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Abstract. We prove a boundary Harnack type inequality for non-negative

solutions to singular equations of p-parabolic type, 2n/(n + 1) < p < 2, in
time-independent cylinder whose base is C1,1-regular. Simple examples show,

using the corresponding estimates valid for the heat equation as a point of

reference, that this type of inequalities can not, in general, be expected to
hold in the degenerate case (2 < p < ∞).
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1. Introduction and results

In recent years the study of boundary estimates, and boundary Harnack inequalities
in particular, for p-harmonic functions, p 6= 2, 1 < p < ∞, in Lipschitz domains,
and in domains which are well approximated by Lipschitz domains in the Hausdorff
distance sense, have been advanced, see [LN1]-[LN4]. These estimates have subse-
quently been used, see [LN5]-[LN7], to solve several problems concerning regularity
and free boundary regularity for the p-Laplace operator. In this note we initiate the
study of the corresponding parabolic theory. In particular, we consider boundary
estimates involving quasilinear parabolic operators of the type

(1.1) Hu := ut − div a(Du),

in time-independent domains of the form O = Ω× (0, T ) ⊂ Rn ×R, where Ω ⊂ Rn
is a bounded domain and n ≥ 2. The vector field a : Rn → Rn is assumed to be
C1-regular and is assumed to satisfy

(1.2)

{
|a(η)|+ |∂a(η)||η| ≤ L|η|p−1

ν|η|p−2|ξ|2 ≤ 〈∂a(η)ξ, ξ〉

whenever η, ξ ∈ Rn, for some fixed parameters 0 < ν ≤ L, and where, in general, p
is allowed to vary in the range 1 < p <∞. The prototype for this type of operators
is the operator

(1.3) u→ ut − div (|Du|p−2Du).

The operator in (1.3) is often referred to as the p-parabolic operator or the evo-
lutionary p-Laplace operator. It is well-known, see [DB], that solutions to the
p-parabolic equation exhibit quite different behaviors in the parameter regimes
2 < p <∞ (degenerate case) and 1 < p < 2 (singular case). In particular, in the de-
generate case the phenomenon of finite speed propagation is present and in the sin-
gular case solutions will go extinct. Furthermore, the singular case is often divided
into the regimes 2n/(n + 1) < p < 2 (super-critical case) and 1 < p ≤ 2n/(n + 1)
(sub-critical case) and we will here, in the singular case and due to the lack of
theory in the sub-critical case, exclusively consider the super-critical case. We also
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note that when p = 2 then the evolutionary p-Laplace operator coincides with the
familiar heat operator.

1.1. Background on the linear theory. To outline the type of results we are
aiming at, and to put this ambition into context, we here first briefly discuss the
corresponding linear theory and the corresponding estimates for the heat equation
(p = 2) in the setting of bounded Lipschitz domains. We say that Ω ⊂ Rn is a
bounded Lipschitz domain if there exists a finite set of (standard Euclidean) balls
{B(zi, ri)}, with zi ∈ ∂Ω and ri > 0, such that {B(zi, ri)} constitutes a covering of
an open neighbourhood of ∂Ω and such that, for each i,

Ω ∩B(zi, 4ri) = {x = (x′, xn) ∈ Rn : xn > φi(x
′)} ∩B(zi, 4ri),

∂Ω ∩B(zi, 4ri) = {x = (x′, xn) ∈ Rn : xn = φi(x
′)} ∩B(zi, 4ri),(1.4)

in an appropriate coordinate system and for a Lipschitz function φi. The Lipschitz
constants of Ω are defined to be M = maxi ‖|∇φi|‖∞ and r0 = mini ri. Given
a bounded Lipschitz domain Ω with constants M , r0, we let, for any (x0, t0) ∈
∂Ω× (0, T ) and r < min{r0/max{2, 2M},

√
(T − t0)/4,

√
t0/4},

Ar(x0, t0) = (x0 + 2Mren, t0) , A±r (x0, t0) = (x0 + 2Mren, t0 ± 2r2) ,

where en is the unit vector pointing in the positive xn-direction and defined through
the local coordinate system. Then each of these three points are contained in
Ω× (0, T ) and

c−1r < dp((x0, t0), P ) < cr, and dp(P, ∂Ω× (0, T )) ≥ c−1r,

for some c = c(n,M), 1 ≤ c <∞, whenever P ∈ {Ar(x0, t0), A+
r (x0, t0), A−r (x0, t0)}.

Here dp denotes the standard parabolic distance function, i.e., dp((x, t), (y, s)) =

max{|x− y|, |t− s|1/2} whenever (x, t), (y, s) ∈ Rn ×R, and dp((x, t), ∂Ω× (0, T ))
is the parabolic distance from (x, t) to ∂Ω × (0, T ). We let Cr(x, t) = B(x, r) ×
(t − r2, t + r2) whenever (x, t) ∈ Rn+1 and r > 0. Consider now a bounded Lip-
schitz domain Ω as above with constants M and r0. Furthermore, let u and v be
two nonnegative solutions to the heat equation in (Ω × (0, T )) ∩ C2r0(x0, t0) and
assume that both u and v vanish continuously on (∂Ω× (0, T ))∩C2r0(x0, t0). The
following result is essentially due to [FGS], see also [G], [FGS], [N], [FS], [FSY],
[S] and [SY] for more: There exist constants c1 ≡ c1(n,M,m+

u /m
−
u ,m

+
v /m

−
v ),

c2 ≡ c2(n,M), 1 ≤ c1, c2 < ∞, and σ ≡ σ(n,M,m+
u /m

−
u ,m

+
v /m

−
v ), 0 < σ < 1,

where m±u = u(A±r0/c2(x0, t0)), m±v = v(A±r0/c2(x0, t0)), such that∣∣∣∣u(x, t)

v(x, t)
− u(y, s)

v(y, s)

∣∣∣∣ ≤ c1u(Ar(x0, t0))

v(Ar(x0, t0))

(
dp((x, t), (y, s))

r

)σ
holds whenever (x, t), (y, s) ∈ (Ω × (0, T )) ∩ Cr/4(x0, t0) and 0 < r < r0/c2. An
important feature of this result is that the statement is both forward and backward
in time – something which initially may seem unnatural for the heat equation
considering the time-lag generally appearing in the parabolic Harnack inequality.
However, the fact that u and v both vanish continuously on a large portion of
(∂Ω× (0, T )) enables one to establish an elliptic type Harnack inequality for them
and subsequently the above result, see [FGS].

