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Abstract. In this paper we prove, by showing that solutions have exactly the

same degree of regularity as the obstacle, optimal regularity results for obstacle
problems involving evolutionary p-Laplace type operators. A main ingredient,

of independent interest, is a new intrinsic interpolative geometry allowing for

optimal linearization principles via blow-up analysis at contact points. This
also opens the way to the proof of a removability theorem for solutions to

evolutionary p-Laplace type equations. A basic feature of the paper is that

no differentiability in time is assumed on the obstacle; this is in line with the
corresponding linear results.

RÉSUMÉ - Dans ce papier, nous montrons, en utilisant le fait que les solutions

ont le même degré de régularité que l’obstacle, des résultats de régularité opti-

male pour des problèmes d’obstacles dans lesquels interviennent des opérateurs
d’évolution de type p-Laplace. Un des ingrédients principaux, interressant en

tant que tel, est une nouvelle géométrie interpolative intrinsèque avec laquelle

des principes de linéarisation optimale par l’analyse d’explosions aux points
de contacts peuvent être utilisés. Cela ouvre la voie à la démonstration

d’un théorème d’élimination pour les solutions d’équations d’évolutions de

type p-Laplace. On notera que dans ce papier, l’obstacle n’est pas supposé
différentiable en temps, ce qui est cohérent avec les résultats correspondants

dans le cas linéaire.
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1. Introduction and results

1.1. Results. This paper is devoted to the study of regularity of solutions to ob-
stacle problems involving quasilinear parabolic operators of the type

(1.1) −Hu := ut − div a(Du)

and considered in cylindrical domains of the form O = Ω× (0, T ) ⊂ Rn ×R, where
Ω ⊂ Rn is a bounded Lipschitz domain, T > 0 and n ≥ 2. The vector field
a : Rn → Rn is assumed to be C1-regular and satisfying the following growth and
ellipticity assumptions:

(1.2)

{
|a(z)|+ |∂a(z)|(|z|2 + s2)1/2 ≤ L(|z|2 + s2)(p−1)/2

ν(|z|2 + s2)(p−2)/2|ξ|2 ≤ 〈∂a(z)ξ, ξ〉
whenever z, ξ ∈ Rn. Here 0 < ν ≤ L and s ≥ 0 are fixed parameters. In order to
emphasize the main new ideas we in this paper concentrate on the case p ≥ 2; the
case 2n/(n+2) < p < 2 can also be treated starting form the techniques introduced
here, and will be presented elsewhere. Needless to say, a chief model example of the
operators considered in this paper is given by the evolutionary p-Laplace operator

u 7→ ut − div (|Du|p−2Du) .
1
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For a good introduction to the regularity theory of the p-Laplacean operator we for
instance refer to the basic work of Manfredi [34, 35] and to introductory notes of
Lindqvist [32].

In the following we let ∂PO :=
(
Ω̄× {0}

)
∪ (∂Ω× [0, T ]) denote the parabolic

boundary of O. Given continuous boundary datum b : Ō → R and a continuous
obstacle ψ : Ō → R such that b ≥ ψ on ∂PO, we consider the problem

(1.3)

{
max{Hu,ψ − u} = 0 in O
u = b on ∂PO,

and we are particularly interested in the optimal regularity of the solution u con-
ditioned on the regularity of b and ψ. For the definition of the concept of solution
adopted in this paper we refer to Section 2.1. The goal of the paper is to prove
that solutions to (1.3) have the same degree of regularity as the data b, ψ and we
emphasize that a key point of this paper is that we assume no differentiability of
the obstacle ψ with respect to time, something which is not usual when considering
nonlinear regularity problems. See for instance [3], and related references, where
the time differentiability of the obstacle must be assumed in order to obtain regu-
larity results. As discussed below, the problems studied in this paper have up to
now been open issues in the case of the degenerate parabolic equations we consider.

In order to state our results we need to briefly describe the by now classical ap-
proach to regularity of solutions to the degenerate evolutionary p-Laplace operator
as first introduced by DiBenedetto (see for instance [11, 42]). Equations of the type

(1.4) ut − div (|Du|p−2Du) = 0

have an obvious lack of isotropy and, as a consequence, already the very issue
of scaling properties become more involved compared to the linear (p = 2) case.
For this reason the classical regularity analysis based on straightforward scaling
and decay estimates on shrinking balls/cylinders does not apply in this case. To
overcome this one is led to study the local regularity properties via decay analysis on
shrinking cylinders whose size depends on the solution itself. This is the basic idea
of DiBenedetto’s intrinsic geometry and for this reason the cylinders considered are
referred to as intrinsic cylinders. More specifically, one is led to consider cylinders
of the type

B(x, r)× (t− λ2−prp, t+ λ2−prp) or B(x, r)× (t− λ2−pr2, t+ λ2−pr2) ,

where λ > 0 is a parameter related to the size of the solution on the same cylinder.
Here B(x, r) is the standard Euclidean ball in Rn, centered at x and with radius
r > 0. Note that when p = 2 both of the above cylinders reduce to the standard
parabolic cylinders used in the context of the heat equation. In Section 1.3 below
we will in more detail describe the way intrinsic geometries are used to obtain
regularity results. Here we just to draw the attention of the reader to the fact that
the necessity of using such intrinsic cylinders implies that the relevant notions of
regularity also have to be introduced in a suitable intrinsic way.

To introduce the function spaces used in the paper we let, given A ⊂ Rn+1 and
a function f : A→ Rm, m ≥ 1,

osc
A
f := sup

(x0,t0),(x,t)∈A
|f(x0, t0)− f(x, t)|

denote the oscillation of f on A. Given (x0, t0) ∈ Rn+1 and r, λ > 0 we introduce
the cylinders

(1.5) Qλr (x0, t0) = {(x, t) ∈ Rn+1 : |x0 − x| < r, |t0 − t| < λ2−prp}.
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Furthermore, we let ω : R+ 7→ R+ be a concave modulus of continuity, i.e., a
concave nondecreasing function such that

ω(1) = 1 and ω(0) := lim
r↓0

ω(r) = 0 .

Given a function f defined on O = Ω× (0, T ) ⊂ Rn × R, we set

(1.6) [f ]C̃ω(·)(O) := inf

{
λ > 0 : sup

Q
λω(r)
r ⊂Rn×R

(
1

λω(r)
osc

Q
λω(r)
r ∩O

f

)
≤ 1

}
.

For time independent functions we define the semi-norm related to ω(·) as

(1.7) [f ]Cω(·)(Ω) := inf

{
λ > 0 : sup

B(x,r)⊂Rn

(
1

λω(r)
osc

B(x,r)∩Ω
f

)
≤ 1

}
.

Needless to say, the localized version of the above spaces is defined in the usual

way and we write, for instance, f ∈ C̃ω(·)
loc (O) if and only if f ∈ C̃ω(·)(O′) whenever

O′ b O. Moreover, we let C0(O), C0(Ω) denote the set of functions which are
continuous on O and Ω, respectively. We note that in the special case ω(r) = rα,
α ∈ (0, 1], then the definitions in (1.6) and (1.7) reduce to a notion of Hölder
continuity:

ω(r) = rα , α ∈ (0, 1] , [f ]C̃ω(·)(O) <∞ ⇐⇒ sup
z1,z2∈O

|f(z1)− f(z2)|
‖z1 − z2‖αα

<∞ ,

where the parabolic metric is defined as

(1.8) ‖(x1, t1)− (x2, t2)‖α := max
{
|x1 − x2|, |t1 − t2|1/[p−α(p−2)]

}
.

In particular, the metric is depending on the degree of regularity considered. Note
also that when p = 2, then these spaces coincide with the spaces of functions which
are Hölder continuous of order α with respect to the standard parabolic metric.

We are now ready to state our first result which concerns optimal interior regu-

larity in the obstacle problem assuming that the obstacle is in the space C̃ω(·).

Theorem 1.1 (Interior regularity). Let H be as in (1.1), (1.2), let ψ ∈ C̃ω(·)(O)
and let u solve (1.3). Let O′ ⊂ O be a bounded space-time cylinder such that

Ō′ ∩ ∂PO = ∅. Then u ∈ C̃ω(·)(O′) and

[u]C̃ω(·)(O′) ≤ c
(
n, p, ν, L, ω(·),O,O′, osc

O
b, [ψ]C̃ω(·)(O)

)
.

While Theorem 1.1 concerns optimal interior regularity we also establish optimal

regularity up to the initial state. In particular, in this case we prove C̃ω(·)-estimates
on O′ = Ω′ × (0, T ) for every Ω′ b Ω. We explicitly remark that in this case O′ is
not a compact subset of O. In this context our main result is the following.

Theorem 1.2 (Initial time regularity). Let H be as in (1.1), (1.2), let ψ ∈
C̃ω(·)(O), b(·, 0) ∈ Cω(·)(Ω) and let u solve (1.3). Let Ω′ b Ω and O′ = Ω′× (0, T ).

Then u ∈ C̃ω(·)(O′) and

[u]C̃ω(·)(O′) ≤ c
(
n, p, ν, L, ω(·),Ω,Ω′, osc

O
b, [b(·, 0)]Cω(·)(Ω) , [ψ]C̃ω(·)(O)

)
.

As a by-product of the techniques developed to prove Theorem 1.1 and Theorem
1.2 we also obtain a regularity result for solutions to the Cauchy-Dirichlet problem

(1.9)

{
Hu = 0 in O
u = b on ∂PO .
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Corollary 1.1 (Initial time regularity without obstacles). Let H be as in (1.1),
(1.2), let b(·, 0) ∈ Cω(·)(Ω) and let u solve (1.9). Let Ω′ b Ω and O′ = Ω′ × (0, T ).

Then u ∈ C̃ω(·)(O′) and

[u]C̃ω(·)(O′) ≤ c
(
n, p, ν, L, ω(·),Ω,Ω′, osc

O
b, [b(·, 0)]Cω(·)(Ω)

)
.

We again remark that Theorem 1.1 also implies the following endpoint result:

Corollary 1.2. Let u be a solution to (1.3) with Dψ, b ∈ L∞(O); then Du ∈
L∞loc(O).

To put out results slightly in perspective we note that when p = 2 the operator
appearing in (1.4) coincides with the heat operator Hu = ut −4u and hence the
obstacle problem in (1.3) becomes an obstacle problem for the heat equation. In the
case of linear and uniformly parabolic equations we note that there is an extensive
literature on the existence and regularity of generalized solutions to the obstacle
problem in Sobolev spaces and we refer to [16] for details. Furthermore, optimal
regularity of the solution to the obstacle problem for the Laplace equation was
first proved in [4, 6], see also [5], and we note that the technique is based on the
Harnack inequality for harmonic functions and the control of a harmonic function by
its Taylor expansion. For obstacle problems involving the heat equation we instead
refer to [7] while we refer to [41] for p-parabolic free boundary problems. We note
that the parabolic obstacle problems for linear Kolmogorov type operators have
been treated in [15, 37], papers where blow-up arguments of the type developed
here are also used.

1.2. A removability theorem for weak solutions. Using Theorem 1.1 we are
able to establish sharp removability conditions for sets in the context of weak solu-
tions. Recall the notion of cylinders introduced in (1.5). Given a concave modulus
of continuity ω(·) as introduced in the previous section, we define a Hausdorff mea-
sure as follows. We let, for fixed δ, 0 < δ < r0 and E ⊂ Rn+1, L(δ, ω(·);E) =

{Qω(ri)
ri (xi, ti)} be a family of cylinders such that E ⊆

⋃
Q
ω(ri)
ri (xi, ti) and 0 <

ri < δ for i = 1, 2, ... Using this notation we let

(1.10) Hω(·)(E) := lim
δ↓0

inf
L(δ,ω(·);E)

{∑
rni ω(ri) : E ⊆

⋃
Qω(ri)
ri (xi, ti)

}
,

where the infimum is taken with respect to all possible coverings L(δ, ω(·);E) of E.
We prove the following result.

Theorem 1.3 (Removable singularities). Let O ⊂ Rn+1 be a cylindrical domain
and let E ⊂ O be a closed set. Let a : Rn → Rn be a vector field satisfying (1.2).
Assume that u is a weak solution to

ut − div a(Du) = 0 in O \ E

and that u ∈ C̃ω(·)
loc (O). Assume also that Hω(·)(E) = 0. Then the set E is remov-

able, i.e., u can be extended to be a weak solution in O.

Note that through the definition in (1.10) different ω(·) correspond to different
choices of Hausdorff measures (and dimensions) related to gauge functions and
metrics, see, for instance, [38] for the basics on Hausdorff measures. The peculiarity,
in our case, is that every time we defineHω(·) we consider a metric - or, equivalently,
the cylinders used for the coverings - and a gauge function that relate to each other.
To get a closer comparison to the situation where standard parabolic Hausdorff
measures are used we note that in the case ω(r) = rα, α ∈ (0, 1], one is led to the
Hausdorff measures

Hσα(E) := lim
δ↓0

inf
L(δ,rα;E)

{∑
rσi : E ⊆

⋃
Q
rαi
ri (xi, ti)

}
.
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In this case the Lebesgue measure of the cylinder Q
rαi
ri (xi, ti) used in the covering

of E is essentially r
n+α(2−p)+p
i and the assumption in Theorem 1.3 on the set E

is that Hn+α
α (E) = 0. The “Lipschitz” case of the previous result, that is when

α = 1, amounts to consider the standard parabolic Hausdorff measure

Hσ(E) := lim
δ↓0

inf
L(δ,r;E)

{∑
rσi : E ⊆

⋃
B(xi, ri)× (ti − r2

i , ti + r2
i )
}
.

