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Abstract. Solutions to nonlocal equations with measurable coefficients are
higher differentiable.
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1. Introduction

A basic and fundamental result in the theory of linear and nonlinear elliptic
equations is given by the higher integrability of solutions. This falls in the realm
of so called self-improving properties. The result was first pioneered by Meyers
[24] and Elcrat & Meyers [13], and then extended in various directions and in
several different contexts; see for instance [4, 15, 17, 20]. Modern proofs of this
property in the nonlinear case rely on the so called Gehring lemma [16, 18]. In the
simplest possible instance the result in question asserts that distributional W 1,2(Ω)-
solutions u to linear elliptic equations

−div (A(x)Du) = f ∈ L
2n
n+2 +δ0
loc (Ω) , δ0 > 0 ,

actually belong to a better Sobolev space

(1.1) u ∈W 1,2+δ
loc (Ω) ,

for some positive δ ≤ δ0. Here Ω ⊂ Rn is an open subset and n ≥ 2. The matrix
A(x) is supposed to be elliptic and with bounded and measurable entries, that is

(1.2) Λ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 and |A(x)| ≤ Λ

hold whenever ξ ∈ Rn, x ∈ Ω, where Λ > 1. The number δ > 0 appearing
in (1.1) is universal in the sense that, essentially, it does depend neither on the
solution u nor the specific equation considered. It rather depends only on n,Λ,
that is, on the ellipticity rate of the equation considered. The key point here is
the measurability of the coefficients; when A(·) has more regular entries, higher
regularity of solutions follows from the one available for equations with constant
coefficients via perturbation. This is the reason why the result in (1.1) deeply lies
at the core of regularity theory, and allows for a proof of several other regularity
results; see for instance [17].
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In this paper we are interested in studying self-improving properties of solutions
to nonlocal problems. To outline the results in a special, yet meaningful model case,
let us consider weak solutions u ∈Wα,2(Rn) of the following nonlocal equation:

(1.3) EK(u, η) = 〈f, η〉 for every test function η ∈ C∞c (Rn)

where f ∈ L2+δ0
loc (Rn) and

EK(u, η) :=

∫
Rn

∫
Rn

[u(x)− u(y)][η(x)− η(y)]K(x, y) dx dy .

The measurable Kernel is assumed to satisfy the following uniform ellipticity as-
sumptions:

(1.4)
1

Λ|x− y|n+2α
≤ K(x, y) ≤ Λ

|x− y|n+2α

for every x, y ∈ Rn, where α ∈ (0, 1) and Λ ≥ 1. We recall that the fractional
Sobolev space W s,γ , for γ ≥ 1 and s ∈ (0, 1), is given by the subspace of Lγ(Rn)-
functions u such that the following Gagliardo seminorm is finite (see for instance
[11, 21])

(1.5) [u]γs,γ :=

∫
Rn

∫
Rn

|u(x)− u(y)|γ

|x− y|n+γs
dx dy .

In view of (1.1), a natural question to begin with is whether or not the inclusion

(1.6) u ∈Wα,2+δ
loc (Rn)

holds for some δ > 0, possibly depending only on the ellipticity parameters of the
equation and not on the solution itself. For the definition of local fractional Sobolev
spaces, see Section 2. This has been answered in a very interesting and recent paper
of Bass & Ren [2], who consider the function

(1.7) Γ(x) :=

(∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dy

)1/2

,

and prove that Γ ∈ L2(1+δ)(Rn) for some positive δ depending only on n, α,Λ
and δ0. Then (1.6) follows by characterisations of Bessel potential spaces [12, 26].
In this paper we provide a stronger and surprising result. Indeed, we see that
for nonlocal problems the self-improvement property extends to the differentiability
scale. This means that there exists some positive δ ∈ (0, 1−α), depending only on
n, α,Λ, such that

(1.8) u ∈Wα+δ,2+δ
loc (Rn)

holds. This phenomenon is purely nonlocal, and has no parallel in the regularity
theory of local equations, where, in order to get fractional Sobolev differentiability
of Du, a similar fractional regularity must be assumed on the coefficients matrix
A(x), as for instance established in [22, 25].

In the classical local case, measurability is, in general, not sufficient to get any
gradient differentiability. To see this already in the one dimensional case n = 1, it
is sufficient to consider the following equation:

(1.9)
d

dx

(
a(x)

du

dx

)
= 0 ,

1

Λ
≤ a(x) ≤ Λ ,

and to note that

x 7→
∫ x

0

dt

a(t)

is a solution with a(·) being any measurable function satisfying nothing but the
inequalities in (1.9). It is then easy to build similar multidimensional examples.
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We remark that the differentiability gain is in fact the main information in (1.8),
since a standard application of the fractional Sobolev embedding theorem gives
that if u ∈ Wα+δ,2 for some δ > 0, then (1.8) holds for some other number δ.
Our results are actually covering a more general class of equations than the one in
(1.3) and provide a full nonlocal analog of the classical higher integrability results
valid in the local case. The precise statements are in the next section. Our results
are a consequence of a new, fractional version of the Gehring lemma for fractional
Sobolev functions that replaces the classical one valid in the local case.

We finally remark that, in recent times, there has been much attention to the
regularity of solutions to nonlocal problems, especially in the basic case of kernels
with measurable coefficients; see for instance [1, 3, 5, 7, 8, 14].

1.1. Higher differentiability results. A rather general statement concerning
higher integrability for weak solutions to local problems involves non-homogeneous
equations such as

(1.10) − div (A(x)Du) = −div g + f in Ω ,

where the matrix A(·) has measurable coefficients and satisfies (1.2). Indeed, as-

suming that g ∈ L2+δ0
loc (Ω,Rn) and f ∈ L2n/(n+2)+δ0

loc (Ω) hold for some δ0 > 0, it
follows that there exists another positive number δ < δ0, such that (1.1) holds.
The exponent 2n/(n + 2) is nothing but the conjugate of the Sobolev embedding
exponent of W 1,2, that is 2n/(n− 2).

A first nonlocal analog of (1.10) is given by

(1.11) EK(u, η) = EK(g, η) +

∫
Rn
fη dx ∀ η ∈ C∞c (Rn) ,

considering weak solutions u ∈ Wα,2(Rn). The assumptions are the natural coun-
terpart of the local ones; we indeed take g ∈Wα+δ0,2(Rn) and

(1.12) f ∈ L2∗+δ0
loc (Rn)

for some δ0 > 0. The exponent 2∗ is the conjugate of the relevant fractional Sobolev
embedding exponent, that is

(1.13) 2∗ :=
2n

n+ 2α
, 2∗ :=

2n

n− 2α
,

1

2∗
+

1

2∗
= 1 .

The terminology is motivated by the fractional version of the classical Sobolev
embedding theorem, that is Wα,2 ⊂ L2∗ . On the other hand, we recall that the
essence of the structure of equation (1.10) lies in the fact that the right hand
side contains terms of all possible integer order. A full extension to the fractional
case then leads us to consider right hand sides of arbitrary fractional order, not
necessarily equal to the order of the considered nonlocal elliptic operator on the
left hand side. Moreover, since higher integrability of solutions still holds when
considering monotone quasilinear equations, we will also examine nonlinear integro-
differential equations. Specifically, we will consider general equations of the type

(1.14) EϕK(u, η) = EH(g, η) +

∫
Rn
fη dx ∀ η ∈ C∞c (Rn) .

The form EϕK(·) is then defined by

EϕK(u, η) :=

∫
Rn

∫
Rn
ϕ(u(x)− u(y))[η(x)− η(y)]K(x, y) dx dy ,

where the Borel function ϕ : R→ R satisfies

(1.15) |ϕ(t)| ≤ Λ|t| , ϕ(t)t ≥ t2, ∀ t ∈ R
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making in fact EϕK a coercive form in Wα,2, and thereby (1.14) an elliptic equation.
While we assume (1.4) for K(·), the measurable kernel H(·) is now assumed to
satisfy

(1.16) |H(x, y)| ≤ Λ

|x− y|n+2β

for β ∈ (0, 1). In particular, β is also allowed to be larger than α. Here the function
f is still assumed to satisfy (1.12) while the assumptions on g sharply match the
structure in (1.14). We actually consider two different cases and the first one is
when 2β ≥ α. In this situation we assume the existence of a positive number
δ0 > 0 such that

(1.17) g ∈W 2β−α+δ0,2(Rn) .

Needless to say, we also assume that 2β − α + δ0 ∈ (0, 1) to give (1.17) sense in
terms of the seminorm (1.5); this in particular implies that β < (1 + α)/2. In the
case 0 < 2β < α we instead do not consider any differentiability on g, but only
integrability:

(1.18) g ∈ Lp0+δ0(Rn) , p0 :=
2n

n+ 2(α− 2β)
.

We then have the following main result of the paper:

Theorem 1.1. Let u ∈ Wα,2(Rn) be a solution to (1.14) under the assumptions
(1.4) and (1.12)-(1.18). Then there exists a positive number δ ∈ (0, 1−α), depending
only on n, α,Λ, β, δ0, but otherwise independent of the solution u and of the kernels

K(·), H(·), such that u ∈Wα+δ,2+δ
loc (Rn).

Equation (1.11) is covered taking α = β. The optimality of the assumptions on
f and g can be checked by considering the model equation (−4)αu = (−4)βg+ f ,
and using Fourier analysis. They sharply relate to the fractional Sobolev embedding
theorem. As in the case of the classical, local the Gehring lemma, explicit estimates
on the exponent δ for Theorem 1.1 can be given by tracing back the dependence of
the constants in the proof.

1.2. Dual pairs (µ,U) and sketch of the proof. In order to get (1.8) we here
introduce a new approach and develop a method aimed at exploiting the hidden
cancellation properties which are intrinsic in the definition of the nonlocal seminorm
(1.5). To this aim, we introduce dual pairs of measures and functions (µ,U) in
R2n, proving that a version of the Gehring lemma applies to them; see Section
1.3 below. A natural choice would be to consider the measure generated by the
density |x− y|−n, but this would not yield a finite measure. We therefore consider
a perturbation of it, i.e. the measure defined by

(1.19) µ(A) :=

∫
A

dx dy

|x− y|n−2ε
,

for suitably small ε > 0, whenever A ⊂ R2n is a measurable subset. This is a locally
finite, doubling Borel measure in R2n. Accordingly, for x 6= y, we introduce the
function

(1.20) U(x, y) :=
|u(x)− u(y)|
|x− y|α+ε

.

The main point here is that the measure µ and the function U are in duality when
u ∈Wα,2 in the sense that for a function u ∈ L2(Rn) we have that U ∈ L2(R2n;µ)
holds iff u ∈Wα,2(Rn). This motivates in fact the following:

Definition 1. Let u ∈ Wα,2(Rn) and let ε ∈ (0, α/2). The couple (µ,U) defined
in (1.19)-(1.20) is called a dual pair generated by the function u.
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We then look at the higher µ-integrability for U proving that

(1.21) U ∈ L2+δ
loc (R2n;µ)

holds for some δ > 0. Now, by the very definition of U , we have that (1.21) implies
the higher differentiability of u, that is (1.8); see Section 6. This is the effect of the
cancellations hidden in the definition of fractional norm in (1.5) we were mentioning
above. In order to prove (1.21), we shall show decay estimates for the µ-measure
of the level sets of U . The first step consists of deriving suitable energy estimates
(i.e. Caccioppoli type inequalities) for U , see Theorem 3.1. We obtain a kind of
reverse Hölder type inequality, that is

(1.22)

(∫
B
U2dµ

)1/2

.
∞∑
k=1

2−k(α−ε)
(∫

2kB
Uq dµ

)1/q

+ “terms involving g, f”

with q < 2, see Proposition 4.2. The estimate in (1.22) holds whenever B ≡ B ×B
and B ⊂ Rn is a ball. Notice that if we discard from the sum above all the terms
but the first one we formally obtain a reverse Hölder type inequality similar to those
that hold for solutions to local problems.

Inequality (1.22) does not seem to be sufficient to proceed, since in order to
prove estimates on level sets in R2n we need information on every ball B ⊂ R2n,
not only those of diagonal type B × B. To overcome such an apparently decisive
lack of information, we have to introduce an extremely delicate localisation tech-
nique. Consider the level set {U > λ}; we use a Calderón-Zygmund type exit time
argument in order to cover the level set with (almost disjoint) diagonal balls B×B
and disjoint “off-diagonal” dyadic cubes K

{U > λ} ⊂
⋃
B ×B ∪

⋃
K ,

on which, for a suitably large number L, we have(∫
B×B

U2 dµ

)1/2

≈ λ and

(∫
K
U2 dµ

)1/2

≈ Lλ ,

see Sections 5.1 and 5.6. We call the cubes K off-diagonal, because they are “far”
from the diagonal, in the sense that their distance from the diagonal is larger than
their sidelength. The number L is introduced to make the decomposition along
the diagonal predominant with respect to the decomposition outside the diagonal.
Indeed, the exit time balls B ×B will tend to be “larger” than the cubes K, since
they have been obtained via an exit time at a lower level λ, as shown by the first
formula in the latest display.

Surprisingly enough, the fact that a cube K is off-diagonal allows us to prove
that a reverse inequality of the type (1.22) also holds on K (see Lemma 5.3). This
inequality, however, incorporates certain correction terms involving once again di-
agonal cubes. This introduces serious difficulties, since this time such cubes are
not coming from any exit time argument, and there is no a priori control on them.
Matching the resulting reverse inequalities with those in (1.22) is not an easy task
and indeed requires an involved covering/combinatorial argument. See Sections 5.9
and 5.10, and in particular Lemma 5.6.

The final outcome of this lengthy procedure is an inequality on level sets of U ,
see Proposition 5.1, that implies the higher integrability of U , together with the
new reverse Hölder type inequality reported in display (1.24) below. This holds
for some δ > 0 that does not depend on the solution u. See Theorem 6.1. We
have therefore proved (1.21). We also remark that treating the complete problem
of Theorem 1.1 up to the sharp interpolation range described by (1.17) requires
additional ideas. As a matter of fact, the exit time arguments have to be adapted
in order to realise a direct analog of the so called good-λ inequality principle: i.e.
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no maximal operator is used here. In particular, we employ a simultaneous level
set analysis via use of the composite quantity Ψ(·) in (5.1), where the number M
(appearing in the definition of Ψ(·)) is used to adapt the size of the levels at the exit
time. This must eventually match with the specific form of the energy estimates
available for solutions.

Finally, we would like to remark that, although we are here dealing with the case
of scalar, linear growth nonlocal equations, our approach is only based on energy
inequalities, and therefore can be extended to more general nonlinear operators of
nonlocal type, see for example [9, 10]. This will be the object of future works.

1.3. The fractional Gehring lemma for dual pairs. The classical Gehring
lemma does not simply deal with solutions to equations, but, more in general, with
self-improving properties of reverse Hölder type inequalities. At the core of our
approach lies in fact a new, fractional version of Gehring lemma valid for general
fractional Sobolev functions, and not only for solutions to nonlocal equations. Here
is a version of it.

Theorem 1.2 (Fractional Gehring lemma). Let u ∈ Wα,2(Rn) for α ∈ (0, 1). Let
ε ∈ (0, α/2) and let (µ,U) be the dual pair generated by u in the sense of (1.19)-
(1.20) and Definition 1. Assume that the following reverse Hölder type inequality
with the tail holds for every σ ∈ (0, 1) and for every ball B ⊂ Rn:(∫

B
U2dµ

)1/2

≤ c(σ)

ε1/q−1/2

(∫
2B
Uqdµ

)1/q

+
σ

ε1/q−1/2

∞∑
k=2

2−k(α−ε)
(∫

2kB
Uq dµ

)1/q

,(1.23)

where q ∈ (1, 2) is a fixed exponent and B = B × B and c(σ) is a non-increasing
function depending on σ. Then there exists a positive number δ ∈ (0, 1 − α), de-

pending only on n, α, ε, q and the function c(·), such that U ∈ L2+δ
loc (R2n;µ) and

u ∈ Wα+δ,2+δ
loc (Rn). Moreover, the following inequality holds whenever B ⊂ Rn,

again for a constant c depending only on n, α, ε, q and the function c(·):

(1.24)

(∫
B
U2+δ dµ

)1/(2+δ)

≤ c
∞∑
k=1

2−k(α−ε)
(∫

2kB
U2 dµ

)1/2

.

In the literature there are several extensions of Gehring lemma in general set-
tings, for instance in metric spaces equipped with a doubling Borel measure, but
Theorem 1.2 is completely different. Indeed, its central feature is actually that
global higher integrability information is reconstructed from reverse inequalities
that do not hold on every ball in R2n, but only on diagonal ones. This is a
crucial loss of information that makes Theorem 1.2 hold not for any function
U ∈ L2(R2n;µ), but rather only for dual pairs (µ,U). Moreover the presence
of the infinite series on the right hand side of (1.23) gives to this inequality a del-
icate nonlocal character that adds relevant technical complications. Theorem 1.2
is a particular case of a more general result; we prefer to report this form again to
make the basic ideas more transparent. A more comprehensive version including
additional functions F and G on the right hand side of (1.23) can be proved as well;
see Theorem 6.1 below.

The results of this paper have been announced in the preliminary research report
[23].
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2. Preliminaries and notation

In what follows we denote by c a general positive constant, possibly varying from
line to line; special occurrences will be denoted by c1, c2, c̄1, c̄2 or the like. All such
constants will always be larger or equal than one; moreover relevant dependencies
on parameters will be emphasized using parentheses, i.e., c1 ≡ c1(n,Λ, p, α) means
that c1 depends only on n,Λ, p, α. We denote by

B(x0, r) ≡ Br(x0) := {x ∈ Rn : |x− x0| < r}
the open ball with center x0 and radius r > 0; when not important, or clear from
the context, we shall omit denoting the center as follows: Br ≡ B(x0, r); moreover,
with B being a generic ball with radius r we will denote by σB the ball concentric
to B having radius σr, σ > 0. Unless otherwise stated, different balls in the same
context will have the same center. With O ⊂ Rk being a measurable set with
positive µ-measure and with h being a measurable map we shall denote by

(h)O ≡
∫
O
h dµ :=

1

µ(O)

∫
O
h dµ

its integral average. In the following we shall need to consider integrals and func-
tions in Rn × Rn. In this respect, instead of dealing with the usual balls in R2n,
we prefer to deal with balls generated by a different metric, that is that relative to
the norm (in R2n) defined by

(2.1) ‖(x0, y0)‖ := max{|x0|, |y0|},
where | · | denotes the standard Euclidean norm in Rn and x0, y0 ∈ Rn. These balls
are denoted by B(x0, y0, %), and are of course of the form

B(x0, y0, %) := B(x0, %)×B(y0, %) .

