forallt € R.

We defineTIC,(U,Y) to bethe(closed)subspac®f operatorsD € Tl,(U,Y)
thatare causali.e., t_Drt, = 0, or, equivalentlyDrt, L2 € 1, L2,

WesetTl :=Tlo, Tle := UwerTlw, Tlexp := Uw<oTlw, TIC :=TICq, TICw =
TICNTle and TICep 1= TICN Tlep. For E € Tly(U,Y) we set E! =
oy EMoy) € B(LA(R;U),L(R;Y)).

We call mapsbelongingto TICep exponentially stable thosebelongingto
TIC = TIC stable andthosebelongingto TIC., \ TIC unstable

We extendany D € TIC(U,Y) asfollows: if ue L2 (R;U) andttu € L2,
thenwe setTy_, 1)DU i= Ty _e 1)DT_e 1)U (T € R) (by causality Du becomes
uniquelydefineda.e) onR).



By Lemma2.1.10,we have TIC = TICx N TI, TICw = UuerTIC, TICep =
Uw<oTIC,. SeeRemark2.1.9for theconceptTlaNTIy, for a# b.

For ary D € TIC,, we obviously have D, = 1, D, Tt.D = . D, and
T o t)D =T}y DIY_cop). We will oftenusethesefactsaswell asthe factthat
AL2(R;U)] = L2 ,(R;U).

Theorem 2.1.2(Transfer functions) Let w € R. For eadh D € TIC,(U,Y)
there is a unique function D € H*(C{;; B(U, Y)), called the transferfunction
(or symbol or Laplace transform) of D, s.t. Du = Da on Cs for all u e

L2(R;U). ThemappingD — D is an isometricisomorphismof TIC,(U,Y)
ontoH*(Cf; B(U,Y)). 0

(Thetheorems obtainedrom Theoren2.3of [W91a] by translationby w (cf.
Remark2.1.6). Thattheoremalsocontainsasimilar claimfor LP (1 < p < «) and
BanachspacdJ andyY, but in thatcasetheisometricisomorphismontobecomes
merelyalinearinjectioninto, by Example3.3.4.)

Recallthatl denoteghe Laplacetransformd(s) := [z e 2u(t) dt of u.

We oftenidentify functionsand correspondingnultiplication operatorsj.e.,
we considerD € H*(CZ; B(U,Y)) both as a function and as an operatoron
£]L2(R.;U)] = H3(CH;U) (seeTheorem3.3.1(b)).

A causaltime-invariantmapD : L?(R;U) > Dom(D) — L2(R;Y) is called
well-posedff D € TIC»(U,Y), i.e.,iff therearew € R andM < e s.t.|[Duf[, 2 <
M|[ul[ 2, for all u € Dom(D) andDom(D) NL is densen LE,(R;U).

Thus, if De H(Q;B(U.Y)) for someopenQ C C, thenthe multiplication
mapu — DG determines (necessarilynique)well-posedmapD € TICOO(U Y)
iff D is definedand boundedon someright half-plane (i.e., iff D e H? :=
UwerH®(CZ; *)). Therefore;well-posed”is anextensionof theclassicatoncept
“proper” (recallthata properrationalfunctionis onethatis boundedat infinity).
We shall studytransferfunctionsof TIC. mapsin detailin Section3.3 andthose
of Tl mapsin Section3.1.

We concludefrom Theorem?2.1.2thatthe extensionmentionedat the end of
Definition2.1.1extendsany D € TIC, to auniqueTIC,y operatoifor eachw > w;
we identify thesetwo operatorsThus, TIC, C TICy. TheTl, operatorsarenot
nestedin a similar way, but they are also uniquely determinedby ary Tl to
whichthey belong;seeRemark2.1.9for details.

A causamapD € TIC,, is determinedy its Toeplitzoperator 1, Drt; :

Lemma2.1.3 For eadh D, € B(L3(R;U),L3(R:;Y)) sit. 17D = Dt for
t >0, thereis D € TIC,(U,Y) s.t. D, = ;D This correspondencés an
isometricisomorphism.

Proof: (Recallthat we identify functionson R to their zero extensions,
hencet—tf is zeroon[0,t) for eachf : R} — *.)

Extend D, to B(X,L?), where X := UrcrLZ([T,4);U)) C L2, by
Dyt u:=1"D,ufor T >0, uc m L. Oneeasilyverifiesthatthe resulting
operatoris well-definedand time-invariant. Becausethis doesnot alter the



normof D, , by (2.2), we canextendD, to L2, by density By continuity, the
resultingoperatoiis time-invariant. The corverseis obvious. O

Definition 2.1.4 If E € Tl,(U,Y) (w € R), thenits (noncausalpdjointE* is the
Tl_,(Y,U) mapthat satisfies

L)@yt = [ ), EYOd e LERU), ye L2yRiY).
(2.6)
We call B := AR A € Tl,(Y,U) thecausakdjointof E € Tl,(U,Y).

(We usedheretheidentity 1(t)E* = (Et(—t))* = (t1(-t)E)* =E*1(t).)

Obviously, it is enoughto verify (2.6)for u,y € (°(R;Y), by TheorenB.3.11.
NotethatE,E' € Tl, = (EE')* = E"E*. SeealsoLemma2.1.10(b).

Note that the adjoint is not taken w.r.t. the L2 inner product(which would
imply E* € Tl,(U,Y)) but w.rt. the L? = L2 inner product (so that E* €
Tl_w(U,Y)). Thisway theadjointdoesnot dependon the choiceof w.

By duality we usuallymeanthat oneappliesknown resultsto the duals(i.e.,
adjoints)of the operatorsnvolved(cf. alsoLemma6.1.4).

Lemma2.15Let w € R. If D € TIC,(U,Y), thenD? € TIC,(Y,U). Let
E € Tle(U,Y). ThenE € GB(L2(R;U),L2(R;Y))iff E € GTl(U,Y). N

(We leave the simpleproofto thereader)

Thus,theinverse(if any) of atime-invariantmapis necessarilyime-invariant.
The inverseof a causalmap neednot be causal(e.g., 1(—1) € TIC, 1(1) =
1(—=1)~1 € TI\ TIC). However, the “causaladjoint” of a causalmapis always
causalasshown in thelemma.

Remark 2.1.6(Shifting stability) Leta,w € R. Let 7y bethe stability shift (or

scalingopemator) E — e*'Ee~% . Then7y isanisometricisomorphisnof Tl onto

Tlwia andof TIC, ontoTIC,q (becausdr, |L2,, , = e* [, ]L2, isometrically).
Obviously 7oty = 1L T, ZaT(t) = 1(t) T4 (t € R), andwehave

T (BF) = (T4E) (F), T(BE+VF) = PLE+YLF,  (2.7)
(TE) = TE™, (TE)* = T_oE", (2.8)
(TE)" = E, ZE =1(-0)E. (2.9)
O

(The formula ‘faTE = IE(- —a) refersto Theorem3.1.3(al);for E € TIC, it
alsocoversTheorem2.1.2.)

Notethata > 0 decreasestability, i.e., shiftsthetransferfunctionto theright.
SeealsoRemark6.1.9.

If D € Tl is causalthen,obviously, D* is anti-causal i.e., Ty D*t. =0. If D
is bothcausakndanti-causalthenwe call D static. Weidentify D € B(U,Y) and
the multiplication mapMp : u— Du (notethatMp € TIC(U,Y), Mgt = Mp1
if eitherinverseexists, and M{, = Mp+). The static TIC mapsare exactly the
(multiplication) mapsof this form:



Lemma2.1.7(Static D) LetD € TIC(U,Y) andD* € TIC,(Y,U). ThenD €
B(U,Y). Moreover, theimbedding3B — TIC, preservesnormsand commutes
with algebraic opemations(for anyw € R).

Thus,D € TIC, & T, DIt = 0 = D € B. SeeSection2.3for moreon static
operators.

Proof: For D,D* € TIC, this is statedin [RR, Theorem5.2C, p. 96] (we
do not know their proof; a proof consistof PropositionD.1.20combinedwith
Theorem2.1.2and3.3.1;seg[Sbook]for amoregenerafresultandits system-
theoreticproof).

In the generalcase, where D,D* € TIC, for somew € R, we have
D_w =T oD € TICyand(D_y)* = T,D* € TICy, henceD :=D_, € B(U,Y)
andD = 7,D_., = D. O

The Hankel opefator! 1, - 1_ of a TIC,, map determineghe map uniquely
moduloastaticoperator:

Corollary 2.1.8(m.Drc) Let D,D € TICo(U,Y). Thent, Dt = D iff
D =D+ D for someD € B(U,Y). 0

(Apply Lemma2.1.7to D— ﬁ.) Notethatit suficesthatm, Drt_@= m]ﬁrup
forall e ¢, by TheoremB.3.11.

As notedabove,a TIC; mapis alsoa(i.e., extendsto a unique)TIC, mapfor
ary b > a. If therestrictionof a Tl, maponto L2 L2 is continuousin the L2
norm (to Lg), thenit extendsto auniqueTl, map(andauniqueTl, mapfor any
r € [a,b]), aswill be notedin the remarkandlemmabelown. The corresponding
technicaldetailsaregivenin PropositionE.1.8.

Remark 2.1.9(TlaNTlp) Leta < b. Assumehat ¥ is thesetof simplefunctions
R—U,or F =LZ(R;U)NLZ(R;U) or F = T(R;U).

If(f) E € F — LZ(R;Y) is time-invariant, linear and boundedL2 — L2 and
LZ — L2, or equivalentlyE is linear andthereis M < o s.t.

IEqllz <Ml|@ll 2, [Eellz <Mll¢ll_z andEx(t)e=1(t)Ee forall teR, o< ¥,
(2.10)

thenE extendsto a uniqueopemtor E € Tl (U,Y) for all r € [a,b], and E is
uniquelydefinedon Ure[a’b}L?(R;U), by PropositionE.1.8.

Theeforg, if Eg € Tl3(U,Y) andEy € TIp(U,Y) ares.t.Eq =Ky, on 7, then
weidentifyE; andE,.

Thusby“E € Tla(U,Y)NTIp(U,Y)” wemeansudhamap(i.e., E=E,; =Ey,
whee E; andE, are asabove).

Analternativecharacterizationis thatE : L2(R;U) + L2(R;U) — L3(R;Y) +
L5(R;Y) is linear ands.t. E| 12 € B(L5 L2, E| 12 € B(LE,L2) andEt* = T'E for
all t € R (seeDefinitionE.1.3). 0

1Sometimegt D, is calledthe Hankel operatorandrt, Dt the anti-Hanlkel operatorof I;
our choiceis dueto [S97h].



If E is alinearmapwhoserestrictionto Dom(E) NL2 extendsto auniqueTl,
map(asabove), thenwe identify this Tl mapwith E.

By translation-iwarianceand density it is enoughto verify (2.10) for func-
tionsg € ¥ having their supporton,e.g.,R.

Lemma2.1.10(TIaNTlp) Let E € TIz(U,Y) N Tlp(U,Y), a < b. Thenthe
following hold:

(@l)E € Tl (U,Y) for all r € [a,b], and
IEllm, =M <M3*MF < ma{Ma,Mp} (r€fab]),  (2.11)
whee 6, .= (r—a)/(b—a).
(@2)If E € TIC»(U,Y), thenE € TIC,(U,Y) for all r € [a,).
(b) E* € TI_(Y,U),EY € TI,(Y,U) andE ! € TI,(Y,U) areindependenofr.