In this case we highlight the following corollary to Theorem 1.3.

Corollary 1.3. Let O, E, and a be as in Theorem 1.3. Assume that u is a weak
solution to

ut − div a(Du) = 0 in O \ E
and that u ∈ C̃

ω(·)
loc (O) with ω(r) = r, r ≥ 0. Let N = n + 2 and assume that

HN−1(E) = 0. Then the set E is removable, i.e., u can be extended to be a weak
solution in O.

Note that N = n + 2 is the standard parabolic dimension. Corollary 1.3 is the
optimal parabolic analog of a series of results known in the elliptic case and we
recall that Carleson [8] was the first to prove that a sufficient condition for a set
E ⊂ Rn to be removable with respect to a Lipschitz harmonic function is that
Hn−1(E) = 0. Generalization of this result to the nonlinear setting of operators
of p-Laplace type first came with the fundamental work of Serrin [40], while more
recent work under assumptions of Lipschitz and Hölder continuity of the solution
can be found in [9, 18, 24].

1.3. Interpolative intrinsic geometries. In this section we want to briefly de-
scribe some new technical inputs of the paper, and, in particular, something we
are going to call interpolative intrinsic geometries. To better explain the situation
let us here concentrate on the model case in (1.4). As mentioned in Section 1.1,
a crucial ingredient in the regularity theory for the equation in (1.4) is the use of
DiBenedetto’s intrinsic geometry when deriving local estimates. This amounts to
use cylinders whose size depends on the solution itself. As already mentioned ear-
lier, this is necessary since equations as the one considered in (1.4) show a strong
anisotropy when p 6= 2 as the multiplication of a solution by a constant does not
yield a solution to a similar equation. One consequence of this is the lack of homo-
geneous a priori estimates and the hence the impossibility to use such estimates in
iterative schemes in line with the standard regularity techniques. Instead, the lack
of homogeneity must be locally corrected by using intrinsic geometries.

A first point we want to emphasize here is that the type of cylinders used must
depend on the type of regularity one is currently using. Let us first explain this fact
by analyzing the type of local geometry used in the case one is interested in proving
gradient regularity starting from higher integrability of the gradient [12, 11, 21, 1, 3].
In this case the relevant cylinders are

(1.11) Q̃λr,− := B(x0, r)× (t0 − λ2−pr2, t0) with

(∫
Q̃λr,−

|Du|p dx dt

)1/p

≈ λ .

The last relation encodes the fact that on Q̃λr,− we have, in some integral sense,

|Du| ≈ λ. The heuristic approach now proceeds as follows. On Q̃λr,− we formally
identify

ut − div (|Du|p−2Du) ≈ ut − λp−24u .
Therefore, with this heuristics v(x, t) := u(x0 + rx, t0 + λ2−pr2t) solves the heat
equation vt−4v = 0 in B(0, 1)× (−1, 0) and homogenous estimates can be derived
which are suitable for regularity procedures. While making this opaque and rough
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argument rigorous is far from being trivial, the point we want to emphasize here
is that for this procedure to work, along the iteration, the gradient must remain
bounded. In other words, the type of intrinsic geometry considered depends on the
kind of regularity one is proving. Exactly for this reason, when proving regularity
results for u (see for instance [10, 13, 14, 27]), rather than for Du, one is led to use
the geometry dictated by

(1.12) Qλr,− := B(x0, r)× (t0 − λ2−prp, t0) with osc
Qλr,−

u ≈ λ .

Our starting observation is that the two geometries considered in (1.11)-(1.12) are
two particular, actually extremal, cases of a class of intermediate/interpolative
intrinsic geometries, suited to the regularity we want to prove. In this paper we are
interested in proving, as for instance in Theorem 1.1, the continuity of solutions
with a certain degree of smoothness given by ω(·). In analogy with (1.11), let’s now
use a heuristic “dimensional analysis” on an ansatz of the cylinders of the form

Q := B(x0, r)× (t0 − λ2−ph(r), t0) ,

for some function h(r) to be choose in order to have the equation
ut − div (|Du|p−2Du) = 0 behaving as the heat equation in Q. The number λ
is this time controlled, along the iteration, by the type of regularity we are bound to
prove. More precisely, assuming that the following quantity is under control

λ ≈ oscQ u

ω(r)
≈
[

r

ω(r)

]
|Du| ,

we then formally identify

ut − div (|Du|p−2Du) ≈ ut − λp−2

[
r

ω(r)

]2−p

4u in Q .

Let us now set v(x, t) := u(x0 + rx, t0 + λ2−ph(r)t) for (x, t) ∈ B(0, 1) × (−1, 0).
We then have, formally, that the choice h(r) = [ω(r)]2−prp gives vt−4v = 0. This
ansatz, that is

(1.13) Q
λω(r)
r,− := B(x0, r)× (t0 − λ2−p[ω(r)]2−prp, t0) with λ ≈

osc
Q
λω(r)
r,−

u

ω(r)
,

reveals to be the correct one in order to treat the C̃ω(·) regularity of solutions to
the obstacle problem via a particularly neat blow-up technique (see Section 4). The
geometry in (1.13) formally gives back either (1.11) or (1.12) by taking ω(r) = r
or ω(r) ≡ 1, respectively (the last one conceived as a limit case of ω(r) = rα as
α→ 0). In exactly the same way, the limiting cases of the parabolic metric used in
(1.8) are, in the case α = 1

‖(x1, t1)− (x2, t2)‖1 = max
{
|x1 − x2|, |t1 − t2|1/2

}
and this the usual parabolic metric used to study the regularity of the gradient,
and, when α→ 0

‖(x1, t1)− (x2, t2)‖0 = max
{
|x1 − x2|, |t1 − t2|1/p

}
,

which is instead the metric that turns out to be relevant in the study of Hölder
continuity of solutions (see again [11]).

Although the proofs used in this paper to establish the main results concerning
the obstacle problem are indirect, we could also proceed in a more direct fashion.

Indeed, one can use a sequence of shrinking cylinders of the type Q
λω(ri)
ri,− , where
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ri → 0 geometrically, and such that the specific form of the geometry allows one to
ensure, at each stage, that a bound of the form

osc
Q
λω(ri)

ri,−
u

ω(ri)
. λ

holds. This argument can be made rigorous giving the desired regularity of u.
We conclude by remarking that the implementation of the regularization proce-

dure put forward in this paper requires a delicate combinations of several ingredients
from regularity theory of degenerate parabolic equations. In particular, once the
interpolative intrinsic geometry is adopted as the right set-up for the blow-up pro-
cedure, the proofs heavily use bounds and oscillation estimates for the gradient
of solutions to p-parabolic equations (initially developed by DiBenedetto [11] and
in the formulation used essentially taken from [29]), certain Gaussian estimates
for solutions to nonlinear parabolic equations with linear growth and of the type
considered by Moser [36], and recent Harnack inequalities for degenerate parabolic
equations developed in [13, 14] and [27]. Certain trace estimates established in [31]
also turn out to be important when dealing with regularity at the initial state.

2. Existence theory and preliminaries

2.1. Concept of solutions. If U ⊂ Rn is open and 1 ≤ q ≤ ∞, then by W 1,q(U),
we denote the space of equivalence classes of functions f with distributional gradient
Df = (fx1

, . . . , fxn), both of which are q-th power integrable on U. Let

‖f‖W 1,q(U) = ‖f‖Lq(U) + ‖ |Df | ‖Lq(U)

be the norm in W 1,q(U) where ‖ · ‖Lq(U) denotes the usual Lebesgue q-norm in U .

Given t1 < t2 we denote by Lq(t1, t2,W
1,q(U)) the space of functions such that for

almost every t, t1 ≤ t ≤ t2, the function x→ u(x, t) belongs to W 1,q(U) and

‖u‖Lq(t1,t2,W 1,q(U)) :=

( t2∫
t1

∫
U

(
|u(x, t)|q + |Du(x, t)|q

)
dxdt

)1/q

<∞.

In the following we here first describe the concept of weak solutions to

(2.1) −Hw = wt − div a(Dw) = 0

when the underlying domain considered is not necessarily a cylinder.

Definition 1. Let H be as in (2.1) and assume (1.2). We say that a function w is
a weak supersolution (subsolution) to (2.1) in an open set Ξ b Rn+1 if, whenever
Ξ′ = U × (t1, t2) b Ξ with U ⊂ Rn and t1 < t2, then w ∈ Lp(t1, t2;W 1,p(U)) and

(2.2)

∫
Ξ′

(〈a(Dw), Dφ〉 − wφt) dx dt ≥ (≤) 0

for all nonnegative φ ∈ C∞0 (Ξ′). A weak solution is a distributional solution satis-
fying (2.2) with equality and without sign restrictions for the test functions.

Note, in particular, that in Definition 1 no assumption on the time derivative
of w is made. We are now ready to give the definition of solutions to the obstacle
problem. In the following we assume that the obstacle ψ and boundary value
function b are continuous on Ō and that b ≥ ψ on the parabolic boundary of
O = Ω× (0, T ).

Definition 2. A function u is a solution to (1.3) if it satisfies the following three
properties:

(i) u is continuous on Ō, u ≥ ψ in O and u = b on ∂PO,
(ii) u is a weak supersolution in O,
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(iii) u is a weak solution in O ∩ {u > ψ} .

As for the property (iii), we recall that u is a weak solution in O ∩ {u > ψ}
means that u is a standard distributional solution in the sense of Definition 1 in
every space-time cylinder contained in O ∩ {u > ψ}. We note that a solution to
the obstacle problem as in Definition 2 exists by the results in [26]. To be precise,
in [26] the boundary values were given by the obstacle itself but it is straightforward
to modify the argument in [26] to obtain the existence result for general boundary
values assuming b ≥ ψ on the parabolic boundary. Moreover, the solution is easily
seen to be unique by an “elliptic” comparison principle for weak solutions, see
Lemma 2.1 below. There are naturally other ways to obtain existence. An argument
arising from potential theory is given in [33] and by uniqueness arguments this
solution coincides with the solution obtained in [26]. In fact, from [33] one finds an
argument for an existence result when the obstacle belongs merely to a parabolic
Sobolev space. If the obstacle, on the other hand, belongs to parabolic Sobolev
space and has time derivative in L2, then the existence follows from [2] and by an
approximation argument this approach can be used to obtain the unique solution
also in the case when the obstacle is merely continuous; related existence results
under regularity assumptions on the obstacle, such as in the existence of ψt in
suitable Lebesgue spaces, can be found in [3]. Furthermore, an additional approach
is given by viscosity solutions in which case the existence is rather easy to obtain.
It turns out that a viscosity solution to the obstacle problem is also a so-called a-
superparabolic function in O, see [22, 25, 20, 19], and a continuous weak solution in
O ∩ {u > ψ}. Every bounded superparabolic function is also a weak supersolution
by [22, 25] and therefore any viscosity solution is a solution in the above sense and
hence unique.

Concerning the notion of solution considered above we will several time use the
following very useful result (see for example [22] and [25, Corollary 4.6]).

Lemma 2.1 (“Elliptic comparison”). Let S ⊂ Rn+1 be an open and bounded set
and let T ∈ R. Let ST := S ∩{t < T}. Let u be a weak supersolution in ST and let
v be a weak subsolution in ST . Assume further that u and v are continuous on the
closure of ST . If v ≤ u on ∂ST \ {t = T}, then v ≤ u in ST .

The strength of the previous result is that it allows for a comparison principle
also in non-cylindrical domains (recall here that ∂S denotes the usual topological
boundary of S).

2.2. Notation. In this paper, following a standard notation, we let

(f)A :=

∫
A

f(x, t) dx dt =
1

|A|

∫
A

f(x, t) dx dt

whenever A ⊂ Rn+1 has positive measure and f is a measurable function defined
on A. Moreover, we shall denote by c a generic constant, always larger than one,
whose value might change from line to line. Relevant dependence upon parameters
will be displayed in parentheses. Given (x, t) ∈ Rn+1 and r, λ, σ > 0, we introduce
the space-time cylinders

σQλr (x, t) := B(x, σr)× (t− λ2−p(σr)p, t+ λ2−p(σr)p) ,

σQλr,−(x, t) := B(x, σr)× (t− λ2−p(σr)p, t) ,(2.3)

σQλr,+(x, t) := B(x, σr)× (t, t+ λ2−p(σr)p) .(2.4)

In a context where the dependence on (x, t) is not important we will often write σQλr ,
σQλr,−, σQλr,+ for σQλr (x, t), σQλr,−(x, t), σQλr,+(x, t), respectively. Furthermore, if

σ = 1 we will often simply write Qλr , Qλr,± for the cylinders 1Qλr (x, t), 1Qλr,±(x, t),
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respectively. To avoid a too cumbersome notation we by Q̄
λω(R)
R,+ (x0, t0) (Q̄

λω(R)
R,+ )

denote the closure of Q
λω(R)
R,+ (x0, t0) and so on in order to avoid the use of too long

bars. Thoroughout the paper we let ω : R+ 7→ R+ be a nondecreasing concave
function such that ω(1) = 1 and ω(0) := limr↓0 ω(r) = 0. Concavity of ω(·) implies
that

(2.5)
ω(r)

r
≤ ω(%)

%
whenever 0 < % < r.