In the case x0 = y0 we shall also use the shorter notation B(x0, x0, %) ≡ B(x0, %).
With obvious meaning, these will be called diagonal balls. Moreover, with B(x0, %)
being a fixed ball, we shall also denote B ≡ B(x0, x0, %) when no ambiguity shall
arise, and sB := B(x0, s%) for s > 0. Needless to say, since they are metric balls,
and actually equivalent to the standard ones in R2n, we can apply to them several
tools that are available for the usual balls. For instance, we shall later on apply the
classical Vitali’s covering lemma. Needless to say, it follows that BR2n((x0, y0), %) =
{(x0, y0) ∈ R2n : |(x0, y0)| < %} ⊂ B(x0, y0, %) . Accordingly, we shall denote

Diag := {(x, x) ∈ R2n : x ∈ Rn} .
If A is a finite set, the symbol #A denotes the number of its elements. In the
following we shall very often use the following elementary inequality

(2.2) 22βk
∞∑

j=k−1

2−2βj ≤ 8

β
, for β ∈ (0, 1] and k ≥ 1 .

Finally, the local fractional Sobolev spaces are defined via the Gagliardo seminorm

(2.3) [u]s,γ(Ω) :=

(∫
Ω

∫
Ω

|u(x)− u(y)|γ

|x− y|n+γs
dx dy

)1/γ

for γ ≥ 1 and s ∈ (0, 1). A function u ∈ Lγloc(Rn) belongs to W s,γ
loc (Rn) if [u]s,γ(Ω)

is finite whenever Ω is an open bounded subset of Rn.
The following two lemmas report some classical Poincaré-Sobolev type inequal-

ities valid in the fractional setting; the proof of the first is exactly the one in [25],
for the second we refer to [19]. See also [11, 21].
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Lemma 2.1 (Fractional Poincaré inequality). Let v ∈ Lp(B), with B ⊂ Rn being
a ball of radius r, and let α be a real number such that such that n+ pα ≥ 0; then
the following inequality holds:∫

B

|v − (v)B |p dx ≤ crpα
∫
B

∫
B

|v(x)− v(y)|p

|x− y|n+pα
dx dy .

Note that the previous inequality in particular applies when v ∈ Wα,p(B), and
in this case the quantity on the right hand side is finite.

Lemma 2.2 (Fractional Sobolev-Poincaré inequality). Let v ∈ Wα,p(B), for α ∈
(0, 1), where B ⊂ Rn is a ball of radius r, or a cube of diameter r. If pα < n, then
the following inequality holds for a constant c depending only on n, α:(∫

B

|v − (v)B |p
∗
dx

)1/p∗

≤ crα
(∫

B

∫
B

|v(x)− v(y)|p

|x− y|n+pα
dx dy

)1/p

,

where p∗ := np/(n− pα).

With 2∗ being the exponent defined in (1.13), an immediate consequence of the
previous lemma is the following inequality, that we report since it will be used
several times:

(2.4)

(∫
B

|v − (v)B |2 dx
)1/2

≤ crα
(∫

B

∫
B

|v(x)− v(y)|2∗
|x− y|n+2∗α

dx dy

)1/2∗

.

Moreover, if v is compactly supported in B, then v − (v)B above can be replaced
by v.

3. The Caccioppoli inequality

3.1. Preliminary reformulation of the assumptions. We start by the assump-
tions made on g, that is (1.17)-(1.18). In order to give a unified proof for the two
cases 2β ≥ α and 2β < α, and to simplify certain computations, we shall make
a few preliminary reductions and will restate the assumptions in a more conve-
nient way. First of all let us consider the case 2β ≥ α, when (1.17) is in force.
Let us notice that, eventually reducing the value of δ0, and in particular taking
δ0 ≤ α/40, (1.17) implies the existence of exponents p, γ and δ1 > 0, such that
g ∈W γ(1+δ1),p(1+δ1)(Rn) and

(3.1) 2β > γ > 2β − α , 2 > p >
2n

n+ 2(γ − 2β + α)
, δ1 ≤

α

4n
.

Indeed, let us set γ = 2β − α + δ0/2 and recall that W 2β−α+δ0,2 embeds in
W γ(1+δ1),p(1+δ1) whenever 2β−α+ δ0−n/2 = γ(1 + δ1)−n/[p(1 + δ1)]. A lengthy
computation then shows that any choice of p as above and δ1 ≤ 1 satisfying the
inequalities

(1 + δ1)δ0
[n+ 2γ(1 + δ1)]

< δ1 <
(2 + δ1)δ0

[n+ 2γ(1 + δ1)]

matches the conditions in (3.1). We now consider the case 2β < α, when (1.18) is
in force. In this case we can instead assume the existence of numbers p > 1 and
δ1 > 0 such that

(3.2) g ∈ Lp(1+δ1)
loc (Rn) , p >

2n

n+ 2(α− 2β)
.

Let us now unify the previous conditions. In the case 2β ≥ α we clearly have that

(3.3)

∫
B

∫
B

|g(x)− g(y)|p(1+δ1)

|x− y|n+p(1+δ1)2γ
dx dy +

∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy <∞
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for every ball B ⊂ Rn. This comes by the definition of the space W γ(1+δ1),p(1+δ1).
On the other hand, when 2β < α, then assumptions (1.18) do not involve any
number γ. Thanks to the lower bound on p in (1.18), we can find a negative
number γ, such that |γ| ∈ (0, 1/10) is small enough to still verify (3.1). In this case
we note that∫

B

∫
B

|g(x)− g(y)|p(1+δ1)

|x− y|n+p(1+δ1)2γ
dx dy ≤

∫
B

∫
B

(|g(x)|+ |g(y)|)p(1+δ1)

|x− y|n+p(1+δ1)2γ
dx dy

≤ cr−p(1+δ1)2γ

−γ

∫
B

|g|p(1+δ1) dx <∞(3.4)

where r denotes the radius of B; a similar estimate follows for the second quantity
in (3.3). Summarizing, in the rest of the paper we shall always assume that (3.1)
and (3.3) hold. In the case 2β < α the number γ is negative.

Remark 3.1. In the following we shall denote by cb a constant that depends on
n, α,Λ, p, β, γ and exhibits the following blow-up behaviour:

(3.5) lim
p→2n/[n+2(γ−2β+α)]

cb =∞ .

3.2. The Caccioppoli estimate. The Caccioppoli type inequality stated in the
next theorem is an essential tool in the proof of Theorem 1.1.

Theorem 3.1. Let u ∈ Wα,2(Rn) be a solution to (1.14) under the assumptions
of Theorem 1.1; in particular, (3.1) and (3.3) are in force. Let B ≡ B(x0, r) ⊂ Rn
be a ball, and let ψ ∈ C∞c (B(x0, 3r/4)) be a cut-off function such that 0 ≤ ψ ≤ 1
and |Dψ| ≤ c(n)/r. Then the Caccioppoli type inequality∫

B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

≤ c

r2α

∫
B

|u(x)|2 dx+ c

∫
Rn\B

|u(y)|
|x0 − y|n+2α

dy

∫
B

|u(x)| dx

+crn+2α

(∫
B

|f(x)|2∗ dx
)2/2∗

+cbr
n+2(γ−2β+α)

[ ∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p
]2

(3.6)

holds for a constant c ≡ c(n,Λ, α), which is in particular independent of p, and a
constant cb ≡ cb(n,Λ, α, β, γ, p). The constant cb exhibits the behaviour described in
(3.5); moreover, all the terms appearing on the right hand side of (3.6) are finite.

Proof. In the weak formulation∫
Rn

∫
Rn
ϕ(u(x)− u(y))[η(x)− η(y)]K(x, y) dx dy

=

∫
Rn

∫
Rn

[g(x)− g(y)][η(x)− η(y)]H(x, y) dx dy +

∫
Rn
fη dx(3.7)

we choose η = uψ2, where ψ ∈ C∞c (B) is the cut-off function coming from the
statement. By a density argument η is an admissible test function. Then we have

I1 + I2 + I3 :=∫
B

∫
B

ϕ(u(x)− u(y))[u(x)ψ2(x)− u(y)ψ2(y)]K(x, y) dx dy

+

∫
Rn\B

∫
B

ϕ(u(x)− u(y))u(x)ψ2(x)K(x, y) dx dy
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−
∫
B

∫
Rn\B

ϕ(u(x)− u(y))u(y)ψ2(y)K(x, y) dx dy

=

∫
B

∫
B

[g(x)− g(y)][u(x)ψ2(x)− u(y)ψ2(y)]H(x, y) dx dy

+

∫
Rn\B

∫
B

[g(x)− g(y)]u(x)ψ2(x)H(x, y) dx dy

+

∫
B

∫
Rn\B

[g(y)− g(x)]u(y)ψ2(y)H(x, y) dx dy

+

∫
B

f(x)u(x)ψ2(x) dx =: J1 + J2 + J3 + J4 .(3.8)

We proceed in estimating the various pieces stemming from the previous identity.
Estimation of I1. Let us first consider the case in which ψ(x) ≥ ψ(y). Then we
write

ϕ(u(x)− u(y))[u(x)ψ2(x)− u(y)ψ2(y)]

= ϕ(u(x)− u(y))[u(x)− u(y)]ψ2(x) + ϕ(u(x)− u(y))u(y)[ψ2(x)− ψ2(y)].

Applying Young’s inequality and recalling the first inequality in (1.15), we have

ϕ(u(x)− u(y))u(y)[ψ2(x)− ψ2(y)]

= ϕ(u(x)− u(y))u(y)[ψ(x)− ψ(y)][ψ(x) + ψ(y)]

≥ −2|ϕ(u(x)− u(y))||u(y)||ψ(x)− ψ(y)|ψ(x)

≥ −1

2
|u(x)− u(y)|2ψ2(x)− 2Λ2u2(y)[ψ(x)− ψ(y)]2 .

Connecting the content of the last two displays, and using this time the second
inequality in (1.15), yields

ϕ(u(x)− u(y))[u(x)ψ2(x)− u(y)ψ2(y)]

≥ 1

2
[u(x)− u(y)]2ψ2(x)− 2Λ2u2(y)[ψ(x)− ψ(y)]2 .(3.9)

Now, we consider the case in which ψ(y) ≥ ψ(x) and we similarly write

ϕ(u(x)− u(y))[u(x)ψ2(x)− u(y)ψ2(y)]

= ϕ(u(x)− u(y))[u(x)− u(y)]ψ2(y) + ϕ(u(x)− u(y))u(x)[ψ2(x)− ψ2(y)] .

Proceeding similarly to the case ψ(x) ≥ ψ(y), we arrive at

ϕ(u(x)− u(y))[u(x)ψ2(x)− u(y)ψ2(y)]

≥ 1

2
[u(x)− u(y)]2ψ2(y)− 2Λ2u2(x)[ψ(x)− ψ(y)]2 .

In any case, using also (1.4), we conclude with

I1 ≥ 1

c

∫
B

∫
B

|u(x)− u(y)|2

|x− y|n+2α
max{ψ2(x), ψ2(y)} dx dy

−c
∫
B

∫
B

|u(x)|2 |ψ(x)− ψ(y)|2

|x− y|n+2α
dx dy ,

where c depends on Λ. Moreover, by noticing that

[u(x)ψ(x)− u(y)ψ(y)]2 ≤ 2[u(x)(ψ(x)− ψ(y))]2 + 2[ψ(y)(u(x)− u(y))]2

and integrating, we conclude with

I1 ≥ 1

c

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy
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−c
∫
B

∫
B

|u(x)|2 |ψ(x)− ψ(y)|2

|x− y|n+2α
dx dy .(3.10)

Estimation of I2 and I3. The estimation of the terms I2 and I3 is similar. Indeed,
as for I2, we start observing that a direct computation yields

[u(x)− u(y)]u(x)ψ2(x)K(x, y) ≥ −Λ
|u(x)||u(y)|ψ2(x)

|x− y|n+2α

and therefore, by (1.15) we obtain (we can assume without loss of generality that
u(x) 6= u(y)) that

ϕ(u(x)− u(y))u(x)ψ2(x)K(x, y) ≥ −Λ

∣∣∣∣ϕ(u(x)− u(y))

u(x)− u(y)

∣∣∣∣ |u(x)||u(y)|ψ2(x)

|x− y|n+2α

≥ −Λ2 |u(x)||u(y)|ψ2(x)

|x− y|n+2α
.

Similarly, we obtain

−ϕ(u(x)− u(y))u(y)ψ2(y)K(x, y) ≥ −Λ2 |u(x)||u(y)|ψ2(y)

|x− y|n+2α
.

We then estimate

I2 + I3 ≥ −c
∫
Rn\B

∫
B

|u(x)||u(y)|ψ2(x)

|x− y|n+2α
dx dy

≥ −c sup
z∈suppψ

∫
Rn\B

|u(y)|
|z − y|n+2α

dy

∫
B

|u(x)|ψ2(x) dx

≥ −c
∫
Rn\B

|u(y)|
|x0 − y|n+2α

dy

∫
B

|u(x)|ψ2(x) dx .(3.11)

Here we have used the fact that since ψ is supported in B(x0, 3r/4), we have

(3.12)
|x0 − y|
|z − y|

≤ 1 +
|x0 − z|
|z − y|

≤ 4

whenever z ∈ suppψ and y ∈ Rn \B.
Estimation of J4. Fractional Sobolev’s inequality yields

J4 ≤ crn
(∫

B

|u(x)ψ(x)|2
∗
dx

)1/2∗ (∫
B

|f(x)|2∗ dx
)1/2∗

≤ crn/2+α

(∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)1/2

·
(∫

B

|f(x)|2∗ dx
)1/2∗

,

so that, applying Young’s inequality with σ ∈ (0, 1), we have

J4 ≤ c

σ
rn+2α

(∫
B

|f(x)|2∗ dx
)2/2∗

+σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy .(3.13)

The constant c depends only on n, α.
Estimation of J1. We write

u(x)ψ2(x)− u(y)ψ2(y)

= [u(x)ψ(x)− u(y)ψ(y)]ψ(y) + u(x)ψ(x)[ψ(x)− ψ(y)] .
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Therefore, using that ψ ≤ 1 and (1.16), we have

J1 ≤ Λ

∫
B

∫
B

|g(x)− g(y)|
|x− y|2β

|u(x)ψ(x)− u(y)ψ(y)| dx dy

|x− y|n

+Λ

∫
B

∫
B

|g(x)− g(y)|
|x− y|2β

|u(x)ψ(x)||ψ(x)− ψ(y)| dx dy

|x− y|n
=: J1.1 + J1.2 .

In turn, we estimate J1.1 and J1.2 separately. Recalling (3.1), we now set

(3.14) t := 1− 2β − γ
α

and s :=
n

α

[
1

p
− 1

2

]
.

Observe that 0 < t ≤ 1⇐⇒ 2β − α < γ ≤ 2β. Then we notice that

2β ≥ γ and 2 > p >
2n

n+ 2(γ − 2β + α)

=⇒ 2 > p >
2n

n+ 2α
= 2∗ =⇒ 0 < s < 1(3.15)

and moreover

(3.16) p >
2n

n+ 2(γ − 2β + α)
=⇒ 0 < s < t .

We also record the identity αt = γ − (2β − α). Let us now write

J1.1 = crn
∫
B

∫
B

[
rαt
|g(x)− g(y)|
|x− y|2β−α+tα

] [
|u(x)ψ(x)− u(y)ψ(y)|

|x− y|α

]1−s

·
[
r−αt/s

|u(x)ψ(x)− u(y)ψ(y)|
|x− y|α(1−t/s)

]s
dx dy

|x− y|n
.

The definitions in (3.14) imply (1− s)/2 + s/2∗ + 1/p = 1 and therefore, applying
Hölder’s inequality with the related choice of the exponents, we have

J1.1 ≤ crn+αt

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+p(2β−α+tα)
dx dy

)1/p

·
(∫

B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)(1−s)/2

·
(
r−2∗αt/s

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2∗

|x− y|n+2∗α(1−t/s) dx dy

)s/2∗
.(3.17)

Before going on, let us estimate the last integral∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2∗

|x− y|n+2∗α(1−t/s) dx dy ≤ 22∗−1

∫
B

∫
B

|u(x)ψ(x)|2∗

|x− y|n+2∗α(1−t/s) dx dy

≤ cr−2∗α(1−t/s)

t− s

∫
B

|u(x)ψ(x)|2
∗
dx

≤ cr2∗αt/s

t− s

(∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)2∗/2

.(3.18)

Plugging the inequality into (3.17) yields

J1.1 ≤ crn/2+αt

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+p(2β−α+tα)
dx dy

)1/p

·
(∫

B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)1/2

.
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Using Young’s inequality, and keeping in mind that αt = γ − (2β − α), leads to

J1.1 ≤ c

σ
rn+2(γ−2β+α)

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)2/p

+σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

whenever σ ∈ (0, 1). The constant c depends only on n, α,Λ, β, γ, p. We then
continue with the estimation of J1.2. Upon setting η := (1 − α)/2 using Hölder’s
inequality with conjugate exponents (2∗, 2∗) we have

J1.2 ≤ c‖Dψ‖L∞rn
∫
B

∫
B

|g(x)− g(y)|
|x− y|2β−1+η

|u(x)ψ(x)|
|x− y|−η

dx dy

|x− y|n

≤ c‖Dψ‖L∞rn
(∫

B

∫
B

|g(x)− g(y)|2∗
|x− y|2∗(2β−1+η)

dx dy

|x− y|n

)1/2∗

·
(∫

B

∫
B

|u(x)ψ(x)|2∗

|x− y|−2∗η

dx dy

|x− y|n

)1/2∗

.

