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THE WOLFF GRADIENT BOUND FOR DEGENERATE

PARABOLIC EQUATIONS

TUOMO KUUSI AND GIUSEPPE MINGIONE

Abstract. The spatial gradient of solutions to non-homogeneous and degen-
erate parabolic equations of p-Laplacean type can be pointwise estimated by

natural Wolff potentials of the right hand side measure.
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1. Introduction and results

In this paper we consider non-homogeneous, possibly degenerate parabolic equa-
tions in cylindrical domains ΩT = Ω×(−T, 0), where Ω ⊂ Rn is a bounded domain,
n ≥ 2, and T > 0. The equations in question are quasilinear and of the type

(1.1) ut − div a(Du) = µ ,

where in the most general case µ is a Borel measure with finite total mass, i.e.

|µ|(ΩT ) <∞ .
1
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From now on, without loss of generality, we shall assume that the measure is defined
on Rn+1 by letting µbRn+1\ΩT = 0; therefore we shall assume that

|µ|(Rn+1) <∞ .

A chief model example for the equations treated here is given by the familiar evo-
lutionary p-Laplacean equation

(1.2) ut − div (|Du|p−2Du) = µ ,

and in fact, when considering (1.1), we shall assume the following growth and
parabolicity conditions on the C1-vector field a : Rn → Rn

(1.3)

{
|a(z)|+ |∂a(z)|(|z|2 + s2)1/2 ≤ L(|z|2 + s2)(p−1)/2

ν(|z|2 + s2)(p−2)/2|ξ|2 ≤ 〈∂a(z)ξ, ξ〉

whenever z, ξ ∈ Rn, where 0 < ν ≤ L are positive numbers. For the following
we fix s ≥ 0, which is a parameter that will be used to distinguish the degenerate
case (s = 0), that catches the model equation in (1.2), from the nondegenerate one
(s > 0). In this paper we shall always assume

p ≥ 2 .

The so called “singular case” p < 2 can still be treated starting by the techniques
introduced in this paper and will be presented elsewhere (see [25]) in order to
make the presentation here not too long and since new and nontrivial arguments
must be introduced. For further notation and definitions adopted in this paper -
and especially for those concerning parabolic cylinders - we immediately refer the
reader to Section 2 below; we just remark from the very beginning that in the rest
of the paper λ will always denote a positive real number: λ > 0.

The regularity theory for the equations considered in this paper has been es-
tablished in the fundamental work of DiBenedetto, and we refer the reader to the
monograph [10] for a state-of-the-art presentation of the basic aspects of the theory.

1.1. Elliptic Wolff potential estimates. The main aim of this paper is to pro-
vide pointwise estimates for the spatial gradient Du of solutions to (1.1) in terms
of suitable nonlinear potentials of the right hand side measure µ. Our results fill
a basic gap between the elliptic theory, where potential estimates are available,
and the parabolic one, where this is still an open issue. For this reason, let us
briefly summarize the story, that actually starts with the fundamental results of
Kilpeläinen & Malý [17], who proved that when considering elliptic equations of
the type

−div a(Du) = µ ,

solutions can be pointwise estimated via Wolff potentials Wµ
β,p(x0, r). These are

defined by

(1.4) Wµ
β,p(x0, r) :=

∫ r

0

(
|µ|(B(x0, %))

%n−βp

)1/(p−1)
d%

%
, β > 0 ,

and reduce to the standard (truncated) Riesz potentials when p = 2

(1.5) Wµ
β/2,2(x0, r) = Iµβ(x, r) =

∫ r

0

µ(B(x0, %))

%n−β
d%

%
, β > 0 ,

with the first equality being true for nonnegative measures. The estimate of
Kilpeläinen & Malý [17] is

(1.6) |u(x0)| ≤ c
∫
B(x0,r)

(|u|+ rs) dx+ cWµ
1,p(x0, 2r) ,



THE WOLFF GRADIENT BOUND FOR DEGENERATE PARABOLIC EQUATIONS 3

and holds whenever B(x, 2r) ⊂ Ω is a ball centered at x0 with radius 2r, with x0

being a Lebesgue point of u; here c depends only on n, p, ν, L. Another interesting
approach to (1.6) was later given by Trudinger & Wang in [40, 41] and Kuusi &
Korte in [22]. This result has been upgraded to the gradient level in [37] for the
case p = 2 and then in [12, 13] for p ≥ 2 − 1/n (see also [26, 27] for relevant
developments), where the following estimate is proved:

(1.7) |Du(x0)| ≤ c
∫
B(x0,r)

(|Du|+ s) dx+ cWµ
1/p,p(x0, 2r) ,

for c ≡ c(n, p, ν, L). Estimates (1.6) and (1.7) are the nonlinear counterparts of the
well-known estimates valid for solutions to the Poisson equation −4u = µ in Rn
- here we take n ≥ 3, µ being a locally integrable function and u being the only
solution decaying to zero at infinity. In this case such estimates are an immediate
consequence of the representation formula

(1.8) u(x0) =
1

n(n− 2)|B1|

∫
Rn

dµ(x)

|x− x0|n−2
,

and on the whole space take the form

(1.9) |u(x0)| ≤ cI|µ|2 (x0,∞) and |Du(x0)| ≤ cI|µ|1 (x0,∞) .

The importance of estimates as (1.6) and (1.7) mainly relies in the fact that they
allow to deduce several basic properties of solutions to quasilinear equations by
simply analyzing the behavior of related Wolff potentials. Indeed, Wolff potentials
are an essential tool in order to study the fine properties of Sobolev functions and,
more in general, to build a reasonable nonlinear potential theory [14, 15].

In this paper we concentrate on the higher order estimate (1.7) - the most deli-
cate one - and give a natural analog of it in the case of possibly degenerate parabolic
equations of p-Laplacean type as those in (1.1) and (1.2). Now, while in the non-
degenerate case p = 2 the proof of the Wolff potential (spatial) gradient estimate is
similar to the one for the elliptic case, as shown in [12], the case p 6= 2 requires very
different means. Indeed, the equations considered become anisotropic (multiple of
solutions no longer solve similar equations) and as a consequence all the a priori
estimates available for solutions - starting from those concerning the homogeneous
case µ = 0 - are not homogeneous. Ultimately, the iteration methods introduced
in [17, 40, 41, 36, 37, 12] cannot be any longer applied. As a matter of fact, even
the notion of potentials used must be revisited in a way that fits the local struc-
ture of the equations considered. This is not only a technical fact but instead is
linked to behavior that the p-Laplacean type degeneracy exhibits in the parabolic
case. Indeed, as we shall see in the next section, so-called intrinsic geometry of the
problem will appear [9, 10].

1.2. The intrinsic approach, and intrinsic potentials. Due to the anisotropic
structure of the equations considered here, the use - both in formulation of the
results, and in the techniques employed - of the concept of intrinsic geometry,
widely discussed in [10], is needed. This prescribes that, although the equations
considered are anisotropic, they behave as isotropic equations when considered in
space/time cylinders whose size depend on the solution itself. To outline how such
an intrinsic approach works, let us consider a domain, actually a cylinder Q, where,
roughly speaking, the size of the gradient norm is approximately λ – possibly in
some integral averaged sense – i.e.

(1.10) |Du| ≈ λ > 0 .

In this case we shall consider cylinders of the type

(1.11) Q = Qλr (x0, t0) ≡ B(x0, r)× (t0 − λ2−pr2, t0) ,
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where B(x0, r) ⊂ Rn is the usual Euclidean ball centered at x0 and with radius
r > 0. Note that, when λ ≡ 1 or when p = 2, the cylinder in (1.11) reduces to the
standard parabolic cylinder given by

Qr(x0, t0) ≡ Q1
r(x0, t0) ≡ B(x0, r)× (t0 − r2, t0) .

Indeed, the case p = 2 is the only one admitting a non-intrinsic scaling and local
estimates have a natural homogeneous character. In this case the equations in
question are automatically non-degenerate. The heuristics of the intrinsic scaling
method can now be easily described as follows: assuming that in a cylinder Q as in
(1.11), the size of the gradient is approximately λ as in (1.10). Then we have that
the equation

ut − div (|Du|p−2Du) = 0

looks like

ut = div (λp−2Du) = λp−24u
which, after a scaling, that is considering v(x, t) := u(x0 + %x, t0 + λ2−p%2t) in
B(0, 1)× (−1, 0), reduces to the heat equation

vt = 4 v

in B(0, 1)× (−1, 0). This equation, in fact, admits favorable a priori estimates for
solutions. The success of this strategy is therefore linked to a rigorous construction
of such cylinders in the context of intrinsic definitions. Indeed, the way to express
a condition as (1.10) is typically in an averaged sense like for instance

(1.12)

(
1

|Qλr |

∫
Qλr

|Du|p−1 dx dt

)1/(p−1)

=

(∫
Qλr

|Du|p−1 dx dt

)1/(p−1)

≈ λ .

A problematic aspect in (1.12) occurs as the value of the integral average must
be comparable to a constant which is involved in the construction of its support
Qλr ≡ Qλr (x0, t0), exactly according to (1.11). As a consequence of the use of such
intrinsic geometry, all the a priori estimates for solutions to evolutionary equations
of p-Laplacean type admit a formulation that becomes natural only when expressed
in terms of intrinsic parameters and cylinders as Qλr and λ.

The first novelty of this paper is that we shall adopt the intrinsic geometry
approach in the context of nonlinear potential estimates. This will naturally give
raise to a class of intrinsic Wolff potentials that reveal to be the natural objects to
consider, as their structure allows to recast the behavior of the Barenblatt solution
- the so-called nonlinear fundamental solution - for solutions to general equations;
see Section 1.5 below. The intrinsic potential estimates will then imply estimates
via standard potentials, in a way that respects the natural scaling of the equations
considered; see Section 1.3 below.

To begin with, in accordance to the standard elliptic definition in (1.4), and with
λ > 0 at the moment being only an arbitrary free parameter, we define

(1.13) Wµ
λ(x0, t0; r) :=

∫ r

0

(
|µ|(Qλ%(x0, t0))

λ2−p%N−1

)1/(p−1)
d%

%
, N := n+ 2 .

In the above construction, we therefore start building the relevant potential by
using intrinsic cylinders Qλ%(x0, t0) as in (1.11), while N is the usual parabolic
dimension; notice that when p = 2 the one in (1.13) becomes a standard caloric
Riesz potential, see also Remark 1.2 below. Also, the integral appearing in (1.13)
is the natural intrinsic counterpart of the Wolff potential Wµ

1/p,p intervening in the

elliptic gradient estimate (1.7), and it reduces to it when µ is time independent; see
also Theorem 1.3 below.
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The connection with solutions to (1.1), therefore making Wµ
λ an intrinsic po-

tential in this context, is then given by the following:

Theorem 1.1 (Intrinsic potential bound). Let u be a solution to (1.1) such that
Du is continuous in ΩT and that µ ∈ L1. There exists a constant c > 1, depending
only on n, p, ν, L, such that if λ > 0 is a generalized root of

(1.14) λ = cβ + c

∫ 2r

0

(
|µ|(Qλ%(x0, t0))

λ2−p%n+1

)1/(p−1)
d%

%
(= cβ + cWµ

λ(x0, t0; 2r))

and if

(1.15)

(∫
Qλr

(|Du|+ s)p−1 dx dt

)1/(p−1)

≤ β ,

where Qλ2r ≡ Qλ2r(x0, t0) ≡ B(x0, 2r) × (t0 − λ2−p4r2, t0) ⊂ ΩT is an intrinsic
cylinder with vertex at (x0, t0), then

(1.16) |Du(x0, t0)| ≤ λ .

The meaning of generalized root is clarified in Remark 1.1 below. Statements as
the one of Theorem 1.1, i.e. involving intrinsic quantities and cylinders, are com-
pletely natural when describing the local properties of the evolutionary p-Laplacean
equation (see for instance [10]). Indeed, a careful reading of its proof easily shows
that if Theorem 1.1 holds for a certain constant c, then it also holds for any larger
constant; as a consequence we obtain the following:
Reformulation of Theorem 1.1. There exists a constant c ≥ 1, depending only
on n, p, ν, L, such that whenever Qλr ≡ Qλr (x0, t0) ⊂ ΩT then
(1.17)

c

(∫
Qλr

(|Du|+ s)p−1 dx dt

)1/(p−1)

+ cWµ
λ(x0, t0; 2r) ≤ λ⇒ |Du(x0, t0)| ≤ λ .

In this way, when µ ≡ 0, the previous reformulation gives back the classical gradient
bound of DiBenedetto [10], see Theorem 3.3 below, that is

c

(∫
Qλr

(|Du|+ s)p−1 dx dt

)1/(p−1)

≤ λ⇒ |Du(x0, t0)| ≤ λ .

Remark 1.1 (Generalized roots and their existence). By saying that λ is a gener-
alized root of (1.14), where β > 0 and c ≥ 1 are given constants, we mean a (the
smallest can be taken) positive solution of the previous equation, with the word
generalized referring to the possibility that no root exists in which case we simply
set λ = ∞. The main point is that, given β > 0, the existence of a finite root is
guaranteed when

(1.18) Wµ
1 (x0, t0; 2r) =

∫ 2r

0

(
|µ|(Q%(x0, t0))

%n+1

)1/(p−1)
d%

%
<∞ .

Here recall that µ is defined on the whole Rn+1. For this, let us consider the
function

h(λ) := λ− cβ − cλ
p−2
p−1

∫ 2r

0

(
|µ|(Qλ%(x0, t0))

%n+1

)1/(p−1)
d%

%

defined for λ > 0. Observe that h(·) is a continuous function and moreover h(λ) < 0
for λ < cβ. On the other hand it holds that

lim
λ→∞

h(λ) ≥ lim
λ→∞

[
λ− cβ − cWµ

1 (x0, t0; 2r)λ
p−2
p−1

]
=∞ .
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Therefore there exists λ solving h(λ) = 0, that is, a solution to (1.14). Of course
the existence of a generalized root does not suffice to apply Theorem 1.1 in that the
intrinsic relation (1.15) still has to be satisfied. This problem is linked to the one of
finding an intrinsic cylinder Qλ2r ⊂ ΩT where (1.15) does hold; this is for instance
the case when Q2r ⊂ ΩT and λ ≥ 1. Theorem 1.2 below deals precisely with this
situation. Another example of significant situation is given in Section 1.5 below.

Remark 1.2. In the case p = 2 it is easy to see that Theorem 1.1 implies the
bound

(1.19) |Du(x0, t0)| ≤ c
∫
Qr

|Du| dx dt+ cIµ1 (x0, t0; 2r)

whenever Q2r ≡ Q2r(x0, t0) ⊂ ΩT is a standard parabolic cylinder, where

(1.20) Iµ1 (x0, t0; 2r) :=

∫ 2r

0

|µ|(Q%(x0, t0))

%N−1

d%

%

is the parabolic Riesz potential of µ and N = n + 2 is the parabolic dimension.
Estimate (1.19) has been originally obtained in [12]. When instead considering the
associated elliptic problem and µ is time independent, Theorem 1.1 gives back the
elliptic estimate (1.7). For this see also Theorem 1.3 below.

Remark 1.3 (Stability of the constants). We remark that the constant c appearing
in Theorem 1.1 is stable when p→ 2 (and indeed the estimate (1.19) is covered by
the proof). We also give an approach to the gradient Hölder continuity of solutions
to degenerate parabolic equations yielding a priori estimates with stable constants
when p→ 2.

1.3. Intrinsic estimates yield explicit potential estimates. The next result
tells that Theorem 1.1 always yields a priori estimates on arbitrary standard para-
bolic cylinders, and we can therefore abandon the intrinsic geometry. As a conse-
quence, standard Wolff potentials, considered with respect to the parabolic metric,
appear (recall the definition in (1.13) and compare it with the one in (1.20)).

Theorem 1.2 (Parabolic Wolff potential bound). Let u be a solution to (1.1) such
that Du is continuous in ΩT and (1.25) holds. There exists a constant c, depending
only on n, p, ν, L, such that

|Du(x0, t0)| ≤ c

∫
Qr

(|Du|+ s+ 1)p−1 dx dt

+c

[∫ 2r

0

(
|µ|(Q%(x0, t0))

%n+1

)1/(p−1)
d%

%

]p−1

= c

∫
Qr

(|Du|+ s+ 1)p−1 dx dt+ c[Wµ
1 (x0, t0; 2r)]p−1(1.21)

holds whenever Q2r ≡ Q2r(x0, t0) ≡ B(x0, 2r) × (t0 − 4r2, t0) ⊂ ΩT is a standard
parabolic cylinder with vertex at (x0, t0).

To check the consistency of estimate (1.21) with the ones already present in the
literature we observe that when µ ≡ 0, estimate (1.21) reduces the classical L∞-
gradient bound available for solutions to the evolutionary p-Laplacean equation; see
[10, Chapter 8, Theorem 5.1’]. The importance of estimates as those in Theorems
1.1-1.2 - as well as those of estimates (1.6)-(1.7) - is rather clear: the growth behavior
of solutions can be now completely described via potentials of the right hand side
data µ, completely bypassing the structure of the equation. For instance, all kinds
of regularity results for the gradient in rearrangement invariant functions spaces
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follow at once by the properties of Wolff potentials, which are known by other
means. For such aspects and applications we refer for instance [17, 38].

Proof of Theorem 1.2. Without loss of generality we may assume that the quantity
Wµ

1 (x0, t0; 2r) in (1.18) is finite, otherwise there is nothing to prove. Next, let us
consider the function

h(λ) := λ− cλ
p−2
p−1A(λ) ,

where

A(λ) :=

(
1

|Qr|

∫
Qλr

(|Du|+ s+ 1)p−1 dx dt

)1/(p−1)

+

∫ 2r

0

(
|µ|(Qλ%)

%n+1

)1/(p−1)
d%

%

and c is again the constant appearing in Theorem 1.1. We consider the function h(·)
defined for all those λ such that Qλr ⊂ ΩT ; observe that the domain of definition of
h(·) includes [1,∞) as Qλr ⊂ Qr ⊂ ΩT when λ ≥ 1. Again, observe that h(·) is a
continuous function and moreover h(1) < 0 as c > 1. On the other hand, observe
that

lim
λ→∞

h(λ) ≥ lim
λ→∞

λ− cλ
p−2
p−1B =∞ ,

where

B :=

(∫
Qr

(|Du|+ s+ 1)p−1 dx dt

)1/(p−1)

+

∫ 2r

0

(
|µ|(Q%)
%n+1

)1/(p−1)
d%

%
.

