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ABSTRACT. We consider non-homogeneous degenerate and singular parabolic
equations of the p-Laplacean type and prove pointwise bounds for the spatial
gradient of solutions in terms of intrinsic parabolic potentials of the given
datum. In particular, the main estimate found reproduces in a sharp way
the behavior of the Barenblatt (fundamental) solution when applied to the
basic model case of the evolutionary p-Laplacean equation with Dirac datum.
Using such results as a starting point, we then give sufficient conditions to
ensure that the gradient is continuous in terms of potentials; in turn these
imply borderline cases of known parabolic results and the validity of well-
known elliptic results whose extension to the parabolic case remained an open
issue. As an intermediate result we prove the Holder continuity of the gradient
of solutions to possibly degenerate, homogeneous and quasilinear parabolic
equations defined by general operators.
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1. INTRODUCTION AND RESULTS

In this paper we deal with non-homogeneous, measure data and possibly degen-
erate/singular parabolic equations of the type
(1.1) ug — diva(Du) =
1
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considered in cylindrical domains Q7 = Q x (—T,0), where Q C R"™ is a bounded
domain and T" > 0. We are here ultimately aiming at providing boundedness and
continuity estimates of the spatial gradient of solutions Dwu in terms of suitable
linear and nonlinear potentials of the right hand side measure p. In turn, modulo
standard approximation procedures, a priori estimates found allow u to be, in the
most general case, a Borel measure with finite total mass: |u|(Qr) < oo. The
C'-vector field a: R™ — R" is assumed to satisfy the following assumptions

la(2)| + |0a(2)|(|2]? + s*)Y/2 < L(|z|> + s?)(P—1/2
v(|2f + 5% P72 < (Da(2)¢, )

whenever z,£ € R™. Numbers s, v, L are assumed to satisfy 0 < v < L and s > 0.
In this paper we shall assume

(1.2)

(1.3) 2— <p.

n+1
Assumptions (1.2) are considered in order to generalize the main model example
we have in mind, that is the evolutionary p-Laplacean equation

(1.4) u; — div (|Du|P~2Du) = p,

which clearly satisfies assumptions considered in (1.2) with s = 0. In this respect,
lat us observe that the number s serves to distinguish the degenerate case (s = 0)
from the non-degenerate one (s > 0).

The lower bound (1.3) looks natural in view of the available existence theory
that guarantees the existence of solutions in Sobolev space; for this we refer to
[4, 5, 6]. On the other hand, the sharpness of the lower bound in (1.3) with respect
to such property can be seen for instance by looking at the Barenblatt solution; see
Section 1.3 below. For the same reason, as solutions to (1.1) are usually obtained
via approximation with solutions to equations with more regular data and solutions,
in the following we shall always assume to deal with energy solutions, i.e. we say
that w is a solution to (1.1) if

(1.5) u € CO(—T,0; L*()) N LP(=T,0; WP (Q))

and u solves (1.1) in the distributional sense

(1.6) 7/ wpy dzx dt Jr/ (a(Du), D) dx dt = / pdu
Qr Qr Qr

whenever ¢ € C°(§2r). Finally, without loss of generality we shall assume that
p€ LY R,

In other words in this paper we shall confine ourselves to provide uniform a priori
estimates for a priori regular (i.e. satisfying (1.5)—(1.6)) solutions, that in turn im-
ply similar estimates for general solutions to (1.1) by following the by now classical
approximation procedures proposed in [5, 6]. For more on integrability of solu-
tions to measure data problems (that satisfy (1.6) but usually fail to match (1.5))
we again refer to [6, 21, 22, 23]. In particular, we refer to [31, Section 1.4] for a
comprehensive discussion on the approximation methods in the present context.
The results in this paper fall into two categories. The first one includes (spatial)
gradient pointwise bounds via potentials for solutions to singular - i.e. p < 2
- parabolic equations which represent the counterpart of those obtained in [31]
for the degenerate case p > 2. Several relevant differences - both in the type of
results obtained and in the techniques required - occur when p < 2, as it will be
explained in the next section. The second realm of results, instead, includes both
degenerate and singular parabolic equations and deals with a characterization of
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gradient continuity of solutions in terms of linear and nonlinear potentials decay
properties.

A point of independent interest here, that actually serves as a preliminary tool
for proving the potential estimates and continuity results, is completely new proof
of the Holder continuity character of the spatial gradient of solutions in the case of
homogeneous equations

(1.7) wy —diva(Dw) =0.
We indeed remark that, while in the case of the p-Laplacean equation (and system)
(1.8) w; — div (|[Dw|P~2Dw) =0,

this has been done in the fundamental work of DiBenedetto & Friedman [11, 12],
the general case (1.7) has remained essentially untouched as since the work of
Lieberman [34], who was dealing with boundary value problems (note that the
proofs presented in [11] are based on linearization techniques possible only in the
case of special structures as in (1.8)). The estimates obtained in [34] are anyway not
sufficient to work as technical background for the results we are going to develop
here, and a new approach to gradient estimates is needed. For the case p > 2 the
necessary estimates were obtained in [31] and here we present yet a novel approach,
covering the subquadratic case p < 2, and based on the use of Harnack inequalities.

In particular, in order to prove the potential estimates, we need a peculiar,
rigid form of the a priori Holder continuity estimates; see Theorem 3.1 below.
This theorem is indeed a central tool in our approach as it allows to prove both
the gradient Holder continuity for solutions to homogeneous equations and the
regularity results and potentials estimates in the case of non-homogeneous ones.

In rest of the paper, when talking about the gradient of a solution u, we shall
always mean the spatial gradient Du = (ug,)1<i<n. Some of the results of this
paper have been announced in the Nota Lincea [28].

1.1. Pointwise potential estimates. The results in this section refer to the sin-
gular case

1
1.9 29— <p<?2
(1.9) R

and include pointwise bounds for Du in terms of suitable parabolic Riesz potentials
of the right hand side measure p. To clarify the situation let us recall the corre-
sponding elliptic background established in [17] (see also [15, 29, 30] for the case
p > 2), and valid for solutions to stationary equations as

(1.10) —diva(Du) = u in

with B(x,2r) C 2 denoting the usual Euclidean ball centered at xy and with
radius 2r > 0, we have that

(1.11) | Du(zo)| < c][

}1/(17—1)
B(xo,r)

(|Du| + s)dz + ¢ [Illul(xoﬂr)

holds when 2 — 1/n < p < 2 (this last condition being the usual one ensuring that
elliptic measure data equations have Sobolev solutions). The last quantity on the
right hand side of (1.11) denotes the classical truncated Riesz potential, i.e.

(1.12) 1% (zo,7) = /O ul(fﬁ;, 0) d?)@, 8>0.

We refer the reader to [20, 45, 46, 25] for zero-order nonlinear potentials estimates.

It is now readily seen that in the case of parabolic equations an estimate as
(1.11) simply cannot hold for very elementary reasons: multiplying solutions by a
constant does not yield a solution to a similar equation. For this reason all the a
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priori estimates available fail to show homogeneity and scaling properties typical of
elliptic equations as (1.10) (see for instance [1, 11, 31]), exhibiting instead a scaling
deficit which measures such a homogeneity failure. The analysis of this mechanism
eventually leads to the basic, fundamental technique used to treat equations as (1.1):
the one based on intrinsic geometry and scaling, firstly introduced by DiBenedetto.
We will not go too much into the details of this method, but we rather refer to
[11, 31] for a wider description. We just remark that the core point of this method
prescribes to study the equations not on all parabolic cylinders, but rather on
certain special ones, whose ratio between space and time lengths depend on the size
of the solutions itself on the same cylinder, according to the regularity considered;
from this fact comes the use of the word intrinsic. Specifically, one considers so-
called intrinsic cylinders defined by

(1.13) Q = Q)(wo,to) = B(wo,r) x (tg — N27Pr? tg) .
The number A > 0 in turn obeys |Du| = A > 0 in the sense that
1
T~ \Du|dxdt:][ |Du|dx dt ~ .
Q2 Q} Q

Note that, when A\ = 1 or when p = 2, the cylinder in (1.13) reduces to the
standard parabolic cylinder given by

Qr(l‘o, to) = Q,,ln(xo,to) = B(l‘o,’l”) X (to — T27t0) .
Exactly in the same way one is alternatively led to consider cylinders of the type

(1.14) A (z0,t0) = B(xo,)\(p_Q)/Qr) x (to —r%,tg), ry = \P=2/2p

T
The main effect of considering equations on such cylinders, is that they locally
look as isotropic ones, and estimates homogenize. As a matter of fact, all the a
priori regularity estimates available for solutions can be expressed in terms of local
geometries, see for instance [11, 13, 14].

In this paper we shall see that Riesz potentials interact with intrinsic geometries
to make gradient potential estimates hold for singular parabolic equations. Indeed,
the natural - in a sense that will be clear in a few lines - parabolic generalization
of estimate (1.11) can be achieved by using a family of intrinsic Riesz potentials.
More precisely, let us recall that the parabolic Riesz potential of p defined by

(1.15) I (w0, to;7) 12/0 Wi{

where in turn N is the usual parabolic dimension. Then it holds that

0<pB<N:=n+2

Theorem 1.1 (Intrinsic linear potential bound). Let u be a solution to (1.1) with
2—-1/(n+1) <p <2 Letp >0. The following holds for a.e. (xq,tp) € Qp:
There exists a constant ¢ > 1, depending only on n,p,v, L, but not on (xo,ty), the
solution u, or the vector field a(-), such that if A > 0 is a generalized root of

27\ A T ,t d
(1,16) )\:Cﬁ—i—c/ W@Q7 A :)\(p—2)/274,
0

and if
][ (|1Du| + s)dxdt < 3,
Q)\

A
where Q3,., = Q3,, (w0, t0) = B(xo, 2AP=2)/2p) x (tg — 412 tg) C Qr is an intrinsic
cylinder with vertex at (xo,to), then

‘DU(Io,toﬂ S )\ .
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By saying that A is a generalized root of equation (1.16), where 8 > 0 and ¢ > 1
are given constants, we mean a positive solution to (1.16) (the smallest can be
taken), with the word generalized referring to the possibility that no root exists
in which case we simply set A = oco. The finiteness of the integral on the right
hand side of (1.16) anyway rules this case out, see Remark 4.1 below. Although the
formulation of Theorem 1.1 might appear at the first sight involved, it is actually
the natural parabolic version of the elliptic estimate (1.11). Indeed, when dealing
with degenerate/singuar parabolic problems,; all estimates find their optimal form
only when using intrinsic formulations. As a matter of fact, Theorem 1.1 precisely
allow to recast the behavior of the so-called Barenblatt (fundamental) solution.
We refer to Section 1.3 for the precise computation. Moreover, we remark that
when g = 0, Theorem 1.1 gives back a classical result of DiBenedetto & Friedman
asserting that

c][ (|IDu| + s) dzdt < A = |Du(xo,t0)] < A
(7N
for a constant ¢ = ¢(n, p,v, L) > 1; see Theorem 4.1. As a matter of fact Theorem
1.1 can read as follows: there exists a constant ¢ = ¢(n, p, v, L) such that
27 A
c][ (1Dl +s)dxdt+c/ 1e(@s (w0, o)) do _ \ | Dy, )] < .
QX 0 4% %

Theorem 1.1 provides estimates on intrinsic cylinders, and therefore its appli-
cability does not look immediate as it prescribes to go through the intrinsic rela-
tion (1.16); nevertheless Theorem 1.1 always implies a priori estimates in standard
parabolic cylinders:

Corollary 1.1 (Parabolic Riesz potential bound). Let u be a solution to (1.1) with
2—-1/(n+1) < p<2. The following holds for a.e. (xo,tg) € Qr: There exists a
constant ¢, depending only on n,p,v, L, but not on (xg,to), the solution u, or the
vector field a(-), such that

2/[2=n(2—-p)]
|[Du(zo,to)] < ¢ <][ (|Dul +s+1)dx dt)

(1.17) e[ (o, to; 2r) 2/ (VP72
holds whenever Qa, = Qo (0,t0) = B(x0,2r) X (to — 4r%,tg) C Qr is a standard

parabolic cylinder with vertex at (xg,to)-

Finally, when g is time independent or admits a favorable decomposition - see
(1.18) below - the elliptic Riesz potentials come back exactly as in (1.11).

Corollary 1.2 (Parabolic/Elliptic Riesz potential bound). Let u be a solution to
(1.1) with2—1/(n+1) < p < 2 and assume that the following decomposition holds:

(1.18) =10 ®f,

where po is a finite mass Borel measure on R™ and f € L>°(=T,0). The following
holds for a.e. (xg,to) € Qp: There exists a constant ¢, depending only on n,p,v, L,
but not on (xg,to), the solution u, or the vector field a(-), such that
2/[2-n(2—p)]
|Du(zg,t0)] < ¢ (][ (|Du| +s+1)dx dt)

(1.19) el FIAP T [T (2o, 20)] P

whenever Qar(z0,t0) = B(wg,2r) x (to — 4r%,tg) C Qr is a standard parabolic
cylinder having (zo,to) as vertex. The (elliptic) Riesz potential I1° is defined in
(1.12).
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Remark 1.1 (Structure of the exponents). It is worthwhile to analyze the expo-
nents appearing in (1.17), and in particular to make a comparison with the one
appearing in (1.19), as they precisely reflect the structure properties of the equa-
tion, and in particular of the Barenblatt (fundamental) solutions. The number
2/[2 = n(2 — p)] is the same one appearing in the typical gradient estimates for
homogeneous equations (u = 0) and reflects the gradient nature of the estimate in
question. Indeed, when p = 0 estimate (1.17) reduces to the classical one obtained
in [11, Chapter 8, Theorem 5.2°]. The exponent 2/[(n + 1)p — 2n] instead blows
up as p — 2n/(n + 1) and reflects the non-homogeneity of the equation studied,
as well as the structure of the Barenblatt solution; see Section 1.3 below. Such
exponent indeed intervenes in those estimates related to the Barenblatt solution,
as for instance the Harnack inequalities in [13, 14, 26]. For the very same reason
the exponent 2/[(n 4+ 1)p — 2n] relates to the fact that the right hand side measure
w1 in general depends on time, and it disappears when p is time-independent. This
is completely natural as in this case it is possible to consider stationary solutions,
for which (1.19) reduces to the elliptic estimate in (1.11). Yet, it is interesting to
compare estimate (1.17) with the main result in [1], where a completely similar
dependence on the exponents appear.

The techniques used to prove Theorem 1.1, although relying on the general
scheme already introduced in [31] for the case p > 2, differ from those of [31] in
several relevant aspects, which are essentially linked to the fact that we are here
dealing with the singular case. Singular equations are indeed more delicate to treat
when proving gradient bounds: as a matter of fact, as estimates as (1.16) and (1.17)
essentially aim at establishing an upper bound for the gradient, they become more
difficult to prove, because the equations as for instance (1.4) become more degenerate
as |Du| increases when p < 2. In other words, the structure of the equation itself
poses additional obstructions to the proof of gradient bounds; for the same reason
the word singular appears somehow misleading when used in the present context. As
mentioned earlier in this paper, in order to prove Theorem 1.1 we shall develop a
novel approach to the Holder continuity of the gradient of homogeneous equations
as (1.7) for general vector field a: R” — R™ satisfying (1.2). Here, avoiding any
linearization as used in [11, 12] we treat general singular equations as (1.7). The
approach in this paper prescribes to use as a central tool a homogeneous excess
decay bound found in Theorems 3.1-3.3 below. In turn, these imply the Hdlder
continuity of the gradient Dw together with suitable a priori estimates in intrinsic
cylinders, as eventually shown in Theorem 3.2. It is worth noticing here that our
proof does not make of logarithmic type inequalities but rather relies on the classical
weak Harnack inequality for linear parabolic equations.