In turn, by Lemma 2.2 (see also the remark below there) we have∫
B

∫
B

|u(x)ψ(x)|2∗

|x− y|−2∗η

dx dy

|x− y|n
≤ cr2∗η

1− α

∫
B

|u(x)ψ(x)|2
∗
dx

≤ cr2∗(η+α)

(∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)2∗/2

and, recalling that p > 2∗ by (3.15), we proceed with∫
B

∫
B

|g(x)− g(y)|2∗
|x− y|2∗(2β−1+η)

dx dy

|x− y|n

=

∫
B

∫
B

(
|g(x)− g(y)|
|x− y|γ

)2∗ 1

|x− y|2∗(2β−1+η−γ)

dx dy

|x− y|n

≤
(∫

B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)2∗/p

·

(∫
B

∫
B

1

|x− y|
2∗(2β−1+η−γ)p

p−2∗

dx dy

|x− y|n

)1−2∗/p

≤ cr−2∗(2β−1+η−γ)

γ − 2β + α

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)2∗/p

where of course we used that 2β− 1 + η− γ = 2β− 1/2−α/2− γ < 2β−α− γ < 0
due to η := (1−α)/2 and (3.1). Connecting the estimates in the last three displays
yields

J1.2 ≤ c‖Dψ‖L∞rn/2+γ−2β+α+1

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p

·
(∫

B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)1/2

.

Again using Young’s inequality we conclude with

J1.2 ≤ c

σ
r2‖Dψ‖2L∞rn+2(γ−2β+α)

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)2/p

+σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy
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which holds whenever σ ∈ (0, 1). Gathering together the estimates found for J1.1

and J1.2, and using that r2‖Dψ‖2L∞ ≤ c(n), gives

J1 ≤ c

σ
rn+2(γ−2β+α)

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)2/p

+2σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy .(3.19)

The constant c depends on n, α,Λ, β, γ, p.
Estimation of J2 and J3. The estimation of the two terms is completely similar,
and we therefore confine ourselves to estimate J2. Using (1.16) we have

J2 ≤ Λ

∫
Rn\B

∫
B

|g(x)− (g)B |
|x− y|n+2β

|u(x)|ψ2(x) dx dy

+Λ

∫
Rn\B

∫
B

|g(y)− (g)B |
|x− y|n+2β

|u(x)|ψ2(x) dx dy

=: J2.1 + J2.2 .

In turn we estimate the two resulting terms. Using that p ≥ 2∗ by (3.15), we have

J2.1 ≤ c sup
z∈suppψ

∫
Rn\B

dy

|z − y|n+2β

∫
B

|g(x)− (g)B ||u(x)|ψ(x) dx

≤ crn sup
z∈suppψ

∫
Rn\B

dy

|z − y|n+2β

(∫
B

|g(x)− (g)B |2∗ dx
)1/2∗

·
(∫

B

|u(x)ψ(x)|2
∗
dx

)1/2∗

≤ crn sup
z∈suppψ

∫
Rn\B

dy

|z − y|n+2β

(∫
B

|g(x)− (g)B |p dx
)1/p

·
(∫

B

|u(x)ψ(x)|2
∗
dx

)1/2∗

≤ crn/2+γ−2β+α sup
z∈suppψ

∫
Rn\B

r2βdy

|z − y|n+2β

·
(∫

B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p(∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)1/2

.

Therefore, using Young’s inequality, we have

J2.1 ≤ c

σ
rn+2(γ−2β+α)

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)2/p

+σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

where we have also used that ψ ≡ 0 outside B(x0, 3r/4), and therefore (3.12), to
estimate

sup
z∈suppψ

∫
Rn\B

r2βdy

|z − y|n+2β
≤ c(n, β) .

In order to estimate J2.2 we need another splitting over annuli. Recalling again
that ψ ≤ 1 and that ψ ≡ 0 outside B(x0, 3r/4), we have

J2.2 ≤ c

∞∑
j=0

∫
2j+1B\2jB

∫
B

|g(y)− (g)B |
|x− y|n+2β

|u(x)|ψ2(x) dx dy
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≤ crn
∞∑
j=0

(2jr)−2β

∫
2j+1B

|g(y)− (g)B | dy
∫
B

|u(x)ψ(x)| dx

≤ crn
∞∑
j=0

(2jr)−2β

(∫
2j+1B

|g(y)− (g)B |p dy
)1/p ∫

B

|u(x)ψ(x)| dx .(3.20)

The estimation of J2.2 needs again a splitting; we start by telescoping summation(∫
2j+1B

|g(y)− (g)B |p dy
)1/p

≤
(∫

2j+1B

|g(y)− (g)2j+1B |p dy
)1/p

+

j∑
k=0

|(g)2k+1B − (g)2kB |

≤
(∫

2j+1B

|g(y)− (g)2j+1B |p dy
)1/p

+

j∑
k=0

(∫
2k+1B

|g(y)− (g)2kB |p dy
)1/p

≤ 2

j+1∑
k=0

(∫
2kB

|g(y)− (g)2kB |p dy
)1/p

.(3.21)

Then an application of the fractional Poincaré inequality in Lemma 2.1 yields(∫
2j+1B

|g(y)− (g)B |p dy
)1/p

≤ c
j+1∑
k=0

(2kr)γ
(∫

2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p

.

Merging the content of the last display with the one of (3.20) gives

J2.2 ≤ crn

 ∞∑
j=0

j+1∑
k=0

(2jr)−2β(2kr)γ
(∫

2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p


·
∫
B

|u(x)ψ(x)| dx .

We now manipulate the content of the square brackets above, using discrete Fubini’s
theorem as follows:

∞∑
j=0

j+1∑
k=0

(2jr)−2β(2kr)γ
(∫

2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p

= rγ−2β

(∫
B

∫
B

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p ∞∑
j=0

2−2βj

+rγ−2β
∞∑
k=1

2γk
(∫

2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p ∞∑
j=k−1

2−2βj

≤ crγ−2β

β

∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p

.

We remark that in the previous display we have used the elementary inequality in
(2.2). All in all we have, by using also Hölder’s inequality and Lemma 2.1, that

J2.2 ≤ crn+γ−2β
∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p

·
(∫

B

|u(x)ψ(x)|2
∗
dx

)1/2∗
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≤ crn/2+γ−2β+α
∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p

·
(∫

B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

)1/2

.

Finally, using Young’s inequality we conclude with

J2.2 ≤ c

σ
rn+2(γ−2β+α)

[ ∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p
]2

+σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

whenever σ ∈ (0, 1). Connecting the inequalities found for J1.2 and J2.2, and again
recalling that J3 can be estimates in a completely similar way, we have

J2 + J3

≤ c

σ
rn+2(γ−2β+α)

[ ∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p
]2

+4σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy .(3.22)

The constant c depends on n,Λ, α, β, γ, p.
Reabsorbing terms. Inserting the estimates for the terms Ii and Ji into (3.8),

we conclude with

1

c

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

≤ 7σ

∫
B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

+c

∫
B

∫
B

|u(x)|2 |ψ(x)− ψ(y)|2

|x− y|n+2α
dx dy

+c

∫
Rn\B

|u(y)|
|x0 − y|n+2α

dy

∫
B

|u(x)|ψ2(x) dx+
c

σ
rn+2α

(∫
B

|f(x)|2∗ dx
) 2

2∗

+
cb
σ
rn+2(γ−2β+α)

[ ∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p
]2

.

The constant c depends only on n, α,Λ and the constant cb depends only on
n,Λ, α, β, γ, p. Now, taking σ = 1/(14c) and reabsorbing terms finishes the proof,
together with the estimate∫

B

∫
B

|u(x)|2 |ψ(x)− ψ(y)|2

|x− y|n+2α
dx dy

≤ ‖Dψ‖∞
∫
B

|u(x)|2
∫
B2r(x)

|x− y|−n+2−2α dy dx

=
c(n)

1− α
‖Dψ‖∞r2−2α

∫
B

|u(x)|2 dx

≤ c(n)

1− α
1

r2α

∫
B

|u(x)|2 dx .

The finiteness of the terms appearing on the right in (3.6) follows directly from the
fact that u ∈Wα,2(Rn) and from Section 4.3 below. �
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Remark 3.2. In the above statement, one can replace u with u− (u)B by testing
instead of uψ2 with (u− (u)B)ψ2.

Remark 3.3. All the constants denoted by c and appearing in Theorem 3.1 blow
up as α→ 0 or as α→ 1. The blow-up of the constant cb is more peculiar, and it is
as in (3.5). This appears for instance in estimate (3.18), as in this case s → t; see
(3.16). In terms of assumption (1.12) the blow-up of cb occurs for instance when
δ0 → 0. Moreover, the constant cb blows up also when β → 0 and γ → 2β − α.

4. The dual pair (µ,U) and reverse inequalities

4.1. A doubling measure. With ε initially satisfying the condition 0 < ε < α/2,
we consider the locally finite measure µ on Rn × Rn introduced in (1.19). We
summarise its basic properties in the next

Proposition 4.1. With µ being defined as in (1.19)

• Whenever B = B ×B, and B ⊂ Rn is a ball with radius r, it holds that

(4.1) µ(B) =
cε(n)rn+2ε

ε
,

where cε(n) denotes a constant depending only on n, ε, and it satisfies
1/c(n) ≤ cε(n) ≤ c(n) for an other constant c(n) depending only on n.
• (doubling diagonal property) Whenever A ≥ 1 we have

(4.2) sup
x̃∈Rn,%>0

µ(B(x̃, A%))

µ(B(x̃, %))
= An+2ε .

• For every A ≥ 1, there exists a constant cd ≡ cd(n,A) such that

(4.3)
µ(B(x̃, %))

µ(K1 ×K2)
≤ cd

ε

holds whenever K1,K2 ⊂ B(x̃, %) ⊂ Rn are cubes with side parallel to the
coordinate axes and such that |K1| = |K2| = %n/An.
• (standard doubling property) there exists a constant c, depending only on
n, such that

(4.4) sup
x̃,ỹ,∈Rn,%>0

µ(B(x̃, ỹ, 2%))

µ(B(x̃, ỹ, %))
≤ c

ε
.

Proof. The proof of (4.1) follows directly from the definition in (1.19) and a scaling
argument, while (4.2) follows from (4.1). The proof of (4.3) is slightly less direct.
First, observe that K1 × K2 ⊂ B(x̃, %) and moreover that |x − y| < 2% whenever
x ∈ K1 and y ∈ K2. Therefore we can estimate

µ(B(x̃, %)) =
c(n)%n+2ε

ε
≤ c(n)A2n

ε

1

%n−2ε

∫
K1

∫
K2

dx dy

≤ c(n)A2n

ε

∫
K1

∫
K2

dx dy

|x− y|n−2ε
=
c(n)A2n

ε
µ(K1 ×K2)

and the proof of (4.3) is complete. The proof of (4.4) is similar to the one of (4.3);
this estimate will not be used in the rest of the paper. �

4.2. Diagonal reverse Hölder type inequalities. For (x, y) ∈ R2n, we define
the functions

(4.5) U(x, y) :=
|u(x)− u(y)|
|x− y|α+ε

, G(x, y) :=
|g(x)− g(y)|
|x− y|γ+2ε/p

, F (x, y) := |f(x)| ,
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the first two being defined when x 6= y. According to the Definition 1 the function u
generates the dual pair (µ,U). From now on, we shall always assume the following
restriction on the number ε:

(4.6) 0 < ε < min{α/2, |γ|(1 + δ1)/4, (2β − γ)p/4} .

Lemma 4.1. With the definitions in (4.5) it follows that

(4.7) U ∈ L2(R2n;µ) and F ∈ L2∗+δf
loc (R2n;µ), with δf ∈ [0, δ0] .

Moreover, assuming (4.6) it follows that

(4.8) G ∈ Lp+δgloc (R2n;µ) where δg ∈ [0, pδ1]

Proof. The first inclusion in (4.7) is a direct consequence of the definition in (4.5).
As for F , for a ball B = B ×B, where B ⊂ Rn has radius r > 0, we have∫

B
F 2∗+δ0 dµ =

∫
B

∫
B

|f(x)|2∗+δ0
|x− y|n−2ε

dx dy ≤ cr2ε

ε

∫
B

|f |2∗+δ0 dx .

This clearly implies that F ∈ L
2∗+δf
loc (R2n;µ) as long as δf ≤ δ0. To prove that

G ∈ Lp+δgloc (R2n;µ), let us start with the case 2β ≥ α, when γ > 0. By using (4.6)
we have∫

B
Gp+pδ1 dµ =

∫
B

∫
B

|g(x)− g(y)|p(1+δ1)

|x− y|n+γp(1+δ1)+2εδ1
dx dy

≤ crδ1[γp(1+δ1)−2ε]

∫
B

∫
B

|g(x)− g(y)|p(1+δ1)

|x− y|n+γp(1+δ1)2
dx dy .(4.9)

The last quantity is finite since we are assuming g ∈ W γ(1+δ1),p(1+δ1) so that

G ∈ L
p+δg
loc (R2n;µ) follows. We finally treat the case 2β < α. In this case, we

have 2εδ1 < 2ε < |γ|p(1 + δ1) = −γp(1 + δ1) so that γp(1 + δ1) + 2εδ1 < 0. We can
therefore estimate as follows:∫

B
Gp+pδ1 dµ ≤

∫
B

∫
B

(|g(x)|+ |g(y)|)p(1+δ1)

|x− y|n+γp(1+δ1)+2εδ1
dx dy

≤ cr−[γp(1+δ1)+2εδ1]

−[γp(1 + δ1) + 2εδ1]

∫
B

|g|p(1+δ1) dx <∞ ,(4.10)

and (4.8) follows again since when 2β < α we are precisely assuming that g ∈
L
p(1+δ1)
loc (Rn); see (3.2). �

We are now going to state a few inequalities of later use. Let v ∈ W σ̃,q(B) for
σ̃ ∈ (0, 1) and q ≥ 1; then the following fractional Sobolev inequality:

(4.11)

∫
B

|v − (v)B |2 dx ≤ cr2σ̃

(∫
B

∫
B

|v(x)− v(y)|q

|x− y|n+σ̃q
dx dy

)2/q

holds as a consequence of (2.4), provided q ≥ 2n/(n + 2σ̃) and σ̃ > 0. With
ε ∈ (0, α/2) we study the compatibility of the following conditions:

(4.12) σ̃ := α+ ε− 2ε

q
and q ≥ 2n

n+ 2σ̃

in inequality (4.11); this gives q ≥ (2n+ 4ε)/(n+ 2α+ 2ε). Recalling the definition
of the function U in (4.5), and using (4.1), we gain

r2σ̃

(∫
B

∫
B

|u(x)− u(y)|q

|x− y|n+σ̃q
dx dy

)2/q

=
cε(n)2/qr2α+2ε

ε2/q

(∫
B
Uqdµ

)2/q

,

with cε(n) defined in (4.1). We therefore have the following:
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Lemma 4.2. Let ε ∈ (0, α/2), and let q be defined by

(4.13) q :=
2n+ 4ε

n+ 2α+ 2ε
< 2 .

Then the following inequality:

(4.14)

∫
B

|u− (u)B |2 dx ≤
cr2(α+ε)

ε2/q

(∫
B
Uqdµ

)2/q

holds for a constant c depending only on n and α, whenever B is a ball with radius
r and B = B×B. The same inequality continues to hold when the ball B is replaced
by a cube Q with side of length r, and consequently B is replaced by Q×Q.

We are now ready for the main result of this section, that is the following:

Proposition 4.2 (Diagonal reverse Hölder type inequality). Let u ∈Wα,2(Rn) be
a solution to (1.14) under the assumptions of Theorem 1.1; in particular, (3.1) and
(3.3) are in force. Assume that ε satisfies (4.6). Then the following reverse Hölder
type inequality with tail holds whenever B ⊂ R2n is a diagonal ball, and σ ∈ (0, 1):(∫

B
U2dµ

)1/2

≤ c

σε1/q−1/2

(∫
2B
Uqdµ

)1/q

+
σ

ε1/q−1/2

∞∑
k=1

2−k(α−ε)
(∫

2kB
Uq dµ

)1/q

+
c[µ(B)]η

ε1/2∗−1/2

(∫
2B
F 2∗ dµ

)1/2∗

+
cb[µ(B)]θ

ε1/p−1/2

∞∑
k=1

2−k(2β−γ−2ε/p)

(∫
2kB

Gp dµ

)1/p

,(4.15)

where θ and η denote the following positive exponents:

(4.16) θ :=
γ − 2β + α+ ε(2/p− 1)

n+ 2ε
and η :=

α− ε
n+ 2ε

,

respectively. The constant c depends only on n, α,Λ, while the number q ∈ (1, 2)
has been defined in (4.13). The constant cb depends on n, α,Λ, β, γ, p and exhibits
the behaviour described in (3.5). The infinite sums on the right side of (4.15) are
finite.

Proof. In the rest of the proof all the constants depend at least on n, α,Λ. We write
B ≡ B(x0, r) × B(x0, r) and apply Theorem 3.1; we choose the cut-off function
ψ ∈ C∞0 ((3/4)B) such that 0 ≤ ψ ≤ 1, |Dψ| ≤ c(n)/r and ψ ≡ 1 on (1/2)B.
Inequality (3.6) remains valid upon replacing u by u−(u)B , see Remark 3.2. Indeed,
notice that for such a function all the integrals on the right hand side of (3.6) are
finite. For this see Section 4.3 and (4.19) below. All in all we have

I4 :=

∫
B

∫
B

|[u(x)− (u)B ]ψ(x)− [u(y)− (u)B ]ψ(y)|2

|x− y|n+2α
dx dy

≤ cr−2α

∫
B

|u(x)− (u)B |2 dx

+c

∫
Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy

∫
B

|u(x)− (u)B | dx

+cr2α

(∫
B

|f(x)|2∗ dx
)2/2∗
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+cbr
2(γ−2β+α)

[ ∞∑
k=0

2(γ−2β)k

(∫
2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p
]2

=: J5 + J6 + J7 + J8 .(4.17)

We start rewriting I4 as follows:

I4 =
1

|B|

∫
B

|[u(x)− (u)B ]ψ(x)− [u(y)− (u)B ]ψ(y)|2

|x− y|2(α+ε)
dµ(x, y)

so that, with the current choice of ψ, we have

r2ε

ε

∫
B/2

U2dµ ≤ c(n)

|B|

∫
B/2

U2 dµ ≤ cI4 .

