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POINTWISE GRADIENT ESTIMATES

TUOMO KUUSI AND GIUSEPPE MINGIONE

Abstract. We survey a number of recent results concerning the possibility of
proving pointwise gradient estimates via potentials for solutions to quasilinear,

possibly degenerate, elliptic and parabolic equations.

1. Linear potentials and the classical approach

The aim of this paper is to survey a certain number of recent results pointing
at the fact that pointwise bounds for solutions to linear elliptic and parabolic equa-
tions actually hold also in the case of general, possibly degenerate elliptic equations.
Specifically, consider as a model case the Poisson equation

(1.1) −4u = µ ,

which, for simplicity, we shall initially consider in the whole Rn for n ≥ 2; here µ
is, again for simplicity, assumed to be smooth and compactly supported, while u is
the unique solution, which decays to zero at infinity.

The classical representation formula involving the so called fundamental solution
(Green’s function) gives that

(1.2) u(x) =

∫
G(x, y) dµ(y) ,

where

(1.3) G(x, y) ≈

{
|x− y|2−n if n ≥ 3

log |x− y| if n = 2 ;

here the symbol ≈ denotes a relation of proportionality via a fixed constant, de-
pending only on the dimension n. The value of the constant is in principle not
relevant for our purposes. The representation formula in (1.2) allows to derive all
the relevant integrability properties of u and its derivatives in terms of those of the
right hand side datum. This goes via the analysis of Riesz potentials, which are
defined as follows, with β ∈ [0, n):

(1.4) Iβ(µ)(x) :=

∫
Rn

dµ(y)

|x− y|n−β
.

This is called the β-Riesz potential of µ, where µ is a Borel measure defined on Rn.
By (1.2) we gain the following inequalities:

(1.5) |u(x)| . |I2(µ)(x)| and |Du(x)| . I1(|µ|)(x) ;

for simplicity we have only concentrated on the case n > 2. The second inequality
has been actually obtained by differentiating (1.2). The previous estimates essen-
tially encode all the basic integrability properties of solutions. In fact, using the
regularizing property

(1.6) Iβ : Lγ → Lnγ/(n−βγ) , γ > 1 , βγ < n ,

of the Riesz potentials, we infer, for instance, the following a priori estimate:

(1.7) ‖Du‖Lnγ/(n−γ) . ‖µ‖Lγ
1
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whenever γ < n. Similarly, further estimates in rearrangement invariant functions
spaces follow as well.

Although pointwise estimates (1.5) appear at the first sight too much linked to
the linear case to leave hopes for a nonlinear analog, it is not so. The next sections
are indeed dedicated to show in what terms such an extension can be done.

Remark 1.1. In the rest of the paper, unless otherwise specified, most of the
results will be stated in the form of a priori estimates more regular solutions for
solutions (for instance C0, C1-solutions, and in general W 1,p-solutions). In turn,
such estimates allow, via the usual approximation arguments for instance described
in [8, 9, 17, 25, 49], generalizations for equations with Borel measures as datum.

2. Nonlinear elliptic equations

As for the notation, in what follows, we denote by c a general positive constant,
possibly varying from line to line; special occurrences will be denoted by c1, c2 etc,
and relevant dependencies on parameters will be emphasized using parentheses. All
such constants will be larger or equal than one. We also denote by B(x, r) := {y ∈
Rn : |x − y| < r} the open ball of Rn with center x and radius r > 0; when not
important, or clear from the context, we shall omit denoting the center as follows:
Br ≡ B(x, r). Unless otherwise stated, different balls in the same context will have
the same center.

Since we are going to deal with local results, given a Borel measure µ living in
Rn, we need a suitable, truncated version of the classical Riesz potentials defined
in (1.4), that is

(2.1) Iµβ(x,R) :=

∫ R

0

µ(B(x, %))

%n−β
d%

%
,

and we note that the inequality Iµβ(x,R) . Iβ(µ)(x) holds whenever µ is a nonneg-
ative measure. With A being a measurable subset with positive measure, and with
g : A→ Rm, m ∈ N, being a measurable map, we shall denote by

−
∫
A

g(x) dx dt :=
1

|A|

∫
A

g(x) dx dt

its integral average; here |A| denotes the Lebesgue measure of A. A similar notation
is adopted if the integral is only in space or time.

The class of equations of interest here are those of quasilinear type, that is

(2.2) −div a(Du) = µ in Ω

whenever µ is a Borel measure with finite mass (that for the sake of simplicity
we assume to be defined in Rn) while Ω ⊂ Rn is open and bounded subset and
n ≥ 2. The vector field a : Rn → Rn is assumed to be C1-regular and satisfying the
following growth and ellipticity assumptions:

(2.3)

{
|a(z)|+ |az(z)|(|z|2 + s2)1/2 ≤ L(|z|2 + s2)(p−1)/2

ν(|z|2 + s2)(p−2)/2|ξ|2 ≤ 〈az(z)ξ, ξ〉

whenever z, ξ ∈ Rn, where 0 < ν ≤ L and s ≥ 0 are fixed parameters. A model case
for the previous situation is clearly given by considering the p-Laplacean equation

(2.4) −div (|Du|p−2Du) = µ ,

or by its nondegenerate version (when s > 0)

−div [(|Du|2 + s2)(p−2)/2Du] = µ .

Now, although estimates (1.5) could be still possible for nonlinear equations of
the type (2.2) when p = 2, they certainly do not hold when p 6= 2. Indeed, if we
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consider a solution to div (|Du|p−2Du) = µ with p 6= 2, we see that ũ = c
1
p−1u -

and not cu - solves div (|Dũ|p−2Dũ) = cµ for c 6= 0. Therefore, in order to hope
for a nonlinear analog of relations (1.5) we need to consider a suitable family of
nonlinear potentials, capable to encode in their structure the scaling of equations
of p-Laplacean type. The first example of such potentials is given by the so called
nonlinear Wolff potentials.

Definition 1. Let µ be Borel measure with finite total mass on Rn; the nonlinear
Wolff potential is defined by

(2.5) Wµ
β,p(x,R) :=

∫ R

0

(
|µ|(B(x, %))

%n−βp

)1/(p−1)
d%

%
, β ∈ (0, n/p]

whenever x ∈ Rn and 0 < R ≤ ∞.

