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Abstract. We prove that weak supersolutions to equations similar to
the evolutionary p-Laplace equation has lower semicontinuous represen-
tatives. The proof avoids the use of Harnack’s inequality and, in partic-
ular, the use of parabolic BMO. Moreover, the result gives a new point
of view to approach the continuity of the solutions to a second order
partial differential equation in divergence form.

1. Introduction

We study weak supersolutions to the evolutionary p-Laplace equation

∂u

∂t
−∇ · (|∇u|p−2∇u

)
= 0 (1.1)

in an open set O in Rn+1 with p > 2n/(n + 2). They are defined with the
aid of smooth nonnegative test functions under the integral sign. In their
definition, weak supersolutions are merely assumed to be Sobolev functions
and, in particular, are not assumed to be lower semicontinuous.

The motivation to study the lower semicontinuity is to obtain coher-
ence between the definitions of weak supersolutions and so-called p-super-
parabolic functions. The latter are defined as lower semicontinuous functions
obeying the comparison principle with respect to the weak continuous solu-
tions of (1.1), see [6] by Kilpeläinen and Lindqvist. This class of functions
has an essential role when studying potential theoretical aspects of parabolic
partial differential equations. The lower semicontinuity yields often required
topological information about the level sets of p-superparabolic functions.

Every weak supersolution obeys the comparison principle with respect to
weak solutions in suitable Sobolev sense. A natural question is then whether
a weak supersolution has a lower semicontinuous representative and, conse-
quently, coincide with a p-superparabolic function. This question was raised
in [8] by Kinnunen and Lindqvist. Indeed, our main result gives an affirma-
tive answer. Our proof is based on a general principle and it generalizes for
wider class of equations, see Remark 4.5. The obtained lower semicontinuity
together with results in [8] and [5] about the equivalency of viscosity solu-
tions and p-superparabolic functions by Juutinen, Lindqvist, and Manfredi,
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see also [10] and [9], implies that weak supersolutions, p-superparabolic func-
tions, and viscosity supersolutions are equivalent concepts whenever they are
locally bounded.

In the elliptic theory the semicontinuity of weak supersolutions is usually
presented as a consequence of weak Harnack principle, see, for instance,
Trudinger [12] and Heinonen, Kilpeläinen and Martio [4]. In [13] Ziemer
shows the lower semicontinuity using parabolic Harnack inequalities for weak
supersolutions to equations with general structure, but with linear growth.

Our proof does not rely on Harnack’s inequality and, hence, it gives a new
proof for the lower semicontinuity even in the elliptic case. In particular,
our approach does not use parabolic BMO estimates for the logarithm of
a weak supersolution. In fact, our proof is based on a reverse Hölder type
estimate for weak subsolutions. The estimate is standard, see DiBenedetto
[2], but we wish to give here an alternative proof using Moser’s iteration
method [11]. An advantage of our approach is that we need not to distinct
the singular case from the degenerate case. Moreover, we find the proof
rather straightforward and transparent.

2. Preliminaries

2.1. Parabolic Sobolev Spaces. Suppose that Ω is an open set in Rn. The
Sobolev space W 1,p(Ω) is defined to be the space of real-valued functions f
such that f ∈ Lp(Ω) and the distributional first partial derivatives ∂f/∂xi,
i = 1, 2, . . . , n, exist in Ω and belong to Lp(Ω). We use the norm

‖f‖1,p,Ω =
(∫

Ω
|f |p dx

)1/p
+

(∫

Ω
|∇f |p dx

)1/p
.

The Sobolev space with zero boundary values, W 1,p
0 (Ω), is the closure of

C∞
0 (Ω) with respect to the Sobolev norm.
We denote by Lp(t1, t2; W 1,p(Ω)), t1 < t2, the space of functions such that

for almost every t1 < t < t2 the function x 7→ u(x, t) belongs to W 1,p(Ω)
and the norm

‖u‖Lp(t1,t2;W 1,p(Ω)) =
(∫ t2

t1

∫

Ω

(|u(x, t)|p + |∇u(x, t)|p) dx dt

)1/p

is finite. Definition of the space Lp(t1, t2;W
1,p
0 (Ω)) is analogous.