We estimate J5 with the aid of (4.14) as follows:

J5 ≤
cr2ε

ε2/q

(∫
B
Uqdµ

)2/q

.

To estimate J6 we split the term in annuli, and proceed somehow as in (3.21). As
a matter of fact, we will prove that this term is finite; we indeed have∫

Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy =

∞∑
j=0

∫
2j+1B\2jB

|u(y)− (u)B |
|x0 − y|n+2α

dy

≤ c

∞∑
j=0

(2jr)−2α

∫
2j+1B

|u(y)− (u)B | dy .(4.18)

In turn, we again split every integral in the previous sum similarly to (3.21), and
using Hölder’s inequality we estimate as follows:∫

2j+1B

|u(y)− (u)B | dy ≤ 2

j+1∑
k=0

(∫
2kB

|u(y)− (u)2kB |q dy
)1/q

.

Each of the previous integrals can be then estimated with the aid of the fractional
Poincaré inequality of Lemma 2.1 as follows:∫

2kB

|u(y)− (u)2kB |q dy ≤ c(2kr)q(α+ε)−2ε

∫
2kB

∫
2kB

|u(x)− u(y)|q

|x− y|n+qσ̃
dx dy

=
c(2kr)q(α+ε)

ε

∫
2kB

Uqdµ ,

where σ̃ is as in (4.12) and c remains independent of ε. As a consequence, we obtain∫
2j+1B

|u(y)− (u)B | dy ≤
c

ε1/q

j+1∑
k=0

(2kr)α+ε

(∫
2kB

Uqdµ

)1/q

.

Connecting the content of the last display to the one of (4.18), yields∫
Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy ≤ cr−α+ε

ε1/q

∞∑
j=0

j+1∑
k=0

2−2αj2k(α+ε)

(∫
2kB

Uqdµ

)1/q

.

Reverting the order of summation gives

∞∑
j=0

j+1∑
k=0

2−2αj2k(α+ε)

(∫
2kB

Uqdµ

)1/q

=

(∫
B
Uqdµ

)1/q ∞∑
j=0

2−2αj +

∞∑
k=1

2k(α+ε)

(∫
2kB

Uqdµ

)1/q ∞∑
j=k−1

2−2αj
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≤ c

α

∞∑
k=0

2−k(α−ε)
(∫

2kB
Uqdµ

)1/q

.

Observe that we have once again used the elementary inequality in (2.2) (with
β = α). All in all, combining the content of the last two displays yields

(4.19)

∫
Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy ≤ cr−α+ε

ε1/q

∞∑
k=0

2−k(α−ε)
(∫

2kB
Uqdµ

)1/q

,

so that, via another application of (4.14) we have

J6 ≤
cr2ε

ε2/q

∞∑
k=0

2−k(α−ε)
(∫

2kB
Uqdµ

)1/q (∫
B
Uqdµ

)1/q

.

With σ ∈ (0, 1), using Young’s inequality we finally conclude with

J6 ≤
cr2ε

σ2ε2/q

(∫
B
Uqdµ

)2/q

+
σ2r2ε

ε2/q

[ ∞∑
k=0

2−k(α−ε)
(∫

2kB
Uqdµ

)1/q
]2

.

For the estimation of J7 we observe that∫
B

|f(x)|2∗ dx =

∫
B

∫
B

|f(x)|2∗ dx dy

≤ c

rn−2ε+2ε

∫
B

∫
B

|f(x)|2∗ dx dy

≤ c

rn+2ε

∫
B

∫
B

|f(x)|2∗
|x− y|n−2ε

dx dy

≤ c

ε

∫
B
F 2∗ dµ .

Here we have used (4.1) to perform the last estimation and the very definition of
the measure µ. By the definition of J7 it then follows

J7 ≤
cr2α

ε2/2∗

(∫
B
F 2∗ dµ

)2/2∗

.

Next, the definitions of G(·) and µ imply

J8 ≤
cr2(γ−2β+α+2ε/p)

ε2/p

[ ∞∑
k=0

2(γ−2β+2ε/p)k

(∫
2kB

Gp dµ

)1/p
]2

.

Finally, connecting the estimates found for I4 and J5, . . . , J8 to (4.17) yields

r2ε

ε

∫
B/2

U2dµ ≤ cr2ε

σ2ε2/q

(∫
B
Uqdµ

)2/q

+
σ2r2ε

ε2/q

[ ∞∑
k=0

2−k(α−ε)
(∫

2kB
Uqdµ

)1/q
]2

+
cr2α

ε2/2∗

(∫
B
F 2∗ dµ

)2/2∗

+
cr2(γ−2β+α+2ε/p)

ε2/p

[ ∞∑
k=0

2(γ−2β+2ε/p)k

(∫
2kB

Gp dµ

)1/p
]2

from which (4.15) follows immediately (since the ball B is arbitrary, and we can
switch from B to 2B). The right hand side terms in (4.15) involving infinite sums
are finite and this is checked in the next Remark. �
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Remark 4.1. A computation based on the definitions in (4.16) gives

2∗η

1− 2∗η
=

2n(α− ε)
n2 + 4εn+ 4αε

≤ 2

n

and

pθ

1− pθ
=
p(γ − 2β + α) + ε(2− p)
n− p(γ − 2β + α) + εp

≤ 3

n− p(γ − 2β + α) + εp
:= Λθ .

4.3. The tails are finite. We here observe that all the terms on the right hand
sides of (3.6) and (4.15) are finite, obviously confining ourselves to those involving
infinite sums. We start by the terms involving u. The second term appearing on
the right hand side of (3.6) is seen to be finite by estimating∫

Rn\B

|u(y)|
|x0 − y|n+2α

dy ≤
∫
Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy +

∫
Rn\B

|(u)B |
|x0 − y|n+2α

dy .

The last integral in the above display is obviously finite, while the finiteness of the
second one can be obtained as in (4.19). In fact, by (2.2) and ε ∈ (0, α/2), the right
hand side of (4.19) can be further estimated as
∞∑
k=0

2−k(α−ε)
(∫

2kB
Uqdµ

)1/q

≤
∞∑
k=0

2−k(α−ε)
(∫

2kB
U2dµ

)1/2

≤ c(ε, α)

(∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dx dy

)1/2

.

This also proves the finiteness of the first infinite sum appearing on the right hand
side of (4.15). We now come to the terms involving g, proving that the last series
appearing in (4.15) is finite. The finiteness of the last series appearing in (3.6)
is therefore implied by looking at the estimate for the term J8 in the proof of
Proposition 4.2. We start by the case 2β ≥ α, where using (4.9) we have

2−k(2β−γ−2ε/p)

(∫
2kB

Gp dµ

)1/p

≤ c2−k(2β−γ−δ1γ+n/[p(1+δ1)])[g]γ(1+δ1),p(1+δ1)

with c ≡ c(n, β, γ, p, δ1, r). and since by (3.1) we have γ < 2β and δ1γp(1+δ1) ≤ n,
the convergence of the series follows. In the case 2β < α we instead use (4.10) to
have the following inequality, that again implies the convergence of the series in
question:

2−k(2β−γ−2ε/p)

(∫
2kB

Gp dµ

)1/p

≤ c2−k(2β+n/[p(1+δ1)])‖g‖Lp(1+δ1)(Rn) .

5. Level sets estimates for dual pairs

In this section we prove a level set estimate which is at the core of the proof
of our higher differentiability and integrability results. Let us first define a few
functionals. With θ and η as in (4.16), for every B ≡ B(x, %) ⊂ R2n we define

ΨH,M (B(x, %)) :=

(∫
B(x,%)

U2 dµ

)1/2

+
H[µ(B(x, %))]η

ε1/2∗−1/2

(∫
B(x,%)

F 2∗ dµ

)1/2∗

+
M [µ(B(x, %))]θ

ε1/p−1/2

(∫
B(x,%)

Gp dµ

)1/p

,(5.1)

where H,M ≥ 1 and B(x, %) ⊂ R2n. We also define the functionals

(5.2) Υ0(B(x, %)) :=

(∫
B(x,%)

F 2∗+δf dµ

)1/(2∗+δf )

+

(∫
B(x,%)

Gp+δg dµ

)1/(p+δg)

,
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(5.3) Υ1(B(x, %)) :=

∞∑
k=0

2−k(α−ε)

(∫
B(x,2k%)

Uq dµ

)1/q

and

(5.4) Υ2,M (B(x, %)) :=
M [µ(B(x, %))]θ

ε1/p−1/2

∞∑
k=0

2−k(2β−γ−2ε/p)

(∫
B(x,2k%)

Gp dµ

)1/p

.

We shall denote

Ψ(B(x, %)) := Ψ1,1(B(x, %)).

and shall often use the abbreviations

ΨH,M (B(x, %)) ≡ ΨH,M (x, %) , Υ0(B(x, %)) ≡ Υ0(x, %)

and so forth. Finally, we can define

(5.5) ADD(B(x, %)) ≡ ADD(x, %) := Ψ(x, %) + Υ0(x, %) + Υ1(x, %) + Υ2,1(x, %) .

The aim of this section is to prove the following:

Proposition 5.1. Let u ∈Wα,2(Rn) be a solution to (1.14) under the assumptions
of Theorem 1.1; in particular, (3.1) and (3.3) are in force. Let µ be the measure
defined in (1.19), with ε satisfying (4.6). Consider a ball B(x0, 2%0) ⊂ R2n such
that %0 ≤ 1, and related concentric balls

(5.6) B(x0, %0) ⊂ B(x0, t) ⊂ B(x0, s) ⊂ B(x0, 3%0/2)

for %0 < t < s < 3%0/2. There exists a constant cs ≡ cs(n, α,Λ) independent
of ε and p, and constants cf ≡ cf (n, α,Λ, ε) > 1, cg ≡ cg(n, α,Λ, β, γ, p, ε) ≥ 1,
κf ≡ κf (n, α,Λ, ε) ∈ (0, 1), κg ≡ κg(n, α,Λ, β, p, ε) ∈ (0, 1), such that the inequality

1

λ2

∫
B(x0,t)∩{U>λ}

U2 dµ ≤ cs
ε3(2−q)/qλq

∫
B(x0,s)∩{U>λ}

Uqdµ

+
cfλ

(2∗+δf )2∗η/(1−2∗η)
0

λ(1+ηδf )2∗/(1−2∗η)

∫
B(x0,s)∩{F>κfλ}

F 2∗ dµ

+
cgλ

(p+δg)pθ/(1−pθ)
0

λ(1+θδg)p/(1−pθ)

∫
B(x0,s)∩{G>κgλ}

Gp dµ(5.7)

holds whenever λ ≥ λ0, where

(5.8) λ0 :=
ca
ε

(
%0

s− t

)2n

ADD(x0, 2%0) .

The constant ca introduced in the last display depends on n, α,Λ, β, γ, but is still
independent of ε.

Remark 5.1. Unlike κf , cf , the constants κg, cg exhibit the following behaviour:

(5.9) lim
p→2n/[n+2(γ−2β+α)]

1

κg
= lim
γ→2β

1

κg
=∞ = lim

p→2n/[n+2(γ−2β+α)]
cg = lim

γ→2β
cg .

The proof of Proposition 5.1 is rather delicate and falls into twelve steps. It will
take the rest of this section.
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5.1. Diagonal balls and Vitali’s covering. The proof starts with an exit time
argument for the functional ΨH,M (·), aimed at covering the “diagonal” level set
of U . The constants H,M ≥ 1 shall be fixed in due course of the proof, and the
whole argument is independent of their particular values until the moment these
are fixed. They will be used to give a different weight to the integrals of F 2∗

and Gp: at the exit time, the averages of F 2∗ , Gp will be smaller than the one of
U2 provided H,M are chosen to be large enough, respectively. Let us consider
concentric diagonal balls as in (5.6). Let κ ∈ (0, 1] be a free parameter to be again
chosen in due course of the proof and define
(5.10)

λ̃0 := κ−1 sup
s−t
40n≤%≤

%0
2

sup
x∈B(x0,t)

{
ΨH,M (x, %) + Υ0(x, %) + Υ1(x, %) + Υ2,M (x, %)

}
.

All the foregoing steps of proofs are independent of the specific choice of κ until
this will be in fact made in (5.55) below. For the same κ (to be defined later) and

for λ ≥ λ̃0, define further the “diagonal level set”

(5.11) Dκλ :=

{
(x, x) ∈ B(x0, t) : sup

0<%< s−t
40n

ΨH,M (x, %) > κλ

}
.

Since, by the definition in (5.10), for every (x, x) ∈ B(x0, t) it follows

(5.12) ΨH,M (x, %) ≤ κλ̃0 ≤ κλ whenever % ∈ [(s− t)/40n, %0/2] ,

then we find for all (x, x) ∈ Dκλ the exit radius %(x) ∈ (0, (s− t)/40n) such that

(5.13) ΨH,M (x, %(x)) ≥ κλ , while sup
%(x)<%< s−t

40n

ΨH,M (x, %) ≤ κλ .

Collect enlarged balls into the covering {B(x, 2%(x)) : (x, x) ∈ Dκλ}. Balls of the
type B(x, t, %) are, as explained in Section 2, metric balls with respect to the metric
(2.1). We therefore apply Vitali’s covering theorem to find a countable set JD, and
related diagonal points {(xj , xj)}j∈JD , such that

(5.14)
⋃

(x,x)∈Dκλ

B(x, 2%(x)) ⊂
⋃
j∈JD

B(xj , 10%(xj)) ⊂ B(x0, s)

and

(5.15) {B(xj , 2%(xj))}j∈JD is a family of mutually disjoint balls .

Notice that, implicit in (5.14), is the fact that since %(xj) ≤ (s − t)/40n and
xj ∈ B(x0, t) for every xj ∈ JD, then B(xj , 10%(xj)) ⊂ B(x0, s). By (5.12)-(5.13)
and the doubling property in (4.2), it follows that∑

j∈JD

∫
B(xj ,10%(xj))

U2 dµ ≤
∑
j∈JD

µ(B(xj , 10%(xj)))[ΨH,M (B(xj , 10%(xj)))]
2

≤ 10n+2εκ2λ2
∑
j∈JD

µ(B(xj , %(xj))) .(5.16)

We shall denote in short

(5.17) Bj := B(xj , %(xj)) , σBj := B(xj , σ%(xj)) , σ > 0 .

Finally, since we are assuming that %0 ≤ 1, by (4.1) we observe that

(5.18) µ(B(x0, 2%0)) ≤ c2n+2ε

ε
=: L ≡ L(n, ε) .
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5.2. Dyadic cubes, and two constants. This section has a very technical nature,
and reports a few facts that are true independently of the specify context we are
moving in. In order to cover the off-diagonal level sets of U , we need a more
elaborate argument based on classical Calderón-Zygmund coverings. To this aim,
we start recalling basic properties of dyadic cubes in R2n. They differ from the
usual ones since they are “centred” at x0 and the is size is adapted to the size of
the starting ball B(x0, s). Define

(5.19) k0 :=

[
− log2

(
s− t
n1010n

)]
+ 1 ,

where [·] denotes the integer part of a given number, with the (unnecessary large)
constant 1010n having also a symbolic meaning. Let ∆k, k ≥ k0, be the disjoint
collection - centered at x0 - of half-open cubes of sidelength 2−k whose closures are
touching B(x0, (s+ t)/2), i.e.

∆k := {x0 + 2−kv + [0, 2−k)n :

v ∈ Zn , (x0 + 2−kv + [0, 2−k]n) ∩B(x0, (s+ t)/2) 6= ∅} .
Notice that, with such a definition, by using (5.19) it follows that k ≥ k0 implies

(5.20) B(x0, t) ⊂
⋃

K∈4k

K ⊂ B(x0, s) .

The cubes defined above are, up to a translation aimed at centring everything at
x0, the standard dyadic cubes in Rn. Let us recall a few basic properties. Let ∆
the family of all cubes from the families ∆k, that is ∆ := {K ∈ ∆k : k ≥ k0}.
Defined this way, every cube K in ∆k+1, k ≥ k0, has only one predecessor K̃ ∈ ∆k

such that K ⊂ K̃. Moreover, if K1 ∈ ∆k1 and K2 ∈ ∆k2 with k0 ≤ k1 < k2 and
also K1 ∩ K2 6= ∅, then K2 ⊂ K1. Starting from the previous cubes, we fix the
notation for the corresponding ones in R2n. We set, again for k ≥ k0

Ξk := {K ≡ K1 ×K2 : K1,K2 ∈ ∆k} , Ξ :=
⋃
k≥k0

Ξk ,

while the diagonal cubes build up the family

(5.21) Ξ̃k := {K ≡ K ×K : K ∈ ∆k} .
With the above definition it follows from (5.20) that

(5.22) B(x0, t) ⊂
⋃
K∈Ξk

K ⊂ B(x0, s)

holds whenever k ≥ k0. Notice that, by defining the product cubes as above, we
are actually once again considering dyadic cubes in R2n, with the same properties

of the cubes from 4k. We also notice that if Ξ 3 K = K1 ×K2 then K̃ = K̃1 × K̃2

is its unique predecessor. Finally, let K ∈ Ξ; then there exist K1,K2 ∈ 4k such
that K = K1 ×K2; in this case we let

(5.23) k(K) = k .

Next, again with K = K1 ×K2, we define the cube projections as

P1(K) ≡ P1K := K1 ×K1 and P2(K) ≡ P2K := K2 ×K2 ,

whenever K1,K2 ∈ ∆k. In order to shorten the notation, in the following we shall
also write Ph(K) = PhK for h = 1, 2. It hence follows

(5.24) P1(K1 ×K2) = P2(K2 ×K1) .

For a given cube K ≡ K1 ×K2 we define

(5.25) ˜dist(P1K, P2K) := dist(K1,K2)
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and its symmetric (or mirror reflected) cube with respect to the diagonal Diag, is
defined by

(5.26) Symm(K) = Symm(K1 ×K2) := K2 ×K1 .