We immediately notice that for a suitable choice of the parameters β, p, Wolff

potentials reduce to Riesz potentials, i.e. I
|µ|
β ≡ Wµ

β/2,2. Wolff potentials play a

crucial role in nonlinear potential theory and in the description of the fine properties
of solutions to nonlinear equations in divergence form. They first appear in the work
of Havin & Maz’ya [23] and they have been popularized by the famous paper by
Hedberg & Wolff [24].

An important fact about Wolff potentials is that their behavior can be in several
aspects recovered from that of Riesz potentials. Indeed, the following pointwise
inequality holds:

(2.6) Wµ
β,p(x,∞) ≤ cIβ

{
[Iβ(|µ|)]1/(p−1)

}
(x) =: cVβ,p(|µ|)(x) .

The nonlinear potential Vβ,p(µ)(x) appearing in the right hand side of the previous
inequality - often called the Havin-Maz’ya potential of µ - is a classical object
in nonlinear potential theory, and together with the bound (2.6) comes from the
pioneering work of Adams & Meyers [3] and Havin & Maz’ya [23]. Estimate (2.6)
allows to derive several types of local estimates starting by the properties of the
Riesz potential. As a matter of fact, although named after Wolff, Wolff potentials
appear to have employed well before Wolff, see for instance [23].

Kilpeläinen & Malý [27, 28] were the first in proving that Wolff potentials locally
control solutions to general quasi linear equations; later on, further approaches
have been given by Trudinger & Wang [57, 58], Korte & Kuusi [30] and Duzaar &
Mingione [17].

Theorem 2.1. Let u ∈ C0(Ω) ∩W 1,p(Ω) be a weak solution to the equation (2.2),
under the assumptions (2.3) with 1 < p ≤ n, where µ is a Borel measure with finite
total mass. Then there exists a constant c ≡ c(n, p, ν, L) > 0 such that the following
pointwise estimate holds whenever B(x,R) ⊆ Ω:

(2.7) |u(x)| ≤ cWµ
1,p(x,R) + c−

∫
B(x,R)

(|u|+Rs) dy .

Note that for p = 2 we have that Wµ
1,p ≡ I

|µ|
2 and we retrieve a local analog of

the first estimate in (1.5). The importance of Theorem 2.1 lies in several aspects: it
locally allows to recover all the integrability results known for u via the properties
of the Wolff potentials - see also (2.6). Moreover, Theorem 2.1 is the key tool for the
proof of the sufficiency of the boundary Wiener criterium for nonlinear equations
[28] (whose sufficiency had been previuosly established by Maz’ya [46]); further
applications are given in the work of Phuc & Verbitsky [52, 53].[52, 53].

The possibility of extending pointwise potential estimates to the gradient re-
mained an open issue discussed for a long while, and an answer came only recently.
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The first case, when p = 2 is contained in [49], and gives a componentwise estimate
for the gradient which locally replicates the second one in (1.5).

Theorem 2.2 ([49]). Let u ∈ C1(Ω) be a solution to the equation (2.2), under the
assumptions (2.3) with p = 2, with µ being a Borel measure with finite total mass.
Then there exists a constant c ≡ c(n, ν, L) such that the pointwise estimate

(2.8) |Dξu(x)| ≤ cI|µ|1 (x,R) + c−
∫
B(x,R)

|Dξu| dy

holds whenever ξ ∈ {1, . . . , n} and whenever B(x,R) ⊆ Ω.

The extension to the case p 6= 2 has entailed several steps. At the first sight,
it appeared as Wolff potentials would play a major role in the estimation of the
gradient too. In fact, the first gradient extension valid for solutions to equations
with super-linear (p 6= 2) growth has been given in the following:

Theorem 2.3 ([17]). Let u ∈ C1(Ω) be a weak solution to the equation (2.2) under
the assumptions (2.3) with p ≥ 2, where µ is a Borel measure with finite total mass.
Then there exists a constant c ≡ c(n, p, ν, L) > 0 such that the pointwise estimate

(2.9) |Du(x)| ≤ cWµ
1/p,p(x,R) + c−

∫
B(x,R)

(|Du|+ s) dy

holds whenever B(x,R) ⊆ Ω.

Now, while estimate (2.9) is sufficiently precise to catch all those integrability
properties described by spaces that are not too close to L∞ - for instance, for the
model example in (2.4) it reproduces those in [8, 9, 14, 26, 47, 48] - it does not fully
catch the known integrability results when one looks at, for instance, conditions
guaranteeing the Lipschitz continuity of solutions. When looking at Lorentz spaces,
estimate (2.9) (applied, via approximation, to W 1,p solutions) gives

(2.10) µ ∈ L(n, 1/(p− 1)) =⇒ Du ∈ L∞ locally in Ω .

On the other hand, the result in [20] gives, for n > 2, that

(2.11) µ ∈ L(n, 1) =⇒ Du ∈ L∞ locally in Ω ,

which is better than (2.10). Indeed, let us recall the definition of so-called Lorentz
spaces L(t, q)(Ω), with 1 ≤ t < ∞ and 0 < q ≤ ∞. When q < ∞, a measurable
map g belongs to L(t, q)(Ω) iff

‖g‖qL(t,q)(Ω) := q

∫ ∞
0

(
λt|{x ∈ Ω : |g(x)| > λ}|

)q/t dλ
λ
<∞ .

For q = ∞ Lorentz spaces are defined as Marcinkiewicz spaces L(t,∞)(Ω) ≡
Mt(Ω); the local variant of such spaces is then obtained by saying g ∈ L(t, q)(Ω)
locally iff g ∈ L(t, q)(Ω′) whenever Ω′ b Ω is a subset. Lorentz spaces “interpolate”
Lebesgue spaces as the second parameter q “tunes” t in the following sense: when-
ever 0 < q < t < r ≤ ∞ we have, with continuous embeddings, that the following
strict inclusions hold:

Lr ≡ L(r, r) ⊂ L(t, q) ⊂ L(t, t) ⊂ L(t, r) ⊂ L(q, q) ≡ Lq .