It follows that there exists a number λ > 1 such that h(λ) = 0, that is λ solves
(1.14) with

β =

(∫
Qλr

(|Du|+ s+ 1)p−1 dx dt

)1/(p−1)

= λ
p−2
p−1

(
1

|Qr|

∫
Qλr

(|Du|+ s+ 1)p−1 dx dt

)1/(p−1)

.

Therefore we can apply Theorem 1.1 and (1.16) gives

(1.22) λ+ |Du(x0, t0)| ≤ 2cβ + 2c

∫ 2r

0

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)
d%

%
.

On the other hand, observe that by Young’s inequality with conjugate exponents
((p− 1)/(p− 2), p− 1) we have

2cβ ≤ λ

4
+

c̃

|Qr|

∫
Qλr

(|Du|+ s+ 1)p−1 dx dt

≤ λ

4
+ c̃

∫
Qr

(|Du|+ s+ 1)p−1 dx dt

where we have also used that Qλr ⊂ Qr as λ > 1, and c̃ depends only on n, p, ν, L.
Similarly, observe that

(1.23) 2c

∫ 2r

0

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)
d%

%
≤ λ

4
+ c̃

[∫ 2r

0

(
|µ|(Q%)
%n+1

)1/(p−1)
d%

%

]p−1

,

where again c̃ ≡ c̃(n, p, ν, L). The last two inequalities and (1.22) yield (1.21). �

Finally, when µ is time independent, or admits a favorable decomposition, it is
possible to get rid of the intrinsic geometry effect in the potential terms. The main
point is that we avoid the loss in the right hand side caused by the rough estimate

|µ|(Qλ%) ≤ |µ|(Q%) , for λ ≥ 1 ,
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used in the proof of Theorem 1.2 (which is anyway the best possible in that gener-
ality). We indeed go back to the elliptic regime; the result is in the next theorem.

Theorem 1.3 (Elliptic-Parabolic Wolff potential bound). Let u be a solution to
(1.1) such that Du is continuous in ΩT and (1.25) holds. Assume that the measure
µ satisfies

|µ| ≤ µ0 ⊗ f ,
where f ∈ L∞(−T, 0) and µ0 is a Borel measure on Ω with finite total mass; here
the symbol × stands for the usual tensor product of measures. Then there exists a
constant c, depending only on n, p, ν, L, such that

(1.24) |Du(x0, t0)| ≤ c
∫
Qr

(|Du|+ s+ 1)p−1 dx dt+ c‖f‖1/(p−1)
L∞ Wµ0

1/p,p(x0, 2r)

whenever Q2r(x0, t0) ≡ B(x0, 2r) × (t0 − 4r2, t0) ⊂ ΩT is a standard parabolic
cylinder having (x0, t0) as vertex. The (elliptic) Wolff potential Wµ0

1/p,p is defined

in (1.4).

Proof. Proceed as for Theorem 1.2 until estimate (1.23); this has in turn to be
replaced by∫ 2r

0

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)
d%

%
≤ ‖f‖1/(p−1)

L∞

∫ 2r

0

(
|µ0|(B%(x0))

%n−1

)1/(p−1)
d%

%

= ‖f‖1/(p−1)
L∞ Wµ0

1/p,p(x0, 2r)

and (1.24) follows. �

1.4. Approximation, a priori estimates, and regularity assumptions. Fol-
lowing a traditional custom in regularity theory, Theorems 1.1-1.3 have been given
in the form of a priori estimates for more regular solutions and problems. This
means that when treating equations as (1.1), we are considering energy solutions
i.e. u ∈ Lp(−T, 0;W 1,p(Ω)) such that Du is continuous in ΩT , while the measure
µ will be considered as being actually an integrable function:

(1.25) µ ∈ L1(Rn+1) .

This is by no means restrictive in view of the available approximation and exis-
tence theory. Indeed, as described in the pioneering paper [4] (see also [19, 20]),
distributional solutions u ∈ Lp−1(−T, 0;W 1,p−1(Ω)) to Cauchy-Dirichlet problems
involving equations as (1.1) - with µ being now a general Borel measure with fi-
nite total mass - are found via approximation as limits of solutions to suitably
regularized problems

(1.26) (uh)t − div a(Duh) = µh ∈ C∞ .

Here we have uh ∈ Lp(−T, 0;W 1,p(Ω)), uh → u in Lp−1(−T, 0;W 1,p−1(Ω)) and
µh → µ weakly* in the sense of measures. The approximating measures are canoni-
cally obtained by convolution (see for instance [35, Chapter 5]) and in the parabolic
case the natural procedure is to take the so called parabolic convolution (using mol-
lifiers backward in time). This motivates the following:

Definition 1 ([4, 19, 20]). A SOLA (Solution Obtained as Limits of Approxima-
tions) to (1.1) is a distributional solution u ∈ Lp−1(−T, 0;W 1,p−1(Ω)) to (1.1) in
ΩT , such that u is the limit of solutions uh ∈ Lp(−T, 0;W 1,p(Ω)) of equations as
(1.26), in the sense that uh → u in Lp−1(−T, 0;W 1,p−1(Ω)), L∞ 3 µh → µ weakly*
in the sense of measures and such that

(1.27) lim sup
h

|µh|(Q) ≤ |µ|(bQcpar)
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for every cylinder Q = B × (t1, t2) ⊆ ΩT , where B ⊂ Ω is a bounded open subset.

We refer to (2.3) below for the definition of parabolic closure of Q, that is bQcpar;
the property in (1.27) is typically satisfied when approximating, in a standard way,
µ via convolution with backward-in-time mollifiers. SOLAs are actually the class of
solutions which are commonly employed in the literature, since all general existence
theorems are based on approximation methods; we refer to [5, 4, 12, 20, 37] for a
comprehensive discussion. We also remark that, in general, distributional solutions
to measure data problems do not belong to Lp(−T, 0;W 1,p(Ω)) and for this reason
they are called very weak solutions; moreover, the uniqueness problem, i.e. finding a
function class where solutions are unique, is still open – already in the elliptic case.
Also SOLAs are not known to be unique but in special cases (see the discussion in
[2, 4, 6, 18, 38]).

The validity of Theorems 1.1-1.3 for a SOLA now follows applying their “a priori”
versions to Duh in a suitable way, see Section 4.3 below. Summarizing, we have

Theorem 1.4. The statements of Theorems 1.1-1.3 remain valid for SOLA u ∈
Lp−1(−T, 0;W 1,p−1(Ω)) to (1.1) whenever (x0, t0) is a Lebesgue point of Du.

We also remark that the previous theorem continues to hold for a local SOLA,
in the sense that we can consider local approximations methods, and solutions u
which are such that u ∈ Lp−1

loc (−T, 0;W 1,p−1
loc (Ω)); see [19, 20].

1.5. Comparison with the Barenblatt solution. A standard quality test for
regularity estimates in degenerate parabolic problems consists of measuring the
extent they allow to recast the behavior of the Barenblatt, fundamental solution;
see for instance [10, Chapter 11] ad [20, 42]. Here we show that this is the case
for Theorem 1.1 and concentrate on the case p > 2. The Barenblatt solution is an
explicit very weak solution to

ut − div (|Du|p−2Du) = δ,

in the whole Rn+1, the measure δ being the Dirac delta function charging the origin
and cb is a suitable normalizing constant depending only on n, p, and its expression
is

Bp(x, t) =


t−n/θ

(
cb − θ1/(1−p) p− 2

p

(
|x|
t1/θ

)p/(p−1)
)(p−1)/(p−2)

+

t > 0

0 t ≤ 0 .

Here θ = n(p− 2) + p and cb ≡ cb(n, p) is a renormalizing constant such that∫
Rn
Bp(x, t) dx = 1

for all t > 0. A direct computation reveals that the gradient of Bp(x, t) satisfies the
estimate

(1.28) |DBp(x0, t0)| ≤ ct−(n+1)/θ
0

whenever (x0, t0) ∈ Rn × (0,∞); in turn this prescribes the blow-up behavior at
the origin of the fundamental solution, which is typical of a situation where a Dirac
measure appears. What it matters here is that Theorem 1.1 (used with s = 0, of
course) allows to recast, quantitatively, the bound in (1.28) for a SOLA to general
degenerate nonlinear equations and this tells that the intrinsic formulation given
there is the correct one.

Theorem 1.5. Let u be a SOLA to the equation

ut − div a(Du) = δ
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in Rn+1, under the assumptions (1.3) with s = 0 and p > 2, and assume that
u ∈ Lp−1(−∞, T ;W 1,p−1(Rn)), for every T > 0. Then there exists a constant
c ≡ c(n, p, ν, L) such that

(1.29) |Du(x0, t0)| ≤ ct−(n+1)/θ
0 , θ = n(p− 2) + p ,

holds for every Lebesgue point (x0, t0) ∈ Rn × (0,∞) of Du.

Proof. Take (x0, t0) ∈ Rn × (0,∞) to be a Lebesgue point of Du; notice that

(1.30) Ap−1
r (λ) :=

1

|Qr(x0, t0)|

∫
Qλr (x0,t0)

|Du|p−1 dx dt→ 0

uniformly in λ ∈ (0,∞), as r →∞ for all x0 ∈ Rn, t0 > 0. For λ > 0 define rt0 via
λ2−pr2

t0 = t0 that is rt0 = λ(p−2)/2
√
t0, so that we have∫ ∞

0

(
δ(Qλ%(x0, t0))

λ2−p%n+1

)1/(p−1)
d%

%
=

∫ ∞
λ(p−2)/2

√
t0

(
1

λ2−p%n+1

)1/(p−1)
d%

%

= c(n, p)λγt
−(n+1)/[2(p−1)]
0 ,(1.31)

where γ := [1− (n+ 1)/2](p− 2)/(p− 1) < 0. With c being the constant appearing
in Theorem 1.1, now define, for λ > 0 and r > 1 the function hr : (0,∞)→ R as

hr(λ)

:= λ− cλ(p−2)/(p−1)Ar(λ)− c
∫ r

0

(
δ(Qλ%(x0, t0))

λ2−p%n+1

)1/(p−1)
d%

%

= λ− cλ(p−2)/(p−1)Ar(λ)− cmax

{∫ r

λ(p−2)/2
√
t0

(
1

λ2−p%n+1

)1/(p−1)
d%

%
, 0

}
≥ λ− cλ(p−2)/(p−1)Ar(λ)− c̃λγt−(n+1)/[2(p−1)]

0 ,(1.32)

so that hr(λ) → ∞ as λ → ∞ (recall (1.30)). On the other hand, hr(·) stays
negative close to zero and therefore there exists a solution λ ≡ λr > 0 of hr(λr) = 0,
that is a root of (1.14) with(∫

Qλrr

|Du|p−1 dx dt

)1/(p−1)

= β = λ(p−2)/(p−1)
r Ar(λr) .

Observe that the numbers Ar(λr) are uniformly bounded whenever r > 1 by (1.30),
and therefore the relation

λr ≤ cλ(p−2)/(p−1)
r Ar(λr) + c1λ

γ
r t
−(n+1)/[2(p−1)]
0

≤ λr
4

+ c(p)[Ar(λr)]
p−1 + c1λ

γ
r t
−(n+1)/[2(p−1)]
0

which is a consequence of (1.32) and of hr(λr) = 0, implies that the numbers λr are
uniformly bounded for r > 1. On the other hand, by Theorem 1.1 (in the version
for SOLA) and the previous inequality we have

|Du(x0, t0)|1−γ ≤ λ1−γ
r ≤ c[Ar(λr)]p−1λ−γr + ct

−(n+1)/[2(p−1)]
0 .

Letting r →∞ in the previous inequality (recall that γ < 0) by (1.30) we obtain

|Du(x0, t0)|1−γ ≤ ct−(n+1)/[2(p−1)]
0

and (1.29) follows as (n+ 1)/[2(p− 1)(1− γ)] = (n+ 1)/θ. �
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Remark 1.4. Notice that in the previous proof it is sufficient to assume that
u ∈ Lp−1

loc (R;W 1,p−1
loc (Rn)) (so that we have a local SOLA) and that (1.30) holds.

Notice that (1.30) in particular holds for the Barenblatt solution and indeed this is
a general fact typical of solutions u to Cauchy problems whenever the initial trace
of u is compactly supported, i.e. that the source term is concentrated on t = 0 and
has a compact support. See for example [10, Chapter 11, Theorem 2.1] and [29].

1.6. Techniques employed, and plan of the paper. The proof of Theorem 1.1
is rather delicate and involved, and employs and extends virtually all the known as-
pects of the gradient regularity theory for evolutionary p-Laplacean type equations.
Some very hidden details are actually needed. Indeed, a preliminary part of the
proof deals with a rather wide revisitation of DiBenedetto & Friedman’s regularity
theory of the gradient of solutions to the p-Laplacean system

(1.33) wt − div (|Dw|p−2Dw) = 0

developed in [11] and explained in detail in [10]. Here comes a first difficulty: the
Hölder continuity proofs given in [10, 11] are actually suited for the special structure
in (1.33) and cannot be extended to general equations if not of the special form

(1.34) wt − div (g(|Dw|)Dw) = 0 , g(|Dw|) ≈ |Dw|p−2 .

The point that makes such proofs very linked to the structure in (1.34) is that
they are actually based on a linearization process, which do not extend to general
structures, as

(1.35) wt − div a(Dw) = 0 .

On the other hand, the methods in [10] are devised to work directly for the case of
the p-Laplacean system. While Hölder continuity of the gradient has been proved
assuming a regular boundary datum [30], the literature does not contain a proof of
right form of the gradient Hölder continuity a priori estimates that are needed to
develop in turn potential estimates in the elliptic case for general equations as in
(1.35) featuring the needed a priori local estimates to work in the framework of a
suitable perturbation techniques.

A peculiarity of our approach is indeed in the following: since we are dealing in
the most general case with problems involving measure data, we need to deal with
estimates below the natural growth exponent. Actually, in some cases solutions
are not even such that Du ∈ L2 (or at least no uniform control is achievable
for the quantities ‖Du‖L2 in the corresponding approximation processes). On the
other hand, in our setting we shall need a priori estimates where the “natural
integrability space” for the (spatial) gradient here is Lp−1. For this reason, even
when considering the model case (1.33), the a priori estimates available in [10, 11]
do not suffice for our purposes, and another path must be taken. To overcome such
points we revisit the Hölder regularity gradient theory available and extend it to
the case of general homogeneous equations as (1.35). This is done in Section 3 and
has two main outcomes. The first is Theorem 3.1 below, which is a fundamental
block in the proof of the potential estimates and provides a “homogeneous” decay
estimate for the excess functional

Eq(Dw,Q
λ
r ) :=

(∫
Qλr

|Dw − (Dw)Qλr |
q dx dt

)1/q

, q ≥ 1

in an intrinsic cylinder Qλr . Note that the exponent q is arbitrary and not necessary
linked in any particular way to p. The main assumption (3.4) serves to consider
a nondegenerate condition that ensures the possibility of a homogeneous decay
estimate when the equation is considered in an intrinsic cylinder Qλr . The second
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outcome is Theorem 3.2 below, that features a quantitative estimate that will play
an important role in the proof of the main potential estimate in Theorem 1.1.

After this preliminary section we pass to the proof of Theorem 1.1. The first step
is the derivation of a few local comparison estimates between the solution consid-
ered u, and solutions of homogenous equations, again on intrinsic cylinders. This
serves to start the iteration mechanism leading to the desired potential estimates.
The proof of Theorem 1.1 is now rather delicate, and rests on an iteration proce-
dure combined with an exit time argument devised to rule out possible degenerate
behaviors of the equation and ultimately allowing to use Theorem 3.1. The essence
is the following: either the gradient Du stays bounded from above by some fraction
of λ on every scale of a suitable chain of shrinking nested intrinsic cylinders

(1.36) · · · ⊂ Qλri+1
⊂ Qλri ⊂ Q

λ
ri−1
⊂ · · ·

and then the proof is finished, or otherwise this does not happen. In this case
we start arguing from the exit time - i.e. the first moment the bound via the
fraction of the potential fails when considering such a chain. We have then that
the gradient stays above a certain fraction of the potential at every scale, and this
helps to rule out possible degenerate behaviors. Ultimately, this allows to verify
the applicability conditions of Theorem 3.1 by using L∞ gradient a priori estimates
for related homogenous equations on Qλri , that in turn homogenize since we are on
intrinsic cylinders. This allows us to proceed with the iteration. A main difficulty
at this stage is that all this must be realized in a suitable intrinsic scale that is in
the sequence considered in (1.36), where λ is the one appearing in (1.16); therefore
the choice of the intrinsic scale must be done a priori. Here a very delicate and
subtle balance must be realized between the speed of the shrinking of the cylinders

ri+1

ri
= δ1 ∈ (0, 1)

and the constant c appearing in (1.14), and therefore in the chain (1.36) via λ (see
(4.20) below). One of the crucial points of the proof is that both δ1 and c must in
the end depend only on n, p, ν, L, and such a choice must be done a priori in a way
that makes later possible the application of Theorem 3.1 in the context of the exit
time argument employed, avoiding dangerous vicious circles.

We would like to finally remark that the techniques introduced in this paper are
the starting point for further developments: the subquadratic case can be treated
too (see [25]) while new perturbation methods for parabolic systems can be imple-
mented [28].

The main results of this paper have been announced in the Nota Lincea [23]; see
also [38] for further announcements and related results.

2. Main notation and definitions

In what follows we denote by c a general positive constant, possibly varying from
line to line; special occurrences will be denoted by c1, c2 etc; relevant dependencies
on parameters will be emphasized using parentheses. All such constants, with ex-
ception of the constant in this paper denoted by c0, will be larger or equal than one.
We also denote by

B(x0, r) := {x ∈ Rn : |x− x0| < r}
the open ball with center x0 and radius r > 0; when not important, or clear from
the context, we shall omit denoting the center as follows: Br ≡ B(x0, r). Unless
otherwise stated, different balls in the same context will have the same center. We
shall also denote B ≡ B1 = B(0, 1) if not differently specified. In a similar fashion
we shall denote by

Qr(x0, t0) := B(x0, r)× (t0 − r2, t0)
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the standard parabolic cylinder with vertex (x0, t0) and width r > 0. When the
vertex will not be important in the context or it will be clear that all the cylinders
occurring in a proof will share the same vertex, we shall omit to indicate it, simply
denoting Qr. With λ > 0 being a free parameter, we shall often consider cylinders
of the type

(2.1) Qλr (x0, t0) := B(x0, r)× (t0 − λ2−pr2, t0) .