Cylinders we are often considering relate to ω(·) and they are of the form Q
λω(r)
r .

Usually λ will be chosen to reflect the intrinsic behavior of the problem and the
goal will be to establish intrinsic relations of the type

osc
Q
λω(r)
r

u ≤ λω(r)

when u is a given function in Q
λω(r)
r . We can use (2.5) to obtain

(2.6) ω(%)2−p%p =

(
ω(r)

ω(%)

%

r

)p−2

ω(r)2−prp−2%2 ≤
(%
r

)2

ω(r)2−prp

whenever 0 < % < r. It readily follows that

(r/%)
2/p

Qλω(%)
% ⊂ Qλω(r)

r for every % ∈ (0, r) .

Moreover, applying again (2.5), we get

ω(r)2−p%p =

(
ω(%)

ω(r)

)p−2

ω(%)2−p%p ≥
(%
r

)p−2

ω(%)2−p%p ,

in turn implying the following inclusion:

(2.7) (%/r)
(p−2)/p

Qλω(%)
% ⊂ Qλω(r)

% for every % ∈ (0, r) .

3. A priori estimates for weak solutions

In this section we first consider scaling properties of (weak) solutions to the
equation (2.1) and then collect a number of estimates involving the gradient of for
(weak) solutions to the equation (2.1). Finally we establish certain refined Gauss-
ian estimates for (weak) solutions to equations of p-parabolic type, with variable
coefficients, but with linear growth.

3.1. Scaling of solutions. We here describe scaling properties of (weak) solutions
to the equation (2.1). Let (x0, t0) ∈ Rn×R, R > 0, and suppose that w solves (2.1)

in either of the cylinders Q
λω(R)
R,± (x0, t0) introduced in (2.3), (2.4). Consider r ≤

R, λ > 0, and define

w̃(x, t) :=
w(x0 + rx, t0 + (λω(r))2−prpt)

λω(r)
(3.1)

ã(z) :=
a((λω(r)/r)z)

(λω(r)/r)p−1
, z ∈ Rn .(3.2)

Then w̃ solves the equation H̃w̃ := w̃t − div ã(Dw̃) = 0 in

(3.3) Q
ω̃(R/r)
R/r,± where ω̃(γ) :=

ω(γr)

ω(r)
for γ > 0.

In particular, in the case r = R, we have that w̃ is a solution in Q1
1,±. The new

vector field ã(·) satisfies bounds

(3.4)

{
|ã(z)|+ |∂ã(z)|(|z|2 + s̃2)1/2 ≤ L(|z|2 + s̃2)(p−1)/2

ν(|z|2 + s̃2)(p−2)/2|ξ|2 ≤ 〈∂ã(z)ξ, ξ〉 ,
s̃ :=

sr

λω(r)
,
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for all z, ξ ∈ Rn. In particular, we remark that the assumptions in (1.2) imply the
existence of ν̄ ∈ (0, 1), and c, L̄ ≥ 1, depending on n, p, ν, L, such that the following
growth and coercivity assumptions do hold for every choice z ∈ Rn:

(3.5) |ã(z)| ≤ L̄(|z|2 + s̃2)(p−1)/2 , 〈ã(z), z〉 ≥ ν̄|z|p − cs̃p .

3.2. Gradient estimates. The first auxiliary theorem stated below gives an esti-
mate of the local supremum of the gradient in the form of a reverse Hölder inequal-
ity. In the case of the equation in (1.4) the estimate can be found in [11, Chapter
8, Theorem 5.1] and in the form suitable for the more general equations considered
in this paper it can be retrieved by a small modification from [28, Theorem 5.1].
The second estimate below is a consequence of the first estimate, a simple covering
argument and (2.7). We emphasize that when we in the following say that a con-
stant only depend on n, p, ν, L, then the constant is, in particular, independent of
s, the solution w considered and of the vector field a(·).

Theorem 3.1. Suppose that w is a weak solution to (2.1) in Qλrr,− for some r, λ > 0
and let ε > 0 be a degree of freedom. Then there exists a constant cε ≥ 1, depending
only on n, p, ν, L, ε, such that

sup
Qλr
r/2,−

|Dw| ≤ ελ+ cελ
2−p

∫
Qλrr,−

(|Dw|+ s)p−1 dx dt

holds. In particular, if λ = λ̃ω(r)/r, for some r, λ̃ > 0, then

(3.6) sup
Q
λ̃ω(r/2)

r/2,−

|Dw| ≤ ελ̃ω(r)/r + cε(λ̃ω(r)/r)2−p
∫
Q
λ̃ω(r)
r,−

(|Dw|+ s)p−1 dx dt .

The next and fundamental regularity result was obtained by DiBenedetto and
Friedman for evolutionary parabolic equations [12]. We refer to [29, Theorem 3.2]
and [30, Theorem 3.2] for the scalar case and for more details.

Theorem 3.2. Suppose that w is a weak solution to (2.1) in a space-time cylinder
O. Then Dw has the Hölder continuous representative in O. Moreover, let Qλrr,− ⊂
O, for some r, λ > 0 such that

s+ sup
Qλrr,−

|Dw| ≤ Aλ

holds for a constant A ≥ 1. Then there exists α̃ ≡ α̃(n, p, ν, L,A) ∈ (0, 1] such that

(3.7) osc
Qλ%%,−

Dw ≤ 4Aλ
(%
r

)α̃
.

holds for all % ∈ (0, r). Here Qλ%%,− ⊂ Qλrr,−, for 0 < ρ ≤ r, is an intrinsic cylinder

sharing its center with Qλrr,−.

In the intrinsic geometry suited for the general modulus of continuity the above
Hölder estimates takes the following form.

Corollary 3.1. Let w be as in Theorem 3.2 with λ = λ̃ω(r)/r, for some r, λ̃ > 0.
Then

osc
Q
λ̃ω(%)
%,−

Dw ≤ 4Aλ̃
ω(r)

r

(%
r

)α̃
holds for all % ∈ (0, r) and with α̃ as in Theorem 3.2.
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Proof. Applying (3.7) we obtain

osc
Q

(λ̃ω(r)/r)%
%,−

Dw ≤ 4Aλ̃
ω(r)

r

(%
r

)α̃
for all % ∈ (0, r). Using (2.5) we have(

λ̃
ω(r)

r
%

)2−p

%p = λ̃2−p
(
ω(%)

ω(r)

r

%

)p−2

ω(%)2−p%p ≥
[
λ̃ω(%)

]2−p
%p .

Hence Q
λ̃ω(%)
%,− ⊂ Q(λ̃ω(r)/r)%

%,− , and the proof is complete. �

3.3. Energy and zero order estimates. The following Harnack estimate can be
retrieved from [13, 14] and [27].

Theorem 3.3. Suppose that w is a nonnegative weak solution to (2.1) in a space-
time cylinder O. There are constants ci ≡ ci(n, p, ν, L), i ∈ {1, 2}, such that if

B(x0, 2r)× (t0 − c1w(x0, t0)2−prp, t0 + c1w(x0, t0)2−prp) b O ,

then

w(x0, t0) ≤ c2
(

inf
x∈B(x0,r)

w
(
x, t0 + c1w(x0, t0)2−prp

)
+ sr

)
.

The next result is a standard energy estimate applied in Q
λω(r)
r,− (x0, t0) (see [11,

Proposition 3.1, Chapter 2]), together with an L∞ bound for the solution which
can be inferred from [11, Theorem 4.1, Chapter 5], with some small variants.

Lemma 3.1. Suppose that w is a nonnegative weak subsolution to (2.1) in Qr ≡
Q
λω(r)
r,− (x0, t0). Then there exists a constant c ≡ c(n, p, ν, L) such that∫

Qr/2

|Dw|p dx dt+ sup
t0−(λω(r/2))2−p(r/2)p<t<t0

∫
B(x0,r/2)

w2 dx

≤ c

rp

∫
Qr

[
wp + (ω(r)λ)p−2w2 + (rs)p

]
dx dt(3.8)

holds. Furthermore, let ε > 0 be a degree of freedom. Then there exists a constant
cε ≥ 1, depending only on n, p, ν, L, ε, such that

sup
Qr/2

w ≤ εω(r)λ+ cε(ω(r)λ)2−p
∫
Qr

wp−1 dx dt+ cεrs .(3.9)

The parameter s ≥ 0 has been introduced in (1.2).

The following lemma is a consequence of of De Giorgi’s iteration at the initial
state, see [31] for related results.

Lemma 3.2. Let R, T > 0 be given and let w be a continuous nonnegative weak
subsolution to Hw = 0 in Q := B(x0, R) × (t0, t0 + T ). Suppose further that w
attains locally continuously zero initial values at t0, i.e., on any set of the form
B(x0, r)×{t0}, for some r < R. Then there exists a constant c ≡ c(n, p, ν, L) such
that

(3.10) sup
B(x0,R/2)×(t0,t0+T )

w ≤ c T
Rp

∫
Q

wp−1 dx dt+ csR .

The parameter s ≥ 0 has been introduced in (1.2).
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Proof. We can assume, without loss of generality, that t0 = 0. To start the proof
we set

ri := R(1 + 2−i)/2, Bi := B(0, ri), Qi := Bi × (0, T ),

ki := K(1− 2−i),(3.11)

for some K ≥ ε+ sR, ε > 0, and for all i = 0, 1, . . .. Note that ki+1 − ki = 2−i−1K
and that ε is a degree of freedom to be chosen eventually. Let, for i = 0, 1, . . .,
φi ∈ C∞0 (Bi) be such that 0 ≤ φi ≤ 1, φi ≡ 1 on Bi+1 and |Dφi| ≤ c2iR. Let
0 < τ < T and consider the function (w − ki)+φ

p
iχ{t<τ} where, we recall the

standard notation

(w − k)+ = max{w − k, 0} k ∈ R
and χ{t<τ} is the indicator function for the set {t < τ}. Recall the definition of
weak subsolutions in Definition 1 and note that a regularized, in time, version of
(w − ki)+φ

p
iχ{t<τ} can be used as a test function in the definition of w being a

subsolution to (2.1) in Q. In particular, since (w − ki)+φ
p
iχ{t<τ} vanishes on the

lateral boundary and at times 0 and τ it can be made an admissible test function
after a standard regularization in time via convolutions or Steklov averages. Using
these facts, appealing to the Caccioppoli inequality (the one used in [31, Remark
3.10] with ε = 1), and finally averaging, we see that∫

Qi

|D((w − ki)+φi)|p dx dt+
1

T
sup

0<t<T

∫
Bi

(w − ki)2
+φ

p
i dx

≤ c
∫
Qi

(
(w − ki)p+|Dφi|p + spχ{w>ki}φ

p
i

)
dx dt

whenever i ≥ 0. Also notice that whenever w is a weak subsolution, (w − k)+ is
also a weak subsolution. Furthermore, using that

spχ{w>ki} ≤ s
p (w − ki−1)p+

(ki − ki−1)p
= 2ip

( s
K

)p
(w − ki−1)p+ ≤

2(i+1)p

rpi
(w − ki−1)p+ ,

where again χ{w>ki} denotes the indicator function of the set {w > ki}, we can put
the estimates of the last to displays together and conclude that∫

Qi

|D((w − ki)+φi)|p dx dt+
1

T
sup

0<t<T

∫
Bi

(w − ki)2
+φ

p
i dx

≤ c2ip

rpi

∫
Qi−1

(w − ki−1)p+ dx dt,(3.12)

whenever i ≥ 1. Let θi := (w−ki)+ for i = 0, 1, . . . Then, using Hölder’s inequality,
Sobolev’s embedding and finally Young’s inequality, we deduce that∫

Qi+1

θ
p+2/n
i dx dt ≤ 1

T

∫ T

0

(∫
Bi+1

θ2
i φ

p
i dx

)1/n(∫
Bi+1

(θiφi)
np
n−1 dx

)n−1
n

dt

≤ c
(
T

Rp

)1/n(
rpi
T

sup
0<t<T

∫
Bi

θ2
i φ

p
i dx

)1/n

rpi

∫
Qi

|D(θiφi)|p dx dt

≤ c
(
T

Rp

)1/n(
rpi
T

sup
0<t<T

∫
Bi

θ2
i φ

p
i dx+ rpi

∫
Qi

|D(θiφi)|p dx dt
)1+1/n

.(3.13)

We recall that the form of Sobolev embedding used in the lines above is the following
one:

(3.14)

(∫
Bi

|v|
np
n−1 dx

)n−1
np

≤ cri
(∫

Bi

|Dv|p dx
) 1
p
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which works whenever v ∈ W 1,p
0 (Bi), and we applied slicewise with the choice

v = θiφi. Notice in (3.14) the constant c is stable as long as p varies in a compact
subset of (1,∞). The inequality in display (3.14) standardly follows by the usual
Sobolev inequality for functions in W 1,1 together with Hölder’s inequality.

Combining the content of displays (3.12)-(3.13), we can conclude that∫
Qi+1

(w − ki)p+2/n
+ dx dt

≤ c2ip(1+1/n)

(
T

Rp

)1/n
[∫

Qi−1

(w − ki−1)p+ dx dt

]1+1/n

,(3.15)

for i = 1, . . .. Let

Yi :=

∫
Q2i

(w − k2i)
p
+ dx dt.