The gap between (2.10) and (2.11) leads to think that estimate (2.9) can be
still improved. In particular, we observe that in (2.11) the imposed condition on
µ to make Du locally bounded is independent of p. This hints the possibility of
the existence of an estimate involving a potential being independent of p as well.
Natural candidates at this stage are obviously the Riesz potentials, and, indeed,
they reappear in the following:
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Theorem 2.4 ([19, 41]). Let u ∈ C1(Ω) be a weak solution to the equation (2.2)
under the assumptions (2.3) with p ≥ 2 − 1/n, where µ is a Borel measure with
finite total mass defined on Ω. Then there exists a constant c, depending only on
n, p, ν, L, such that the pointwise estimate

(2.12) |Du(x)|p−1 ≤ cI|µ|1 (x,R) + c

(
−
∫
B(x,R)

(|Du|+ s) dy

)p−1

holds whenever B(x,R) ⊆ Ω.

We recall that the lower bound p > 2− 1/n is linked to the fact that, in general,
solutions to measure data problems do not belong to W 1,1 when p < 2− 1/n. The
involved part of (2.12) is when p ≥ 2, and it has been obtained by the authors in [41]
(see also [42] for a preliminary announcement); in fact, when p < 2, estimate (2.12)
does not improve (2.9), which actually is not expected to hold in the subquadratic
case. As a matter of fact, Theorem 2.4 implies Theorem 2.3 since

I
|µ|
1 (x,R) .

[
Wµ

1/p,p(x, 2R)
]p−1

holds when p ≥ 2 .

The surprising character of Theorem 2.5 mainly relies on the fact that, although
considering degenerate quasilinear equations, the gradient can be pointwise esti-
mated via Riesz potentials exactly as it happens for solutions to the hyper-classical
Poisson equation −4u = µ, for which estimate (2.8) is an immediate consequence
of the classical representation formula via Green’s functions. Indeed, we have

Corollary 2.1. Let u ∈ W 1,p(Rn) be a local weak solution to the equation (2.4)
with p ≥ 2− 1/n and µ being a Borel measure with locally finite mass. Then there
exists a constant c, depending only on n, p, such that the following estimate holds
for every Lebesgue point x ∈ Rn of Du:

|Du(x)|p−1 ≤ c
∫
Rn

d|µ|(y)

|x− y|n−1
.

We notice that (2.11) now follows from (2.12) (when applied, via approximation,
to W 1,p solutions). Theorem 2.5 yields in turn the following, immediate

Corollary 2.2. Let u ∈ W 1,p(Ω) be a weak solution to the equation (2.2) under
the assumptions (2.3) with p ≥ 2−1/n, where µ is a Borel measure with finite total
mass defined on Ω. Then

I
|µ|
1 (·, R) ∈ L∞loc(Ω) for some R > 0 =⇒ Du ∈ L∞loc(Ω,Rn) .

In particular, there exists a constant c, depending only on n, p, ν, L, such that the
following estimate holds whenever BR ⊆ Ω:

(2.13) ‖Du‖L∞(BR/2) ≤ c
∥∥∥I|µ|1 (·, R)

∥∥∥1/(p−1)

L∞(BR)
+ c−
∫
BR

(|Du|+ s) dy .

The previous result is striking as it states that the classical, sharp Riesz potential
criterium implying the Lipschitz continuity of solutions to the Poisson equations
remains valid when considering the p-Laplacean operator. More analogies actually
take place in the following:

Theorem 2.5 ([41]). Let u ∈ W 1,p(Ω) be a weak solution to the equation (2.2)
under the assumptions (2.3) with p ≥ 2 − 1/n, where µ is a Borel measure with
finite total mass defined on Ω. If

lim
R→0

I
|µ|
1 (x,R) = 0 locally uniformly in Ω w.r.t. x ,

then Du is continuous in Ω.
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Theorem 2.5 admits the following relevant corollary, providing gradient continu-
ity when µ is a function belonging to a borderline Lorentz space:

Corollary 2.3. Let u ∈ W 1,p(Ω) be as in Theorem 2.5. If µ ∈ L(n, 1) locally in
Ω, then Du is continuous in Ω.

Corollary 2.3 extends (2.11), which is sharp already in the case of the Poisson
equation; we remark that the two-dimensional case n = 2 of (2.11) oddly remained
an open problem in [20], essentially for technical reasons, and this is settled by the
previous corollary.

Finally, another immediate corollary of Theorem 2.5 is concerned with those
measures satisfying special density properties.

Corollary 2.4. Let u ∈ W 1,p(Ω) be as in Theorem 2.5. Assume that the measure
µ satisfies the density condition

|µ|(BR) ≤ cRn−1h(R) , where

∫ R

0

h(%)
d%

%
<∞

for some c ≥ 0 and for every ball BR ⊂ Rn. Then Du is continuous in Ω.

Remark 2.1 (Regular coefficients). Theorem 2.4 extends to the case of more gen-
eral equations of the type

(2.14) −div a(x,Du) = µ

under the assumption that the dependence on x of the vector field is Dini-continuous.
This condition is sharp in that estimate (2.12) ensures the local gradient bounded-
ness when, for instance, µ = 0, and in this situation it is known that Dini-continuity
must be assumed [17, 18, 36].

Remark 2.2 (Measurable coefficients). Theorem 2.4 cannot extend to the case
of more general equations of the type (2.14) when the dependence on x is simply
measurable. It is clear that an estimate as (2.9) cannot hold under assumptions
(2.3), as in this case the maximal gradient regularity of solutions to equations as
div a(x,Du) = 0 is in general only given by

(2.15) Du ∈ Lp+δloc

for some δ > 0. This is essentially a consequence of Gehring’s lemma and δ ≡
δ(n, p, ν, L) is a universal exponent depending only on the ellipticity properties
of the operator. However, something remains; more precisely a non-local version
of estimate (2.9) still holds yielding level sets information rather than pointwise.
Moreover, such an estimate is bound to provide regularity results in accordance to
the maximal gradient regularity in (2.15), in that it will provide in the best possible
case gradient estimates in Lq with q < p + δ, where δ is exactly the exponent in
(2.15) given by Gehring’s lemma. Before stating the result, some definitions: we
recall the definition of the (restricted and noncentered) fractional maximal function
operator relative to a cube Q0 ⊆ Rn defined as

M∗β,Q0
(g)(x) := sup

Q⊆Q0, x∈Q
|Q|β/n −

∫
Q

|g(y)| dy , β ∈ [0, n) ,

where the sup is taken with respect all the cubes Q contained in Q0; all the cubes
here have sides parallel to the coordinate axes. It goes without saying that a similar
definition can be given when g is replaced by a measure in an obvious way.