These will be called “intrinsic cylinders” as they will be usually employed in a
context when the parameter λ is linked to the behavior of the solution of some
equation on the same cylinder Qλr . Again, when specifying the vertex will not
be essential we shall simply denote Qλr ≡ Qλr (x0, t0). Observe that the intrinsic
cylinders reduce to the standard parabolic ones when either p = 2 or λ = 1. In
the rest of the paper λ will always denote a constant larger than zero and will be
considered in connection to intrinsic cylinders as (2.1). We shall often denote

δQλr (x0, t0) ≡ Qλδr(x0, t0) = B(x0, δr)× (t0 − λ2−pδ2r2, t0)

the intrinsic cylinder with width magnified of a factor δ > 0. Finally, with Q =
A× (t1, t2) being a cylindrical domain, we denote by

(2.2) ∂parQ := A× {t1} ∪ ∂A× (t1, t2)

the usual parabolic boundary of Q, and this is nothing else but the standard topo-
logical boundary without the upper cap A×{t2}. Accordingly, we shall denote the
prabloic closure of a set as

(2.3) bQcpar := Q ∪ ∂parQ .

With O ⊂ Rn+1 being a measurable subset with positive measure, and with
g : O → Rn being a measurable map, we shall denote by

(g)O ≡
∫
O
g(x, t) dx dt :=

1

|O|

∫
O
g(x, t) dx dt

its integral average; of course |O| denotes the Lebesgue measure of O. A similar
notation is adopted if the integral is only in space or time. In the rest of the paper
we shall use several times the following elementary property of integral averages:

(2.4)

(∫
O
|g − (g)O|q dx dt

)1/q

≤ 2

(∫
O
|g − γ|q dx dt

)1/q

,

whenever γ ∈ Rn and q ≥ 1. The oscillation of g on A is instead defined as

osc
O

g := sup
(x,t),(x0,t0)∈O

|g(x, t)− g(x0, t0)| .

Given a real valued function h and a real number k, we shall denote

(h− k)+ := max{h− k, 0} and (h− k)− := max{k − h, 0} .
In this paper by a (local) weak solution to (1.1) we shall mean a function

(2.5) u ∈ C0(−T, 0;L2(Ω)) ∩ Lp(−T, 0;W 1,p(Ω))

such that

(2.6) −
∫

ΩT

uϕt dx dt+

∫
ΩT

〈a(Du), Dϕ〉 dx dt =

∫
ΩT

ϕdµ

holds whenever ϕ ∈ C∞c (ΩT ). As in this paper we are considering only a priori
estimates (see the discussion in Section 1.4) we shall restrict ourselves to examine
the case when µ is an integrable function. Notice that by density the identity (2.6)

remains valid whenever ϕ ∈ W 1,p
0 (ΩT ) has compact support. We recall that here

Du stands for the spatial gradient of u: Du = (uxi)1≤i≤n.
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Remark 2.1 (Warning for the reader). When dealing with parabolic equations, a
standard difficulty in using test functions arguments involving the solution is that
we start with solutions that, enjoying the regularity in (2.5), do not have in general
time derivatives in any reasonable sense. There are several, by now standard,
ways to overcome this point, for instance using a regularization procedure via so-
called Steklov averages. See for instance [10, Chapter 2] for their definition and
their standard use. In this paper, in order to concentrate the attention only on
significant issues and to skip irrelevant details, and following a by now standard
custom (see for instance [11]), we shall argue on a formal level, that is assuming
when using test functions argument, that the solution has square integrable time
derivatives. Such arguments can easily be made rigorous using in fact Steklov
averages as for instance in [10]. We shall remark anyway this thing in other places
in the paper, when regularizations procedures will be needed and we will instead
proceed formally.

With s ≥ 0 being the one defined in (1.3), we define

(2.7) V (z) = Vs(z) := (s2 + |z|2)
p−2
4 z , z ∈ Rn ,

which is easily seen to be a locally bi-Lipschitz bijection of Rn. For basic properties
of the map V (·) we refer to [35, Section 2.2] and related references. The strict
monotonicity properties of the vector field a(·) implied by the left hand side in (1.3)2

can be recast using the map V . Indeed there exist constants c, c̃ ≡ c, c̃(n, p, ν) ≥ 1
such that the following inequality holds whenever z1, z2 ∈ Rn:

(2.8) c̃−1|z2 − z1|p ≤ c−1|V (z2)− V (z1)|2 ≤ 〈a(z2)− a(z1), z2 − z1〉 .

3. Gradient Hölder theory and homogeneous decay estimates

In this section we concentrate on homogeneous equations of the type

(3.1) wt − div a(Dw) = 0

in a given cylinder Q = B × (t1, t2), where B ⊂ Rn is a given ball. The degree of
initial regularity of the solution considered is given by the usual energy function
spaces

(3.2) w ∈ C0(t1, t2;L2(B)) ∩ Lp(t1, t2;W 1,p(B)) .

Most of the times we shall consider such equations defined in suitably intrinsic
cylindersQλr . More precisely, without specifying this all the times, on every occasion
we are dealing with a function named w and an intrinsic cylinder as Qλr , it goes
without saying that w solves (3.1) on Qλr . In the following, we shall denote

‖Dw(x, t)‖ := max
i
|wxi(x, t)|

which is equivalent to the usual norm of Du defined by |Dw|2 :=
∑
|wxi |2 via the

obvious relations

(3.3) ||Dw|| ≤ |Dw| ≤
√
n||Dw|| .

Moreover, everywhere in the following, when considering the sup operator we shall
actually mean esssup. The main result of this section is

Theorem 3.1. Suppose that w is a weak solution to (3.1) in Qλr and consider
numbers

A,B, q ≥ 1 and ε ∈ (0, 1) .
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Then there exists a constant δε ∈ (0, 1/2) depending only on n, p, ν, L,A,B, ε
but otherwise independent of s, q, of the solution w considered and of the vector
field a(·), such that if

(3.4)
λ

B
≤ sup
Qλδεr

‖Dw‖ ≤ s+ sup
Qλr

‖Dw‖ ≤ Aλ

holds, then

(3.5) Eq(Dw, δεQ
λ
r ) ≤ εEq(Dw,Qλr )

holds too, where Eq denote the excess functional

(3.6) Eq(Dw,Q
λ
%) :=

(∫
Qλ%

|Dw − (Dw)Qλ% |
q dx dt

)1/q

, % ≤ r .

Moreover, (3.5) remains true replacing δε by a smaller number δ, and δε is a non-
decreasing function of ε, 1/A and 1/B.

The proof of the previous result is in Section 3.3 below. The main novelty in
Theorem 3.1 is the following. It is readily seen that equations as (3.1) are not
homogeneous as long as p 6= 2; in other words, by multiplying a solution w by a
constant c > 0 , we do not get solutions to a similar equation. The main drawback
of this basic phenomenon is the lack of homogeneous regularity estimates. In fact,
we shall see that basically all the a priori estimates of solutions involve a scaling
deficit - in general the exponent p/2 or p − 1 as for instance in (1.21) - which
reflects the anisotropicity of the problem in question and prevents the estimates
to be homogeneous. On the other hand, the iteration method we are going to
exploit for the proof of Theorem 1.1 necessitates homogeneous decay estimates for
the excess functional. The key will be then to implement a suitable iteration based
on intrinsic cylinders in a way that (3.5) will be satisfied and the iteration will only
involve homogeneous estimates. Ultimately, Theorem 3.1 reproduces in the case
p 6= 2 the homogeneous decay estimates known for the case p = 2, and indeed in
this case Theorem 3.1 is known to hold without assuming conditions as (3.4). The
novelty here, as in the whole paper, is for the case p > 2.

The proof of Theorem 3.1 will take several steps. A delicate revisitation of the
gradient Hölder continuity estimates derived in [10] is presented in the next section,
and it differs from the usual ones in two important respects. First, the proof holds
for general parabolic equations, and not only for those having the quasidiagonal
structure in (1.34). Indeed, we notice that large parts of the proof given in [10]
heavily uses this fact to implement a linearization procedure which is impossible
to implement for general structures as in (1.1). Second, estimates proposed here
involve integrals below the natural growth exponents, and work directly using the
Lq norms whenever q > 1 - compare with the definition of Eq(·) in Theorem 3.1.
This point, in turn, requires delicate estimates and it is crucial since we are dealing
with a priori estimates for equations involving measure data.

Remark 3.1. When proving Theorem 3.1 we shall argue under the additional
assumption

(3.7) s > 0 .

This is by no mean restrictive. Indeed, by a simple approximation argument - see
Section 3.6 below - it is possible to reduce to such a case as the previous inequality
will not play any role in the quantitative estimates. It will only be used to derive
qualitative properties of solutions, and, ultimately, to use that in this case Dw is
differentiable in space (see (3.16) below). For this reason, and in order to emphasize
these facts, we shall in several point of this Section give the proof directly in the
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general case s ≥ 0, and this will in particular happen in Section 3.2, where we find
the only point where a small difference occurs between the case s = 0 and the one
s > 0 in the a priori estimates. This proof is intended to be formal when s = 0,
this case being indeed later justified by approximation. In particular, we make
this choice also in order to keep in Theorem 3.2, the treatment close to that of
DiBenedetto [10], since we shall refer to this work to use a few arguments thereby
developed.

3.1. Basic Gradient Hölder continuity estimates. Theorem 3.1 is basically a
consequence of a series of intermediate lemmas allowing to reduce the oscillations
of Dw when shrinking intrinsic cylinders. In this section w denotes a solution to
(3.1) in a cylinder of the type Qλr ≡ Q, enjoying the regularity indicated in (3.2).
Moreover, as already observed in Remark 3.1, due to a standard approximation pro-
cedure in this Section we may assume that the equation in (3.1) is nondegenerate,
that is, (3.7). In the following we shall use the standard notation

(3.8) ‖v‖2V 2(Q) := sup
t1<t<t2

∫
B

|v(x, t)|2 dx+

∫
Q

|Dv(x, t)|2 dx dt

whenever we are considering a cylinder of the type Q = B × (t1, t2). The space
V 2(Q) is the defined by all those L2(t1, t2;W 1,2(B)) functions v such that the pre-

vious quantity is finite. Moreover we denote V 2
0 (Q) = V 2(Q)∩L2(t1, t2;W 1,2

0 (B)).
The following Poincaré type inequality is then classical (see [10, Chapter 1, Corol-
lary 3.1]):

(3.9) ‖v‖2L2(Q1) ≤ c(n)|{|v| > 0} ∩Q1|2/(n+2)‖v‖2V 2(Q1)

and holds for all functions v ∈ V 2
0 (Q1), where Q1 = B1 × (−1, 0).

Proposition 3.1. Assume that

(3.10) s+ sup
Qλr

‖Dw‖ ≤ Aλ

holds for some constant A ≥ 1. There exists a number σ ≡ σ(n, p, ν, L,A) ∈ (0, 1/2)
such that if

(3.11)
|{(x, t) ∈ Qλr : wxi(x, t) < λ/2}|

|Qλr |
≤ σ

holds for some i ∈ {1, . . . , n}, then

wxi ≥
λ

4
a.e. in Qλr/2 .

Proof. Step 1: Rescaling. Without loss of generality we shall assume that the vertex
of the cylinder coincides with the origin. We now make the standard intrinsic scaling
by defining

(3.12) v(x, t) :=
w(rx, λ2−pr2t)

r
, (x, t) ∈ Q1

so that the newly defined function v solves

(3.13) λp−2vt − div a(Dv) = 0 .

From now on all the estimates will be recast in terms of the function v. Notice that
with the new definition we still have

(3.14) s+ ‖Dv‖L∞(Q1) ≤ Aλ

and assumption (3.11) translates into

|{(x, t) ∈ Q1 : vxi(x, t) < λ/2}| ≤ σ|Q1| .
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Our next aim is to show that

(3.15) vxi ≥
λ

4
a.e. in Q1/2 .

The statement of the Proposition will then follow by scaling back to w.
Step 2: Iteration. In the following we shall proceed formally, all the details can

be justified using Steklov averages [10]. We start by differentiating equation (3.13)
in the xi-direction; this is possible since (3.7) is in force and it turns out that

(3.16) Dv ∈ L2
loc(−1, 0;W 1,2

loc (B,Rn)) ∩ C0(−1, 0;L2
loc(B1,Rn)) .

The details can be found in [10, Chapter 8, Section 3]. Therefore, we obtain that
vxi solves the following linear parabolic equation:

(3.17) λp−2(vxi)t − div Ã(x, t)Dvxi = 0 , where Ã(x, t) := ∂a(Dv(x, t)) .

The standard Caccioppoli’s inequality for linear parabolic equations is now

sup
−1<t<0

λp−2

∫
B1

(vxi − k)2
−η

2(x, t) dx

+

∫
Q1

(|Dv|2 + s2)
p−2
2 |D(vxi − k)−|2η2 dx dt

≤ cλp−2

∫
Q1

(vxi − k)2
−η|ηt| dx dt

+c

∫
Q1

(|Dv|2 + s2)
p−2
2 (vxi − k)2

−|Dη|2 dx dt

+cλp−2

∫
B1

(vxi − k)2
−η

2(x,−1) dx(3.18)

for a constant c depending only on n, p, ν, L; here k ≥ 0 and η ∈ C∞(Q1) is a
nonnegative cut-off function which vanishes on the lateral boundary ofQ1. Estimate
(3.18) can be obtained by testing (3.17) with (vxi−k)−η

2, and then arguing exactly
as in [10, Chapter 2, Proposition 3.1]; it is necessary to observe here that the

following inequalities are satisfied for all ξ ∈ Rn by Ã(x, t) as a consequence of
(1.3):

(3.19)

 ν(s2 + |Dv(x, t)|2)(p−2)/2|ξ|2 ≤ 〈Ã(x, t)ξ, ξ〉

|Ã(x, t)| ≤ L(s2 + |Dv(x, t)|2)(p−1)/2 .

We now let k0 = λ/2 and for any integer m ≥ 0 we define

km := k0 −
H

8(1 +A)

(
1− 1

2m

)
, H := sup

Q1

(vxi − k0)− .

Obviously {km} is a decreasing sequence. For later convenience we also define the
nonnegative cut-off function ηm ∈ C∞(Qm), where

Qm := Q%m %m :=
1

2
+

1

2m+1
, m ≥ 0 ,

and in such a way that

(3.20) 0 ≤ ηm ≤ 1 , |Dηm|2 + |(ηm)t| ≤ c(n)4m , ηm ≡ 1 on Qm+1 .

Of course ηm is such that it vanishes outside Qm and continuously on the parabolic
boundary of Qm. Notice that Q%0 = Q1 and Qm → Q1/2. Let us preliminary
observe that we may assume that

(3.21) 4H ≥ λ .
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Indeed, we would otherwise have H < λ/4 that means

sup
Q1

(vxi − k0)− = λ/2− inf
Q1

vxi <
λ

4
,

which immediately implies (3.15). Therefore we can assume that (3.21) holds.
Moreover, by (3.21), we notice that for every m ≥ 1 it holds that

(3.22) km − km+1 =
H

2m+4(1 +A)
≥ λ

2m+6(1 +A)
,

and

(3.23) km ≥
λ

4
, km → k∞ := k0 −

H

8(1 +A)
>
λ

4
.

Indeed, observe that (3.14) implies

H

8(1 +A)
≤ (λ/2 +Aλ)

8(1 +A)
<
λ

4
.

Now, let us set, again for m ≥ 0

Am := {(x, t) ∈ Qm : vxi < km} ,

and define the truncated function

ṽm :=


0 if vxi > km

km − vxi if km ≥ vxi > km+1

km − km+1 if vxi ≤ km+1 .

We have, as ηm ≡ 1 on Qm+1, that

λp−2(km − km+1)2|Am+1| = λp−2‖ṽm‖2L2(Am+1)

≤ λp−2‖ṽm‖2L2(Qm+1)

≤ λp−2‖ṽmηm‖2L2(Qm)

≤ cλp−2‖ṽmηm‖2V 2(Qm)|Am|
2/(n+2) .(3.24)

In the last line we have applied inequality (3.9) to the function ṽmηm, which obvi-
ously non-negative; in this respect notice that

|{ṽmηm > 0} ∩Qm| ≤ |{ṽm > 0} ∩Qm| = |Am| .

Then, observing that

ṽm ≤ (vxi − km)− , |Dṽm| ≤ |D(vxi − km)−|χQ1\{vxi<km+1} ,

where χQ1\{vxi<km+1} denotes the characteristic function of the set Q1 \ {vxi <
km+1}, we have, using the definition in (3.8), that

λp−2‖ṽmηm‖2V 2(Qm) ≤ λp−2‖ṽmηm‖2V 2(Q1)

≤ sup
−1<t<0

λp−2

∫
B1

(vxi − km)2
−η

2
m(x, t) dx

+λp−2

∫
Q1

|D(vxi − km)−|2χQ1\{vxi<km+1}η
2
m dx dt

+λp−2

∫
Q1

(vxi − km)2
−|Dηm|2 dx dt .

Now, notice that by (3.23) we have

λ ≤ 4km+1 ≤ 4vxi ≤ 4|Dv| in Q1 \ {vxi < km+1}
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and, consequently,

λp−2‖ṽmηm‖2V 2(Qm) ≤ sup
−1<t<0

λp−2

∫
B1

(vxi − km)2
−η

2
m(x, t) dx

+c

∫
Q1

(|Dv|2 + s2)
p−2
2 |D(vxi − km)−|2η2

m dx dt

+cλp−2

∫
Q1

(vxi − km)2
−|Dηm|2 dx dt .

