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Abstract. We describe a fractional version of the classical Gehring lemma.
As a consequence, new self-improving regularity properties of solutions to in-

tegrodifferential equations emerge.

1. The classical Gehring lemma

The Gehring lemma [7, 9] is a fundamental tool in modern nonlinear analysis,
with crucial implications in several different fields, ranging from nonlinear elliptic
and parabolic equations to the calculus of variations, from quasiconformal geometry
to stability issues [2, 6, 11]. Its ultimate essence relies on a basic, self-improving
property of certain kind of inequalities, called reverse Hölder type inequalities. This
can be described as follows: if one can control the Lp-means of a given function
f ∈ Lp, at all scales, with similar Lq-means, and p > q, then the function f is
necessarily better than just being in Lp. Starting from the original work of Gehring,
there have been several different versions of this result; see [9] for a panorama. The
following one, involving reverse inequalities with increasing support, can be for
instance found in [8].

Theorem 1.1. Let f ∈ Lploc(Ω), p > 1 be a non-negative function such that the
following reverse Hölder type inequality holds whenever B is a ball in the open subset
Ω ⊂ Rn: (∫

B/2

fpdx

)1/p

≤ c
(∫

B

fqdx

)1/q

,

where 0 < q < p. Then there exists a number δ > 0, depending only on n, q and the

constant c appearing in the previous inequality, such that f ∈ Lp+δloc (Ω). Moreover
the following inequality holds whenever B ⊂ Ω is a ball:(∫

B/2

fp+δdx

)1/(p+δ)

≤ c̃
(∫

B

fqdx

)1/q

,

for a new constant c̃ ≡ c̃(n, q, c).

In the previous statement, as in the rest of this paper, we are using the standard
notation

(h)O ≡
∫
O
h dµ :=

1

µ(O)

∫
O
h dµ

to denote the average of an integrable function h with respect to a measure µ, over
a measurable set O with positive measure µ(O) > 0.

The applications of Theorem 1.1 to solutions to linear and nonlinear PDE are
particularly relevant. A model result is about the higher gradient integrability of
weak energy solutions to divergence form equations of the type

(1.1) − div (A(x)Du) = 0 in Ω ⊂ Rn , n ≥ 2 .
1



2 KUUSI, MINGIONE, AND SIRE

The matrix of coefficients A(·) is supposed to have measurable entries, and to be
bounded and elliptic, i.e., both

Λ−1|ξ| ≤ 〈A(x)ξ, ξ〉 and |A(x)| ≤ Λ

hold whenever x ∈ Ω and ξ ∈ Rn, where Λ ≥ 1. The ultimate outcome in this case
is the higher gradient integrability of energy distributional solutions, that is

(1.2) u ∈W 1,2 =⇒ u ∈W 1,2+δ

holds for some δ depending only on n and Λ. This result was first proved by
Meyers [14] for linear equations; modern proofs extending to nonlinear ones are
indeed based on Theorem 1.1 [5, 8]. The key fact is that weak solutions satisfy
energy inequalities, often called Caccioppoli type inequalities - i.e. inequalities of
the type (1.3) below; in turn these imply higher integrability. This is summarised
in the next

Theorem 1.2. Let u ∈W 1,2(Rn) be a function such that the following Caccioppoli
type inequality holds for every ball B ≡ B(x0, r) ⊂ Rn with centre x0 and radius
r > 0:

(1.3)

∫
B

|D(uψ)|2dx ≤ c

r2

∫
B

|u(x)− (u)B |2 dx ,

whenever ψ ∈ C∞0 (B(x0, 3r/4)) is a cut-off function such that |Dψ| ≤ c/r. Then
there exists a positive number δ ∈ (0, 1), depending only on c and n, such that

u ∈W 1,2+δ
loc (Rn).

The route from inequality (1.3) to higher gradient integrability is straightforward.
Indeed, applying Sobolev-Poincaré inequality we get that the following reverse type
inequality with increasing support holds for a constant that depends only on n, c
and for a new constant c0 ≡ c0(n, c):(∫

B/2

|Du|2dx

)1/2

≤ c0
(∫

B

|Du|2n/(n+2)dx

)(n+2)/2n

.