Theorem 2.6 ([48, 51]). Let u ∈ W 1,p(Ω) be a weak solution to (2.14) under
the assumptions (2.3) (more precisely z 7→ a(x, z) satisfies (2.3) a.e. x ∈ Ω and
the vector field a(·) is Carathéodory regular), where µ is a Borel measure with
finite total mass and p > 2 − 1/n. Let Q2R b Ω be a cube and let M∗ ≡ M∗Q2R
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denote the restricted maximal operator with respect to Q2R. There exist constants
δ ≡ δ(n, p, ν, L) > 0 and A ≡ A(n, p, ν, L) > 1 such that: For every T > 1 there
exists ε ≡ ε(n, p, ν, L, T ) ∈ (0, 1) such that∣∣∣{x ∈ QR : M∗((|Du|+ s))(x) > ATλ

}∣∣∣
≤ T−(p+δ)

∣∣∣{x ∈ QR : M∗((|Du|+ s))(x) > λ
}∣∣∣

+
∣∣∣{x ∈ QR : [M∗1,Q2R

(µ)]1/(p−1) > ελ
}∣∣∣

holds whenever

λ ≥ c(n)T p+δ −
∫
Q2R

(|Du|+ s) dx .

The connection to Theorem 2.4 is that the fractional maximal operator con-
sidered above is pointwise estimated by the Riesz potential considered in Theo-
rem 2.4. The result above has been obtained in [48] when p ≥ 2, while the case
2−1/n < p < 2 can be obtained following [51]. We refer to [36, 37] for more results
on equations with coefficients.

3. Nonlinear potential estimates for parabolic problems

Here we switch to the pointwise gradient potential estimates available in the case
of parabolic equations of the type

(3.1) ut − div a(Du) = µ

considered in cylindrical domains ΩT = Ω × (−T, 0), where Ω ⊂ Rn is a bounded
domain, n ≥ 2, and T > 0. In the most general case µ is a Borel measure with
finite total mass, for simplicity defined on Rn+1; therefore we shall assume that
|µ|(Rn+1) < ∞. The C1-vector field a : Rn → Rn is assumed to satisfy (2.3)
whenever z, ξ ∈ Rn, where 0 < ν ≤ L and s ≥ 0. The model example for the
equations treated here is given by the familiar evolutionary p-Laplacean equation

(3.2) ut − div (|Du|p−2Du) = µ .

As solutions to (3.1) are usually obtained via approximation with solutions to equa-
tions with more regular data and solutions - see [7] for the necessary explanations
and basic existence and regularity results - we shall always assume to deal with
energy solutions, i.e., we say that u is a solution to (3.1) if

(3.3) u ∈ C0(−T, 0;L2(Ω)) ∩ Lp(−T, 0;W 1,p(Ω))

and u solves (3.1) in the distributional sense

−
∫

ΩT

uϕt dx dt+

∫
ΩT

〈a(Du), Dϕ〉 dx dt =

∫
ΩT

ϕdµ

whenever ϕ ∈ C∞c (ΩT ). Moreover, in the following we shall always deal with
the case the measure is an integrable function µ ∈ L1(Rn+1). We shall in other
words confine ourselves to describe a priori estimates valid for a priori more regular
solutions and data.

We shall start from the case p = 2, dealt within [17], when the treatment is
similar to that for elliptic equations. For this, we need some additional terminology.
Let us recall that given points (x, t), (x0, t0) ∈ Rn+1 the standard parabolic metric
is defined by

dpar((x, t), (x0, t0)) := max{|x− x0|,
√
|t− t0|} ≈

√
|x− x0|2 + |t− t0|
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and the related metric balls with radius R with respect to this metric are given by
the cylinders of the type B(x0, R)×(t0−R2, t0 +R2). The “caloric” Riesz potential
is now built starting from

Iβ(µ)((x, t)) :=

∫
Rn+1

dµ((x̃, t̃))

dpar((x̃, t̃), (x, t))N−β
, 0 < β ≤ N := n+ 2 ,

whenever (x, t) ∈ Rn+1. In order to be used in estimates for parabolic equations,
it is convenient to introduce its local version via the usual backward parabolic
cylinders - with “vertex” at (x0, t0) - that is

(3.4) Q(x0, t0;R) := B(x0, R)× (t0 −R2, t0) .

The Riesz potential is now given by

Iµβ(x0, t0;R) :=

∫ R

0

|µ|(Q(x0, t0; %))

%N−β
d%

%
, 0 < β ≤ N .

The main result in the parabolic case is

Theorem 3.1 (Caloric potential gradient bound). Under the assumptions (2.3)
with p = 2, let u be a weak solution to (3.1), and such that such that Du is contin-
uous in ΩT . Then there exists a constant c ≡ c(n, ν, L) such that the estimate

(3.5) |Du(x0, t0)| ≤ cIµ1 (x0, t0;R) + c−
∫
Q(x0,t0;R)

(|Du|+ s) dx dt

holds whenever Q(x0, t0;R) ⊆ Ω.

3.1. Degenerate/singular problem: the case p > 2. The degenerate/singular
case p 6= 2 is a different story, and the pointwise gradient estimates involve sub-
stantial new ingredients as the operators involved do not have a universal scaling.
Therefore, the concept of intrinsic geometry, developed by DiBenedetto [12], comes
into the play. This is linked to the fact that multiplying a solution to (3.2) by a
constant does not yield a solution to a similar equation. The intrinsic geometry
prescribes that - although the equations considered are anisotropic - they behave
as isotropic ones when considered in space/time cylinders whose sizes depend on
the solution itself. To outline how the intrinsic approach works, let us consider a
domain, actually a cylinder Q, where, roughly speaking, the size of the gradient is
approximately λ – possibly in some integral averaged sense – that is

(3.6) |Du| ≈ λ > 0 .