Combining the last inequality with (3.18) (obviously written with k ≡ km and
η ≡ ηm), since ηm is supported in Qm, we also infer

λp−2‖ṽmηm‖2V 2(Qm) ≤ cλp−2

∫
Q1

(vxi − km)2
−ηm|(ηm)t| dx dt

+c

∫
Q1

(|Dv|2 + s2)
p−2
2 (vxi − km)2

−|Dηm|2 dx dt

+cλp−2

∫
Q1

(vxi − km)2
−|Dηm|2 dx dt

and finally, using (3.14) and (3.20)

λp−2‖ṽmηm‖2V 2(Qm) ≤ cA
p4mλp|Am| .

This last inequality and (3.24) now give

λp−2(km − km+1)2|Am+1| ≤ c4mλp|Am|1+2/(n+2) ,

where c ≡ c(n, p, ν, L,A). Yet using (3.22) gives

|Am+1| ≤ c10m|Am|1+2/(n+2) ,

for every m ≥ 1, for a constant c still depending only on n, p, ν, L,A. At this stage
by using a standard iteration lemma [10, Chapter 1, Lemma 4.2] we have that there
exists a number σ ≡ σ(n, p, ν, L,A) ∈ (0, 1) such that if

|{(x, t) ∈ Q1 : vxi(x, t) < λ/2}| = |A0| ≤ σ|Q1| ,

then |Am| → 0 and this implies (3.15) by (3.23). The proof is complete. �

The dual version of the previous result is

Proposition 3.2. Assume that (3.10) holds for some constant A ≥ 1. There exists
a number σ ≡ σ(n, p, ν, L,A) ∈ (0, 1/2) such that if

(3.25)
|{(x, t) ∈ Qλr : wxi(x, t) > −λ/2}|

|Qλr |
≤ σ

holds for some i ∈ {1, . . . , n}, then

wxi ≤ −
λ

4
a.e. in Qλr/2 .

Proof. Define w̃ := −w and observe that this solves the equation w̃t−div ã(Dw̃) =
0, where ã(z) := −a(−z). Since the vector field ã(·) still satisfies assumptions
(1.3), we can then obtain Proposition 3.2 by simply applying Proposition 3.1 to w̃.
Needless to say, a direct proof completely similar to the one of Proposition 3.1 is
possible as well. �

Lemma 3.1. Let ṽ ∈ L2(−1, 0;W 1,2(B1)) be a weak solution to the linear parabolic
equation

ṽt − div (B(x, t)Dṽ) = 0 ,
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where the matrix B(x, t) has bounded and elliptic measurable entries, i.e.

ν0|ξ|2 ≤ 〈B(x, t)ξ, ξ〉 , |B(x, t)| ≤ L0

hold whenever ξ ∈ Rn, where 0 < ν0 ≤ L0 are fixed constant. Then there exists a
constant c1 ≡ c1(n, ν0, L0) ≥ 1 such that

(3.26) sup
Q1/2

|ṽ| ≤ c1
(∫

Q1

|ṽ|q dx dt
)1/q

q ∈ [1, 2]

and further two constants c2 ≡ c2(n, ν0, L0) ≥ 1 and β ≡ β(n, ν0, L0) ∈ (0, 1) such
that (∫

Qδ

|ṽ − (ṽ)Qδ |q dx dt
)1/q

≤ c2δβ
(∫

Q1

|ṽ − (ṽ)Q1
|q dx dt

)1/q

holds whenever q ∈ [1, 2] and δ ∈ (0, 1). The above inequalities still holds for
q ∈ (0, 1), with additional dependence of the constants upon q.

Proof. The proof follows the one of [12, Proposition 4.1], where theorem is proved
for the “worst possible case” q = 1 (the case q = 2 being the standard one). The
proof given in [12] adapts to the case q ∈ [1, 2] in a straightforward way. Note that
the constants involved are independent of q as we are assuming that this varies in a
compact interval which stays bounded from zero. Again following [12, Proposition
4.1] it can be observed that the inequalities stated in the Lemma hold for q ∈ (0, 2],
but the resulting constant c depends on q and blows up when q → 0. �

Lemma 3.2. Assume that in the cylinder Qλr it holds that

(3.27) 0 < λ/4 ≤ ||Dw(x, t)|| ≤ s+ ||Dw(x, t)|| ≤ Aλ ∀ (x, t) ∈ Qλr ,
where A ≥ 1. Then there exist constants β ∈ (0, 1) and c ≥ 1, both depending only
on n, p, ν, L,A, such that

(3.28)

(∫
Qλδr

|Dw − (Dw)Qλδr |
q dx dt

)1/q

≤ cδβ
(∫

Qλr

|Dw − (Dw)Qλr |
q dx dt

)1/q

holds whenever δ ∈ (0, 1) and q ≥ 1.

Proof. Let us observe that by standard manipulations it is sufficient to prove the
statement for the case δ ∈ (0, 1/2); from this case the full one δ ∈ (0, 1) follows
after standard manipulations (see Proposition 3.3 below). We start as for the proof
of Proposition 3.1 and rescale everything in the cylinder Q1 as in (3.12), thereby
getting a solution v in Q1 to the equation (3.13). Moreover, by (3.27) it holds that

(3.29) 0 < λ/4 ≤ ||Dv(x, t)|| ≤ s+ ||Dv(x, t)|| ≤ Aλ ∀ (x, t) ∈ Q1 .

Then we differentiate (3.13), thereby obtaining (3.17). Therefore, dividing (3.17)
by λp−2 we see that each component vxi solves

(3.30) (vxi)t − div (B(x, t)Dvxi) = 0 , B(x, t) := λ2−pÃ(x, t) .

By virtue of (3.19) and (3.29) the matrix B(x, t) is uniformly elliptic in the sense
that

(3.31) c−1|ξ|2 ≤ 〈B(x, t)ξ, ξ〉 ≤ c
(
s+ λ

λ

)p−2

|ξ|2 ≤ c|ξ|2

holds whenever ξ ∈ Rn, where c ≡ c(n, p, ν, L,A) ≥ 1. We end the proof by showing
that there exist constants β ∈ (0, 1) and c ≥ 1, both depending only on n, p, ν, L,A,
such that for every q ≥ 1

(3.32)

(∫
Qδ

|vxi − (vxi)Qδ |q dx dt
)1/q

≤ cδβ
(∫

Q1

|vxi − (vxi)Q1
|q dx dt

)1/q
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holds whenever δ ∈ (0, 1/2) and i ∈ {1, . . . , n}. The case q ∈ [1, 2] is a direct con-
sequence of Lemma 3.1. For the case q > 2 we instead argue as follows. Observing
that vxi − (vxi)Qδ is still a solution to (3.30), by (3.26) of Lemma 3.1 for δ ∈ (0, 1)
we have(∫

Qδ/2

|vxi − (vxi)Qδ/2 |
q dx dt

)1/q

≤ 2

(∫
Qδ/2

|vxi − (vxi)Qδ |q dx dt
)1/q

≤ 2 sup
Qδ/2

|vxi − (vxi)Qδ |

≤ c

(∫
Qδ

|vxi − (vxi)Qδ |2 dx dt
)1/2

(3.33)

with c ≡ c(n, p, ν, L,A) ≥ 1. Applying (3.32) with q = 2 and Hölder’s inequality,
we have(∫

Qδ/2

|vxi − (vxi)Qδ/2 |
q dx dt

)1/q

≤ c

(∫
Qδ

|vxi − (vxi)Qδ |2 dx dt
)1/2

≤ cδβ
(∫

Q1

|vxi − (vxi)Q1
|2 dx dt

)1/2

≤ cδβ
(∫

Q1

|vxi − (vxi)Q1 |q dx dt
)1/q

(3.34)

from which (3.32) actually follows for δ ∈ (0, 1/2); by scaling back to w this implies
(3.28) for δ ∈ (0, 1/2), as the index i is arbitrary. Finally, as observed at the
beginning of the proof, if (3.28) holds whenever δ ∈ (0, 1/2), added then it also
holds for δ ∈ (0, 1) (modulo enlarging the constant c of a factor depending on n)
and the proof of (3.28) is finished. �

Summarizing the previous results yields

Proposition 3.3. Assume that (3.10) is in force. There exists a positive number
σ ≡ σ(n, p, ν, L,A) ∈ (0, 1/2) such that if there exists i ∈ {1, . . . , n} for which either
(3.11) or (3.25) holds, then

(3.35)

(∫
Qλδr

|Dw− (Dw)Qλδr |
q dx dt

)1/q

≤ cdδβ
(∫

Qλr

|Dw− (Dw)Qλr |
q dx dt

)1/q

holds whenever δ ∈ (0, 1) for constants β ≡ β(n, p, ν, L,A) ∈ (0, 1) and cd ≡
cd(n, p, ν, L,A) ≥ 1. Moreover, it holds that

(3.36) ||Dw|| ≥ λ

4
a.e. in Qλr/2 .

Proof. If there exists i ∈ {1, . . . , n} for which either (3.11) or (3.25) holds then
Proposition 3.1 or 3.2 applies and hence (3.36) follows immediately. We can there-
fore apply Lemma 3.2 (in the cylinder Qλr/2). As an outcome we get(∫

Qλ
δr/2

|Dw − (Dw)Qλ
δr/2
|q dx dt

)1/q

≤ cδβ
(∫

Qλ
r/2

|Dw − (Dw)Qλ
r/2
|q dx dt

)1/q

whenever δ ∈ (0, 1) and with the dependences of the constants specified in Lemma
3.2. In turn we have that(∫

Qλ
r/2

|Dw − (Dw)Qλ
r/2
|q dx dt

)1/q

≤ 2

(∫
Qλ
r/2

|Dw − (Dw)Qλr |
q dx dt

)1/q
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≤ 2(n+2)/q+1

(∫
Qλr

|Dw − (Dw)Qλr |
q dx dt

)1/q

.

This means we have that (3.35) holds for δ ∈ (0, 1/2). Finally to show that (3.35)
holds for δ ∈ [1/2, 1) one may proceed as in the last group of inequalities, enlarging
again the constant of a factor 2(n+2)/q+1 and the proof is complete. �

The next step deals with a degenerate behavior and analyzes the case ruled out
by the previous Proposition 3.3.

Proposition 3.4. Assume that (3.10) holds, while neither (3.11) nor (3.25) hold
for any i ∈ {1, . . . , n}. Then it is possible to find σ1 ∈ (0, 1) and η ∈ (1/2, 1),
depending only on n, p, ν, L,A, such that

(3.37) ‖Dw‖ ≤ ηAλ a.e. in Qλσ1r .

Proof. As usual, we assume without loss of generality that the vertex of cylinder
Qλr is the origin. The proof closely follows the one for [10, Chapter 9, Proposition
1.2]. We therefore ask the reader to keep track of the various parts of the proof of
[10, Chapter 9, Proposition 1.2] since we shall only report the main modifications.
We divide the rest of the proof in three steps.

Step 1: Rescaling from a good instant. Assume now that none of the conditions
in (3.11) and (3.25) holds; therefore for every i ∈ {1, . . . , n} it happens that

(3.38)
|{(x, t) ∈ Qλr : wxi(x, t) ≥ λ/2}|

|Qλr |
< 1− σ

and

(3.39)
|{(x, t) ∈ Qλr : wxi(x, t) ≤ −λ/2}|

|Qλr |
< 1− σ .

We fix one index i ∈ {1, . . . , n} and argue for wxi referring to (3.38); the same
reasoning will obviously work for the other gradient components. Later on we shall
give the modification necessary for dealing with condition (3.39). Now, proceeding
exactly as in [10, Chapter 9, Lemma 12.1] we have that there exists a time level t∗

(the “good instant”)

(3.40) −λ2−pr2 ≤ t∗ ≤ −σ
2
λ2−pr2

such that
|{x ∈ Br : wxi(x, t

∗) ≥ λ/2}|
|Br|

≤ 1− σ
1− σ/2

.

By scaling we define the new function

v(x, t) :=
w(rx,−t∗t)

rAλ
, (x, t) ∈ Q1 ,

so that

(3.41)
s

Aλ
+ sup

Q1

‖Dv‖ ≤ 1

holds and moreover

|{x ∈ B1 : vxi(x,−1) ≥ 1/(2A)}|
|B1|

≤ 1− σ
1− σ/2

.

A fortiori, as σ < 1/2 and A ≥ 1, we also have

(3.42)
|{x ∈ B1 : vxi(x,−1) ≥ (1− σ)}|

|B1|
≤ 1− σ

1− σ/2
.
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Let us now define

(3.43) ν∗ :=
−t∗

(Aλ)2−pr2
,

so that (3.40) yields

(3.44) σAp−2/2 ≤ ν∗ ≤ Ap−2 .

We moreover define the new vector field

ã(z) :=
ν∗a(Aλz)

(Aλ)p−1
.

It is now straightforward to check that ṽ weakly solves the equation

(3.45) vt − div ã(Dv) = 0 in Q1 .

Moreover the vector field ã(·) satisfies the following ellipticity and growth assump-
tions whenever z, ξ ∈ Rn:

|ã(z)|+ |∂ã(z)|
(
|z|2 +

(
s
Aλ

)2)1/2

≤ ν∗L
(
|z|2 +

(
s
Aλ

)2)(p−1)/2

ν∗ν
(
|z|2 +

(
s
Aλ

)2)(p−2)/2

|ξ|2 ≤ 〈∂ã(z)ξ, ξ〉 .

Step 2: Switch to a nondegenerate regime. Again following [10, Chapter 9,
Section 1.2] we now want to prove that there exists a number η ∈ (1/2, 1), which
can be determined as a functions of the parameters n, p, ν, L,A, such that

(3.46) |{(x, t) ∈ Q1/2 : vxi(x, t) > η}| = 0 .

Scaling back to w by (3.40) this in turn implies

(3.47) |{(x, t) ∈ Qλσr/4 : wxi(x, t) > ηAλ}| = 0 .

In order to prove (3.46) we will re-exploit the strategy for the proof of the similar
statement in [10, Chapter 9, Theorem 12.1], which is in turn based on the use of
logarithmic inequalities and De Giorgi type iterations. More precisely, we again
differentiate equation (3.45) in the xi-direction, thereby obtaining

(3.48) (vxi)t − div Ã(x, t)Dvxi = 0 , where Ã(x, t) := ∂ã(Dv(x, t)) .

The simple remark is to observe that in order to prove (3.46) one may proceed
exactly as in [10, Chapter 9, Theorem 12.1], with z(x, t) replaced by vxi(x, t), and
with equation (3.48) replacing the differential inequality zt − divA∗(x, t)zxi ≤ 0
which is [10, Chapter 9, (12.4)]. The only difference is that while in [10] the matrix

considered is already uniformly elliptic, the matrix Ã(x, t) we are considering in
(3.48) is not (in the sense that the lower bound on the first eigenvalue depends on
s). This point can be anyway easily seen to be inessential when proving (3.46) and
it is in fact possible to adopt here exactly the same treatment proposed in [10].
Indeed, it is sufficient to note that the test functions needed to follow the same
arguments of [10] are essentially

(3.49) Ψ((vxi − k)+) and (vxi − k)+ , k ≥ 1/4 ,

where Ψ is the standard logarithmic function defined in [10, Chapter 2, (3.12)]; see
also (3.51) below. See in particular the choice in [10, Chapter 9, Lemma 12.2]. In
other words all the resulting integral inequalities are supported in sets contained in
{|Dv| ≥ 1/4}. Observe now that on such sets the matrix Ã(x, t) becomes uniformly
elliptic as

ν∗

16(p−2)/2
≤ ν∗

(
|Dv|2 +

( s

Aλ

)2
)(p−2)/2
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≤ 4n(p−2)/2ν∗ on {|Dv| ≥ 1/4} .(3.50)

Here we also used (3.41) and (3.3). Therefore we may proceed as in the case of
standard quadratic equations - exactly as in [10, Chapter 9, Sections 12-13] - getting
the same inequalities of [10] and thereby proving (3.46). It is here important to
note that all the constants involved depend only on n, p, ν, L,A since the number ν∗

appearing in (3.43) and (3.50) depends in turn only on the number σ determined
in Proposition 3.3, which in turn depends only on n, p, ν, L,A. For the reader’s
convenience we give a short road map to the proof, recalling the main steps in [10,
Chapter 9, Sections 12-13]. Inequality (3.42) is exactly the same relation presented
in [10, Chapter 9, (12.6)], therefore, considering as in [10, Chapter 9, Lemma 12.2]
the logarithmic function

(3.51) Ψ(vxi) := log+

[
σ

σ − (vxj − (1− σ))+ + η0

]
with 0 < η0 < σ, we gain the following inequality:∫

Br×{t}
Ψ2(vxi) dx ≤

∫
B1×{−1}

Ψ2(vxi) dx+
c

(1− r)2

∫
Q1

Ψ(vxi) dx dt

for every r ∈ (0, 1) and every t ∈ (−1, 0). The constant c depends only on
n, p, ν, L, ν∗ via (3.50) and ultimately via n, p, ν, L,A by (3.44). The last inequality
is indeed exactly [10, Chapter 9, (12.7)]. We remark that this is a crucial point
where we are using the fact that, thanks to (3.50), the equation (3.48) becomes uni-
formly parabolic when using the one in (3.51) as test function (compare [10, Chapter
2, Proposition 3.2]). At this point we proceed as in [10, Chapter 9, Lemma 13.1]
thereby obtaining that for a proper choice of η0 ≡ η0(n, p, ν, L,A) ∈ (0, σ) we have

|{x ∈ B1 : vxi(x, t) > (1− η0)}|
|B1|

≤ 1− σ2

4
, ∀ t ∈ (−1, 0) .

Finally, from this inequality we can proceed in the proof of [10, Chapter 9, Lemma
13.2, Theorem 12.1], that eventually leads to (3.46). Notice that also this proof
is based on the use of test functions as the second one appearing in (3.49), and
therefore the equation (3.48) becomes uniformly parabolic on the supports selected
by such a truncation test function; recall (3.50).