1.2. Continuity of the gradient via potentials. In this section we shall consider
parabolic equations under the more general bound in (1.3), therefore treating both
degenerate and singular parabolic equations. For the sake of exposition we shall
first give the continuity criteria in the singular case (1.9), and eventually will give
the statements for the degenerate one p > 2, where, according to [31], nonlinear
Wolff potentials come into the play. The proof of the results in the case p > 2
can be indeed achieved combining the new arguments presented here with those
developed in [31] in a way which appears then clear to the careful reader of both
the papers.

To understand the role that potentials play in establishing the continuity of the
gradient, let us observe that Corollary 1.1 establishes that Du is locally bounded
provided so (zg,to) + I{(xo,to;-) is. In particular, in this case we have that
I} (zo,t0;7) — 0, equiboundedly with respect to (xo,tp). By strengthening this
condition in uniform converge finally leads to the continuity of Du.
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Theorem 1.2 (Gradient continuity via linear potentials). Let u be a solution to
(1.1) in Qp and assume (1.2) with2—1/(n+1) < p < 2. IfI{(z,t;r) — 0 uniformly
in (z,t) € Qr asr — 0, that is

" t) d
(1.20) lim  sup / 7|“|(Q15£f’ Dde _
0 0 0

=0 (. tyeQr

holds, then Du is continuous in Q.
Weakening the convergence in (1.20) still leads to VMO gradient regularity.

Theorem 1.3 (Gradient VMO-regularity). Let u be a solution to (1.1) in Qr and
assume (1.2) with 2 —1/(n+ 1) < p < 2. If the function

(z,t) — T (x, t;7) :/TM@

0 oN 1 %
is locally bounded in Qp for some r > 0, and if furthermore
I I t . .
(1.21) lin%) M =0 uniformly in (z,t) € Qr,
r—r T

then Du is locally VMO-regular in Qp.

_ We recall that the local VMO-regularity of Du means that for every subcylinder
Q € Qr, we have that

(1.22) lim  sup ][ |Du — (Du)q,|dxdt =0.
r=0 QoCQ,0<r o

The case p > 2 instead involves the use of Wolff potentials, and connects to the

results obtained in [31].

Theorem 1.4 (Gradient continuity via nonlinear potentials). Let u be a solution
to (1.1) in Qr and assume (1.2) with p > 2. If

T /[2(p—1)]
(1.23) lim sup / (M(Qé’(m’t))>p ? do —0
0

=0 (3 4)eQr oN-1 0

holds, then Du is continuous in Qp. Finally, if the function

(;v,t).—>/or (M(ng)p/[ﬂpl)] do

oMt 0
is locally bounded in Qp for some r > 0, and if furthermore (1.21) holds uniformly
with respect to (x,t) in Qp, then Du is locally VMO-regular in Q.

We remark that the previous statements extend to the parabolic case the gradient
continuity criteria found in [17], the proof being here considerably more difficult and
involved - actually new ideas are needed. For statements relating VMO-regularity
and conditions as in (1.21) see also [39, 40].

The previous three theorems admit a number of corollaries, allowing to set a
few questions that, being classical in the elliptic case, remained still open in the
parabolic one, at least in the case p # 2. A first corollary concerns a Lorentz
Spaces criterion ensuring the continuity of the gradient. The one in the next lines
is actually a borderline version of a result of DiBenedetto [11] asserting that for
solutions to the model equation (1.4), we have

p € LNt — Du is Hélder continuous

whenever 6 > 0, where N = n+2 is the usual parabolic dimension (see [11, Chapter
IX]). A borderline version of DiBenedetto’s result, valid now for general equations
as in (1.1) and given in terms of natural Lorentz spaces, is the following:
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Corollary 1.3 (Lorentz spaces criterion). Let u be a solution to (1.1) in Qr, under
the assumptions (1.2) with p > 2 —1/(n+ 1); assume also that

w€ L(N,q), where ¢ := min{1,p/[2(p — 1)]}.
Then Du is continuous in Q.

Needless to say, L% C L(N, q) for every ¢ > 0. We refer to Section 2 below for
the relevant definitions on Lorentz spaces in this setting. See also [27] for a related
gradient boundedness result.

The last result we propose extends to the parabolic case by now classical elliptic
results of Lieberman [35] asserting that, when considering elliptic equations as
(1.10), the density condition

ul(B,) < c"

for some 6 > 0 implies the local Holder continuity of the gradient (see also the work
of Kilpeldinen [19] for similar statements concerning u rather than Du). Here we
find that a similar condition still implies Holder continuity, obviously replacing n
with the parabolic dimension N =n + 2.

Theorem 1.5 (Measure density criterion). Let u be a solution to (1.1) in Qr,
under the assumptions (1.2) with p > 2 —1/(n+ 1); assume also that

(1.24) 1l(Qp) < cpo™

holds for some cp > 1 and 6 > 0, whenever Q, is a standard parabolic cylinder
having width equal to o. Then there exists an exponent B € (0,1), depending only
onn,p,v,L and §, such that Du € CO’/B(QT,R”).

loc

The borderline case of the previous result also follows:

Corollary 1.4 (Borderline measure density criterion). Let u be a solution to (1.1)
in Qr, under the assumptions (1.2) with p > 2 —1/(n+1). Assume that, for a
nonnegative function h: [0,00) — [0,00) such that

/O [h(g)}qd—j <oo,  whereq=min{l,p/2(p - D]},

the inequality
(1.25) 11l(Qy) < co™ 1 h(o)

holds for some ¢ > 1, whenever @, is a standard parabolic cylinder having width
equal to o. Then Du is continuous in Q.

The proof of the gradient continuity criteria of Theorems 1.2-1.5 involves some
delicate new ideas. In particular, we do not use the stopping time arguments on
chains on shrinking cylinders, where we measure the oscillations of Du (as for the
proof of Theorem 1.1 - a method introduced earlier in [31]). On the contrary, we
build a new iteration scheme using an a priori large number of stopping times, by
instead recovering the regularity estimates using excess decay properties that hold
exactly on chains of cylinders bounded by the exit times considered. We shall call
these as mazimal iteration chains reflecting the degeneracy/singularity of the equa-
tion and they are defined in due course of the proof of Theorem 1.3. The first result
we prove is indeed Theorem 1.3; after proving the VMO-regularity of the gradient
we use this result to prove its continuity under the more restrictive assumption of
the convergence of the potentials. A particular feature of the proof is that it is made
in order to keep track of the constant dependence in a very precise way. Indeed,
intrinsic in the proof of Theorem 1.3 is a control of the modulus of continuity of the
gradient in terms of certain radii that, when considering (1.24), leads to the proof
of Theorem 1.5. This last results indeed relies in turn on the method of Theorem
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1.3 together with a very careful analysis of the constants dependence in the a priori
estimates for solutions to homogeneous equations, when considered with respect to
a certain exit time argument. Indeed, for Theorem 1.5 it is necessary to develop a
suitable version of Theorem 3.1 below, namely, Theorem 3.3, where a more care-
ful constants dependence is connected to a certain double sided inequality for the
intrinsic geometry.

Remark 1.2. The techniques of this paper are suitable to treat more general
equations of the type

uy — diva(z,t, Du) = p

under suitable regularity assumptions on the partial map = — a(z,-). More pre-
cisely, we assume that for every point (z,t) the vector field z — a(z,-) satisfies
assumptions (1.2), while the map « — a(:,¢t,) is just assumed to be measurable.
Instead, with respect to to the x variable we assume a Dini continuity dependence,
that is, we assume that

|a(x,t, Z) - a(y7t’ Z)| S (.L)(‘I - y|)
holds whenever z,y € Q, t € (—=T,0) and z € R", where

(1.26) /Ow(g)@ < 0

4

Note that we do not need to assume any regularity on the partial map ¢t — a(-,¢,-)
other than measurability. For the sake of brevity we shall not report the necessary
modifications; this can be obtained by using the techniques introduced in this paper
with those of forthcoming [32]. Indeed, in this last paper we shall further exploit
the ideas used here to prove a few regularity results for solutions to p-Laplacean
type evolutionary systems with coefficients. Moreover, we shall also show how to
use the techniques of this paper to prove the Lipschitz continuity of solutions to
systems which are asymptotically close to the p-Laplacean one. See also the paper
[16], where condition (1.26) has been used in the elliptic case.

1.3. Comparison with the Barenblatt solution. Here we are going to demon-
streate the sharpness of the intrinsic potential estimate of Theorem 1.1 by showing
that Theorem 1.1 provides for solutions to general equations as

(1.27) up — diva(Du) =6

in R™ x R, where ¢ is the unit Dirac mass charging the origin, the same asymptotic
estimates that hold for the fundamental solution of

(1.28) uy — div (|DulP~2Du) = 6.

More precisely, for the choice of p and 6 as follows:

2n 1
2 —— 2 d O=n(p-2
1 <2 g <r< an n(p—2)+p,

(1.29)

and for a suitable choice of the positive constant ¢, = ¢y(n, p), the function

B 2—p 1 || T | P
n/0 (2 & =T Hkdl n
B, (z,1) : t [ p 0 (cb—l— <t1/9> )] (z,t) € R™ x (0,00)

0 otherwise

is a very weak solution - in the sense of [6] - to (1.28) in R™ x R. See for instance
[47, page 192]. Specifically, B, still verifies (1.6), but fails to match the integrability
conditions in (1.5), as it usually happens when dealing with solutions to problems
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involving measure data. The function B, in (1.30) is indeed called the Barenblatt
solution to (1.28) (see [2] for the original motivations). A direct calculation gives

(1.30) |DB,(x0,t0)| < cty "7

As for the bounds in (1.29) notice that indeed DB, (z,t) € L'. In fact, observe that
B, (z,t) = t~/%(|z[t~1/?) with v being a function in C1*(R¥) for some a > 0.
Then, co-area formula and change of variables give

T [eS) T
/ / |DB,(z,t)| dx dt = wyp—1 / [/ (r)[r™ ! dr/ 7Y dt < 0o
o Jre 0

0
for all T > 0 if and only if

2 1 1
n + —9

1
—— > -1 = -2 >1 > =2 ,
n(p—2)+p b n+1 n+1

0

which is exactly the bound in (1.9). Note that here we have also used the estimate
Sy n—1 > L_ﬁ.i(ﬁ_ )+n_1
|'U (T)|T dr<c|1l+ rp—1 T p—1\p—2 dr) < oo
0 1

for some ¢ = ¢(n, p), and in turn this is implied by

1 -1 2 2
+ P b -l)]<—"n = —<—"Nn < p>2——.
p—1 p—1\p—2 p—2 n

It follows that

(1.31) AN = |er‘ .

as r — 00, uniformly with respect to A > 0 and (zo,t9) € R™ x R. In fact, this is
true for solutions u to more general Cauchy problems whenever the initial trace of
u is compactly supported, i.e. that the source term is concentrated on t = 0 and
has a compact support, see for example [11, Chapter 11] and [33].

The point we are interested in here is that it is possible to show the pointwise
bound appearing in (1.30) as a direct consequence of Theorem 1.1 (formally ap-
plied to Barenblatt solution) and convergence property (1.31), thereby proving its
sharpness. For this, let us start observing that, with (zo,tg) € R™ x (0, 00), we have
to — A27Pp? < 0 iff p > \/AP—2ty. Therefore, whenever A > 0, we obtain

* [0(Qp0.t0) ) do _ [ L\ do _ (ypa \—(nsD)/2
132 /0 ( oVt ) 0 S/,/Apzt()(QNl) o W) '

Now, let us define, for A > 0, the function

27y 6 A ,t

\DB,| dz dt — 0

where A, (-) has been defined in (1.31). Observe that under the assumption (1.3)
we have n(2 —p)/2 < 1 and thus the function h,(-) is negative in a neighborhood of
0 (if A(A) =0 for some A > 0, there is nothing to prove). On the other hand, for
the same reason, and noticing also that again by (1.3) we have (2—p)(n+1)/2 < 1
by (1.32), we conclude with

Hm Ay (M) > Hm (A — A"C7P)/24, (1) = eA@R)(ntD)/2 o (nF /2]

A—00 A—00

The function h,.(-) is, on the other hand, easily seen to be continuous and therefore
there exists a solution A, > 0 of the equation h,.(\.) = 0. We can hence apply
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Theorem 1.1 to B, in order to obtain

J QST(IOJO))> do
0

n(2— = (o
|DB,(0,t0)| + Ar < 2eA P>/2A,,.(A,.)+2c/0 ( p

By using Young’s inequality with conjugate exponents

we eS‘ Ulla‘ €

NIED/24 (3 < % [ An (A2 @D
On the other hand, noting /2 + (n + 1)(2 — p)/2 = 1, again Young’s inequality

implies
< (6(Q) (wo,t0)) \ do _ A, —(n+1)/6
2c/0 (gQNl — <7+ .

Merging the last three estimates and reabsorbing terms yields
DB, (o, to)| < el Ay (An)]?/ BTG cpg (DT,

from which (1.30) finally follows letting r — oo, thanks to (1.31).
The above reasoning can be now applied, as already shown in [31, Theorem 1.5]
to general solutions to the equation in (1.27).

1.4. Plan of the paper. The paper is organized as follows; after collecting the
basic notation and terminology in Section 2, we present in Section 3 the results
about Holder gradient continuity for solutions to homogeneous equations. The
central result is at this stage Theorem 3.1, which will be a main tool both in the
proof of the potential estimates and in the that of the gradient continuity results. In
turn, Theorem 3.1 is here used to give a proof of certain a priori Hélder continuity
estimates for solutions of homogeneous equations (see Theorem 3.2), that will be
also an important tool in the subsequent proof. The proof of the potential estimates
in Theorems 1.1-1.2 are then in Section 4. Finally, Section 5 is devoted to the proof
of Theorems 1.2-1.5 and their consequences.

2. BASIC NOTATION AND DEFINITIONS

2.1. Notations. In what follows we denote by ¢ a general positive constant, pos-
sibly varying from line to line; special occurrences will be denoted by c¢1, co etc and
relevant dependencies on parameters will be emphasized using parentheses. All
such constants will be larger or equal than one. We also denote by

B(zg,r):={x € R" : |x — xo| <1}

the open ball of R™ with center xg and radius r > 0; when not important, or clear
from the context, we shall omit denoting the center as follows: B, = B(xg,r).
Unless otherwise stated, different balls in the same context will have the same
center. We shall also denote B = B; = B(0,1). In a similar fashion we shall denote
by
QT(Io,to) = B(.TE(),’I") X (to — 7‘2,t0)

the standard parabolic cylinder with vertex (xg,to) and width » > 0. When the
vertex will not be important in the context or it will be clear that all the cylinders
occurring in a proof will share the same vertex, we shall omit to indicate it, simply
denoting Q. With A > 0 being a free parameter, we shall often consider cylinders
of the type

(2.1) Q) (zo,t0) := B(zo,7) X (tg — A27Pr2 1g).
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These will be called “intrinsic cylinders” as they will be usually employed in a
context when the parameter A is linked to the behavior of the solution to some
equation on the same cylinder Q. Again, when specifying the vertex will not
be essential we shall simply denote Q) = Q(zo,t9). Observe that the intrinsic
cylinders reduce to the standard parabolic ones when either p = 2 or A = 1. In
the rest of the paper A will always denote a constant larger than zero and will be

considered in connection to intrinsic cylinders as (2.1). We shall often denote
5Qi‘(l‘0,t0) = Q()g\r(l‘o,to) = B(.To, (S’I‘) X (to — /\27P52T2,t0)

the intrinsic cylinder with width magnified of a factor 6 > 0. Finally, with Q =
A X (t1,t2) being a cylindrical domain, we denote by

Opar@ = A x {t1} UOA x (t1,t2)

the usual parabolic boundary of @), and this is nothing else but the standard topo-
logical boundary without the upper cap A x {ta}.
The parabolic metric is defined as

(@1,11) = (@2 82)lpar 1= max {Ja1 — @2, V[t — ]}

and the corresponding parabolic distance between sets E; and E» in R**! as
distpar(El,EQ) = inf{|(x1,t1) - (m2;t2)|par : (l’l,tl) € Fq, (.’1727t2) S EQ} .