2.2. Weak super– and subsolutions. Let O be an open set in Rn+1.
A function u is a weak local supersolution (subsolution) to (1.1) if for any
Ω×(τ1, τ2) b O, Ω open in Rn, the function u belongs to Lp(τ1, τ2;W 1,p(Ω))
and it satisfies the integral inequality

∫ t2

t1

∫

Ω
|∇u|p−2∇u · ∇η dx dt−

∫ t2

t1

∫

Ω
u

∂η

∂t
dx dt

+
∫

Ω
u(x, t2)η(x, t2) dx−

∫

Ω
u(x, t1)η(x, t1) dx ≥ (≤) 0

(2.1)
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for almost every τ1 < t1 < t2 < τ2 and for every nonnegative η ∈ C∞
0 (Ω ×

(τ1, τ2)). The boundary terms above are taken in the sense of limits
∫

Ω
u(x, t1)η(x, t1) dx = lim

σ→0

1
σ

∫ t1+σ

t1

∫

Ω
u(x, t)η(x, t) dx dt

and ∫

Ω
u(x, t2)η(x, t2) dx = lim

σ→0

1
σ

∫ t2

t2−σ

∫

Ω
u(x, t)η(x, t) dx dt.

A function is a local weak solution if it is both local weak supersolution and
subsolution.

Furthermore, few words about p-superparabolic functions are appropriate.
First of all, the equation (1.1) has a self similar weak solution

B(x, t) = t−n/λ
(
C − p− 2

p
λ1/(p−1)

( |x|
t1/λ

)p/(p−1))(p−1)/(p−2)
,

in Rn × (0,∞), where λ = n(p− 2) + p. This so-called Barenblatt solution
was discovered in [1]. It is easy see that the function

VT (x, t) =
{B(x, t), (x, t) ∈ Rn × (T, +∞),

0, otherwise,

is a weak supersolution to (1.1) in Rn×(−∞,+∞) for every T > 0. However,
when T = 0, the function V0 is not a weak supersolution anymore. It is
the a priori integrability of the gradient that fails. However, V0 is a p-
superparabolic function according to the following definition.

Definition 2.2. A function u : O → R is a p-superparabolic if
(1) u is lower semicontinuous,
(2) u is finite in a dense subset of O, and
(3) u satisfies the comparison principle on space time cylinder Dt1,t2 =

Ω × (t1, t2), where Ω is open in Rn, t1 < t2 and Dt1,t2 b O: If
h ∈ C(D̄t1,t2) is p-parabolic in Dt1,t2 such that h ≤ u on the parabolic
boundary of Dt1,t2 , then h ≤ u in Dt1,t2 .

Our main result, together with the comparison principle, implies that a
weak supersolution has always a p-superparabolic representative. Partial
converse is also true. First, one should pay attention to the fact that, in
their definition, the p-superparabolic functions are not required to have any
derivatives. Indeed, Theorem 1.4 in [8] shows that there are no other locally
bounded p-superparabolic functions than weak supersolutions. See also [9].
More generally, if p-superparabolic function belongs to the parabolic Sobolev
space, then it is a weak supersolution. Observe, however, that in view of the
Barenblatt solution above, the additional assumption on the summability of
the gradient is needed.

The study of the pointwise behavior p-superparabolic functions is rele-
vant since they are defined at every point of their domain. If the value
is changed even at a single point, then the obtained function may not be
p-superparabolic anymore. By theorem 5.2 in [8] every p-superparabolic
function v satisfies

v(x, t) = ess lim inf
(y,s)→(x,t)

v(y, s)
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for all (x, t) in the domain of v. It is noteworthy that the same limit process
defines the lower semicontinuous representative of a weak supersolution in
our proof.

As the last remark we mention that in [7] the authors show that also
any unbounded p-superparabolic function has spatial derivatives in Sobolev
sense.

2.3. Notation. We let BR(x) stand for a ball of radius R and center x in
Rn. If K is a bounded measurable set in Rn and f a measurable function,
we denote ∫

K
f dx =

1
|K|

∫

K
f dx,

where |K| is the Lebesgue measure of the set K. If Ω and Ω′ are open sets,
Ω′ bounded and the closure of Ω′ belongs to Ω we denote Ω′ b Ω. By the
Steklov average of a measurable function we mean

uh(x, t) =
1
h

∫ t+h

t
u(x, s) ds.