Then, using (3.15) and noting that

(w − ki)p+2/n
+ ≥ (w − ki+1)p+(ki+1 − ki)2/n

+

≥ 2−2(i+1)/nK2/n(w − ki+1)p+

we see that

Yi+1 ≤ c̃2ip(1+3/n)

(
T

K2Rp

)1/n

Y
1+1/n
i , i = 0, 1, 2, . . . ,

and for a constant c̃ ≡ c̃(n, p, ν, L). Then, combing this with a standard iteration
argument which dates back to De Giorgi (see for instance [17, Lemma 7.1]), it
follows that if

Y0 ≤
1

c̃n2p(1+3/n)n2

(
K2Rp

T

)
,(3.16)

then Yi → 0 as i→∞. We now let

K := ε+ sR , where ε := c

(
T

Rp

∫
Q

wp dx dt

)1/2

,(3.17)

and for a constant c ≡ c(n, p, ν, L). We note that we can assume, without loss of
generality, that ε > 0. Then, by adjusting the constant c and using the specification
in (3.17) we can ensure (3.16) and the condition K ≥ sR. Putting everything
together we arrive at

sup
1
2Q

w ≤ c
(
T

Rp

∫
Q

wp dx dt

)1/2

+ sR .

The same argument as above can also be used to interpolate between different cubes.
Specifically, let σQ = B(x0, σR)× (t0, t0 + T ), σ > 0, fix σ′, 1/2 ≤ σ′ < σ ≤ 1, fix
ri := [σ′+(σ−σ′)/2i]R and define, accordingly, the cut-off functions φi ∈ C∞0 (Bi).
The final outcome of the argument above is that

sup
σ′Q

w ≤ c
(

1

(σ − σ′)p
T

Rp

∫
σQ

wp dx dt

)1/2

+ sR

with c ≡ c(n, p, ν, L). Extracting the supremum of w from the integral above, and
using Young’s inequality, it follows that

sup
σ′Q

w ≤ 1

2
sup
σQ

w +
c

(σ − σ′)p
T

Rp

∫
Q

wp−1 dx dt+ sR .

The proof of (3.10) now follows from the inequality in the last display by appealing
to another standard iteration argument as outlined in [28, Lemma 5.1]. �
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We close this section by proving an oscillation reduction result for weak solutions.

Lemma 3.3. Let R > 0 and M1 > 0. There exists a constant c3.3 ≡ c3.3(n, p, ν, L)
such that if

λ ≥ c3.3 max{M1/ω(R), sR/ω(R)}

and w ∈ C0(Q̄
λω(R)
R,− ) is a weak solution to (2.1) in Q

λω(R)
R,− satisfying an intrinsic

relation

osc
Q
λω(R)
R,−

w ≤M1 ,

then

(3.18) osc
Q
λω(r)
r,−

w ≤ λω(r) holds for every r ∈ (0, R) ,

where Q
λω(r)
r,− ≡ Qλω(r)

r,− (x0, t0) for r ≤ R.

Proof. We assume that

(3.19) λ ≥ δ−1 max{M1/ω(R), sR/ω(R)} > 0

with δ ∈ (0, 1) to be chosen. Note that in the following all cylinders will share the

same vertex and Q
λω(r)
r,− ≡ Q

λω(r)
r,− (x0, t0) for r ≤ R. We divide the proof into two

steps.

Step 1: Bound for the sharp maximal function. Let ε ∈ (0, 1) be a degree of
freedom. With ε given, we in this step prove, for δ ∈ (0, ε] depending only on
n, p, ν, L, ε, that

(3.20) E(r) :=
1

ω(r)

(∫
Q
λω(r)
r,−

|w − (w)
Q
λω(r)
r,−
|p−1 dx dt

)1/(p−1)

≤ cελ

whenever r ∈ (0, R) and for a constant c ≡ c(n, p, ν, L). Note that from (2.5) and
that δ ≤ ε we immediately deduce that

(3.21) sup
R/8≤r<R

E(r) ≤ 1

ω(R/8)
osc

Q
λω(R)
R,−

w ≤ 8M1

ω(R)
≤ 8ελ .

Hence we in the following only have to consider the case r ∈ (0, R/8). To proceed
we first note using the energy estimate, Lemma 3.1, and the fact that max{±(w −
w(x0, t0)), 0} are nonnegative weak subsolutions, that∫

Q
λω(R/2)

R/2,−

(|Dw|+ s)p dx dt ≤ c
(
Mp

1

Rp
+

M2
1

[λω(R)]2−pRp
+ sp

)

≤ c

[(
M1

λω(R)

)p
+

(
M1

λω(R)

)2

+

(
sR

λω(R)

)p](
λ
ω(R)

R

)p
≤ c∗δ2

(
λ
ω(R)

R

)p
holds with c∗ ≡ c∗(n, p, ν, L). Given ε ∈ (0, 1), we let cε/2 be the constant in
Theorem 3.1 corresponding to ε/2. We now want to ensure that δ ≤ ε and that
cε/2(c∗δ

2)(p−1)/p ≤ ε/2. Hence we fix δ through the relation

δ = min

{(
1

c∗

(
ε

2cε/2

)p/(p−1))1/2

,
ε

2

}
.(3.22)
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Then, using (3.6) of Theorem 3.1, Hölder’s inequality and (3.22) we conclude that

(3.23) sup
Q
λω(R/4)

R/4,−

|Dw| ≤ ελω(R)

R
.

Note that δ now only depends on n, p, ν, L, ε, and in the second step of the proof
we will fix ε. Using (3.23) and (2.5) we have

(3.24) sup
Q
λω(r)
r,−

|Dw| ≤ ελω(r)

r

(
r

ω(r)

ω(R)

R

)
≤ ελω(r)

r
for every r ∈ (0, R/4) .

Now, as by standard regularity theory Dw is continuous in Q
λω(R)
R,− , applying diver-

gence theorem yields∫
B(x0,r)

w(x, t) dx

∣∣∣∣t2
t=t1

=
n

r

∫ t2

t1

∫
∂B(x0,r)

a(Dw(x, t)) · x− x0

|x− x0|
dHn−1(x) dt

for all t0 − (λω(r))2−prp < t1 < t2 < t0, where Hn−1(x) denotes the n − 1-
dimensional Hausdorff measure. Applying then (3.24) together with the bound on
a(·) we get

osc
t0−(λω(r))2−prp<t<t0

∫
B(x0,r)

w(x, t) dx ≤ c(n,L)

r
(λω(r))2−prp

(
ελ
ω(r)

r
+ s

)p−1

≤ cεp−1λω(r) .(3.25)

Here we also used the fact that s ≤ δλω(R)/R ≤ ελω(r)/r. Set then

I(t) =

∫
B(x0,r)

w(x, t) dx and I =

∫
Q
λω(r)
r,−

w(x, t) dx dt .

On the one hand, from (3.25) we obtain that

sup
t0−(λω(r))2−prp<t<t0

|I − I(t)| ≤ cεp−1λω(r) .

On the other hand, Poincaré’s inequality and (3.24) yield∫
B(x0,r)

|w(x, t)− I(t)|p−1 dx ≤ crp−1

∫
B(x0,r)

|Dw(x, t)|p−1 dx ≤ c [ελω(r)]
p−1

.

Combining above two displays, together with (3.21), proves (3.20).

Step 2: Continuity estimates. By (3.21), we need to prove (3.18) only for r ∈
(0, R/8). Fix such r ∈ (0, R/8) and recall that the functions max{±(w− k), 0} are
both weak subsolutions whenever k ∈ R. Hence, for any ε̃ ∈ (0, 1), (3.9) gives

sup
Q
λω(r)
r,−

|w − (w)
Q
λω(r)
r,−
| ≤ ε̃λω(2r)

+cε̃(λω(2r))2−p
∫
Q
λω(2r)
2r,−

|w − (w)
Q
λω(r)
r,−
|p−1 dx dt+ crs(3.26)

and cε̃ depends only on ε̃ and n, p, ν, L. By the triangle inequality, (2.5) and (3.20)
we see that∫

Q
λω(2r)
2r,−

|w − (w)
Q
λω(r)
r,−
|p−1 dx dt ≤ c

∫
Q
λω(2r)
2r,−

|w − (w)
Q
λω(2r)
2r,−

|p−1 dx dt

= c [E(2r)ω(2r)]
p−1 ≤ c [ελω(2r)]

p−1
.(3.27)

Combining (3.26), (2.5) and (3.27) we conclude that

sup
Q
λω(r)
r,−

|w − (w)
Q
λω(r)
r,−
| ≤ 2ε̃λω(r) + cε̃ελω(r) + crs.
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Furthermore, using (3.19) and (2.5) we have

rs =
Rs

ω(R)

rω(R)

Rω(r)
ω(r) ≤ ελω(r)

by (3.22). By putting together the estimates in the last two displays we gain

(3.28) sup
Q
λω(r)
r,−

|w − (w)
Q
λω(r)
r,−
| ≤ 2ε̃λω(r) + cε̃ελω(r) + cελω(r) .

We now let ε̃ = 1/8 and then choose ε according to

ε = min{1/(8cε̃), 1/(8c)} ,

where c is the constant in the term to the right in (3.28). Hence, using (3.28) we
see that

osc
Q
λω(r)
r,−

w = sup
Q
λω(r)
r (z)

(
w − (w)

Q
λω(r)
r,−

)
− inf
Q
λω(r)
r,−

(
w − (w)

Q
λω(r)
r,− (z)

)
≤ 2 sup

Q
λω(r)
r,−

|w − (w)
Q
λω(r)
r,−
| ≤ λω(r) .

All in all, ε depends only on n, p, ν, L, and through (3.22) so does δ. This completes
the proof of (3.18). �

3.4. Gaussian estimates. Here we consider general nonlinear equations, with lin-
ear growth and with measurable coefficients, of the type

(3.29) vt − div ā(x, t,Dv) = 0

under the assumptions that

(3.30) |ā(x, t, z)| ≤ L̄(|z|+ s̄) , 〈ā(x, t, z), z〉 ≥ ν̄|z|2 − L̄2s̄2

whenever z ∈ Rn and for almost every (x, t) ∈ Rn × R. Here 0 < ν̄ ≤ L̄ and s̄ ≥ 0
are fixed parameters. Needless to say the vector field ā : Rn × R × Rn → Rn is
assumed to be a Carathéodory function, i.e., measurable with respect to the first
two variables and continuous with respect to the third parameter. We here prove
the following lemma, which in some sense encodes the Gaussian behavior which is
typical of weak solutions to parabolic equations with linear growth.

Lemma 3.4. Suppose that v is a continuous weak solution to (3.29) in the cylinder
Q ≡ B(0, 4) × (−4, 0) and assume that 0 ≤ v ≤ M in Q ≡ B(0, 4) × (−4, 0) for
some M ≥ 4. Then there exists δ ∈ (0, 1), depending only on n, ν̄, L̄ and M , such
that

v(0, 0) + s̄ ≤ δ =⇒ sup
B(0,1)×(−1,0)

v ≤ 1

4
.

The proof uses two basic ingredients: a specific Harnack estimate and the stan-
dard L∞−L1 a priori estimate for solutions. We will use the following form of the
Harnack estimate.

Theorem 3.4. Let v be a nonnegative weak solution to (3.29) in the cylinder
B(0, 2R)×(−4(εR)2, 0) for some ε ∈ (0, 1] and R > 0. Then there exists a constant
c̄ ≡ c̄(n, ν̄, L̄, ε), which is a decreasing function of ε, such that

(3.31) sup
B(0,R)×(−3(εR)2,−2(εR)2)

v ≤ c̄
(

inf
B(0,R)×(−(εR)2,0)

v +Rs̄

)
.

Remark 3.1. By a careful analysis of the proof of the parabolic Harnack’s inequal-
ity for nonlinear equations, it can be proved that the constant c̄ appearing in (3.31)

is of the form c̄ = c1/ε
2

, with c ≡ c(n, ν, L). Let us add a few comments. Parabolic
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Harnack inequalities are consequences of reverse Hölder inequalities for the super-
solution u and for the subsolution u−1 applied together with the cross-over lemma
of Moser [36]. The customary way to present the result is that the spatial variable
scales as R and the time variable as R2. A concise presentation can be found in
the book of Saloff-Coste [39, Section 5]. The peculiar fact of Theorem 3.4 is the
use of the time scale (εR)2 and that this causes an additional dependence on ε of
the constant involved. In the linear case, the analysis of the fundamental solution

reveals that the constant must grow like c1/ε
2

as ε→ 0 for some c depending only
on n, ν̄, L̄. This fact continues to hold for nonlinear equations as those in (3.29),
(3.30). This can be verified by a careful tracking of the dependence of the constants
in the proof of Moser [36] and by a modification of the argument based on coverings
with space-times cylinders of the type B(x, r)× (t− ε2r2, t) instead of the standard
parabolic space-times cylinders.

Proof of Lemma 3.4. We first use the Harnack estimate in (3.31), with parameters

R = 2 and ε =
√
−t/2/2, t ∈ [−2, 0), to obtain

sup
x∈B(0,2)

v(x, t) ≤ c̄(t) (v(0, 0) + s̄) ≤ c̄(t)δ for − 2 < t < 0 .