With A C R"! being a measurable subset with positive measure, and with g: A —
R™ being a measurable map, we shall denote by

1
(9)a = ][Ag(ﬂﬁ) dz dt := W/Ag(x) dx dt

its integral average; of course |A| denotes the Lebesgue measure of A. A similar
notation is adopted if the integral is only in space or time. In the following, with
g = (gi)1<i<n € R™ being this time a vector, we define

lgll := max g,
which is a norm equivalent to the usual one defined by |g|? := > |gi|? via

lgll < lgl < Vnllgll-

Moreover, everywhere in the following, when considering the sup operator we shall
actually mean esssup, and similarly for inf and osc operators.
Given a real valued function h and a real number k, we shall denote

(h — k)4 := max{h — k,0} and (h —k)— := max{k — h,0}.

As in this paper we are considering only a priori estimates - see the discussion
in the Introduction - we shall restrict ourselves to examine the case when p is an
integrable function. In particular, with g: A — R"™ being a vector valued map we
denote

oscgi= s |g(a,1) - g(xo,to)]

A (@.),(w0,t0) €A

In the treatment of parabolic equations, a standard difficulty in using test func-

tions arguments involving the solution is that we start with solutions that, enjoying
the regularity in (1.5), do not have in general time derivatives in any reasonable
sense. There are several, by now standard, ways to overcome this point, for instance
using a regularization procedure via so-called Steklov averages. See for instance [11,
Chapter 2] for their definition and their standard use. In this paper, in order to
concentrate the attention only on significant issues, following a by now standard
custom (see for instance [12]), we shall argue on a formal level, that is assuming
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when using test functions argument, that the solution has for instance square inte-
grable time derivatives. Such arguments can easily be made rigorous using in fact
Steklov averages as for instance in [11] or using convolutions with mollifiers.

2.2. Lorentz spaces and nonlinear potentials. We start recalling a few basic
definitions concerning Lorentz spaces; in this section p: R"*! — R will in general
denote a measurable map, while @ C R"*! will denote an open subset. We assume
H(z,t) € Q : |u(z,t)] > t}| < oo for ¢ > 0. The decreasing rearrangement
w2 0, 00] = [0, 00] of p is defined as the (unique) non-increasing, right continuous
function which is equi-distributed with |u(+)|, that is
p*(s) :=sup{h >0 : |{(2,t) € R"™ : |u(z,t)] > h}| > s}.
Now, the usual definition of the Lorentz space L(v, ¢)(Q) = L(v, q), for v € (0,00)
and ¢ € (0,00) prescribes that
1/q

(2:2) o= ([ (1w 027)" 2) " <o

The local version of Lorentz spaces is defined in the usual way by saying that
€ L(v,q) locally in Q iff xap € L(7, q) for every open subset A € Q.

Lorentz spaces refine the standard Lebesgue spaces and it follows from the def-
inition that L(y,7) = LY. For more on Lorentz spaces we refer for instance to
[44]. A classical fact due to Hunt [18] states that when considering the maximal
operator of p* it is possible to obtain a quantity, in fact equivalent to the one in
(2.2) when v > 1, that defines a norm in L(7, q). More precisely, defining for £ > 0
the following maximal operator:

13
(2.3) () = % / () dy

for ¢ < co the quantity

oo 1/q
L q Kok 1/7)(1 dQ)
Plly,g = */ (u 0)o —
[ellv,q (7 ; (o) .
is such that

(2.4) [1]v,q < il < e(vs @)y g for v > 1,

see for instance [44, Theorem 3.21]. The following inequality, which is a straight-
forward corollary of the definition of rearrangement of a function, holds whenever
A C @ is a measurable set:

[A
(2.5) [ e < [ way.

Next we define the following family of Wolff type nonlinear potentials:

(2.6) W (2, ;1) = /O <|“|(Q9(z’t))>q o g0

q oN-1 0
Obviously

T ‘ p/[2(p—1)]
_ 1(Qo(, 1)) do
RN WEST ad Wi (o) = [ (P09 0

The following lemma is rather straightforward consequence of the definitions.
Lemma 2.1. Let yp € LY(R"*1 R) and q > 0; for every r > 0 it holds that
q dg

(2.8) sup Wh(z,t;r) < 01/ (u**(g)gl/N)
0 Q

(z,t)eQ
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where the constant c¢; depends only on n,q and w, denotes the measure of the unit
ball in R™. In particular

(2.9) uw€ L(N,q) = lim sup Wg(x,t;r) =0.
r—0 (337t)EQ

Proof. We give the proof for completeness. Observe that (2.5) and the definition
in (2.3) give, whenever (zg,%9) € Q

|u|<Qg<xo,to>>)q _ . ) (e
( N1 = ( nQ]{)Q(mO’tO) || d dt) < (QN/O Iz (§)d§>

< [wnop™ (wne™)]"
Therefore, integrating the previous inequality in (0, r), and changing variables, leads
to (2.8). O

q

3. THE C%® GRADIENT THEORY

In this section we concentrate on homogeneous equations of the type
(3.1) wy —diva(Dw) =0

in a given cylinder @Q = B x (t1,t3), where B C R" is a given ball. We remark that
in this section, the exponent p will always be, unless otherwise stated, such that
€ (1,2]. In particular, in this section the lower bound (1.3) plays no role. In the
rest of the section w will denote an energy solution to (3.1) in a given cylinder Q.
In the following, with ¢ > 1 and g € L%(Q’) being a function defined on the
measurable set Q' C R, we define the excess functional

(32) Ey(0.Q') = (][Q - (@) s dt)l/q

which is the L%-mean deviation of g from its mean value on @’. An elementary
property of excess functionals we shall often use in the following is

1/q
(33 E(0.Q)<2 (][ g — 17 da dt) Vo eR.
Q/

A central tool in our approach to both the Hélder continuity of the spatial gradient
of solutions to homogeneous equations and to gradient potential estimates in the
case of non-homogeneous equations, is provided by the following:

Theorem 3.1. Suppose that w is a weak solution to (3.1) in Q7, and consider
numbers A, B,q > 1 and v € (0,1). Then there exist constants 6, € (0,1/2) and
€€ (0,1/4), both depending only on n,p,v, L, A, B,~, but otherwise independent of
s, q, the solution w, and the vector field a(-), such that if

A
(3.4) — < max i, sup || Dw|| ¢, s+ sup ||[Dwl| < AX
B §B o» o>
Sy s
hold, then
(3.5) Eq(Dw,éin‘) < 'YEq(DwaQi\)

holds as well. Moreover, there exist two constants a € (0,1) and c¢(A, B) > 1, both
depending only on n,p,v, L, A, B, such that

,.yl/oz

6 =

T ¢(A,B)’

and c(A, B) is a nondecreasing function of A, B. Finally, (3.5) still holds when
replacing 0, by a smaller number ¢.

(3.6)
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Remark 3.1. The proof of Theorem 3.1 will be given first in the case
(3.7) s>0,

with estimates that will be on the other hand uniform with respect to s. A suitable
approximation argument then allows to treat the case s = 0 starting from the one
s > 0, and for this we refer to Section 3.3 below.

Theorem 3.1 is a key ingredient in the proof of intrinsic potential estimates
of Theorems 1.1-1.2 but it also incorporates enough information to allow for a
proof of the Holder continuity of Dw, as shown in the next Theorem 3.2. In other
words, Theorem 3.1 allows for a unified approach to the gradient regularity for both
homogeneous and non-homogeneous p-Laplacean equations. In turn, the a priori
estimate in Theorem 3.2 below is another key tool in the proof of the potential
estimates. We notice that a slightly different version of Theorem 3.1 has already
been proved in [31] for the case p > 2; here we show the necessary modifications
of the case p < 2 - which are at several stages non-trivial - and then show how to
apply Theorem 3.1 to prove the following:

Theorem 3.2. Let w be a weak solution to (3.1) in a given cylinder Q under
assumptions (1.2). Then
o If
2n
—— <p<2
n
holds, then Dw has is locally Hélder continuous in Q
o If1 <p<2andQ)CQ is an intrinsic cylinder such that

(3.8) s+ sup |[Dw|| < A\
@

holds for a certain constant A > 1, then
(3.9) \Dw(z,t) — Dw(z1, )] < 4VmAN (f)a

holds as well whenever (z,t),(x1,t1) € Qg‘ for a Hélder exponent o =
a(n,p,v, L, A) € (0,1), which, in particular, is independent of s, the so-
lution w considered and the vector field a(-). Here Qg C Q) are intrinsic
cylinders sharing the same vertex.

Proof. Step 0: Reduction to the second assertion. Let us observe that it is sufficient
to prove the second assertion; in fact by Theorem 4.1 below, we know that Dw is
locally bounded in @ and the Holder continuity follows from the second assertion
via a standard covering argument (compare for instance with [11]).

Step 1: Framework of Theorem 3.1. Our approach to prove the second part of
the Theorem is to apply Theorem 3.1 with particular choices of B and v, and with
q = oo, i.e. letting ¢ — oo in the corresponding inequalities of Theorem 3.1 as all
the constants are independent of q. Choose

1

and let 8, = d,(n,p,v, L, A) € (0,1/2) be the constant in Theorem 3.1 correspond-
ing A, B, and . We start defining
Ak = 2716)\7 T = (557’, Qi = i\: ,

k=0,1...,so that Q41 C 0,Q) holds whenever k£ > 0. Define the number

2
m = inf{kzO : Inax{sg,sup ||Dw||} > gk} .

k+1
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In case m < oo we redefine the intrinsic geometry parameter
Ak = Am, k=m+1,m+2,...,

and accordingly, we redefine Qy := Q;}k fork=m+1m+2,....
Step 2: The equation becomes uniformly parabolic immediately. This means that
m = 0. We then have that at least one of the two following holds true:

(3.11) Ao/4 < s < s+sup|Dw| < AXg,
Qo
and
(3.12) Ao/B < 2Xo/B < sup||[Dwl|| < s+ sup|[Dw|| < AXg.
Q1 Qo

Let us prove that, in any case, we have
(3.13) osc Dw < 2v/nyosc Dw VEk>0.

Qr+1 Qr

Indeed, Theorem 3.1 implies (applied with ¢ = co on the fourth line below)

osc Dw < /n max osc wy,

Qk+1 1<5<n Qk41
< 2\/5 121;2(” ||w13j - (w13j)Qk+1 ||L°°(Qk+1)
< 2\/E||D’LU - (Dw)Qk+1 ||L°°(Qk+1)
< 2Vny[|Dw — (Dw)g, o= (qu)
(3.14) < 2vny osc Dw
k

for all k = 0,1,... in the case (3.11) holds (recall that A = Ag), and for £k = 0 in
the case (3.12) holds. Let us further analyze the occurrence of (3.12) in order to
prove that (3.13) holds when (3.12) is in force. We have by (3.12) and (3.14) (this
last one used only for k£ = 0) that

osc Dw < 2y/nyosc Dw < 4nysup ||Dw|| < 4nyAXg .
Q1 Qo Qo

Therefore

(3.15) sup wy, — infwy, = oscw,, < osc Dw < 4dnyAX
Q1 Q1 Q1

Q1

holds for every i € {1,...,n}. Next, we have by (3.12) that either
sup w,, = sup ||Dw| > 2X\g/B or infw,, = —sup || Dw| < —-2\¢/B
Q Q1 Q Q1
holds for some i € {1,...,n}. If the first inequality from the previous line is true,
ie.
sup wy, = sup ||Dw| > 2A\g/B
Q1 Q1
holds for some i € {1,...,n}, then by (3.15)

2X0/B — inf w,, < supw,, — inf w,, < 4dnyAXNg,
Q1 Q1 Q1

and by (3.10) it follows that
. Ao Ao
. . > —_ — = —_—
(3.16) 161211fw 25 (2 — 4nABy) T

Similarly, if

inf wy,

—sup || Dwl|| < —2)¢/B
Q1 Q1
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for some ¢ € {1,...,n}, then we have
(3.17) supwy, < —XAo/B.
Q1

Inequalities (3.16) and (3.17) readily imply that
[Dw| > Xo/B  ae. in Q.
By this and (3.12) we have that

(3.18) Me/B < sup ||Dw|,  s+sup|Dw| < A\
Qr+1 Qk
for all k = 0,1,... (again recall that in this case it is Ay, = Ag) and Theorem 3.1
applied with ¢ = co then implies (3.13) for all K =0,1,...
Step 3: The equation becomes uniformly parabolic in @Q.,. This means that
m > 1. We have that at least one of the following two inequalities holds:

§> A /4> Em and sup || Dw| > 2A,,/B.

an+1
Moreover, since m > 1, we have by the very definition of m that
1 1
3.19 Du|| < —=Ap—1 = —=X, k=1,...,m,
(3.19) ngHMH*AL\/ﬁkl N m

and, in particular, it follows that

(3.20) %SCDwSQ\/ﬁsupHDwH <A\, E=1,....,m.
k Qk

We also have

(3.21) s+ sup ||[Dw|| < Ay, < ANy,

because s < Ap—1/4 = A /2. Now, if on the one hand s > A,;, /4, then we get (3.14)

by Theorem 3.1 for all k =m,m +1,..., in view of (3.21). If, on the other hand,
2A\n/B < sup ||Dw]|,

Qm+1

then we obtain, analogously to Step 2, that
|| Dwl|| > A /B a.e. in Qi1 -

This, together with (3.21) allows us to apply Theorem 3.1 with ¢ = oo as in Step
2; we obtain (3.13) forall k =m,m+1,...

Step 4: The equation never becomes nondegenerate parabolic. This means that
m = oo and therefore, as in the previous Step, we have that (3.20) holds for every
keN.

Step 5: Conclusion. In all cases we have established

osc Dw < Mg, 1<k<m,
Qk
when m > 1, and
osc Dw < 2y/nyoscDw for k>m, osc Dw < 2¢/nAN,
Qr+1 Qk Qo

when m > 0. Thus, because 2y/ny < 1/2, above inequalities yield

osc Dw < oh 1

Qk

for all £ =0,1,... But now, since

A
Q(2<p—2>/25w)kr C Qk
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we have - by taking ¢ < r as in the statement of the Theorem - by choosing k£ > 0
such that (2(P=2)/25 Ykl < o/p < (20=2)/25 )k,

«
osc Dw < %sc Dw < 4v/nAX (Q)
k T

Q3
with
log 2
a=———F——"
log (2@_2)/267)
Clearly a = a(n,p,v, L, A), concluding the proof. O

Remark 3.2. Theorem 3.2 still holds when p > 2, and for this we refer to [31],
where the needed version of Theorem 3.1 is featured.

In the following we shall also need a different version of Theorem 3.1, that is

Theorem 3.3. Suppose that w is a weak solution to (3.1) in Q7, and consider
numbers A, B,q > 1 and v € (0,1). Then there exists a constant §, € (0,1/2) de-
pending only on n,p,v, L, A, B,~, but otherwise independent of s, q, of the solution
w, and of the vector field a(-), such that if

A

(3.22) — < sup ||Dw|| and s+ sup || Dw|| < AX
B @ Q)

hold, then

(3.23) Ey(Dw, 6,Q7) < vEq.(Dw, Q})

holds as well. Moreover, there exist two constants o € (0,1) and c¢(A) > 1, both
depending only on n,p,v, L, A, but not on B and q, such that

(3.24) 5, = c(lA) (%)Ua :

and c(A) is a nondecreasing function of A. Finally, (3.23) still holds when replacing
0y by a smaller number 6.