Step 3: Final size reduction. Observe now that we have proved (3.47) but we
also need to prove that

(3.52) |{(x, t) ∈ Qλσr/4 : wxi(x, t) < −ηAλ}| = 0

to conclude with (3.37). This can be easily observed since we also know that (3.39)
holds for all i ∈ {1, . . . , n}. At this point we may reduce to the case already treated
in Steps 1 and 2 exactly as in Proposition 3.2, that is by passing to −wxi and
reducing to the case (3.38). Finally, all in all we have shown that both (3.47) and
(3.52) hold for every choice of i ∈ {1, . . . , n} and this implies (3.37) with σ1 = σ/4.
Observe that σ ≡ σ(n, p, ν, L,A) is the number determined in Propositions 3.1-3.2
and later occurring in Proposition 3.3; the proof is complete. �

We conclude this section with a result that will come into the play when proving
that estimates are independent of s.

Proposition 3.5. Assume that

(3.53) sup
Qλr

‖Dw‖ ≤ Aλ and γλ ≤ s ≤ γ1Aλ where 0 < γ ≤ γ1 .
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Then

(3.54)

(∫
Qλδr

|Dw−(Dw)Qλδr |
q dx dt

)1/q

≤ c̃dδβ1

(∫
Qλr

|Dw−(Dw)Qλr |
q dx dt

)1/q

holds whenever δ ∈ (0, 1) for constants β1 ≡ β1(n, p, ν, L,A, γ, γ1) ∈ (0, 1) and
c̃d ≡ c̃d(n, p, ν, L,A, γ, γ1) ≥ 1.

Proof. We again start as for the proof of Proposition 3.1 and rescale everything
in the cylinder Q1 as in (3.12), thereby getting a solution v in Q1 to the equation
(3.13). Then we differentiate the equation thereby obtaining (3.17). By dividing
(3.17) by λp−2 we see that each component vxi solves (3.30). This time we use
(3.53) to deduce (3.31) for c ≡ c(n, p, ν, L,A, γ):

c−1|ξ|2 ≡ c−1γp−2|ξ|2 ≤ 〈B(x, t)ξ, ξ〉 ≤ c(1 + γ1)p−2|ξ|2 ≡ c|ξ|2 .

The rest of the proof follows exactly as in Lemma 3.2. �

3.2. Alternatives and Iteration. In this section we streamline the results of the
previous one and organize them in a way that will be useful for the next develop-
ments. When considering an intrinsic cylinder of the type Qλr , i.e. a cylinder such
that

(3.55) s+ sup
Qλr

||Dw|| ≤ Aλ ,

by Propositions 3.3 and 3.4 we have then two possibilities:

• The Nondegenerate Alternative. This means that we can apply Propo-
sition 3.3 and therefore we have that

(3.56)

(∫
Qλδr

|Dw− (Dw)Qλδr |
q dx dt

)1/q

≤ cdδβ
(∫

Qλr

|Dw− (Dw)Qλr |
q dx dt

)1/q

for every δ ∈ (0, 1), where the constants β ≡ β(n, p, ν, L,A) ∈ (0, 1) and
cd ≡ cd(n, p, ν, L,A) ≥ 1 are those defined in Proposition 3.2

• The Degenerate Alternative. In this case we can instead apply Propo-
sition 3.4 and we reduce the size of the gradient in a suitable inner cylinder

sup
Qλσ1r

||Dw|| ≤ ηAλ , η ≡ η(n, p, ν, L,A) ∈ (0, 1)

where σ1 ≡ σ1(n, p, ν, L,A) ∈ (0, 1)

The Degenerate and the Nondegenerate alternative can be combined to obtain
what we shall call the Degenerate Iteration. This describes a situation when the
Degenerate Alternative holds a certain number of times when considering a suitable
chain of shrinking intrinsic cylinders, and therefore the size of the gradient exhibits
a geometric decay. For technical reasons we shall choose a slightly worse decay
parameter η1 ∈ (η, 1) rather that η.

The Degenerate Iteration. By starting with a condition as (3.55) in an
intrinsic cylinder Qλr , following [10] we consider the number η ≡ η(n, p, ν, L,A) ∈
(0, 1) defined in Proposition 3.4 and then define

(3.57) η1 :=
1 + η

2
, so that η < η1 < 1 and η1 − η =

1− η
2

.

Obviously η1 ≡ η1(n, p, ν, L,A) ∈ (0, 1). We define the sequences{
λj+1 := η1λj

λ0 := λ ,

{
Rj+1 := c0Rj

R0 := r .
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The number c0 ∈ (0, 1) is defined via the numbers σ1 appearing in the Degenerate
Alternative, and via η1 defined in (3.57), as follows:

c0 :=
σ1η

(p−2)/2
1

2
∈ (0, 1/2)

so that c0 is a quantity depending only on n, p, ν, L,A. With such a choice the
following inclusions hold:

(3.58) QλRj+1
⊂ Qλj+1

Rj+1
⊂ Qλjσ1Rj

⊂ QλjRj ⊂ Q
λ
r , ∀ j ∈ N .

Here, as in the following, all the cylinders share the same vertex. Assume that the
Degenerate Alternative holds for the initial cylinder QλR0

≡ Qλr , then we have

sup
Q
λ1
R1

||Dw|| ≤ sup
Q
λ0
σ1R0

||Dw|| ≤ ηAλ ≤ η1Aλ = Aλ1 .

We are therefore led to consider the same situation in the cylinder Qλ1

R1
; assume

now that

s+ sup
Q
λ1
R1

||Dw|| ≤ Aλ1

holds and that again the Degenerate Alternative occurs. We then have

sup
Q
λ2
R2

||Dw|| ≤ sup
Q
λ1
σ1R1

||Dw|| ≤ Aλ2 = η1Aλ1 .

Proceeding in a similar fashion, and assuming that the Degenerate Alternative can
be applied m times and that

(3.59) s+ sup
Q
λj
Rj

||Dw|| ≤ Aλj

holds, if then Proposition 3.4 can be applied on Q
λj
Rj

, we have

(3.60) sup
Q
λj+1
Rj+1

||Dw|| ≤ sup
Q
λj
σ1Rj

||Dw|| ≤ ηj+1
1 Aλ = Aλj+1 .

In particular, by (3.58) we get

sup
QλRj+1

||Dw|| ≤ ηj+1
1 Aλ .

From now on we shall denote

Qλj ≡ QλRj
and in the next section, when proving Theorem 3.1, we shall see that a lower bound
of the type in (3.4) prevents the Degenerate Alternative to occur more than a finite
number of times, say m̃, which can be quantitatively determined in terms of the given
parameters n, p, ν, L,A and B. Therefore, after m̃ steps of Degenerate Iteration,
the Nondegenerate Alternative will hold and consequently (3.5) will follow, with a
constant c depending on m̃, and therefore ultimately on n, p, ν, L,A,B.

3.3. Proof of Theorem 3.1. For the proof of Theorem 3.1 we need the notation
and the content of the Degenerate Iteration described in the previous section. As
specified in Remark 3.1 the proof below formally covers the case s = 0 but is
actually valid only in the case s > 0, since it relies on the results in the previous
sections, indeed proved under this additional assumption. Since all the estimates are
independent of s the case s = 0 can be eventually reached by a simple approximation
argument - see Section 3.6 below.
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Step 1: The Degenerate Iteration always stops after a controlled number of steps.
With η1 ≡ η1(n, p, ν, L,A) ∈ (0, 1) being defined in (3.57) to build the degenerate
iteration, we define m ∈ N as the smallest integer such that

(3.61) ηm1 Aλ <
λ

2B
.

Observe that this determines m ≥ 1 as a function of the parameters n, p, ν, L,A,B.
Now, consider a number δ ≤ cm+1

0 so that

(3.62) Qλδr ⊂ Qλm+1

and assume that

(3.63)
λ

B
≤ sup

Qλδr

||Dw|| .

This in turn implies

(3.64) Aλm ≡ ηm1 Aλ < λ/(2B) ≤ sup
Qλδr

||Dw|| ≤ sup
Qλm+1

||Dw|| .

Let us define

m̃ := min
{
k ∈ N : The Degenerate Alternative does not occur on QλkRk

}
.

Observe that by definition this means that the Degenerate Iteration can be per-
formed m̃ times, but that the Degenerate Alternative does not hold in the cylinder
Qλm̃Rm̃ . We have

(3.65) m̃ ≤ m.

Indeed, were m̃ < m not the case we observe that m̃ = m, as in fact we would
otherwise have

sup
Qλm+1

||Dw|| ≤ sup
Qλm+1
Rm+1

||Dw|| ≤ ηm+1
1 Aλ ,

contradicting (3.64). Thus (3.65) holds. From now on we will look for a number
δε = δ, which is smaller or equal than cm+1

0 .
Step 2: The first nondegenerate case. In this Step we assume that the first

stopping time of the Degenerate Iteration, that is m̃, satisfies m̃ ≤ m, where m has
been defined in (3.61). Now we analyze the situation at level m̃, and in particular
the reasons why the degenerate alternative cannot occur. There are basically two
reasons for the Degenerate Iteration to stop. The first is when (3.59) is not satisfied,
i.e.

(3.66) s+ sup
Q
λm̃
Rm̃

||Dw|| > Aλm̃ = ηm̃1 Aλ

and therefore we cannot even try to verify the Degenerate Alternative, that requires
(3.66) as a preliminary starting condition. In this Step we analyze this case. Note
that by (3.4), m̃ ≥ 1. Note also that since the Degenerate Alternative holds at level
m̃− 1, we have

(3.67) sup
Q
λm̃
Rm̃

||Dw|| ≤ ηAλm̃−1 = ηηm̃−1
1 Aλ .

Comparing (3.66) and (3.67) yields

(3.68) s > ηm̃1 Aλ− sup
Q
λm̃
Rm̃

||Dw|| ≥ ηm̃−1
1 (η1 − η)Aλ ≥ γAλ ≥ γλ ,

where, since m̃ ≤ m, we can set

(3.69) γ := ηm−1
1 (η1 − η) > 0 .
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Notice that γ ≡ γ(n, p, ν, L,A,B) as we have already seen that m depends only on
n, p, ν, L,A,B; see also (3.57). By (3.4) and (3.68) we have

sup
Qλr

||Dw|| ≤ Aλ and γλ ≤ s ≤ Aλ

and we can apply Proposition 3.5 with the choice of γ made in (3.69) and γ1 = 1,
directly in the starting cylinder Qλr . Therefore if

(3.70) δ ≤
(
ε

c̃d

)1/β1

,

we have

(3.71)

(∫
Qλδr

|Dw − (Dw)Qλδr |
q dx dt

)1/q

≤ ε
(∫

Qλr

|Dw − (Dw)Qλr |
q dx dt

)1/q

.

Step 3: The second nondegenerate case. In this Step we again assume that the
first stopping time of the Degenerate Iteration, that is m̃, satisfies m̃ ≤ m, with m
as in (3.61), but we consider the case which is complementary to the one of Step 2.
This is when

s+ sup
Q
λm̃
Rm̃

||Dw|| ≤ Aλm̃

and the Nondegenerate Alternative holds in the cylinder Qλm̃Rm̃ ; observe that here
it may happen that m̃ = 0. We can therefore use (3.56) in such a cylinder. Let us
define

(3.72) δ̃ε := δ̃cm0 with δ̃ ≤ c0 .

The number δ̃ will be fixed in a few lines, in a way that makes it depending on
ε, and this justifies the notation in the line above. We observe that the following
inclusions:

(3.73) Qλ
δ̃εr

= δ̃cm−m̃0 Qλm̃ ⊂ δ̃cm−m̃0 Qλm̃Rm̃ ⊂ Q
λm̃
Rm̃
⊂ Qλr

hold as a consequence of (3.58) and (3.72). Therefore(∫
Qλ
δ̃εr

|Dw − (Dw)Qλ
δ̃εr
|q dx dt

)1/q

≤ 2

(∫
Qλ
δ̃εr

|Dw − (Dw)
δ̃cm−m̃0 Q

λm̃
Rm̃

|q dx dt

)1/q

≤ c

(
|δ̃cm−m̃0 Qλm̃Rm̃ |
|Qλ

δ̃εr
|

∫
δ̃cm−m̃0 Q

λm̃
Rm̃

|Dw − (Dw)
δ̃cm−m̃0 Q

λm̃
Rm̃

|q dx dt

)1/q

= c

(
|Qλm̃Rm̃ |
|Qλm̃|

∫
δ̃cm−m̃0 Q

λm̃
Rm̃

|Dw − (Dw)
δ̃cm−m̃0 Q

λm̃
Rm̃

|q dx dt

)1/q

.

On the other hand, using (3.56) with δ = δ̃cm−m̃0 and in the cylinder Qλm̃Rm̃ , and
keeping again (3.73) in mind, we have(∫

δ̃cm−m̃0 Q
λm̃
Rm̃

|Dw − (Dw)
δ̃cm−m̃0 Q

λm̃
Rm̃

|q dx dt

)1/q

≤ c(δ̃cm−m̃0 )β

(∫
Q
λm̃
Rm̃

|Dw − (Dw)
Q
λm̃
Rm̃

|q dx dt

)1/q
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≤ cδ̃β
(∫

Q
λm̃
Rm̃

|Dw − (Dw)
Q
λm̃
Rm̃

|q dx dt

)1/q

where in the last estimate we used that c0 ≤ 1 and that we are assuming m̃ ≤ m.
Connecting the last two groups of inequalities and continuing with the estimate,
and again keeping (3.73) in mind, we have(∫

Qλ
δ̃εr

|Dw − (Dw)Qλ
δ̃εr
|q dx dt

)1/q

≤ cδ̃β
(
|Qλm̃Rm̃ |
|Qλm̃|

∫
Q
λm̃
Rm̃

|Dw − (Dw)Qλr |
q dx dt

)1/q

≤ cδ̃β
(
|Qλr |
|Qλm̃|

∫
Qλr

|Dw − (Dw)Qλr |
q dx dt

)1/q

≤ c̃δ̃β

c
m̃(n+2)/q
0

(∫
Qλr

|Dw − (Dw)Qλr |
q dx dt

)1/q

≤ c̃δ̃β

c
m(n+2)
0

(∫
Qλr

|Dw − (Dw)Qλr |
q dx dt

)1/q

,

where c̃ ≡ c̃(n, p, ν, L,A). Notice that if we impose that

(3.74) δ̃ ≤

(
c
m(n+2)
0 ε

c̃

)1/β

,

then we have

(3.75)

∫
Qλ
δ̃εr

|Dw − (Dw)Qλ
δ̃εr
|q dx dt ≤ εq

∫
Qλr

|Dw − (Dw)Qλr |
q dx dt .

Step 4: Determining the number δε. By looking at conditions (3.70) and (3.74), we
are led to define

(3.76) δε := δ̃cm0 with δ̃ := min


(
c
m(n+2)
0 ε

c̃

)1/β

,

(
ε

c̃d

)1/β1

, c0


and notice that both δ̃ and δε depend only on n, p, ν, L,A,B, ε; moreover δ̃ ≤ c0.
The number δε defined in (3.76) is the one we are looking for and it does not
depend on the solution w (neither on the vector field a(·)) since it works both in
Step 2 and Step 3 (therefore the choice does not depend on the reason why the
Degenerate Iteration stopped, a fact that could imply a subtle dependence on the
solution considered). Indeed, notice that since δε ≤ cm+1

0 then δε perfectly works
in Step 1 and therefore, assuming the first bound in (3.4) with this choice of δε, the
estimate on the stopping time (3.65) holds and we can consider Step 2 and Step 3.
Then, if the case of Step 2 occurs then (3.5) follows from (3.71) with δ = δε. On
the other hand, if the case of Step 3 occurs, we notice that (3.5) follows from (3.75)

with δ̃ε = δε. The proof of Theorem 3.1 is complete.

3.4. Spatial gradient Hölder continuity. This section is confined to observe
that the arguments of the previous sections imply the Hölder continuity of the
spatial gradient of general homogeneous equations.
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Theorem 3.2. Let w be a weak solution to (3.1) in a given cylinder Q. Then Dw
is locally Hölder continuous in Q. Moreover, let Qλr ⊂ Q be an intrinsic cylinder
such that

(3.77) s+ sup
Qλr

||Dw|| ≤ Aλ

holds for a certain constant A ≥ 1. Then

(3.78) |Dw(x, t)−Dw(x1, t1)| ≤ chλ
(%
r

)α
holds whenever (x, t), (x1, t1) ∈ Qλ% for a constants ch ≡ ch(n, p, ν, L,A) ≥ 1 and
α ≡ α(n, p, ν, L,A) ∈ (0, 1) which is independent of s, of the solution w considered
and of the vector field a(·). Here Qλ% ⊂ Qλr are intrinsic cylinders sharing the same
vertex.

Proof. As in the case of Theorem 3.1, we shall give a proof which formally includes
the case s = 0 but that it is only valid for the one in which s > 0; the case s = 0 can
be again reached by approximation. This approach is particularly useful here as
the proof is a close revisitation of the one given by DiBenedetto in [10, Chapter 9,
Section 3]. The case s = 0 is completely the same while the case s > 0 needs a few
additional arguments; actually, we shall only deal with the case s > 0, as observed
in Remark 3.1, but to stay closer to the presentation in [10], we shall also deal
with the case s = 0, therefore assuming that the Degenerate and Nondegenerate
alternative are valid in this case (following the approach in [10]).

Case s = 0. In the case s = 0 the proof is exactly the same of [10, Chapter
9, Section 3]. One first proves [10, Chapter 9, Lemma 2.1] using the alternatives
described in Section 3.2 together with the Degenerate Iteration, and then the rest
of the proof follows (here the lemma uses Eq instead of E2, but it is the same; the
reader may also uses directly E2 if he/she likes to follow [10] more closely). For
more on the proof of [10, Chapter 9, Lemma 2.1] see also the Case s > 0 below.
Once [10, Chapter 9, Section 3] has been proved one may proceed exactly as in [10,
Chapter 9, Lemma 3.1 & Lemma 3.2]. The only observation to make is that [10,
Chapter 9, Lemma 3.1 & Lemma 3.2] perfectly work leading to inequality (3.78)
without requiring that (x, t), (x0, t0) ∈ K ⊂ Qλr where K is a compact subset such
that dist (K,Qλr ) > 0. It is indeed sufficient to consider the situation where we
replace K by the cylinder Qλ% , which shares the same vertex with Qλr , as in fact
in Theorem 3.2 (observe that, when applying the arguments in [10], we here take
ΩT = Qλr thanks to the starting assumption (3.77)). We do no think it is the case
to report the full proof of Theorem 3.2 since it is rather long and at this point
completely similar to the one explained in [10, Chapter 9, Section 3]. We observe
that the stability of the constants when p→ 2 follows essentially from two points:
first, the proof of the alternatives we give in Sections 3.1 and 3.2 does not depend on
linearization methods, but it is rather direct and does only the quadratic structure
of the differentiated equation (3.13) (after scaling). Second: all the choices of the
constants in the subsequents parts of the proofs in can be made uniform when p > 2
moves in a small neighborhood of 2. In particular, the choice of β in [10, page 253],
must be replaced by α0/[N(p− 2) + 1].