In this case we shall consider intrinsic cylinders, i.e. cylinders of the type

(3.7) Q = Qλr (x0, t0) ≡ B(x0, r)× (t0 − λ2−pr2, t0) ,

where B(x0, r) ⊂ Rn is the usual Euclidean ball centered at x0 and with radius
r > 0. Note that when λ ≡ 1 or when p = 2, the cylinder in (3.7) reduces to
the standard parabolic cylinder in (3.4). Indeed, the case p = 2 is the only one
admitting a non-intrinsic scaling and local estimates have a homogeneous character.
The heuristics of the intrinsic scaling method can now be easily described as follows:
assuming that, in a cylinder Q as in (3.7), the size of the gradient is approximately
λ as in (3.6). We then have that the equation ut − div (|Du|p−2Du) = 0 looks
like ut = div (λp−2Du) = λp−24u, which, after a scaling and considering v(x, t) :=
u(x0+%x, t0+λ2−p%2t) in B(0, 1)×(−1, 0), reduces to the heat equation vt = 4 v in
B(0, 1)×(−1, 0). This equation, in fact, admits favorable and homogeneous a priori
estimates for solutions. The success of this strategy is therefore linked to a rigorous
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construction of such cylinders in the context of intrinsic definitions. Indeed, the
way to express a condition as (3.6) is typically in an averaged sense like for instance

(3.8)

(
1

|Qλr |

∫
Qλr

|Du|p−1 dx dt

)1/(p−1)

=

(
−
∫
Qλr

|Du|p−1 dx dt

)1/(p−1)

≈ λ .

A problematic aspect in (3.8) occurs as the value of the integral average must be
comparable to a constant which is in turn involved in the construction of its support
Qλr ≡ Qλr (x0, t0), exactly according to (3.7). As a consequence of the use of such in-
trinsic geometry, all the a priori estimates for solutions to evolutionary equations of
p-Laplacean type admit formulations becoming homogeneous only when formulated
in terms of intrinsic parameters and cylinders as λ and Qλr .

The approach of [38, 39, 40] proposes to adopt the intrinsic geometry approach in
the context of nonlinear potential estimates. This provides a class of intrinsic Wolff
potentials that reveal to be the natural objects to be considered, as their structure
allows to recast the behavior of the Barenblatt solution - the so-called nonlinear
fundamental solution. For this reason reason we introduce the following intrinsic
Wolff potential:

Wµ
λ(x0, t0;R) :=

∫ R

0

(
|µ|(Qλ%(x0, t0))

λ2−p%N−1

)1/(p−1)
d%

%
, N := n+ 2 ,

defined starting by intrinsic cylinders Qλ%(x0, t0) as in (3.7). We have

Theorem 3.2 ([39]). Let u be a solution to (3.1); assume that (2.3) hold with
p ≥ 2, and that Du is continuous in ΩT and µ ∈ L1. There exists a constant c ≥ 1,
depending only on n, p, ν, L, such that whenever QλR ≡ QλR(x0, t0) ≡ B(x0, R) ×
(t0 − λ2−pR2, t0) ⊂ ΩT is an intrinsic cylinder with vertex at (x0, t0), then

(3.9) cWµ
λ(x0, t0;R) + c

(
−
∫
QλR

(|Du|+ s)p−1 dx dt

)1/(p−1)

≤ λ

implies
|Du(x0, t0)| ≤ λ .

The nonlinear potential Wµ
λ appearing in (3.9) is the natural intrinsic counter-

part of the Wolff potential Wµ
1/p,p intervening in (2.9). In fact, when considering

the associated elliptic stationary problem, µ being time independent, Theorem 3.2
gives back (2.9). Estimate (3.9), in turn, essentially gives back (2.8), when applied
in the stationary setting, as well the classical L∞-bound of DiBenedetto [12] who
indeed proved that

c

(
−
∫
QλR

(|Du|+ s)p−1 dx dt

)1/(p−1)

≤ λ =⇒ |Du(x0, t0)| ≤ λ .

The formulation of Theorem 3.2 involves intrinsic quantities and conditions, that,
as such, appear at a first sight to be problematic to verify. Nevertheless, as shown
in the next theorem, which in fact follows as a corollary, Theorem 3.2 always im-
plies local a priori estimates via parabolic Wolff potentials, on arbitrary parabolic
cylinders QR ⊂ ΩT :

W̃µ
β,p(x0, t0;R) :=

∫ R

0

(
|µ|(Q(x0, t0; %))

%N−βp

)1/(p−1)
d%

%
, β ∈ (0, N/p] ;

notice that
W̃µ

β/2,2(x0, t0;R) = Iµβ(x0, t0;R) .

We then have
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Corollary 3.1 ([39]). Let u be a solution to (3.1); assume that (2.3) hold with
p ≥ 2, and that Du is continuous in ΩT and µ ∈ L1. There exists a constant c,
depending only on n, p, ν, L, such that

(3.10) |Du(x0, t0)| ≤ c
[
W̃µ

1/p,p(x0, t0;R)
]p−1

+ c−
∫
QR

(|Du|+ s+ 1)p−1 dx dt

holds whenever Q(x0, t0;R) ≡ B(x0, R)× (t0−R2, t0) ⊂ ΩT is a standard parabolic
cylinder with vertex at (x0, t0).

In particular, in the case p = 2 we recover (3.5). To check the consistency of
estimate (3.10) with the ones already present in the literature we observe that when
µ ≡ 0, estimate (3.10) reduces the classical L∞-gradient bound available for solu-
tions to the evolutionary p-Laplacean equation; see [12, Chapter 8, Theorem 5.1’];
see also Remark 4.3 below. It is interesting to see that when switching to a non-
intrisic formulation, local estimates immediately show an anisotropicity under the
form of a deficit scaling exponent, which in this case is p−1, precisely reflecting the
lack of homogeneity of the equations considered. This is typical when considering
anisotropic problems, and similar deficit scaling exponents typically appear in the
a priori estimates from [1, 2, 35].

Finally, when µ is time independent, or admits a favorable decomposition, it is
possible to avoid the intrinsic geometry effect in the potential term and we go back
to the elliptic regime.

Corollary 3.2 ([39]). Let u be a solution to (3.1); assume that (2.3) hold with
p ≥ 2, and that Du is continuous in ΩT and µ ∈ L1. Assume that the measure µ
satisfies |µ| ≤ µ0 ⊗ f, where f ∈ L∞(−T, 0) and µ0 is a Borel measure on Ω with
finite total mass. Then there exists a constant c, depending only on n, p, ν, L, such
that

|Du(x0, t0)| ≤ c‖f‖1/(p−1)
L∞ Wµ0

1/p,p(x0, R) + c−
∫
QR

(|Du|+ s+ 1)p−1 dx dt

whenever QR(x0, t0) ≡ B(x0, R)×(t0−R2, t0) ⊂ ΩT is a standard parabolic cylinder
having (x0, t0) as vertex. The (elliptic) Wolff potential Wµ0

1/p,p is defined in (2.5).