1.2. Degenerate versus singular. As mentioned above it is well-known that
solutions to the p-parabolic equation exhibit quite different behaviors in the de-
generate case compared to the singular case. In particular, in the degenerate
case the phenomenon of finite speed propagation is present and due to this sim-
ple examples show that one can not expect the result in Section 1.1 to gener-
alize to the p-parabolic equation in the degenerate case without imposing addi-
tional conditions on u and v. Indeed, simply consider the setting of the half space
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Rn+1
+ := Rn+ × R = {(x1, ..., xn, t) ∈ Rn × R : xn > 0}. Since u = xn is solution

to the p-parabolic equation in Rn+1
+ , and since u = xn vanishes continuously on

the boundary of Rn+1
+ , it is obvious that in the degenerate case two non-negative

solutions to the p-parabolic equation in Rn+1
+ need not have the same decay at the

boundary since we could, in general, have a solution which is zero in a neighborhood
of the boundary. In this case one could say that the solution decays exponentially
at the boundary and there is no chance to control its boundary behavior, from
above and below, using the linear function u = xn. A slightly more advanced coun-
terexample to a conjecture on linear growth at the boundary of the half space Rn+1

+

is supplied by the function v(x, t) = cp(T − t)−1/(p−2)x
p/(p−2)
n , p > 2, T > 0 fixed,

for an appropriate constant cp. This discussion gives at hand, in particular, that in
the degenerate case one can not in general expect results in the spirit of Section 1.1
unless imposing additional restrictions on the set of functions considered to enforce
some initial estimates to proceed from. Currently it is not clear to us what these
estimates should be.

The singular case differs considerably from the degenerate case and we emphasize
that we here only consider p in the range

2n/(n+ 1) < p < 2(1.5)

to ensure the validity of suitable Harnack inequalities, see [DB]. In the singular
case there is, though solutions may go extinct, a phenomena of infinite (in space)
propagation and in the singular range the equation exhibits elliptic features as
seen from the forward-backward Harnack inequality valid for positive solutions to
the singular p-parabolic equation (2n/(n + 1) < p < 2). To recall this important
property we let O = Ω× (0, T ), where Ω ⊂ Rn a bounded domain and T > 0. Let
p as in (1.5) be given and suppose that u is a nonnegative and continuous weak
solution to (1.1) in O, (x̃0, t̃0) ∈ O, and assume that u(x̃0, t̃0) > 0. The following
result has been proved in [DBGV1]. There are positive constants ci ≡ ci(n, p, ν, L),
i ∈ {1, 2, 3}, such that if

(1.6) B(x̃0, 8r)× (t̃0 − c1u(x̃0, t̃0)2−p(8r)p, t̃0 + c1u(x̃0, t̃0)2−p(8r)p) b O ,
then

(1.7) c−1
2

(
sup

x∈B(x̃0,r)

u (x, τ1)
)
≤ u(x̃0, t̃0) ≤ c2

(
inf

x∈B(x̃0,r)
u (x, τ2)

)
,

for all τi, i ∈ {1, 2}, such that

(1.8) τ1 , τ2 ∈ (t̃0 − c3u(x̃0, t̃0)2−prp, t̃0 + c3u(x̃0, t̃0)2−prp) .

Hence, for p as in (1.5), a forward, backward and elliptic Harnack inequality is
valid for nonnegative solutions. While this Harnack inequality still is intrinsic it
distinguishes the range in (1.5) from the range 2 < p < ∞ as in the latter case
only the standard, but still intrinsic, forward in time Harnack inequality holds, see
[DBGV]. Based on this discussion, and the simple examples above, we here limit
ourselves to singular equations of p-parabolic type as defined in (1.1), (1.2), and for
p as in (1.5), and our main result is a version of the result in Section 1.1 valid for p
in the range 2n/(n+1) < p < 2 and in the setting of time-independent C1,1-regular
cylinders. The argument outlined below does not generalize to time-independent
Lipschitz or C1-regular cylinders and we hope to develop different arguments to
cope with these more challenging situations in future papers.

1.3. Results. We say that Ω ⊂ Rn is a bounded C1,1-regular domain, if there
exists a finite set of balls {B(zi, ri)}, with zi ∈ ∂Ω and ri > 0, such that {B(zi, ri)}
constitutes a covering of an open neighborhood of ∂Ω and such that, for each i, (1.4)
holds in an appropriate coordinate system and for a C1,1-regular function φi. Since
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we will prove a result which is local in space we will in the following, using that the
family of operators in (1.1), (1.2) is closed under translations (in space and time)
and rotations (in space), simply consider the situation when 0 ∈ ∂Ω (translation)
and ∇φ(0) = 0 (rotation), and

Ω ∩B(0, 4r0) = {x = (x′, xn) ∈ Rn : xn > φ(x′)} ∩B(0, 4r0) ,

∂Ω ∩B(0, 4r0) = {x = (x′, xn) ∈ Rn : xn = φ(x′)} ∩B(0, 4r0) ,(1.9)

for some r0 fixed and for some C1,1-regular function φ. In particular, φ(0) = 0 and
we consider a fixed coordinate system and the existence of a C1,1-regular function
φ defining Ω∩B(0, 4r0) and ∂Ω∩B(0, 4r0). Using this fixed coordinate system we
note that we can always, by the assumption that φ is C1,1-regular and ∇φ(0) = 0,
find small enough r0 such that

(1.10) sup
x′∈B′(0,4r0)

|∇φ(x′)| ≤ 1 .

