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Abstract. We present a new proof for a pointwise upper bound in
terms of Wolff potential for A-superharmonic functions, which are the
pointwise defined solutions to elliptic equations involving nonnegative
measure data.

1. Introduction

The A-superharmonic functions are defined as lower semicontinuous func-
tions that satisfy comparison principle with A-harmonic functions. There is
a nonnegative Radon measure µ associated to each A-superharmonic func-
tion u via the equation

−div(A(x,∇u)) = µ.

The solution u to this equation is generally unbounded. However, there is a
pointwise upper bound of A-superharmonic functions in terms of the Wolff
potential

Wµ
p (x,R) =

∫ R

0

(
sp−nµ(B(x, s))

)1/(p−1) ds

s

of the corresponding measure. The result is due to Kilpeläinen and Malý,
see [3] and [4]. The upper bound is sharp since the same potential also gives
the lower bound as was shown in [3]. The purpose of this work is to present
an alternative proof for the upper bound. Another approach is available
by Trudinger and Wang [7]. Their method uses Poisson modification, as
does ours, and various Harnack inequalities. We have also added here, for
the sake of completeness, a proof which closely follows elegant ideas of their
proof. We have tried to emphasize the key points.

Mikkonen [6] studied the estimate in the weighted case. The proofs in [4]
and [6] are based on the same method and on a delicate choice of a test
function leading to an iterative scheme of truncated functions. One of our
motivations to introduce a new proof has been to find an interpretation for
the truncation levels appearing in their proof. Indeed, our method is natural
in view of the fundamental solution, as explained later. Our proof is based
on a choice of a test function, which appears to be new in this context. Our
main tools include Poisson modification of A-superharmonic functions, Cac-
cioppoli estimates, reverse Hölder inequality forA-subsolutions, Sobolev em-
bedding theorem, and the weak Harnack’s inequality for A-supersolutions.

Date: December 2, 2009.
2000 Mathematics Subject Classification. 35J60, 31C15, 31C05.

1



2 RIIKKA KORTE AND TUOMO KUUSI

The pointwise upper and lower estimates have several consequences, such
as the Wiener test for the regularity of boundary points, demonstrated in
[4]. The result was originally proved by Lindqvist and Martio in [5] in the
case p > n− 1.

2. Preliminaries

A continuous Sobolev function u ∈ W 1,p
loc (Ω) is an A-harmonic function in

an open set Ω, if it is a weak solution to the equation

−div(A(x,∇u)) = 0.

Here A : Rn × Rn → Rn is a mapping such that x 7→ A(x, ξ) is measurable
for all ξ ∈ Rn, ξ 7→ A(x, ξ) is continuous for almost every x ∈ Rn, and it
satisfies the following structural assumptions:

〈A(x, ξ), ξ
〉 ≥ A0|ξ|p,

|A(x, ξ)| ≤ A1|ξ|p−1,〈A(x, ξ1)−A(x, ξ2), ξ1 − ξ2

〉
> 0,

whenever ξ, ξ1, ξ2 ∈ Rn, ξ1 6= ξ2 for almost every x ∈ Rn. A function
u ∈ W 1,p

loc (Ω) is an A-supersolution (subsolution), if

−div(A(x,∇u)) ≥ (≤) 0

weakly in Ω, i.e., ∫

Ω

〈A(x,∇u),∇ϕ
〉
dx ≥ (≤) 0

for every nonnegative ϕ ∈ C∞
0 (Ω).

The class of A-superharmonic functions comprises lower semicontinuous
functions u that are finite in a dense subset of Ω and satisfy the following
comparison principle: Let D b Ω. Then for each A-harmonic function
h ∈ C(D) in D, u ≥ h on ∂D implies u ≥ h in D. By Corollary 7.20 [2],
continuous A-superharmonic functions are A-supersolutions. For further
properties of A-superharmonic functions and A-supersolutions, see Sections
3 and 7 in [2].

For each nonnegative Radon measure µ, there is an A-superharmonic
function u such that ∫

Ω

〈A(x,Du),∇ϕ
〉
dx =

∫

Ω
ϕdµ,

where Du = limk→∞∇min{u, k}, see Theorem 2.4 in [3]. See also [1] for the
existence of very weak solutions. Conversely, eachA-superharmonic function
generates a nonnegative Radon measure µu by Riesz representation theorem.