(c)WehaveF =G € TIagNTILif F e Tly, G € Tlp, Fo= Gofor all pe ¥, and
¥ iss.t.thetranslationsof F spana densesubsebf bothL2 and Ltz, (eg., F
isasin Remark2.1.90r ¥ = {Xgy} or ¥ = {e~/?} (by LemmaD.1.25)).

(d) LetD € TIC;(U,Y),r € R. ThenD € TIC.,(U,Y) and ||]D||T|Cr/ < ”D”TICr
for all ' > r. Moreover, D* € TI_p(Y,U), DY € TIC,(Y,U) andD 1 € TI.

(e) LetD € TIC,(U,Y), andlet w € R. ThenD € TIC,, iff Du € L2 for all
ueLZ(R;;U).

(f) LetT € R, E € Tl andD € TIC,. Letw e R. Then,

1l = 1Bl 52) = 1T o ETbr ey 2y = im (1B |52, (2.12)

t—oo
= sup 1741 ) EUl[ 2,  and (2.13)
UeCE(R V), ul 5 <1
IDliric, = IDllsz) =, im_1D{l5z) (2.14)
= i D = D 2.15
Jim, [IDlrc, = sup|[Pnc, (2.15)

(thenormsmaybeinfinite for w # a; recallthatE! := n[o,t)]ﬁn[o’t)).

(9) LetF € T, for all r € (a,b). ThenM := sup.qp) [|Fn, < o iff F €
TlaNTly. If thisis thecase thenM = max{||F||1i,, ||F||, }-

To givethereadembetterintuition on Tl operatorsywe mentionafew results
thatwill be shawvn later: the Fourier or Laplacetransform(“transferfunction” or
“symbol”) of aTla(U,Y) mapisin L qnda+iR; B(U,Y)) (Theorem3.1.3),that
of aTlaNTlp, mapis alsoin H((a,b); B(U,Y)) (Theorem3.1.6), andthat of a
TICa mapalsoin H*(CZ; B(U,Y)) (Theorem2.1.2).

Proof: Recall that simple functions (henceL2 N L2) are densein L2 for
r € [a,b], by TheoremB.3.11.

(al) SeePropositionE.1.8andRemark2.1.9.

(a2)Now T_Em, = 0onary L? (r € [a,b]), by continuity. From (d) we get
thatE € TIC, forany r > a.



(b) It is obviousfrom (2.6)that (K, )* = (Eq)* onL? ,NL? ., henceE = Ef,
(by definition(or by (c)).

ConsequentlyAE:A = A A (onL2NL?).

Finally, if E is invertiblein Tl,, andin Tl;, (r¢ € [a,b]) for k= 1,2, then
E! maperZ1 N er2 ontoitself (asdoeskE too); in particular IE;ll = ]E;zl (on
LZ NLZ).

(c) Thisfollows almostdirectly from Remark2.1.9(the Fouriertransforms
of Xpo,1} ande~/2 are 0 a.e.;cf. LemmaD.1.25).

(d) By Theoren2.1.2,D extendsto aTIC,» mapfor r’ > r. Therestfollows
from (b).

(Notethatt(—1) € TICN GTI'\ GTIC., sincet(1) is noncausal.)

(e) “Only if” is trivial, so assumethatD € TIC,, o > w, andDu € L2
for all u e L2(R,;U). The continuousinclusion ;L2 c L3 implies that
Du € B(m,L2,L2), henceDu € B(m, L2, L2), by LemmaA.3.6. Thus,(2.10)
is satisfiedhenceD € Tl,. By (a2),E € TIC,.

() Obviously, we canw.l.0.g. assumethat w = 0 (cf. Remark2.1.6) and
T = 0 (usetime-invariance) By Remark2.1.9,we have

||| = sup [ Bull ;.- (2.16)
ueCE (R, |ull 2 <1

AssumethatM < ||E||. Choosau € ¢2(R;U) s.t.]jull2 = 1 and||Eu| > M. By
Corollary B.3.8,we have ||t Ettuj| > M for t big enoughitake t sobig that
we alsohave 1 'u € CP(R;U) to establish(2.13). Obviously, (2.12)follows
from (2.13).

Thefirst two equalitiesfor ||D|| follow from the above. Also the D! claim
follows from CorollaryB.3.8,soonly (2.15)remainsto be proved.

Let [[ul] 2 = 1. Then [[Dul[2/[ull .z = [[Dull_2, by (2.5), hence|[D]| <
SUR~ |IDl|TIc, - But||D|/Tic, is decreasingn r, by (d), hence||D|| is givenby
(2.15).

(9) (In fact,we mayreplace(a,b) by ary D C R s.t.a,b € D.) Thisfollows
from LemmakE.1.9. g

If(f) ||D||71, is (finite and)boundedasa — +o, thenD is causal:
Lemma2.1.11LetD € Tl,(U,Y), w € R. Thenthefollowing are equivalent:

() D € TICy for somea > w;

(i) D € TICq for all a > w;

(iii) D € Tlg and ||D||71, < ||D||71,, for all a > w;

(iv) D € Tl for all a > w, ande™%||D||1;, — Ofor all € > 0.

Thus,if ||D||;, doesnot grow with an exponentialspeed,asa — +oo (cf.
(iv)), thenit is boundedandD is causal.

Ontheotherhand,tt € Tl,(U) forallt,we R, but T ¢ TIC, fort > 0 (! is
not causabecausé mapsbackwardsin time), and||t!|11, = €™, by (2.2),sothe
estimatan (iv) is the“bestpossibleone”.



Proof: 1° “(ii) =(i)" and“(iii) =(iv)”: Thisis trivial.

2° (i) =(i)&(ii))":  Thisfollowsfrom Lemma2.1.10(d).

3° “(iv) =(i)": Assumethat(i) doesnothold,sothaty := rt_Drt, u # O for
someu € L2(R,;U).

Choosee > 0s.t.1 := [|Ty_o, ¢)Y|[ 2 > 0. Then,by (2.2),

Ill 2 = lle7®yll2 > el =E|ly|| , > €5, (2.17)

whered' := e “®r > 0. Consequently||D|t;, > €%¢d (o > w), whered :=
&'/||ull 2 > 0, becausgjul| 2 > ||ul[ 2 > 0 (o > w).

It follows thate™%¢||D||t1, > & /4 0, sothat(iv) doesnot hold. Therefore,
(iv) implies(i). O

Lemma2.1.12(D is closed) LetD € TIC(U,Y) andw € R. ThenD is closed
onL2(R;U) (herewesetDom(D) :={u € L4(R4;U) |Du € L2}).

Proof: Choosea > ws.t.D € TICq. If up — uandDu, — yin L2, then
Up — uin LZ, henceDu, — Du in L2, hencey = Du a.e.,by TheoremB.3.2.

0

We setLZ(R;U) := {u € L%(R;U)| suppu is bounded. If D[LZ] C L?, then
D is “almoststable”(cf. Lemma6.1.11andTheorem3.3.1(a4)&(c3)):

Lemma2.1.13DL2 c L2) Let D € TIC,(U,Y) and w € R, and let there be
T >0s.tDrgryu€ L forue LE ThenM = |[Drig 1) [l 52,1 2) < @, and

IDlITicy < MpwtM (B> w), (2.18)
IDull 2 < Moo, TMI|ull, 2 (a <, ueL2(Ry;U)). (2.19)

Thus, then D[LZ] C L2 and Do u — Du and D'u — Du in L2 for all u e
L2(R4;U) +L2, a < . Moreover, (s+r +w) D € HZ 0 Céi B(U,Y)) for
all r > 0; in particular, D(:) € Ha;ondD; B(U,Y)) if < 1.

(SeeDefinition 13.2.2for ©.)
Proof: (In fact,thelemmaholdsevenfor TIC o (seeSection8 of [Sbook]
for thedefinition)in placeof TIC., with virtually the sameproof.)
Exceptfor the Hgtrong claims, this follows from Lemma 13.1.3through
discretization(RecallthatL2(R;U) = UtsoL?([-T,T);U).)
SinceD(s+r +w) Uy € H2 for all ug € U (notethatr ™ (s+r +w)~up €

'-<2*H/2; seealso Theorem3.3.1(b) and Theorem?2.1.2) we have (s+r +

@)D € HZond Ci B(U,Y)), by LemmaF.3.3(al).

Sett :=r + w to obsere from Lemma13.2.1(e2thatz — (14 2)[ 1% +
t]OD € HZongD; B(U,Y)), i.e., [1+1t+ (1 — 1)ZOD € HZ;ond D; B(U,Y)), for
allt > w. If w< 1, wecantaket = 1 to obtainthatOD e Hgtmng(D; B(U,Y)).

U



Lemma 2.1.140"*D! <2 = ||D||ric <) LetD € TIC,(U,Y) andy € R. If

DD <yl forallt >0, (2.20)
thenD € TIC(U,Y) and |D||ltic <y. If I>> 0is s.t. that D*JID < y2I for all
t > 0, thenD € TIC(U,Y). 0

Proof: (Obviously, thetheoremalsoholdswith Tl in placeof TIC.)
The first claim follows from (2.14). If J > €l, € > 0, thenD"*JD'* >
eD' D', hencealsothe secondtlaim holds. O

Lemma 2.1.15((Du)(t) = e¥D(s)up) LetD € TIC, andlet Res> w. If ug € U
andu = e>up, then(Du)(t) = e¥D(s)up for all t € R. N

(Thisis Lemma6.10 of [S98c], originatingfrom [W91a].) Notethattt u €
L2, andthatD wasextendedasexplainedin Definition 2.1.1.

Notes

Theorem2.1.2is from [W91a]. Corollary2.1.8,Lemma2.1.15andmuchof
Definitions2.1.1and2.1.4andof our notationarefrom [S97a]and[S98c]. The
casew = 0 of Lemma2.1.7is Theoremb.2Con p. 96 [RR].

A standardeferencdor thetheoryon time-invariantoperatorss [RR].

The main new contributionsof this sectionarethe theoryof Tl,N Tl (see
2.1.9-2.1.11and3.1.6,andthe factthat D is “almost stable”if Drg1)L? C L2
(seeLemma2.1.13andthereferencesboveit).

2.2 GTIC —invertibility

AndthatinvertedBowlwecall The Sky,
Wheeundercrawling coopt welive anddie,
Lift notthy handsto It for help—for It
RollsimpotentlyonasThouor I.

— OmarKhayyam(1048-1131)

In this sectionwe studythe invertibility propertiesof Tl., operators.Invert-
ibility andleft invertibility (andright invertibility, by duality) arefurther studied
in Chapterd. We startfrom thegeneralnoncausaltase:

Lemma2.2.1 LetU,Y beHilbert spacesw € R, ande > 0.

(al)LetE € TI(U,Y). ThenE*E > 0iff XE = | for someX € TI(Y,U).

(@2) LetE € Tlyu(U,Y). ThenE € GTly < E e GB(LA(R;U),L3(R;Y)).
bL)X,EcTly(CN&XE =1 = EX =1.

(CHEeTI(C") & E*E > 0 = E € GTI(C") & EE* >> 0.

(c2)Ee TI(U,C") & E*E > 0 = dimU < n(andE € GTl < dimU = n).
(c3)E € TI(U,Y) & E*E > 0 = dimU < dimY.