In (1.10), and in what follows, we let x′ = (x1, . . . , xn−1) whenever x ∈ Rn and we
let B′ denote the orthogonal projection of B onto {x = (x′, xn) ∈ Rn : xn = 0}.
Chosen this way, r0 depends only on the C1,1-norm of φ. Moreover, recall that a
bounded domain Ω ⊂ Rn is said to satisfy a uniform inner ball condition if there
exists r0, 0 < r0 < ∞, such that the following is true. There exists, whenever
x0 ∈ ∂Ω, a point x̃0 ∈ Ω such that B(x̃0, r0) ⊂ Ω and B(x̃0, r0) ∩ ∂Ω = {x0}.
Similarly, Ω ⊂ Rn is said to satisfy a uniform outer ball condition if the above
holds with Ω replaced by the complement of Ω. It is a well known fact, see for
example [AKSZ] for a proof, that

a bounded domain Ω ⊂ Rn satisfies a uniform inner (outer)

ball condition for some r0, 0 < r0 <∞, if and only if Ω is C1,1-regular.(1.11)

From now on r0 is taken to be small enough so that both (1.10) and (1.11) hold.
Without loss of generality we may assume that r0 ∈ (0, 1].

We need to introduce cubes adapted to φ. Indeed, given a point (x0, t0) =
(x′0, φ(x′0), t0) ∈ Rn+1, r ≤ r0/(10

√
n), and λ > 0, we let

Qλ,+r,φ (x0, t0) =
{

(x, t) ∈ Rn+1 : |xi − (x0)i| < r for i ∈ {1, ..., n− 1} ,
φ(x′) < xn < 10r + φ(x′) , |t− t0| < λ2−prp

}
.(1.12)

We also let

∆λ
r,φ(x0, t0) =

{
(x, t) ∈ Rn+1 : |xi − (x0)i| < r for i ∈ {1, ..., n− 1} ,
xn = φ(x′) , |t− t0| < λ2−prp

}
.(1.13)

Consider O = Ω×(0, T ), where Ω ⊂ Rn is as above and T > 0. Let (x̃0, t̃0) ∈ ΩT ,
assume (1.9), and assume that x̃0 ∈ Ω ∩ B(0, r0/(100

√
n)). Let x0 denote the

projection of x̃0 along en and onto ∂Ω and let r = |x0 − x̃0|, t0 = t̃0. Then
x0 ∈ ∂Ω ∩ B(0, r0/(50

√
n)). Let u and v be two functions which are nonnegative

and continuous in a neighborhood of (x̃0, t̃0) and assume that

(1.14) θu := u(x̃0, t̃0) and θv := v(x̃0, t̃0) are positive .

We also assume that

θ2−p
u (8r)p < t0 < T − θ2−p

u (8r)p ,

θ2−p
v (8r)p < t0 < T − θ2−p

v (8r)p .
(1.15)

To formulate our result we will assume the existence of certain intrinsic parameters
associated to u and v. Indeed, given u, (x̃0, t̃0), and r as above we let Γu denote
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the set of all values of Λu, 0 < Λu < ∞, for which the following three restrictions
hold. Firstly,

(Λu)2−p(8r)p < t0 < T − (Λu)2−p(8r)p .(1.16)

Secondly, u is assumed to be a nonnegative solution to (1.1) in QΛu,+
8r,φ (x0, t0), contin-

uous on the closure of this set and vanishing continuously on ∆Λu
8r,φ(x0, t0). Thirdly,

we assume that

(1.17) sup
QΛu,+

4r,φ (x0,t0)

u ≤ Λu .

We define Γv analogously. Note that assuming (1.15) and using the fact that

(x̃0, t̃0) ∈ QΛu,+
4r,φ (x0, t0), (x̃0, t̃0) ∈ QΛv,+

4r,φ (x0, t0), we see that any such Λu and Λv
must satisfy θu ≤ Λu and θv ≤ Λv. In the following we will assume that u, v,
(x̃0, t̃0), r, T are such that

(1.18) (1.15) holds and Γu 6= ∅ and Γv 6= ∅ .
Based on (1.18) we in the following let Λu and Λv denote the smallest values of Λu
and Λv for which (1.17), and the corresponding statement for Λv, hold. Note that
for these values of Λu, Λv, we can assume, without loss of generality, that

sup
QΛu,+

4r,φ (x0,t0)

u = Λu , sup
QΛv,+

4r,φ (x0,t0)

v = Λv .(1.19)

The relevance of this complexity, and of the parameters Λu, Λv, is outlined below.
In this paper we prove the following theorem.