Let B = B(x, r). For 0 < α < ∞, we use the notation

αB = B(x, αr),

and, for 0 < σ < 1,

σAr =
5 + σ

4
B(x0, r) \ 5− σ

4
B(x0, r).
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Let u ∈ W 1,p
0 (B(x0, R)). Then Sobolev’s embedding theorem states that

there exists κ = κ(n, p) > p such that
(∫

B(x0,R)
|u|κ dx

)1/κ

≤ CR

(∫

B(x0,R)
|∇u|p dx

)1/p

. (2.1)

Here we use the abbreviation∫

A
f dx =

1
|A|

∫

A
f dx.

The following Caccioppoli estimate follows by testing the equation of an
A-subsolution u with the test function u+φp.

Lemma 2.2. Let u be an A-subsolution in a domain Ω and let φ ∈ C∞
0 (Ω)

be nonnegative. Then there is a constant C = C(p,A0,A1) such that
∫

Ω
|∇u+|pφp dx ≤ C

∫

Ω
up

+|∇φ|p dx.

By using either De Giorgi’s or Moser’s method, an application of Sobolev’s
embedding theorem together with the Caccioppoli estimate leads to the
reverse Hölder’s inequality.

Lemma 2.3. Let u be an A-subsolution in B(x0, 2R)\B(x0, R). Then there
is a constant C = C(n, p,A0,A1) such that

(∫

σA
us

+ dx

)1/s

≤
(

C

(τ − σ)C

∫

τA
uq

+ dx

)1/q

for all 0 < q < s ≤ +∞ and 0 < σ < τ < 1.

Applying logarithmic estimate together with John-Nirenberg Lemma, one
can prove the weak Harnack inequality for A-supersolutions.

Theorem 2.4. Let u ≥ 0 be A-supersolution in B(x0, 2R), or in AR. Then
there is a constant C = C(n, p,A0,A1) such that

∫

B(x0,R)
u dx ≤ C ess inf

B(x0,R)
u,

or ∫
1
2
AR

u dx ≤ C ess inf
1
2
AR

u,

respectively.

This, together with the reverse Hölder’s inequality, leads to the Harnack
inequality.

Theorem 2.5. Let u ≥ 0 be A-harmonic in AR. Then there is a constant
C = C(n, p,A0,A1) such that

ess sup
1
2
AR

u ≤ C ess inf
1
2
AR

u.

For the proofs of Lemmas 2.2 and 2.3, and Theorems 2.4 and 2.5, see [2].
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3. Potential estimates

Theorem 3.1. Let u be a nonnegative A-superharmonic function in the ball
B(x0, 2R). Then there is a constant C = C(n, p,A0,A1) such that

1
C

Wµu
p (x0, R) ≤ u(x0) ≤ C inf

B(x0,R)
u + CWµu

p (x0, R).

We may reduce the proof of the upper bound to more restricted case.
Namely, we only consider class of continuousA-superharmonic functions. In-
deed, since u is by the definition lower semicontinuous, there is an increasing
sequence of continuous functions converging to u pointwise. Solving obstacle
problems with these continuous functions gives an increasing sequence (uj)
of continuous A-superharmonic functions converging to u pointwise. This
implies by Theorem 1.17 in [3] that ∇uj → Du as j →∞, possibly passing
to a subsequence. Hence we also have the weak convergence of corresponding
measures µuj to µu. It follows that

lim sup
j→∞

µuj (B(x0, s)) ≤ µu(B(x0, s))

and
lim inf
j→∞

µuj (B(x0, s)) ≥ µu(B(x0, s)).

Using these together with the fact
∫ R−ε

0

(
sp−nµu(B(x0, s))

)1/(p−1) ds

s
≤ CWµu

p (x0, R),

for all ε > 0 and the pointwise convergence of uj to u, allows us to proceed
in the proof with uj instead of u and therefore reduces the analysis to the
continuous case.

The second reduction we make in the proof is that we may modify u to
be a weak solution in a countable union of disjoint annuli shrinking to the
reference point x0. The corresponding measure in each annulus concentrates
on the boundary of the particular annulus, but in a controllable way, since
the measure corresponding to the new solution stays also in the dual of
W 1,p(B(x0, R)). The advantage of the modification is that since being a
solution is a local property, we now know that in each annulus local a priori
estimates for weak solutions hold.