3. Boundedness of weak subsolutions

In this section we prove, using Moser’s iteration technique, that subsolu-
tions are bounded. Similar results can be found in [2] which applies intrinsic
De Giorgi’s method. Moser’s method is based on the Sobolev’s inequality
and the following Caccioppoli estimate. We sketch the proof of it for the
sake of completeness.

Lemma 3.1. Let Ω be an open bounded set in Rn. Suppose that u is a
nonnegative subsolution in Ω× (τ1, τ2). Let ε ≥ 1. Then there is a constant
C = C(p, ε) such that

∫ τ2

τ1

∫

Ω
|∇u|pu−1+εϕp dx dt + ess sup

τ1<t<τ2

∫

Ω
u1+εϕp dx

≤C

∫ τ2

τ1

∫

Ω
up−1+ε|∇ϕ|p dx dt + C

∫ τ2

τ1

∫

Ω
u1+ε

∣∣∣∂ϕ

∂t

∣∣∣ϕp−1 dx dt,

where ϕ ∈ C∞
0 (Ω× (τ1, τ2)).

Proof. From the weak formulation we have that subsolutions satisfy the
following regularized integral inequality

0 ≥
∫

Ω

∂uh

∂t
(x, t)ηh(x, t) dx +

∫

Ω

(|∇u|p−2∇u
)
h
· ∇ηh(x, t) dx

for almost every τ1 < t < τ2 − h. We choose the test function

ηh = min(uh, k)ε−1uhϕp,

where ϕ belongs to C∞
0 (Ω×(τ1, τ2)). It is admissible after an approximation.

We denote the limit as η = min(u, k)ε−1uϕp. We then choose τ1 < t1 < t2 <
τ2−h and integrate the regularized equation. It follows from the properties
of Steklov averages (see [2]) that

(|∇u|p−2∇u
)
h
· ∇ηh(x, t) → |∇u|p−2∇u · ∇η(x, t)
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as h → 0 in L1(sptϕ). When u < k we have by Young’s inequality that

|∇u|p−2∇u · ∇η ≥εuε−1ϕp|∇u|p − puε|∇u|p−1ϕp−1∇ϕ

≥ε

p
uε−1ϕp|∇u|p −

(p

ε

)p−1
up−1+ε|∇ϕ|p

for almost every (x, t) in the support of ϕ. Similarly, when u ≥ k, we have

|∇u|p−2∇u · ∇η ≥1
p
kε−1ϕp|∇u|p − pp−1upkε−1|∇ϕ|p

for almost every (x, t) in the support of ϕ. Furthermore, we integrate by
parts and obtain

∫ t2

t1

∫

Ω

∂uh

∂t
min(uh, k)ε−1uhϕp dx dt =

∫ t2

t1

∫

Ω

∂g(uh)1+ε

∂t
ϕp dx dt

→−
∫ t2

t1

∫

Ω
g(u)

∂ϕp

∂t
dx dt +

∫

Ω
g(u(x, t))ϕp(x, t) dx

∣∣∣
t2

t=t1

)
.

for almost every τ1 < t1 < t2 < τ2 as h → 0. Here we have denoted
g(s) =

∫ s
0 min(k, r)ε−1r dr. We now choose τ1 < t2 < τ2 such that

∫

Ω
u1+ε(x, t2)ϕp(x, t2) dx ≥ 1

2
ess sup
τ1<t<τ2

∫

Ω
u1+εϕp dx,

and let t1 → τ1. We collect results, apply monotone convergence theorem
and conlude the result of the lemma. ¤

3.1. Estimates for the essential supremum of a subsolution. For the
first lemma we assume that the nonnegative subsolution is bounded below
away from zero i.e.

u ≥
( Rp

ρpT

)1/(p−2)
> 0

with some ρ > 0. We remark that for the heat equation (p = 2) this
condition reduces to T ' R2.

Lemma 3.2. Let O be an open bounded set in Rn+1. Suppose that u is a
subsolution in O and BR(x0)× (t0 − T, t0) b O and

u ≥
( Rp

ρpT

)1/(p−2)
> 0, ρ > 0.