(c4)E € GTlyw(U,Y) = dimU =dimY.
(d)D € TICx(U,Y) & D''D! > ¢l forallt >0 = dimU < dimY.

By dimH we meanthe cardinality of an arbitraryHilbert basisof H. (E.g.,
dim#?(N) < dim/?(R); cf. LemmaB.3.16.) Naturally, alsothe shiftedversions
of the above resultshold; (e.g.,if someE € Tl,(U,Y) is coercie, thendimU <
dimY).

Proof: We use here Theorem2.1.2 and the separablecaseof Theorem
3.1.3(a)&(c) (both are known resultsin that extent). We take w = 0 w.l.o.g.
(seeRemark2.1.6).

(al)lf E*E > 0,thenX := (E*E) 1E* € TI(Y,U) andXE = |. Corversely
if XE = I, then

(u,E*Eu) = ||Eul|? > €|lul|?> forall ue L?R,U), (2.21)

wheree :=1/||X||> > 0,i.e.,E‘E > ¢l

(a2)“Only if” is trivial, soassumehatE € TIN GB(L%(R;U),L%(R;Y)).
ThenE~'t! = (t7'E)~! = (Br™!)~! = t'E~! for all t € R, hencethenE~! €
TI(Y,U).

(b) X,Z € L®(C™™) andX(it)Z(it) = | a.e.oniR, henceZ(it)X(it) = |
a.e.oniR.

(N.B. Thiswould not hold evenfor static(constantpperatorsf the Hilbert
spaceC" werereplacedoy aninfinite-dimensionabne.)

(c1) Take X := (E*E)~'E anduse(b).

(c2) U is separablesince E*D is densein L?(R;U) for ary D densein
L2(R;C") (becauseE* is onto). By Theorem3.1.3, Ee LgtrondiR: B(U))
and E*E > €l a.e.oniR. If it € iR is suchthat E(it)*E(it) > eI, then
E(it) € B(U,C") is coercie, hencedimU < n, by LemmaA.3.1(a4).

If dimU = n, then3E ! by (cl), otherwise]ﬁ(it) is coercve a.e.and
nowhereonto, henceit cant have aninverse.

Remark: ThereareE, X € B(L?(U),L?(C")) for s.t. E*E > 0, X*X > 0,
E € GB(L?U),L%C") andX is not onto, by LemmaB.3.16, for ary n €
{1,2,3,...} andary separablé&). Thereforetime-invariances notsuperfluous
in (b)—(c4).

(c3) By (c2), we may assumehatdimY is infinite, sothatdimL?(R;Y) =
dimY, by LemmaB.3.16. By LemmaA.3.1(a4),the coercvity of E implies
that dimL?(R;U) < dimL?(R;Y). ConsequentlydimU < dimL?(R;U) <
dimL?(R;Y) = dimY.

(c4)Now E*E > 0 andEE" > 0, hencedimU = dimY, by (c3).

(d) By LemmaZ2.2.4(a),we have D*D > €l on C{,, wherew > 0 is s.t.
D € TIC. ConsequentlydimU < dimY, by LemmaA.3.1(a4) O

For ary E € Tl, we denotebelon the Toeplitz operator(or WienerHopf
operaton, Em,. of E by Tg.

Lemma 2.2.2(Toeplitz operators) Let E € TI(U) and XY € TIC(U). Then
Tg = T, andthefollowingis true:



(al)If T isinvertible thensoare E, T and Tt E971_.

(a2) Tx isinvertibleiff X € GTIC.

(b) LetX)Y € GTIC(U). ThenTg invertibleiff Ty-gx is invertible
(c1)If E € GTI, thenfollowing are equivalent:

() Tg isinvertible;

(i) T_E~11_ isinvertible;

(i) Er, +710 € GB(L?);

(iv) ,E+T1 € GB(L?);

(V) Re(E#{ u, u) > 8||ul|3 for all u € L2 for some# € GB(1.L?) andsome
6> 0.

(c2) (“No equalizing vectors” condition) Let E € MTIX'(C"), ne N. If
E € GTI (i.e., detE(ir) # 0 for all r € RU {o}), thenTg is invertible iff
Ker(Tg) = {0}.

(d)WehaveE > 0« T > 0; in particular, E > Oimpliesthat Tg is invertible

See[DS] for further equialentconditionsfor the invertibility of E (andthe
existenceof anon-Tl spectrafactorization)n amoregeneralnon-TI) setting.
Proof: (In thelemma,“L %" denoted 2(R,;U).)

(al) By Lemmad4.4 of [S98c],theinvertibility of T impliesthatof E. (The
conversedoesnothold: 1(1) € GTI but Ty is notonto.)

Let Tg beinvertible. Becausert, = 11,, we have (T Emy )* = iy E my,;
henceT]E*l =Tg". Moreover, K9 = Amn, E*rt. A impliesthe invertibility
of B4 (onTr_L3).

(@2)If X € gTIC, thenXm,. = 1, Xty + 1 X, = 11, X114, by causality
hencethen

X X = XX ==l = Xm XUt (2.22)
Corversely if . Xm, = X, is invertible, thenX € GTI, by (al), and
1, L% = X L?, hencethen X~1m, L? = XX L2 = m, L?, ie, X1 is
causal.
(b) Now Tx and Ty+ areinvertible, by (a2), so the claim follows from

equation
Tyex =TLY'EXm, =Y EnXmn =Ty:TgTx. (2.23)
(c1) (N.B. (v) holdsiff (EH ) 4+ (EH )* > 0.)
Claims(iii) and(iv) areequvalentto (i) by equations

Er, O E Ert_
EEE TL], n+1E+m:[”+O”+ ”+TL } (2.24)

(onL? =1, L? x 1_L?), respectiely. Multiply the formerto the left by E-1
to obtain T + E 17 to obtain the equivalence“(iii) <(ii)”. Equivalence
“(i) < (v)” is [DS, Theorem3] combinedwith (al).

Em+m:[



(c2) (Nonzeroelementof Ker(Tg) arecalledequalizingvectors.This “No
equalizingvectors”conditionwasestablishedor rationaltransferfunctionsin
[Meinsma].)

This proved in [IZ01] (seealso Theorem4.1.1(a)(i)&(Vv’)). (“Only if”
is trivial, “if 7 follows by noting that the middle elementof the standard
factorizationof E (seeTheoremll.6.3 of [CG81]) mustbe constant.)

Remark:lt is not possibleto extendthis resultto anarbitraryHilbert space
H in placeof C" by usingclassicalfactorizationresults(collectedin Theorem
5.1.6).(And we do notknow whethersuchanextensionis true.)

Indeed, Theorem5.1.6(a) requiresthe additional assumptionthat Ty is
a Fredholmoperator(note that for self-adjointE, this additionalassumption
togetherwith Ker(Tg) = {0} is equivalentto the invertibility of Ty for ary
E =E* € Tl, notmerelyfor E € GMTI '-1, by LemmaA.3.1(c7)&(c2)(ii)).

(d) Thisis Lemma4.4 of [S98c]. O

Lemma2.2.3(GTIC) LetX e TI(U). Thenthefollowing are equivalent:

(i) X € GTIC;

(i) x4 € GTIC;

(iii) X € TIC and T, X, isinvertibleon T, L?;

(iv) X € GB(L?) andXm, L2 =T, L?;

(V)X € GB(L?) andX*m L2 =1 L?

(vi) X € TIC, X*X > 0 and 1, Xt X* 11, > 0 on T, L2
(vi)) X € TIC, XX* > 0 and T_X* T X1 > 0onTr_L2,

If dimU < o, thenone more equivalentconditionis that 1, X, X*1t, > 0;
equivalentlywe mayacceptright invertibility in (iii).

SeealsoProposition2.2.5andTheorend.1.1(b).

Proof: 1° Theequivalence:Because&X € TIC = XY e TIC, we obviously
have “(i) < (ii)”. Theequvalence’(i) < (vi)<(vii)” is Lemma4.11of [S98c],
and“(i) <(iii)” isLemma2.2.2(a2).

“()<(iv)": Clearly (i) and(iii) imply (iv) and(iv) implies(iii).

“(i)) < (v)™: Apply “(i) & (iv)” to X9 € GB(L?) to obtain

Xde GTIC & m L% =X, L2 = axam L2 = ax*n_ L2 (2.25)

2° CasedimU < oo: If mXmX*. > 0, then thereis € > 0 s.t.
[ T8t 4-00) X Tt 4 eoyUl| > €| [t, +00)u]| fOr u € L2 andt = 0. By time-invariance,
this holds for all t € R; by continuity, [|X*ul| > ¢||ul| for all u € L2 If
dimU < o, thenX* € GTI, by Lemma2.2.1(a)&(b),hencethen(vi) holds.The
corverseis trivial. (Ourfavorite counterexampleX =11 € TICN GTI\ GTIC
showsthatleft-invertibility is notsufficient.) O



Lemma 2.2.4(D*DF > &l = D*D > el)

(@) If >0, Dy € TIC,(U, %) (k=1,2,3,4) andD} "D}, > D™D, for all t > 0,
then

D1 (s)*Dy(s) > D3(s)*Da(s)  (Res> w). (2.26)
(b) If Dk € TIC(U, %) (k= 1,2,3,4), thenthefollowing are equivalent:

(i) D} "D, > D™D, forall t > O;

(i) H[,t’o)]D)iH[,t,o)Dz'lT[,t’o) > ﬁ[,t’o)DgT[[,t,o)D4T[[,t,0) forall t > 0;

iy D4'DY"" > DYDY forall t > O;

(iv) DTt Dort > T DETL_Dy11

(v) DY, Dy > DY, DY,
If (i)—(v) hold, thenTt, D} Do 1ty > T, DEDL T and (2.26) holds.

(©If0<JeB(Y),0<SeB(U)andD € TIC(U,Y), thenthefollowing are

equivalent:

(i) D"ID' < oy Sforall t > 0;

(i) Tl'[_t’o)]D)* n[—t,O)JDT[[—t,O) < T[[_t,o)SfOI' allt <0;

(iiiy (DHLI(DY)" < 1o, Sfor all t > 0;

(v) T D' JDr. <1 S

(V) ;D" by, < .S
RecallthatP > Q meanghatP = P*, Q = Q* and(u, Pu) > (u, Qu) for all u.
We do not know whether(b)(i)—(v) is implied by (2.26).

Proof: Whenproving (a) and(b), we assumehatDs = 0= D4 w.l.0.g.(use

substitutiond; — [&} andD, — [%J).

(@) Let se Cf; andug € U begiven. Setu:=€e’up € Lﬁ,c. Thenttu €
L2NL2, hencert Dyu € L2(R_;Y) C L2(R_;Y) (k=1,2). By Lemma2.1.15,
we have that (D u) (t) = e¥Dx (S)Up (t € R). By time-invariance,

0
0< (Djt 'y, Dbt ') :/ (D1TY_¢ 0)U, DTy gy Ut (t > 0). (2.27)

—00

Now Ty T _e, 1)U — 0in L2, hencein L? too, ast — 4. Thereforewe
canlett — +oo to obtainthat0 < (I (S)uo, D2 (S)uo) /2, €2 Resdt. Becausely
wasarbitrary we have 0 < Dy (s)*Ds (s).