At this point Theorem 1.1 finally implies that Du ∈ L2+δ
loc for some δ > 0, depending

only on n, c, but not on the specific function u.

2. The fractional Gehring Lemma

Here we are going to report the main facts from [13], to which we refer for a more
complete presentation and for the detailed proofs. With applications to regularity
of solutions to nonlocal problems in mind, we here present a fractional analog of
the classical Gehring’s lemma. For the sake of simplicity, we shall confine ourselves
to a simpler situation. More general cases can be indeed found in [13].

Let us recall that a function v belongs to the fractional Sobolev space W s,γ(Rn),
with s ∈ (0, 1) and γ ≥ 1 iff v ∈ Ls(Rn) and

(2.1) [v]γs,γ :=

∫
Rn

∫
Rn

|u(x)− u(y)|γ

|x− y|n+γs
dx dy <∞ .

Local variants of the space W s,γ(Rn) are defined in the usual way, while in this
paper we shall always consider the case n ≥ 2. The main novelty in our result is the
fact that, on the contrary of what happens in the local case, the self-improvement
happens in the differentiability scale, which is the leading one. As we shall see later,
when applied to solutions to nonlocal equations, this will lead us to discover a new
regularity property of solutions to nonlocal equations that has no parallel in the
theory of classical local elliptic equations; see Remark 3.1 below. Our fractional
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version of Gehring’s lemma will show that, starting from a Wα,2-function satisfying
the natural Caccioppoli’s inequality, we will observe the improvement

Wα,2 =⇒Wα+δ,2+δ .

This a surprising new feature of nonlocal problems, since the natural analog of (1.2)
is in this case

(2.2) Wα,2 ⇒Wα,2+δ .

See Remark 3.2 below. We indeed have the following:

Theorem 2.1 (Fractional Caccioppoli inequality). Let u ∈Wα,2(Rn) be a function
such that the following nonlocal Caccioppoli type inequality holds for every ball
B ≡ B(x0, r) ⊂ Rn:∫

B

∫
B

|[u(x)− (u)B ]ψ(x)− [u(y)− (u)B ]ψ(y)|2

|x− y|n+2α
dx dy

≤ c

r2α

∫
B

|u(x)− (u)B |2 dx

+c

∫
Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy

∫
B

|u(x)− (u)B | dx(2.3)

whenever ψ ∈ C∞c (B(x0, 3r/4)) is a cut-off function such that |Dψ| ≤ c/r. Then
there exists a positive number δ ∈ (0, 1− α), depending only on c and n, such that

u ∈Wα+δ,2+δ
loc (Rn).

The type of Caccioppoli inequality involved in the previous lemma is the natural
analogue of the local one in display (1.3). We note the presence of an additional
“tail” term on the right hand side of (2.3). The presence of this term encodes the
fact that the problems inequality (2.3) is typically stemming from are nonlocal and
defined on the whole Rn. Ultimately, the last term in (2.3) serves to take into
account the long distance interactions which are typical of nonlocal problems. In
the previous theorem the crucial information is really given by the differentiability
gain. Indeed, assuming that u ∈ Wα+δ,2 for some δ > 0 allows to deduce, via the
fractional version of Sobolev embedding theorem, that u ∈ Wα+δ′,2+δ′ for some
positive δ′ < δ.

As mentioned above, the key to the proof of the previous theorem is a new type of
fractional Gehring lemma. Rather than holding for functions this new version holds
for what we are going to call “dual pairs”. These are introduced in the following:

Definition 1. Let u ∈Wα,2(Rn) and let ε ∈ (0, α/2). Define the function

(2.4) U(x, y) :=
|u(x)− u(y)|
|x− y|α+ε

.

whenever x 6= y and the measure

(2.5) µ(A) :=

∫
A

dx dy

|x− y|n−2ε
,

whenever A ⊂ R2n is a measurable subset. The couple (µ,U) is called a dual pair
generated by the function u.

The use of the terminology “dual pair” is then motivated by the following equiv-
alence, which holds whenever u ∈ L2(Rn):

u ∈Wα,2(Rn) ⇐⇒ U ∈ L2(R2n;µ) .