Then there exists a constant C = C(n, p) such that for p ≥ 2 we have

ess sup
BσR(x0)×(t0−σpT,t0)

u ≤
( T

Rp

C(1 + ρ)n+p

(1− σ)n+p

∫ t0

t0−T

∫

BR(x0)
up−2+δ dx dt

)1/δ

and for 2n/(n + 2) < p < 2

ess sup
BσR(x0)×(t0−σpT,t0)

u ≤
( Rn

Tn/p

C(1 + 1/ρ)n+p

(1− σ)n+p

×
∫ t0

t0−T

∫

BR(x0)
un(2−p)/p+δ dx dt

)1/δ

for every 1/2 < σ < 1 and δ > 0.
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Proof. Let σR ≤ s < S < R. We set

R0 = S, Rj = (S − (S − s)(1− 2−j)), j = 0, 1, 2, . . . ,

and denote

Uj = Bj × Γj = BRj (x0)× (t0 − (Rj/R0)pT, t0).

We choose test functions ϕj ∈ C∞(Uj) ∩ C(Ūj), j = 0, 1, 2, . . . , such that

0 ≤ ϕj ≤ 1, ϕj = 0 on ∂pUj , ϕj = 1 in Uj+1

and

|∇ϕj | ≤ C

S − s
2j ,

∣∣∣∂ϕj

∂t

∣∣∣ ≤ Rp

T

C

(S − s)p
2pj .

The first step in the proof is to apply parabolic Sobolev’s inequality, See [2],
Proposition 3.1, p. 7. It implies∫

Uj+1

uκα dx dt ≤
∫

Uj

(uα/pϕ
β/p
j )κp dx dt

≤C

∫

Uj

|∇(uα/pϕ
β/p
j )|p dx dt

(
ess sup

Γj

∫

Bj

(uα/pϕ
β/p
j )(κ−1)n dx

)p/n

for some α ∈ R, β ≥ 1 and κ > 1. We choose

α = p− 1 + ε, κ = 1 +
p(1 + ε)

n(p− 1 + ε)
, β =

p(p− 1 + ε)
1 + ε

,

where ε ≥ 1. We use Lemma 3.1 to estimate terms on the right-hand side.
First, we have

ess sup
Γj

∫

Bj

(uα/pϕ
β/p
j )(κ−1)n dx = ess sup

Γj

∫

Bj

u1+εϕp
j dx

≤C
(∫

Uj

up−1+ε|∇ϕj |p dx dt +
∫

Uj

u1+ε
∣∣∣∂ϕj

∂t

∣∣∣ϕp−1
j dx dt

)
.

A similar estimate gives∫

Uj

|∇(uα/pϕ
β/p
j )|p dx dt

≤Cεp
(∫

Uj

|∇ϕj |pup−1+ε dx dt +
∫

Uj

u1+ε
∣∣∣∂ϕj

∂t

∣∣∣ϕp−1
j dx dt

)
.

Moreover, when p > 2, by the assumption u1+ε ≤ (ρpT/Rp)up−1+ε, we
obtain∫

Uj+1

up−1+p/n+(1+p/n)ε dx dt ≤
(C(1 + ρ)p2jpεp

(S − s)p

∫

Uj

up−1+ε dx dt
)1+p/n

.

If p < 2, the assumption implies up−1+ε ≤ (Rp/ρpT )u1+ε and hence
∫

Uj+1

up−1+p/n+(1+p/n)ε dx dt ≤
(Rp(1 + 1/ρ)p

T

C2jpεp

(S − s)p

∫

Uj

u1+ε dx dt
)1+p/n

.

For p ≥ 2 we then choose

εj = 2(1 + p/n)j − 1, αj = p− 1 + εj ,
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j = 0, 1, 2, . . . , so that p− 1 + p/n + (1 + p/n)εj = p− 1 + εj+1. For p < 2
we set

εj = (2 + n(p− 2)/p)(1 + p/n)j − (n(p− 2) + p)/p, αj = 1 + εj ,

j = 0, 1, 2, . . . , and p− 1 + p/n + (1 + p/n)εj = 1 + εj+1. Thus, we have

Ij+1 ≤
(
CjY pIj

)1+p/n
, (3.3)

where

Ij =
∫

Uj

uαj dx dt, Y =
1

S − s
×

{
(1 + ρ), p ≥ 2,

R(1 + 1/ρ)/T 1/p, p < 2.