(b) 2° (i)—(iii): Equivalence(i) < (ii)” followsfrom time-invariancegapply
1t andt! to differentsidesof the inequality),“(ii) < (iii)” and“(iv)<(v)” by
reflection(apply A to both sides),andthe implication “(iv)=-(ii)” by adding
Ti_ ) to bothsidesof theinequalityin (iv),

2° (i) =(iv): Assume(ii). Forarny u€ L2(R_;U) andt > 0, we have

0 < (D11t 0)U, Tt 0) D2t 0)U) = (D1 U, TLD2U) — (T{ _oo 1y D1U, TL D2 T 1))
(2.28)



By Corollary B.3.8, (D1Ty_et)U, TT-D2Ty_o1)U) — 0 as t — +o, hence
(Dru,Douy = (DU, TL_Do1T_U) is real and nonn@ative. The secondimpli-
cationis obtainedanalogouslybecauset_; oD T0_t g)D2TT_¢ ) > 0).

3° ()= m:DiDomy > 0: Lett — +oo (asin 2°).

(c) We prove belaw theimplication“(v) =-(i)". Therestof (c) follows from
(b) by settingD; =1, Dy = S, D3 = D, Dy = JD.

Assume(v). Then

T, S> D JDm, = DI + 1 DT ) JD (2.29)

hencert, S> D' *JD*, hence(i) holds.

(We do not have (v)=(i) for J,S< 0 in general.E.g.,if D = (T )N €
TIC(£3(N)), thent, D*r, Drt,. = 7ty but (U, DD i) = 0 < (U, Ty Uiy = 1
for uc=Xppne, t>k=>1) 0

By the above lemma(and LemmaZ2.2.3), we have “X ! € TIC = X*X >
el”, but the corverserequiresa Tauberiancondition. Five suchconditionsare
presentedbelow:

Proposition2.2.5X*X > el = X1 € TIC) Letwe R andX € TIC (U, Y) for
all > w. If (X)*X > €2l onCy, (or Xt*Xt > €2| Tioy) for all t > 0) for somee > 0,
andany of conditions(1)—(5) belowholds,thenX € GTIC«(U,Y), X1 € TIC,,
X1 ||11c,, < €L, anddimU = dimY.

(1) X e GTIC;

(2) X e GTlyy (or XM = | for someM € Tly) for somew > w;
(3) dimU = dimY < oo;

(4) [Xx] € GTICx(U xW,Y x Z), anddimW < co;

(5) X(so) € GBor X(so) is ontoor Ker(f&(so)*) = {0} for somesy € Cg;; (for
uniformlyregular X weallow sy = +).

If X € TIC, and XI*xt > szln[o,t) for all t > 0, thenalso the sixth condition
XX* > OimpliesthatX € GTIC(U,Y).

(Note that (1)—(5) are not superfluous:if dimU = o, thenthereis X = X €
B(U) s.t. X is left-invertible but not right-invertible.)
Recallthatif X € TIC, thenX € TICy for all &/ > w.
For w = 0, Proposition4.1.7(B)&(C) provide us with several sufficient
conditionsfor (X)*X > €2I.
Proof: (We take w=0w.l.0.g.) R
From(2.26)weobserethatif X!"X' > e2Imq, forallt > 0, thenX*X > g?I
onC™,
The last claim follows from Lemma 2.2.4(b)()&(v) and Lemma
2.2.3(vii)&(i). R R
Clearly X (see Theorem2.1.2) has the left-inverse T = (X*X)~1X* ¢
Go(CH;B(Y,U)) on C*, i.e., TX =1 on C*. Moreover, ||T(s)|| < ! for



all se C*, by LemmaA.3.1(c1)(1). If X(so) € GB for somesy € CT, then
X(s0) "t = T(s0).

Thus, we only have to shov that X hasan inverseon C*, i.e., that T
is also a right inverse of X, becauseX‘1 is necessarilyholomorphic, by
LemmaD.1.2(b2), henceX-1 =T e H* =TI (anddimU = dimY, by Lemma
2.2.1(c4)).Theinvertibility proof depend®nthe extraassumption:

(1) By definitions,(1) implies(2). R

(2) BecauseT,X € G(w +iR;B(U)), we have X € GTly iff X €
GG(W +iR;B(V)), by Theorem3.1.3(d). Therefore,(2) implies (5) (note
that T is the transformof a left inverseof X € Tl,y, hencethe existenceof a
rightinverseM is equialentto theinvertibility of X in Tly).

(3) dimU = dimY < » impliesthatary left inverseof X(s) (henceT (s)) is
aninverse by LemmaA.1.1(cl).

(4) (The assumptionsneanthat thereare Y,Z,W € TIC s.t. [ ¥ ] €
GTIC(U xW,Y x Z) anddimW < c.)

By LemmaA.1.1(cl),the left-invertibility of X impliesthe invertibility of

X onCg.
(5) By theuniquenessf the B(U,Y) inversewe have
E:={seCt|X(9T(s) =1} = {se C*|X(s) € GB(U,Y)}, (2.30)

andthelattersetis open,by Lemma6.3.2(d).On the otherhand, X(s)T(s) = |
holdsin aclosedsubsebf C*. Now the connectednessf C* andthefactthat
E # 0 (becausey € E) imply thatE = C* (if sp = +o andX is UR, thenX(s)
isinvertiblefor big s€ R, by LemmaA.3.3(A2)).

Remark:If U = #?(N) C Y andX is theright shift =1 € B(U), thenthe
assumptiongexcept(1)—(5))aresatisfiedandyetX ¢ GTICo. O

Corollary 2.2.6(Xt*X! > &l = 3X1 € TIC) AssumehatX € TIC.,(U,Y), w>
0,&>0andX!"X! > eIy, forall t > 0.

If any of (1)—(5) of Proposition2.2.5holds,thenX € GTIC.(U,Y), X~! €
TIC, |IX7Y|ltic < e~ anddimU = dimY.

Proof: From (2.26)we obserethatX*X > €2l onC*. Thus,X € GTICw,
by Proposition2.2.5. Moreover, £ gy > ((X~1)1)*(X1)! for all t > 0,
hence||X1||tic < &%, by Lemma2.1.14.

(Again the right shift is a “counterexample” shaving that (1)—(5) are not
superfluous.) O

If X € GTIC(U,Y) is exponentiallystable thensois X~1; morewer, if X is
generatedby anexponentiallystablemeasurethensois its inverse:

Lemma2.2.7(GTICNTle = GTICep) Let X € GTIC(U,Y) N TI_(U,Y),
whee r > 0. Then,for somee > 0, we haveX~! € TIC ¢(Y,U); thus,X €
GTIC_(U,Y)NTIC_ (U,Y).



If X e GTIC(U,Y)N A +(U,Y), whee A C TIC is inverse-closed(as in
Theoem4.1.1(g))thenX € GA_¢(U,Y)NnA4_,(U,Y) for somee > 0.

Here 4 may be MTIC or ary other inverse-closedsubclassof TIC, by
Theorend.1.1(b).

Proof: (We use here Theorem4.1.1, but this lemmais not usedbefore
Chapters.)

Let M := || X~1||~. By LemmaD.1.8(c),thereis £ > 0 s.t. ||X( +iy)
X(0+iy)]| < 1/2M when |t| < € andy € R. ConsequentlyX(t + iy)~
exists and its norm is lessthan 2M for sucht andy; in particular X1
H®(C_g; B(Y,U)), henceX~1 € TI_¢(Y,U), by Theoren?2.1.2.
Thefinal claimfollows from thefactthat g?Ls isinverse-closeth TIC _¢,
i.e.,thatd N GTIC ¢ = GA ¢, by Theoremd.1.1(gl). 0

AN

€

Local causalnvertibility is equivalentto globalcausainvertibility:

Lemma2.2.8(X! € GB <« X € GTIC,) LetX e TIC,(U,Y)and—w <a<b<
. ThenX € GTIC iff Tja ) X, p) isinvertibleon n[a,b)Lz.
If X € GTIC., thenthelatter inverseis T, ) X 1, ).

__ However, beinginvertiblein a specificTIC,, is a strongercondition. E.g., if
X(s) := (s—1)/(s+1), thenX € TIC(C) for ary w > —1, but X~ € TIC,, for
w> 1only, henceX € TICN GTIC. \ GTIC.

Proof: Thelatterclaimis obviousandtheformeronefollowsfrom Theorem
6.1.9(v)&(v) of [Sbook], but we give hereanalternatve proof.

SetT := b—a. Take arealizationof X andtransformit into a wpls asin
Theorem13.4.4. Becausehe transformatiormapsTIC. — tic. throughan
isomorphismwhich is alsoan algebraicisomorphismby Theorem13.4.5(b),
it follows from Lemma13.1.7thatX is invertible iff X4 := 150 1)X110 1) (the
I/O operatorof thewpls)is invertible.

By time-invariancethe invertibility of 1o )Xo 1) is equivalentto the
invertibility of g, 5 X, p) . O

Notes

It would beinterestingo know whether(2.26)with w = 0 is sufficientfor (i)—
(v) of Lemma2.2.4(b)(it is necessaryby (a)) whenw = 0; our guesss thatthe
answelris negatve — unfortunately because positive answerwould provide us
with severaladditionalequialentconditionsin CoronaTheoremsgt.1.6and4.1.7.
SeealsoLemma4.1.10.

Conditions(3) and(5) of Proposition2.2.5wereusedin a preprintof [S98d].
Lemma2.2.1(b)andthe case4 = TIC of Lemmaz2.2.7 arefrom [Sbook]. Most
of LemmaZ2.2.4is from Section6 of [S98c]. Also (at least)Lemma2.2.8and
partsof Lemmas2.2.2and2.2.3areknown, asexplainedin their proofs. Lemma
2.2.1(c3)is oneof the maincontribtutionsof this section.



2.3 Static operators

Eppursi muove!
— GalileoGalilei (1564-1642)1633

In this section,we shallpresenfive important(andapparentlynew) technical
lemmaghatwill beusedin connectiorwith (J, S)-innerfactorizationandRiccati
equations.Most of the lemmasgive somesufficient resultsfor an operatorto be
static.

If E=E* € TI(U), thent Er = 0 impliesthatt_Em;. = (. Em)* =0,
sothatthenE is static,i.e.,E € B(U), by Lemma2.1.7. We now prove a similar
claimfor “E = D*JD” whenD € TIC,(U,Y) is only requiredto bealmoststable
(DLZ C L?), sothatE neednot be definedatall:

Lemma2.3.1(D*ID=9) LetD € TIC»(U,Y) andJ = J* € B(Y). Assumehat
Du € L? (cf. Lemma2.1.13)and (D, v, JDr_u) = 0 for all u,v € L2. Thenthere
is auniqueS= S € B(U) s.t.(Dv,JDu) = (v, Su) for all u,v € L2.

Note thatfor D € TIC the term D*JD would be well definedand hencethe
proof of thelemmawould besimple.

Proof: In thesequelve shallusethefactthatif u € L2 . and(v,u)= O for all
ve L2 (orfor allve ¢), thenu= 0 (a.e.),by TheoremB.3.11. Thisimplies,
thatSis unique.