The idea is now the following: the problem of proving self-improving properties for
a function u ∈ Wα,2 in Rn is lifted in R2n; we then prove a higher integrability
result for U with respect to the measure µ. Essentially, this is a higher integrability
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result for the dual pair (µ,U). This eventually implies the higher differentiability
of u. We indeed have

Theorem 2.2 (Fractional Gehring lemma). Let u ∈Wα,2(Rn) for α ∈ (0, 1), and
let (µ,U) be the dual pair generated by u in the sense of (2.4)-(2.5) and Definition 1.
Assume that the following reverse Hölder type inequality with tail holds for every
σ ∈ (0, 1) and for every ball B ⊂ Rn:(∫

B
U2dµ

)1/2

≤ c(σ)

σε1/q−1/2

(∫
2B
Uqdµ

)1/q

+
σ

ε1/q−1/2

∞∑
k=2

2−k(α−ε)
(∫

2kB
Uq dµ

)1/q

,(2.6)

where q ∈ (1, 2) is a fixed exponent and B = B×B. Then there exists a positive num-

ber δ ∈ (0, 1 − α), depending only on α, ε, q and c(σ), such that U ∈ L2+δ
loc (R2n;µ)

and u ∈Wα+δ,2+δ
loc (Ω). Moreover, the following inequality holds whenever B ⊂ Rn,

for a constant c ≡ c(n, α, ε, c(σ), q):

(2.7)

(∫
B
U2+δ dµ

)1/(2+δ)

≤ c
∞∑
k=1

2−k(α−ε)
(∫

2kB
U2 dµ

)1/2

.

The main point of the previous theorem is that we are not asserting the higher
integrability of any function U satisfying (2.6). In other words, we are not proving
an extension of Gehring’s lemma with respect to general measures, something which
is on the other hand already available in the literature. Indeed, in the case of
Theorem 2.2, the reverse inequality (2.6) is assumed to hold only on diagonal balls

(2.8) B ≡ B(x0, r) = B(x0, r)×B(x0, r) ⊂ R2n ,

thereby, we do not assume any information on those zones of R2n which are far
from the diagonal, which is here defined by

(2.9) Diag := {(x, x) ∈ R2n : x ∈ Rn} .

In other words, no reverse inequality holds on non-diagonal balls, or on sets of the
type B(x0, r) × B(y0, r). What we are really doing with Theorem 2.2 is asserting
the higher integrability of U in L2+δ(µ) provided (µ,U) is a dual pair, and this
is the crucial point allowing to recover the missing information on non-diagonal
balls. Once Theorem 2.2 is proved, we can then get the higher differentiability of
functions satisfying a Caccioppoli type inequality with tail, that is Theorem 2.1.

Sketch of the proof of Theorem 2.1. Let us consider, as in Theorem 2.1, a cut-off
function ψ ∈ C∞c (B(x0, 3r/4)) such that |Dψ| ≤ c/r and ψ ≡ 1 of B(x0, r/2); from
now on we shall denote B ≡ B(x0, r) and B ≡ B ×B. A direct computation using
the definition in (2.5) gives that

µ(B) =
c(n)rn+2ε

ε
.

where c(n) is a constant depending only on n, and this holds whenever B is a
diagonal ball as in (2.8). We then have, using the formula in the last display, that
ψ ≡ 1 on B(x0, r/2) and then inequality (2.3), the estimations below

r2ε

ε

∫
B/2

U2dµ ≤ c(n)

|B|

∫
B/2

U2 dµ

≤ c

|B|

∫
B/2

|[u(x)− (u)B ]ψ(x)− [u(y)− (u)B ]ψ(y)|2

|x− y|2α+2ε
dµ
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≤ c

r2α

∫
B

|u(x)− (u)B |2 dx

+c

∫
Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy

∫
B

|u(x)− (u)B | dx .(2.10)

We find an upper bound for the two terms appearing on the right hand side of
(2.10). The fractional version of Sobolev embedding theorem provides us with the
inequality

(2.11) r−2α
∫
B

|u(x)− (u)B |2 dx ≤
cr2ε

ε2/q

(∫
B
Uqdµ

)2/q

for a constant c depending only on n and α, where

q :=
2n+ 4ε

n+ 2α+ 2ε
< 2 .