This version, which differs from Theorem 3.1 for a different, more peculiar, de-
pendence of the constant (3.24), will be necessary in order to prove Theorem 1.5
with the right dependence upon the parameters.

Remark 3.3. The assertions of Theorems 3.1-3.3 still hold for solutions to more
general equations with coefficients of the type

wy — diva(t, Dw) =0

where the vector field a(-) is supossed to be only measurable with respect to the
time variable, and such that z — a(t, z) satisfies assumptions (1.2) for every choice
of t. This fact can be easily derived by observing that the proof of the above results
solely relies on the analysis of the differentiated (with respect to the space variable)
equation; see (3.35) below. The possibility of such a differentiation procedure is
clearly not affected by an additional dependence, even measurable, dependence on
time.

3.1. Basic Gradient Holder continuity estimates. In this section w denotes
a solution to (3.1) in a cylinder of the type Q) = @Q; throughout we shall assume
that (3.7) holds; see comments in Remark 3.1. We denote

(3.25) lelZaig) == sup /|U(337t)|2d33+/ Do, 1) da dt
B Q

11 <t<to
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whenever we are considering a cylinder of the type @ = B x (t1,¢2). The space
V2(Q) is the defined by all those L2(t1,to; W12(B)) functions v such that the previ-
ous quantity is finite. Moreover we denote by VZ(Q) = V2(Q)NL2(t1, ta; W, *(B)).
The following Poincaré type inequality is then classical (see [11, Chapter 1, Corol-
lary 3.1]):

(3:26) [[vl72(q,) < c(m){lvl > 0} N Q7P |olf}aq,y, Qi =Bix(-1,0),

and holds for all functions v € VZ(Q1). We start with a sort of a height bound,
already derived for the case p > 2 in [31]; dealing with the singular case p < 2
necessitates a different proof, and poses additional difficulties. In particular, we
are forced to derive a Caccioppoli inequality which is different from the usual one
involving an additional integration-by-parts argument.

Proposition 3.1 (Height bound). Assume that
(3.27) s+ sup || Dw|| < A
Q?
holds for some constant A > 1. There exists a number o = o(n,p,v, L, A) € (0,1/2)
such that if either
(3.28) Q2 N {we, < N/2H < alQR] or Q) N {ws, > —A/2}] < 0|Q}

holds for some i € {1,...,n}, then |w,,

> A\/4 holds almost everywhere in Qf«\/z-

Proof. Without loss of generality, we may assume that

(3.29) Q2 N {ws, < A/2} < 0]Q7,

then proving that w,, > A/4 holds almost everywhere in Qi‘ /2 Indeed, assuming
that the second inequality in (3.28) holds, by defining @ := —w we have

(3.30) Q) N{we, > =A/2}| < 0lQY] = Q)N {da, < A/2}| < 0lQP].

Observing that w solves the equation w; — diva(Dw) = 0, where a(z) := —a(—=z)
and the vector field a(-) still satisfies assumptions (1.2), we reduce to the case (3.29).
Again without loss of generality, we shall assume that the vertex of all the cylinders
considered in the following coincides with the origin. The rest of the proof now goes
in three steps.
Step 1: Rescaling. We now perform the standard intrinsic scaling by defining
A2TPr2g
(3.31) ofa, t) = LTI (x,t) € Q1 :== By x (—1,0),
T
so that the newly defined function v solves

(3.32) N2y, —diva(Dv) =0  in Q.

From now on all the estimates will be recast in terms of the function v. Notice that
with the new definition we still have

(3.33) s+ | Do L= g,y < AN
and assumption (3.29) translates into
H(z,t) € Q1 : va, (x,t) < A/2} < 0|Q1].
Our next aim is to show that
(3.34) Vg, > A4 a.e. in Q).

The statement of the Proposition will then follow by scaling back to w.

Step 2: A Caccioppoli type estimate. In the following we shall proceed formally
(assuming for instance that solutions are differentiable with respect to time), and
all the details can be justified in a standard way using Steklov averages [11]. The



20 T. KUUSI AND G. MINGIONE

main point here is that since we are dealing with singular equations the treatment
must be different from the one in [31]. We start by differentiating equation (3.32) in
the x;-direction; recall that we are assuming that p < 2, s > 0 and Dv is bounded.

It follows, indeed
Dv e L% (—1,0; W, (B1,R")) N C°(—1,0; L2 .(B1,R™)) .

loc loc loc

The details can be found for instance in [11, Chapter 8, Section 3]. We obtain the
following equation:

(3.35) NP=2(v,,) — divdy, (a(Dv)) =0.

Multiplying the previous equation by (v,, — k)_¢?, where ¢ € C°(Q1) and k €
(0, A)), and integrating by parts yields (actually using the weak formulation and
in fact Steklov averages)

0 = AH/ (vg,)¢(Vg, — k) _¢* dx dt

+ [ (9s,a(Dv), D) (v, — k) dzdt
Q1

+/ (02,0(Dv), D((vs, — k)_)) 2 dwdt = I + I + Iy .

The first term we integrate by parts with respect to ¢t and the second with respect
to ;. We obtain

v 1

k
I = —AH/ at/ (y —k)_ dy p* dadt = AP‘Q/ (v, — k)2 yop da dt
and

I, = —/ (a(Dv), 85, D¢*) (vg, — k) da dt

1

—2/ (a(Dv), D) pvg,q, dxdt =: In1 + Io 2.
Qlﬁ{’uzi <k)}

The terms I 1, I5 2, and I3 we estimate using the structure of a(-) described in (1.2)
as follows: the growth condition on a(-) implies

(3.36) |1'2}1|<2L/Q (1Dvf? + 52) 772 (v, — k) (16]|D%¢| + |D@|?) da dt

and

(3.37) L] < 2L/ (1Dv2 + )PV | D(v,, — k)_||Dg||¢| da dt

1

and the coercivity of da(-) gives
(3.38) I < 71// (1Dv2 + )PP |D(v,, — k) _[2¢* da dt .
1
Furthermore, by Young’s inequality we deduce
2L (|Dvf? + %) """ |D(v,, — k)_|| D¢ 4]
< % (|Dv|2 + 52)(17—2)/2 ID(vy, — k)_|26% + ? (|Dv\2 + 52)17/2 ID¢|?.

Therefore,

Ii+ Iy < _g/ (1Dv[2 + 2) P22 | D(v,, — k)_[2¢? da dt

1
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212
el (1Dv[? + 2)"* | Dg|? da dt
Vo JQin{v., <k}

Rearranging terms yields
g/ (1Dv]? + 52) "2 | D(v,, — k)_|¢? da dt
Q

1

+AP2 / (va, — k)2 (— 1) d dt

2L2
< (1Dv[? + 2)"? | Dg|? da dt
Vo JQin{v., <k}
(3.39) +2L/ (1DuP? + 52) P07 (uy, — k) (16]|D%6| + |DG|?) dodt
Q1

Replace then ¢ with ¢8, where ¢ € C*°(Q)1) vanishes on the parabolic boundary of
@1 and 0 € C*(R), being nonincreasing and vanishing for ¢ > 0, approximates the
characteristic function of (—oco,7), 7 € (—1,0). In view of (3.33) and of the fact
that we have chosen k € (0, A)\), we have bounds

(IDv2 +52) " 2% > 240272 max{(|Dv]> + %)%, (v, — k)_} < 241,

and thus (3.39) yields, with 7 realizing (actually approaching) the supremum below,
A2 (vg, — K) - 9120,

< 2»’*2/ (ID (02, — B)_ P& + (vs, — )2 | DY) da dt
Q1

+AP72 sup /(vmi—k)%qux
te(—1,0) J/ By

(3.40) < cN sup (1011D%0] + [Del* + |9l ¢x]) 1Q1 N {va, < k} N1 {d > 0}

for a constant ¢ = ¢(p,v, L, A). This is the Caccioppoli type inequality we were
looking for.
Step 3: Iteration. Define first truncation levels

A 1 A A
=1 —_— h — < < —
km 4(+2m>, so that 4_km_2,

for all integers m = 0,1,... We then consider the following nonnegative cut-off
functions: ¢, € C*°(Q1), where

1 1

Q(m)ingm Qm1:§+W7 m >0,

defined in such a way to vanish outside Q™) and smoothly on the parabolic bound-
ary of QU™ and, moreover, satisfy the following conditions:

0<ém <1, ¢m =1 on Qm+Y
(3.41) D26 ] + | D2 + ()i < c(m)a™ .
Now, let us introduce, again for m > 0, the sets
Ap = Q™ N {vy, < kpm}.
Taking ¢ = ¢, and k = k,,,, by (3.41) estimate (3.40) gives
X2 (04, = k) buallr2 ) < AN | Ayl
Using (3.26) and then the previous inequality, we have, as ¢,, = 1 on QU*Y) | that

)‘piz(km - km+1)2|Am+1| < )‘pizH(Uﬂc@ - km)—ﬁbm”%?(Amﬂ)
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< )\p_QH(UQJi - km)f¢m||i2(¢g(m))
< N2 (vg, — km)f(bm||%/2(Q(77»))|Am|2/(n+2)
< C4m)\p‘Am|l+2/(n+2)

with a constant ¢ = ¢(n, p,v, L, A). In turn, observing that
Ep — kg1 = 2773\,

we arrive at
|Am+1| < CSm‘Am|1+2/(n+2),

for a constant c still depending only on n,p,v, L, A, and for every m > 1. At this
stage by using a standard iteration lemma (see for instance [11, Chapter 1, Lemma
4.1]) we have that there exists a number o = o(n,p,v, L, A) € (0,1) such that if

Q1 N {va, <A/2}] = |Ao| < 0|@u],
then |A,,| — 0 and this implies (3.34) by the inclusion
Q12 N {ve, < N4} C Ny A,
The proof is complete. i

The previous result allows us to use the same machinery employed in [31, Section
3] for the case p > 2. The outcome is the following statement, whose proof is
completely similar to the one for the case p > 2.

Proposition 3.2. Assume that (3.27) is in force. Then there are numbers o €
(0,1/2), B € (0,1), and cq > 1, all depending only on n,p,v, L, A, such that (3.28)
implies

(3.42) ( J[Q .

whenever 6 € (0,1) and g > 1.

1/q 1/q
|Dw — (Dw) gy |* d dt) < cg6” <][ |Dw — (Dw) x| d dt)
r Qé r

Similarly, we have to the following result, that, proved in [31] in the case p > 2,
extends to the case 1 < p < 2 with a completely similar proof.

Proposition 3.3. Assume that

(3.43) sup ||[Dwl| < A\ and EN< s < &AM, where 0 < € <& .
QR
Then

1/q 1/q
(3.44) <][ | Dw—(Dw) gy ngcdt) < Eg6™ <][ |Dw—(Dw)Q%|dedt>
Q3 ’ @ "
holds whenever § € (0,1) for constants 1 = p1(n,p,v,L,A,£,&) € (0,1) and
Ed = 5d(nap7 VaL7Aa§7£1) Z 1.

The next proposition analyzes the case ruled out by the previous Proposition
3.2. Usually such type of result is achieved via arguments based on logarithmic type
inequalities (see for instance [11, 31]). Here we propose an alternative approach,
using the weak Harnack inequality for supersolutions to linear parabolic equations,
which turns out to be faster and probably more elegant. To this aim, we recall a
classical result.

Theorem 3.4 (Weak Harnack principle). Let z € L?(—1,0; W%2(By)) be a non-
negative weak supersolution in Q1 = By X (—1,0) to the linear parabolic equation

2t — div(é(m,t)Dz) =0,
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where the matriz B has measurable coefficients and satisfies the conditions

nlél® < (Blz,1)¢,€) < Lifé)?
whenever £ € R, and where 0 < vy < L. If
Q" = B(0,1 —61) x (—(d2 + 03 + d4), — (02 + J3))
and
Q™ = B(0,1—8) x (~02,0),
where 6; for i € {1,2,3,4} are positive parameters such that 61 + ...+ d4 < 1, then
there exists a constant ¢, depending only on n,vy1, Ly and {6;}, such that

][ zdxdtgcgif‘z.

The previous theorem roughly tells that, in order to realize a suitable Harnack
principle, we need a waiting time d3 > 0. We refer to [36] for a proof of the
previous theorem; see also [42, 13, 26] for more on Harnack inequalities in the
nonlinear parabolic setting.

Proposition 3.4. Assume that (3.27) holds and let o € (0,1) be described in
Proposition 3.1. Suppose that (3.28) is not satisfied for any ¢ € {1,...,n}. Then
it is possible to find n € (1/2,1), depending only on n,p,v, L, A, such that

(3.45) [[Dw| < nAX a.e. in Q§T/2 .

Proof. Assume that for any i € {1,...,n} the assumption (3.28) does not hold;
therefore for every ¢ € {1,...,n} it happens that

(3.46) {(z,t) € QY+ wa(2,8) 2 A/2}| < (1 - 0)|Q}]

and

(3.47) {(@,) € QY+ way(@,1) < =2/2}| < (1= 0)|Q7].

Here o = o(n, p,v, L, A) is the number determined in Proposition 3.1. We consider
the occurrence of (3.46) for single i € {1,...,n}; we later describe how to argue

for (3.47). Defining the scaled function

w(ra, \2~Prt)

(3.48) v(z,t) == — (z,t) € Q1
solving (3.32), inequality (3.46) takes the form
(3.49) H(z,t) € Q1 : vy, (z,t) < A/2} > 0|Q1].
In particular, by setting
(3.50) Q* = B(0,1 — 0 /(80n")) x (=1 +0c/4,—0/4) C Q1
we still have
(3:51) @ N {ow, < M2} 2 1@
Furthermore, it is quite standard to show that @ := (v,, — A\/2); is a weak
subsolution to the linear parabolic equation with measurable coefficients
(3.52) z — A*7Pdiv(da(Dv)Dz) = 0.

For the sake of the non-Finnish reader we briefly recall the argument in Remark
3.4 below. Next, we extend the coefficients of the equation of ¥ outside of {& > 0}
by setting

Bla1) = | ¥ "0a(Du(z,1) in QN {7>0}
HY =Y 1 on Q, N{o =0},



24 T. KUUSI AND G. MINGIONE

Id being the identity matrix. By the upper bound (3.27) and the fact that |Dv| >
A/2 in the support of ¥, we obtain

1 [ AN\""? _ A2\"?

LB ke = eraapug <o (22)le

C

almost everywhere in Q1 N {? > 0}, for a constant ¢ = ¢(n,p,v, L) > 1. Therefore
the eigenvalues of measurable coefficients B belong to [AP~2/c, c] and ¥ is a weak
subsolution to the linear parabolic equation

(3.53) z — div(B(z,t)Dz) =0.