Case s > 0. This case, which is nondegenerate, is not considered in [10], where
DiBenedetto confined himself to the (important) model case (1.33). The difference
with the previous case is that here the Degenerate Iteration described in Section
3.2 always stops after a finite number of steps since s > 0 and condition (3.59)
cannot obviously verified for every λm as λm → 0; since the number of steps the
Degenerate Iteration works clearly depends on s, we have therefore to be careful
since we want estimates that are independent of s > 0. Basically, this is the only
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missing part to reproduce DiBenedetto’s arguments is [10, Chapter 9, Lemma 2.1],
that we shall readapt now. We therefore ask the reader to keep track of the proof
of [10, Chapter 9, Lemma 2.1]. Let us define

m̃ := min
{
k ∈ N : The Degenerate Alternative does not occur on QλkRk

}
.

This number is called n0 in [10] and Rn0
is called the switching radius. Observe

that in the case s = 0 it may happen that m̃ = ∞ (as also treated in [10]). Now,
the main point in proving the analog of [10, Chapter 9, Lemma 2.1] is in showing
that

sup
Q
λi
Ri

||Dw|| ≤ Aλi ∀ i ≤ m̃

and then, when m̃ is finite, the decay estimate

(3.79)

∫
Q
λm̃
δRm̃

|Dw − (Dw)
Q
λm̃
δRm̃

|q dx dt ≤ cqδβq
∫
Q
λm̃
Rm̃

|Dw − (Dw)
Q
λm̃
Rm̃

|q dx dt

holds whenever δ ∈ (0, 1), where c ≥ 1 and β ∈ (0, 1) depend only on n, p, ν, L,A.
Notice that a small difference here is given by the fact that in [10] it is A = 1
and q = 2, but this makes no essential problem, as it only affects the constants
appearing in the statement of Theorem 3.2, that indeed depend on A.

In the case m̃ = 0 there is nothing to say, since the Nondegenerate Alternative
occurs at the very first moment and then one proceed as in [10, Chapter 9, Section
2]; more precisely (3.79) follows by (3.56) applied in the starting cylinder Qλr . So we
argue on the case m̃ ≥ 1. Now, there are basically two reasons why the Degenerate
Iteration stops at m̃. The first is when the starting condition (3.59), i.e.

s+ sup
Q
λm̃
Rm̃

||Dw|| ≤ Aλm̃ ,

is in force but then the Nondegenerate Alternative holds. In this case notice that
(3.79) follows by (3.56) (that is Proposition 3.3), applied with the choice Qλr ≡ Q

λm̃
Rm

.
Estimate (3.79) is exactly [10, Chapter 9, (2.5)], where n0 = m̃. At this point [10,
Chapter 9, Lemma 2.1] follows and it is possible to proceed exactly as in [10], with
the remarks made above for the case s = 0.

The other reason why the Degenerate Alternative stops at step m̃ is that the
starting condition (3.59) is simply not satisfied at step m̃ since s is large, that is

(3.80) s+ sup
Q
λm̃
Rm̃

||Dw|| > Aλm̃ = ηm̃1 Aλ .

In this case we cannot proceed with the Nondegenerate Alternative, and therefore
we rather proceed in a different way as the equation is automatically nondegenerate
on this scale. Indeed, notice that since the Degenerate Alternative held at level m̃−1
then we have

sup
Q
λm̃
Rm̃

||Dw|| ≤ ηAλm̃−1 = ηηm̃−1
1 Aλ ≤ Aλm̃ .

Comparing the last inequality with (3.80) yields

s > ηm̃1 Aλ− sup
Q
λm̃
Rm̃

||Dw|| ≥ (η1 − η)ηm̃−1
1 Aλ =: γAλm̃−1 ≥ γλm̃

where γ = η1 − η (see also (3.57)) and therefore γ ≡ γ(n, p, ν, L,A) > 0. On
the other hand, since the Degenerate Alternative held at level m̃ − 1, the starting
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condition (3.59) must hold at level m̃ − 1 and therefore s ≤ Aλm̃−1 = (A/η1)λm̃.
Summarizing, letting γ1 := A/η1, we have

sup
Q
λm̃
Rm̃

||Dw|| ≤ Aλm̃ and γλm̃ ≤ s ≤ γ1Aλm̃

and we can therefore apply Proposition 3.5 on the cylinder Qλm̃Rm̃ , with the choice
of γ, γ1 made here; notice that both γ and γ1 depend only on n, p, ν, L,A. In turn
this yields (3.79) and therefore the analog of Lemma [10, Chapter 9, Lemma 2.1].
Again, the rest of the proof follows as in [10], in the case s = 0. �

Corollary 3.1. Under the assumptions and notations of Theorem 3.2 it holds that

|V (Dw(x, t))− V (Dw(x1, t1))| ≤ cvλp/2
(%
r

)α
.

Proof. Let us preliminary observe that (3.77) implies

s+ ||Dw||L∞(Qλr ) ≤ c(n, p, ν, L,A)λ .

Therefore, by using [35, (2.2)] and (3.78), it follows that

|V (Dw(x, t))− V (Dw(x1, t1))|
≤ c(s+ |Dw(x, t)|+ |Dw(x1, t1)|)(p−2)/2|Dw(x, t)−Dw(x1, t1)|
≤ c(s+ λ)(p−2)/2λ(%/R)α .

The statement follows using (3.78) again. �

Remark 3.2. The dependence on A of the constant ch appearing in (3.78) is linear,
i.e. ch = c̃hA, where c̃h depends only on n, p, ν, L.

Remark 3.3. The statement about the local Hölder continuity of Du of Theorem
3.2 remains valid for solutions to non-homogeneous equations as

(3.81) wt − div a(Dw) = g ∈ L∞ .

See for instance [11, 25, 28]. This remark is important when considering the addi-
tional regularity hypotheses made for instance in Theorems 1.1-1.3, and in partic-
ular, the one of the a priori continuity of the gradient Du, as discussed in Sections
1.4 and 4.3. We also remark that Theorem 3.1 continues to hold in the case of
solutions to the p-Laplacean system, as it will be shown, starting from the tech-
niques introduced here, in the forthcoming paper [28]; moreover, the singular case
1 < p < 2 is demonstrated in [25].

3.5. Further a priori estimates for homogeneous equations. The following
result is taken from [10, Chapter 8, Theorem 5.1], and in the form suitable for
general equations can be retrieved from [24].

Theorem 3.3. Suppose that w is a weak solution to (3.1) in Qλr , λ, r > 0. Then
there exists a constant c3 ≥ 1, depending only on n, p, ν, L, but otherwise indepen-
dent of s, of the solution w considered and of the vector field a(·), such that

sup
1
2Q

λ
r

||Dw|| ≤ c3λ+ c3λ
2−p

∫
Qλr

(|Dw|+ s)p−1 dx dt .

Consequently, if ∫
Qλr

(|Dw|+ s)p−1 dx dt ≤ λp−1

then

sup
1
2Q

λ
r

||Dw|| ≤ 2c3λ .
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3.6. The approximation scheme. The approximation method needed to assume
s > 0 in the proof of Theorems 3.1 and 3.2 is at the center of discussion here; the
general scheme is completely standard, but the occurrence of a few subtle differences
might nevertheless deserve some explanation in the case of Theorem 3.1. Therefore
in the following we take for granted Theorem 3.1 in the case s > 0 and we prove it
for the case s = 0; the only point will be that, when passing from the case s > 0 to
the case s = 0 the constants will increase, but in a universal way, that is depending
only on the parameters already appearing in the statement of Theorem 3.1. Now we
proceed with the approximation. We start mollifying the vector field a(·) as follows.
Let σ > 0 (actually denoting a sequence converging to zero) and let θσ ∈ C∞0 (Bσ(0))
be a standard mollifier with Bσ(0) ⊂ Rn, such that

∫
Rn θσ(z) dz = 1. Define

aσ(z) :=

∫
Rn
θσ(z−ξ)a(ξ) dξ.

The we define wσ as the unique solution to the following Cauchy-Dirichlet problem:

(3.82)

{
(wσ)t − div aσ(Dwσ) = 0 in Qλr

wσ = w on ∂parQ
λ
r .

Exactly as for instance in [24] - but this is actually standard - it follows that aσ(·)
satisfies (1.3) with new constants ν, L and with s replaced now by sσ = σ; without
loss of generality we shall consider σ small enough to have sσ ≤ λ. Again as in [24]
it follows that up to not relabeled subsequences (i.e. we still keep the notation σ)

(3.83)


Dwσ → Dw strongly in Lp and a.e.∫

Qλr

(|Dwσ|+ sσ)p dx dt ≤ cpa
∫
Qλr

(|Dw|+ sσ)p dx dt ,

where ca depends only on n, p, ν, L. Before going on let us recall a basic result (see
see [10, Chapter 8, Theorem 5.1]) asserting

(3.84)

∫
Qλr

(|Dwσ|+ sσ)p dx dt ≤ cpλp =⇒ sup
Qλ
r/2

‖Dwσ‖ ≤ c̃acλ

for a new constant c̃a ≡ c̃a(n, p, ν, L). Now we assume that the Theorem 3.1 holds
for the case s > 0, and fix A,B, ε in the “s = 0”-version of Theorem 3.1 we want
to prove. Take the choice

ε→ 2−(n+2)ε =: ε̃ , A→ 2c̃acaA =: Ã , B → 2B

and determine the number δε̃(Ã) in Theorem 3.1 for the case s > 0 (remark that

δε̃(Ã) also depends on n, p, ν, L via the new constants in (1.3) for aσ(·); it of course
also depends on B). We claim that now Theorem 3.1 for the case s = 0 holds with
the choice

(3.85) δε(A) := δε̃(Ã)/2 ,

and indeed the assumptions in question are now

(3.86)
λ

B
≤ sup
Qλ
δε̃r/2

‖Dw‖ ≤ sup
Qλr

‖Dw‖ ≤ Ãλ .

Let us now observe that for yet another not relabelled subsequence we may assume
that

λ

2B
≤ sup
Qλ
δε̃r/2

‖Dwσ‖ .
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Indeed, were this not the case, by using the convergence in (3.83) we would im-
mediately contradict the first inequality in (3.86). On the other hand, thanks to
(3.83)-(3.84) it follows

(3.87) sσ + sup
Qλ
r/2

‖Dwσ‖ ≤ Ãλ .

We can therefore apply Theorem 3.1 in the case s ≡ sσ > 0 thereby obtaining

Eq(Dwσ, (δε̃/2)Qλr ) ≤ 2−(n+2)εEq(Dwσ, Q
λ
r/2)

letting σ → 0, (3.83) and (3.87) yield

Eq(Dw, (δε̃/2)Qλr ) ≤ 2−(n+2)εEq(Dw,Q
λ
r/2) ≤ εEq(Dw,Qλr )

and this proves Theorem 3.1 in the case s = 0, with the choice in (3.85). Finally,
the approximation argument to deduce Theorem 3.2 in the case s = 0 from the case
s > 0 is completely standard, and follows along the lines of the one for Theorem
3.1.

4. Proof of the intrinsic potential estimate

In this section we give the proof Theorem 1.1, which in turn implies Theorems
1.2 and 1.3 as seen in the Introduction. First, in Section 4.1 we propose a few
comparison estimates necessary to implement the iteration procedure that will lead,
in Section 4.2 below, to the proof of the intrinsic potential estimate (1.16).

4.1. Comparison results. In the rest of the section we consider in a fixed para-
bolic cylinder Q ≡ Qλρ(x0, t0) ⊆ ΩT the unique solution

(4.1) w ∈ C0(t0 − λ2−p%2, t0;L2(B(x0, %))) ∩ Lp(t0 − λ2−p%2, t0;W 1,p(B(x0, %)))

to the following Cauchy-Dirichlet problem:

(4.2)

{
wt − div a(Dw) = 0 in Qλ%

w = u on ∂parQ
λ
% .

Then we establish a comparison estimate between u and w in the next

Lemma 4.1. Let u be as in Theorem 1.1 and w as in (4.2). Let q be such that

(4.3) 0 < q < p− 1 +
1

n+ 1
.

Then there exists a constant c depending only on n, p, ν, q such that it holds that(∫
Q

(
|Du−Dw|q + |V (Du)− V (Dw)|2q/p

)
dx dt

)1/q

≤ c
(

|µ|(Q)

|Q|(n+1)/(n+2)

)(n+2)/[(p−1)n+p]

.(4.4)

Proof. As also earlier in the paper, the calculations below will be done on a formal
level; they can be anyway made rigorous by a standard use of Steklov averages.
This is precisely the point where (1.25) is required. We shall in the following
denote Qt := B × {t} ≡ B(x0, %) × {t}, whenever t ∈ (−λ2−pr2, 0). In the rest of
the proof, without loss of generality we shall assume q ≥ 1 and that the vertex of
the cylinder (x0, t0) coincides with the origin.

Step 1: Preliminary estimates. We will first prove that

(4.5) sup
τ

∫
Qτ

|u−w| dx ≤ |µ|(Q) , −λ2−pr2 < τ < 0
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and

(4.6)

∫
Q

|V (Du)− V (Dw)|2

(α+ |u−w|)ξ
dx dt ≤ c α

1−ξ

ξ − 1
|µ|(Q)

hold for α > 0 and ξ > 1, where c ≡ c(n, p, ν) ≥ 1. For this, choose the test
function(s)

η1,ε = ±min{1, (u−w)±/ε}φ , ε > 0 ,

where φ ∈ C∞(R) is a nonincreasing function depending only on t, such that
0 ≤ φ ≤ 1 and φ(t) = 0 for all t ≥ τ for τ ∈ (−λ2−pr2, 0); obviously φt ≤ 0. In the
following, when choosing the function φ according to our needs, we shall do it in a
way that

∫
R |φt| dt = 1. A direct calculation gives

Dη1,ε =
1

ε
D(u− w)χ{0<(u−w)±<ε}φ .

Now we test subtracted equations of u and w with η1,ε, thereby obtaining

(4.7)

∫
Q

(u− w)tη1,ε dx dt+

∫
Q

〈a(Du)− a(Dw), Dη1,ε〉 dx dt =

∫
Q

η1,ε dµ .

Observe that since

(u− w)t min{1, (u− w)±/ε} = ∂t

∫ u−w

0

min{1, s±/ε} ds

= ±∂t
∫ (u−w)±

0

min{1, s/ε} ds ,

integration by parts then yields

(4.8)

∫
Q

(u− w)tη1,ε dx dt =

∫
Q

∫ (u−w)±

0

min{1, s/ε} ds(−φt) dx dt .

Thus it follows that∫
Q

∫ (u−w)±

0

min{1, s/ε} ds(−φt) dx dt

+
1

ε

∫
Q

〈a(Du)− a(Dw), D(u− w)〉χ{0<(u−w)±<ε} dx dt ≤ |µ|(Q) ,(4.9)

where we used ∫
Q

η1,ε dµ ≤ |µ|(Q) .

Observe that both the terms in the left hand side of (4.9) are nonnegative by (2.8).
Next, by the dominated convergence theorem we have∫

Q

∫ (u−w)±

0

min{1, s/ε} ds(−φt) dx dt→
∫
Q

(u− w)±(−φt) dx dt

as ε→ 0. Using this information together with (4.9) and (2.8) yields∫
Q

|u− w|(−φt) dx dt ≤ |µ|(Q) .

Letting φ approximate the characteristic function of (−∞, τ), taking any τ ∈
(−λ2−pr2, 0), gives ∫

Qτ

|u− w| dx ≤ |µ|(Q) ,

from which (4.5) follows. We also get that

(4.10) sup
ε>0

∫
Q

〈a(Du)− a(Dw), Dη1,ε〉 dx dt ≤ |µ|(Ω) .
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We now test (4.7) with

η2,ε =
η1,ε

(α+ (u−w)±)ξ−1
, ξ > 1 , ε, α > 0 ,

to get ∫
Q

(u− w)tη2,ε dx dt+

∫
Q

〈a(Du)− a(Dw), Dη2,ε〉 dx dt =

∫
Q

η2,ε dµ .

For the first term on the left we get by integration by parts - as for (4.8) - that∫
Q

(u− w)tη2,ε dx dt =

∫
Q

∫ (u−w)±

0

min{1, s/ε}
(α+ s)ξ−1

ds(−φt) dx dt .

Thus we arrive by (4.5) at

sup
ε>0

∫
Q

(u− w)tη2,ε dx dt ≤ α1−ξ sup
t

∫
Qt

|u−w| dx
∫
R
|φt| dt ≤ α1−ξ|µ|(Ω) .

For the elliptic term we notice∫
Q

〈a(Du)− a(Dw), Dη2,ε〉 dx dt

=

∫
Q

〈a(Du)− a(Dw), Dη1,ε〉
1

(α+ (u−w)±)ξ−1
dx dt

+(1− ξ)
∫
Q

〈a(Du)− a(Dw), D(u−w)±〉
η1,ε

(α+ (u−w)±)ξ
dx dt .

The first integral on the right can be majorized using (4.10) as∫
Q

〈a(Du)− a(Dw), Dη1,ε〉
1

(α+ (u−w)±)ξ−1
dx dt

≤ α1−ξ sup
ε>0

∫
Ω

〈a(Du)− a(Dw), Dη1,ε〉 dx dt ≤ α1−ξ|µ|(Q) .

But since ∣∣∣∣∫
Q

η2,ε dµ

∣∣∣∣ ≤ α1−ξ|µ|(Q) ,

we obtain

(ξ − 1)

∫
Q

〈a(Du)− a(Dw), D(u−w)±〉
(α+ (u−w)±)ξ

η1,ε dx dt ≤ 3α1−ξ|µ|(Q)

and therefore, using (2.8) and the definition of η1,ε we obtain∫
Q

|V (Du)− V (Dw)|2

(α+ |u−w|)ξ
min{1, |u−w|/ε} dx dt ≤ cα1−ξ

ξ − 1
|µ|(Q) .