For future convenience we collect a few basic facts that are a direct consequence of
the definitions above, and in particular of (5.23)-(5.26).

Proposition 5.2. Let K = K1 ×K2 ∈ Ξ. The following facts are true:

• P1K, P2K ∈ Ξ .

• µ(P1K) = µ(P2K) and k(K) = k(P1K) = k(P2K) .

• If Ξ 3 H ⊂ K, then k(K) ≤ k(H) .

• If K̃ is the predecessor of K, then

(5.27) ˜dist(P1K̃, P2K̃) ≤ ˜dist(P1K, P2K) .

• The following relations hold:

(5.28) dist(P1K, P2K) =
√

2 ˜dist(P1K, P2K)

(5.29) dist(K,Diag) =
dist(P1K, P2K)

2
=

˜dist(P1K, P2K)√
2

(5.30) dist(K, P1K) = dist(K, P2K) = dist(K1,K2) = ˜dist(P1K, P2K)

˜dist(P1Symm(K), P2Symm(K)) = ˜dist(P1K, P2K) .

• Let F : (x, y) ∈ Rn × Rn → R be a locally µ-integrable function which is
symmetric; i.e. F (x, y) = F (y, x) holds for every x, y ∈ Rn, then∫

K
F dµ =

∫
Symm(K)

F dµ

holds whenever K ∈ Ξ. In particular, µ(K) = µ(Symm(K)) and, moreover,
it holds that k(K) = k(Symm(K)).

In the next two lemmas we introduce the ε-independent constants cdd and c̃d,
and these will be very often used in the following.

Lemma 5.1. There exists a constant cdd, depending only on n, and in particular
independent of ε, such that the following inequality holds true for h ∈ {1, 2}:

cdd ≥ sup
K∈Ξ

1

ε

(
˜dist(P1K, P2K)

2−k(K)

)n−2ε
µ(K)

µ(PhK)


+ sup
K∈Ξ , ˜dist(P1K,P2K)≥2−k(K)

ε


(

˜dist(P1K, P2K)

2−k(K)

)2ε−n
µ(PhK)

µ(K)

+ 1 .(5.31)

Proof. Indeed, observe that that using the definition of the measure µ together with
(5.25) (and assuming without loss of generality that ˜dist(P1K, P2K) > 0) we have

µ(PhK) =
c(n)

ε
2−k(K)(n+2ε) and µ(K) ≤ 2−2k(K)n

˜dist(P1K, P2K)n−2ε
.

This allows to bound the first quantity in (5.31) in a universal way

1

ε

(
˜dist(P1K, P2K)

2−k(K)

)n−2ε
µ(K)

µ(PhK)
≤ c(n) .
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On the other hand, again by the definition (5.25), notice that if x ∈ K1 and y ∈ K2

then ˜dist(P1K, P2K) ≤ |x − y| ≤ 2
√
n[2−k(K) + ˜dist(P1K, P2K)] so that, the very

definition of the measure µ yields

µ(K) ≥ 2−2k(K)n

(2
√
n)n−2ε[2−k(K) + ˜dist(P1K, P2K)]n−2ε

.

Then we have

ε

(
˜dist(P1K, P2K)

2−k(K)

)2ε−n
µ(PhK)

µ(K)

≤ c(n)

(
˜dist(P1K, P2K)

2−k(K)

)2ε−n
[2−k(K) + ˜dist(P1K, P2K)]n−2ε

2−2k(K)n+k(K)(n+2ε)
≤ c(n)

where we have used that ˜dist(P1K, P2K) ≥ 2−k(K). We have therefore proved that
(5.31) holds for a constant cdd depending only on n. �

The second constant is presented in the next

Lemma 5.2. There exists a constant c̃d, depending only on n, in particular inde-
pendent of ε, such that the following inequality holds:

(5.32) sup
K̃ is the predecessor of K

˜dist(P1K̃, P2K̃) ≥ 2−k(K)

µ(K̃)

µ(K)
≤ c̃d .

Proof. Let us consider a dyadic cube K = K1 × K2 ⊂ R2n, with K̃ being its

predecessor, and such that ˜dist(P1K̃, P2K̃) ≥ 2−k(K). Triangle inequality gives

|x− y| ≤ 2
√
n2−k(K)+1 + dist(P1K̃, P2K̃) ≤ 8

√
n dist(P1K̃, P2K̃)

whenever (x, y) ∈ K1×K2. By the very definition of µ and (5.25), and finally using
the inequality in the previous line when performing the final estimation, we get

µ(K̃) ≤ ˜dist(P1K̃, P2K̃)−(n−2ε)|K̃1 × K̃2|
= 4n ˜dist(P1K̃, P2K̃)−(n−2ε)|K1 ×K2| ≤ c(n)µ(K) ,

and the proof of the lemma is complete. �

5.3. Off-diagonal cubes and Calderón-Zygmund coverings. We start report-
ing an adaptation of the classical Calderón-Zygmund decomposition lemma. The
argument is completely similar to the classical one and for a proof we refer for
instance to [27], taking into account that the measure µ is doubling and absolutely
continuous with respect to the Lebesgue measure.

Theorem 5.1. Let Q0 being a cube in R2n and let Ũ be a non-negative function
in L1(Q0). Let λ̃ be a real number such that∫

Q0

Ũdµ ≤ λ̃ .

There exists a countable, but possibly finite, family of pairwise disjoint dyadic cubes
{Qi}, with sides parallel to those of Q0, such that

λ̃ <

∫
Qi

Ũdµ and

∫
Q̃i

Ũdµ ≤ λ̃ holds for every Qi

where Q̃i denotes the predecessor of Qi, and

Ũ ≤ λ̃ a.e. in Q0 \
⋃
i

Qi .
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We now start to cover the off-diagonal part of the level set of U . To this end,
let us consider the cubes from the family Ξk0 and, accordingly, the quantity

(5.33) λ1 := max

{
λ̃0, sup
K∈Ξk0

(∫
K
U2 dµ

)1/2
}
.

We recall that the numbers λ̃0 and k0 have been determined in (5.10) and (5.19),
respectively. Let us observe that (5.22) implies that the family {K}K∈Ξk0

forms

a disjoint covering of B(x0, t). With λ ≥ λ1 we now apply Theorem 5.1 with the
choice Q0 ≡ K0, for every single cube K0 ∈ Ξk0 ; we therefore obtain a family of
disjoint dyadic cubes Qi(K0) such that

λ2 <

∫
Qi(K0)

U2dµ and

∫
Q̃i(K0)

U2dµ ≤ λ2 holds for every Qi ,

where, as usual, Q̃i(K0) denotes the predecessor of Qi(K0), and

U ≤ λ holds a.e. in K0 \
⋃
i

Qi(K0) .

Putting all such families of cubes together we get a countable family

Uλ :=
⋃

K0∈Ξk0

{Qi(K0)} ≡ {K}

of disjoint dyadic cubes K which are such that

(5.34) λ2 <

∫
K
U2dµ and

∫
K̃
U2dµ ≤ λ2 holds for every K ∈ Uλ

where K̃ denotes the predecessor of K, and such that

(5.35) U ≤ λ holds a.e. in B(x0, t) \
⋃
K∈Uλ

K .

Remark 5.2. The symmetry of the function U and Proposition 5.2 imply that∫
K
U2 dµ =

∫
Symm(K)

U2 dµ

holds whenever K ∈ Ξ. It then follows that K ∈ Uλ, iff Symm(K) ∈ Uλ.

5.4. First removal of nearly diagonal cubes. In this step we are going to show
that, in order to cover the level sets of U2, it is sufficient to restrict our attention to
those dyadic cubes that are “far” from the diagonal in a suitably quantified sense.
Specifically, the word far refers to the fact that for such cubes it happens that their
distance to the diagonal is larger than their size. These are really the relevant cubes
to analyse, since we shall see that the remaining ones can be covered by the balls
considered in (5.14)-(5.15). We therefore start considering the following family of
nearly diagonal cubes:

Udλ :=
{
K ∈ Uλ : ˜dist(P1K̃, P2K̃) < 2−k(K) , K̃ is the predecessor of K

}
.

With K ∈ Udλ , consider now a point (x̃, x̃) ∈ Diag such that dist((x̃, x̃), K̃) =

dist(Diag, K̃) and a diagonal ball B(x̃, %) ⊂ R2n with radius % larger or equal than

5
√
n ˜dist(P1K̃, P2K̃)

2
+ 5
√
n2−k(K)+1 .

Keeping (5.29) in mind and applying it to K̃, it follows that K̃ ⊂ B(x̃, %). Ultimately,
we can find a diagonal ball B ≡ B(x̃, 24

√
n2−k(K)), such that K ⊂ B. Notice that
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in this case, by using (4.3) from Proposition 4.1 and recalling that (x̃, x̃) ∈ Diag,
we conclude there exists a constant cd, which is only depending on n, such that

(5.36) 1 ≤ µ(B)

µ(K)
≤ cd

ε
≡ cd(n)

ε
.

Therefore, if K ∈ Udλ , then the lower bound in (5.34) yields

λ2 <

∫
K
U2 dµ ≤ µ(B)

µ(K)

∫
B
U2 dµ ≤ cd

ε

∫
B
U2 dµ .

Assuming that the number κ ∈ (0, 1] introduced in (5.10) satisfies

(5.37) κ ∈ (0, κ0] , κ0 :=
ε1/2

√
2cd

,

all in all we have proved that

∀ K ∈ Udλ ∃ BK ≡ BK ×BK s.t.

∫
BK

U2 dµ > κ2λ2 and K ⊂ BK .

This means that, being x̃ the centre of BK, by the exit time condition (5.13) it
follows that (x̃, x̃) ∈ Dκλ and then BK ⊂ B(x̃, %(x̃)). By (5.14) it hence follows
that

(5.38)
⋃
K∈Udλ

K ⊂
⋃
j∈JD

10Bj .

Notice that here, in order to find the ball BK and apply the exit time condition in
(5.13), we have used that the radius of the diagonal ball B ≡ B(x̃, 24

√
n2−k(K)) is

smaller that (s− t)/40n. In turn, this is a consequence of the fact that k(K) ≥ k0

and of the fact that k0 is large enough as prescribed in (5.19).

5.5. Off-diagonal reverse Hölder inequalities. As we saw in the previous sec-
tion, Udλ has already been covered by the diagonal cover. Thus, we shall now only
consider so-called off-diagonal cubes:

(5.39) Undλ :=
{
K ∈ Uλ : ˜dist(P1K̃, P2K̃) ≥ 2−k(K) , K̃ is the predecessor of K

}
.

We notice that (5.27) implies

K ∈ Undλ =⇒ ˜dist(P1K, P2K) ≥ 2−k(K) .

The goal is thus to sort and estimate suitable off-diagonal sums of the measures
of cubes belonging to Undλ . The following lemma is our basic tool. It roughly tells
that for non-diagonal cubes reverse Hölder inequalities hold automatically, and
independently of the fact that the function solves an equation. The prize to pay is
the appearance of certain correction diagonal terms, and this is eventually treated
by some combinatorial lemmas.

Lemma 5.3 (Off-diagonal reverse inequality). Let k ≥ k0 and suppose that K ∈ Ξk.
There exists a constant cnd ≡ cnd(n, α), independent of ε, such that whenever

˜dist(P1K, P2K) ≥ 2−k the inequality(∫
K
U2 dµ

)1/2

≤ cnd

(∫
K
Uq dµ

)1/q

+
cnd
ε1/q

(
2−k

˜dist(P1K, P2K)

)α+ε(∫
P1K

Uq dµ

)1/q

+
cnd
ε1/q

(
2−k

˜dist(P1K, P2K)

)α+ε(∫
P2K

Uq dµ

)1/q
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holds with the number q being defined in (4.13). In particular, the above inequality
holds whenever K ∈ Undλ .

Proof. Let K ≡ K1 × K2 ∈ Ξk and find points x1 ∈ K1 and y1 ∈ K2 such that
dist(K1,K2) = |x1 − y1|. By the triangle inequality we obtain, whenever x, y ∈ K

|x− y| ≤ dist(K1,K2) + |x1 − x|+ |y1 − y|
≤ dist(K1,K2) + 2

√
n2−k

≤ 3
√
n ˜dist(P1K, P2K) = 3

√
n dist(K1,K2).

Therefore we have

(5.40) 1 ≤ |x− y|
dist(K1,K2)

≤ 3
√
n ∀ (x, y) ∈ K ,

with the first inequality in the above display which is a trivial consequence of the
definition of dist(K1,K2). Next, thanks to (5.40), the very definition of µ yields

(5.41) µ(K) ≈ 4−nk

dist(K1,K2)n−2ε
,

with the constant involved being independent of ε, but just depending on n. By
using (5.40) and (5.41) we then have(∫

K
U2 dµ

)1/2

=

(
1

µ(K)

∫
K1

∫
K2

|u(x)− u(y)|2

|x− y|n+2α
dx dy

)1/2

≤ c
(

dist(K1,K2)n−2ε−(n+2α)

4−nk(K)

∫
K1

∫
K2

|u(x)− u(y)|2 dx dy
)1/2

≤ cdist(K1,K2)−(α+ε)

(∫
K1

∫
K2

|u(x)− u(y)|2 dx dy
)1/2

,(5.42)

where c depends only on n. We further estimate the integral on the right using
Minkowski’s inequality:(∫

K1

∫
K2

|u(x)− u(y)|2 dx dy
)1/2

≤
(∫

K1

|u(x)− (u)K1
|2 dx

)1/2

+

(∫
K2

|u(x)− (u)K2
|2 dx

)1/2

+|(u)K1
− (u)K2

| .

By using the fractional Poincaré inequality of Lemma 4.2 applied on cubes, and
recalling that PhK = Kh ×Kh for h ∈ {1, 2}, we deduce that(∫

Kh

|u(x)− (u)Kh |2 dx
)1/2

≤ c2−k(α+ε)

ε1/q

(∫
PhK

Uqdµ

)1/q

, h ∈ {1, 2}

with the implied constant c depending only on n and α. Finally, by Hölder’s
inequality, and using (5.40) and (5.41) repeatedly, we get

|(u)K1
− (u)K2

| ≤
∫
K1

∫
K2

|u(x)− u(y)| dx dy

≤
(∫

K1

∫
K2

|u(x)− u(y)|q dx dy
)1/q
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≤ c

(
1

dist(K1,K2)n−2εµ(K)

∫
K1

∫
K2

|u(x)− u(y)|q dx dy
)1/q

≤ c

(∫
K
|u(x)− u(y)|q dµ

)1/q

≤ cdist(K1,K2)α+ε

(∫
K
Uq dµ

)1/q

with c ≡ c(n). Combining the content of the last four displays and recalling the
definition in (5.25) finishes the proof. �

We remark that the previous lemma works for any function u ∈ Wα,2 and does
not require that u solves any equation; moreover, the lemma works for every positive
integer k. Applying it in the present situation we instead get the following:

Corollary 5.1. Let k ≥ k0 be an integer, and suppose that K ∈ Ξk is such that
˜dist(P1K, P2K) ≥ 2−k holds. Assume that(∫

K
U2 dµ

)1/2

≥ λ

and that the number κ introduced in (5.10) satisfies

(5.43) κ ∈ (0, κ1] , κ1 :=
ε1/q

21/q3cnd
,

where cnd ≡ cnd(n, α) has been defined in Lemma 5.3. Then it holds that

µ(K) ≤
3qcqnd
λq

∫
K∩{U>κλ}

Uq dµ

+
3qcqnd
ελq

µ(K)

µ(P1K)

(
2−k

˜dist(P1K, P2K)

)q(α+ε) ∫
P1K∩{U>κλ}

Uq dµ

+
3qcqnd
ελq

µ(K)

µ(P2K)

(
2−k

˜dist(P1K, P2K)

)q(α+ε) ∫
P2K∩{U>κλ}

Uq dµ .(5.44)

In particular, the inequality (5.44) holds whenever K ∈ Undλ .

Proof. Appealing to Lemma 5.3, and using the elementary inequality (a+ b+ c)q ≤
3q−1(aq + bq + cq) valid for all nonnegative numbers a, b, c ∈ R, we get

λq

3q−1cqnd
≤
∫
K
Uq dµ+

1

ε

(
2−k

˜dist(P1K, P2K)

)q(α+ε)(∫
P1K

Uq dµ+

∫
P2K

Uq dµ

)
.

To estimate the integrals appearing on the right hand side we note that by (5.43)
we have ∫

E

Uq dµ ≤ κq1λq +
1

µ(E)

∫
E∩{U>κλ}

Uq dµ

with E ∈ {K, P1K, P2K} so that, recalling that ˜dist(P1K, P2K) ≥ 2−k, we gain

λq

3q−1cqnd
≤ 3κq1λ

q

ε
+

1

µ(K)

∫
K∩{U>κλ}

Uq dµ

+
1

εµ(P1K)

(
2−k

˜dist(P1K, P2K)

)q(α+ε) ∫
P1K∩{U>κλ}

Uq dµ

+
1

εµ(P2K)

(
2−k

˜dist(P1K, P2K)

)q(α+ε) ∫
P2K∩{U>κλ}

Uq dµ .

Now (5.44) follows inserting (5.43) in the last estimate and reabsorbing terms. �
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5.6. Families of off-diagonal cubes. With Undλ that has been defined in (5.39),
consider now the families

(5.45) Mh
λ :=

{
K ∈ Undλ :

∫
PhK

Uq dµ ≤ (10n)n+2κqλq
}

and

(5.46) N h
λ :=

{
K ∈ Undλ :

∫
PhK

Uq dµ > (10n)n+2κqλq
}

for h ∈ {1, 2}, where the number κ has been introduced in (5.10) and q is defined
in (4.13). Furthermore define

(5.47) Mλ :=M1
λ ∩M2

λ and Nλ := N 1
λ ∪N 2

λ

so that the following decomposition in disjoint families holds:

(5.48) Undλ =Mλ ∪Nλ .