Moreover, it follows by (3.27) (look also at (3.33)) that z = AA —A/2 -7 is a
nonnegative weak supersolution to (3.53) in Q7. Therefore we apply Theorem 3.4
with the choice @** = By, x (—0/8,0) and Q* as defined in (3.50); the outcome is
1
(3.54) 7][ (AX—X/2 —0)dedt < AN—)\/2 — sup v,
c * By /2% (—0/8,0)

for a constant ¢ = ¢(n,p,v, L, A,0) = ¢(n,p,v, L, A). By (3.51) we have the lower
bound
1

— (AN — A/2) da dt
1Q*[ Jo+n{o=0}

][ (AN— /2 — B)dwdt >

o g
> —(AN—)/2)>-A
> Z(Ar-M2) 2 ZAN,

and combining the previous inequality with (3.54) yields
) } AN =:nAX.

g

1
sup Vg, < Maxy -, (1
2 8c

Bo2x(=(c/4)%,0)

Finally, interchanging v;, with —v,, in the above reasoning - keep in mind the
change of variable made at the beginning of the proof of Proposition 3.1 - and
using (3.47), we actually obtain the same bound instead for the supremum of —v,,.
Since the above holds for arbitrary ¢ € {1,...,n}, inequality (3.45) follows. O

Remark 3.4 (Proof that ¥ is a weak subsolution of (3.52)). We shall argue mod-
ulo a standard time regularization via Steklov averages. We shall test the weak
formulation with 7. := e~ ! min(e, 9)¢, € > 0, where ¢ € C°(Q1) is nonnegative.
Firstly,

(vz,)ee "  min(e, ) = 8t/ et min(e, (y — A/2)4) dy
22
holds for all € > 0 and therefore integration by parts yields

[ wepmedzar = = [ [ mine, (- A2 dy ordo
L JIa/2

- - / ’lj(ﬁt dx dt

as € — 0. Secondly, since
Dn. = e~ "min(e, 0) D¢ + €' dxj0<i<e} Dva, »
we have that
(0a(Dv)Duv,,, Dn.) > e 'min(e, 0) (da(Dv)Dv,,, Do)
—  (0a(Dv)Dv, Do)

almost everywhere as € — 0. Collecting calculations, we have showed

0 = 11&1 (A2 (vg, )= + (Da(Dv)Dvg,, Dn.)) dz dt
£
Q1
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> / (-\""23¢, + (9a(Dv) D, D)) de dt.
Since ¢ is an arbitrary nonnegative test function, it follows that v is a weak subso-
lution.

3.2. Proof of Theorem 3.1. We shall give here the proof in the case s > 0,
while the case s = 0 follows via approximation, as explained in Section 3.3 below.
Note that anyway we shall never use the fact that s > 0 but when appealing to
Propositions 3.2-3.4. Indeed, assuming that the statements of these last two results
remain true for s = 0, then the rest of the proof below remains unchanged. The
proof goes now in five steps.

Step 1: Stopping time for the singular iteration and the choice of £. With
n=n(n,p,v,L,A) € (0,1) being defined in Proposition 3.4, we set
(3.55) mzz%7 so that n<n; <1 and 771—77:1T77.
Obviously m = ni(n,p,v, L, A) € (0,1). We define m € N as the smallest integer
such that

A
3.56 TAN < — .
( ) U5 2B
Observe that this determines m > 1 as a function of the parameters n, p,v, L, A, B.
Define £ accordingly as

(3.57) ¢ == min{1/8, (n — n)ni™ A},

which then also depends only on parameters n, p,v, L, A, B. The choices in (3.56)
and (3.57) fix the number ¢ in the statement of Theorem 3.1.

Step 2: The first nonsingular case. In this case we assume that {A < s. The
equation becomes immediately nonsingular and Proposition 3.3 then implies that

(.

for all 6 € (0,1) and constants é; and 51 depending only on n, p,v, L, A, B, since &
above depends only on such parameters. Thus we will eventually obtain (3.5) with
0 = 0, whenever

1/61 1/«

B Y
. =0< | — .
) ese(2) e

1/q 1/q
|Dw — (Dw)gy |* da dt> < Eg6™ <][ |Dw — (Dw) x| da dt>
r Qi s

A
sr

For this reason, we shall form now on argue under the assumption that
(3.59) s < (m —mni™ AN = €A

holds for m defined as in (3.56).
Step 3: The Singular Iteration. Given a cylinder Q?, where the intrinsic inequal-
ity (3.27) holds, by Propositions 3.2 and 3.4 we then have two possibilities:

e The Nonsingular Alternative. This means that we can apply Proposi-
tion 3.2 and therefore we have that

(3.60) ( ][Q

for every § € (0,1), where the constants 8 = S(n,p,v, L, A) € (0,1) and
cq = cq(n,p,v, L, A) > 1 are those defined in Proposition 3.2.

1/q 1/q
|Dw — (Dw)gy |*dx dt) < cq6” < ]{2/\ |Dw — (Dw)ga|? dx dt>

A
sr
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e The Singular Alternative. In this case we can instead apply Proposi-
tion 3.4 that in turn yields

sup ||Dwl|| < nAX,
A
0'1’7‘
where n = n(n,p,v, L, A) € (0,1) and o1 = o1(n,p,v, L, A) € (0,1).
The previous alternatives can be now combined in order to build a basic iteration

scheme, that we call the Singular Iteration. Let 1y be as in (3.55). We define the
sequences

Aig1 = MmN Riy1 =01 R;
>\0 = Aa RO =Tr.
With such a choice the following inclusions trivially hold:
(3.61) B CQN e CQE CQ VieN.

From now on we shall also denote

Qi = QY .
Here, as in the following, all the cylinders share the same vertex. We now proceed
building the iteration scheme by (finite) induction: to this aim, let us assume that
the Singular Alternative holds in the cylinders Q}\{f:l for i € {1,...,5} for some
integer j such that 1 < j < 2m. Therefore we have that

s+ sup |[[Dw|| < AX_1 and sup |[Dwl|| < nAXj_4
g i1
QRJJ-_l Qa‘iRj_l
hold. It follows that for all such j we have

s+sup [|[Dw|| < (p—n)ni™AX+ sup ||Du|
QY QI

g T1Rj—1

(3.62) (m —n)AXj—1 +nAXj—1 = AN

IN

In particular, the needed upper bound (3.27) is verified with Q) = Q;‘%, and we can
proceed inductively to verify wether the Singular Alternative or the Nonsingular
Alternative occurs in Q}\{j, provided j < 2m.

Step 4: The second nonsingular case. Now, consider all such numbers d, such
that

m—+1
(3.63) 5, < 4= (nf*”)/%l) ,
so that
(3.64) Q- C QN C QR

holds. Assume, according to the first inequality in (3.4) and to (3.59) (and towards
the final determination of §, in the statement), that

A
(3.65) s < &N, = < sup||Dw|]
B
hold. This in turn implies
A
(3.66) A, =" AN < — < sup||Dw|| < sup ||Dwl||
2B Q2 Am1
& Rm41

by (3.56) and (3.65). Let us now define

(3.67) M :=min {k € N : The Singular Alternative does not occur on Q}\%’;} .
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Observe that by definition this means that the Singular Iteration can be performed
m times, but that it cannot be applied on the cylinder Q)I‘{;L. We have

(3.68) m<m.
Indeed, by assuming by contradiction that m < m, then the Singular Alternative

would hold at m and therefore

sup |[|Dw|| < nA\,, < A\,
QA1
Rm,+1

contradicting (3.66). Thus (3.68) holds provided (3.65) is assumed, and from now
on, we shall choose, when providing d-, a number suitably smaller than ¢, where §
has been introduced in (3.63). Indeed, notice that if the above reasoning still holds
upon decreasing the value of 8. Moreover, as in the case of (3.62), we have
(3.69) s+ sup [|[Dw|| < AX;, for je{0,1...,m}.
Iy
QRJJ.

Next we shall apply the result of the Nonsingular Alternative. First, since the
Singular Alternative could not be applied in Q7 and (3.69) in particular holds for
j = m, then the Nonsingular Alternative must occur in @7 and we have

1/q
( ][ \Dw — (Dw)sq, |* dz dt)
0Qwm

1/q
(3.70) < cq0” ( ][ |Dw — (Dw)g,,|? dx dt)

m

for all 6 € (0,1]. Second, by (3.68), we have
1/q
<]l |Dw — (Dw)Qm|qudt>

m

1/q 1/q
<2 (”gf"') <][ |Dw — (Dw)Qoqudt>

1/ 1/
<2(||g°||> q(f |Dw—(Dw)Q0qudt> '

1/q
(3.71) < 20;m(n+2)n;m(271’) <][ |Dw — (Dw)x|? dz dt) .
Q

Third, since §6Q} C 0Q,,, C 6Q; - recall the definition of § in (3.63) and again
(3.68) - we have

1/q
<][65QA [Dw — (Dw)ssa|* dz dt)

(|5Qm|>l/q<][ D (Dw) 7d d)l/q
<2 w — w _ x dt
=\ [60Q7| 5Qm o9

1/q
(3.72) < 2§~ ("2 ( ][ |Dw — (Dw)sq, | da dt)
0Qm

for all § € (0,1]. Combining (3.70)—(3.72) we arrive at

1/q
(][55@ |Dw — (Dw)ssx|* dz dt>

1/q
(3.73) < 4ey [é—(n+2)01—m(n+2)771—m(2—1?)] 5B<][ |Dw — (Dw)QMq dx dt)
Q»
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for all 6 € (0,1]. Taking thus any

- 1/8
5(n+2) m(n+2) m(2—p)
(3.74) §< < 7 "y h i ) 0y =09,

we conclude with (3.5) in this case.
Step 5: Determining the number d. By looking at conditions (3.58) and (3.74),
we are led to define

_ 1/8
B m+1 §(n+2) gm(n+2), m(2-p) 1/B1
(3.75) 6, := (77§2 p)/201) min ( ! h i 7(7)
40,1 Cd

and notice that ¢, depends indeed only on n,p,v, L, A, B,, as 01,71 and m only
depend on such parameters. The number ¢, just defined in (3.75) is the one we
are looking for and it does not depend on the solution w (neither on the vector
field a(-)) since it works both in Step 2 and Step 3. Moreover, it has the form
required in (3.6). The proof is now complete when s > 0 (although all the previous
consideration formally holds for s = 0 provided one can use the two Alternatives
in Step 3). The case s = 0 now follows from the case s > 0 via the approximation
argument described in the next Section 3.3.

Proof of Theorem 3.3. The proof closely follows of the one found for Theorem 3.1,
therefore, we shall indicate the necessary modifications step by step.

Step 1. Here the crucial remark is that the number 7; does not depend on B.
We notice that m as defined in (3.56) satisfies
(3.76) m ~ 108UAB) ¢1(A)log(AB) = log(AB)“+()

—logm

for suitable constant cj(A), which is non-decreasing in A, and also depends on
n,p, v, L.

Step 2. Since we are now assuming (3.22) rather than (3.4), the content of Step
2 becomes irrelevant. A different argumentation will occur later, when considering
the stopping time of the Singular Iteration. In particular we shall not assume (3.59).

Step 3. In fact, as now (3.59) is not any longer in force, there is an additional
reason for the Singular Iteration to stop. In other words, even before checking the
occurrence of the Singular Alternative at step, let’s say, j, we have to verify that
the starting condition

s+ sup || Dw|| < AN;

Qx,
holds. Observe that were (3.59) in force, this would no longer be necessary, as shown
in (3.62). Therefore, considering the number m defined in (3.67), the iteration may
stop at 7 either because the Nonsingular Alternative occurs or simply because the
initial condition
(3.77) s+ sup ||[Dw|| < Ads

A
Ry

does not hold. Treating the two different cases will be done in the next step.

Step 4. Exactly as for Theorem 3.1 we have (3.68) and we proceed as done there.
In the case the Singular Alternative stops at 7 as the Nonsingular Alternative holds
(together with (3.77)) we proceed as in Theorem 3.1. In particular, we take d, as
indicated in (3.74). In the other case the Singular Iteration stops at step m as
(3.77) fails to hold, that is

(3.78) s+ sup ||Dw|| > ANz, = " AN,
o

m
R

m
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This implies that m > 1 as on the other hand the second inequality in (3.22) is
assumed. Note also that since the Singular Alternative holds at level m — 1, we
have

A

(3.79) s+ sup |[Dw|| < A1 = —Am

Am—1 m

QRﬁw,—l
and
(3.80) sup ||Dw|| < nAls—1 = mﬁh_lA)\.
Qum
Comparing (3.78) and (3.80) yields
(3.81) s> " AN = sup ||Dwl| > " (m = n) A= (m = n) Ak
QT

m

In conclusion, by (3.79) and (3.81), we find

A
sup ||Dw| < AXg—1 and (m —nA s <s < —Am
A m

@
and we can therefore apply Proposition 3.3 with the choice

Q=Qy, t=m-mA,  &L=1/n.

The outcome is that

1/q 1/q
(][ |Dw — (Dw)sq,, |4 dx dt> < g6 <][ |Dw — (Dw)q,, |? dx dt>
6@771 m

holds whenever § € (0,1), where éq > 1 and (1 € (0,1) are constants depending
only on n, N, p,v, L and A, but not on B and ¢q. The last estimate is the analog of
(3.70) and from this point on we may argue exactly as after there, to obtain (3.73)
with ¢4 replaced by ¢4, and 8 replaced by ;. Therefore, by choosing

_ 1/8
§5(n+2) ;m(n+2) m(2-p)
(3.82) §< < % 1z L] 2 ; 0y =104,

we conclude with (3.5).
Step 5. In view of (3.74) and (3.82) we finally determine ¢ as follows

o m—+1
(3.83) 0y = (n§2 p)/zal) (

Notice here that the only parameter containing a dependence on B is m. Using the
dependence described in (3.76) and in (3.83) we obtain (3.24), for a suitable choice
of the constant c¢(A). O

o (nd2) w2\ U/ min{8.61}
52 ymn ), m2p).
4(Cd+5d)

3.3. The approximation scheme. Here we briefly discuss the approximation
method needed to reduce the proof of Theorems 3.1-3.3 to the nonsingular case s >
0; when switching to the case s = 0 the constants will increase, in a universal way.
We shall of course confine ourselves to the case of Theorem 3.1. We start mollifying
the vector field a(-) as follows. Let € > 0 (actually denoting a sequence converging
to zero) and let 0. € C°(B.(0)) be a standard mollifier with B.(0) C R™, such
that fRn 0:(z) dz = 1. Define the regularized vector fields a.: R” — R™ as

ac(z) = | 0-(2—¢)a(§) dE.

Rn
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We then define w, as the unique solution to the following Cauchy-Dirichlet problem:

(we); — divas(Dw.) =0 in Q)
We =w on 8PMQ£‘ .

Exactly as for instance in [1] or [27], it follows that a.(-) satisfies (1.2) with new
constants v, L, and with s (here assumed to be equal to zero) replaced now by
se = €; without loss of generality we shall consider € small enough to have s, < A.
Again as in [1, 27] it follows that up to not relabeled subsequences (i.e. we still
keep the notation )

Dw, = Dw strongly in L? and a.e.
3.84
(3.84) ][ (|Dw€|+sg)pdmdt§c§][ (|Dw| + s¢)P da dt
Q Q

where ¢, depends only on n, p, v, L. Before going on let us recall a basic result (see
[11, Chapter 8, Theorem 5.1°]) asserting

(3.85) ][ (IDw.| + 5.) du dt < PAP —> sup | Duw.|| < éac
A A

? Q2

for a new constant ¢, = é,(n, p,v, L). Now we assume that the Theorem 3.1 holds
for the case s > 0, and fix A, B,~ in the “s = 0”-version of Theorem 3.1 we want
to prove. Take the choice

(3.86) v 27y =5 A 26, A=A, B—2B

and determine the number d5(A) in Theorem 3.1 for the case s > 0 (remark that

d5(A) also depends on n, p, v, L via the new constants in (1.2) for a.(-); it of course
also depends on B). We claim that now Theorem 3.1 for the case s = 0 holds with
the choice

(3.87) 5,(A) = b5(A) /2,
and indeed the assumptions in question are now
A
(3.88) — < sup ||Dw]|| <sup || Dw| < AX.
B QA Qk
(5,~Yr/2 T

Let us observe that for yet another not relabeled subsequence we may assume that
A
— < su Duw,||.
o5 < sw Dl

55r/2

Indeed, were this not the case, by using the convergence in (3.84) we would im-
mediately contradict the first inequality in (3.88). On the other hand, thanks to
(3.84)-(3.85), it follows that

(3.89) se + sup || Dw.|| < AX.
A

Q’V‘/Z

We can therefore apply Theorem 3.1 in the case s = s, > 0, thereby obtaining
Ey(Duwe, (65/2)@Q7) < 27"y Ey(Dwe, Q7)) -
Letting € — 0, (3.84) and (3.89) yield
Ey(Dw, (65/2)Q}) < 27 "B (Dw, Q)5) < 7E¢(Dw, Q)

and this proves Theorem 3.1 in the case s = 0, with the choice in (3.87). Notice
that the choices in (3.86) and (3.87) do keep the structure of the number ¢, with
respect to v and B described in (3.6) and (3.24).
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4. PROOF OF THE INTRINSIC POTENTIAL ESTIMATE AND CONSEQUENCES

In this section we give the proof of Theorem 1.1, which in turn implies Corol-
laries 1.1 and 1.2. First, in Section 4.1 we propose a few comparison estimates
necessary to implement the iteration procedure that will lead, in Section 4.2 below,
to the proof of the intrinsic potential estimate (1.16).