3.2. The subquadratic case. Here we go back to Riesz type potentials. Also this
time, we have to find a suitable intrinsic formulation; it is convenient to consider
intrinsic cylinders of the type

Q̃λR(x0, t0) := B(x0, λ
(p−2)/2R)× (t0 −R2, t0) .

Note that the ratio between the space and the time scales remains invariant when
considering such cylinders instead of those considered in (3.7). This time we have

Theorem 3.3 ([40]). Let u be a solution to (3.1); assume that (2.3) hold with
2−1/(n+ 1) < p ≤ 2, and that Du is continuous in ΩT and µ ∈ L1. There exists a

constant c ≥ 1, depending only on n, p, ν, L, such that whenever Q̃λR ≡ Q̃λR(x0, t0) ≡
B(x0, λ

(p−2)/2R)×(t0−R2, t0) ⊂ ΩT is an intrinsic cylinder with vertex at (x0, t0),
such that if

(3.11) cIµ1 (x0, t0;Rλ) + c−
∫
QλR

(|Du|+ s) dx dt ≤ λ

holds with Rλ = λ(p−2)/2R, then

|Du(x0, t0)| ≤ λ .

Note that in the previous theorem the intrinsic nature of the potential comes
from the fact that we are considering the usual parabolic Riesz potential Iµ1 , but
with a radius that depends on λ. In a way, the formulation in (3.11) is less intrinsic
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than the one in (3.9). As for the case p ≥ 2, the previous theorem implies a priori
estimates on standard parabolic cylinders. Indeed we have

Corollary 3.3 ([40]). Let u be a solution to (3.1); assume that (2.3) hold with
2 − 1/(n + 1) < p ≤ 2, and that Du is continuous in ΩT and µ ∈ L1. Then there
exists a constant c, depending only on n, p, ν, L, but not on (x0, t0), the solution u,
or the vector field a(·), such that

|Du(x0, t0)| ≤ c [Iµ1 (x0, t0;R)]
2/[(n+1)p−2n]

+c

(
−
∫
QR

(|Du|+ s+ 1) dx dt

)2/[2−n(2−p)]

(3.12)

holds whenever QR ≡ QR(x0, t0) ≡ B(x0, R) × (t0 − R2, t0) ⊂ ΩT is a standard
parabolic cylinder with vertex at (x0, t0).

Again, as for the case p ≥ 2, when µ is time independent or admits a favorable
decomposition, elliptic Riesz potentials reappear.

Corollary 3.4 ([40]). Let u be a solution to (3.1); assume that (2.3) hold with
2 − 1/(n + 1) < p ≤ 2, and that Du is continuous in ΩT and µ ∈ L1. Moreover,
assume that the decomposition µ = µ0 ⊗ f holds, where µ0 is a finite mass Borel
measure on Rn and f ∈ L∞(−T, 0). The following holds for a.e. (x0, t0) ∈ ΩT :
There exists a constant c, depending only on n, p, ν, L, but not on (x0, t0), the
solution u, or the vector field a(·), such that

|Du(x0, t0)| ≤ c‖f‖1/(p−1)
L∞ [Iµ0

1 (x0, R)]
1/(p−1)

+c

(
−
∫
QR

(|Du|+ s+ 1) dx dt

)2/[2−n(2−p)]

(3.13)

whenever QR(x0, t0) ≡ B(x0, R)×(t0−R2, t0) ⊂ ΩT is a standard parabolic cylinder
having (x0, t0) as vertex. The (elliptic) Riesz potential Iµ0

1 is defined in (2.1).

Remark 3.1 (Structure of the exponents). It is worthwhile to analyze the expo-
nents appearing in (3.12), and in particular to make a comparison with the ones
appearing in (3.13), as they precisely reflect the structure properties of the equa-
tion, and in particular of the Barenblatt (fundamental) solutions. The number
2/[2 − n(2 − p)] is the same one appearing in the typical gradient estimates for
homogeneous equations (µ = 0) and reflects the gradient nature of the estimate in
question. Indeed, when µ ≡ 0 estimate (3.12) reduces to the classical one obtained
in [12, Chapter 8, Theorem 5.2’]. The exponent 2/[(n + 1)p − 2n] instead blows
up as p→ 2n/(n+ 1) and reflects the non-homogeneity of the equation studied, as
well as the structure of the Barenblatt solution; see Section 3.3 below and [40] for
the subquadratic case of interest here. Such exponent indeed intervenes in those
estimates related to the Barenblatt solution, as for instance the Harnack inequal-
ities in [13, 34]. For the very same reason the exponent 2/[(n + 1)p − 2n] relates
to the fact that the right hand side measure µ in general depends on time, and
it disappears when µ is time-independent. This is completely natural as in this
case it is possible to consider stationary solutions. Yet, it is interesting to compare
estimate (3.12) with the main result in [2], where a completely similar dependence
on the exponents appears.

3.3. Comparison with the Barenblatt solution. For the sake of brevity, we
shall concentrate here on the case p > 2. The standard quality test for potential
estimates, as for instance those in (2.7) and (2.9), consists of measuring the extent
they allow to reproduce the behavior of fundamental solutions, i.e. the behavior
of those special solutions obtained by taking µ ≡ δ, where δ is the Dirac measure
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charging one point. In the case of the evolutionary p-Laplacean equation ut −
div (|Du|p−2Du) = δ in Rn+1 with Dirac datum δ charging the origin, an explicit
(very weak) solution - so-called Barenblatt solution - is given by

Bp(x, t) =


t−n/θ

(
cb − θ1/(1−p) p− 2

p

(
|x|
t1/θ

)p/(p−1)
)(p−1)/(p−2)

+

t > 0

0 t ≤ 0 ,

when p > 2. Here θ := n(p − 2) + p and cb is a constant normalizing the solution
so that ∫

Rn
Bp(x, t) dx = 1

for all t > 0. In a similar way, for the range 2− 1/(n+ 1) < p < 2, we have

Bp(x, t) :=

t
−n/θ

[
2− p
p

θ1/(1−p)

(
cb +

(
|x|
t1/θ

)p/(p−1)
)](p−1)/(p−2)

t > 0

0 t ≤ 0 .