Combining this last estimate with the standard L∞ − L1 a priori estimate

sup
B(0,1)×(−1,0)

v ≤ c(n, ν̄, L̄)

∫ 0

−2

∫
B(0,2)

(v + s̄) dx dt,

valid for nonnegative weak (sub)solutions, see (3.9), we arrive at

sup
B(0,1)×(−1,0)

v ≤ c

(
|B(0, 2)|(σM + 2s̄) +

∫ −σ
−2

∫
B(0,2)

v dx dt

)
≤ c̃(Mσ + δ + c̄(σ)δ)

for any σ ∈ (0, 1). Above the constant c̃ depends only on n, ν̄, L̄ and is larger than
one. We have also employed the assumptions v ≤ M and s̄ ≤ δ. To conclude the
proof, we choose σ = 1/(16c̃M) and take δ ≤ min{1/c̃, 1/(c̃c̄(σ))}/16. �

Remark 3.2. When referring to Lemma 3.4 and to the given solution v therein,
assumptions (3.30) can be replaced by the following assumption to hold almost
everywhere

|ā(Dv(x, t))| ≤ L̄(|Dv(x, t)|+ s),

〈ā(Dv(x, t)), Dv(x, t)〉 ≥ ν̄|Dv(x, t)|2 − L̄2s2 .(3.32)

Indeed, we apply Lemma 3.4 under certain nondegeneracy condition for degenerate
operators. Then the resulting vector field ā does not satisfy (3.30) for all vectors
z ∈ Rn, but instead (3.32) for a particular solution v which is on the other hand
the one of interest here.

4. Technical lemmas

In this section we give a stream of technical lemmas that, suitably combined,
will eventually lead to the proof of the desired regularity results in the subsequent
section. For this, we need to introduce a few classes of solutions. We recall that
in the following H is any general operator of the type in display (1.1) with the
vector field a(·) satisfying (1.2). In other words we are considering the whole class
of operators determined by the structure parameters (n, p, ν, L) (usually referred to
as “data”). We emphasize that we in this section, as throughout the paper, assume
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that p ≥ 2. Moreover, in what follows we shall heavily use the intrinsic cylinders
defined in Section 2.2. In particular, we shall use

Q
λω(r)
r,− ≡ Qλω(r)

r,− (x0, t0) := B(x0, r)× (t0 − λ2−p[ω(r)]2−prp, t0) ,

Q
λω(r)
r,+ ≡ Qλω(r)

r,+ (x0, t0) := B(x0, r)× (t0, t0 + λ2−p[ω(r)]2−prp)

and

Qλω(r)
r ≡ Qλω(r)

r (x0, t0) := B(x0, r)× (t0 − λ2−p[ω(r)]2−prp, t0 + λ2−p[ω(r)]2−prp) .

The first definition considers solutions to Cauchy-Dirichlet problems under suitable
oscillation bounds for the boundary datum and for the solution itself.

Definition 3. Let Q
λω(R)
R,+ ≡ Qλω(R)

R,+ (x0, t0) be a cylinder with

λ ≥ max{M1/ω(R),M2} ,

where M1,M2 are positive constants. Let g ∈ C0(Q̄
λω(R)
R,+ ) and let u ∈ C0(Q̄

λω(R)
R,+ )

be the unique solution to

(4.1)

{
Hu = 0 in Q

λω(R)
R,+

u = g on ∂PQ
λω(R)
R,+ .

We say that (u, g) belongs to the class D0(H;Q
λω(R)
R,+ , ω(·),M1,M2) if

(4.2) osc
Q
λω(R)
R,+

u ≤M1 and osc
B(x0,r)

g(·, t0) ≤M2ω(r) for every r ≤ R .

In the same we say that (u, g) ∈ D0(H;Q
λω(R)
R , ω(·),M1,∞) if (4.1) holds in Q

λω(R)
R

with λ > M1/ω(R) and (only) the first inequality in (4.2) holds in Q
λω(R)
R .

The next definition gives an analogous class, but this time for local solutions to
obstacle problems.

Definition 4. Let Q
λω(R)
R ≡ Qλω(R)

R (x0, t0) be a cylinder with

λ ≥ max{M1/ω(R),M3} ,

where M1,M3 are positive constants. Let ψ, g ∈ C0(Q̄
λω(R)
R ), g ≥ ψ on ∂PQ

λω(R)
R ,

and let u ∈ C0(Q̄
λω(R)
R ) be the unique solution to{

max{Hu,ψ − u} = 0 in Q
λω(R)
R

u = g on ∂PQ
λω(R)
R .

We say that (u, g, ψ) belongs to the class P0(H;Q
λω(R)
R , ω(·),M1,M3) if

osc
Q
λω(R)
R

u ≤M1 and osc
Q
λω(r)
r (x0,t0)

ψ ≤M3ω(r) for every r ≤ R .

The classes P0(H;Q
λω(R)
R,± (x0, t0), ω(·),M1,M3) are defined as above but with the

cylinder Q
λω(R)
R now replaced by Q

λω(R)
R,± (x0, t0).

In the last definition we describe the class of Cauchy-Dirichlet problems in the
presence of an obstacle.

Definition 5. Let Q
λω(R)
R,+ ≡ Qλω(R)

R,+ (x0, t0) be a cylinder with

λ ≥ max{M1/ω(R),M2,M3} ,
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where M1,M2,M3 are positive constants. Let ψ, g ∈ C0(Q̄
λω(R)
R,+ ), g ≥ ψ on

∂PQ
λω(R)
R,+ , and let u ∈ C0(Q

λω(R)
R,+ ) be the unique solution to{

max{Hu,ψ − u} = 0 in Q
λω(R)
R,+

u = g on ∂PQ
λω(R)
R,+ .

We say that (u, g, ψ) belongs to the class P̃0(H;Q
λω(R)
R,+ , ω(·),M1,M2,M3) if

osc
Q
λω(R)
R,+

u ≤M1

and

osc
B(x0,r)

g(·, t0) ≤M2ω(r) , osc
Q
λω(r)
r,+ (x0,t0)

ψ ≤M3ω(r) for every r ≤ R .

The classes introduced are invariant under translation in the following sense.
Consider, for instance, the class D0 and let O ⊂ Rn+1 be a space-time cylin-
der. Then (u + k, g + k) ∈ D0(H;O, ω(·),M1,M2) for all k ∈ R if (u, g) ∈
D0(H;O, ω(·),M1,M2). The similar fact also holds for the classes introduced in
Definitions 4-5.

Lemma 4.1. Let M1,M2, R be positive constants. There exists a constant c4.1 ≡
c4.1(n, p, ν, L) such that if

λ ≥ c4.1 max{M1/ω(R),M2, sR/ω(R)}

then the following holds: If

(u, g) ∈ D0(H;Q
λω(R)
R,+ (x0, t0), ω(·),M1,M2) ,

then

osc
Q
λω(r)
r,+ (x0,t0)

u ≤ λω(r) for every r ∈ (0, R) .

Lemma 4.2. Let M1,M2,M3, R be positive constants. There exists a constant
c4.2 ≡ c4.2(n, p, ν, L) such that if

λ ≥ c4.2 max{M1/ω(R),M2,M3, sR/ω(R)}

then the following holds: If

(u, g, ψ) ∈ P̃0(H;Q
λω(R)
R,+ (x0, t0), ω(·),M1,M2,M3) ,

then

osc
Q
λω(r)
r,+ (x0,t0)

u ≤ λω(r) for every r ∈ (0, R) .

Lemma 4.3. Let M1,M3, R be positive constants. There exists a constant c4.3 ≡
c4.3(n, p, ν, L) such that if

λ ≥ c4.3 max{M1/ω(R),M3, sR/ω(R)}

then the following holds: If

(u, g, ψ) ∈P0(H;Q
λω(R)
R,− (x0, t0), ω(·),M1,M3) and u(x0, t0) = ψ(x0, t0) ,

then

osc
Q
λω(r)
r,− (x0,t0)

u ≤ λω(r) for every r ∈ (0, R) .
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Lemma 4.4. Let M1,M3, R be positive constants. There exists a constant c4.4 ≡
c4.4(n, p, ν, L) such that if

λ ≥ c4.4 max{M1/ω(R),M3, sR/ω(R)}

then the following holds: If

(u, g, ψ) ∈P0(H;Q
λω(R)
R (x0, t0), ω(·),M1,M3) and u(x0, t0) = ψ(x0, t0) ,

then

osc
Q
λω(r)
r (x0,t0)

u ≤ λω(r) for every r ∈ (0, R) .

Lemma 4.5. Let M1, R be positive constants. There exists a constant c4.5 ≡
c4.5(n, p, ν, L) such that if

λ ≥ c4.5 max{M1/ω(R), sR/ω(R)}

then the following holds: If

(u, g) ∈ D0(H;Q
λω(R)
R (x0, t0), ω(·),M1,∞) ,

then

osc
Q
λω(r)
r (x0,t0)

u ≤ λω(r) for every r ∈ (0, R) .

4.1. Proof of Lemmas 4.1–4.5. The proofs of the above lemmas, though differ-
ing at important points, have several steps in common that we put together. Our
proofs proceed in eight steps.

Step 1: Preliminary set-up. We will in the following use a positive constant Λ,
whose definition changes according to the lemma in question. Specifically, we fix Λ
as follows:

(4.3)



Lemma 4.1 : Λ := 4 max{M1/ω(R),M2, sR/ω(R)}
Lemma 4.2 : Λ := 4 max{M1/ω(R),M2,M3, sR/ω(R)}
Lemma 4.3 : Λ := 4 max{M1/ω(R),M3, sR/ω(R)}
Lemma 4.4 : Λ := 4 max{M1/ω(R),M3, sR/ω(R)}
Lemma 4.5 : Λ := 4 max{M1/ω(R), sR/ω(R)}.

After translation, we may throughout the proof assume, without loss of generality,
that

(x0, t0) = (0, 0) and u(x0, t0) = 0 .

With u being defined in Q
λω(R)
R,± (Lemma 4.1-Lemma 4.3) or Q

λω(R)
R (Lemma 4.4,

Lemma 4.5), u(0, 0) = 0, we introduce the quantities

(4.4)



S+
k (u, λ) := sup

Q
λω(2−kR)

2−kR,+

|u|

S−k (u, λ) := sup
Q
λω(2−kR)

2−kR,−

|u|

Sk(u, λ) := sup
Q
λω(2−kR)

2−kR

|u| .

Due to the normalization u(0, 0) = 0, the quantities above will play the role of an
oscillation in the rest of the proof.

We shall show that there exists a constant c ≥ 4, depending only on n, p, ν, L
such that for

λ := cΛ, where Λ is as defined in (4.3) ,
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we have

(4.5)



S+
k (u, λ)

ω(2−kR)
≤ max

{
λ,
S+
k−1(u, λ)

ω(21−kR)
, . . . ,

S+
0 (u, λ)

ω(R)

}
S−k (u, λ)

ω(2−kR)
≤ max

{
λ,
S−k−1(u, λ)

ω(21−kR)
, . . . ,

S−0 (u, λ)

ω(R)

}
Sk(u, λ)

ω(2−kR)
≤ max

{
λ,
Sk−1(u, λ)

ω(21−kR)
, . . . ,

S0(u, λ)

ω(R)

}
,

for all k ∈ N, depending on the Lemma considered. Specifically, (4.5)1 comes into
the play when considering Lemma 4.1 and Lemma 4.2; inequality (4.5)2 intervenes
in Lemma 4.3, while (4.5)3 is used for Lemma 4.4 and Lemma 4.5. Indeed, if (4.5)
holds for every positive integer k, then by induction it also follows that

S+
m(u, λ) ≤ λω(2−mR)

S−m(u, λ) ≤ λω(2−mR)

Sm(u, λ) ≤ λω(2−mR)

for all m ∈ N, and Lemmas 4.1–4.5 follow by an enlargement of the constant c by
a fixed factor (for instance 10) and using (2.5).