Let us first clarify that, with 8 > 0 being fixed, generalized solutions as in (1.16)
always exist provided the Riesz potential is finite:

2r
t d
(4.1) I (o, to; 2r) :=/ [M(Q%f?’ 0))} 2 .
0 0 1%
Remark 4.1 (Finiteness of potentials implies generalized roots exist). Let us

assume that (4.1) holds with Q,(z¢,to) denoting a standard parabolic cylinder.
Changing variable (i.e. o — A(27P)/2p) in (1.16), we obtain

A= ¢+ A E)/2 /w (@ zr0- 10| do
0 oN ! 0

and accordingly define the function

A
h(A) i= A — ¢ff — eAnTDE=P)/2 /27" l“KQMp—ﬂﬂg(%’tO))] de
0

oN-1 0

defined for A > 0. Observe that h(-) is continuous function in (0, co) and, moreover,
h(A) <0 for 0 < A < ¢f. On the other hand, using that

1 (@22,) < Q). for A>1,

we have

lim h(A) 2 lim |:A o Cﬂ o C)\(n+1)(27p)/2111‘($07 t07 27") =00,
A—00

A—00

since (n +1)(2 —p)/2 < 1 for p > 2 —1/(n + 1). Therefore there must exist
A € [¢f,00) solving h(A) = 0, that is, a solution to (1.16).

4.1. Comparison results. In the rest of the section, until the proof of Theorem
1.1, we consider in the fixed parabolic cylinder Qg(xo,to) C Qp, 0,A > 0, the
unique solution

w €C([to — AP0, t0); L*(B(x0, 0)))
N LP(tg — NP2 to; WHP(B(z9, 0)))
to the following Cauchy-Dirichlet problem:

wy —diva(Dw) =0 in Q)
w=u on 8pang‘ .

(4.2)

(4.3)

The following result is taken from [11, Chapter 8, Theorem 5.2], and in the form
suitable for general equations can be also retrieved from [27].

Theorem 4.1. With w being defined in (4.3), there exists a constant cz > 1,
depending only on n,p,v, L, but otherwise independent of s, of the solution w con-
sidered and of the vector field a(-), such that

2
np-2)F2
n(p—2)
sup || Dwl| < B0+ s) + Bamt ][ (1Dw| + s) da dt .
10x 2 2 Q)

2%

Then we establish a comparison estimate between u and w in the next
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Lemma 4.1. Let u be as in Theorem 1.1 and w as in (4.3); then there exists a
constant ¢ depending only on n,p,v, L such that the following inequality holds:

I |(QA>]“’-"W

Q317

A (2_17)%
||gA(|Qn+z] <][QA(DU| +5) dxdt) .

Proof. Step 1: Preliminary estimates. We go back to the proof of Lemma 4.1, Step
1, in [31] and obtain the following preliminary estimates, which in fact hold also
for the whole p > 1:

][ |Du— Dw|dzdt < ¢
Q)\

e

(4.4)

(4.5) S1T1p/ lu—w| dz < |u|(Q)
and
(a(Du) — a(Dw), Du — Dw) ot
(4.6) /Q (ot o)) dz dt < Cg -1l(Q)

for « > 0 and & > 1, where ¢ = ¢(n,p,v) > 1.
Step 2: Comparison estimates. Fix now

(4.7) e=""1p-1),

so that

1
n+1"

n nﬂ?
a= (][ |u—w|# dmdt)
Q

and assume that « > 0, for if it is not, then v = w and (4.4) follows. The parabolic
Sobolev’s inequality (see for example [11, Chapter 1, Proposition 3.1]) gives

17 4T
a < ¢(n) [][ |Du — Dw|dx dt (sup/ |uw|d:c) ] ,
Q T JQr

and thus by (4.5) that

£E>1 = p>2—

Define

FEs)
(4.8) o < dlu|(Q)7 <][ \Du — Dul dxdt) .
Q
Next (see for instance [39]) we recall some of the basic properties of the map
V(z) = Vi(2) = (s2 + |22) "5 2, z R,
that are the inequalities
(4.9) [V (21) = V(22)]? < &{a(z1) — a(z2), 21 — 22)
and
1 =2 |V(z)—V(z)|? . p=2
(4.10) E(S2+|Z1|2+‘Z2|2) 7 < | (T;) Z(|§2)| SC($2+|Z1|2+|Z2|2) 2
1— 22

holding for some universal constant ¢ = ¢&(n,v, L) > 1, whenever 21,20 € R™.
Applying (4.6) together with (4 9) yields

V(D Dw)\2 al~
/ Hu e dadi < ef— (@)
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This implies, together with Holder’s inequality and (4.8), recalling also (4.7),

][ WV (Du) — V(Dw)|3 dodt

_]{Q<|V(Du) V(Dw)}” )1( +|u—w\)%dxdt

(a + Iu—wl) 1
(2 ) (e
(g

(4.11) se <|M|(|QQ)|H+1 (][ |Du — ledmdt)w) ' .
Q

We then use (4.10) as follows:

¥

>;1

Nl=

|Du— Dw| = [(|Du|2 + |Dw|? + s2)"% |Du — Dwﬂ

(| Duf® + |Dw]? + s2)*7"

< V(Du) — V(Dw)|(|Dul? + | Dw|? + s%) 55"
(4.12) < |V(Du) - V(Dw)|(|Du — Dw|? + | Dul? + s2) 5"
Young’s inequality, used when p < 2 with conjugate exponents (2/p,2/(2 — p)),
b’z <qb+e(py)at,  y€(0,1),
yields
1

|Du—Dw| < ¢|V(Du) - V(Dw)|? + 5/ Du — Du

(4.13) +c|V(Du) — V(Dw)|(|Du| + s)*="

with a constant ¢ depending only on n and p. In turn, we deduce by Holder’s
inequality that

][ \Du—Dw\dmdtgc][ WV (Du) — V(Dw)|? dedt
Q Q

2—p

(4.14) +e (][Q|V(Du)—V(Dw)|§dmdt)g <][Q(|Du|+s)dmdt) i

Now, if on the one hand

2—p

<]€2V(D“) _V(Dw)|12°dxdt)g <][Q(|DU|+S) dxdt)2

< ][ V(Du) = V(Dw)|? dedt,
Q
implying by (4.14) that
][ |Du — Dw|dz dt < c][ \V(Du) — V(Duw)|? dz dt,
Q Q

then using (4.11) in the above inequality leads to

n+2

(p—1)n+p
][|Du—Dw|d dt < ¢ ['“("4
Q[+
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and the result follows in this case. If on the other hand

][ [V (Du) — V(Dw)|? da dt
Q

3 2—p

< <]{2|V(DU)V(Dw)|idxdt>2 <][Q(|Du|+s)dxdt> o

][ |Du — Dw|dx dt
Q

then

2—-p

§c<]g|V(Du)—V(Dw)|§dxdt>g (]{Q(Du|+s)dxdt> ’

holds by (4.14). Inserting (4.11) into this we obtain

][ |Du — Dw|dx dt
Q

2—p

g(;(""('%)fﬁ (f;g|Du—Dw|dxdt>nn+l> <]{2(|Du|+s)dxdt> :

and thus also

Nl

nt1

(2_ )n 2
][\Du—Dw\d dt <c “gKZiz] <]{2(|Du+s)dxdt> o .

This concludes the proof. U

Corollary 4.1. Let u and w be as in Lemma 4.1. Suppose that the intrinsic
relations

|M|(Q’\)
o

(4.15) ][ (|Du| + s)dzdt < A, <A,
Q)\

are satisfied. Then there exists a constant c4 = c4(n,p,v, L) > 1 such that

|11(Q)

QNfl

(4.16) ][ |Du — Dw|dx dt < ¢4 [
A

Proof. Simply note that by the first intrinsic inequality in (4.15) we have

A (2717)%
ngk(@ﬂg ] (f(:?x (|Dul + s) dz dt>

(2_17)% A
(@) |\ (pnynts T (ul@y)
[ Qn+f AP=2)5 ][QA(|Du|+s)dxdt < me ,

and, moreover, using the second inequality in (4.15) we also get

[M(Qk)]“’ T lwcﬁ)r T s (@)

ntl Qn+1 — Qn—i-l

QI

The proof of (4.16) now follows using the last two inequalities together with Lemma
4.1, and finally recalling that N — 1 =n+ 1. (]
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In the following, in accordance to (3.2), we define

][ lg — (9)o|dzxdt

whenever g € LY(Q,R") and Q C Qr is a cylinder. We proceed with another
couple of technical lemmas whose general form will make them useful also in the
next section, where we will prove the gradient continuity results.

Lemma 4.2. Let 6,0 € (0,1). Suppose that
ul(@) _ 67 t2

(4.17) ][%(|Du| +s)dxdt < A and o1 < o OX,
where ¢y = cy(n,p,v, L) is as in Corollary 4.1. Then
(4.18) s+ sup || Dw|| < 6esA,
50}

where ¢z = c3(n, p,v, L) is as in Theorem 4.1, and, moreover, the lower bound
(4.19) ][ |Dul dx dt — O\ < ][ |Dw| dz dt < \/nsup || Dw||

5Q) 5Q) 5Q)
holds.

Proof. Corollary 4.1, in view of (4.17), gives the comparison estimate

(4.20) ][ |Du — Dw|dx dt < 6" 20\,
QA

This, together with (4.17), further implies the bound

][ (|Dw|+s)dmdt§][ (|Du|+s)dmdt+][ \Du — Dw|d dt < 2.
Q> Q> Q>

Therefore, an application of Theorem 4.1 yields

sup || Dwl| < esA + 032"(17*22)”)\ < BesA,

3Q;
because n(p —2) +2 > 1 as we are assuming (1.3). Now (4.18) follows using
again (4.17). Applying then (4.20) together with the triangle inequality yields

][ |Du|dzdt < ][ |Du — Dw| dx dt —|—][ |Dw| dz dt
5Q2 5Q2 5Q2

< 6_(”+2)][ \Du—Dw\dmdt—i—][ |Dw| dx dt
2 5Qp
< 9)\—1—][ |Dw| dz dt ,
5Q
thereby finishing the proof. O

Lemma 4.3. Let 6 € (0,1/2). Suppose that Dw satisfies the decay estimate

€ _
(4.21) E(Dw,3Q2) < (2n+7) E(Dw,27'Q))
for some e € (0,1], and that the bounds
A
(4.22) ][ (1Du| + s)dzdt <\ and WQ ) o
Q3 oN
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hold. Then we have

A
E(Du,6Q)) < (5) B(Du, @) + 4eas "+ ll;lffwl |

where ¢4 = c4(n, p,v, L) is as in Corollary 4.1.

Proof. Applying the triangle inequality and assumption (4.21), we arrive at the
following chain of inequalities:

E(Du,6Q)) < 2]{@ IDu — (Dw)sgy| du dt
< 2E(Dw,6Q;) + 2][ |Du — Dw| dx dt
5Q)

< 27 ("OE(Dw,27'Q)) + 26~ (") ][ |Du — Dw| dz dt
Q2

< 2" E(Du,27'Q)) + 46~ 2 ][ |Du — Dw| dz dt
Q2

—(n _ g2y | 1H(Q)
< &2 I E(Du,271Q)) + desd [QNE" :

The last inequality is a consequence of (4.22) by Corollary 4.1. Observe also that
we repeatedly used (3.3). The result follows by observing that

E(Du,27'Q)) < 2][ |Du — (Du)ga | dz dt < 2" E(Du, Q).
3@ ’

O

4.2. Proof of Theorem 1.1. The starting point here is a new iteration method,
already introduced in [31] in order to treat the case p > 2, that will be here
modified to treat the subquadratic case via Lemmas 4.2 and 4.3. We shall use
large (de)magnifying constants such as 600, 800, 1200, to clarify the role of certain
passages in the proof. Now, define the set £y (of Lebesgue points) as

e=0.J Q3 (xo0.t0)

(423) Ly = {({L‘(),to) € Qr : lim Dudxdt = Du($07t0)}

for A > 0. Basic properties of maximal operators - see for instance [43, Chapter
1, Page 8] - imply that this set is actually independent of A and, in particular,
Ly =Ly =: L forall 0 < XA < co. Moreover, Q \ £ has zero Lebesgue measure.
Therefore, in the following, when referring to the statement of Theorem 1.1, we
shall prove (1.16) whenever (zg,to) € L.

Step 1: Setting of the constants and basic inequalities. With (zg,tg) € L being
fixed, in the following all the cylinders will have (g, to) as vertex, therefore we shall
as usual omit denoting the vertex simply writing Qg‘(zo, tg) = Q;‘. We start taking
A of the form

27\ A
(4.24) A>Hip+ H2/ |l;|zszc_gf) de ; ra = APT2/2p
0
and fix the constants Hy, Hy > 1 in a few lines, in a way that makes them depending
only on n,p,v,L. In the end, when proving (1.16), we shall simply take ¢ :=
max{H;, Hy}. Then A defined in (1.16) certainly satisfies (4.24). Taking constant
c3 from Theorem 4.1, we define

(4.25) A = 6csg, B :=400y/n, v =2 (47
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We then fix the constant 6, = d0,(n,p,v,L,A,B,v) € (0,1/2) in Theorem 3.3
corresponding to the choices in (4.25). Since A depends itself on n,p,v, L, this
ultimately fixes a constant d, € (0,1/2) depending only on n,p, v, L. Next, we take
k as the smallest integer (larger or equal to 2) satisfying

512 n+2
(4.26) 8vnA(s, /2) kD < %,
and in this way k depends only upon n, p,v, L. Now, define
(4.27) Qi = Q) , T =0Ty, 51 :=6,/2

whenever i > 0 is an integer; again 6; = d1(n, p,v, L) € (0,1/4). We also set
(4.28) Hy:=4006; " and  Hp = 16006, M)

where ¢4 = ¢4(n, p, v, L) has been fixed in Corollary 4.1. Notice that the choice of
H; implies that

(4.29) ][ (IDu| + s) da dt + 67 "D E(Du, Qo) < (1 + 207 ") < 1730
and
A
4. < —
(4.30) $< 100

hold. Now, recalling again that N —1 =n + 1, observe that

/QM ul(@Qy) do Z/ |M|( 2) do +/2m 1(Q)) do
N—-1 - -1 N—1
0 0 Tig1 T 0

0 N 0
|M| Qm / do | |pl(Qo) /2” do
> =4 [ =
Z 7 Ti41 Q (27=>\)N—1 X Q
i log2 | |u[(Qo)
_ 5n+110 ( > ‘M|Q+1)Jr
g o ZZ; 7‘1+1 on+1 Tiv_l
(4.31) > oty erl
i=0

g

Therefore, by (4.24) and the choice in (4.28) it follows that

(4.32) 8eab <k+2>(n+2)z Qi) _ A

N = :
=i 200

In particular, we have

(@) _ o+
4. < A< A
( 33) rN71 - 1600¢4 -

K3

Vi>0.