A direct computation reveals that the gradient of Bp(x, t) satisfies the estimate

(3.14) |DBp(x0, t0)| ≤ ct−(n+1)/θ
0

whenever (x0, t0) ∈ Rn × (0,∞); in turn this prescribes the blow-up behavior of
the fundamental solution at the origin as well as the decay behavior at infinity.
Both are typical for a situation, where a Dirac measure appears. The crucial point
is now that the bound appearing in (3.14) is directly implied by Theorems 3.2 and
3.3. Moreover, as Theorems 3.2-3.3 hold for general equations, the same bound also
holds for solutions to general equations of the type

(3.15) ut − div a(Du) = δ in Rn+1 ,

under assumptions (2.3); see also [44]. This result should be anyway compared
to the one in [12, Chapter 11, Theorem 2.1, (2.4)]. Of course, when considering
equations with genuine measure data as (3.15), we have to consider those solutions
considered in [8, 7], and obtained by approximation processes, as limits of solutions
with more regular data. As the estimate of Theorem 3.2 is stable under such
approximation methods, Theorem 3.2 applies to solutions of (3.15) as well, modulo
considering Lebesgue points of Du rather than any points.

Remark 3.2. Again, as in the elliptic case, Theorems 3.2 and 3.3 open the way to
the proof of criteria to establish the gradient continuity. For this we refer to [40].

4. The case of systems and modified potentials

In this section we would like to point out some extension of the result of Corollary
2.2 to the case of certain classes of elliptic and parabolic systems. For the sake of
simplicity we shall consider the basic p-Laplacean system

(4.1) −div (|Du|p−2Du) = µ u : Ω→ Rm , m ≥ 2

together with its evolutionary version

(4.2) ut − div (|Du|p−2Du) = µ u : ΩT → Rm , m ≥ 2 .

Let us start with the elliptic case. We shall assume that µ ∈ L2. In this situation
we have

I
|µ|
1 (x,R) :=

∫ R

0

µ(B(x, %))

%n−1

d%

%
= ωn

∫ R

0

−
∫
B(x,%)

|µ| dy d% ,
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where ωn is the measure of the unit ball in Rn. Therefore Hölder’s inequality yields

I
|µ|
1 (x,R) ≤ c

∫ R

0

(
−
∫
B(x,%)

|µ|2 dy

)1/2

d% ≤ cPµ(x,R) ,

where we have defined the new potential

Pµ(x,R) :=

∫ R

0

(
|µ|2(B(x, %))

%n−2

)1/2
d%

%
.

Dimensionally speaking, it scales as the Riesz potential I
|µ|
1 . Here we are using the

more compact notation

|µ|2(B(x, %)) :=

∫
B(x,%)

|µ|2 dy .

The first results we present are about general local weak solutions to (4.1) and it
is the analog of the L∞-estimate (2.13) using the nonlinear potential Pµ.

Theorem 4.1 ([20]). Let u ∈ W 1,p
loc (Ω,Rm) be a weak solution to the system (4.1)

for p > 1; there exists a constant c, depending only on n and p, such that

‖Du‖L∞(BR/2) ≤ c‖Pµ(·, R)‖1/(p−1)
L∞(BR) + c

(
−
∫
BR

|Du|p dy
)1/p

holds whenever BR ⊂ Ω.

Again a sharp characterization of the Lipschitz continuity of solutions follows
via use of Lorentz spaces.

Corollary 4.1. Let u ∈ W 1,p
loc (Ω,Rm) be a weak solution to the system (4.1) for

p > 1, n > 2. If µ ∈ L(n, 1) holds, then Du is locally bounded in Ω.

The parabolic version of the previous results involves similar potentials based on
standard parabolic cylinders. More precisely, we define

Pµ(x0, t0;R) :=

∫ R

0

(
|µ|2(Q%(x0, t0; %))

%N−2

)1/2
d%

%
, N = n+ 2 .

In the parabolic case, as it is standard, the shape of the estimates drastically change
in the two cases p ≥ 2 and p < 2. The first result we are going to present is a
nonlinear potential estimate in the degenerate case p ≥ 2.

Theorem 4.2 ([35]). Let u be a distributional solution to (4.2) as in (3.3), with
p ≥ 2. Then, for every ` ∈ (0, 1] there exists a constant c, depending only on
n,m, p, ` such that

‖Du‖L∞(QR/2) ≤ c‖Pµ(·;R)‖2/pL∞(QR) + c

(
−
∫
QR

|Du|p−2+2` dx dt

)1/2`

+ c

holds for every standard parabolic cylinder QR ⊂ QT .

For the subquadratic case we instead have the following:

Theorem 4.3 ([35]). Let u be a distributional solution to (4.2) as in (3.3). Assume
also that

(4.3) 2 ≥ p > 2n

n+ 2
.

Then, for every ` satisfying

(4.4)
n(2− p)

2
< 2` ≤ p ,
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there exists a constant c, depending only on n,m, p, `, such that

‖Du‖L∞(QR/2) ≤ c‖Pµ(·;R)‖4/[(n+2)p−2n]
L∞(QR) + c

(
−
∫
QR

|Du|2` dx dt
)2/[4`−n(2−p)]

+ c

holds for every standard parabolic cylinder QR ⊂ QT .

Remark 4.1. We remark that the global outcome of Theorems 4.2-4.3 is that in
any case p > 2n/(n+ 2) it holds

Pµ(·;R) ∈ L∞ =⇒ Du ∈ L∞loc(QT ,Rmn) .

A significant point here is that the previous condition is independent of p, in that
the exponent p does not appear in the definition of the potential Pµ(·;R).

Remark 4.2. Condition (4.4) is of course non-void provided n(2− p)/2 < p, and
this is exactly guaranteed by assuming (4.3). Observe that by taking ` = p/2 in
Theorem 4.3 we, in particular, obtain

‖Du‖L∞(QR/2) ≤ c‖Pµ(·;R)‖4/[(n+2)p−2n]
L∞(QR) + c

(
−
∫
QR

|Du|p dx dt
)2/[(n+2)p−2n]

+ c .