Step 2: Set-up of the contradiction argument (Blow-up). We argue by contradic-
tion assuming that (4.5) does not hold. Hence, with

(4.6) λj = 2jΛj , j ∈ N ,

where Λj is described in a few lines below, there exist, for every j ∈ N, a concave

modulus of continuity ωj(·), functions uj , gj , ψj , intrinsic cylinders Q
λjωj(Rj)
Rj ,± (and

Q
λjωj(Rj)
Rj

, depending on the lemma we are considering), operators

Hjw := wt − div aj(Dw) ,

with vector fields aj(·) uniformly satisfying (1.2) for fixed ν, L, and s ≡ sj ≥ 0,
and finally numbers M1,j ,M2,j ,M3,j , such that the following hold:

Lemma 4.1 : (uj , gj) ∈ D0(Hj ;Q
λjωj(Rj)
Rj ,+

, ωj(·),M1,j ,M2,j),

uj(0, 0) = 0,

Λj := 4 max{M1,j/ωj(Rj),M2,j , sjRj/ωj(Rj)},

Lemma 4.2 : (uj , gj , ψj) ∈ P̃0(Hj ;Q
λjωj(Rj)
Rj ,+

, ωj(·),M1,j ,M2,j ,M3,j) ,

uj(0, 0) = 0 ≥ ψj(0, 0),

Λj := 4 max{M1,j/ωj(Rj),M2,j ,M3,j , sjRj/ωj(Rj)},

Lemma 4.3 : (uj , gj , ψj) ∈P0(Hj ;Q
λjωj(R)
Rj ,− , ωj(·),M1,j ,M3,j) ,

uj(0, 0) = ψj(0, 0) = 0,

Λj := 4 max{M1,j/ωj(Rj),M3,j , sjRj/ωj(Rj)},

Lemma 4.4 : (uj , gj , ψj) ∈P0(Hj ;Q
λjωj(Rj)
Rj

, ωj(·),M1,j ,M3,j) ,

uj(0, 0) = ψj(0, 0) = 0,

Λj := 4 max{M1,j/ωj(Rj),M3,j , sjRj/ωj(Rj)},

Lemma 4.5 : (uj , gj) ∈ D0(Hj ;Q
λjωj(Rj)
Rj

, ωj(·),M1,j ,+∞),

uj(0, 0) = 0,
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Λj := 4 max{M1,j/ωj(Rj), sjRj/ωj(Rj)} ,
and there exists, for every j ∈ N, a positive integer kj such that

(4.7)



S+
kj

(uj , λj)

ωj(2−kjRj)
> max

{
λj ,

S+
kj−1(uj , λj)

ωj(21−kjRj)
, . . . ,

S+
0 (uj , λj)

ωj(Rj)

}
S−kj (uj , λj)

ωj(2−kjRj)
> max

{
λj ,

S−kj−1(uj , λj)

ωj(21−kjRj)
, . . . ,

S−0 (uj , λj)

ωj(Rj)

}
Skj (uj , λj)

ωj(2−kjRj)
> max

{
λj ,

Skj−1(uj , λj)

ωj(21−kjRj)
, . . . ,

S0(uj , λj)

ωj(Rj)

}
,

depending on the one we are considering amongst Lemmas 4.1-4.5, in the way
described after (4.5). For each j ∈ N we let kj be the smallest integer such that
(4.7) holds. Note, in particular, that this choice of kj implies that

(4.8)


λjωj(2

−kjRj) < S+
kj

(uj , λj) ≤ S+
q (uj , λj) ≤ λjωj(2−qRj), or

λjωj(2
−kjRj) < S−kj (uj , λj) ≤ S

−
q (uj , λj) ≤ λjωj(2−qRj), or

λjωj(2
−kjRj) < Skj (uj , λj) ≤ Sq(uj , λj) ≤ λjωj(2−qRj),

for all q ∈ {0, ..., kj − 1} and depending on the lemma we are proving. Moreover,
kj > j must hold. Indeed, assuming the contrary, then we would have

‖uj‖L∞ ≥ λjωj(2−kjRj) ≥ λjωj(2−jRj) = 2jΛjωj(2
−jRj) .

Now using (2.5) we would have ‖uj‖L∞ ≥ Λjωj(Rj) and this would contradict the
definition of Λj .

Step 3: Scaling of solutions. Following (3.3) we define

ω̃j(γ) :=
ωj(γ2−kjRj)

ωj(2−kjRj)
for every γ ≥ 0 .

Note that ω̃j(·) remains concave with ω̃j(0) = 0 and ω̃j(1) = 1 and that

(4.9) 1 ≤ ω̃j(r) ≤ r
holds for all r ≥ 1 by (2.5). We also define

Q̃±m,j := Q
ω̃j(2

m)
2m,± (0, 0) , Q̃m,j := Q

ω̃j(2
m)

2m (0, 0) , m ∈ {0, 1, ..., kj}
and the scaled functions

ũj(x, t) :=
uj(2

−kjRjx, (λjωj(2
−kjRj))

2−p(2−kjRj)
pt)

λjωj(2−kjRj)
,

g̃j(x, t) :=
gj(2

−kjRjx, (λjωj(2
−kjRj))

2−p(2−kjRj)
pt)

λjωj(2−kjRj)
,

ψ̃j(x, t) :=
ψj(2

−kjRjx, (λjωj(2
−kjRj))

2−p(2−kjRj)
pt)

λjωj(2−kjRj)
,

whenever (x, t) ∈ Q̃+
kj ,j

, Q̃−kj ,j , Q̃kj ,j and depending on the lemma we are consider-

ing. Accordingly to the scaling already discussed in (3.1)-(3.2) (take r = 2−kjRj ,

R ≡ Rj there) ũj relates to the operator H̃j defined by

H̃jw := wt − div ãj(Dw) ,

where

ãj(z) :=
aj(2

kjR−1
j λjωj(2

−kjRj)z)

(2kjR−1
j λjωj(2−kjRj))p−1

, z ∈ Rn ,
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satisfies conditions (1.2) with s replaced by

(4.10) s̃j :=
sj2
−kjRj

λjωj(2−kjRj)
≤ sjRj
λjωj(Rj)

≤ 2−j .

To conclude this we have here used (2.5) and that Λj ≥ 4sjRj/ωj(Rj). Moreover,
by (4.8) we have that

(4.11) 1 < sup
Õ0,j

|ũj | ≤ sup
Õm,j

|ũj | ≤ ω̃j(2m) ≤ 2m , m ∈ {1, ..., kj},

where Õ0,j and Õm,j equal Q̃+
0,j , Q̃

−
0,j or Q̃0,j , and, Q̃+

m,j , Q̃
−
m,j or Q̃m,j , respectively,

depending on the lemma we are considering. With the above definitions, ũj solves,
in the case of Lemma 4.1, the Cauchy problem{

H̃j ũj = 0 in Q̃+
kj ,j

ũj = g̃j on ∂PQ̃
+
kj ,j

,

and, in the case of Lemma 4.2, the Cauchy obstacle problem{
max

{
H̃j ũj , ψ̃j − ũj

}
= 0 in Q̃+

kj ,j

ũj = g̃j on ∂PQ̃
+
kj ,j

.

In the case of Lemmas 4.3–4.4 the function ũj instead solves{
max

{
H̃j ũj , ψ̃j − ũj

}
= 0 in Q̃−kj ,j

ũj = g̃j on ∂PQ̃
−
kj ,j

,

and {
max

{
H̃j ũj , ψ̃j − ũj

}
= 0 in Q̃kj ,j

ũj = g̃j on ∂PQ̃kj ,j ,

respectively. Finally, in the case of Lemma 4.5, ũj solves{
H̃j ũj = 0 in Q̃kj ,j

ũj = g̃j on ∂PQ̃kj ,j .

We note that in the case of Lemma 4.1 and Lemma 4.2 we also have that

osc
B(0,r)

gj(·, 0) ≤M2,jωj(r) for every r ≤ Rj , gj(0, 0) = 0 , λj ≥ 2jM2,j ,

and by (4.9), we see that

sup
x∈B(0,2m)

|g̃j(x, 0)| ≤ 2m−j(4.12)

whenever m ∈ {0, 1, . . . , kj}. Similarly, in the case of Lemma 4.2, we have

osc
Q
λjωj(r)

r,+

ψj ≤M3,jωj(r) for every r ≤ Rj , ψj(0, 0) ≤ 0 , λj ≥ 2jM3,j .

In the case of Lemma 4.3 and Lemma 4.4 we have

osc
Q
λjωj(r)

r,−

ψj ≤M3,jωj(r) for every r ≤ Rj , ψj(0, 0) = 0 , λj ≥ 2jM3,j

and

osc
Q
λjωj(r)
r

ψj ≤M3,jωj(r) for every r ≤ Rj , ψj(0, 0) = 0 , λj ≥ 2jM3,j ,
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respectively. In particular, in the case of Lemma 4.2 we only have that ψj(0, 0) ≤ 0
in contrast to ψj(0, 0) = 0. Using all of this, and (4.9), we see that

Lemma 4.2 : sup
Q̃+
m,j

ψ̃j ≤ 2m−j ,

Lemma 4.3 : inf
Q̃−m,j

ψ̃j ≥ −2m−j ,

Lemma 4.4 : inf
Q̃m,j

ψ̃j ≥ −2m−j .(4.13)

Step 4: Proof of Lemma 4.1. The proof is based on a comparison argument using
suitable weak solutions and Lemma 3.2. Let l be a positive integer to be determined
in a few lines and observe that if j > l, then kj > l. Using (4.11) and (4.12) we
immediately see that

(4.14) sup
Q̃+
l,j

|ũj | ≤ 2l , sup
x∈B(0,2l)

|g̃j(x, 0)| ≤ 2l−j .

Next, we set

∂+
P Q̃

+
l,j = ∂PQ̃

+
l,j ∩ {t > 0} and ∂−P Q̃

+
l,j = ∂PQ̃

+
l,j ∩ {t = 0} ,

and we let the functions ṽ±j (that is ṽ+
j and ṽ−j ) solve

(4.15)


H̃j ṽ

±
j = 0 in Q+

l,j

ṽ±j = ±2l on ∂+
P Q̃

+
l,j

ṽ±j = ±2l−j on ∂−P Q̃
+
l,j .

The existence of such a solutions, attaining the initial datum locally continuously
(that is in any set of the type B(0, γ) × {0} for γ < 2l) follows, for example, by a
Perron method type argument (see [22]). By the standard comparison principle we
see that

(4.16) − 2l ≤ ṽ−j ≤ ũj ≤ ṽ
+
j ≤ 2l in Q+

l,j .

Observe that w̃−j = max{−ṽ−j − 2l−j , 0} and w̃+
j = max{ṽ+

j − 2l−j , 0} are both
nonnegative weak subsolutions taking locally continuously zero initial values on

∂−P Q̃
+
l,j . Applying Lemma 3.2 with the choice (x0, t0) ≡ (0, 0), T ≡ 1, R ≡ 2l,

s ≡ s̃j ≤ 2−j , we arrive at

sup
Q̃+

0,l

w̃±j ≤
c

2pl

∫
Q̃+
l,j∩{0<t<1}

(
w̃±j
)p−1

dx dt+ c2ls̃j ≤ c
(
2−l + 2l−j

)
whenever j > l and for a constant c ≡ c(n, p, ν, L). This leads to

(4.17) sup
Q̃+

0,j

|ṽ±j | ≤ (1 + c)2l−j + c2−l .

Therefore, taking the smallest integer l such that (1 + c)2−l ≤ 1/8, and then
j = 2l + 3, we can conclude that

(4.18) sup
Q̃+

0,j

|ũj | ≤
1

4
,

provided j is large enough. Obviously this contradicts (4.11) and hence the proof
of Lemma 4.1 is complete.
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Step 5: Proof of Lemma 4.2. We will prove the result with c4.2 := 2c4.1, where
c4.1 is as in Lemma 4.1. Indeed, setting λ := 2c4.1Λ, we will first prove that

(4.19) inf
Q
λω(r)
r,+

u ≥ −λ
2
ω(r) for every r ∈ (0, R) .

In fact, let v be the solution to the Dirichlet problem (1.9) in the domain O =

Q
λω(R)
R,+ (x0, t0) with b = g. Then, by the comparison principle, we see that u ≥ v

and therefore (4.19) is a direct consequence of Lemma 4.1, because

(v, g) ∈ D0(H;Q
λω(R)
R,+ (xj , tj), ω(·),M1,M2).

Now, the proof of the lemma will be completed by proving the upper bound

(4.20) sup
Q
λω(r)
r,+

u ≤ λ

2
ω(r) for every r ∈ (0, R) .

To prove (4.20) we repeat the steps above, starting with Step 2, but now considering
the supremum of ũj rather than than the supremum of |ũj |. In this case the heart
of the matter is then to find a contradiction to

(4.21) sup
Q̃+

0,j

ũj >
1

2

for j large enough. Note that since ũj(0, 0) = 0 the supremum is always positive.
With this aim we fix, as in Step 4, a positive integer l to be chosen later and recall
the validity of (4.14). Note that at this stage we do not have any control of the

size of the scaled obstacle ψ̃j since we are only assuming that ψ̃j(0, 0) ≤ 0, but

not necessarily ψ̃j(0, 0) = 0. Using (4.13) we obtain that ψ̃j ≤ 2l−j in the cylinder

Q̃+
l,j . The plan now is to make use of the functions ṽ+

j of (4.15) as in Step 4, but
accounting for the important difference that in the case we are now considering,
ũj is not a solution but only a solution to an obstacle problem. To handle this we
use the “elliptic” comparison principle given by Lemma 2.1. To proceed we first

note, by the standard minimum principle, that ṽ+
j ≥ 2l−j in Q̃+

l,j . Since ψ̃j ≤ 2l−j

in Q̃+
l,j we see that ũj is a weak solution in S := Q̃+

l,j ∩ {ũj > 2l−j}. We therefore

conclude that ũj ≤ ṽ+
j in ∂S \ {t = [ω̃j(2

l)]2−p2lp} and Lemma 2.1 then implies

that ũj ≤ ṽ+
j in S. All in all we get that ũj ≤ ṽ+

j in Q̃+
l,j . Using this and recalling

(4.17) we therefore obtain

sup
Q̃+

0,j

ũj ≤ (1 + c)2l−j + c2−l.

We can now argue as in Step 4, choosing l and j large enough, to get that ũj ≤ 1/4,

in Q̃+
0,j . This now contradicts (4.21) and the proof of Lemma 4.2 is complete.