For this see [13, Lemma 4.2]. The estimation of the last term on the right hand
side of (2.10) is similar, and follows taking into account the geometric decay of the
kernel; for this we refer to [13, Proposition 4.2]. The final outcome is the following
inequality, which holds whenever σ ∈ (0, 1):∫

Rn\B

|u(y)− (u)B |
|x0 − y|n+2α

dy

∫
B

|u(x)− (u)B | dx

≤ cr2ε

σ2ε2/q

(∫
B
Uqdµ

)2/q

+
σ2r2ε

ε2/q

[ ∞∑
k=0

2−k(α−ε)
(∫

2kB
Uqdµ

)1/q
]2

.

Combining the last estimate with (2.11) and (2.10) yields (2.6). We can therefore
apply Theorem 2.2 that implies the existence of δ > 0 such that U ∈ L2+δ(B;µ)
whenever B = B × B and B ⊂ Rn is a ball centred at the origin. We conclude
that U ∈ L2+δ

loc (R2n;µ). We now translate this information in terms of fractional
norms of the original function u. In fact this means that, whenever B ⊂ Rn is a
ball centred at the origin, then we have∫

B×B
U2+δ dµ =

∫
B

∫
B

|u(x)− u(y)|2+δ

|x− y|n+(2+δ)α+εδ
dx dy <∞ .

The last integral can be now written as∫
B

∫
B

|u(x)− u(y)|2+δ

|x− y|n+(2+δ)[α+εδ/(2+δ)]
dx dy

and this means that u ∈ W
α+εδ/(2+δ),2+δ
loc (Rn). We have therefore improved the

regularity of u both in the fractional and in the differentiability scale, and Theo-
rem 2.1 follows by renaming the number δ considered in its statement and using
the fractional Sobolev embedding theorem. �

3. Nonlocal equations

We now come to nonlocal equations, and report the main facts from [13]. Our
results actually rely on techniques which are nonlinear in nature, and therefore they
hold for nonlinear equations as well. We shall therefore consider forms of the type

(3.1) EϕK(u, η) :=

∫
Rn

∫
Rn
ϕ(u(x)− u(y))[η(x)− η(y)]K(x, y) dx dy ,

where the function ϕ : R→ R satisfies

(3.2) |ϕ(t)| ≤ Λ|t| , ϕ(t)t ≥ t2, ∀ t ∈ R , Λ ≥ 1 .
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The measurable kernel is instead assumed to satisfy

(3.3)
1

Λ|x− y|n+2α
≤ K(x, y) ≤ Λ

|x− y|n+2α
0 < α < 1 .

Assumptions (3.1)-(3.3) make the form EϕK(u, η) coercive in Wα,2, and the related
nonlocal equations elliptic. We shall also denote

EϕK(u, η) ≡ EK(u, η) for ϕ(t) = t .

We are considering solutions u ∈Wα,2(Rn) to equations of the type

(3.4) EϕK(u, η) = EH(g, η) +

∫
Rn
fη dx ∀ η ∈ C∞c (Rn) ,

where, a main point, is that on the right hand side of the previous equation there
appears an operator of order β ∈ (0, 1) in the sense that the kernel H(·) is assumed
to satisfy

(3.5) |H(x, y)| ≤ Λ

|x− y|n+2β
0 < β < 1 .

The family of equations considered in (3.4) allows us to reach the largest nonlocal
generalisation of the classical higher integrability results for solutions to elliptic
equations. These hold for quasilinear non-homogeneous equations of the type

(3.6) − div a(x,Du) = −div (B(x)g) + f .

Note that a main feature of the previous equation is that we have zero and first order
operators on the right. In the nonlocal case this is naturally replaced by considering
a right hand side that involves the form EH(·) with β that can be assumed to be
even larger than α, as we shall see in a few moments. The assumptions on the data
f and g in the right hand side of (3.4) are now as follows; their optimality will be
discussed in Remark 3.3 below. First, we assume that

(3.7) f ∈ L2∗+δ0
loc (Rn)

for some δ0 > 0. The exponent 2∗ is the conjugate of the relevant fractional Sobolev
embedding exponent, that is

2∗ :=
2n

n+ 2α
, 2∗ :=

2n

n− 2α
,

1

2∗
+

1

2∗
= 1 .