Step 2: Exit time argument. Next, whenever i > 0, define

(4.34) Ci= ][ (IDu| + s)dx dt + 6; " E(Du, Q) ,
so that (4.29) reads also as Cyp < A/100. Let us show that without loss of generality
we may assume there exists an exit index i, > 0 with respect to the previous
inequality, that is an integer ¢, > 0 such that

A A

(435) Cie S m7 Cj > ﬁ V] > ie .
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Indeed, on the contrary, we could find an increasing subsequence {j;} such that
C;, < A/100, for every i € N, and then, as (z¢,t9) € L, obviously

A
| Du(wo, )| < nm f \Dul da dt < =
imoe Jg, 100
and the proof would be finished. Therefore, for the rest of the proof, we shall argue
under the additional assumption (4.35).
Step 3: Estimates after the exit index. The following lemma is the core of the
proof:

Lemma 4.4. If i > i., then inequality

(4.36) ‘f (|Du| + 5) da dt < A
implies

1 —(n 7
(4.37) E(Du,Qiy1) < ZE(DU’ Qi) +4cady (r+2) Plﬁ\g%)} :

7

Proof. We begin with a comparison estimate. By (4.33) and (4.36) we may apply
Corollary 4.1 so that

Qi
Qi+l Ja.

|Du — Dw;| dx dt < 0451_j(n+2) [M]

N_1
T

][ |Du — Dw;| dx dt <
Qi+

holds for all j = 0,1,...,k (recall that k = k(n,p,v,L) € N has been defined in
Step 1). Using again (4.33) we obtain

(k+1—35)(n+2)
4.38 Du— Duy|dwdt < 22— )
(439 ][cgiﬂ.' u Duil dwdt < =75

for all j =0,1,...,k. Next, conditions (4.36) and (4.33) allow to verify assump-
tion (4.17) in Lemma 4.2 both with § = §; and with § = §F (take # = 1/1600).
Thus we obtain

(4.39) s+ sup ||Dw;|| < s+ sup |[|[Dw;|| < 6esh = AX
Qit1 1Q;
and
A
(4.40) ][ |Duldw dt — —— < ][ | Dw;| dz dt < /n sup || Dw;]| .
Qitk 1600 Qi+k Qit1

At this point, as a consequence of Theorem 3.2 (applied with QZ‘ = Qit+k) and
by (4.39) and (4.26), we have
(h=t)ay 07
26(2)ka Dw; < 8y/nAd; A < %)\.

This and (4.38) imply

E(Du.Qu) < 24 [Du- (Duo..|dede
Qitk
< 2E(Dwi,Qi+k)+2][ |Du — Dw;| dx dt
Qitk
5n+2A
< 2 Dw; + —X
R ST
ST

(4.41)

<
400
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Combining (4.30) and (4.41) we obtain

Citp = ][ (|Du| + s) dxdt+51_(n+2)E(DU,Qi+k)
Qitk

A
< ][ |Du|dz dt + — ,
Qisn 200

and therefore the fact Cj4r > )\/100 and (4.40) imply

A
- Duw;
5 = w07m S S 0w

The lower bound above combined with (4.39) allows to verify assumptions of The-
orem 3.3 in Q) = 271Q;, with the choice of the constants made in (4.25). Hence
we get

E(Dw;,Qi11) = E(Dw;, (6,/2)Q:) < 2~ "V E(Dw;, 27'Qs) .

Inequality (4.37) now follows by Lemma 4.3, which is in turn applicable with ¢ = 1
thanks to the previous inequality, (4.33), and (4.36).
Step 4: Iteration and conclusion. Denote in short

Ai = E(Du, Qi), k‘, = |(I)’U,)Q1
By the definition in (4.34) and (4.35) we have

_ A
4.42 k, +0o7 4, <0 < 2.
( ) s+ K, +0q efcefloo

We now prove, by induction, that
(443) S+ kj + Aj S A

holds whenever j > i.. Indeed, by (4.42), the case j = i, of the previous inequality
holds. Then, assume by induction that (4.43) holds whenever j € {i,...,i}. This,
in particular, implies that

][ (|Du| + s)dedt <s+k;j+A; <X

Qj

whenever j € {i.,...,i}. Lemma 4.4 is hence at our disposal for such j and estimate
(4.37) gives

1 o ,
(4.44) Aj1 < JA; +desd, e lWJ\(JQ{)}
J
for all j € {ic,...,i}. It immediately follows by (4.43) (assumed for all j €
{ie,...,1}) and (4.33) that

>

N1 400 =

(4.45) Ai-i—l < % —|—4C45;(n+2 |:|,u|( ):| < % A

w

Furthermore, summing up (4.44) for j € {i.,...,i} leads to

1+1

(4.46) >4 §A1p+4 ZA + degby <”+2>Z '”LgQ ,
J=te J="te J=te -7
yielding
i+1
(4.47) 3 A <24, + 8,0, " Z |“|]5Q )

— T
J=1e J=te J
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Using the previous inequality we have

i

kiv1 — ki, = Z(kjﬂ —k;) < Z][Q |Du — (Du)q, | dx dt

J=te J=ie ¥ Witl
< Z 1y |Du — (Du)g, | dz dt
‘Q]+1|

_ 51—(n+2) Z Aj

j=ie

2657 " A, 4 8eys, 2 Z |“‘]§Q)

J=te ]

IN

and thus it follows by (4.32) that

—(n+2 —a(n2) N (@)
ki+1 S kie + 2(51 ( )Ale + 80451 ( ) Z TN_i 2019 200
7=0 J
In turn, by (4.42) the previous estimate yields k; 11 < A/3. The last inequality
together with (4.30) and (4.45) allows to verify the induction step, i.e.
A A

A
k; A1 < —+ =+ =< .
S+ Kit1 + Aipa 400+3+3<

Therefore (4.43) holds for every i > i.. Estimate (1.16) finally follows with the
choice (announced at the beginning) ¢ := max{H;, Ha}, since, as (zq,tp) € L, it
holds that

|Du(zo,to)] = lim k; < A,
1—> 00
finishing the proof of Theorem 1.1. (|

Proof of Corollary 1.1. Let us assume that I} (zg, to; 2r) < oo, otherwise the proof
trivializes. Next, let us consider the function

RV == A — AT AN — e,
where
1
r 1{\)\
and

r ‘N|(Q§<p72>/29(3307t0)) do
B()\) = N—_1 T

0 0 0
and c is again the constant appearing in Theorem 1.1. Clearly both A and B are

nonincreasing functions of A in (0, c0), because

Q:\\?p_2),gg C Q;gp_2),29 forall Ao >X; >0 and o€ (0,2r].
2 1

We consider the function h(-) defined for all those A such that Q} C Qr; observe
that the domain of definition of h(-) includes [1,00) as Qﬁ@—z)/zr C Q, C Qr when
A > 1. Again, observe that h(-) is a continuous function and moreover h(1) < 0 as
¢>1and A(1) > 1. On the other hand, observe that

n<2 p) (n+1)(2—p)

Al )—cAiB(l)] = 0,

lim A(A) > lim |[A—cA

A—00 A—00
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because (n+1)(2 —p)/2 < 1for p >2—1/(n+1). It follows that there exists a
number A > 1 such that h(A\) = 0 and this means that A solves (1.16) with

p)

B =B\ = ]{2 (IDu| + s+ 1) dedt = \"“T= A(N) .

A
X

Therefore we can apply (1.16) to have

n(2=p)

(4.48) A+ |Du(zo, to)| < 2¢A™ 2 A(X) + 2¢A

(nt+1)(2—=p)
2

B(\).

On the other hand, observe that by Young’s inequality with conjugate exponents

<n(22p)’ 2 *n(22 p))

and
(e )
(n+1)(2-p) (n+1)p—2n
we have
2N TR AN < N4+ [2cA(1)] 7D
EETeE)
< Adte (][ (IDul + 5+ 1)d:cdt>
and
2N B(N) < A4+ [2¢B(1)|
2
2r | (nt+1)p—2n
" pl(Qolzo, t0)) ] do
4.49 < )\4—|—c</ [ — .
( ) / 0 Qn—O—l 0
Substituting the last inequalities into (4.48) readily gives (1.17). O

Proof of Corollary 1.2. We adopt the notation from the proof of Theorem 1.2 and
replace (4.49) by a different estimate. Indeed, the integrand of B(A) can be esti-
mated as follows:

A
|l (Q)\(P—Q)/2g> |20 (B/\@_Q)/zg)
v S ||f||LmT

=tyo=n [to] (Bxo-22,)
-2 /2gpn—1 °

[fll=A

Changing variables eventually leads to

2 (7l+1)2(2*P)

NP f| oo T (2, 22 P~ 2)/2p)

B(\) <
< AP fllp T (2o, 2r)

where we used that A > 1 to derive the last inequality. In turn applying Young’s
inequality with conjugate exponents (1/(2 —p),1/(p — 1)) gives
NP fllL= T (o, 2r) < A4+ el £ [T (o, 20)) T

The rest of the proof is analogous to the one of Theorem 1.2. O
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5. CONTINUITY OF THE GRADIENT VIA POTENTIALS

5.1. Preliminary choice of the geometry. Let us fix an open subcylinder Qe
Qrp such that Q = Q x (t1,t2) where € 2 is a smooth subdomain, and let us take
an intermediate cylinder @)’ such that

(5.1) QeqQ €Qr.
Let us finally set
(5.2) R = distpar(Q, OparQ”) = distpar(Q', Fpar Q) > 0.

Under the assumptions of Theorems 1.2-1.5, since (z,t) — Ij(x,t;7) is locally
bounded in Qr, we can apply Theorem 1.2 so that the gradient is locally bounded
Q7; in particular Du is bounded in Q’. Consequently, we denote

(5.3) M :=1+s+sup|Du| < 0.

o
Notice that by estimate (1.17) and (5.2) the number M depends only on the quan-
tities n, N, p,v, L, || Du||» and Ry. We now distinguish two cases, the first is when
p < 2 (and of course the lower bound in (1.9) holds). In this case we consider
cylinders of the type Qi‘A (z0,to) defined in (1.14); notice that whenever A increases
the cylinder does not increase as p < 2. Let us fix

(5.4) Ay =M and  Ry:=AP"2Ry/4.

It follows that QM (zg,%9) C Q" whenever (z¢,ty) € Q and 7 < Ry, and in partic-
ular

(5.5) s+ sup ||Dul| < A whenever r < Ry .
Qi!\l

In the proof of the continuity results given in the next Section we shall now solely

consider stretched cylinders of the type appearing in the previous display.

In the case p > 2 (where the proofs can be obtained combining the methods
used here with those already explained in [31]) the intrinsic cylinders taken are a
bit different. Indeed, with the definition in (5.3) we consider intrinsic cylinders of
the type QM (x0, to) with < Ry. Since this time p > 2 we have QM (xg,t9) C Q'
when (zg,tp) € Q and r < Ry, that is when Qr(zo,t0) C Q'. As stated above,
we shall not deal with the case p > 2 for brevity, if not to provide the description
of the necessary modifications. Anyway we again remark that in the following we
shall give full details only for the case p < 2, which is indeed more delicate.

5.2. Proof of the gradient continuity results. The plan of the section is the
following. We start proving the VMO-regularity of Du by showing Theorem 1.3;
this in turn opens the way to the Holder continuity of Du under additional as-
sumptions on p(-), and this is the content of Theorem 1.5. Then we upgrade the
arguments for proving Theorem 1.3 to prove the continuity of results stated in The-
orem 1.2. Finally, we report the necessary remarks for Theorem 1.4 and Corollaries
1.3-1.4.

Proof of Theorem 1.3. According to the definition of VMO-regularity of Du given
in (1.22), let us fix an open subcylinder Q € Qp as in Section 5.1. We shall show
that for every e € (0,1) and (xo,ty) € Q there exists a radius 7. < Ry, which is
independent of (z¢,tg) € Q, such that

(5.6) E(Du, Qy(z0,10)) = ][ - |Du — (Du)q, (o.t0)| dx dt < €
Qe(o,to
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holds whenever ¢ € (0,7.]. Preliminary to this fact, we are going to prove the
following lemma:

Lemma 5.1. Under the assumptions of Theorem 1.3, and with the notation of
Section 5.1, for every € > 0, there exists a radius of the type

61/0{1

(57)  re="—RE), with are(01), =1, RE)EOR)
such that

. Du— (D t
(5 8) ]{291\4 (z0,to0) ‘ " ( U)QQM(moytoﬂ dzdt < ely

holds whenever ¢ € (0,7.]. Here c5,a1 = c5,a1(n,p,v, L), and R(g) denotes an-
other radius such that R(e) = R(n,p,v, L, M, u(-),e). The radius R(e) is deter-
mined in (5.12) below.

The previous lemma will eventually be used in the proof of Theorem 1.5.
Step 1: Preliminaries. With the choices made in (5.1)-(5.5) it follows that

(5.9) ][ (|1Du| + s)dedt < M = Ay
2M (20, to)

holds whenever (xq,ty) € Q and o < Rg. With € > 0, we choose the number 4., =
dy(n,p,v,L,e) € (0,1/2) in Theorem 3.3 corresponding to the choice of parameters
100/n e

(5.10) A=Ay,  A=6cs, B=——, 7=5m q=1,

where ¢3 = c3(n, p,v, L) is the constant fixed in Theorem 4.1. Set d; := ¢,/2, while
in the following ¢4 = c¢4(n,p, v, L) is the constant introduced in Corollary 4.1. In
particular, by taking (3.24) into account we have

62/&

(5.11) ==, ac(0l), c>1,
5

where « and ¢5 depend only on n,p,v, L. We then choose R € (0, Ry| such that

|1l (Qo (0, t0)) _ oy e
N T 400e AT E 2

(5.12) sup sup
0<<AZ P72 R (zo,to) 0

which is again possible by assumption (1.21). Notice that at this stage R depends
only on n,p,v, L, M and € (and of course on the measure p(-)). As a consequence
we obtain

|1l (@2 (20, to)) | (Q,\<2—p>/2g($0at0))
— ~N-1 S sup sup g

0 0<e<R (z0,to) ¢
Sptie - 52
400cy — 400c¢y
We remark that standard parabolic cylinders appear in the second term of the
above lines. Finally, with (xo,t0) € @, we define the chain of shrinking intrinsic
cylinders

(5.14) Q; = Qi\lM (Z‘o, to) , T, = (5{7“, re (51R, R] .

Step 2: Proof of Lemma 5.1. With € > 0 being fixed as in the statement of
Lemma 5.1, we shall prove that

(5.15) E(Du,Qy) < Ay VYheNNL, o00).

sup  sup
0<0<R (z0,to)

(5.13)

AM -
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Let h > 1 and let us distinguish two cases; the first is when
eA
][ |Du| dx dt < M
N 50
so that we have

Y
(5.16) E(Du, Q) < 2][ |Du| dw dt < 52—5M < e,

Qn

and (5.15) follows. The other case is when
A
(5.17) ][ \Du| dzdt > 2N
N 50

Let wp,—1 be the comparison solution introduced at the beginning of the Section 4.1
corresponding to the cylinder Qy,_1, i.e. wp_1 solves the Cauchy-Dirichlet problem

(wp—1)¢ —diva(Dwp—1) =0 in Qp1
Wh—1 =u 0N OparQh—1 -
Since (5.9) and (5.13) hold, Lemma 4.2 is at our disposal with choices of parameters
A=Ay > 1,8 =6, 0 =¢/400, Q;\ = Qp—1, and (5Q2‘ = @Qp. Using also (5.17) we
then have
)\1\/[ o EAM

- < Dy, Duwp_1| < 6eshar = Adas .
B 100\/6‘851;?“ -l S+;Qlj}il” wnll = Gesdu "

Theorem 3.3 then gives

E(Dwy—1,Qn) = B(Dwi—1, (5,/2)Qn-1) < (77 ) B(Dwn-1,27'Qu1)

and hence Lemma 4.3, together with (5.9) and (5.13), implies

B(Du,Qi) < SE(Du,Qn ) + desdy [W]
h—1
' = ™M T oy =M

This completes the proof of (5.15). Now, since the reasoning is independent of the
choice of (zg,tg) € @ and of the initial radius r € (61 R, R] chosen to build the chain
in (5.14), we obtain (5.8) with

(5.19) re =6,R=6,R/2.