Letting ε→ 0 yields (4.6).
Step 2: Comparison estimates. Fix now

ξq

p− q
=
n+ 1

n
q =: q̃ ⇐⇒ ξ =

n+ 1

n
(p− q) ,

so that ξ > 1 iff (4.3) holds. Define

α =

(∫
Q

|u−w|q̃ dx dt
)1/q̃

and assume that α > 0, for if it is not, then u = w and (4.4) follows. The parabolic
Sobolev’s inequality (see for instance [10, Chapter 1, Proposition 3.1]) yields

α ≤ c(n, q)

[∫
Q

|D(u−w)|q dx dt
(

sup
τ

∫
Qτ

|u−w| dx
)q/n]n/[q(n+1)]

,
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and thus by (4.5) that

α ≤ c|µ|(Q)1/(n+1)

(∫
Q

|D(u−w)|q dx dt
)n/(q(n+1))

≤ c|µ|(Q)1/(n+1)

(∫
Q

|V (Du)− V (Dw)|2q/p dx dt
)n/(q(n+1))

.(4.11)

Applying then Hölder’s inequality, together with (4.6) and (4.11), we obtain∫
Q

|V (Du)− V (Dw)|2q/p dx dt

=

∫
Q

(
|V (Du)− V (Dw)|2

(α+ |u− w|)ξ

)q/p
(α+ |u− w|)ξq/p dx dt

≤
(∫

Q

|V (Du)− V (Dw)|2

(α+ |u− w|)ξ
dx dt

)q/p (∫
Q

(α+ |u− w|)ξq/(p−q) dx dt
)(p−q)/p

≤c
(
|µ|(Q)

|Q|
α1−ξ

)q/p
αξq/p

≤c

(
|µ|(Q)(n+2)/(n+1)

|Q|

(∫
Q

|V (Du)− V (Dw)|2q/p dx dt
)n/(q(n+1))

)q/p
.

But since

1− n

p(n+ 1)
=

(p− 1)n+ p

p(n+ 1)
,

we end up with (4.4) and the proof is complete after recalling the first inequality
in (2.8). �

Corollary 4.1. Let u and w be as in Lemma 4.1. Suppose that the intrinsic relation

(4.12)

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)

≤ λ

is satisfied. Then there exists a constant c4 = c4(n, p, ν) ≥ 1 such that

(4.13)

(∫
Qλ%

|Du−Dw|p−1 dx dt

)1/(p−1)

≤ c4

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)

and

(4.14)

(∫
Qλ%

|V (Du)− V (Dw)|γ dx dt

)1/γ

≤ c4

(
|µ|(Qλ%)

λ2−p%n+1

)1/γ

hold, where

(4.15) γ := 2(p− 1)/p ≥ 1 .

Proof. Write(
|µ|(Qλ%)

|Qλ% |(n+1)/(n+2)

) n+2
(p−1)n+p

= c(n, p)

(
|µ|(Qλ%)

λ(2−p)(n+1)/(n+2)%n+1

) n+2
(p−1)n+p

= c(n, p)

(
|µ|(Qλ%)

λ2−p%n+1

) n+2
(p−1)n+p

λ
2−p

(p−1)n+p .
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We now use (4.12) in the form

λ
2−p

(p−1)n+p ≤

(
|µ|(Qλ%)

λ2−p%n+1

) 2−p
[(p−1)n+p](p−1)

so that(
|µ|(Qλ%)

|Qλ% |(n+1)/(n+2)

) n+2
(p−1)n+p

≤ c(n, p)

(
|µ|(Qλ%)

λ2−p%n+1

) n+2
(p−1)n+p

+ 2−p
[(p−1)n+p](p−1)

.

The proof of (4.13) and (4.14) now follows (eventually taking the largest constant)
using the previous inequality together with Lemma 4.1 - used with the obvious
choice q = p− 1 - and the identity

n+ 2

(p− 1)n+ p
+

2− p
[(p− 1)n+ p](p− 1)

=
1

p− 1
.

�

Remark 4.1. The intrinsic bound in (4.12) reflects the fact that when switching
to the intrinsic geometry, the gradient, which, as suggested by (1.16), dimensionally
speaking is comparable to λ, scales according to the density of the intrinsic potential(

|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)

exactly as it happens in the elliptic case [12].

Remark 4.2. The kind of “intrinsic comparison estimate” introduced in Lemma
4.1 and Corollary 4.1 eventually revealed to useful also in other contexts where
integrability results for solutions are inferred from those of the assigned data µ; see
for instance [1, 7].

4.2. Proof of Theorem 1.1. The proof goes in five steps. We shall use large
demagnifying constants as 400, 800, 2400 and the like, to emphasize the role of
certain choices in the proof. In the rest of the proof, given a measurable vector
valued map, typically a gradient, g : Q → Rn, where Q is a cylinder, we shall
denote its Lp−1-excess functional in Q as

(4.16) E(g,Q) := Ep−1(g,Q) =

(∫
Q

|g − (g)Q|p−1 dx dt

)1/(p−1)

.

Compare with the definition in (3.6).
Step 1: Setting of the constants and basic inequalities. In the following all the

cylinders will have (x0, t0) as vertex, therefore we shall as usual omit denoting the
vertex simply writing Qλ%(x0, t0) ≡ Qλ% . We start taking λ of the form

(4.17) λ := H1β +H2

∫ 2r

0

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)
d%

%
,

and fix the constants H1, H2 ≥ 1 in due course of the proof, in a way that makes
them depending only on n, p, ν, L; β is assumed to satisfy (1.15). At the end, when
proving (1.16), we shall take c := max{H1, H2}. We look at Theorem 3.3 and let

(4.18) A := 10c3 .

We then determine the constant δε ≡ δε(n, p, ν, L,A,B, ε) ∈ (0, 1/2) in Theorem
3.1 with such a choice of A and with

(4.19) ε =
1

252(n+2)/(p−1)
, B := 400n , q = p− 1 .
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Since A depends itself on n, p, ν, L, this ultimately fixes a positive constant δε ∈
(0, 1/2) depending only on n, p, ν, L; we may assume δε ≤ (log 2)p−1. Now define

(4.20) Qi := Qλri , ri = δi1r , δ1 := δε/2

whenever i ≥ 0 is an integer; again δ1 ≡ δ1(n, p, ν, L) ∈ (0, 1/4). We also set

(4.21) H1 := 400δ
−(n+2)/(p−1)
1

so that

(4.22)

(∫
Q0

(|Du|+ s)p−1 dx dt

)1/(p−1)

+ δ
−(n+2)/(p−1)
1 E(Du,Q0) ≤ λ

100
.

Next, we again look at Theorem 3.2 and with the choice of A made in (4.18) we
consider the exponent α determined by A; again we observe that α ≡ α(n, p, ν, L) ∈
(0, 1). In the same way, referring to Theorem 3.2, we determine the corresponding
constant ch ≡ ch(n, p, ν, L,A) with the choice of A made in (4.18). As A is itself
depending on n, p, ν, L we have that ch depends again only on n, p, ν, L. We take
now k ≥ 2 as the smallest integer (larger or equal than 2) so that

(4.23) chδ
(k−1)α
1 ≤ δ

(n+2)/(p−1)
1

800
.

Then k depends only upon n, p, ν, L as also δ1 and ch do. With k fixed, choose in
turn H2 ≡ H2(n, p, ν, L) as follows:

(4.24) H2 := 2400c4δ
−(k+3)(n+2)/(p−1)
1 ,

where c4 ≡ c4(n, p, ν) has been fixed in Corollary 4.1. Now observe that∫ 2r

0

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)
d%

%

=

∞∑
i=0

∫ ri

ri+1

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)
d%

%
+

∫ 2r

r

(
|µ|(Qλ%)

λ2−p%n+1

)1/(p−1)
d%

%

≥
∞∑
i=0

(
|µ|(Qi+1)

λ2−prin+1

)1/(p−1) ∫ ri

ri+1

d%

%
+

(
|µ|(Q0)

λ2−p(2r)n+1

)1/(p−1) ∫ 2r

r

d%

%

= δ
(n+1)/(p−1)
1 log

(
1

δ1

) ∞∑
i=0

(
|µ|(Qi+1)

λ2−pri+1
n+1

)1/(p−1)

+2−(n+1)/(p−1) log 2

(
|µ|(Q0)

λ2−prn+1

)1/(p−1)

≥ δ(n+2)/(p−1)
1

∞∑
i=0

(
|µ|(Qi)

λ2−prin+1

)1/(p−1)

.(4.25)

Therefore, by (4.17) and the choice in (4.24) it follows that

(4.26) 8c4δ
−(k+2)(n+2)/(p−1)
1

∞∑
i=0

(
|µ|(Qi)
λ2−prn+1

i

)1/(p−1)

≤ λ

300
.

In particular, we have

(4.27)

(
|µ|(Qi)
λ2−prn+1

i

)1/(p−1)

≤ δ
(k+2)(n+2)/(p−1)
1 λ

2400c4
≤ λ

2400c4
≤ λ , ∀ i ≥ 0 .

We are now ready to state some conditional estimates of later use, that we assemble
in a lemma.
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Lemma 4.2. Let wi ≡ w be the comparison function of Lemma 4.1 defined in (4.2)
with Qλ% ≡ Qi, i.e. wi solves{

(wi)t − div a(Dwi) = 0 in Qi

wi = u on ∂parQi .

If

(4.28)

(∫
Qi

(|Dwi|+ s)p−1 dx dt

)1/(p−1)

≤ λ ,

then

(4.29) s+ sup
Qi+1

||Dwi|| ≤ s+ sup
1
2Qi

||Dwi|| ≤ Aλ .

Moreover, with k ≡ k(n, p, ν, L) ≥ 2 being the integer defined via (4.23), it holds
that

(4.30) 2δ
−(n+2)/(p−1)
1 E(Dwi, Qi+k) ≤ λ

400

and

(4.31)
(

1 + 2δ
−(n+2)/(p−1)
1

)(∫
Qi+k

|Du−Dwi|p−1 dx dt

)1/(p−1)

≤ λ

400
.

Proof. First, by Theorem 3.3 in view of (4.28), it follows that

s+ sup
1
2Qi

||Dwi|| ≤ s+ 2c3λ .

The choice of H1 in (4.21) implies that

(4.32) s ≤ λ

400

and thus we have that the choice of A in (4.18) gives (4.29) as Qi+1 ⊂ (1/2)Qi.
At this point, as a consequence of Theorem 3.2 (applied with Qλ% ≡ Qi+k and

Qλr ≡ Qi+1) and (4.23) we have

osc
Qi+k

Dwi ≤ chδ(k−1)α
1 λ ≤ δ

(n+2)/(p−1)
1

800
λ ,

in turn implying (4.30) as, trivially,

E(Dwi, Qi+k) =

(∫
Qi+k

|Dwi − (Dwi)Qi+k |p−1 dx dt

)1/(p−1)

≤ osc
Qi+k

Dwi .

Finally, by (4.27) we may apply Corollary 4.1 so that(∫
Qi+k

|Du−Dwi|p−1 dx dt

)1/(p−1)

≤
(
|Qi|
|Qi+k|

)1/(p−1)(∫
Qi

|Du−Dwi|p−1 dx dt

)1/(p−1)

≤ c4δ−k(n+2)/(p−1)
1

(
|µ|(Qi)
λ2−prn+1

i

)1/(p−1)

≤ δ
(n+2)/(p−1)
1

2400
λ ,
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where in the last estimate we used (4.27). Now (4.31) follows as a consequence of

the trivial estimate (1 + 2δ
−(n+2)/(p−1)
1 ) ≤ 3δ

−(n+2)/(p−1)
1 . The proof of the lemma

is complete. �

We finally remark that, all in all, the constants A, δ1, k,H1, H2 have been deter-
mined in a way that makes them depending only on n, p, ν, L.

Step 2: The exit time argument. Define now, whenever i ≥ 0

(4.33) Ci :=

(∫
Qi

(|Du|+ s)p−1 dx dt

)1/(p−1)

+ δ
−(n+2)/(p−1)
1 E(Du,Qi) .

Now, observe that (4.22) reads also as

C0 ≤
λ

100
.

Let us show that without loss of generality we may assume there exists an exit
index ie ≥ 0 with respect to the previous inequality, that is an integer ie ≥ 0 such
that

(4.34) Cie ≤
λ

100
, Cie+m >

λ

100
, ∀m ≥ 1 .

Indeed, on the contrary, we could find an increasing subsequence {ji} such that

Cji ≤
λ

100
for every i ,

and then, as the gradient is supposed to be continuous, obviously

(4.35) |Du(x0, t0)| = lim
i→∞

(∫
Qji

|Du|p−1 dx dt

)1/(p−1)

≤ λ

100
,

and the proof would be finished. Therefore, from now on, for the rest of the proof,
we shall argue under the additional assumption (4.34).

Step 3: After the exit. The next result exploits the effect of arguing “after the
exit time”.

Lemma 4.3. Assume that for i ≥ ie it holds that

(4.36)

(∫
Qi

(|Dwi|+ s)p−1 dx dt

)1/(p−1)

≤ λ .

Then the inequality

(4.37)
λ

400n
≤ sup

δε
2 Qi

||Dwi||

also holds. Here δε = 2δ1 has been determined in Step 1 when applying Theorem
3.1 with the choice (4.19).

Proof. Observe that by (4.36) we may use Lemma 4.2. By using (2.4), triangle
inequality, (4.30) and (4.31), we have

Ci+k ≤

(∫
Qi+k

(|Dwi|+ s)p−1 dx dt

)1/(p−1)

+

(∫
Qi+k

|Du−Dwi|p−1 dx dt

)1/(p−1)

+2δ
−(n+2)/(p−1)
1

(∫
Qi+k

|Du− (Dwi)Qi+k |p−1 dx dt

)1/(p−1)
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≤

(∫
Qi+k

(|Dwi|+ s)p−1 dx dt

)1/(p−1)

+ 2δ
−(n+2)/(p−1)
1 E(wi, Qi+k)

+
(

1 + 2δ
−(n+2)/(p−1)
1

)(∫
Qi+k

|Du−Dwi|p−1 dx dt

)1/(p−1)

≤

(∫
Qi+k

(|Dwi|+ s)p−1 dx dt

)1/(p−1)

+
λ

200
.

The previous inequality and (4.34) then give

λ

200
≤

(∫
Qi+k

(|Dwi|+ s)p−1 dx dt

)1/(p−1)

≤ s+
√
n sup
Qi+1

||Dwi||

for all integers i ≥ ie (recall here that k ≥ 2 so that i + k > ie; it is also useful to
recall (3.3)). Finally, using (4.32) it also follows that

λ

400n
≤ sup
Qi+1

||Dwi|| .

In turn, observe that by the definition of δ1 in (4.20) we have

(4.38) Qi+1 = Qλ
δi+1
1 r

= Qλδεδi1r/2
= (δε/2)Qi

so that (4.37) follows and the lemma is proved. �

Step 4: Excess decay. The following lemma exploits a decay property enjoyed
by the excess functional after the exit time.

Lemma 4.4. Let i ≥ ie and assume that the condition

(4.39) s+ |(Du)Qi |+ E(Du,Qi) ≤
λ

2

holds. Then the inequality

(4.40) E(Du,Qi+1) ≤ 1
4E(Du,Qi) + 4c4δ

−(n+2)/(p−1)
1

(
|µ|(Qi)
λ2−prn+1

i

)1/(p−1)

holds too.

Proof. Let us first show that we are able to use both Lemma 4.2 and 4.3. In fact,
by Corollary 4.1 and (4.27), we have(∫

Qi

(|Dwi|+ s)p−1 dx dt

)1/(p−1)

≤ s+

(∫
Qi

|Du|p−1 dx dt

)1/(p−1)

+

(∫
Qi

|Du−Dwi|p−1 dx dt

)1/(p−1)

≤ s+ |(Du)Qi |+ E(Du,Qi) + c4

(
|µ|(Qi)
λ2−prn+1

i

)1/(p−1)

≤ s+ |(Du)Qi |+ E(Du,Qi) +
λ

1200
≤ λ .

Since (4.28) is satisfied, at this point we can apply both Lemma 4.2 and Lemma
4.3 to get (4.29) and (4.37), respectively; summarizing we have

λ

400n
≤ sup

δε
2 Qi

||Dwi|| ≤ s+ sup
1
2Qi

||Dwi|| ≤ Aλ .
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The last inequality allows to apply Theorem 3.1 to wi(= w), with the choice made
in (4.19), in the cylinder (1/2)Qi(= Qλr in the notation of Theorem 3.1), thereby
obtaining

(4.41) E(Dwi, Qi+1) = E(Dwi, (δε/2)Qi) ≤
1

252(n+2)/(p−1)
E(Dwi, (1/2)Qi) ,

where we have kept (4.38) in mind. In turn, let us estimate as follows:

E(Dwi, (1/2)Qi) =

(∫
(1/2)Qi

|Dwi − (Dwi)(1/2)Qi |
p−1 dx dt

)1/(p−1)

≤ 2

(∫
(1/2)Qi

|Dwi − (Dwi)Qi |p−1 dx dt

)1/(p−1)

≤ 2(n+2)/(p−1)+1

(∫
Qi

|Dwi − (Dwi)Qi |p−1 dx dt

)1/(p−1)

= 2(n+2)/(p−1)+1E(Dwi, Qi) .

Connecting the last inequality with (4.41) gives

(4.42) E(Dwi, Qi+1) ≤ 1
16E(Dwi, Qi) .

On the other hand we have

E(Du,Qi+1)

=

(∫
Qi+1

|Du− (Du)Qi+1 |p−1 dx dt

)1/(p−1)

≤ 2

(∫
Qi+1

|Du− (Dw)Qi+1
|p−1 dx dt

)1/(p−1)

≤ 2E(Dwi, Qi+1) + 2

(∫
Qi+1

|Du−Dwi|p−1 dx dt

)1/(p−1)

≤ 2E(Dwi, Qi+1) + 2δ
−(n+2)/(p−1)
1

(∫
Qi

|Du−Dwi|p−1 dx dt

)1/(p−1)

≤ 2E(Dwi, Qi+1) + 2c4δ
−(n+2)/(p−1)
1

(
|µ|(Qi)
λ2−prn+1

i

)1/(p−1)

(4.43)

and, similarly

E(Dwi, Qi) ≤ 2E(Du,Qi) + 2c4

(
|µ|(Qλi )

λ2−prn+1
i

)1/(p−1)

.