The terminology is motivated by the fractional version of the classical Sobolev
embedding theorem Wα,2 ↪→ L2∗ . Second, we describe the assumptions on g, which
are necessarily more involved. We state them first considering the case 2β ≥ α. In
this case we assume the existence of a positive number δ0 > 0 such that

(3.8) g ∈W 2β−α+δ0,2(Rn) .

Needless to say, we also assume that 2β − α+ δ0 ∈ (0, 1) to give [g]2β−α+δ0,2 sense
according to the definition in (2.1); this in particular implies that β < (1 + α)/2.
In the case 0 < 2β < α we instead do not consider any differentiability on g, but
only integrability:

(3.9) g ∈ Lp0+δ0(Rn) , p0 :=
2n

n+ 2(α− 2β)
.

The main result of [13] is then

Theorem 3.1. Let u ∈ Wα,2(Rn) be a solution to (3.4) under the assumptions
(3.2)-(3.3) and (3.5)-(3.9). Then there exists a positive number δ ∈ (0, 1 − α),
depending only on n, α,Λ, β, δ0, but otherwise independent of the solution u and of
the kernels K(·), H(·), such that

(3.10) u ∈Wα+δ,2+δ
loc (Rn) .
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An immediate corollary follows when considering the case H(·) = K(·) and
ϕ(t) = t, thereby considering the linear equation

EK(u, η) = EK(g, η) +

∫
Rn
fη dx ∀ η ∈ C∞c (Rn) .

In this case Theorem 3.1 allows to get the following particularly neat result:

(3.11) f ∈ L2∗+δ0
loc (Rn), g ∈Wα+δ0,2(Rn) =⇒ u ∈Wα+δ,2+δ

loc (Rn) ,

for some positive δ ∈ (0, δ0).
The proof of Theorem 3.1 is based on an extended version of Theorem 2.2,

that takes into account additional terms stemming from the right hand side of the
equation in (3.4). More precisely, the starting point of the proof of Theorem 3.1 is
the following Caccioppoli type inequality:∫

B

∫
B

|u(x)ψ(x)− u(y)ψ(y)|2

|x− y|n+2α
dx dy

≤ c

r2α

∫
B

|u(x)|2 dx+ c

∫
Rn\B

|u(y)|
|x0 − y|n+2α

dy

∫
B

|u(x)| dx

+crn+2α

(∫
B

|f(x)|2∗ dx
)2/2∗

+crn+2(γ−2β+α)

[ ∞∑
k=0

2(γ−2β)k
(∫

2kB

∫
2kB

|g(x)− g(y)|p

|x− y|n+pγ
dx dy

)1/p
]2

.(3.12)

This holds whenever B(x0, r) ⊂ Rn is a ball, with ψ ∈ C∞c (B(x0, 3r/4)) being a
cut-off function such that |Dψ| ≤ c/r; the constant c depends only on n,Λ, α, β
and the exponent p depends on n, α, β, δ0, while α < γ < 2β − α. Note that (3.12)
reduces to (2.3), when f = g = 0. As in the sketch of the proof of Theorem 2.1,
from (2.3) it follows a reverse inequality of the type in (2.6), but with additional
terms. From this (3.10) follows again by an extension of Theorem 2.2, that takes
into account reverse inequalities with additional terms (in this case, those coming
from f and g). In this note we prefer giving a description of the simpler case of
Theorem 2.2 for the sake of brevity and clarity of exposition.

Remark 3.1 (Peculiarity of the nonlocal case). At first sight, the natural nonlocal

analog of the results valid for local equations would be to prove that u ∈ Wα,2+δ
loc ,

for some δ > 0. Therefore, Theorem 3.1 reveals a new, unexpected property of
solutions to nonlocal equations that has in fact no analog in the local case. Indeed,
in order to get some higher gradient differentiability of the W 1,2-solutions to (1.1),
it is then necessary to assume that the entries of the matrix A(·) belong themselves
to a fractional Sobolev space, as shown for instance in [12, 15]. To see this already
in the one dimensional case n = 1, it is sufficient to consider the following equation:

(3.13)
d

dx

(
a(x)

du

dx

)
= 0 ,

1

Λ
≤ a(x) ≤ Λ ,

and to note that

x→
∫ x

0

dt

a(t)

is a solution with a(·) being any measurable function satisfying nothing but the
inequalities in (3.13). It is then easy to build similar multidimensional examples.