We then have the following:

Lemma 5.4 (Soft off-diagonal summation). The inequality

(5.49)
∑
K∈Mλ

µ(K) ≤
6qcqnd
λq

∫
B(x0,s)∩{U>κλ}

Uq dµ

holds whenever the number κ in (5.10) satisfies

(5.50) κ ∈ (0, κ2] , κ2 :=
ε1/q

81/q3cnd(10n)(n+2)/q
.

The constant cnd ≡ cnd(n, α) has been defined in Lemma 5.3 and appears in Corol-
lary 5.1; it is independent of ε.

Proof. It is sufficient to prove that if K ∈Mλ, then

(5.51) µ(K) ≤
6qcqnd
λq

∫
K∩{U>κλ}

Uq dµ .

After this (5.49) follows since the initial family Uλ is disjoint and (5.22) holds. For
the proof of (5.51), notice that if K ∈Mh

λ, then we have, for h ∈ {1, 2}, that

3qcqnd
ελq

µ(K)

µ(PhK)

(
2−k(K)

˜dist(P1K, P2K)

)q(α+ε) ∫
PhK∩{U>κλ}

Uq dµ

≤ µ(K)
3qcqnd
ελq

∫
PhK

Uq dµ ≤ µ(K)
3qcqnd
ελq

(10n)n+2κqλq ≤ µ(K)

8
.(5.52)

Using this last estimate for h ∈ {1, 2} in combination with (5.44), and reabsorbing
terms, gives (5.51); the proof is therefore complete. �

It remains to study the family Nλ defined in (5.47). To this aim, we introduce
the family of diagonal cubes defined by

PhNλ := {PhK : K ∈ N h
λ } , h ∈ {1, 2} .

Keeping (5.24) and Remark 5.2 in mind, we have that

(5.53) K ∈ N 1
λ ⇐⇒ Symm(K) ∈ N 2

λ

whenever K ∈ Ξ. Now, let us make a remark; consider T ∈ P1Nλ, then T = P1(K)
for some K ∈ N 1

λ . Therefore T = P2(Symm(K)) by (5.24) and by (5.53) we have
Symm(K) ∈ N 2

λ . We conclude that T ∈ P2Nλ and eventually that P1Nλ ⊂ P2Nλ.
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In a similar way it follows P2Nλ ⊂ P1Nλ. We therefore conclude that P1Nλ =
P2Nλ = P1Nλ ∪P2Nλ. Let PNλ be a disjoint subfamily of P1Nλ ∪P2Nλ such that

(5.54)
⋃

H∈PNλ

H =
⋃

K∈P1Nλ∪P2Nλ

K .

Note that, since all the cubes of the family PNλ are themselves dyadic cubes, such
an extracted disjoint covering always exists. We remark that a straightforward
consequence of the definitions is that all cubes from PNλ obviously belong to P1Nλ∪
P2Nλ and are therefore diagonal cubes.

5.7. Determining κ. We here determine the parameter κ in (5.10). By choosing

(5.55) κ := min{κ0, κ1, κ2} ≡ min

{
ε1/2

√
2cd

,
ε1/q

21/q3cnd
,

ε1/q

81/q3cnd(10n)(n+2)/q

}
,

conditions (5.37), (5.43) and (5.50) are all satisfied. Therefore the content and the
results of Sections 5.4-5.6 are at our disposal. Recalling that cd in (5.36) (coming
from Proposition 4.1) depends only on n, and that cnd from Lemma 5.3 depends
only on n, α, we conclude there exists a new constant cκ, such that

(5.56) κ ≥ ε1/q/cκ , cκ ≡ cκ(n, α) .

5.8. Further removal of nearly-diagonal cubes. We recall that our final goal
is to estimate the measure of the level sets of U . Since the nearly diagonal part has
already been covered, we proceed in excluding from the subsequent analysis those
cubes covered by the balls in (5.14)-(5.15). Therefore we introduce

(5.57) Nλ,d :=

K ∈ Nλ : K ⊂
⋃
j∈JD

10Bj


and, accordingly

(5.58) Nλ,nd := Nλ \ Nλ,d and N h
λ,nd := Nλ,nd ∩N h

λ , for h ∈ {1, 2} .

We observe that the main difficulty in handling the cubes from the family PNλ
stems from the fact that they do not belong to the family Uλ, i.e. they do not come
from an exit time argument and therefore no control is available on the values
taken by U2 on such cubes. This will be bypassed via a very delicate combinatorial
argument. The next lemma is instrumental to that.

Lemma 5.5. Let K ∈ Nλ,nd be such that PhK ⊂ H for some H ∈ PNλ and some

h ∈ {1, 2}. Then ˜dist(P1K, P2K) ≥ 2−k(H) holds.

Proof. First, let us consider a cube H ∈ PNλ; take the diagonal ball B(H) ≡
B(xH, 2

−(k(H)+1)), (xH, xH) being the center of H. It follows that

(5.59) B(H) ⊂ H ⊂
√
nB(H) .

Therefore we have by Hölder’s inequality and the definition of PNλ that

(10n)(n+2)/qκλ <

(∫
H
Uq dµ

)1/q

≤

(
µ(10nB(H))

µ(B(H))

∫
10nB(H)

Uq dµ

)1/q

≤ (10n)(n+2)/q

(∫
10nB(H)

U2 dµ

)1/2

.(5.60)
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By the definition of Dκλ in (5.11) it follows that (xH, xH) ∈ Dκλ and then the exit
time condition (5.13) gives B(H) ⊂ B(xH, %(xH)). We are using that the radius of
the ball 10nB(H) is smaller that (s− t)/40n. In turn, this is a consequence of the
fact that k(H) + 1 ≥ k0 and of (5.19). Then (5.14) implies

(5.61) 10nB(H) ⊂
⋃
j∈JD

10Bj .

Now, in order to prove the lemma, assume by contradiction that ˜dist(P1K, P2K) <
2−k(H) and let B(H) be the ball determined in (5.59), and for which (5.61) holds.
We are going to show that

(5.62) K ⊂ 10nB(H)

holds, and this then contradicts the assumption K ∈ Nλ,nd by (5.61). In order to
show (5.62) we observe that Proposition 5.2 and the fact that PhK ⊂ H give

dist(K,H) ≤ dist(K, PhK) = ˜dist(P1K, P2K) ≤ 2−k(H) .

Again by Proposition 5.2 we have k(PhK) = k(K) and k(K) ≥ k(H). Therefore,
since H ⊂

√
nB(H) and the radius of B(H) is 2−(k(H)+1), then (5.62) must hold.

The proof of the lemma is complete. �

5.9. Summation in Nλ,nd. The aim of this section is to prove the following:

Lemma 5.6 (Hard off-diagonal summation). There exists a constant c, depending
only on n, α, such that the estimate

(5.63)
∑

K∈Nλ,nd

µ(K) ≤ c

λq

∫
B(x0,s)∩{U>κλ}

Uq dµ

holds, where κ has been determined in (5.55).

Proof. Step 1: Classifying cubes. Here we classify the cubes from Nλ,nd according
to their projections, thereby partitioning Nλ,nd in suitable disjoint subfamilies. For
every H ∈ PNλ set

N h
λ,nd(H) := {K ∈ Nλ,nd : PhK ⊂ H} , h ∈ {1, 2} .

Since PNλ is a disjoint covering of P1Nλ ∪ P2Nλ = P1Nλ = P2Nλ, we have the
following decomposition in mutually disjoint families:

(5.64) N h
λ,nd =

⋃
H∈PNλ

N h
λ,nd(H) .

This means that for H1,H2 ∈ PNλ it follows that N h
λ,nd(H1) ∩ N h

λ,nd(H2) 6= ∅
implies H1 = H2. In fact, assume that a cube K ∈ N h

λ,nd(H1) ∩ N h
λ,nd(H2) and

H1 6= H2, then we would have that PhK ⊂ H1 ∩ H2 against the fact that H1 and
H2 have a non-empty intersection, being elements of the disjoint covering PNλ.
Next, let us recall that for every K ∈ N h

λ,nd(H) it is k(K) = k(PhK) ≥ k(H), and
this leads us to define the following classes:

[N h
λ,nd(H)]i :=

{
K ∈ N h

λ,nd(H) : k(K) = i+ k(H)
}

for h ∈ {1, 2} and for every integer i ≥ 0. Therefore, the decomposition in mutually
disjoint families

N h
λ,nd(H) =

⋃
i≥0

[N h
λ,nd(H)]i

holds, in the sense that [N h
λ,nd(H)]i ∩ [N h

λ,nd(H)]j 6= ∅ implies that i = j. Next,

take H ∈ PNλ; by Lemma 5.5 we have that if K ∈ N h
λ,nd(H), that is if PhK ⊂ H,



NONLOCAL SELF-IMPROVING PROPERTIES 35

then it follows that ˜dist(P1K, P2K) ≥ 2−k(H) and this finally leads us to classify
elements of [N h

λ,nd(H)]i in the following way:

[N h
λ,nd(H)]i,j :=

{
K ∈ [N h

λ,nd(H)]i : 2j−k(H) ≤ ˜dist(P1K, P2K) < 2j+1−k(H)
}
,

for h ∈ {1, 2} and i, j ≥ 0 being integers. Again we have the decomposition

(5.65) N h
λ,nd(H) =

⋃
i,j≥0

[N h
λ,nd(H)]i,j

and these are disjoint classes in the sense that, if [N h
λ,nd(H)]i1,j1 ∩ [N h

λ,nd(H)]i2,j2 6=
∅, then it is (i1, j1) = (i2, j2). All in all, keeping (5.64) and (5.65) in mind, we have
that the following decomposition in mutually disjoint classes holds:

(5.66) N h
λ,nd =

⋃
H∈PNλ

⋃
i,j≥0

[N h
λ,nd(H)]i,j .

Step 2: Sums and further partitions. Let us fix H ∈ PNλ; our aim here is to
prove that the following inequality holds for h ∈ {1, 2}:

1

ε

∑
K∈Nhλ,nd(H)

µ(K)

µ(PhK)

(
2−k(K)

˜dist(P1K, P2K)

)q(α+ε) ∫
PhK∩{U>κλ}

Uq dµ

≤ c(n)

α2

∫
H∩{U>κλ}

Uq dµ .(5.67)

We start by recalling that, by the very definitions in (5.46) and (5.47), and again

(5.27), we have that ˜dist(P1K, P2K) ≥ 2−k(K) as soon as K ∈ Nλ,nd; (5.31) yields

1

ε

µ(K)

µ(PhK)
≤ cdd

(
2−k(K)

˜dist(P1K, P2K)

)n−2ε

,

for h ∈ {1, 2}, and moreover, if K ∈ [N h
λ,nd(H)]i,j , we also have that

2−k(K)

˜dist(P1K, P2K)
=

1

2i
2−k(H)

˜dist(P1K, P2K)
≤ 1

2i+j
.

Using the inequalities in the last two displays we can estimate as follows:

1

ε

∑
K∈Nhλ,nd(H)

µ(K)

µ(PhK)

(
2−k(K)

˜dist(P1K, P2K)

)q(α+ε) ∫
PhK∩{U>κλ}

Uq dµ

≤ cdd
∑

K∈Nhλ,nd(H)

(
2−k(K)

˜dist(P1K, P2K)

)n+q(α+ε)−2ε ∫
PhK∩{U>κλ}

Uq dµ

= cdd

∞∑
i,j=0

∑
K∈[Nhλ,nd(H)]i,j

(
2−k(K)

˜dist(P1K, P2K)

)n+q(α+ε)−2ε ∫
PhK∩{U>κλ}

Uq dµ

≤ c(n)

∞∑
i,j=0

(
1

2i+j

)n+q(α+ε)−2ε ∑
K∈[Nhλ,nd(H)]i,j

∫
PhK∩{U>κλ}

Uq dµ .(5.68)

In order to evaluate the last sum we have to further decompose [N h
λ,nd(H)]i,j . For

each integer i ≥ 0, H contains precisely 4ni = 22ni disjoint cubes from Ξi+k(H)

and exactly 2ni disjoint cubes from Ξ̃i+k(H); see the definition in (5.21) and in

the preceding display. As a consequence, it contains at most 2ni disjoint (diagonal)
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cubes from the class Ξ̃i+k(H)∩(P1Nλ∪P2Nλ). We anyway consider all the diagonal

cubes Ξ̃i+k(H) from H and relabel them as follows:

(5.69) {H̃ ∈ Ξ̃i+k(H) : H̃ ⊂ H} = {Hmi : 1 ≤ m ≤ 2ni} ,

so that, in particular

(5.70)

2ni∑
m=1

∫
Hmi ∩{U>κλ}

Uq dµ ≤
∫
H∩{U>κλ}

Uq dµ .

Now, let us concentrate one moment on the elements of [N 1
λ,nd(H)]i,j , a similar

argument then apply to [N 2
λ,nd(H)]i,j . For any K ∈ [N 1

λ,nd(H)]i,j , there is the

unique cube from the diagonal class (5.21), that we denote by Hmi (K), such that
P1K = Hmi (K). Now note that for h ∈ {1, 2} one can split [N h

λ,nd(H)]i,j as

[N h
λ,nd(H)]i,j,m :=

{
K ∈ [N h

λ,nd(H)]i,j : PhK = Hmi
}
, m ∈ {1, . . . , 2ni} .

Since N 1
λ,nd is a family of dyadic cubes, we must have that if we have that K1,K2 ∈

[N 1
λ,nd(H)]i,j,m and K1 6= K2, then P2K1 ∩ P2K2 = ∅, i.e., the second components

are disjoint (otherwise the two cubes would coincide). A similar argument holds
when looking at N 2

λ,nd. It then follows that

(5.71) #[N h
λ,nd(H)]i,j,m ≤ c(n)2n(i+j) , h ∈ {1, 2} ,

for every choice of i, j ≥ 0 and m ∈ {1, . . . , 2ni}. We use now use (5.70)-(5.71) to
estimate as follows:∑
K∈[Nhλ,nd(H)]i,j

∫
PhK∩{U>κλ}

Uq dµ =

2ni∑
m=1

∑
K∈[Nhλ,nd(H)]i,j,m

∫
Hmi ∩{U>κλ}

Uq dµ

≤ c(n)2n(i+j)
2ni∑
m=1

∫
Hmi ∩{U>κλ}

Uq dµ

≤ c(n)2n(i+j)

∫
H∩{U>κλ}

Uq dµ .

Using also (2.2) it then follows:

∞∑
i,j=0

(
1

2i+j

)n+q(α+ε)−2ε ∑
K∈[Nhλ,nd(H)]i,j

∫
PhK∩{U>κλ}

Uq dµ

≤ c(n)

∞∑
i,j=0

(
1

2i+j

)q(α+ε)−2ε ∫
H∩{U>κλ}

Uq dµ

≤ c(n)

[q(α+ ε)− 2ε]2

∫
H∩{U>κλ}

Uq dµ

≤ c(n)

α2

∫
H∩{U>κλ}

Uq dµ .

Notice that we have used that, since q > 1 and ε < α/2, it is q(α+ ε)− 2ε > α/2.
Combining the inequality in the last display with (5.68) yields (5.67).

Step 3: Summation. Let now K ∈ N 1
λ,nd. There are then two cases: either

K ∈M2
λ or K ∈ N 2

λ (the relevant definitions are in (5.45), (5.46) and (5.58)). Now,
if K ∈M2

λ, then using (5.44) and (5.52), and reabsorbing terms, we obtain that

µ(K) ≤
6qcqnd
λq

∫
K∩{U>κλ}

Uq dµ
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+
6qcqnd
ελq

µ(K)

µ(P1K)

(
2−k

˜dist(P1K, P2K)

)q(α+ε) ∫
P1K∩{U>κλ}

Uq dµ .

If, on the other hand, K ∈ N 2
λ , then using (5.44) we get

µ(K) ≤
3qcqnd
λq

∫
K∩{U>κλ}

Uq dµ

+
3qcqnd
ελq

µ(K)

µ(P1K)

(
2−k

˜dist(P1K, P2K)

)q(α+ε) ∫
P1K∩{U>κλ}

Uq dµ

+
3qcqnd
ελq

µ(K)

µ(P2K)

(
2−k

˜dist(P1K, P2K)

)q(α+ε) ∫
P2K∩{U>κλ}

Uq dµ .

A similar reasoning holds if K ∈ N 2
λ,nd. Summing up over the cubes K ∈ Nλ,nd =

N 1
λ,nd ∪N 2

λ,nd then yields∑
K∈Nλ,nd

µ(K) ≤
6qcqnd
λq

∑
K∈Nλ,nd

∫
K∩{U>κλ}

Uq dµ

+
6qcqnd
ελq

∑
K∈N 1

λ,nd

µ(K)

µ(P1K)

(
2−k(K)

˜dist(P1K, P2K)

)q(α+ε) ∫
P1K∩{U>κλ}

Uq dµ

+
6qcqnd
ελq

∑
K∈N 2

λ,nd

µ(K)

µ(P2K)

(
2−k(K)

˜dist(P1K, P2K)

)q(α+ε) ∫
P2K∩{U>κλ}

Uq dµ .(5.72)

Observe that a key point in the previous inequality, due to the argument at the
beginning of Step 3, is that terms involving integrals over PhK appear on the right
hand side if and only if K ∈ N h

λ,nd, for h ∈ {1, 2}. By the symmetry of U and µ,

by (5.53) and subsequent remarks, and yet using Proposition 5.2, we have that if
K ∈ N 2

λ,nd, then Symm(K) ∈ N 1
λ,nd and vice-versa; moreover, again by Proposition

5.2 the following identity holds:∫
P2K∩{U>κλ}

Uq dµ =

∫
P1Symm(K)∩{U>κλ}

Uq dµ .

We therefore deduce that the last two terms in (5.72) coincide. Therefore, also
recalling (5.64), inequality (5.72) can be rewritten for instance as∑
K∈Nλ,nd

µ(K) ≤ c

λq

∑
K∈Nλ,nd

∫
K∩{U>κλ}

Uq dµ

+
c

ελq

∑
H∈PNλ

∑
K∈N 1

λ,nd(H)

µ(K)

µ(P1K)

(
2−k(K)

˜dist(P1K, P2K)

)q(α+ε) ∫
P1K∩{U>κλ}

Uq dµ

for a constant c depending on n, α. To estimate the last term we make use of (5.67),
and this yields∑
K∈Nλ,nd

µ(K) ≤ c

λq

∑
K∈Nλ,nd

∫
K∩{U>κλ}

Uq dµ+
c

λq

∑
H∈PNλ

∫
H∩{U>κλ}

Uq dµ .