Connecting this last inequality with (4.42) and (4.43) yields (4.40). The proof of
Lemma 4.4 is complete. �

Step 5: Iteration and conclusion. We conclude the proof via an iteration proce-
dure that starts from the exit time ie; in other words we shall consider only indexes
i ≥ ie, where ie has been defined in (4.34). Denote in short

Ai := E(Du,Qi), ki = |(Du)Qi | .

Recall that by the definitions in (4.33) and (4.34), and since p ≥ 2, we have

(4.44) s+ kie + δ
−(n+2)/(p−1)
1 Aie ≤ Cie ≤

λ

100
.
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We now prove, by induction, that

(4.45) s+ kj +Aj ≤
λ

4

holds whenever j ≥ ie. Indeed, by (4.44) the case j = ie of the previous inequality
holds. Then, assume by induction that (4.45) holds whenever j ∈ {ie, . . . , i}, and tis
means in particular that (4.39) is verified for all j ∈ {ie, . . . , i}. Applying Lemma
4.4 estimate (4.40) implies

(4.46) Aj+1 ≤ 1
4Aj + 4c4δ

−(n+2)/(p−1)
1

(
|µ|(Qj)
λ2−prn+1

j

)1/(p−1)

for all j ∈ {ie, . . . , i}. It immediately follows by (4.45) (assumed for all j ∈
{ie, . . . , i}) and (4.27) that

(4.47) Ai+1 ≤
λ

16
+ 4c4δ

−(n+2)/(p−1)
1

(
|µ|(Qi)
λ2−prn+1

i

)1/(p−1)

≤ λ

16
+

λ

600
≤ λ

14
.

Furthermore, summing up (4.46) for j ∈ {ie, . . . , i} gives

i+1∑
j=ie

Aj ≤ Aie +
1

4

i∑
j=ie

Aj + 4c4δ
−(n+2)/(p−1)
1

i+1∑
j=ie

(
|µ|(Qj)
λ2−prn+1

j

)1/(p−1)

,

yielding

i+1∑
j=ie

Aj ≤ 2Aie + 8c4δ
−(n+2)/(p−1)
1

i+1∑
j=ie

(
|µ|(Qj)
λ2−prn+1

j

)1/(p−1)

.

Next, using the previous inequality and Hölder’s inequality (p− 1 ≥ 1), we have

ki+1 − kie =

i∑
j=ie

(kj+1 − kj)

≤
i∑

j=ie

∫
Qj+1

|Du− (Du)Qj | dx dt

≤
i∑

j=ie

(∫
Qj+1

|Du− (Du)Qj |p−1 dx dt

)1/(p−1)

≤ δ
−(n+2)/(p−1)
1

i∑
j=ie

(∫
Qj

|Du− (Du)Qj |p−1 dx dt

)1/(p−1)

= δ
−(n+2)/(p−1)
1

i∑
j=ie

Aj

≤ 2δ
−(n+2)/(p−1)
1 Aie + 8c4δ

−2(n+2)/(p−1)
1

i+1∑
j=ie

(
|µ|(Qj)
λ2−prn+1

j

)1/(p−1)

and thus it follows that

ki+1 ≤ kie + 2δ
−(n+2)/(p−1)
1 Aie + 8c4δ

−2(n+2)/(p−1)
1

∞∑
j=0

(
|µ|(Qj)
λ2−prn+1

j

)1/(p−1)

.

In turn, by (4.44) and (4.26) the previous estimate yields

ki+1 ≤
λ

25
.
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The last inequality together with (4.32) and (4.47) allows to verify the induction
step, i.e.

(4.48) s+ ki+1 +Ai+1 ≤
λ

4
.

Therefore (4.45) holds for every i ≥ ie. Estimate (1.16) finally follows with the
choice (announced at the beginning) c := max{H1, H2}, since, as Du is here as-
sumed to be continuous, it holds that

|Du(x0, t0)| = lim
i→∞

ki ≤
λ

4
.

4.3. General measure data and Theorem 1.4. We describe how to pass to the
limit in Theorem 1.1, justifying the content of Section 1.4 and Theorem 1.4. We
therefore start with the approximation settled up in [4] and outlined in Section 1.4.
By possibly passing to a subsequence we may assume that

(4.49) Duh ∈ C0, Duh → Du in Lp−1 and Duh → Du a.e.

Notice also that the first claim in the previous line follows by the regularity theory
available for solutions to equations with a good right hand side; see remark 3.3.

In the following we shall keep the notation introduced in the proof of Theorem
1.1; the idea is not really to pass to the limit in the statement of Theorem 1.1, but
rather passing to the limit in its proof. With (x0, t0) being a Lebesgue point of
Du, we proceed as for Theorem 1.1, but we take H2 as defined (4.24) with a larger

constant, let’s say H2 := 104c4δ
−(k+3)(n+2)/(p−1)
1 . Therefore, instead of (4.26) we

have the better bound

(4.50) 8c4δ
−(k+2)(n+2)/(p−1)
1

∞∑
i=0

(
|µ|(bQicpar)

λ2−prn+1
i

)1/(p−1)

≤ λ

600
.

Notice that in the previous line we are using (4.50) with the parabolic closure
bQicpar (which has been defined in (2.3)) instead of Qi appearing in (4.50). This
comes from (4.25), which in turn involves a one dimensional integral in the definition
of the potential, and therefore we can w.l.o.g. assume the that |µ|(∂parQi) = 0, for
every i ≥ 0. Next, we define, in analogy to (4.33), the quantities

(4.51) Chi :=

(∫
Qi

(|Duh|+ s)p−1 dx dt

)1/(p−1)

+ δ
−(n+2)/(p−1)
1 E(Duh, Qi) .

We now jump to Step 2 of the proof of Theorem 1.1 and we notice that we can again
argue under the additional assumption (4.34), otherwise (4.35) holds since (x0, t0)
is a Lebesgue point and we are done. Let us now fix an integer M ≥ ie; in view of
(4.49), there exits KM ∈ N such that the following holds whenever h ≥ KM :

(4.52) Chie ≤
λ

99
, Chj >

λ

100
, ∀ j ∈ {ie + 1, . . . ,M} .

Moreover, as a consequence Definition (1) (especially, keep (1.27) in mind), and of
the new choice of the constant H2, we can also assume that following truncated
version of (4.26) holds, whenever h ≥ KM :

(4.53) 8c4δ
−(k+2)(n+2)/(p−1)
1

M+1∑
i=0

(
|µh|(Qi)
λ2−prn+1

i

)1/(p−1)

≤ λ

500
.

The idea is now to replicate the proof of Theorem 1.1 for each uh with h ≥ KM ,
starting from Lemma 4.2, except of course Step 2, and replacing the final induction
of Step 5 by a finite induction that starts from the exit index ie and stops at M+1.
Indeed, following the proof of Theorem 1.1, and applying the arguments developed
there to uh, it is easy to see that (4.52)-(4.53) are sufficient to perform all the steps
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and making the iteration procedure of Step 5 until M + 1, thereby in particular
obtaining, in (4.48)

s+ |(Duh)QM+1
|+ E(Duh, QM+1) ≤ λ

4
.

By first letting h → ∞ and then M → ∞ in the previous inequality, and finally
recalling that (x0, t0) is a Lebesgue point of Du, we conclude with (1.14) and The-
orem 1.1 remains valid for general SOLA as prescribed in Theorem 1.4. Theorems
1.2 and 1.3 both follow for SOLA as a corollary of Theorem 1.1 as already shown
in Section 1.4.

5. Alternative forms of the potential estimates

Our purpose here is to prove the following alternative form of Theorem 1.1:

Theorem 5.1. Let u be a solution to (1.1) such that Du is continuous in ΩT and
that µ ∈ L1. There exists a constant c ≥ 1, depending only on n, p, ν, L, such that
if λ > 0 is a generalized root of

(5.1) λp/2 = cβp/2 + c

∫ 2r

0

(
|µ|(Qλ%(x0, t0))

λ2−p%n+1

)p/[2(p−1)]
d%

%
,

and if β satisfies (1.15) where Qλ2r ⊂ ΩT is an intrinsic cylinder with vertex at
(x0, t0), then |Du(x0, t0)| ≤ λ.

The main difference with Theorem 1.1 is in that we require a slightly less re-
strictive convergence assumption on the potential when considering the right hand
side of (5.1). Indeed, let us recall the following elementary inequality for sequences
{ak}:

(5.2)

∞∑
k=0

aqk ≤

( ∞∑
k=0

ak

)q
, q ≥ 1, ak ≥ 0 , ∀ k ∈ N .

We now apply the previous fact with q = p/2 to perform the following computation,
where λ > 0 and r > 0 are fixed numbers:∫ r

0

(
|µ|(Qλ%(x0, t0))

λ2−p%n+1

)p/[2(p−1)]
d%

%
=

∞∑
k=0

∫ r/2k

r/2k+1

(
|µ|(Qλ%(x0, t0))

λ2−p%n+1

)p/[2(p−1)]

.
∞∑
k=0

(
|µ|(Qλr/2k(x0, t0))

λ2−p(r/2k+1)n+1

)p/[2(p−1)]

≤

 ∞∑
k=0

(
|µ|(Qλr/2k(x0, t0))

λ2−p(r/2k+1)n+1

)1/(p−1)
p/2

.

∫ 2r

0

(
|µ|(Qλ%(x0, t0))

λ2−p%n+1

)1/(p−1)
d%

%

p/2 .
Such an improvement has consequences for instance when applying Theorem 1.2 in
order to get L∞ criteria for Du in the setting of Lorentz spaces for the right hand
side µ: it leads to slightly better exponents than those provided by Theorem 1.1.

The proof of Theorem 5.1 follows the lines of the one for Theorem 1.1 - that we
actually preferred to give first in order to avoid to bother the reader immediately
with so many technical complications - and therefore we shall confine ourselves to
give the main modifications.
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The main point is that we shall consider excess functionals based on the function
V (·) considered in (2.7). In this respect we start recalling an additional property
of the function V (·) defined in (2.7). Indeed, whenever g : Q→ Rn is an Lγp/2(Q)
integrable map for γ ≥ 1 and Q is a cylinder, a basic property of the function V (·)
when p ≥ 2 is given by the equivalences∫

Q

|V (g)− (V (g))Q|γ dx dt

≈
∫
Q

|g − (g)Q|pγ/2 + (s+ |(g)Q|)(p−2)γ/2|g − (g)Q|γ dx dt .(5.3)

From now on, the number γ will be the one defined (4.15).

5.1. A form of Theorem 3.1. Given a measurable vector valued map g : Q→ Rn,
we define the new excess functional Ẽ(·) as

(5.4) Ẽ(g,Q) =

(∫
Q

|V (g)− (V (g))Q|γ dx dt
)1/γ

.

The main result of this section is to provide an alternative form of Theorem 3.1.

Theorem 5.2. Under the assumptions and the notation of Theorem 3.1, there
exists δε ∈ (0, 1/2) depending only on n, p, ν, L,A,B, ε, but otherwise independent
of s, of the solution w considered and of the vector field a(·), such that the decay

excess estimate Ẽ(Dw, δεQ
λ
r ) ≤ εẼ(Dw,Qλr ) holds.

The proof of the above statement rests in turn on an different formulation of the
Nondegenerate Alternative from Section 3.2. For this we need a few preliminary
lemmas.

Lemma 5.1. With the assumptions and the notations of Lemma 3.2 there exists a
constant c ≥ 1, depending only on n, p, ν, L,A, such that the decay excess estimate
Ẽ(Dw,Qλδr) ≤ cδβẼ(Dw,Qλr ) holds for every δ ∈ (0, 1).

Proof. Lemma 3.2, and in particular (3.28) used in the case q = pγ/2, together
with (5.3), tells us that we may confine ourselves to prove that∫

Qλδr

(s+ |(Dw)Qλδr |)
(p−2)γ/2|Dw − (Dw)Qλδr |

γ dx dt

≤ cδβγ
∫
Qλr

(s+ |(Dw)Qλr |)
(p−2)γ/2|Dw − (Dw)Qλr |

γ dx dt

+cδβγ
∫
Qλr

|Dw − (Dw)Qλr |
pγ/2 dx dt(5.5)

holds whenever δ ∈ (0, 1). Using (3.27) yields

(s+ |(Dw)Qλδr |)
(p−2)γ/2 ≤ c(s+ λ)(p−2)γ/2 ≤ c

∫
Qλr

(s+ |Dw|)(p−2)γ/2 dx dt

≤ c(s+ |(Dw)Qλr |)
(p−2)γ/2 + c

∫
Qλr

|Dw − (Dw)Qλr |
(p−2)γ/2 dx dt .

Using the previous inequality and applying (3.28) with q = γ gives then∫
Qλδr

(s+ |(Dw)Qλδr |)
(p−2)γ/2|Dw − (Dw)Qλδr |

γ dx dt

≤ cδβγ
∫
Qλr

(s+ |(Dw)Qλr |)
(p−2)γ/2|Dw − (Dw)Qλr |

γ dx dt
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+cδβγ
∫
Qλr

|Dw − (Dw)Qλr |
(p−2)γ/2 dx dt

∫
Qλr

|Dw − (Dw)Qλr |
γ dx dt .

In turn, applying Hölder’s inequality twice with exponents p/(p− 2) and p/2 (this
is necessary only when p > 2) we see that the product of the last two integrals can
be estimated by ∫

Qλr

|Dw − (Dw)Qλr |
pγ/2 dx dt

and this in turn yields (5.5); the proof is complete. �

The proof of the following variant of Proposition 3.5 can be now achieved arguing
as in Lemma 5.1 and using Proposition 3.5 itself.

Lemma 5.2. With the assumptions and the notations of Proposition 3.5 there
exists a constant c ≥ 1, depending only on n, p, ν, L,A, γ, γ1, such that the decay
excess estimate Ẽ(Dw,Qλδr) ≤ cδβ1Ẽ(Dw,Qλr ) holds for every δ ∈ (0, 1).

Proof of Theorem 5.2. The proof essentially rests on the alternative formulation
of the Nondegenerate Alternative, where instead of (3.56) we can now apply the

inequality Ẽ(Dw,Qλδr) ≤ cδβẼ(Dw,Qλr ); this is basically a consequence of Lemma
5.1 applied in Proposition 3.3 instead of Lemma 3.2. This observation being made,
the rest of the proof proceeds exactly as for Theorem 3.1, by using Lemma 5.2
instead of Proposition 3.5, and modulo an obvious change of the constants. �

5.2. Proof of Theorem 5.1. The proof is now completely similar to the one for
Theorem 1.1; we just describe the main changes. First, instead of using the excess in
(4.16) we shall use the one in (5.4). Moreover, we shall do the following replacement
of the various quantities considered:

(5.6)

(∫
Qi

(|Du|+ s)p−1 dx dt

)1/(p−1)

←→
(∫

Qi

(|V (Du)|+ sp/2)γ dx dt

)1/γ

and(∫
Qi

|Du−Dwi|p−1 dx dt

)1/(p−1)

←→
(∫

Qi

|V (Du)− V (Dwi)|γ dx dt
)1/γ

.

Passing from one quantity to another just needs to observe that

(5.7) (|z|+ s)p−1 ≤ 2p−2(|V (z)|+ sp/2)γ ≤ 2p−2+γ(|z|+ s)p−1 .

In particular, while the first quantity in (5.6) was controlled by multiples of λ in
Theorem 1.1, the second one will be now controlled by multiples of λp/2. The choice
of the constants will be slightly different and will be adjusted taking into account
the constants appearing in the inequalities involved (5.7); in particular δ1 = δε/2

will be defined according to Theorem 5.2. Moreover, the constant δ
−(n+2)/(p−1)
1

will be replaced by δ
−(n+2)/γ
1 everywhere. We describe the main modifications

according to the various steps.
Step 1. Here we observe that (1.15) and (5.7) give

λp/2

H1
≥ βp/2 ≥ 1

2

(∫
Qλr

(|V (Du)|+ sp/2)γ dx dt

)1/γ

.

Therefore, choosing H1 ≡ H1(n, p, ν, L) large enough allows to verify the initial
smallness condition

(5.8)

(∫
Q0

(|V (Du)|+ sp/2)γ dx dt

)1/γ

+ δ
−(n+2)/γ
1 E(Du,Q0) ≤ λp/2

100
.
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Estimate(4.27) must be replaced by(
|µ|(Qi)
λ2−prn+1

i

)1/γ

≤ δ
(k+2)(n+2)/γ
1 λp/2

2400c4
≤ λp/2

2400c4
≤ λp/2 , ∀ i ≥ 0

with possibly new valus of c4 and k. Accordingly, in Lemma 4.2 we use the new
excess Ẽ(·) and (4.14) instead of (4.13). Moreover instead of Theorem 3.2 we shall
apply Corollary 3.1.

Step 2. The definition in (4.33) has to be replaced by

Ci =

(∫
Qi

(|V (Du)|+ sp/2)γ dx dt

)1/γ

+ δ
−(n+2)/γ
1 Ẽ(Du,Qi)

while the exit time condition looks like Cie+m ≥ λp/2/100, for every m ≥ 1.
Steps 3, 4 & 5. Here the main difference is that Theorem 5.2 must be applied to

get an excess decay estimate for the excess Ẽ(·). Specifically (4.40) is replaced by

Ẽ(Du,Qi+1) ≤ 1
4 Ẽ(Du,Qi) + 4c4δ

−(n+2)/γ
1

(
|µ|(Qi)
λ2−prn+1

i

)1/γ

under the assumption sp/2 + ki + Ai ≤ λp/2/4 where ki := |(V (Du))Qi | and Ai :=

Ẽ(Du,Qi). Proceeding by induction we then prove that the inequality in the last
line always holds whenever i > ie; we conclude with

|Du(x0, t0)|p/2 ≤ lim
i→∞

ki ≤
λp/2

4

and this finishes the proof.
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