Replaceu by ttu to obtainthat (DTt o)V, JDTY_e, 1y U) = O for all u,v € L2,
Becausdl = J*, we have (DTY _, ¢V, JDTGs o) U) = O for all u,v € L2, hence

(DV, ID TG Uy = (D) v, IDTGg Uy (UE LZ, —o0 <S<t < 4o0).  (2.31)

SetSt := (DM_y )" IDM_¢ ) € B(LA([t,t);U)) (t > 0). Then(v,S) =
(Dv,JDu) for u,v € T L%, hencefor u e m_yL? andv € LZ, by (2.31).
ConsequentlyStu=Siu e n[,t,t)LZ for all T > t, sowe candefineSu:= Siu

(u e L?([—t,t);U)) (for anarbitraryt > 0).
It followsthatS : L2 — LZ, TS = ST, andSt = ST_7 1. Therefore,

ISu3=1'y STy TP = 5 STy TP = $ (ST _g,0T"]?
2T STy 2 151 2 8T
(2.32)
< ISallzzll %H"[l,l)T"UIlz = [ISall(L?)]lul? (2.33)
ne

for u € L. ConsequentlyS canbe extendedto a B(L?) mapthatis TI. From
(2.31)it followsthatm, STt_ = 0= 1L_ST114, henceS € B(U), by Lemma2.1.7.
Obviously, S = S*. O

LetD € TICw. If Tt; DI = 0, thenD is static. In fact, insteadof . Drr it
sufficesto obsere thatmyg) Dry_c o) = O for afixede > O:

Lemma2.3.2 LetD € TICw (U, Y), and 1oy Dr_¢ ) = 0 for somee > 0 andall
t > 0. ThenD € B(U,Y).



Proof: Obviously, i, D1_¢ o) = 0. Thus,
T DI_peg) =0 (2.34)
holdsfor n= 1. Assumenow that(2.34)holdsfor n=N € 1+ N. Then
DT (14 1)e,—ng) = T Tle o) TDTT_pe (1)) T~ = 0. (2.35)
By induction,r. D = 0, henceD € B, by Lemma2.1.7. O

If X,Z € TIC,, andX* = Z, thenX is static. Oftenit is easierto verify that
o) X" o) = Thoy) ZToy) for all t; eventhisis sufficient:

Lemma2.3.3 LetX,Z € TIC, andX! = Z for all t > 0. ThenX = Z* € B.

RecallthatX! := 1) X1g,) € B(L?) (for ary X € TIC.).
Proof: Lete > 0. Now X't ¢ =14 ¢ XT_¢; ), hence

Tot—e)XT_¢.0) = Tot—e) X T *T_g 0) = Mot T°Z T Mg  (2.36)
=Tt ¢ Z T_¢0 =0, (t>¢). (2.37)

henceX :=X € B, by 1°. By time-invariancery_ ( Z1i_ 1) = T{_ ny X*T{_¢ 1) =
T_¢ 1y X* (t > €), henceZ = X*, by continuityon somel 2, O

If JD is staticfor somestaticJ, thenJD = JD for somestaticD, atleastto
someextent:

Lemma2.3.4 LetD € TIC,(U,Y), J € B(Y,H). If JID € B(U,H), thenD =
[Bﬂ € TICa(U, Y1 x Y2), wher Y = Y5, Y5 := Ker(J). Moreover, JD = J[4].

Assumegin addition, that D € GTIC,. Thenther is D € GB(U,Y) s.t.
JD = JD. If Y = H, thenwe can, in addition, require that D'*JD' = D*JDqy)
forallt > 0.

Proof: 1° Let P is be orthogonalprojectionY — Y1, and setD; := PD,
Dy = (I —P)D. Now JD; =JD € B(U,H), henceJD, is constantbecause
is one-to-oneon Yy, D1 := Dy € B(U, Y1).

2° Let D € GTIC». ThenD is onto, henceD; is onto, henceD; is
onto henceD} € GB(Y1,U1), whereU; = Ran(D}) = Ker(D1)+, by Lemma
A.3.1(c1)(iii)&(X)&(c7).

Consequently E := Dl‘U1 € GB(U1,Y1), hence D = [Dgl D‘gz} €
gT|Coo(U1 X U2,Y1 X Yz), WhereU2 = Uf‘, Doy = DzQ, Doy = D2(| — Q),
andQ is theorthogonalprojectionU — Uj.

Thus, Dyp € GTIC,(Uz,Y2), by LemmaA.1.1(b2)(1), hencedimU; =
dimYz, by Lemma2.2.1(c4),hence GB(Uz,Y2) containssomeoperatorF.
ConsequentlyD = [§ 2] € GB(U,Y),ID=IPD=J[58] =3 [}] =D =
JD.

3° CaseY = H: Apply 2° for M := [3.] € B(Y,Y?). ThenMD = MD for
someD € GB(U,Y), hencelD = JD andD*J = (J*D)* = D*J. Consequently
DDt = ]D)I*JDTE[O’t) = D*JIDTpy (t > 0). O



We finish the sectionwith a technicalremarkthat will allow us to prove
certainuniquenessesults(modulo a unit E € GB) on the signatureoperators
of optimizationproblemsandRiccatiequations:

Lemma2.3.5X*SX! =ZV"TZY) Let X,Z € GTIC.(U), ST € B(U) and
XSt =zZUTZ forallt > 0. ThenS=E*TE, SX=SE1Z,andS'X = S'E1Z
for someE € GB(U).

In particular if Ker(S) = {0} or Ker(S*) = {0} (i.e., Sis one-to-oneor onto),
thenX =E1Z. B

Proof: SetR := XZ~! € GTIC,(U), S:= [&],T := [{.] € B(U,U?).

ThenSR' = R *T for all t > 0 (the secondrow of the equationis the adjoint
of thefirst one),hencel := SR=R*T € B(U), by Lemma2.3.3.

By Lemma 2.3.4, we have Tt[o’t):l'v = RF'SRt = R*§Fa'[[0’t) for some

Re GB(U), henceT = R"SR. SetE := R! to obtain S= E*TE. Fi-

nally, SX = SRZ = SRZ, andS'X = S‘RZ = S'RZ. O

Notes
The above resultsareapparentlynev. Theorem5.2Cof [RR] (casew = 0 of
Lemma2.1.7)is theonly known (to us)resultin this direction.



2.4 The signature operator S

To seea World in a grain of sand,
AndaHeavenin a wild flower

Hold Infinity in the palmof your hand,
AndEternityin anhour.

— William Blake (1757-1827)

The signatureoperatorof a control problemis a staticoperatorthatdescribes
the definitenes®f the problemw.r.t. the input. E.g.,in minimization problems,
the cost(to be minimized)is usuallygreaterthane||u||f2 for somee > 0, where
u: Ry — U is the control input. In suchproblems,the signatureoperatorS is
uniformly positive (S>> 0), whereasn indefinitecontrol problemsSis indefinite
(but yet self-adjointand invertible if the problem satisfiesstandardcoercvity
assumptions).

In this section,we shall seehow to write anoperatorS= S* € GB(U x W)
or an operatorS:=E* [ 9]E, E € GTI, in the form S=E* [} 4] E for
someE € GB; we also give somefurther resultson the positive and negative
eigenspacesf self-adjointoperators. In Section2.3, we have derived further
similar results.

In Chapters8—11,theresultsof this andthe previoussectionwill beappliedto
the signatureoperatorsof optimizationproblems,Riccati equationsandspectral
factorization.

As before symbolsH,U,W,Y, Hy, Yk (k € N) denoteHilbert space®f arbitrary
dimensions.

Lemma2.4.1 Definedy = [ %] € B(H1 x Hz) anddy = [{ 4] € B(V1 x Vo).
Thefollowing are equivalent:

() dimH; < dimY; anddimH, < dimYs,,
(i) Jy =V*IyV for someV € B(H1 x Ha, Y1 X Y2),
(i) Iy = V*IV for someV € TI(H1 x Ha, Y1 X Y2).

Proof: 1° “(i)=(ii)": By LemmaA.3.1(a4)(iii), thereare Ty € B(Hy, Yk)

satisfying T Tx = Iy, (k= 1,2). Take V = [Bl %} to obtain V*JV =
Tj_OTl 7T(2)*T2 — \]H-

2° (i) =(iii)": Trivial, becauseB C TI.

3 “(iii) =(@): Define T := [}] € B(Hi,Hi x H) and [Xg] = V.
From Jy = V'V = VIV; — V5V, we get 0 < Iy, = T*IHT =
(ViT)*(V1T) — (V2T)*(V2T), hence(V1T)*(V1T) > 0, sodimY; > dimHj,
by Lemma 2.2.1(c3), becauseV;T € Tlw(H1,Y1). Similarly, by setting
T := [?] € B(Hz,H1 x Hp), we getdimY; > dimHa. O

When we requireV or V to be invertible, the inequalitiesin (i) become
equalities:



Corollary 2.4.2 Definedy = [} 4] € B(HixHz) anddy = [{ 9] € B(Y1 x Y2).
Thefollowing are equivalent:

(i) dimH1 = dimY; anddimH, = dimYa,
(i) Iy = V*JyV for someV € GB(Hy x Ha, Y1 x Yz),
(i) v = V* IV for someV € GTI(H1 x Ha,Y1 X Y2).

Proof: 1° “(i)=-(ii)": This follows as in Lemma 2.4.1, with Lemma
A.3.1(a5)(iii).

2° “(if) =(ii)": Trivial, becauseg B C GTI.

3° “(iii) =()": This follows from Lemma 2.4.1, becausenow also
=V H IV O

Lemma 2.4.3 Lemma2.4.1and Corollary 2.4.2alsohold with Sin placeof Jy if
S=E*J4E for someE € GB. 0

(Thisis obvious,sinceJy = E*SE 1)
Any self-adjointoperatoron H canbe written in the form E* [(') _Ol} E w.rt.
somedecompositiorof H:

Lemma2.4.4Llet S=S € B(H). ThenH = H; ®H_ s.t. H_ = H{ and
S=E*J}E for someE € B(H).
If S= S € GB(H), thenwecanhaveE € GB(H) above

HereJ; := [} 7|]H =Py —P_ € GB(H), whereP.. aretheorthogonal

projectionsof H ontoH.. (henceP_ = Pi), hencely = J; = Jl_l.
(In fact, condition J; = J; = J; ! is equivalentto the fact that henceJ; =
[6 9] € GB(H; x H_) for someclosedsubspace$i; andH_ = H{ of H,
sinceit impliesthato(J;) C {—1,1}, andthatwe canlet H, andH_ to bethe
eigenspacefor 1 and—1, by Theoremsl2.26and12.290f [Rud73].)
Proof of Lemma 2.4.4: Apply

500 §7%0 o
[So* 0 9] I B [0| 0 ] diagSY2,0,(-S )¥/?) (2.38)
00S 0 0(-S)w2| 00—
to LemmaA.3.2(f1) to obserethat
P

E = diagSY?,0,(-S.)¥2) | R [ ] € B(H) (2.39)
will do in this lemma. If Hp := Ker(S) = {0}, thenthe middle row canbe
omitted;if Se GB, thenS/? € GB(H.), sothatthenE € GB(H). 0

Now we are readyfor the main result (along with Corollary 2.4.2) of this
section:
Theorem2.4.5 Let U*J,U = Se B(U xW) with U € GTI(U xW) and J, :=
[(') 734 € B(U xW), y,¥ > 0. ThenS= E*J,E for someE € GB(U x W).



Note thathereJy := Ry — (\/)ZRN is definedby U andW, wheread_emma
2.4.4would only provide us with an analogousesultfor some(“nonfixed”) H..
andH_ in placeof U andW.