Step 6: Proof of Lemma 4.3. The proof of Lemma 4.3 is more involved compared
to the proof of Lemma 4.1 and Lemma 4.2. To prove the lemma we again introduce
suitable positive solutions for comparison and we can do it in such a way that the
value of the solutions for comparison are as small as we please at the origin. This
smallness, in combination with Harnack estimates, shows that the solutions for
comparison are small, at the origin, also for earlier times. However, since we know
that the supremums of the solutions for comparison are much larger than the small
values at origin, we can conclude that there must be a point, by the mean value
principle, where the modulus of the gradient is large. Then, using Hölder estimates
for the gradient we are able to prove that the moduli of gradients of the solutions
for comparison are actually large in the whole cylinder and thus the equations for
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the solutions for comparison become non-degenerate. Using this we are then able
to apply the Gaussian estimates from Section 3.4 to conclude the proof. This is
the heuristics of the proof which we now intend to make rigorous. To do this we

derive a contradiction to (4.11). Since ψ̃j(0, 0) = 0, we have ‖ψ̃j‖L∞(Q̃−0,j)
≤ 2−j by

(4.13), and ũj ≥ −1/2 follows by taking j = 1. Using this we see that it is enough
to prove, for j large enough, that

(4.22) sup
Q̃−0,j

ũj ≤
1

2
.

Let ṽj now solve H̃j ṽj = 0 in Q̃−l,j

ṽj = max
{
ũj , 2

l−j} on ∂PQ̃
−
l,j .

Clearly ṽj ≥ 2l−j by the minimum principle. Furthermore,

ũj + 21+l−j ≥ ṽj ≥ ũj on ∂PQ̃
−
l,j ,

and ṽj ≥ ũj on the coincidence set Q̃−l,j ∩ {ũj = ψ̃j} since, by (4.13), we have

‖ψ̃j‖L∞(Q̃−l,j)
≤ 2l−j . Since ũj is a weak solution in S := Q̃−l,j\{ũj = ψ̃j} and ṽj ≥ ũj

on the topological boundary of S, with the top {t = 0} excluded, the “elliptic”
comparison principle of Lemma 2.1 implies that ṽj ≥ ũj . Moreover, the standard
comparison principle on standard space-time cylinders yields ũj + 21+l−j ≥ ṽj in

Q̃−l,j , because ũj (and therefore ũj + 21+l−j) is a weak supersolution in Q̃−l,j . Thus,
all in all, we have

(4.23) ũj ≤ ṽj ≤ ũj + 21+l−j in Q̃−l,j .

Hence, since ũj(0, 0) = 0, we have

(4.24) ṽj(0, 0) ≤ 21+l−j

and by (4.11) it follows that

(4.25) ‖ṽj‖L∞(Q̃−m,j)
≤ ω̃j(2m) + 21+l−j ≤ 2ω̃j(2

m) ≤ 2m+1

for m ∈ {0, 1, . . . , l} and j ≥ l+ 1. We next estimate ṽj(0, τ) for τ ∈ [−1, 0]. To do
this we first note, using the Harnack inequality in Theorem 3.3, that

ṽj(0, τ) ≤ c̃2ṽj(0, τ + c̃1%̃
p(ṽj(0, τ))2−p)) + c̃2%̃s̃j(4.26)

provided %̃ ≤ 2l−2 and

−ω̃j(2l−2)2−p2(l−2)p < τ − c̃1%̃p(ṽj(0, τ))2−p < τ + c̃1%̃
p(ṽj(0, τ))2−p ≤ 0 .

Here c̃1 ≥ 1 and c̃2 ≥ 1 are constants depending only on n, p, ν, L. Suppose now
that ṽj(0, τ) > 1/4 holds for some τ ∈ (−1, 0). Using this together with (4.25), for
m = 0, we see that in this case 1/4 < ṽj(0, τ) ≤ 2 also must hold. Let now %̃ solve
the equation

c̃1%̃
p(ṽj(0, τ))2−p = −τ

and note that the root %̃ for this equation is less than two, hence we need to assume
l ≥ 4 to apply (4.26). Consequently, using (4.24), (4.10) and (4.26), we see that

ṽj(0, 0) ≥ c̃−1
2 ṽj(0,−c̃2%̃p(ṽj(0, τ))2−p))− %̃s̃j

= c̃−1
2 ṽj(0, τ)− %̃s̃j ≥

1

4c̃2
− %̃

2j
≥ 1

4c̃2
− 1

2j−1
.(4.27)
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However, this contradicts (4.24) if j ≥ j0 + l for some j0 (which may be chosen to
depend only on n, p, ν, L). Hence we can conclude, using also continuity, that

0 ≤ ṽj(0, τ) ≤ 1/4 whenever τ ∈ [−1, 0] and j ≥ j0 + l .(4.28)

If now

sup
Q̃−0,j

|Dṽj | ≤
1

4

then by the mean value principle, we would also have that

sup
x∈B1

ṽj(x, τ)− ṽj(0, τ) ≤ sup
x∈B1

|ṽj(x, τ)− ṽj(0, τ)| ≤ sup
Q̃−0,j

|Dṽj | ≤
1

4

for all τ ∈ [−1, 0]. As a consequence, by (4.23) and (4.28), we would then have that

sup
Q̃−0,j

ũj ≤ sup
Q̃−0,j

ṽj ≤
1

2
,

giving the desired contradiction in (4.18). Hence, in order to complete the proof,
we can in the following assume that

(4.29) sup
Q̃−0,j

|Dṽj | ≥
1

4
.

To proceed we first calculate an upper bound for the gradient. The energy estimate
of Lemma 3.1, (4.25), (4.10), and (2.5) give∫

Q̃−l−1,j

(|Dṽj |+ s̃j)
p
dx dt ≤ c

∫
Q̃−l,j

(
ṽpj
2lp

+
ṽ2
j

[ω̃j(2l)]2−p2lp

)
dx dt+ cs̃pj

≤ c2−lp
{

[ω̃j(2
l)]p + 2lp−jp

}
≤ c

[
2−lω̃j(2

l)
]p

for all j > l. The estimate in the last display, (3.6) with ε ≡ 1, Hölder’s inequality,
and (2.5), yield that

s̃j + sup
Q̃−l−2,j

|Dṽj |

≤ 2−j + 21−lω̃j(2
l−1) + c[21−lω̃j(2

l−1)]2−p
∫
Q̃−l−1,j

(|Dṽj |+ s̃j)
p−1 dx dt

≤ c22−lω̃j(2
l−2)

for all j > l. The constant c depends only on n, p, ν, L. Having established the
gradient bound, we are in position to apply Corollary 3.1, with parameters r ≡ 2l−2,

% = 24, λ̃ ≡ 1, ω(·) ≡ ω̃j(·) and A ≡ c. We thus obtain, using also (4.29) and (4.9),
that

1/4 ≤ sup
Q̃−4,j

|Dṽj | ≤
cω̃j(2

l−2)

2l−2
≤ c

and

osc
Q̃−4,j

Dṽj ≤
4cω̃j(2

l−2)

2l−2
2(6−l)α̃ ≤ c2−lα̃

where c ≡ c(n, p, ν, L) and α̃ ≡ α̃(n, p, ν, L) are positive constants. Let l to be
the smallest integer such that c2−lα̃ ≤ 1/8, and note that this determines l as a
function depending only on the parameters n, p, ν, L. Put together we can conclude
that

(4.30) 1/8 ≤ |Dṽj(x, t)| ≤ c for all (x, t) ∈ Q̃−4,j .
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Now, (4.30) ensures that the rescaled equation satisfied by ṽj is nondegenerate

in Q̃−4,j . Indeed, by (3.5), we have that

|ãj(Dṽj(x, t))| ≤ L(|Dṽj(x, t)|2 + s̃2
j )

(p−1)/2 ≤ L̄(|Dṽj(x, t)|+ s̃j),

〈ãj(Dṽj(x, t)), Dṽj(x, t)〉 ≥ ν|Dṽj(x, t)|p − cs̃pj ≥ ν̄|Dṽj(x, t)|
2 − L̄2s̃2

j ,

for some ν̄ ∈ (0, 1) and c, L̄ ≥ 1, all depending only on n, p, ν, L, and for all

(x, t) ∈ Q̃−4,j . Keeping the content of Remark 3.2 in mind we are able to apply

the results of Section 3.4. Since B(0, 4) × (−4, 0) ⊂ Q̃−4,j by (4.9) and vj ≤ 32 in

Q̃−4,j by (4.25), we then find δ as in Lemma 3.4 – corresponding parameters ν̄, L̄ –
depending only on n, p, ν, L as well. We arrive at

ṽj(0, 0) + s̃j ≤ 21+l−j + 2−j ≤ δ

for j ≥ j1, where j1 ≡ j1(n, p, ν, L) is the smallest integer satisfying 21+l−j1 +2−j1 ≤
δ. Therefore Lemma 3.4 gives

sup
Q̃−0,j

ũj ≤ sup
Q̃−0,j

ṽj ≤
1

2
,

consequently proving the contradiction in (4.18). This completes the proof of
Lemma 4.3.

Step 7: Proof of Lemma 4.4. The estimate in Q
ω(R)
R,− has already been obtained

in Lemma 4.3 and we note that Lemma 4.3 also implies that

(4.31) osc
B(x0,r)

u(·, 0) ≤ λω(r) for every r ≤ R .

Therefore, with an appropriate setting of the constants, we may apply Lemma 4.2

in Q
ω(R)
R,+ with initial values g ≡ u to obtain the oscillation estimate also in the

upper cylinder Q
ω(R)
R,+ and thereby choosing a constant of the specific form c4.4 :=

10 max{c4.2, c4.3}2. This completes the proof of of Lemma 4.4.

Step 8: Proof of Lemma 4.5. To prove the lemma, we, as in the proof of
Lemma 4.4, first obtain the estimate in the lower part of the cylinder and then

in the upper part of the cylinder. The estimate in Q
ω(R)
R,− follows from Lemma 3.3

which also provides (4.31) in our case. To conclude with the estimate in the upper

part of the cylinder Q
ω(R)
R,+ we can, thanks to (4.31), apply Lemma 4.1 with initial

value g ≡ u to obtain the result. We can here take c4.5 := 10 max{c3.3, c4.1}2. This
completes the proof of of Lemma 4.5.

5. Proof of Theorems 1.1-1.2 and Corollary 1.1

Proof of Theorem 1.1. Recall that O = Ω× (0, T ) is a space-time cylinder and that
we consider the problem{

max{Hu,ψ − u} = 0 in O
u = b on ∂PO,

where b : Ō → R is continuous, ψ ∈ C̃ω(·)(O), and b ≥ ψ on ∂PO. Let O′ ⊂ O be a
space-time cylinder such that Ō′ ∩ ∂PO = ∅. We prove Theorem 1.1 by proceeding
in three steps.
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Step 1: Extension of solution. We define

ψ̄(·, t) =

{
ψ(·, t) t ∈ [0, T )

ψ(·, T ) t ∈ [T,∞) ,
b̄(·, t) =

{
b(·, t) t ∈ [0, T )

b(·, T ) t ∈ [T,∞) .

Then oscΩ×(0,∞) b̄ = oscΩ̄×[0,T ] b and[
ψ̄
]
C̃ω(·)(Ω×(0,∞))

= [ψ]C̃ω(·)(Ω×(0,T ]) .

Let ū be the unique solution to{
max

{
Hū, ψ̄ − ū

}
= 0 in Ω× (0,∞)

ū = b̄ on ∂P(Ω× (0,∞)) .

By the uniqueness, ū = u in Ω × [0, T ), and hence ū is an extension of u. In the
following we can therefore, without loss of generality, assume that O = Ω× (0,∞).

We also find out, by the very definition of the space C̃ω(·)(O) and (2.5), that

osc
Ω×(0,∞)

ψ̄ = osc
Ω̄×[0,T ]

ψ ≤ ω(R̄) [ψ]C̃ω(·)(O) ≤ R̄ [ψ]C̃ω(·)(O) ≡ c
(

Ω, T, [ψ]C̃ω(·)(O)

)
with R̄ = max{1,diam Ω, T 1/2 [ψ]

(p−2)/2

C̃ω(·)(O)
} as clearly

T ≤
(
ω(R) [ψ]C̃ω(·)(O)

)2−p
Rp ≤ [ψ]

2−p
C̃ω(·)(O)

R2

whenever R ≥ 1, again by (2.5). Note, in particular, that maximum and minimum
principle then implies that

(5.1) osc
O
u ≤ max

{
osc
O
b, osc
O
ψ
}
≤ c̃

(
Ω, T, [ψ]C̃ω(·)(O) , osc

O
b
)
.

Step 2: Intrinsic geometry. After a possible enlargement of O′, we may assume
that O′ := Ω′ × (τ, T ) where Ω′ b Ω and τ > 0. We let R be a number subject to
the restrictions

R ≤ dist(Ω′, ∂Ω) , τ ≥ Rp max
{

osc
O
b, [ψ]C̃ω(·)(O) ω(R), sR

}2−p
.

Using (2.5), and the fact that ω(1) = 1, we see that these conditions are satisfied if
we take

R = min

{
dist(Ω′, ∂Ω) ,max

{
τ1/pc̃

(
Ω, T, [ψ]C̃ω(·)(O) , osc

O
b
)(p−2)/p

,

τ1/p
(

[ψ]C̃ω(·)(O)

)(p−2)/p
, τ1/2

(
[ψ]C̃ω(·)(O)

)(p−2)/2
, τ1/2s(p−2)/2

}}
,(5.2)

where c̃ is as in (5.1). Letting c̄ := max {c4.1, . . . , c4.5}, where c4.1, . . . , c4.5 are the
constants appearing in Lemmas 4.1–4.5, and taking

(5.3) λ := c̄max
{
c̃
(

Ω, T, [ψ]C̃ω(·)(O) , osc
O
b
)
/ω(R), [ψ]C̃ω(·)(O) , sR/ω(R)

}
,

it follows that Q
λω(R)
R (z) ⊂ O whenever z ∈ Ō′.