Theorem 1.1. Let O = Ω × (0, T ), where Ω ⊂ Rn is a bounded C1,1-regular
domain and T > 0. Let p as in (1.5) be fixed, and let H be as in (1.1), (1.2).
Let (x̃0, t̃0), (x0, t0), and r be as above. Let u and v be solutions to (1.1) as stated
above, and assume that they satisfy (1.14) and (1.15). Assume further (1.18) and
let Λu and Λv be such that (1.19) holds. Assume in addition that there exist λu, λv,
1 ≤ λu <∞, 1 ≤ λv <∞, such that

(1.20) θu ≤ Λu ≤ λuθu , θv ≤ Λv ≤ λvθv .
Then there exist constants c1 ≡ c1(n, p, ν, L, r0, λu, λv), c2 ≡ c2(n, p, ν, L, r0), 1 ≤
c1, c2 <∞, and σ ≡ σ(n, p, ν, L), 0 < σ < 1, such that∣∣∣∣u(x, t)

v(x, t)
− u(y, s)

v(y, s)

∣∣∣∣ ≤ c1 θuθv
(
|x− y|
r

+

(
1

θuv

)(2/p−1)( |s− t|
rp

)1/p)σ
holds whenever (x, t), (y, s) ∈ Qθuv,+r/c2,φ

(x0, t0), where θuv = min{θu, θv}.

Note that when p = 2, then, formally and essentially, Theorem 1.1 coincides
with the linear result described in Section 1.1. Indeed, in the case p = 2 we see
that if both u and v vanish on a sufficiently large portion of the lateral boundary,
so that we can, following [S], [FGS], ensure the validity of the forward-backward in
time Harnack inequalities

(1.21) sup
Q1,+

4r,φ(x0,t0)

u ≤ cθu , sup
Q1,+

4r,φ(x0,t0)

v ≤ cθv ,

for some c, 1 ≤ c <∞, independent of r and (x̃0, t̃0), then

(1.22) Λu := sup
Q1,+

4r,φ(x0,t0)

u ≤ cθu , Λv := sup
Q1,+

4r,φ(x0,t0)

v ≤ cθv .

Hence, formally the statement of Theorem 1.1 reduces to∣∣∣∣u(x, t)

v(x, t)
− u(y, s)

v(y, s)

∣∣∣∣ ≤ c1u(x̃0, t̃0)

v(x̃0, t̃0)

(
dp((x, t), (y, s))

r

)σ
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whenever (x, t), (y, s) ∈ Q1,+
r/c2,φ

(x0, t0). We emphasize that in Section 1.1 the in-

volved dependence of the constants described enters through the constant c in
(1.21). We also note that while, formally and when p = 2, the statement of Theo-
rem 1.1 reduces to a form similar to that in Section 1.1, we are not saying that the
constants of Theorem 1.1 by necessity are stable as p→ 2.

1.4. Intrinsic scaling parameters. A crucial ingredient in the regularity theory
for the operator in (1.3) is the use of DiBenedetto’s intrinsic geometry when deriving
local estimates. This amounts to the use of cylinders whose size depends on the
solution itself and this is necessary since operators as the one considered in (1.3)
show a strong anisotropy when p 6= 2 as the multiplication of a solution to the
associated equation by a constant does not yield a solution to a similar equation.
One consequence of this is the lack of homogeneous a priori estimates and hence the
impossibility to use such estimates in iterative schemes in line with the standard
regularity techniques. Instead, the lack of homogeneity must be locally corrected by
using scaling parameters and intrinsic geometries and a key insight from regularity
theory, see [DBF, DB, KiL, AM, KM1, KM2, KMN], is that in general the type
of cylinders used must depend on the type of problem/regularity one is currently
considering/using. In the context of Theorem 1.1 we see that Λu, Λv, λu, and λv
serve as intrinsic (scaling) parameters. Indeed, concerning the conditions in (1.19)
we note, focusing on u, assuming (x0, t0) = (0, 0), r = 1, (x̃0, t̃0) = (en, 0), that if

we define ũ(x, t) = u(x, tΛ2−p
u )/Λu for (x, t) ∈ Q1,+

4,φ (0, 0) then, by construction,

(1.23) sup
Q1,+

4,φ (0,0)

ũ = 1 .

In particular, in this way we can simultaneously normalize the scale to unit scale
and the supremum of the function on the unit scale to 1. This enables us to ensure
the validity of estimates for the gradient of ũ with constants depending only on
n, p, ν, L. Furthermore, the parameter λu ensures a relation between the largest

value of u on the large box QΛu,+
4r,φ (x0, t0) and the value of u at (x̃0, t̃0), θu. This

relation cannot in general be expected to hold, due to the phenomena of extinction
present in the singular case, for some uniform λ not depending on u. Indeed, u could
very well go extinct at t = t̃0 + ε while θu 6= 0. Restarting the Cauchy-Dirichlet
problem at t = t̃0 + 2ε enforcing large positive data on parts of the lateral side of
the cylinder from t = t̃0 + 2ε and putting zero data on the base of the cylinder at
t = t̃0 +2ε, we can construct a solution u such that the supremum of u is large while
θu is very small resulting in a very large value of λu. This question is related to the
possibility of establishing Carleson type estimates, see [S], for nonnegative solutions
to the p-parabolic equation and for an account of this type of estimates, for the
p-parabolic equation and for the porous medium equation, we refer to [AGS]. The
condition θu ≤ Λu ≤ λuθu also allows us to construct elliptic type Harnack chains,
depending on λu, to compare values of u close to the boundary and as outlined in
the bulk of the paper. In particular, after appropriate normalizations, using (1.20),
the construction of elliptic Harnack chains becomes analogous to the construction
of Harnack chains for the Laplace operator, see [JK].

2. Preliminaries

2.1. Weak solution and the Dirichlet problem. If U ⊂ Rn is open and 1 ≤
q ≤ ∞, then by W 1,q(U), we denote the space of equivalence classes of functions
f with distributional gradient Df = (fx1

, . . . , fxn), both of which are q-th power
integrable on U. Let

‖f‖W 1,q(U) = ‖f‖Lq(U) + ‖ |Df | ‖Lq(U)
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be the norm in W 1,q(U), where ‖ · ‖Lq(U) denotes the usual Lebesgue q-norm in U .