Proof: ReplaceU by [, 9] U to getrid of y (so that S= U*J;U). Set
H:=UxXxW. Wehave S=S* € GTI(H) (becauses = U*J;U), henceS=
S € GB(H). Thus,S=T*J4, T for someT € GB(H,HL x H_), by Lemma
2.4.4.

Therefore, S = U*J;U implies Jy, = T*)T, with T := UT ! ¢
GTI(H+ x H_,U xW). By Corollary2.4.2,34, = V*31V for someV € GB,
henceS=T*Jy, T = (VT)*IVT = E*J1E, whereE =VT € GB(H). O

By allowing U to be noninvertible, we getthe following variantof the above
theorem:

Lemma2.4.6 LetU*J,U=Se GBU xW)withUe TI(U xW,ZxY) andJy:=
(6] € BZxY),v.Y > 0. ThenS=E*3,E for someE € B(U xW,Zx ).

Proof: The proof is virtually that of Theorem2.4.5with LemmaZ2.4.1in
placeof Corollary2.4.2. 0

Notes

For separabléJ andW, Theorem2.4.5wasgivenin the proof of Lemma5.4
of [S98d]. Because¢hesymbolU of U neednotbewell-definedanywhereoniR in
theunseparableasethatproof cannotbegeneralizedin fact, Theorem3.1.3(al),
wherewe shav theexistenceof suchasymbol,seemgo beknownin theseparable
caseonly). Thisis why all Hilbert spacesvererequiredto beseparablén [S98d];
we shallremove this restrictionin Corollary11.4.9.



2.5 Losslessness

Butwhoshalldare

To measue lossandgainin thiswise?
Defeatmaybevictoryin disguise;
Thelowestebbis theturn of thetide.

— HenryWadsworth Longfellow (1807-1882)

In this section, we formulate both widely-usedforms of losslessnesand
establishtheir equivalencefor mapswith finite-dimensionalinput spaces. We
alsogive somenecessarand/orsufficient conditions.

The importanceof this conceptis basedon the fact that H* problemsare
solvableiff certainlosslessoprimefactorizationsxist, asshavn in [Green]and
extendedto WPLSsin Theoremsl1.2.7and12.3.6.

In state-spaceolutions,oneusuallyrelatesthe optimal controlto a nonnega-
tive stabilizingsolutionof the Riccatiequation.Sometime®nereplaceghe Ric-
catiequatiorby suitablecoprimeor spectrafactorizationof thel/O map;thenthe
nonngatiity conditionmustbe replacedy alosslessnessondition,cf. Lemma
9.8.14andTheorem6.5 of [S98c].

Definition 2.5.1 LetJ =J* € B(Y), S=S € B(U) andN € TIC(U,Y). The
operator N is (J,S)-losslessff N*JN = SandN*1_JN < 1t_S. Theopermator N is
frequeng-domain(J, S)-losslessff N*JN = SandN(s)*IN(s) < Sforse C*.

The (time-domain)losslessnessnplies frequeng-domain losslessnessyy
Lemma2.5.2.For dimU <  alsothe cornverseholds,by Proposition2.5.4.

Both the time-domainand the frequeng-domainconcepthave beenwidely
used(underthe name“lossless”)in the studyof H* problems;see,e.g.,[BH88]
for losslessnesand[Green]for frequeng-domainlosslessness.

Onecaninterpretiosslessnesss“no enegy is producechorlostin thesystem,
but someenegy may be delayed”,if J =1 =S but we usuallytake J=J; =S

(Jy = [g _Szl], Y € R), which implies the sameconclusionon N,, wherethe

directionof the secondnput andoutputsignalshave beenreversedseethe proof
of Lemmaz2.5.3for details.

Thedelaymentionedaborve cannotbe negative (i.e.,theenepgy put out before
ary t > 0 cannotexceedthe enepgy putin beforethattime), because

N'T_JIN<S& ||Nu||J,L2([O,t];Y) < ”u”S,LZ([O,t};U) forall ue T[_|_|_2, t >0, (2.40)

where||ul|s = (u, Su), by Lemma2.2.4(b)(i)&(iv).
Section6 of [S98c]containssereralresultsonlosslessnessf stableoperators,
oneof themis givenbelow:

Lemma2.5.2 LetN e TIC(U,Y),Je B(Y) andSe B(U). If NTLIN < TS
thenN(s)*IN(s) < Sforallse C*.
Thus,losslessnesspliesfrequency-domaitosslessness. 0



(This follows from Lemma?2.2.4(b).) SeeProposition2.5.4for the corverse
undera Tauberiarcondition.
Next we give onemore“almostequialent” condition:

Lemma2.5.3 LetN € TIC(U xW,Y x W) andy,y > O.
If N*J)N = J, andNp, € GTIC(W), thenN is (Jy,Jy)-lossless.

Thecorverseis nottrue: N := [ 9] € TIC(U x W) is (3, J,)-losslesgfor ary
y,t > 0) but Ngzl ¢ TIC (cf. thelemmabelon). However, the corverseis truein
thefinite-dimensionatasepy Proposition2.5.4(1).

Proof: We assumehaty = 1=y (andreplaceN by [{ 0] [' V01j| in the
generatase) Wesethere[ 9 %] :=NandN, := [2¥] [§ T} (samesystem

with secondnputandoutputsignalsreversed})o clarify theproof. Fort=1 as
well asfor m= 1 we have

emzne @A H L TAl Y e
Q'm0 QTR STS +1 S*nT

< |rmQ ]R*TﬂR—i-l} S{ T 18 T*n']r] (2.42)
(Q*TQ—S*TS  Q*TR— S*NT | 0

¢ |RmQ-TTS R*T[R—']I‘*T{JI‘} = [o —J (2.43)

& NN < . (2.44)

Theinequalityin (2.44)holdsfor =1, by theassumptiolN*J;N = J;, hence
we have N*, N < | (from (2.41)).But N, (10, + 1 )N4 < | impliesthat

TN TN~ =1 — TN N~ 1 < T, (2.45)

hencert N*1t_J1Nr_ < 11_J;. O

By the abose lemma, we can establishthe Tauberiancorverse mentioned
above:

Proposition 2.5.4(Losslesss f.-d. lossless)Let N € TIC(U x W, Y x W) and
v,Y > 0. Assumehat (1), (2) or (3) holds,whee

(1) dimW < oo;

(2) sz(so) € GB for somesy € C* (for uniformly regular N we allow for
S = +m);

(3)dimU < o andN = [Pt P21 X1 whee D11, D12, X, X1 € TIC;

ThenN is (J, Jy)-losslessff N is frequency-domaifJy, Jy )-lossless.
Moreover, if N is (Jy, Jy)-losslessthenN,; € GTIC and NN < Y.

One could easily extend the equivalencefor more generalJ and S by a
coordinateransformof their positive andnegative eigenspacesee. £.g.,L.emma
2.4.4),but J, andJy satisfyour needs.



Note that this implies that alsothe correspondingliscretetime resultholds,
by Corollary13.2.4.

Proof: 1° CaseN f.-d. lossless: Let N be frequeng-domain (Jy,Jy)-
lossless.The right-bottomcornerof the frequeng-domainlosslessnessqua-
tion N(s)*3,N(s) < Jy for all se C* shawsthaty?Nj,Npp > Ni,Nip Y21 >0
onC™, soNp,; € GTIC, by Proposition2.2.5(useits (4) for (3) above). Conse-
quently N is (Jy, Jy)-losslesshby Lemma2.5.3.

2° CaseN lossless: By Lemma 2.5.2 losslessnesamplies frequeng-
domainlosslessnesghe cornversewasprovedin 1°. By this and1°, we have
N22 € GTIC in eithercase sofrom the equation

NioNi2 — VPNjNop = v (2.46)
(thisis the (2,2)-block of N*J,N = J,) we getthat|| NN, || <y, by Lemma
A.3.1(e2). 0

We now summarizesomeof the abore resultsto a conditionthatis neededor
H® problems:

Corollary 2.5.5 LetN € TIC(U1 x U2, Y x Uz) andy,y > 0. Thenthe following
are equivalent:

() Nis (Jy,Jy)-losslessand Nz, € GTIC«(Uy);
(i) N is frequency-domaify, Jy)-losslessand Ny, € GTIC,(U2);
(i) N*JN = Jy andNzz € GTIC(Uy). O

(Thisfollows from Proposition2.5.4(2)andLemma2.5.3.)

Notes

In thefinite-dimensionatase JoseptBall andWilliam Helton (e.g.,[BH88])
have studiedlosslessness detailundera chain—scatterinfprmalism. Thereare
also (finite-dimensionalextensionsof this conceptto time-variantsystemgsee
[Gohbeg] or [LKS]) andto nonlinearsystemgsee[BH92]).

Losslessneswas adoptedto an infinite-dimensionakettingin [S98c], from
which Definition 2.5.1and2.5.2areadoptedn the samegeneralityashere. See
[S98c]for furtherresultsand[BH88] for furthernotionsof losslessnesandtheir
physicalinterpretations.

We believe that losslessnesss strictly strongerthanfrequeng-domainloss-
lessness.However, it remainsan open problemto prove this or the converse.
This problemlies closeto that of the possiblecorverseso Lemma?2.2.4(a)and
Propositiod.1.7(C);seealsoLemma2.2.4(b)(i)&(iv).



2.6 MTI and its subclasses

Accoding to corventionthere is a sweetand a bitter, a hot and a
cold, and accoding to convention,there is an order. In truth, there
are atomsanda void.

— Democritug(460-370B.C.),400B.C.

In this sectionwe shalldefineMTI(U,Y) andCTI(U,Y) (“M” for measures
and “C” for continuity on iR U {}), which are subspacesf TI(U,Y), anda
numberof their subspacesWe alsolist their basicproperties.RecallthatU and
Y referto Hilbert space®f arbitrarydimensions.

The classMTI consistsof thoseelementsE € Tl that are of form (2.50),
thatis, a the convolution with a measureconsistingof a discretepart plus an
L1 part. Furtherregularity propertiesof this classarelistedin Proposition6.3.4,
andits spectraffactorizationpropertiesaretreatedin Chapter5 andsummarized
in Theoremb.2.7;seealsoSection8.4.

Whensolving several standardccontrol problemsin Part lll, we canshaw the
sufficiengy of classical’necessanandsufficient” conditions put theseconditions
arenot necessaryn general(cf. Examplel11.3.7). However, the spectralfactor
ization andregularity propertiesand algebraicpropertiesof MTI (seeTheorems
8.4.9and2.6.4)aremoreor lessthe sameasthoseof rationalfunctions. This al-
lows usto establishalsothe necessityof the conditionsmentionedabove provided
thatthel/O mapof the systembelonggo this class.

By regularity of a map D € TIC.(U,Y) we mean the existenceof the
“feedthroughoperator’D := D(+w) := lim;_, 1 D(r). The exactdefinitionand
the conceptsULR, UHPR, SLR and SHPR are formulatedin Definition 6.2.3
(seealsoProposition6.2.7),but the reademay skip theseconceptauntil they are
neededn laterchapters.