Step 3: Continuity estimate. In this step we prove that the following holds
whenever z0 ∈ O′:
(5.4) osc

Q
cλω(r)
r (z0)

u ≤ cλω(r) for every r ∈ (0, R/2) .

Here c ≥ 2 is a constant with the same dependence as the constant c̄ introduced in
Step 2. Note that if r ≥ R/2, then

(5.5) osc
Q
cλω(r)
r (z0)∩O

u ≤ osc
O
u =

oscO u

ω(r)
ω(r) ≤ oscO u

ω(R/2)
ω(r) ≤ 2λω(r)
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by (2.5) and the definition of λ and (5.1). The proof of (5.4) will complete the
proof of Theorem 1.1 since, by (5.4) and (5.5), it follows that

[u]C̃ω(·)(O′) ≤ cλ

with a constant c depending only on n, p, ν, L and λ as in (5.3) having the desired
dependencies.

To prove (5.4) we fix z0 = (x0, t0) ∈ O′ and we let F := Ō′∩{u = ψ}. For every
z̃ = (x̃, t̃) ∈ F we obtain, using Lemma 4.4 with boundary datum g = u, that

(5.6) osc
Q
λω(r)
r (z̃)

u ≤ λω(r) for every r ∈ (0, R) .

This proves (5.4) if z0 ∈ F . Next, suppose that z0 ∈ O′ \ F and define r̃ > 0
through

(5.7) r̃ := sup
{
r : Qλω(r)

r (z0) ∩F = ∅
}
.

If r̃ ≥ R/2, then the desired estimate (5.4) follows immediately from Lemma 4.5.

If r̃ < R/2 then we take z̃0 ∈ ∂Qλω(r̃)
r̃ (z0) ∩F and first use (5.6) to conclude that

(5.8) osc
Q
λω(r)
r (z̃0)

u ≤ 2λω(r) for every r ∈ (0, R) .

In particular, since Q
λω(r)
r (z0) ⊂ Q

λω(2r)
2r (z̃0) by (2.6) and for all r ∈ (r̃, R/2), we

can use (5.8) and (2.5) to conclude that

(5.9) osc
Q
λω(r)
r (z0)

u ≤ osc
Q
λω(2r)
2r (z̃0)

u ≤ 2λω(2r) ≤ 4λω(r) for every r ∈ [r̃, R/2) .

Furthermore, Lemma 4.5 applied to Q
λω(r̃)
r̃ (z0) implies that

(5.10) osc
Q
λ̃ω(r)
r (z0)

u ≤ λ̃ω(r) for every r ∈ (0, r̃) ,

where

λ̃ = c4.5 max{4λω(r̃)/ω(r̃), sr̃/ω(r̃)} ≤ 4c̄max{λ, sR/ω(R)} = cλ .

Combining (5.9)–(5.10) we see that the proof of (5.4) is complete when z0 ∈ O′\F .
This completes the proof of Theorem 1.1. �

Proof of Theorems 1.2 and Corollary 1.1. We only prove Theorem 1.2 since Corol-
lary 1.1 follows from Theorem 1.2 with ψ = inf b − 1. To prove Theorem 1.2 we
argue similarly as in the proof of Theorem 1.1 and we are here therefore quite brief
and only sketch the main differences. After extending u as in Step 1 in the above
proof we simply choose R = dist(Ω′, ∂Ω) and define

λ := c̄max
{
c̃/ω(R), [b]Cω(·)(Ω) , [ψ]C̃ω(·)(O) , sR/ω(R)

}
,

where c̃ ≡ c̃
(

Ω, T, [ψ]C̃ω(·)(O) , oscO b
)

and c̄ := max {c4.1, . . . , c4.5} are as in the

proof of Theorem 1.1. We let G := Ω̄′ × {0} and using Lemma 4.2, with g = b, we
see that

(5.11) osc
Q
λω(r)
r (z)∩O′

u ≤ 2λω(r) for every r ∈ (0, R) ,

whenever z ∈ G . Consider z1 ∈ F := Ō′ ∩ {u = ψ} ∩ {t > 0} and define

r̄ ≡ r̄(z1) := sup
{
r ≤ R : Qλω(r)

r (z1) ∩ G = ∅
}
.

If r̄ ≥ R/2, then Lemma 4.4 (applied in Q
λω(r)
r (z1) with g = u) gives

osc
Q

2λω(r)
r (z1)

u ≤ 2λω(r) for every r ∈ (0, R/2) .
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If, on the other hand, r̄ < R/2, then we can find z̃1 ∈ ∂Q
λω(r̄)
r̄ (z1) ∩ G , and

using (5.11) we see that

osc
Q
λω(r)
r (z̃1)∩O′

u ≤ 2λω(r) for every r ∈ (0, R) .

Since Q
λω(r)
r (z1) ⊂ Q

λω(2r)
2r (z̃1) by (2.6) and for all r ∈ (r̄, R/2), it furthermore

follows that

(5.12) osc
Q
λω(r)
r (z1)∩O′

u ≤ osc
Q
λω(2r)
2r (z̃1)∩O′

u ≤ 2λω(2r) ≤ 4λω(r) ∀ r ∈ [r̄, R/2) .

In the final deduction we have here also used (2.5). Lemma 4.2 applied with

λ̄ = c̄max{4λω(r̄)/ω(r̄), [ψ]C̃ω(·) , sr̄/ω(r̄)} ≤ 4c̄max{λ, sR/ω(R)} = cλ ,

implies that

(5.13) osc
Q
cλω(r)
r (z1)

u ≤ cλω(r) for every r ∈ [0, r̄) .

Combining (5.12) and (5.13), keeping (5.11) in mind, we see that

(5.14) osc
Q
cλω(r)
r (z1)∩O′

u ≤ cλω(r) for every r ∈ [0, R/2)

whenever z1 ∈
(
Ō′ ∩ {u = ψ}

)
∪
(
Ω̄′ × {0}

)
. Suppose now that

z1 ∈ Ō′ ∩ {u > ψ} ∩ {t > 0} .

In this case we combine the previous argument with the one from Theorem 1.1.
More specifically, instead of (5.7) we consider

(5.15) r̄ ≡ r̄(z1) := sup
{
r ≤ R : Qλω(r)

r (z1) ∩ (F ∪ G ) = ∅
}

and we distinguish more cases. Firstly, if r̄ ≥ R/2 then we use Lemma 4.5 as in the
proof of Theorem 1.1. Secondly, if r̄ < R/2 then we distinguish two cases. Indeed,

let z̄1 ∈ (F ∪G ) be such that z̄1 ∈ ∂pQλω(r)
r (z1). In the first case we assume z̄1 ∈ G

and in this case we proceed as above using Lemma 4.2, see (5.11). In the second
case we assume z̄1 ∈ F and we proceed, using (5.14) instead of (5.8), as in Theorem
1.1. �

6. Proof of Theorem 1.3

We let u weakly solve

ut − div a(Du) = 0 in O \ E ,

and assume that u ∈ C̃
ω(·)
loc (O) and Hω(·)(E) = 0. Let O2 b O1 b O be two

arbitrary, but fixed, smooth space-time cylinders. To prove Theorem 1.3 we only
need to prove the conclusion in O1 since the one of being a weak solution is a local

property. By the assumption u ∈ C̃ω(·)
loc (O) there exists M > 0 such that

(6.1) osc
O1

u ≤M and osc
Q
Mω(r)
r ∩O1

u ≤Mω(r) .

In what follows, we shall denote by c a constant which may vary from line to line,
but which only depend on n, p, ν, L. Using the existence result in [26] we see that
there exists a unique solution continuous v the obstacle problem{

max{Hv, u− v} = 0 in O1

v = u on ∂PO1 .



32 KUUSI, MINGIONE, AND NYSTRÖM

Let µ be the nonnegative Riesz measure associated to v. Note that the existence
of µ follows by standard arguments since v is a supersolution (see for instance [23,
Theorem 2.1]). Let F := {(x, t) ∈ O1 : v(x, t) = u(x, t)}. We first prove that

the support of µ is contained in F ∩ E.(6.2)

To prove (6.2) it is sufficient to show that v is a weak solution to Hv = 0 in
O1 \ (F ∪ E) in the sense of Definition 1. By Definition 2 we already know that
Hv = 0 in O1 \F and it therefore remains to show that Hv = 0 in Q := O1 \E. To
this aim, we show that if Q∗ b Q is a cylinder and w ∈ C0(Q̄∗) is a weak solution
to Hw = 0 in Q∗ with w = v on ∂PQ

∗, then actually v must coincide with w in
Q∗. Note that such a solution w exists and it is unique. We immediately see by the
comparison principle that v ≥ w in Q∗, because v is a weak supersolution. To show
that v ≤ w we instead argue as follows: since u ≤ v, we also have u ≤ w on ∂PQ

∗

and, as u solves Hu = 0 weakly in Q c Q∗, the comparison principle yields u ≤ w
in Q∗. We thus conclude that v ≤ w on ∂PQ

∗ ∪ F . We are therefore in position
to apply the “elliptic” comparison principle of Lemma 2.1 (with S = Q∗ \ F ) to
deduce that v ≤ w in Q∗ \ F and hence also in the whole of Q∗. Therefore v = w
and consequently also Hv = 0 holds in Q∗. This completes the proof of (6.2) as
Q∗ can be chosen arbitrarily.
Next, using (6.1), Theorem 1.1, and a covering argument, we can conclude that
there exists c, depending only on n, p, ν, L,M, ω(·),O1,O2, such that

(6.3) osc
O1

v ≤ c and osc
Q
ω(r)
r

v ≤ cω(r) ,

whenever Q
ω(r)
r ⊂ O2. Consider concentric cylinders Q

ω(r)
r ⊂ Q

ω(2r)
2r ⊂ O2. In the

following we will use the short notation Qr ≡ Q
ω(r)
r . Let φ ∈ C∞0 (Q2r) be such

that

0 ≤ φ ≤ 1 , |Dφ| ≤ c

r
|φt| ≤

c[ω(r)]p−2

rp
and φ ≡ 1 on Qr .

Let k denote the supremum of v on Q2r. Using the equation for v we have

0 ≤ µ(Qr) ≤
∫
Q2r

φp dµ

=

∫
Q2r

(〈a(Dv), Dφp〉+ (k − v)(φp)t) dx dt

≤ c

∫
Q2r

(|Dv|+ s)
p−1 |Dφ|φp−1 dx dt+

∫
Q2r

|k − v||(φp)t| dx dt

≤ c

(∫
Q2r

(|D(k − v)|+ s)
p
φp dx dt

)(p−1)/p(∫
Q2r

|Dφ|p dx dt
)1/p

+

∫
Q2r

|k − v||(φp)t|dx dt .(6.4)

Using (3.5) and energy estimates similar to Lemma 3.1, for the nonnegative weak
subsolution k − v, we see that∫

Q2r

|D(k − v)|pφp dx dt ≤ c̄
∫
Q2r

(
|k − v|p|Dφ|p + |k − v|2|(φp)t|+ spφp

)
dx dt

for some c̄ = c̄(n, p, ν, L) ≥ 1. By (6.3) we have

sup
Q2r

|k − v| ≤ osc
Q2r

v ≤ cω(r)

and putting the estimates together we conclude that

µ(Qr) ≤ c
{

[ω(r)2rn + sp[ω(r)]2−prn+p]
}(p−1)/p {

[ω(r)2−prn
}1/p
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+cω(r)rn ≤ c(1 + s)p−1ω(r)rn .(6.5)

Here we have also used the estimate [ω(r)]2−p ≤ r2−p for r ≤ 1 and (2.5). Now, let
O3 b O2 be a space-time cylinder. We will prove that µ(O3) = 0. To do this we
first note, using that (6.5), that

µ(Qω(r)
r ) ≤ c̃rnω(r)(6.6)

whenever Q
ω(2r)
2r ⊂ O2 and for a constant c̃ ≥ 1 which is independent of r and the

center of Q
ω(2r)
2r . Next, since Hω(·)(E) = 0 we obtain, for ε > 0 and δ > 0 given (to

be taken smaller that dist(∂O3,O2)/4), then there exists a countable family

{Qω(ri)
ri } ≡ {Qω(ri)

ri (xi, ti)}

of cylinders with 0 < ri < δ, i = 1, 2, .., such that Q
ω(2ri)
2ri

b O2 and

(6.7) E ∩ O3 ⊆
⋃
i

Qω(ri)
ri and

∑
i

rni ω(ri) < ε .

Hence, using (6.6), we have

(6.8) µ(F ∩ E ∩ O3) ≤
∑
i

µ(Qω(ri)
ri ) ≤ c

∑
i

rni ω(ri) < cε ,

proving that µ(F ∩ E ∩ O3) = 0. Referring to (6.2), (6.8) and the fact that both
O2 and O3 are arbitrary, we can conclude that µ(O1) = 0. Thus v is a solution in
O1. Finally, applying the above argument with u replaced by −u we deduce that
there exist two solutions v1 and v2, i.e., Hv1 = Hv2 = 0, such that v1 ≤ u ≤ v2

and v1 = v2 on ∂PO1. It follows that v1 = v2 = u and the proof of Theorem 1.3 is
now complete as also the open subset O1 is arbitrary.
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