Given t1 < t2 we denote by Lq(t1, t2,W
1,q(U)) the space of functions such that for

almost every t, t1 < t < t2, the function x→ u(x, t) belongs to W 1,q(U) and

‖u‖Lq(t1,t2,W 1,q(U)) :=

( t2∫
t1

∫
U

(
|u(x, t)|q + |Du(x, t)|q

)
dxdt

)1/q

<∞ .

In the following we here first describe the concept of weak solutions to

(2.1) Hu = ut − div a(Du) = 0

when the underlying domain considered is not necessarily a cylinder.

Definition 1. Let H be as in (2.1) and assume (1.2). We say that a function u is
a weak supersolution (subsolution) to (2.1) in an open set Ξ b Rn+1 if, whenever
Ξ′ = U × (t1, t2) b Ξ with U ⊂ Rn and t1 < t2, then u ∈ Lp(t1, t2;W 1,p(U)) and

(2.2)

∫
Ξ′

(〈a(Du), Dφ〉 − uφt) dx dt ≥ (≤) 0

for all nonnegative φ ∈ C∞0 (Ξ′). A weak solution is a distributional solution satis-
fying (2.2) with equality and without sign restrictions for test functions.

Note, in particular, that in Definition 1 no assumption on the time derivative
of u is made. Note also that by parabolic regularity theory, see [DB] solutions are
locally Hölder continuous after a redefinition on a set of measure zero. In particular,
we can in the following assume that any solution u is continuous. Furthermore, we
note that it is well known that if, for example, Ω ⊂ Rn is a bounded C1,1-regular
domain then the cylinder O is regular for the Dirichlet problem for the operators
in (1.1), (1.2), see [KL]. In particular, given continuous boundary data b : Ō → R
the problem

(2.3)

{
Hu = 0 in O
u = b on ∂PO ,

has a unique weak solution which is continuous on the closure on O. Here ∂PO :=(
Ω̄× {0}

)
∪ (∂Ω× [0, T ]) denotes the parabolic boundary of O.

2.2. Scaling of solutions. We here describe scaling properties of (weak) solutions
to the equation (2.1). Given r, λ > 0, we consider the cube

Qλr = {(x, t) ∈ Rn+1 : |xi| < r for i ∈ {1, ..., n− 1} ,
|xn| < 10r , |t| < λ2−prp} ,(2.4)

and given (x̃0, t̃0) ∈ Rn+1 we let Qλr (x̃0, t̃0) be the cube Qλr translated to the point
(x̃0, t̃0). Given (x̃0, t̃0) ∈ Rn+1, r ≤ R, λ > 0, suppose that u solves (2.1) in
QλR(x̃0, t̃0). Define

ũ(x, t) :=
u(x̃0 + rx, t̃0 + λ2−prpt)

λ
,(2.5)

ã(η) :=
a((λ/r)η)

(λ/r)p−1
, η ∈ Rn .(2.6)

Then ũ solves the equation H̃ũ := ũt−div ã(Dũ) = 0 in Q1
R/r. In particular, in the

case r = R, we have that w̃ is a solution in Q1
1. The new vector field ã(·) satisfies

bounds

(2.7)

{
|ã(η)|+ |∂ã(η)||η| ≤ L|η|(p−1)

ν|η|p−2|ξ|2 ≤ 〈∂ã(η)ξ, ξ〉 ,
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for all η, ξ ∈ Rn. In particular, we remark that the assumptions in (1.2) imply the
existence of ν̄ ∈ (0, 1), and c, L̄ ≥ 1, depending on n, p, ν, L, such that the following
growth and coercivity assumptions hold for every choice η ∈ Rn:

(2.8) |ã(η)| ≤ L̄|η|(p−1) , 〈ã(η), η〉 ≥ ν̄|η|p .

2.3. Gradient estimates. We note that in the proof of Theorem 1.1 we can with-
out loss of generality assume that

(x0, t0) = (0, 0) , r = 1 , (x̃0, t̃0) = (en, 0) .(2.9)

We here formulate, assuming (2.9), a boundary gradient estimate to be used in the
proof of Theorem 1.1.

Lemma 2.1. Let u be as in Theorem 1.1 and assume also that (2.9) holds. Let

ũ(x, t) = u(x, tΛ2−p
u )/Λu for (x, t) ∈ Q1,+

4,φ (0, 0) so that, by construction,

sup
Q1,+

4,φ (0,0)

ũ = 1 .(2.10)

Then Dũ exists and is continuous up to ∆1
2,φ(0, 0) and there exist constants c ≡

c(n, p, ν, L), 1 ≤ c <∞, and σ ≡ σ(n, p, ν, L), 0 < σ ≤ 1, such that

(2.11) |Du(x, t)| ≤ c , |Dũ(x, t)−Dũ(y, s)| ≤ c(|x− y|+ |t− s|1/p)σ

hold whenever (x, t), (y, s) ∈ Q1,+
1,φ (0, 0).

Proof. This is a special case of Theorem 0.1 in [L]. �

3. Proof of Theorem 1.1

To prove Theorem 1.1 we first use a barrier type argument to establish linear growth
estimates at the boundary and here the assumption that Ω ⊂ Rn is a bounded C1,1-
regular domain is important. Our proof of Theorem 1.1 is based on the following
lemma. In the formulation r0 is as described in Section 1.3.