At this stage (5.63) follows observing that∑
K∈Nλ,nd

∫
K∩{U>κλ}

Uq dµ+
∑
H∈PNλ

∫
H∩{U>κλ}

Uq dµ ≤ 2

∫
B(x0,s)∩{U>κλ}

Uq dµ .
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This is turn true since the families PNλ and Nλ,nd are made of mutually disjoint
cubes and all their members are contained in B(x0, s) (since these families are
contained in Ξ and (5.22) holds). The proof of Lemma 5.6 is complete. �

5.10. Conclusion of the off-diagonal analysis. We are now ready to prove the
following lemma, which summarises the decomposition results in the off-diagonal
case:

Lemma 5.7 (Off-diagonal level set inequality). The inequality∫
B(x0,t)∩{U>λ}

U2 dµ ≤ 10n+2κ2λ2
∑
j∈JD

µ(Bj)

+cλ2−q
∫
B(x0,s)∩{U>κλ}

Uq dµ(5.73)

holds for a constant c depending only on n, α, while the number κ has been defined
in (5.55) and exhibits the dependence displayed in (5.56).

Proof. We have that the decompositions in disjoint classes Uλ = Udλ ∪ Undλ and
Undλ =Mλ ∪ Nλ,d ∪ Nλ,nd and we recall that all the cubes from Undλ are mutually
disjoint. Moreover, by (5.38) and (5.57) it follows ⋃

K∈Udλ

K

 ∪
 ⋃
K∈Nλ,d

K

 ⊂ ⋃
j∈JD

10Bj .

Therefore ⋃
K∈Uλ

K ⊂

 ⋃
j∈JD

10Bj

 ∪( ⋃
K∈Mλ

K

)
∪

 ⋃
K∈Nλ,nd

K


follows. Keeping this in mind and recalling (5.35), we start estimating∫
B(x0,t)∩{U>λ}

U2 dµ ≤
∑
j

∫
10Bj∩{U>λ}

U2 dµ+
∑

K∈Mλ∪Nλ,nd

∫
K∩{U>λ}

U2 dµ .

By (5.34) it follows that if K ∈Mλ ∪Nλ,nd ⊂ Undλ , then∫
K
U2 dµ ≤ µ(K̃)

µ(K)

∫
K̃
U2 dµ ≤ c̃dλ2 .

Note that we have used (5.32) since K ∈ Undλ implies by the definition in (5.39)

that ˜dist(P1K̃, P2K̃) ≥ 2−k(K). Therefore we conclude with

K ∈Mλ ∪Nλ,nd =⇒
∫
K∩{U>λ}

U2 dµ ≤ c̃dλ2µ(K) .

Using this last inequality together with (5.16) yields∫
B(x0,t)∩{U>λ}

U2 dµ ≤ 10n+2εκ2λ2
∑
j∈JD

µ(Bj) + c̃dλ
2

∑
K∈Mλ∪Nλ,nd

µ(K) ,

and (5.73) follows by just using Lemmas 5.4 and 5.6. �

Remark 5.3. An interesting point of Lemma 5.7 is that it does not make use of
the fact that u is a solution. All the estimates just rely on the fact that u belongs
to the Sobolev space Wα,2. This is ultimately linked to the fact that the analysis
made in Sections 2-10 is made in a zone where the kernel of the operator, that is
|x− y|−(n+2α), is not very singular. The ultimate outcome is that the whole issue
reduces now to estimate

∑
j µ(Bj). Therefore, it remains to perform the analysis

close to the diagonal and this will be done in the next section.
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5.11. Diagonal estimates. Whenever Bj is a ball from the covering determined in
(5.14)-(5.15), from (5.13) it follows that ΨH,M (Bj) ≥ κλ. By the very definition of
ΨH,M (·) in (5.1) it then follows that at least one of the following three inequalities
must hold:

(5.74)

(∫
Bj
U2dµ

)1/2

≥ κλ

3
,

(5.75)
H[µ(Bj)]η

ε1/2∗−1/2

(∫
Bj
F 2∗ dµ

)1/2∗

≥ κλ

3
,

(5.76)
M [µ(Bj)]θ

ε1/p−1/2

(∫
Bj
Gp dµ

)1/p

≥ κλ

3
.

Here κ has been defined in (5.55). We now examine the occurrence of each of three
cases separately.

Occurrence of (5.74) (and estimate of the tail at the exit time). In the
case (5.74) holds then using (4.15) we have

κλ ≤ c

σε1/q−1/2

(∫
2Bj

Uqdµ

)1/q

+
σ

ε1/q−1/2

∞∑
k=1

2−k(α−ε)

(∫
2kBj

Uq dµ

)1/q

+
c1[µ(Bj)]η

ε1/2∗−1/2

(∫
2Bj

F 2∗ dµ

)1/2∗

+
c2[µ(Bj)]θ

ε1/p−1/2

∞∑
k=1

2−k(2β−γ−2ε/p)

(∫
2kBj

Gp dµ

)1/p

(5.77)

for all σ ∈ (0, 1]. The constants c1, c depend only on n, α,Λ, while c2 := 3cb and
therefore it depends on n, α,Λ, β, γ, p and exhibits the behaviour described in (3.5).
With Bj ≡ B(xj , %(xj)) we determine the integer m ≥ 0 such that

(5.78) 2−m%0/2 ≤ %(xj) < 2−m+1%0/2 .

Notice that since %(xj) < (s− t)/40n, we have m ≥ 3 and moreover (s− t)/40n ≤
%0/40n ≤ 2m−1%(xj), so that the definition (5.10) implies

(5.79) Υ0(2m−1Bj) + Υ1(2m−1Bj) + Υ2,M (2m−1Bj) ≤ κλ̃0 .

On the other hand the terms indexed before m can be estimated using Hölder’s
inequality and the exit time condition in (5.13) as follows:(∫

2kBj
Uq dµ

)1/q

≤ ΨH,M (2kBj) ≤ κλ if 1 ≤ k ≤ m− 1 .

By using the inequalities in the last two displays we then have

∞∑
k=1

2−k(α−ε)

(∫
2kBj

Uq dµ

)1/q

=

m−2∑
k=1

2−k(α−ε)

(∫
2kBj

Uq dµ

)1/q
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+2−(m−1)(α−ε)
∞∑
k=0

2−k(α−ε)

(∫
2k+m−1Bj

Uq dµ

)1/q

≤ κλ
m−2∑
k=1

2−k(α−ε) + 2−(m−1)(α−ε)Υ1(2m−1Bj)

≤ κλ
m−2∑
k=1

2−k(α−ε) + 2−(m−1)(α−ε)κλ̃0

≤ κλ
∞∑
k=1

2−k(α−ε) ≤ 4κλ

α− ε
≤ 8κλ

α
,

where we have used (2.2) and that ε < α/2. In a completely similar way, again
using (5.79), we have

c2[µ(Bj)]θ

ε1/p−1/2

∞∑
k=1

2−k(2β−γ−2ε/p)

(∫
2kBj

Gp dµ

)1/p

≤ 4c2κλ

(2β − γ − 2ε/p)M

≤ 8c2κλ

(2β − γ)M
,

where we also used the upper bound on ε in (4.6). By (5.78) and the fact that
m ≥ 3 we gain that 2%(xj) ≤ %0/2 so that (5.13) and Hölder’s inequality yield

c1[µ(Bj)]η

ε1/2∗−1/2

(∫
2Bj

F 2∗ dµ

)1/2∗

≤ c1ΨH,M (2Bj)
H

≤ c1κλ

H
.

By merging the inequalities in the last three displays with (5.77) we obtain

(5.80) κλ ≤ c

σε1/q−1/2

(∫
2Bj

Uqdµ

)1/q

+
σ

ε1/q−1/2

8κλ

α
+
c1κλ

H
+

8c2κλ

(2β − γ)M
.

We recall that up to now the parameters H,M ≥ 1 in the definition in (5.1) have
not yet been chosen as well as σ ∈ (0, 1). Taking hence

(5.81) σ :=
ε1/q−1/2α

56
, H := 6c1 , M :=

56c2
2β − γ

and reabsorbing terms in (5.80) we conclude with

κλ ≤ c

ε2/q−1

(∫
2Bj

Uqdµ

)1/q

=⇒ µ(Bj) ≤
c

ε2−q(κλ)q

∫
2Bj

Uqdµ ,

where c depends on n, α,Λ. Now, select a number κ3 > 0, also using (4.2) we
estimate

c

ε2−q(κλ)q

∫
2Bj

Uqdµ

≤ c

ε2−q(κλ)q

∫
2Bj∩{U≤κ3κλ}

Uqdµ+
c

ε2−q(κλ)q

∫
2Bj∩{U>κ3κλ}

Uqdµ

≤ c̃µ(Bj)κq3
ε2−q +

c̃

ε2−q(κλ)q

∫
2Bj∩{U>κ3κλ}

Uqdµ ,(5.82)

again for c̃ depending only n, α,Λ. By choosing

(5.83) κ3 ≤
(
ε2−q

2c̃

)1/q

,
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we arrive at

(5.84) µ(Bj) ≤
c3

(κλ)q

∫
2Bj∩{U>κ3κλ}

Uqdµ where c3 :=
2c̃

ε2−q

and c̃ is independent of ε but only depends on n, α,Λ.
Occurrence of (5.75)-(5.76). In case of (5.75), we have(

κλ

3

)2∗

≤ H2∗ [µ(Bj)]2∗η−1

ε1−2∗/2

∫
Bj
F 2∗ dµ

which readily implies

µ(Bj) ≤
(

3H

ε1/2∗−1/2κλ

)2∗/(1−2∗η)
(∫
Bj
F 2∗ dµ

)1/(1−2∗η)

.

Observe that by the definitions given in (4.16) we have that 2∗η < 1/2. With
κ4 ∈ (0, 1) being a positive number to be chosen in a few lines, we further split the
support of the integral of the right hand side integral as already done in (5.82):(∫

Bj
F 2∗ dµ

)1/(1−2∗η)

≤

[∫
Bj∩{F>κ4κλ}

F 2∗ dµ+ (κ4κλ)2∗µ(Bj)

]1/(1−2∗η)

≤ 22∗η/(1−2∗η)

(∫
Bj∩{F>κ4κλ}

F 2∗ dµ

)1/(1−2∗η)

+[2(L+ 1)]2∗/(1−2∗η)(κ4κλ)2∗/(1−2∗η)µ(Bj) .
Observe that in view of Bj ⊂ B(x0, 2%0) and (5.18), we have estimated

(5.85) [µ(Bj)]1/(1−2∗η) ≤ [µ(B(x0, 2%0))]2∗η/(1−2∗η)µ(Bj) ≤ L2∗η/(1−2∗η)µ(Bj) .
We now take κ4 ∈ (0, 1) in order to satisfy

(5.86)

[
6H(L+ 1)κ4

ε1/2∗−1/2

]2∗/(1−2∗η)

≤ 1

2
=⇒ κ4 ≤

(
1

2

)(1−2∗η)/2∗ ε1/2∗−1/2

6H(L+ 1)
.

Using this choice and combining the content of the last four displays (and recalling
that 2∗η/(1− 2∗η) ≤ 1) then yields that

µ(Bj) ≤ 4

(
3H

ε1/2∗−1/2κλ

)2∗/(1−2∗η)
(∫
Bj∩{F>κ4κλ}

F 2∗ dµ

)1/(1−2∗η)

.

Now, by means of (5.78)-(5.79), we have∫
Bj∩{F>κ4κλ}

F 2∗ dµ ≤ (κ4κλ)2∗

∫
Bj∩{F>κ4κλ}

(
F

κ4κλ

)2∗+δf

dµ

≤ µ(2m−1Bj)
(κ4κλ)δf

∫
2m−1Bj

F 2∗+δf dµ

≤ µ(B(x0, 2%0))

(κ4κλ)δf
[Υ0(2m−1Bj)]2∗+δf ≤

Lλ̃
2∗+δf
0

(κ4κλ)δf
(5.87)

and hence

(5.88) µ(Bj) ≤
c4λ̃

(2∗+δf )2∗η/(1−2∗η)
0

(κ4κλ)(1+ηδf )2∗/(1−2∗η)

∫
Bj∩{F>κ4κλ}

F 2∗ dµ

where

(5.89) c4 := 4

[
3H(L+ 1)

ε1/2∗−1/2

]2∗/(1−2∗η)
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and H has been defined in (5.81). A similar argument can be used in case that
(5.76) holds. Specifically, we have

µ(Bj) ≤
(

3M

ε1/p−1/2κλ

)p/(1−pθ)(∫
Bj
Gp dµ

)1/(1−pθ)

and then(∫
Bj
Gp dµ

)1/(1−pθ)

≤ 2pθ/(1−pθ)

(∫
Bj∩{G>κ5κλ}

Gp dµ

)1/(1−pθ)

+[2(L+ 1)]p/(1−pθ)(κ5κλ)p/(1−pθ)µ(Bj) .
This time we select number κ5 ∈ (0, 1) such that

(5.90) κ5 ≤
(

1

2

)(1−pθ)/p
ε1/p−1/2

6M(L+ 1)

and recall Remark 4.1 in order to get

µ(Bj) ≤ 2Λθ+1

(
3M

ε1/p−1/2κλ

)p/(1−pθ)(∫
Bj∩{G>κ5κλ}

Gp dµ

)1/(1−pθ)

.

We then estimate as in (5.87) thereby obtaining∫
Bj∩{G>κ5κλ}

Gp dµ ≤ µ(B(x0, 2%0))

(κ5κλ)δg
[Υ0(2m−1Bj)]p+δg ≤

Lλ̃
p+δg
0

(κ5κλ)δg
.

and we conclude with

(5.91) µ(Bj) ≤
c5λ̃

(p+δg)pθ/(1−pθ)
0

(κ5κλ)
(1+θδg)p/(1−pθ)

∫
Bj∩{G>κ5κλ}

Gp dµ ,

where

(5.92) c5 := 2Λθ+1

[
3M(L+ 1)

ε1/p−1/2

]p/(1−pθ)
.

All in all, taking (5.84), (5.88) and (5.91) into account we obtain

µ(Bj) ≤ c3
(κλ)q

∫
2Bj∩{U>κ3κλ}

Uqdµ

+
c4λ̃

(2∗+δf )2∗η/(1−2∗η)
0

(κ4κλ)(1+ηδf )2∗/(1−2∗η)

∫
Bj∩{F>κ4κλ}

F 2∗ dµ

+
c5λ̃

(p+δg)pθ/(1−pθ)
0

(κ5κλ)(1+θδg)p/(1−pθ)

∫
Bj∩{G>κ5κλ}

Gp dµ .

Since {2Bj}j is a disjoint family and all members belong to B(x0, s), we have that∑
j∈JD

µ(Bj) ≤ c3
(κλ)q

∫
B(x0,s)∩{U>κ3κλ}

Uqdµ

+
c4λ̃

(2∗+δf )2∗η/(1−2∗η)
0

(κ4κλ)(1+ηδf )2∗/(1−2∗η)

∫
B(x0,s)∩{F>κ4κλ}

F 2∗ dµ

+
c5λ̃

(p+δg)pθ/(1−pθ)
0

(κ5κλ)(1+θδg)p/(1−pθ)

∫
B(x0,s)∩{G>κ5κλ}

Gp dµ .(5.93)

The constants c3, c4, c5 have been defined in (5.84), (5.89) and (5.92), respectively,
while the numbers κ, κ3, κ4, κ5 ∈ (0, 1) must be taken in order to satisfy (5.55),
(5.83), (5.86) and (5.90), respectively.
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5.12. Conclusion of the proof. We start combining (5.73) and (5.93). Employing
the elementary estimation∫
B(x0,t)∩{U>κ3κλ}

U2 dµ ≤ λ2−q
∫
B(x0,t)∩{U>κ3κλ}

Uq dµ+

∫
B(x0,t)∩{U>λ}

U2 dµ ,

(5.73) and (5.93) yield, after a few elementary manipulations, the following esti-
mate:∫
B(x0,t)∩{U>κ3κλ}

U2 dµ ≤ c

(κ3κ)2−q (κ3κλ)2−q
∫
B(x0,s)∩{U>κ3κλ}

Uqdµ

+
c4λ̃

(2∗+δf )2∗η/(1−2∗η)
0

κ2
4(κ4κλ)(1+ηδf )2∗/(1−2∗η)−2

∫
B(x0,s)∩{F>κ4κλ}

F 2∗ dµ

+
c5λ̃

(p+δg)pθ/(1−pθ)
0

κ2
5(κ5κλ)(1+θδg)p/(1−pθ)−2

∫
B(x0,s)∩{G>κ5κλ}

Gp dµ .(5.94)

The constant c appearing above depends on n, α,Λ, but is still independent of ε,
and we have also used the fact that κ, κ3 ∈ (0, 1). We can therefore reformulate
estimate (5.94) as follows:∫

B(x0,t)∩{U>λ}
U2 dµ ≤ cλ2−q

(κ3κε)2−q

∫
B(x0,s)∩{U>λ}

Uqdµ

+
c6λ̃

(2∗+δf )2∗η/(1−2∗η)
0

λ(1+ηδf )2∗/(1−2∗η)−2

∫
B(x0,s)∩{F>κ4λ/κ3}

F 2∗ dµ

+
c7λ̃

(p+δg)pθ/(1−pθ)
0

λ(1+θδg)p/(1−pθ)−2

∫
B(x0,s)∩{G>κ5λ/κ3}

Gp dµ .(5.95)

The constant c ≡ c(n, α,Λ) is independent of ε, while c6 ≡ c6(n, α,Λ, L, ε) and
c7 ≡ c7(n, α,Λ, β, γ, p, L, ε); the constant c7 exhibits a blow-up behaviour with
respect to p as described in (3.5). Since estimate (5.94) holds for λ ≥ λ1 - and λ1

has been defined in (5.33) - we have that (5.95) holds whenever λ ≥ κκ3λ1. We
remark that the previous inequality hold for a choice of κ, κ3, κ4, κ5 ∈ (0, 1) that
satisfy (5.55), (5.83), (5.86) and (5.90), respectively. In order to conclude with (5.7)
we now need to estimate a few constants. We are primarily interested in an explicit
dependence on ε in the second integral appearing in (5.95). We therefore look at
(5.55) and (5.83) and we infer we can in fact choose κ, κ3 in order to have

(5.96) κ3κ ≈
ε3/q−1

c∗
,

for a constant c∗ which is now independent of ε, but just depends on n, α,Λ. We
next find an upper bound for the numbers λ̃0 and λ1 introduced in (5.10) and
(5.33), respectively; this will allow to verify estimate (5.7) in the range dictated by
(5.8). Let us notice that if x ∈ B(x0, t) and (s− t)/40n ≤ % ≤ %0/2, then B(x, %) ⊂
B(x0, 2%0). Therefore, recalling (4.2), whenever Ũ is a µ-integrable function we can
estimate ∫

B(x,%)

Ũ dµ ≤ µ(B(x0, 2%0))

µ(B(x, %))

∫
B(x0,2%0)

Ũ dµ

≤ c

(
%0

s− t

)n+2ε ∫
B(x0,2%0)

Ũ dµ(5.97)

for a constant c depending on n but independent of ε. Applying the inequality in
the last display to U2, Gp, F 2∗ , Gp+δg and F 2∗+δf - and eventually on different
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balls 2kB(x, %) ⊂ 2kB(x0, 2%0) - yields

κ−1 {ΨH,M (x, %) + Υ0(x, %) + Υ1(x, %) + Υ2,M (x, %)}

≤ c

ε1/q

(
%0

s− t

)n+2ε

{ΨH,M (x0, 2%0) + Υ0(x0, 2%0) + Υ1(x0, 2%0)

+Υ2,M (x0, 2%0)}

≤ c

ε1/q

(
%0

s− t

)n+2ε

ADD(x0, 2%0) .(5.98)

In order, we have also used (5.56), (5.81) to get rid of the presence of M and H and
that %0/(s − t) is bounded away from zero. We recall that the functional ADD(·)
has been introduced in (5.5). We now obtain an upper bound for λ1 defined in
(5.33). The quantity appearing on the right hand side of (5.98) provides an upper

bound on λ̃0. In a similar way, if K = K1 ×K2 ∈ Ξk0 , with k0 as in (5.19), then
K ⊂ B(x0, s) ⊂ B(x0, 2%0) and therefore we have

µ(K) ≥ c

%n−2ε
0

∫
K1

∫
K2

dx dy =
c(s− t)2n

%n−2ε
0

.