At this point it sufficesfor mostreadergust to have a glanceat Definition
2.6.3andTheorem2.6.4andproceedo the next chapter

By CTI(U,Y) we meanthe mapsE € TI(U,Y) that are inducedby some
E € C(iRU{e}; B(U,Y)) throughEu := Et for all u € L2(R;U) (thisis aspecial
caseof thesymbolsof Theorem3.1.3(al)):

Definition 2.6.1(CTIC) We sef CTIU,Y) := {E € TI|E € C(R U

{o};B(U,Y))} and CTIC(U,Y) := CTI(U,Y)NTIC(U,Y). We call CTIC
the (timedomain)half-planealgebra Moreover, we set

CTIC(U,Y) := {E € CTI|E(s) - E(w) € BC forall seiR}, (2.47)

CTICPC(U,Y) := CTIZ¢ N CTIC. (2.48)

We equip all these spaces with the TI norm (i.e, with the

B(L%(R;U),L%(R;Y)) opemator norm). If E € CTI, we call E := E() the
feedthrougloperatoof E.

2We equipiR U {eo}with its one-point-compactificatiotopology; equivalently, the topology
inducedby the topology of oD throughthe Cayley transform(this implies that“+ico = —je”).
Similarly, C*+ U {o}is equippedwith the one-point-compactificatiotopology, andthattopology
is inducedby thetopologyof D throughthe Cayley transform.



As above, we alwaysdenotethe “feedthrough”operatordy the sameletters
asthecorrespondind| operatorsFromLemmaz2.6.2we obsenre thatthe above
concepif feedthrougloperatorsoincideswith thatof Definition 6.2.3.

Oneeasilyverifiesthatall thefour spaceslefinedabove areclosedsubspaces
of Tl (becausehesetB( of compactseep. 871)linearmappingdgs closedin B,
by LemmaA.3.4(B1)).

We call the function @cayig : S+ (1—5)/(1+s) the Cayley transform It
mapsC* one-to-oneandontoD, andC* U {»} one-to-oneandontoD, andit is
theinverseof itself. SeeLemmal3.2.1for detalils.

Lemma 2.6.2 The spaceCTI(U,Y) consistsof thoseE € TI(U,Y), for which
s—Eo (Pc_:;ymy belongsto the set C(dD; B(U,Y)), equivalently for which E ¢
C(iR; B(U,Y)) andE hasthe samelimit at =ico.

The spaceCTIC(U,Y) consistsof thoseD € TIC(U,Y), for which s —
Do (pE;yIQ/ belongsto the (uniform)discalgebrac(D; B(U,Y)) NH(D; B(U,Y)),
equivalentlyCTIC = C(CT U {w}; B(U,Y))NH®(C*; B(U,Y)); athird equiva-
lent conditionis that D € CTIC iff D € ¢(CF;B(U,Y)) NH®(C*; B(U,Y)) and
D hasa uniform limit (on C™) atinfinity (i.e., D is uniformly half-plane-egular).

Moreover, D € CTICEC impliesthatD(s) — D € B for all s€ C+ U {o}.

Finally, if E € CTI(U,Y), thenE* = B* € CTI(U,Y).

Proof: 1° CTI: Theabove characterizationsf CTl areobviously equivalent
tothefactthatE € C(iRU{w}; B(U,Y)), whichin turnalwaysdefinesaT| map
(by, e.g.,Theorem3.1.3(a)).

2° CTIC: LetD € CTIC(U,Y). Let f € C(IRU{»};B(U,Y)) andF €
H®(C™*;B(U,Y)) be its Fourier and Laplace transforms,respectiely. By
[Rud73, Theorem11.30(b)], for eachA € Y* and up € U, thereis ga, €
L®(iR) s.t. AFup € H*(C™") is the P0|sson|ntegral Pr % gau(i-) [Lemma
D.1.8]. ConsequentlyZAD@uy = ga uO(puo oniR for ary @€ L2(R,), hence
OAu = \fug a.e.oniR.

It followsthatAFug = A(P; * f)up onC, still for arbitrary/A andug, hence
F(ir+-) =P« f(i-) onC™.

From LemmaD.1.8(a2)it now follows thatF(ir +t) = (B« f)(t) -D =
P« (f —D)(t) — 0 as|ir +t| — oo; in particular D € C(C+;8B(U,Y)) (and
in H*). Now the othertwo characterizationsf CTIC follow from this. (If
D € C(CF;B(U,Y))NH®(C*; B(U,Y)) is UHPR, thenD hasa uniform limit
as C+ 3 s (not necessarilyC* 5 s asfor UHPR) and |s| — o, by Lemma
6.3.6(a1),thus,then]13) is continuousat « t00.)

3° CTIC®C: Also this claim follows from the Poissorintegral formula (for
D-D).

4° E*: Theequation

[ (EEgydm= [ Ef.gyam= | ((Fg,dm  (249)
iR iR iR

shONsthat(IE* - @)GE L2(iR;U) is zeroa.e. by, e.g.,TheoremB.4.12,hence
E* is the uniqueL g;,nq function (equivalenceclass)correspondingo E* (see



Theorem3.1.3).Obviously, E* € C(iRU{eo}; B(Y,U)) = CTI(Y,U). 0

Giventhesystemx’ = Ax+ Bu, y = Cx+ Du, x(0) = 0, wehavey = f xu+Du,
wheref := Ce*B, providedthatA, B,C,D € B.

Evenfor somavhatunboundedA, B,C,D, themapD : u+— y is still of form
Du = pxu for ameasure consistingof aLIOC partplusafeedthroughi{Ddg, where
dp is theunit massat zero(the“delta function”)); thiswill be denotedby MTICL:,1
below. If we allow for delays,we endup with (2.50) or “the measuresvith no
continuoussingularpart”, MTIC .

The abore motivatesthe definitionbelov. For mostreadersit sufficesjustto
notethe definitionsof MTI, MTIC, MTICL and MTICgforS=TZ, T > 0and
thenproceedo theremarksbelow the definition:

Definition 2.6.3(MTI, MTl4, MTI '-1) We defineMTI(U,Y) to be the spaceof
opertors E € TI(U,Y) of theform Eu = (f + 35 Tk, ) *u (u € L%(R;U)),
ie.,

(Eu)(t z Teu(t —ty) +/ (t—r)u (2.50)

whee f € LY(R;B(U,Y)), Tx € B(U,Y) for all k, andthe MTI norm (“uniform
total variation norm”)

[Ellmrr = [ fllL2+ Z [Tkl (2.51)

is finite; here &+ := dp(- —t)* = 1(—t) is thedelayof timet € R.
For E € MTI of theaboveformandS C R weset

MiE:=fx, Ms(E):=() Td)* SupR(E) :={teR|NKyE#0}. (2.52)
tkeS

Thus,Mg is the projectionto the measue carried on S, and supp(E) is the
setof thenonzeo atomsof E.

By the Wienerclass(MTI Ll) MTIL we meanthe subspacef thoseE € MTI
for which supp(E) C {0}, and by the discretemeasureclassMTl 4 := NrMTI
the subspaceof thoseE € MTI for which the L! part is zeo (henceMTI =
MTlga (L1x)).

For thecausalversions(f = 1ty f andty > O for all k) of thesespacesyeadd
theletter C at theend:

MTIC := MTI N TIC, MTICL" := MTIL" A TIC, and MTIC4 = MTI4NTIC.
(2.53)
We defineMTI2¢(U,Y) ¢ MTI(U,Y) to bethesubspacef opertors of form
(2.50) s.t. f € LY(R,;BC(U,Y)) and Ty € BC(U,Y) for tx # 0, and we set
4%C .= 2nMTI2C when4 is any of the spaceslefinedabove
If SC R, wesetMTls = {E € MTI | supp(E) C S} and 4s := ANMTls
when4 is anyof the spaceglefinedabove
We defineMTl, (w € R) and its subspacegwith subscriptw) to be the



correspondingspacedor which

[Ellmmig, = €7 flli+ Y e Tullaw,y) <. (2.54)
keN
Finally, we definethe strongequivalentof MTI , andits subspaceby setting
SMTl,(U,Y) = B(U,MTI,(C,Y)), and analogously for any other spacein
placeof MTl .

We malke belov a seriesof remarksconcerningthe above definitions. See
Theorem2.6.4 for more on the propertiesof theseclasses;note in particular
(by (h2)) that MTl, C SMTl, CTle (w € R). More resultson the regularity

of MTICL", SMTICL" andtheir weakequivalentaregivenin Proposition6.3.4.

The set MTly is known as the Almost Periodic Wiener algebra (APW)
by Karlovich, Spitkovsky et al. and as the WenerPitt algebra (WP) by
Babadzhayan andRabinaosich [BR]. For dimU,dimY < oo, thesetMTIC is the
well-known setdenotedoy 4 or 4(0) (or sometimesy LA™ (0)) in thetexts of
Callier, DesoerWinkin andothers(seee.g.,[CD80], [CW99], [CZ]).

The so called causal\Mener classMTICL" consistsof operatorof the form
E = f + T189, where f € i, L1, i.e., of (I/O) mapsE having an L' impulse
responselus a feedthrougloperator By LemmabD.1.23,transferfunctionsthat
areholomorphicaround RN {} belongto MTI L* TheWienerclass(or “Wiener
algebra”)MTIL" is denotedby W or %/ in [CG81] and[CG97], andMTICL" is
denotedby 4 in [CG97].

The MTI norm (“measurenorm”, i.e., total variation) and the SMTI norm
are strongerthan the Tl norm (B(L?) norm), by Theorem2.6.4(h2);in fact,
they are strictly strongey evenin the scalarcase,becausef f € L1(R+), then
|+l = || f]|L= (by TheorenB.1.3)and|| f]|_» maybelessthan|| f||;.

EachE € MTI correspond§linearlyandisometrically in particular | E||m =
Jr d|u|) to a Borel measurep = fdt + 5,2 Tkd, (B(U,Y)-valued, countably
additive andof boundeduniform total variation)consistingof a discrete(atomic)
partandof anabsolutelycontinuouspart (i.e., onewithout a singularcontinuous
part)throughtheformulaEu = p« u for all u € L? (equivalently, throughE = ).
This correspondencis anisometricisomorphism(ontoif dimU < o or dimY <
o, asoneeasilydeducedrom theresultson pages99 and82 of [DU]). However,
if dimU = o, thensomeabsolutelycontinuousB(U )-valuedBorel measureare
notdifferentiablea.e.(seep. 219& p. 217(3)of [DU)).

Thesetsupp(E) isdenotedy o(E) (or a(f)) in thetheoryof almost-periodic
functions (seep. 2188 of [RSW]). Clearly the setL?! is anideal of MTI (we
identify a measurejts derivative andthe corresponding’l operatorwhenthere
is norisc of misconception).

For T € R, the classMTIltz correspondgo MTI “measureswith equally-
spacecatoms”with spaceT. BecauseMTItz is isomorphicto £1(Z) andLx is
anideal of MTlyz, several factorizationand invertibility problemson MTlq Tz
canbereducedo thoseon ¢ andto thoseon MTIL". Dueto thisfact(theearliest

applicationof which we have seenin thethesis[Winkin]), we shallusethe class
MTIrz extensiely throughouthis monograph.



As the definition shaws, by the subscriptBC we meanthatE — E is B(-
valued. In the caseof MTI2€ andits subclasseghis meanghat f andT (for k
s.t.ty # 0) are BC-valued. The classCTICZC consistsE = E + §, whereE € B,
g€ H*(Ct;BC) N C(CTU{w};BC), andg(w) = 0.

All well-posedfractions of exponential WTIC functions have a d.c.f. if
dimU,dimY < o, by Theorem2.1 of [CD80]. This follows from the fact that
afunctionin H for somew < 0 hasonly a finite numberof zeroson C™.