Lemma 3.1. Let u be as in Theorem 1.1 and assume also that (2.9) holds. Then
there exist constants c ≡ c(n, p, ν, L, r0), 1 ≤ c < ∞, and %0 ≡ %0(n, p, ν, L),
0 < %0 < 1, such that

c−1θu · [xn − φ(x′)] ≤ u(x, t) ≤ cλuθu · [xn − φ(x′)](3.1)

holds whenever (x, t) ∈ (Ω ∩ (B′(0, r0)× [−1, 1])× (−θ2−p
u %p0, θ

2−p
u %p0).

Proof. First we notice that if x ∈ Ω ∩ B(0, r0) and x̂ ∈ ∂Ω is such that |x − x̂| =
dist(x, ∂Ω), then

dist(x, ∂Ω) ≤ |xn − φ(x′)| ≤ |xn − x̂n|+ |φ(x̂′)− φ(x′)| ≤ 2 dist(x, ∂Ω)

holds by (1.10) since x̂n = φ(x̂′). Thus it is enough to prove (3.1) with xn − φ(x′)
replaced with dist(x, ∂Ω).

Focusing on the proof of the inequality on the right hand side in (3.1) we consider

ũ(x, t) = u(x, tΛ2−p
u )/Λu for all (x, t) such that (x, tΛ2−p

u ) ∈ QΛu,+
4,φ (0, 0), i.e, for

(x, t) ∈ Q1,+
4,φ (0, 0). Note that by construction

sup
Q1,+

4,φ (0,0)

ũ = 1 .(3.2)

In accordance to (1.11) we in the following let δ ∈ (0, r0/10] and we let

(3.3) Ωδ := Ω ∩ (−2, 2)n ∩ {x ∈ Ω : dist(x, ∂Ω) ≤ δ} .
where (−2, 2)n denotes the n-dimensional cube (−2, 2) × ... × (−2, 2). Consider

then (z, τ) ∈ Ωδ × (−3, 3) ⊂ Q1,+
4,φ (0, 0). Given z, let ẑ ∈ ∂Ω be such that |z − ẑ| =

dist(z, ∂Ω) < δ, and for this ẑ ∈ ∂Ω we use (1.11) and let ẑr0 ∈ Rn \ Ω̄ be such that
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B(ẑr0 , r0) ⊂ (Rn \ Ω̄) and B(ẑr0 , r0)∩∂Ω = {ẑ}. Moreover, we set I(τ) = (τ −1, τ ].
Focusing on the domain Ωδ×I(τ), considering (z, τ) ∈ Ωδ×I(τ) fixed, we construct,
following the construction in [SV, display (4.7)], a barrier as follows. We let

ψ(x, t) := C(1− η(x, t)) ,

η(x, t) := exp(−δ−1(|x− ẑr0 | − r0)) exp(t− τ) ,(3.4)

where C shall be fixed shortly. Consider the set

Dδ := {x ∈ Ω : |x− ẑr0 | − r0 < δ} × I(τ) .(3.5)

If (x, t) ∈ Dδ, then there is y ∈ ∂Ω such that |x− ẑr0 | = |x− y|+ |y − ẑr0 | and

δ + r0 > |x− ẑr0 | = |x− y|+ |y − ẑr0 | ≥ |x− y|+ r0 ,

and thus Dδ ⊂ Ωδ × I(τ). Moreover, (z, τ) ∈ Dδ. We now want to prove that
δ = δ(p, ν, L, r0), 0 < δ � 1, can be chosen so that ψ satisfies

ũ(x, t) ≤ ψ(x, t) whenever (x, t) ∈ Dδ .(3.6)

Using the comparison principle we see that to achieve this it is enough to prove

ũ(x, t) ≤ ψ(x, t) on ∂PDδ ,(3.7)

∂tψ − div a(Dψ) ≥ 0 in Dδ .(3.8)

Appealing to (3.2) and the fact that ũ = 0 on ∂Ω×(−4, 4), it is easy to see that (3.7)
is verified if we let C = (1− exp(−1))−1. Hence we focus on (3.8) and we first note
that

∂tψ − div a(Dψ) = ∂tψ − ∂ηjai(Dψ)∂xixjψ ,(3.9)

and

∂tψ = −Cη , Dψ = δ−1Cη
x− ẑr0
|x− ẑr0 |

.(3.10)

Furthermore, we have that

(Cη)−1∂xixjψ = −δ−2 (x− ẑr0)i
|x− ẑr0 |

(x− ẑr0)j
|x− ẑr0 |

+δ−1 δij
|x− ẑr0 |

− δ−1 (x− ẑr0)i(x− ẑr0)j
|x− ẑr0 |3

.(3.11)

Let

A := −1 + δ−2∂ηjai(Dψ)

(
(x− ẑr0)i
|x− ẑr0 |

(x− ẑr0)j
|x− ẑr0 |

)
+δ−1∂ηjai(Dψ)

(
(x− ẑr0)i(x− ẑr0)j

|x− ẑr0 |3
− δij
|x− ẑr0 |

)
.(3.12)

Then using (3.11) and the notation in (3.12) we see that

(Cη)−1(∂tψ − ∂ηjai(Dψ)∂xixjψ) = A ,(3.13)

and we are left with the task to prove that A can be constructed to be nonnegative.
Using the assumption in (1.2) we see that

A ≥ −1 + δ−2ν|Dψ|p−2 + δ−1|Dψ|p−2 (ν − L)

|x− ẑr0 |
.(3.14)

Next, since |x− ẑr0 | ≥ r0 in Dδ we can conclude, recalling L ≥ ν > 0, that

A ≥ −1 + δ−1(δ−1ν − L/r0)|Dψ|p−2 .(3.15)