Hence, as for (5.97), we have

(5.99)

∫
K
Ũ dµ ≤ µ(B(x0, 2%0))

µ(K)

∫
B(x0,2%0)

Ũ dµ ≤ c

ε

(
%0

s− t

)2n ∫
B(x0,2%0)

Ũ dµ .

By using (5.98)-(5.99), and recalling that ε < 1, we get

λ1 ≤
c

ε

(
%0

s− t

)2n

ADD(x0, 2%0)

where c depends only on n, α,Λ, β, p, γ, ε. Summarizing the content of the above
manipulations we can finally arrive at (5.7), with the restriction on λ described in
(5.8). Specifically, we use (5.96) to estimate the constant in front of the second

integral appearing in (5.95), and the bounds found for λ̃0 and λ1 to conclude with
the admissible range of values λ ≥ λ0 described via (5.8). Needless to say, we are
taking κf := κ4/κ3 and κg := κ5/κ3.

6. Self-improving inequalities

This section is dedicated to the proof of a fractional reverse Hölder type inequal-
ity on diagonal balls with increasing supports, that is the estimate (6.1) below.
This will eventually imply Theorem 1.1 at the end of the section.

Theorem 6.1 (Reverse Hölder type inequality). Let u ∈ Wα,2(Rn) be a solution
to (1.14) under the assumptions of Theorem 1.1, in particular, (3.1) and (3.3) are
in force. Define the functions U,F and G as in (4.5). Then there exist positive
constants ε ∈ (0, 1−α), δ ∈ (0, 1) and c8 ≥ 1, depending on n, α,Λ, β, p, γ, δ1, such
that the following inequality holds whenever B ≡ B(x0, %0) ⊂ R2n:(∫

B
U2+δ dµ

)1/(2+δ)

≤ c8

∞∑
k=1

2−k(α−ε)
(∫

2kB
U2 dµ

)1/2

+c8%
α−ε
0

(∫
2B
F 2∗+δ0 dµ

)1/(2∗+δ0)

+c8%
γ−2β+α+ε(2/p−1)
0

(∫
2B
Gp(1+δ1) dµ

)1/[p(1+δ1)]
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+c8%
γ−2β+α+ε(2/p−1)
0

∞∑
k=1

2−k(2β−γ−2ε/p)

(∫
2kB

Gp dµ

)1/p

.(6.1)

All the terms on the right hand side of the previous inequality are finite.

Proof. Step 1: Determining the exponents. Let us observe that, whenever ε ∈
(0, α/2), we have

8ε

n+ 2ε
<

2ε(n+ 2α)

n(α− ε)
.

Therefore, we can always find two positive numbers ε ∈ (0, α/2) and δf > 0,
satisfying (4.6) and δf ≤ δ0, respectively, such that

(6.2)
8ε

n+ 2ε
< δf ≤

2ε(n+ 2α)

n(α− ε)
and ε < 1− α .

We recall that F ∈ L2∗+δf
loc (Rn;µ) by (4.7). Next, we determine the positive number

δ > 0 by imposing different restrictions on it; we indeed start assuming that

(6.3) δ ≤ 4ε(n+ 2α)

n2 + 4ε(n+ α)
and δ ≤ (γ − 2β + α)δg

4n
.

Let us briefly discuss a few consequences of the two conditions above, starting by
the first one. Specifically, we start showing that

(6.4) δ ≤ δf
[

(n+ 2α)(n+ 2ε)

n2 + 4ε(n+ α)

]
− 4ε(n+ 2α)

n2 + 4ε(n+ α)

holds. Indeed, using the first inequality in (6.3), we have

δ ≤ 4ε(n+ 2α)

n2 + 4ε(n+ α)
=

8ε

n+ 2ε

(n+ 2α)(n+ 2ε)

n2 + 4ε(n+ α)
− 4ε(n+ 2α)

n2 + 4ε(n+ α)

≤ δf

[
(n+ 2α)(n+ 2ε)

n2 + 4ε(n+ α)

]
− 4ε(n+ 2α)

n2 + 4ε(n+ α)
.

Next, the definition in (4.16) and the fact that ε < α/2 gives that 1 > θ > (γ −
2β +α)/(n+α). Then, the fact that the function t→ t/(1− t) is increasing in the
interval (0, 1), allows to estimate

γ − 2β + α

2n
≤ γ − 2β + α

n− γ + 2β
≤ θ

1− θ
<

pθ

1− pθ
so that from the second inequality in (6.3), it follows that

(6.5) δ <
(γ − 2β + α)δg

4n
≤ δg

2

pθ

1− pθ
.

Finally, for t ∈ (0, 1), we define the function

(6.6) S(t) :=
2cs(n+ 4)

4αt6
≥ 2cs

(2− q)t3(2−q)/q ,

where cs is the constant introduced in Proposition 5.1 and q has been introduced
in (4.13); in the last estimation we have used that ε ∈ (0, α/2). We then impose
the last restriction on δ, that is

(6.7) δS(ε) ≤ 1/4 .

All in all, the choices made in (6.3) and (6.7), allow to determine δ as a positive
number depending only on n, α,Λ, β, p, γ, δ1, as required in the statement of The-
orem 6.1. In the subsequent Step 2, by applying Proposition 5.1 with the above
choice of the numbers ε, δ, δf , we are going to prove that U ∈ L2+δ

loc (R2n;µ).
Step 2: Reverse Hölder type inequalities. The finiteness of the terms on the right

hand hand side of has already been discussed in Section 4.3. First of all, we show
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that we can reduce to the case %0 = 1 and B = B(0, 1) × B(0, 1); this eventually
allows to apply Proposition 5.1. Indeed, notice that the rescaled functions

ũ(x) := u(x0 + %0x) , g̃(x) := %2α−2β
0 g(x0 + %0x) , f̃(x) := %2α

0 f(x0 + %0x)

still solve equation (1.14). Therefore, applying (6.1) in this case and in B(0, 1) ×
B(0, 1), and scaling back to the original functions and to the original diagonal ball
B, leads to establish (6.1) in the general case. We now pass to the proof of (6.1)
when B = B(0, 1)×B(0, 1). We define the truncated function Um := min{U,m} for
m being a positive integer, and the measure dν = U2dµ. Moreover, we abbreviate
the notation Bs := B(0, s). With the aim of applying Proposition 5.1, we then
consider balls B ≡ B1 ⊂ Bt ⊂ Bs ⊂ B2 as in (5.6), while λ0 is accordingly defined
as in (5.8). We shall derive uniform higher integrability for the functions Um and
will recover the final result by letting m → ∞. With δ ∈ (0, 1) being the number
determined in Step 1, by Cavalieri’s principle we have that∫

Bt
UδmU

2 dµ =

∫
Bt
Uδm dν

= δ

∫ ∞
0

λδ−1ν(Bt ∩ {Um > λ}) dλ

= δ

∫ m

0

λδ−1

∫
Bt∩{U>λ}

U2 dµ dλ

≤ λδ0

∫
Bt
U2 dµ+ δ

∫ m

λ0

λδ−1

∫
Bt∩{U>λ}

U2 dµ dλ .(6.8)

The second-last integral appearing in the above display can be easily estimated by
recalling the identity of λ0 in (5.8) and that %0/(s− t) ≥ 1 and using (4.2):

(6.9) λδ0

∫
Bt
U2 dµ ≤ µ(B2)λδ0

∫
2B
U2 dµ ≤ cµ(B1)λ2+δ

0 .

We proceed with the remaining term in (6.8); using (5.7) we gain

δ

∫ m

λ0

λδ−1

∫
Bt∩{U>λ}

U2 dµ dλ

≤ csδ

ε3(2−q)/q

∫ m

λ0

λδ+1−q
∫
Bs∩{U>λ}

Uq dµ dλ

+cfδ

∫ m

λ0

λ
(2∗+δf )2∗η/(1−2∗η)
0

λ(1+ηδf )2∗/(1−2∗η)−1−δ

∫
Bs∩{F>κfλ}

F 2∗ dµ dλ

+cgδ

∫ m

λ0

λ
(p+δg)pθ/(1−pθ)
0

λ(1+θδg)p/(1−pθ)−1−δ

∫
Bs∩{G>κgλ}

Gp dµ dλ

=: J1 + J2 + J3 .(6.10)

Using (6.6)-(6.7) and Fubini’s theorem, we get

J1 ≤ csδ

ε3(2−q)/q

∫ ∞
0

λδ+1−q
∫
Bs∩{Um>λ}

Uq dµ dλ

=
csδ

(δ + 2− q)ε3(2−q)/q

∫
Bs
U2+δ−q
m Uq dµ

≤ δS(ε)

∫
Bs
U δmU

2 dµ

≤ 1

4

∫
Bs
UδmU

2 dµ .(6.11)
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We next estimate J2. Changing variables, using Fubini’s theorem, and recalling
the dependence κf ≡ κf (n, α,Λ, ε), we have∫ m

λ0

λδ+1−(1+ηδf )2∗/(1−2∗η)

∫
Bs∩{F>κfλ}

F 2∗ dµ dλ

≤ c
∫ ∞

0

λδ+1−(1+ηδf )2∗/(1−2∗η)

∫
Bs∩{F>λ}

F 2∗ dµ dλ

=
cµ(B2)

δ + 2− (1 + ηδf )2∗/(1− 2∗η)

∫
B2

F δ+2−(1+ηδf )2∗/(1−2∗η)+2∗ dµ

≤ cµ(B2)

δ

∫
B2

F δ+2−(1+ηδf )2∗/(1−2∗η)+2∗ dµ ,(6.12)

again for a constant depending on n, α,Λ and ε. In writing the last inequality we
have used that (6.2) is in force and the fact that

δf ≤
2ε(n+ 2α)

n(α− ε)
⇐⇒ 2− (1 + ηδf )2∗

1− 2∗η
≥ 0 .

The last integral appearing in (6.12) is finite if δ+ 2− (1 + ηδf )2∗/(1− 2∗η) + 2∗ ≤
2∗+δf , and a lengthy computation shows that this is equivalent to (6.4). Therefore,
using Hölder’s inequality, we can estimate

J2 ≤ cµ(B2)λ
(2∗+δf )2∗η/(1−2∗η)
0

(∫
B2

F 2∗+δf dµ

) δ+2−(1+ηδf )2∗/(1−2∗η)+2∗
2∗+δf

≤ cµ(B1)λ
(2∗+δf )2∗η/(1−2∗η)+δ+2−(1+ηδf )2∗/(1−2∗η)+2∗
0

= cµ(B1)λ2+δ
0 ,(6.13)

where c depends only on n, α,Λ and ε. We finally come to the estimation of J3.
For this we notice that the definitions of p and θ give, independently of ε, that

(6.14) p ≥ 2n

n+ 2(γ − 2β + α)
⇐⇒ p

1− pθ
≥ 2

and then, recalling that κg ≡ κg(n, α,Λ, ε, γ, β, p), we have∫ m

λ0

λδ+1−(1+θδg)p/(1−pθ)
∫
Bs∩{G>κgλ}

Gp dµ dλ

≤
∫ ∞
λ0

λδ+1−(1+θδg)p/(1−pθ) dλ

∫
Bs
Gp dµ

≤ cλ
δ+2−(1+θδg)p/(1−pθ)
0 µ(B2)

(1 + θδg)p/(1− pθ)− δ − 2

∫
B2

Gp dµ

≤ cλ
δ+2−(1+θδg)p/(1−pθ)
0 µ(B2)

θδgp/(1− pθ)− δ

(∫
B2

Gp+δg dµ

)p/(p+δg)

≤ c

δ
λ
δ+2−(1+θδg)p/(1−pθ)+p
0 µ(B2) .

Observe that in order to perform the last two estimations we have also used (6.14)
and (6.5), respectively. Therefore we can estimate as in (6.13), that is

(6.15) J3 ≤ cµ(B2)λ
(p+δg)pθ/(1−pθ)+δ+2−(1+θδg)p/(1−pθ)+p
0 = cµ(B2)λ2+δ

0

with c ≡ c(n, α,Λ, ε, γ, β, p). Connecting (6.11), (6.13) and (6.15) to (6.10), and
combining the resulting inequality with (6.8) and (6.9), we get∫

Bt
U δmU

2 dµ ≤ 1

4

∫
Bs
U δmU

2 dµ+ cµ(B1)λ2+δ
0 .
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By recalling the identity of λ0 in (5.8), and using several times the doubling property
of µ, after a few elementary manipulations we come to(∫

Bt
UδmU

2 dµ

)1/(2+δ)

≤ 1

2

(∫
Bs
U δmU

2 dµ

)1/(2+δ)

+
c

ε

(
%0

s− t

)2n

ADD(2B) .

We can therefore rewrite the above inequality as

φ(t) ≤ 1

2
φ(s) +

c

ε

(
%0

s− t

)2n

ADD(2B)

for a constant c ≡ c(n, α,Λ, ε, γ, β, p) which is still independent of m ∈ N, and
where, obviously, we have set

φ(%) :=

(∫
B%
UδmU

2 dµ

)1/(2+δ)

for % ∈ [%0, (3/2)%0]. We are therefore in position to apply the standard iteration
Lemma 6.1 below, that gives, after returning to the full notation:(∫

B
UδmU

2 dµ

)1/(2+δ)

≤ cADD(2B) .

The previous inequality holds for a constant c ≡ c(n, α,Λ, ε, γ, β, p) which is inde-
pendent of m ∈ N. Therefore letting m→∞ yields(∫

B
U2+δ dµ

)1/(2+δ)

≤ cADD(2B) .

At this point (6.1) follows by recalling the definition of ADD(2B) in (5.5) and using
a few elementary manipulations involving Hölder’s inequality. In particular, we use
the fact that 2∗ + δf ≤ 2∗ + δ0 and p+ δg ≤ p(1 + δ1); see Lemma 4.1. �

Lemma 6.1. Let φ : [%0, 3%0/2]→ [0,∞) be a function such that

φ(t) ≤ 1

2
φ(s) +

A

(s− t)γ

holds whenever %0 < t < s < (3/2)%0, where A and γ are positive constants. Then
the inequality

φ(%0) ≤ cA

%γ0
.

holds for a constant c ≡ c(γ).

For a proof of the previous lemma see for instance [17, Chapter 6].

Proof of Theorem 1.1. The proof is now a simple consequence of Theorem 6.1, that
gives that U ∈ L2+δ(B;µ) whenever B = B × B and B ⊂ Rn is a ball (that for
simplicity we take to be centred at the origin). We now translate this information
in terms of fractional norms of the original function u. In fact this means that,
whenever B ⊂ Rn is a ball centred at the origin, we have∫

B×B
U2+δ dµ =

∫
B

∫
B

|u(x)− u(y)|2+δ

|x− y|n+(2+δ)α+εδ
dx dy <∞ .

Re-writing the last integral we find∫
B

∫
B

|u(x)− u(y)|2+δ

|x− y|n+(2+δ)[α+εδ/(2+δ)]
dx dy <∞
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whenever B ⊂ Rn is a ball, and this means that u ∈Wα+εδ/(2+δ),2+δ
loc (Rn); observe

that since ε < 1 − α then α + εδ/(2 + δ) < 1. We have therefore improved the
regularity of u both in the fractional and in the differentiability scale, and Theorem
1.1 follows by suitably renaming (via embedding theorems) the number δ considered
in its statement. �

Proof of Theorem 1.2. The proof is just a consequence of the arguments developed
to prove Theorem 6.1. In fact the only thing needed there is Proposition 4.2,
whose content is now considered as an assumption in (1.23), provided we are taking
F = G = 0; the rest of the argument then remains unchanged. �
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