Next, a direct calculation gives
j∏

k=0

C(j−k)(1+p/n)k
=

( j∏

k=0

Ck(1+p/n)−k
)(1+p/n)j

≤ C(1+p/n)j+1

and
j+1∑

k=1

(1 + p/n)k =
n + p

p

(
(1 + p/n)j+1 − 1

)
.

The calculation shows that the constant will stay bounded in the iteration
below. We repeatedly use (3.3) and get

I
1/αj+1

j+1 ≤
(
CY n+p

∫

U0

umax(p,2) dx dt
)(1+p/n)j+1/αj+1

.

Since (1 + p/n)j/αj → 1/2, p ≥ 2, and (1 + p/n)j/αj → 1/(2 + n(p− 2)/p),
p < 2, as j →∞, we conclude

ess sup
Q(s)

u ≤
(
Y n+pC

∫

Q(S)
umax(p,2) dx dt

)1/ min(2,2+n(p−2)/p)
,

where we have denoted Q(s) = B(x0, s) × (t0, t0 − (s/S)pT ). When p ≥ 2,
we obtain by Young’s inequality for every 2 > δ ≥ min{δ0, 1} that

ess sup
Q(s)

u ≤
(

ess sup
Q(S)

u2−δ C(1 + ρ)n+p

(S − s)n+p

∫

Q(S)
up−2+δ dx dt

)1/2

≤1
2

ess sup
Q(S)

u +
(C(1 + ρ)n+p

(S − s)n+p

∫

Q(S)
up−2+δ dx dt

)1/δ
.

Similarly, when p < 2, we have

ess sup
Q(s)

u ≤ 1
2

ess sup
Q(S)

u +
(CRn+p(1 + 1/ρ)n+p

T (n+p)/p(S − s)n+p

∫

Q(S)
un(2−p)/p+δ dx dt

)1/δ
.

A standard iteration argument (see e.g. [3], Lemma 5.1) proves the claim of
the lemma. ¤

Suppose that u is a nonnegative subsolution. We may then apply the
previous lemma for the subsolution v = u + (Rp/ρpT )1/(p−2) and obtain the
following theorem.
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Theorem 3.4. Let O be an open set in Rn+1. Suppose that u is a nonneg-
ative subsolution in O and BR(x0) × (t0 − T, t0) b O. Then there exists a
constant C = C(n, p, ρ) such that for p ≥ 2

ess sup
BR(x0)×(t0,t0−T/2p)

u ≤C
( Rp

ρpT

)1/(p−2)
+

CT

Rp

∫ t0

t0−T

∫

B2R(x0)
up−1 dx dt

and for 2n/(n + 2) < p < 2

ess sup
BR(x0)×(t0,t0−T/2p)

u ≤C
( Rp

ρpT

)1/(p−2)
+

CRn

Tn/p

∫ t0

t0−T

∫

B2R(x0)
un(2−p)/p+1 dx dt.

Remark 3.5. When p = 2 we choose ρ = 2 and T = R2. Then the result
reduces to

ess sup
BR(x0)×(t0,t0−R2/4)

u ≤ C

∫ t0

t0−R2

∫

B2R(x0)
u dx dt.

Remark 3.6. It is clear that sets BσR(x0)× (t0 − σpT, t0), 0 < σ ≤ 1, above
may be replaced with BσR(x0)× (t0 − σpT, t0 + σpT ), 0 < σ ≤ 1.

If u is a supersolution, then max(−u, 0) is a nonnegative subsolution.
Hence we may apply Theorem 3.4 and obtain

Corollary 3.7. A weak supersolution in an open set O in Rn+1 is locally
essentially bounded below.

4. Lower semicontinuity of weak supersolutions

To prove the lower semicontinuity of weak supersolutions, we apply Theo-
rem 3.4 together with Lebesgue’s differentiation theorem. To this end, let u
be a measurable function in an open set O in Rn+1. We define the essential
limes inferior as

ess lim inf
(y,s)→(x,t)

u(y, s) = lim
R→0

ess inf
BR(x)×(t−Rp,t+Rp)

u.

The following theorem is our main result. It states that every weak super-
solution has a lower semicontinuous representative.