Using that |Dψ| = δ−1Cη we see from the last display that

A ≥ −1 + δ−1(δ−1ν − L/r0)(δ−1Cη)p−2.(3.16)
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We now restrict δ so that δ−1 is larger than 2L/(νr0). Consequently we obtain

A ≥ −1 +
1

2
δ−p(Cη)p−2.(3.17)

Using (3.17), together with the facts that p < 2 and η ≤ 1 in Dδ, we can conclude
that

A ≥ −1 +
1

2
(1− exp(−1))2−pδ−p .(3.18)

Hence, if we let δ = min{r0/10, νr0/(2L), 4−1/p}, then A ≥ 0. In particular, we
can conclude the validity of (3.6). We now apply (3.6) with (x, t) ≡ (z, τ) and,
appealing to the elementary inequalities

(3.19) (1− exp(−1))s ≤ 1− exp(−s) ≤ s ∀ s ∈ [0, 1] ,

we obtain

ũ(z, τ) ≤ ψ(z, τ)

= C
(
1− exp(−δ−1 dist(z, ∂Ω)

)
≤ Cδ−1 dist(z, ∂Ω) .

This allows us to conclude the proof of the right hand side inequality in (3.1) after
scaling back to the original solution u and applying (1.20).

Focusing then on the proof of the inequality on the left hand side in (3.1), we

consider ũ(x, t) = u(x, tθ2−p
u )/θu for all (x, t) such that (x, tθ2−p

u ) ∈ Qθu,+4,φ (0, 0), i.e,

for (x, t) ∈ Q1,+
4,φ (0, 0). We then have that

ũ(en, 0) = 1 .(3.20)

Using the Harnack inequality outlined in (1.6)-(1.8) we see, using also (3.20), that
there exists κ ≡ κ(n, p, ν, L), 0 < κ < 1, and c2 ≡ c2(n, p, ν, L), 1 < c2 < ∞, such
that

(3.21) c−1
2 ≤ inf

t∈(−4κ2,4κ2)
ũ(en, t) ≤ sup

t∈(−4κ2,4κ2)

ũ(en, t) ≤ c2 .

We let δ ∈ (0, r0/10]. Consider (z, τ) ∈ (Ωδ ∩ B(0, r0)) × (−κ2, κ2) ⊂ Q2,+
κ,φ(0, 0),

where Ωδ is defined in (3.3). Given z, we again let ẑ ∈ ∂Ω be such that |z −
ẑ| = dist(z, ∂Ω) and we use (1.11) to find ẑr0 ∈ Ω such that B(ẑr0 , r0) ⊂ Ω

and B(ẑr0 , r0) ∩ ∂Ω = {ẑ}. Since the normal vector of the surface {xn = φ(x′)} is
continuous, we necessarily have that z− ẑ and ẑr0− ẑ are parallel and consequently,
due to the orientation,

(3.22) r0 > |z − ẑr0 | = r0 − dist(z, ∂Ω) > r0 − δ .

Given τ ∈ (−κ2, κ2), we also let Iκ(τ) = (τ − κ2, τ ]. Furthermore, we set

mδ := inf
Eδ×(−2κ2,2κ2)

ũ(x, t) ,(3.23)

where Eδ := Ω∩(−1, 1)n∩{x ∈ Ω : dist(x, ∂Ω) ≥ δ}, (−1, 1)n is the n-dimensional
cube (−1, 1) × ... × (−1, 1). With (z, τ) fixed, we construct, following the proof
of [SV, Proposition 4.2], a barrier as follows. We let

ψ̃(x, t) := exp(−1)mδ(η̃(x, t)− 1) ,

η̃(x, t) := exp(−δ−1(|x− ẑr0 | − r0)) exp((t− τ)/κ2) .(3.24)

In this case we consider the set

D̃δ := {x ∈ Ω : r0 − δ < |x− ẑr0 | < r0} × Iκ(τ) .
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In particular, by (3.22) we have that z ∈ D̃δ. We now want to prove that δ can be

chosen so that ψ̃ satisfies

ψ̃(x, t) ≤ ũ(x, t) whenever (x, t) ∈ D̃δ .(3.25)

Again, using the comparison principle we see that to achieve this it is enough to
prove that

ψ̃(x, t) ≤ ũ(x, t) on ∂P D̃δ ,(3.26)

∂tψ̃ − div a(Dψ̃) ≤ 0 in D̃δ .(3.27)

To obtain (3.26), note first that if (x, t) ∈ {x ∈ Ω : |x − ẑr0 | = r0} × Iκ(τ), then

ψ̃(x, t) ≤ 0, and for (x, t) ∈ {x ∈ Ω : |x − ẑr0 | = r0 − δ} × Iκ(τ) we have that

ψ̃(x, t) ≤ (1 − exp(−1))mδ ≤ ũ(x, t). Furthermore, if (x, t) ∈ {x ∈ Ω : r0 − δ <
|x − ẑr0 | < r0} × { t : t = τ − κ2}, then we see that ψ̃(x, t) ≤ 0. Hence, it only
remains to prove that we can choose δ ≡ δ(p, ν, L, r0, κ), 0 < δ � 1, small enough
so that we can prove (3.27). However, this can be verified by a direct calculations
along the lines of the corresponding argument used to prove the right hand side
inequality in (3.1) and we omit the details. Applying (3.25) to (x, t) = (z, τ) and
using (3.19) and (3.22) we see that

ũ(z, τ) ≥ ψ̃(z, τ) ≥ exp(−1)(1− exp(−1))mδ dist(z, ∂Ω) .(3.28)

To complete the proof it now only remains to use (3.21) to bound mδ from below
with a constant depending only on n, p, ν, L, r0. For this we assume the contrary,
i.e., we assume that there is a point