Remark 3.2 (Previous results). We mention a very recent and interesting paper
of Bass & Ren [1] who considered the function (called Marcinkiewicz integral)

Γ(x) :=

(∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dy

)1/2

,
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and proved that Γ ∈ L2(1+δ)(Rn) for some positive δ depending only on n, α,Λ and
δ0. The equations considered in [1] are of the type

EK(u, η) =

∫
Rn
fη dx ∀ η ∈ C∞c (Rn)

with f ∈ L2+δ0 , for some δ0 > 0. The function Γ(·) can be interpreted, dimension-
ally speaking, as a fractional gradient of u of order α. Once this result is achieved,
the higher integrability as stated in (2.2) then follows via a deep characterisation
characterisation of fractional Sobolev spaces via Bessel potential spaces that rests
on Littlewood-Paley theory ([4, 16]).

Remark 3.3 (Optimality of the assumptions on f and g). The assumptions on
f and g considered in (3.7)-(3.9) are the natural counterparts of those usually
considered for the classical case (3.6). Their optimality can be checked by using a
few formal arguments applied on the linear model equation

(3.14) (−4)αu = (−4)βg + f

that can be indeed treated by different means via Fourier analysis or Riesz poten-
tials. Needless to say, the case of (3.14) belongs to the family described by (3.4),
as can be seen by taking K(x, y) = |x− y|−n−2α and H(x, y) = |x− y|−n−2β . The
following arguments will be purely formal; they are only aimed at checking that
the exponents considered for f and g in (3.7)-(3.9) are the right ones. First of all,
since here we are dealing with self-improving properties, and since all the numbers
δ0 and δ are bound to be small, then with no loss of generality we will check the
optimality of the exponents for f and g in the “limit case” δ0 = δ = 0. We start
by f , therefore considering the equation (−4)αu = f , for simplicity when 2α < 1.
In this case we have that f ∈ Lq implies u ∈ W 2α,q. Since on the other hand
we are dealing with equations with measurable coefficients, W 2α,q-regularity is not
achievable, and we look for the corresponding Wα,2-regularity. Therefore we recall
the imbedding

W 2α,q ↪→Wα,2 if 2α− n

q
= α− n

2
.

This in fact gives q = 2∗, that is (3.7) for δ0 = 0. As for g, we now consider the
equation (−4)αu = (−4)βg. Let us first observe that in the case α = β it is
obvious to take g ∈ Wα,2, as in (3.11) with δ0 = 0. In the case 2β > α let us
formally write ∂αu ≈ 4β−α/2g ≈ ∂2β−αg ∈ L2. Therefore, in order to obtain that
u ∈ Wα,2 it remains to require that g ∈ W 2β−α,2. Finally, in the case 2β < α, we
use the same formal argument, interpreting W 2β−α,2 as the dual of Wα−2β,2. The
fractional Sobolev embedding theorem then gives

Wα−2β,2 ↪→ L
2n

n−2(α−2β) .

But now (
L

2n
n−2(α−2β)

)′
= L

2n
n+2(α−2β) ,

and therefore we conclude that a sufficient condition for g to belong to the dual of
Wα−2β,2 is

g ∈ L
2n

n+2(α−2β) ,

that is (3.9) with δ0 = 0.
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4. Ideas from the proof of Theorem 2.2

The proof of Theorem 2.2 is rather complex, and we can only try to give a brief
sketch of the arguments, referring the reader to [13] for the rest. The whole issue
can be reduced to prove the following level set inequality of the function U :

(4.1)

∫
B(x0,t)∩{U>λ}

U2 dµ ≤ cλ2−q
∫
B(x0,s)∩{U>λ}

Uqdµ+
cλ0

(s− t)n+2ε
,

which is bound to hold whenever B(x0, %0) ⊂ B(x0, t) ⊂ B(x0, s) ⊂ B(x0, 3%0/2)
with r < t < s < 3r/2, and for those λ satisfying

λ0 :=
1

(s− t)n+2ε

∞∑
k=1

2−k(α−ε)
(∫

2kB
U2 dµ

)1/2

. λ .