Theorem 4.1. Suppose that u is a weak supersolution in an open set O in
Rn+1. Then

ũ(x, t) = ess lim inf
(y,s)→(x,t)

u(y, s)

is a supersolution in O. The function ũ is lower semicontinuous and ũ = u
almost everywhere in O.

Proof. We denote

UM
R = BR(0)× (−Mp−2Rp,Mp−2Rp), M ∈ N.

Let EM be the set of Lebesgue points with respect to the basis {UM
R } i.e.

EM = {(x, t) ∈ O : lim
R→0

∫

(x,t)+UM
R

|u(x, t)− u(y, s)|β dy ds = 0},
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where β = max(n(2− p)/p + 1, p− 1). It is a straightforward calculation to
show that EM+1 ⊂ EM for every M ∈ N. Therefore, we obtain

E ≡
⋂

M∈N
EM = E1.

We also have |E| = |O|. We define the set

V = {(x, t) ∈ E : |u(x, t)| < ∞}.
Clearly

∣∣V ∣∣ =
∣∣O∣∣ by the summability of u. Let now (x0, t0) ∈ V and

QM
R = (x0, t0) + UM

R , M ∈ N. We first claim that

u(x0, t0) ≤ ess lim inf
(x,t)→(x0,t0)

u(x, t). (4.2)

We make the counter assumption

u(x0, t0)− ess lim inf
(x,t)→(x0,t0)

u(x, t) = ε > 0.

Let R0 be a radius such that

| ess lim inf
(x,t)→(x0,t0)

u(x, t)− ess inf
Q1

R

u| ≤ ε/2

for every 0 < R ≤ R0. Consequently, we have

u(x0, t0)− ess inf
Q1

R

u ≥ ε/2 (4.3)

for such R. We then define the subsolution v = (u(x0, t0) − u)+. Since
(x0, t0) ∈ V , we find for any M ∈ N a radius R1 = R1(M) such that∫

QM
R1

vβ dx dt ≤
∫

QM
R1

|u(x0, t0)− u(x, t)|β dx dt ≤ M−α−1,

where α = max(p − 2, n(2 − p)/p). Furthermore, we obtain from Theorem
3.4 and Remark 3.6 (for p = 2 we use Remark 3.5) that

ess sup
QM

R1/2

v ≤ C

M
+ CMα

∫

QM
R1

vβ dx dt ≤ C

M
.

We first fix M = d4C/εe and then take 0 < R ≤ R0 so small that Q1
R ⊂

QM
R1/2. It follows by (4.3) that

ε/4 ≥ ess sup
QM

R1/2

v ≥ ess sup
Q1

R

v ≥ u(x0, t0)− ess inf
Q1

R

u ≥ ε/2,

which gives the contradiction. We have thus proved (4.2). Moreover, by the
definition of a Lebesgue point, we have

u(x0, t0) ≤ ess lim inf
(y,s)→(x0,t0)

u(y, s) ≤ lim
R→0

∫

Q1
R

u(y, s) dy ds = u(x0, t0).

Consequently ũ = u almost everywhere. Finally, it is an easy exercise to
show that since

ũ(x, t) = ess lim inf
(y,s)→(x,t)

ũ(y, s)

for every (x, t) ∈ O, then ũ is a lower semicontinuous function. The result
follows. ¤
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Remark 4.4. The functions ũ and u coincide at least in the set of Lebesgue
points of u in which u is finite.

Remark 4.5. The proof of Theorem 4.1 is based on a general principle. The
result also holds for weak supersolutions of

∇ · (A(x, t, u,∇u)
)

=
∂u

∂t
,

where A satisfies growth bounds
A(x, t, u, ξ) · ξ ≥ ν|ξ|p
|A(x, t, u, ξ)| ≤ γ|ξ|p−1 (4.6)

for every (u, ξ) ∈ Rn and for almost every (x, t) ∈ Rn × R. Here ν ≤ γ are
positive constants. In addition, A : Rn × R × Rn 7→ Rn is assumed to be a
Carathéodory function, that is, (x, t) 7→ A(x, t, u, ξ) is measurable for every
(u, ξ) in R × Rn and (u, ξ) 7→ A(x, t, u, ξ) is continuous for almost every
(x, t) ∈ Rn × R.
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