(z̃0, t̃0) ∈ Eδ × (−2κ2, 2κ2) such that ũ(z̃0, t̃) ≤ ε
for some ε ∈ (0, 1) to be chosen suitably small. We show that an elliptic Harnack
chain can be constructed, similar to the case of the Laplace equation, see for instance
[JK], to obtain contradiction with (3.21). To this end, take % = δ/10 and let k

be the smallest integer such that k ≥ 4n+110/δ. We may choose (zj)k+1
j=0 so that

|zj+1−zj | < %/2, dist(zj , ∂Ω) ≥ 10% for all j ∈ {0, 1, . . . , k}, and so that zk+1 = en.
Using the elliptic Harnack inequality as outlined in (1.6)-(1.8), together with (1.15)

and (1.11), we find that u(en, t̃) ≤ εck+1
2 = c−2

2 < c−1
2 < 1 provided that we

choose ε := c−k−3
2 . Chosen this way ε depends only on n, p, ν, L, r0. An important

feature in the construction is that u(zj , t̃) ≤ 1 for all j ∈ {0, 1, . . . , k} and hence
also u(zj , t̃)2−p ≤ 1. Thus we obtain a contradiction with (3.21) and the proof is
complete. �

Remark 3.1. Note that the inequality on the right hand side in (3.1) in Lemma 3.1
could also be proved by referring to the gradient estimate in Lemma 2.1. However,
we have chosen to present a barrier type argument.

3.1. The final argument. Let u be as in Theorem 1.1 and assume also that (2.9)
holds. Define

ũ(x, t) = u(x, tΛ2−p
u )/Λu, ṽ(x, t) = v(x, tΛ2−p

v )/Λv

whenever (x, t) ∈ Q1,+
4,φ (0, 0). Then

(3.29) sup
Q1,+

4,φ (0,0)

ũ = 1 = sup
Q1,+

4,φ (0,0)

ṽ .

Using Lemma 2.1 we see that Dw̃ exists and is continuous up to ∆1
2,φ(0, 0) for

w̃ ∈ {ũ, ṽ} and that there exist ρ = ρ(n, p, ν, L), 0 < ρ ≤ 1, c = c(n, p, ν, L),
1 ≤ c <∞, and σ = σ(n, p, ν, L), 0 < σ ≤ 1 such that

(3.30) |Dw̃(x, t)−Dw̃(y, s)| ≤ c(|x− y|+ |t− s|1/p)σ
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holds whenever (x, t), (y, s) ∈ Q1,+
ρ,φ (0, 0) and for w̃ ∈ {ũ, ṽ}. In the following we let h

be the function h(x, t) = h(x′, xn, t) = xn−φ(x′). Consider (x, t), (y, s) ∈ Q1,+
ρ,φ (0, 0)

and w̃ ∈ {ũ, ṽ}. Then, using that w̃(x′, φ(x′), t) = 0 for (x′, φ(x′), t) ∈ ∆1
2,φ(0, 0),

we see, using the fundamental theorem of calculus, that

(3.31)
w̃(x, t)

h(x, t)
=

∫ 1

0

w̃xn(x′, τxn + (1− τ)φ(x′), t) dτ .

Hence, using (3.30), the last display and (1.10), we can conclude that

(3.32)

∣∣∣∣ w̃(x, t)

h(x, t)
− w̃(y, s)

h(y, s)

∣∣∣∣ ≤ c(|x− y|+ |t− s|1/p)σ .
Using (3.32), for ũ and ṽ, and scaling and translating back, we see that

(3.33)

∣∣∣∣u(x, t)

h(x, t)
− u(y, s)

h(y, s)

∣∣∣∣ ≤ ĉΛu
r

(
|x− y|
r

+

(
1

Λu

)(2/p−1)( |s− t|
rp

)1/p)σ
whenever (x, t), (y, s) ∈ QΛu,+

ρr,φ (x0, t0) and that

(3.34)

∣∣∣∣ v(x, t)

h(x, t)
− v(y, s)

h(y, s)

∣∣∣∣ ≤ ĉΛv
r

(
|x− y|
r

+

(
1

Λv

)(2/p−1)( |s− t|
rp

)1/p)σ
whenever (x, t), (y, s) ∈ QΛv,+

ρr,φ (x0, t0). Furthermore, using Lemma 3.1 we see that

that there exist constants c1 = c1(n, p, ν, L), 1 ≤ c1 < ∞, %0 ≡ %0(n, p, ν, L, r0),
0 < %0 < 1, such that

(3.35) c−1
1 θu(xn − φ(x′)) ≤ u(x, t) ≤ c1λuθu(xn − φ(x′))

whenever(x, t) ∈ (Ω ∩ (B′(0, r0)× [−1, 1]))× (−θ2−p
u %p0, θ

2−p
u %p0), and

(3.36) c−1
1 θv(xn − φ(x′)) ≤ v(x, t) ≤ c1λvθv(xn − φ(x′))

whenever (x, t) ∈ (Ω ∩ (B′(0, r0) × [−1, 1])) × (−θ2−p
v %p0, θ

2−p
v %p0). Theorem 1.1 is

now a consequence of (3.33)–(3.36), and the identity(
u(x, t)

v(x, t)
− u(y, s)

v(y, s)

)
=

h(x, t)

v(x, t)

(
u(x, t)

h(x, t)
− u(y, s)

h(y, s)

)
+
u(y, s)

h(y, s)

h(x, t)

v(x, t)

h(y, s)

v(y, s)

(
v(y, s)

h(y, s)
− v(x, t)

h(x, t)

)
.

2

References

[AM] E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math.
J., 136 (2007), 285-320.
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