Remark 4.3. Forms of the estimates presented in Theorems 4.2 and 4.3 are in a
certain sense optimal as in the case µ = 0 they allow to recover the sharp inter-
polated L∞ bounds of DiBenedetto [12]; related bounds in Lq are available in [2].
Indeed, for solutions to the evolutionary p-Laplacean system

(4.5) ut − div (|Du|p−2Du) = 0 ,

estimate [12, Chapter 8, Theorem 5.1] valid for the case p ≥ 2 reads as

(4.6) ‖Du‖L∞(QR/2) ≤ c
(
−
∫
QR

|Du|p−2+2` dx dt

)1/2`

+ c

for every ` ∈ (0, 1], where c ≡ c(n,m, p, `), while in the case (4.3) estimate in [12,
Chapter 8, Theorem 5.2] gives

(4.7) ‖Du‖L∞(QR/2) ≤ c
(
−
∫
QR

|Du|2` dx dt
)1/[4`−n(2−p)]

+ c

whenever 2` > n(2 − p)/2 holds. Estimates (4.6)-(4.7) are now a consequence of
Theorems 4.2 and 4.3, respectively.

Remark 4.4. Although being stated for the model cases (4.1) and (4.2), the results
in this sections hold for certain classes of elliptic and parabolic systems. More
precisely, we can consider quasidiagonal systems, i.e. of the type

−div (g(|Du|2)Du) = µ and ut − div (g(|Du|2)Du) = µ .

The specific form above in the vectorial case is sometimes referred to as Uhlenbeck
structure, after the seminal work [59] in the elliptic setting. It is relevant as it
allows to rule out singularities when considering the homogeneous case (4.5).

5. Asymptotic regularity

The techniques developed for proving the parabolic potential estimates of Section
3 allows for proving the analog of a few results that, being rather classical in the
elliptic case, were still an open issue in the parabolic one. The first one deals with
general systems which are parabolic only in a very weak sense. Specifically, we take
a model problem of the type

(5.1) ut − div a(Du) = 0 ,
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where the solution u : ΩT → RN is in general a vector valued map as in (3.3) and
solves (5.1) in the distributional sense. The system is considered in the cylindrical
domain ΩT = Ω× (−T, 0), where Ω ⊂ Rn is a bounded domain and T > 0, n ≥ 2.
At this stage, we make no other assumption on the C1-vector field a(·) than

(5.2) |a(z)|+ |az(z)|(|z|+ 1) ≤ L(|z|+ 1)p−1 ,

which has to hold whenever z ∈ RNn, and the following C1-asymptotic closeness
condition to the field |z|p−2z:

(5.3) lim
|z|→∞

|az(z)− bz(z)|
|z|p−2

= 0 , where b(z) := |z|p−2z .

In particular, we are not assuming that the system considered is parabolic in that
parabolicity only holds at infinity, in an asymptotic sense. Here, as in the rest of
the paper, we shall always assume the lower bound

(5.4)
2n

n+ 2
< p

that is in fact necessary to obtain the following regularity result:

Theorem 5.1 ([43]). Let u be a solution to (5.1) under the assumptions (5.2)-
(5.3); then Du ∈ L∞loc(ΩT ). Moreover, there exists a constant c depending only on
n,N, p, ν, L and the rate of convergence in (5.3), such that

(5.5) |Du(x0, t0)| ≤ c

[
−
∫
Qr(x0,t0)

(|Du|p + 1) dx dt

]d/p
holds whenever Qr(x0, t0) ⊂ ΩT is a standard parabolic cylinder with vertex (x0, t0),
where (x0, t0) is a Lebesgue point for Du. Here

d :=


p
2 if p ≥ 2

2p
p(n+2)−2n if 2n

n+2 < p < 2

is the scaling deficit exponent of the p-Laplacean system.

Estimate (5.5) is in a sense optimal, compare with Remark 4.3. Also compare the
above estimate with the ones in [2] showing the occurrence of a scaling deficit expo-
nent d precisely reflecting the anisotropicity of the operator considered; see [1] for a
comparison with a related anisotropic elliptic situation. Asymptotic regularity re-
sults of the type just described are often crucial in establishing dimension estimates
for singular sets of solutions to elliptic system (see for instance [31, 32, 33]) and in
several problems coming from mathematical materials science. For the elliptic ver-
sions we refer to the starting work of Chipot & Evans [11] for linear problems, even-
tually extended to nonlinear settings for instance in [11, 22, 15, 21, 22, 55, 56, 54].

The second related result is instead concerned with a borderline case of the
standard gradient Hölder continuity results. When dealing with truly parabolic
systems, as for instance

(5.6) ut − div (γ(x, t)|Du|p−2Du) = 0 ,

Dini continuity of coefficients actually implies the continuity of the (spatial) gradi-
ent. This fact, being classical and sharp in the elliptic case, was still an open issue
in the parabolic one and it has been established in [43] for general equations and
for systems with quasi-diagonal structure. For this, let us set

ω(%) := sup
t∈(−T,0),x,y∈B%

B%⊂Ω

|γ(x, t)− γ(y, t)| ,
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and assume the Dini-continuity of γ(·) with respect to the space variables, i.e.

(5.7)

∫ 1

0

ω(%)
d%

%
<∞ .

Theorem 5.2 ([43]). Let u be a solution to (5.6) under the asumptions (5.4) and
(5.7). Then Du is continuous in ΩT .

The previous theorem extends to general classes of parabolic equations of the
type

(5.8) ut − div a(x, t,Du) = 0 ,

where the vector field a : ΩT × Rn → Rn satisfies assumptions

(5.9)


|a(x, t, z)|+ |az(x, t, z)|(|z|2 + s2)1/2 ≤ L(|z|2 + s2)(p−1)/2

ν(|z|2 + s2)(p−2)/2|ξ|2 ≤ 〈az(x, t, z)ξ, ξ〉

|a(x, t, z)− a(x0, t, z)| ≤ Lω(|x− x0|)L(|z|2 + s2)(p−1)/2

whenever z, ξ ∈ Rn and (x, t), (x0, t) ∈ ΩT . Numbers s, ν, L are assumed to satisfy
0 < ν ≤ L and s ≥ 0. Here ω(·) is assumed to satisfy (5.7).

Theorem 5.3 ([43]). Let u be a solution to (5.8) under the assumptions (5.9) and
(5.7). Then Du is continuous in ΩT .

The results above can be generalized to more general systems and equations of
the type

ut − div (γ(x, t)|Du|p−2Du) = divG(x, t) ,

provided suitable regularity assumptions are made on the right hand side vector
field G(·). For instance, a suitable form of Dini continuity of x 7→ G(x, ·) suffices
to conclude with the continuity of Du.
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delle Scienze 53/a, Campus, 43100 Parma, Italy
E-mail address: giuseppe.mingione@unipr.it.