The assertion, that is (2.7), then follows using truncation arguments, Cavalieri’s
principle, and an iteration lemma. We therefore briefly discuss the proof of (4.1).
Since the main information at our disposal, that is the reverse inequality (2.6), is
available only on diagonal balls as in (2.8), and not on every ball in R2n, we start
the estimation of the integral on the right hand side of (4.1) by splitting∫

{U>λ}
U2 dµ =

∫
{U>λ}∩“zone close to the diagonal”

U2 dµ

+

∫
{U>λ}∩“zone far from the diagonal”

U2 dµ .(4.2)

This actually means that we are going to use two different exit time arguments
to build two Calderón-Zygmund coverings of the level set B(x0, t) ∩ {U > λ}; the
first is aimed to cover the zone close to the diagonal, while the second to cover the
zone far from the diagonal. The diagonal covering is obtained via a direct exit time
argument based on Vitali’s covering lemma, and is made of a countable family of
diagonal balls {Bj} of the type in (2.8), on which it happens that∫

Bj
U2 dµ ≈ λ2 .

These balls are aimed at covering that part of the level set surrounding the diago-
nal. The second covering is instead obtained directly using the classical Calderón-
Zygmund covering argument and is made of a countable family dyadic cubes {K},
for it happens that ∫

K
U2dµ ≈Mλ2

and

U ≤Mλ holds a.e. in B(x0, t) \
⋃
K∈Uλ

K .

The constant M ≥ 1 is chosen large enough to make, in a sense, the cubes K smaller
than the balls from the family {Bj}.

We then proceed in sorting the cubes from the non-diagonal covering in two
classes: those that are close to the diagonal Diag (defined in (2.9)), and those
cubes which are suitably far from the diagonal. The cubes that are close enough to
the diagonal can be covered by the diagonal balls {Bj} coming from the diagonal
covering. The other ones need a different treatment. How to decide if a cube K is
far from the diagonal? For us this means that, with l(K) denoting the side length
of the cube K, it happens that

(4.3) dist(Diag,K) ≥ l(K) .
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This condition relates in some sense the size of the exit time cube K with the
distance to the diagonal and, ultimately, to the size of the kernel K(·) on the
cubes K. The analysis then proceeds in two different stages. In a first one, we
use inequality (2.6) on the diagonal balls {Bj}; this, together with a proper use of
the exit time condition to treat the tail terms, allows to deal with the first integral
appearing on the right hand side of (4.2).

In a second stage, we deal with the cubes {K} which are far from the diagonal,
and that therefore satisfy (4.3). The lack of reverse inequalities on the cubes K
is compensated by the fact that, far from the diagonal, a different type of reverse
inequality automatically hold. This inequality reads as(∫

K
U2 dµ

)1/2

≤ c

(∫
K
Uq dµ

)1/q

+
c

ε1/q

(
l(K)

dist(Diag,K)

)α+ε(∫
K1×K1

Uq dµ

)1/q

+
c

ε1/q

(
l(K)

dist(Diag,K)

)α+ε(∫
K2×K2

Uq dµ

)1/q

,(4.4)

where K, being a dyadic cube in R2n, admits a decomposition K = K1 ×K2 and
K1,K2 are themselves dyadic cubes from Rn with the same side lengths. The
constant c depends only on n, α and the main point is that the exponent q is such
that q < 2.

Inequality (4.4) is bound to replace (2.6) far from the diagonal, but it unfortu-
nately involves two remainder terms that prevents it to be a real reverse Hölder
inequality. These terms are those in the last two lines of (4.4) and involve integrals
on additional dyadic cubes, that are K1 ×K1 and K2 ×K2. The main problem is
now that these cubes have not been selected via an exit time argument and therefore
there is no control on the average of U over them. In turn, this does not allow to
employ the usual covering arguments. Instead, we make use of very delicate combi-
natorial arguments that at the end will work via a subtle combination of geometric
information coming from the sorting of the cubes, the size of the measure when
certain distance conditions from the diagonal are considered, and finally the size of
the coefficients appearing on the right hand side of (4.4). Once this is achieved both
integrals appearing on the right hand side of (4.4) can be estimated, and this opens
the way to the proof of (4.1). The details are at this point extremely technical, and
we once again refer to [13].
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