The MTI spacesdefinedabove are ULR and have beautiful factorization
properties(seeTheorems2.6.4and4.1.6),which make them perfectcandidates
for stabilizationtheory Moreover, mostof themalsoadmitspectralfactorization
(seeTheorem8.4.9),henceour optimizationtheorybecomesnore completefor
suchmapsthanfor generalll maps.

Next we notethattheseclassesreclosedundercomposition causaladjoints
andinversesandwe list someof their furtherproperties:

Theorem 2.6.4(MTI, SMTI, CTI) Let 4 be one of the classesCTI, CTI%¢,
MTI, MTI%C, MTlg, MTIZC, MTIL, MTILS2C, MTIs and MTlgs, whee S =
S—SCcR. Set7:= 4NTIC.

LetE € 4(U,Y),F € 4(Y,Z) andw,w € R. Thenthefollowing hold:

(al) 4(U,Y) is a Banat space A4(U) is a Banadh algebra and B C 4 C
Tl (cf. Definition6.2.4);in particular, 29 = 4 and A4 = 4 C TIC.

(a2) If 4 # CTI,CTI%C, thenEF is equalto the corvolutionof E andF, andE
is equalto the Laplacetransformof E takenin MTI sensgasin (D.22)).

(b1)E*,E € 4 andEF € 4.

(b2)If E,F € 4, thenEY € 4 andEF € 4.

(b3)We have{E" |E € 4,} = A and|[|E| 4, = [|E*|| 4.

(c)Ee GgTI(U,Y)=Ee GA(U,Y).

(c2)E € GTIC(U,Y) & E€ GA(U,Y).

d)f F=F + f+ € MTIV'(Y,Z) and G = G+ g« € MTI-'(U,Y), thenFG =
FG+ (Fg+ fG+ f xg)x € MTIL (U, Z2).

EeDE € Gu(iR; B(U,Y)) and|[E(s)|| < ||E||n1 < ||E||4 for all s€iR.

(€2)If E € 4, thenE € (py(CT;B(U,Y)) NH=(CT; B(U,Y)) and |[E(s)|| <
IE||11 < ||E||4 for all se C+.

() WehaveZ c ULR, MTIL" ¢ CTI andMTICL' ¢ CTIC ¢ UHPR

(g1) Assumehat 4 # CTI,CTI?C. Then4,, = € e ® and 4, = e” 4 ©.
Moreover A, C Ay for o > w.

(g2) Assumehat 4 # CTI,CTI®C. Theng’ = 4_, 43 = 4,,. and 4, = 4_,,.

(h1) Replacetheletters MTI by SMTI everywhee in this theoem. Then(al)-
(a2) and (d)—(g1)still hold exceptthat E neednot be strongly continuous
in (e1)—(e2)andinsteadof (f) we only havethat 4 ¢ SLR and SMTICL ¢
SHPR



(h2) We have||G||Ti,, < ||Gl|smTi, < ||G|ImTi, < 0 forall G € Tly,.

(i1) If D € MTIC(U,Y), then||Toy (D— D)oy | g(L2(r, u)) — O, ast — O+

(i2) If feLg(Ry;B(U,Y)), then [lu— (fxu)(t)|lpuzr, uyy) = O, as
t— 04.

(i3) If D € SMTIC«(U,Y), andu = Xg, Uo, thenDu € C(R;Y) and(Du)(0) =
Dug.

(§) If dimU < o0 or dimY < oo, then4%¢ = 4 (sincethenB¢(U,Y) = B(U,Y)).

Obviously, the formulain (d) holdsmoregenerallytoo. SeeLemmaD.1.12
for adjointsandLaplacetransformsof elementof MTI. Notealsothatalmostall
above resultshold for Banachspaced) andY too, asshowvn in the statements$o
which we referin thetheoremandits proof.

Chapter4, Proposition6.3.4andLemmasgF.2.2—-F2.4alsodescribeproperties
of MTI andSMTI classesThe correspondingpectralandcoprimefactorization
propertiesaregivenin Sectionss.2and8.4.

Proof: (c1)&(c2)&CTI-claims: By Theorem4.1.1and Lemma4.1.3, 4

[and 4] is inverseclosedand[causal]adjointclosed asindicatedin (b1)—(c2).
(We do notknow whetherthe SMTI classesreinverseclosed.)
___The other claims about CTI and its subclassesre easyto prove (e.g.,
CTI(U,Y) = C(iRU{e}; B(U,Y)) hasthe propertiestatedabove; seeLemma
2.6.2for the half-plane-rgularity of CTIC maps).Therefore for therestof the
proof, we assumehat 4 # CTl and.4 # CTI®C,

(a2) Thisfollowsfrom LemmabD.1.12(c3).

(al)&(d) It is clearthat 4 is a vectorspace.Theisometricisomorphism

MTI(U,Y) > ( ;Trér + )%= (Trer, T) € £4(R; B(U,Y)) x LY{(R; B(U,Y))

(2.55)
shows thatMTI is a Banachspace(sinceL! and#! areBanachspaces).lt is
easyto verify thatalsotheimageof 4 under(2.55)is a Banachspace(recall
thatB( is closedin B), hence4 is aBanachspace.

The compositionof MTI operatorscorrespondgo the corvolution of the
correspondingmeasurespy LemmaD.1.12(c1),hence4(U) is a Banach
algebra(with aunit) and(b1) holds.

Now we have shovn that 24 = 4 c Tl SinceTICTIC =TIC c TI, we
have 44 = 4. Obviously, B C 4.

(b1)&(b2) Thesefollow from Lemmad4.1.3and(al).

(b3) Oneeasilyverifiesthis.

(el)&(e2)Thisfollowsfrom LemmaD.1.12(al)&(c2)&(al’)&(c’).

() By Lemma D.1.12(b’), we have 4 C ULR; by (e), Lemma
D.1.11(al)&(al)and Lemma2.6.2, we have MTICL' ¢ UHPR, MTICL' ¢
CTIC andMTIL' c CTI.

(g1) By LemmaD.1.12(d),we have 4, = € 4e~® and 4, = € e~ .

Sincee @ <1o0nR,, it iseasyto verify from thedefinitionthat4,, c 4.
(SeeRemark2.1.6for furtherresults.)

(g2) Thisfollows from Lemma4.1.3.



(h1) This follows asabove, by usingLemmasF.2.2andF.2.3. (We do not
know aboutthe excludedclaims.)

(h2) We omitthesimpleproofof ||G||smTi,, < ||G||mTiI,,; theotherinequality
is givenin (e2)and(hl).

(i1) Thisfollows from thefactthatthe MTI norm of the partof D lying on
(0,t) decreaseto zero.We leave the simpledetailsto thereader

(i2) This holds because||(f * u)(t)|ly < [[Tioy) fll2l|TGoyull, by Lemma
D.1.7,and||oy) f|l2 — O ast — 0, by CorollaryB.3.8.

(iI3) The proof is analogougo that of (i1) and omitted (notethatD - up €
MTIC(C,Y)).

(j) SeeLemmaA.3.4(B1). O

We finish this section by a minor technical result that allows us to to
approximateBC-valuedTI mapsby finite-dimensionabperators:

Lemma2.6.5Let D € 4(U,Y) and D(+w) = 0, whee 4 = CTI?C or 4 =
MTIZC. Thenthere are countable orthogonal sequencegun}y_; C U and
{¥n}n, C Y s.t. when P, [P/] is the orthogonal projection of U [Y] onto
sparfu,...,Un) [spartyi,...,yn)], wehaveP,DP, — D, P\D — D, andDP, — D
in 4(U,Y), asn— co.

If U =Y, wecanchoose{u,} sothatP,DP, — Din 4(U).

Of coursejf D = (3, Tud, + f)*, thenwe canreplaceP,fP, (i.e., [Pﬁ(‘;"” 8})
by somesmoothor simple function with a compactsupportfor eachn without
losingthe corvergencieqseeTheoremB.3.11). R

Proof: CaseCTI: 1° Letne N. Foreachse€ iRU{}, D(s) € BC, hence
thereareP, s andP, s asin LemmaA.3.4(B2),sothat ID(s) — Pr’,,S]IA))(s) Pnsl| <
1/n. Theset

Gs:={z€iRU{w}|||D(2) — PhD(2)Pnsll < 1/n} (2.56)

is open,for eachs. By thecompactnesef HA)(iR U{}), thereis afinite subset
{s1,...,8m,} CiRU{=}, sothatiRU {®} C G, U...UGg, . Letun1,...,Unk,
[Yn1,---¥nk] be an orthogonalbaseof U™, RanPys) [UY, Rar(P )]
Thus, ||[D(2) — P,D(2)Py|| < 1/n for all z€ iRU {w} for the corresponding
projections.

2° Let ug,up,... be the sequenceuy 1,U2,...,Upk,,Uz,1,Uz2,... and let
Y1,Y2,... be the sequenceyii,yio,...,Y1k,Y21,Y22,-.. to obtain ||[D —
P.DP,|| — 0. Clearly||D — P.D|| and||D — DP,|| areevensmaller

If U =Y, we may modify our proof by choosingonly the uy’s, using
the last claim in Lemma A.3.4(B2), or we can as well use the sequence
U, y1,U2,y3,Us3,....

CaseMTI: 1° Let D(s) = [> o Tkdr, + ], whereT, € BC(U,Y) for all k
andf € LY(R; BC(U,Y)). Letj e N+ 1.

Thenthereareme N+ 1, E =[S T/8, + f]* st me N+ 1, T/ €
BC(U,Y) for all k, f = 31,SXeg., WhereeachS € BC(U,Y) is finite-
dimensionaland ||D —E||ut < 1/] (replaceeachTi by a finite-dimensional



T, (seeLemmaA.3.4(B1)),usethedensityof simplefunctionsin L1 (Theorem
B.3.11(al))andchoosesuitablem < ). Let

Uj = span(Ker(Tl’)L U...UKer(T,)tUKer(S)tu...U Ker(sn)L) cu,
(2.57)
Y; :=span(RanT{)U...URanT) URan$)U...URan(Sy)) CY. (2.58)

Let P; [P]] betheorthogonaprojectionof U [Y] ontoU; [Y;]. ThenE = P/ER;,
hence

|D— PP} | = ID— F{DP, + F/ER, ~E)| < [D—E||+||F (E-D)F} | < 2/.
(2.59)

2° Let uy,...,u, spanU;, addthen vectorsuy,1,...,U, C Uz so that
ug,...,Uy, spanthe spacesparfU; UU,) etc. If P andP]f arethe projections
definedabove for somem, thenRan(P;) C Rar(P,) andRan(P!) c Rar(Py) for
somen (andevery subsequerane),hence|D— P,DR, || < ||D— ISI]DJF~>J | <1/j.
Therefore | D— P,DP,|| — 0,asn — .

If U =Y, we canreplaceU; andY; by sparfU; UYj) to obtaintherequired
projections. O

Notes

TheclassMTIC wasintroducednto controltheoryin [CD78]and[CD80]. An
excellentreferenceontheclassis [CZ]. TheclassMTIC+; is treatedn [Winkin]
and[CW99], andMTl 4 in [BKRS] and[RSW], amongothers.All theseassume
thatU andY arefinite-dimensionaljn thatcaseprobablyall of Theorem2.6.4is
well known. Generalvectorvaluedmeasuregwith MTIC asa specialcase)are
treatedn [DU] andin [Dinculeanul].