Indeed, let o < §; R; this means there exists and integer m > 1 such that (5{”+1R <
0 < 07"R. Therefore we have g = 67"r for some r € (61 R, R] and (5.8) follows from
(5.15). In order to obtain the required form in (5.7), it is sufficient to recall (5.19)
together with (5.11) and the choice of B and v made in (5.10). The proof of Lemma
5.1 is complete.

Step 3: Proof of VMO-regularity. Here we are going to finally prove (5.6). By
the previous step we can find a new radius 7. as in (5.7), depending, for the choice
made here, only on n, p,v, L, Ry,e and M, such that (5.8) holds with e replaced by
AP3¢ /2. Therefore, as Q, (o, to) C Q™ (o, t0), and using (3.3), we have that

][ D — (D) (g 1| d dt
Qg(1'07t0)

(5.20) <23 |Du = (D) a4 ddt <&

Q2™ (x0.to)

holds provided ¢ < 7.. This finishes the proof. O
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Proof of Theorem 1.5. The proof essentially revisits the one of Theorem 1.3, and
makes essential use of Lemma 5.1; for this reason we shall adopt the notation
introduced in the proof of Theorem 1.3. Our aim is to show that, for every
cylinder Q € Qr as in Section 5.1, there exists a radius Ry > 0, depending on
n,p,v, L,§, M, cp, an exponent 3 € (0,1), depending only on n,p,v, L,d, but inde-
pendent of M, and finally a constant ¢, depending on n,p,v, L, M, 6, cp, such that
the decay estimate

(5.21) E(Du,Q,(z0,t0)) = ][ |Du — (Du)q, (w,t0) | dr dt < cp?
Qp(x();t())

holds whenever p < Ry and (zg, to) € Q In turn, the local Holder continuity of Du
in Q7 follows from a classical Campanato type integral characterization of Holder
continuity due to Da Prato [7]. As mentioned, the main tool here is Lemma 5.1,
and the dependence in (5.7), where we are now going to disclose the exact identity
of R(e) for a certain choice of e. More precisely, we start taking ¢ = p with p < Ry,
where Ry has been initially determined in (5.4). By recalling (5.11), verifying (5.12)
amounts to take R such that

2n+4
sup sup 1l(@e(0,t0)) P
0<0<AR P2 (z0,t0) oN-1 N 40004024“2/\5\]4\[71)(2717)/2
In turn, using (1.24) it is sufficient to verify
ntd gy 1/as
R’ < p2 NG — r<?
400040;”r cpAyy P Co

with ¢g > 1 which depends only on n, p,v, L, M, d, cp while ay € (0,1) is depending
only on n,p,v, L,§, but neither on M or cp. By further reducing the size of Ry,
in a way that makes it depending only on n,p,v, L, M, ), cp, we may assume that
R < p'/°3 for a3 = 2ap. Using this relation in (5.8) we have that

|Du — (Du)

AmM
Qpl/% (zo,to)

.ot <
whenever p < Ry = Ro(n,v, L, M,d,cp) and as depends only on n,p,v, L,§. Pro-
ceeding as in (5.20) we obtain

][Q e |Du — (Du)Qﬂl/a3 (zo,to) | d dt < cp
pl/ ez (Z05L0

for a new constant ¢, from which (5.21) follows, taking 8 = a3 and yet a new
constant c. (]

Proof of Theorem 1.2. The proof upgrades the one given for Theorem 1.3. The
idea is to prove the continuity of the gradient by showing that this is the uniform
limit of a sequence of continuous maps.

Step 1: The basic function sequence. We shall keep here the notation introduced
in Section 5.1. With (z¢,%) € Q, consider the maps

(x07t0) — (DU>Q 0 S R07

A
o™ (zo,t0)

which are obviously continuous; the radius Ry has been determined in (5.4). The
proof breaks now in several steps: first, we show that there exists a continuous map
g: Q@ — R™ such that

(5.22) (Du)QgM (wouto) g(xo,to) as 0—0.
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Then, as on the other hand the convergence

(Du) — Du(zo,t0) as 0—0

A
QoM (mo,to)

holds at every point (zo,%y) € Q N Ly,,, this will imply that (the precise represen-
tative of) Du is continuous in Q. Since Q € Qy is arbitrary, this will finally prove
the theorem. In turn, in order to prove, simultaneously that (5.22) holds pointwise
and then uniformly, it is sufficient to prove that, for every € > 0, there exists a
radius 7. < Ry, independent of the point (zo, o) considered, such that

(5.23) I(DU)QQM(zU,tO) - (Du)QﬁM(wo,to)I <edm Voo,p € (0,r]
and (zg,to) € Q. In fact, for every fixed (zo,t0) € Q, the net
o — (DU)Q;‘AI(

xo,to)

is a Cauchy one, and this allows to define the function g¢(-) appearing in (5.22).
Then, keeping o fixed and letting p — 0 in (5.23) gives

(D) gant (4 10y — 9(@0s0)[ S €Xnr ¥V 0 € (0, 7]

and this means that the convergence in (5.22) is uniform. The rest of the proof is
now dedicated to show the validity of (5.23).

Step 2: Smallness conditions. With € > 0 fixed in (5.23), we choose the num-
ber §, = 64(n,p,v, L, e) € (0,1/2) in Theorem 3.3 corresponding to the choice of
parameters

100/n 1

A=Ay, A = 6e3, B = P 7:2n+7, qg=1,

where ¢3 = c3(n, p, v, L) is the constant fixed in Theorem 4.1. Set ¢; := ¢,,/2, while
in the following ¢4 = c4(n, p, v, L) is the constant introduced in Corollary 4.1. Next,
we take a positive radius R < Ry such that

(2—p)/2 A(na2
(5.24) sup /%M ’ 1(@o(z0, o)) @ < 51( e
(zosto) JO oVt o~ 80004/\5\3*17)(1\’*1)/2 ’
n—+2
(525) sup sup |‘LL|(QE;\(If(i’tO)) < ((Sjlv_lf(z_ ol
0<e<AZ P72 R (zo:to) 0 800c4 A}y p
and
4(n+2)6
(526) sup sup E(DU‘,QZ\M (Zg,to)) < 4
0<e<E (z0,t0)€Q 800

Let us observe that (5.24)-(5.25) are possible since now (1.20) is in force. Finally,
(5.26) is allowed by Theorem 1.3 as its assumptions are in turn again verified by
(1.20); in particular observe that (5.26) follows from Step 3 of the proof of Theorem
1.3. Notice that exactly as in (5.13) from (5.25) it follows that

l(Q™ (o, t0)) _ 072
5.27 sup  sup 2 < )
(5:27) 0<0<R (z0,t0) oN-1 800cs M

We shall eventually show that the radius R determined by the smallness conditions
(5.24)-(5.26) will work as r. in (5.23). }

Step 3: Preliminary iteration step. With (zg,tg) € @), we again define the chain
of shrinking intrinsic cylinders
(5.28) Qi = Q) (20, t0) ri=0R, i>0.

We then have the following:
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Lemma 5.2. Assume that

EAm ul(Qi) _ 67 %
5.29 Du|ldx dt > —— d < AN -
(5.29) ]{%H | Dul dz dt > 50 an rN=1 T 400¢y M
Then it holds that

1 —(n+2) |M|(Qi)
(5.30) E(Du,Qiy1) < §E(D“7 Qi) + 4cady N1 |

Proof. Let w; be the comparison solution introduced at the beginning of the Section
4.1 corresponding to the cylinder @;, i.e. w; solves the Cauchy-Dirichlet problem
(w;)e —diva(Dw;) =0 in Q;
w; =u  on OparQ; .
Since (5.9) and (5.13) hold, Lemma 4.2 is at our disposal with choices of parameters
A=Ay >1,80 =6, 0 =e/400, ;‘ = Q;, and 5Q;‘ = @i+1. Using also the first
inequality in (5.29) we then have

A eA
gM = 100\]\;5 < Suﬁ || Dw;]| , s +sup | Dw;|| < 6c3Anr = AXns -

Theorem 3.3 then gives
E(Dw;,Qi+1) = E(Dw;, (5,/2)Q:) < 2~ "D E(Dw;,271Q;)

and hence Lemma 4.3 - used this time with ¢ = 1 - together with (5.9) and (5.25),
implies (5.30). This completes the proof of the lemma. O

3 Qi

Step 4: Ezxit times set and iteration chains. The main fact here is

Lemma 5.3. It holds that

eA
(5.31) |(Du)g, — (Du)g,| < 5

whenever 0 < k < h.

Proof. For the proof we need some terminology. Given a chain {Q;} of geometrically
shrinking intrinsic cylinders as in (5.14), we consider the set L defined by

A
(5.32) L:= {iEN : ][ |Du|dajdt<€58/[}.
Accordingly, we define the “left and right boundaries” of L as follows:
(5.33) OestL:={ieL : i—1¢ L}, Oright L:={t €L : i+1¢ L}U{oc0}.
We then define a set of the type

Cr={jeN:i<j<i+m, i€dugmkL, i+m+1€deul, j&Lifj>i}

i

as the maximal iteration chain of length m, starting at 4. In other words we have
CM™ = {i,...,i+ m} and each element of C™ but ¢ lies outside of L; moreover C"
is maximal in the sense that there cannot be another set of the same type properly
containing it. Obviously, such sets do not exist when L = N. In the same way we
define the the infinite mazimal chain starting at 7 as

Cr={jeN:i<j<oo, i€0igml, j&LIifj>i}
Notice that, in every case, the smallest element of such a chain always belongs to L,
being then the only one of the chain to have such a property. Moreover, we define
(5.34) ie :=min L.
Note that we set i, = oo if L = (). We are now ready for the proof of (5.31); for
this we need to distinguish three cases. We shall of course assume 0 < k < h.
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Case 1: k < h < i.. Keeping (5.27) in mind, notice that if h — 1 > k, then we
can apply Lemma 5.2 repeatedly, and this yields

1 n
(5.35) E(Du, Qi+1) < 3E(Du, Qi) + deady " ['“ Iidi@s) 1)]
for every i € {k,...,h —2}. Summing up the previous inequalities, and making

obvious manipulations - see (4.46)-(4.47) - we have

2\~ [1(Q2)
> BE(Du,Qi) < 2E(DU»Qk)+8C45f("+)ZTTJ
i—k =k

64(n+2)8 ‘ | Q )
) < 1 (n+2) 12 i
(5.36) < S e ?k T

where we have used (5.26) in the last line. By recalling that

Qye-n/2 ,(on,to))

e (o, t > |pl @ ,,1
Z \M|(QZ\([3:”2 0)) <y ( -
1=0

T i=0 7

(2—-p)/2
< \EPW-1)/25-(n+2) P TR (Q (o, to)) do
= M 1 o QNfl 0
3(n+2
< 51( e
- 800c,

see for instance (4.31) above, and using directly (5.26) for the case h — 1 =k, we
conclude that in any case (i.e. h —1>k) it holds

2(n+2)€

ZEDUQ) T'

i=k
In turn, (5.31) follows since

T
L

|(Du)Qh - (DU)Qk| < |(Du)Qi+1 - (DU)Q1|

™

1=k
h 1
< ][ |Du — (Du)g, | dz dt
L+1
Qi
< E(Du,Q;
Z [ )
(n+2) € 5)\M
. = E(Du,Q;) < —
(5.37) Zk w Qi) < 55 < o

Notice that the case analyzed here includes the one when the index i. defined in
(5.34) is infinite, i.e. the set L is empty.
Case 2: i, < k < h. Let us prove that in this case we have

8)\M E)\M

25 25
We prove the former inequality in (5.38), the proof of the latter being the same.
If h € L, the first inequality in (5.38) follows immediately from the definition of
L. On the other hand, if h € L, then, as h > i., it is possible to consider the
maximal iteration chain C;"" such that h € C;'"; notice that h > iy as h & L 3 ip.
Then iterating Lemma 5. 2 as done after (5. 35) - i.e. replacing k by i - we gain
the analogue of (5.37), that is [(Du)q, — (Du)q,, | < €/50. In turn using that

and  |(Du)g,| <

(5.38) [(Du)q,| <
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|(Du)q,, | < eAn/50 as iy € L, we again obtain the first inequality in (5.38) and
in any case (5.38) follows. Estimating as
E/\M €/\M E/\M

we have that (5.31) holds in the second case too.

Case 3: k < i, < h. Here we prove that (5.38) still holds and then we conclude
as in Step 2. Indeed, the first inequality in (5.38) follows as in Case 2. As for the
second estimate in (5.38), let us remark that, as i, € L, we have that
6)\M

50
On the other hand, we can argue exactly as in Case 1, i.e. this time replacing h by
ic, thereby obtaining |(Du)g, — (Du)g,| < /50 that together with (5.39) gives
the second inequality in (5.38). In turn, (5.31) follows also in this case. The proof
of the lemma is complete. O

(5.39) [(Du)q,, | <

Step 5: Proof of (5.23). The proof of (5.23) follows using Lemma 5.3 together
with the already proved VMO-regularity of the gradient, that is (5.26). We actually
take r. = R and fix 0 < p < p < R. This means there exists two integers, 0 < k < h
such that

5.40 SR < o< oFR and MR < p < R.
1 1 1 1
Observe that

|(DU)Q’Q\M (zo,to) (Du)QkJrl‘ < ][ |Du - (DU)Q’Q\M (fﬂmto)‘ dz dt

Qi1
Q5™ (o, to)|

T | Qrl QMM (x0,t0)
< 67 " E(Du, Q)M (0, t0))

|Du — (Du)QgM (z0,t0) | dz dt

< —

— 10

where in the last line we have used (5.26) and in second-last one we have used
(5.40). In the same way we also obtain

€
|(DU)Q;‘M(zO,tO) - (Du)Qh+1| < 10°
Using the last two inequalities together with Lemma 5.3 we conclude with (5.23),
and the proof is complete. O

Proof of Theorem 1.4. The proof of this theorem can be now obtained by adapting
the methods of proof of Theorems 1.2-1.3 to the case p > 2 according to the scheme
introduced in [31]. In particular, notice that in the case p > 2, Theorems 3.3 and
3.2 - in slightly different versions - have been proved in [31]. O

Proof of Corollary 1.3. By Lemma 2.1, and in particular by (2.9) it follows that
lim sup W/ (z,t;r) =0, where ¢ = min{1,p/[2(p — 1)]}.

r—0 (ac,t)EQ
Recall that the quantity W/ has been defined in (2.6). The proof now follows
appealing to Theorems 1.2 and 1.4 and recalling (2.7). O

Proof of Corollary 1.4. By (1.25) it follows that
lim sup WH(z,t;r) < clim h(o)]?— =0,
M e g (@) < clim ; [h(2)] )

with ¢ = min{1, p/[2(p — 1)]}. Once again the proof follows appealing to Theorems
1.2 and 1.4. O
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