To proceed formally, let Rk = 21−kR and Bk = B(x0, Rk), k = 0, 1, . . .
Let

ω =
∞⋃

k=1

3
2
Bk \Bk

be the union of annuli. Define v to be{
div

(A(x,∇v)
)

= 0 in ω,

v = u otherwise.
(3.2)

The function v is called Poisson modification of u and it is an A-super-
harmonic function, see Lemma 7.14 in [2]. Note that it is continuous by
the assumed continuity of u and hence also an A-supersolution. In ω, v is
A-harmonic. Moreover, v satisfies the equation

div
(A(x,∇v)

)
= µv,
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where the nonnegative measure µv has the property

µv(Bk) = µu(Bk), (3.3)

k = 0, 1, . . . This is seen by the inner regularity of µv and µu and by testing
equations of u and v with φ ∈ C∞

0 (Bk) such that 0 ≤ φ ≤ 1 and φ = 1 on a
compact set K in Bk containing 3

2Bk+1. Indeed, then
∫

Bk

φ dµu −
∫

Bk

φdµv

=
∫

Bk

(A(x,∇u)−A(x,∇u)
) · ∇φdx = 0,

because u = v in the support of ∇φ. By exhausting Bk with such K, (3.3)
follows.

Proof of the upper bound based on a choice of a test function. Define

ak = inf {a : |{v > a} ∩Bk−1| ≤ δ|Bk−1|} , k = 1, 2, . . .

We then have

|{v ≥ ak} ∩Bk−1| ≥ δ|Bk−1| and |{v > ak} ∩Bk−1| ≤ δ|Bk−1|.
Observe that if

v = min{`, |x− x0|(p−n)/(p−1)}, p < n,

i.e., v is the truncated fundamental solution for the p-Laplace equation cen-
tered at x0, then the levels ak are nothing else but

ak = min{`, C(δ)R(p−n)/(p−1)
k }.

Our goal is to show that

ak+1 − ak ≤ C
(
Rp−n

k−1µv(Bk−1)
)1/(p−1)

+
1
2
(

inf
Bk−1

v − inf
Bk−2

v
)

for small enough δ depending on n, p, A0, and A1.
If ak+1 ≤ ak, the inequality holds trivially by the minimum principle.

Hence we may suppose that ak+1 > ak. We define the auxiliary function

vk = min
{ (v − ak)+

ak+1 − ak
, 1

}
.

Let φk ∈ C∞
0 (Bk−1), 0 ≤ φk ≤ 1, be a cut-off function such that φk = 1

in 7
6Bk, supp∇φk ⊂ 1

3ARk
, and |∇φk| ≤ C/Rk. Recall the definition

σAr =
5 + σ

4
B(x0, r) \ 5− σ

4
B(x0, r),

0 < σ < 1.
By (3.3) and testing the equation of v with vkφ

p
k, it follows that

µu(Bk−1) = µv(Bk−1) ≥
∫

Bk−1

vkφ
p
k dµv

=
∫

Bk−1

〈A(x,∇v),∇(vkφ
p
k)

〉
dx.

(3.4)
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The test function vkφ
p
k is admissible since v is continuous and belongs to

W 1,p(Bk−1). Growth conditions imply that

∫

Bk−1

〈A(x,∇v),∇(vkφ
p
k)

〉
dx

≥ A0

ak+1 − ak

∫

{ak<v<ak+1}∩Bk−1

|∇v|pφp
k dx

+
∫

{ak<v<ak+1}∩Bk−1

vk

〈A(x,∇v),∇φp
k

〉
dx

+
∫

{v≥ak+1}∩Bk−1

〈A(x,∇v),∇φp
k

〉
dx

=I1 + I2 + I3.

(3.5)

The first target is to obtain a lower bound for I1. Then, later, we will show
that I2 is small compared to I1. The term I3 we estimate with the aid of
Lemmas 2.2 and 2.3 for A-subsolutions. Indeed, the reason why we study v
instead of u is the term I3. In particular, v is a A-harmonic in the support
of ∇φk.

To begin with, note that

I1 = A0(ak+1 − ak)p−1

∫

Bk−1

|∇vk|pφp
k dx

≥ A0(ak+1 − ak)p−1

2p

∫

Bk−1

|∇(φkvk)|p dx

−A0(ak+1 − ak)p−1

∫

Bk−1

|∇φk|pvp
k dx.

(3.6)

We apply Sobolev’s embedding theorem (2.1) to the first term above and
obtain

A0(ak+1 − ak)p−1

2p

∫

Bk−1

|∇(φkvk)|p dx

≥ (ak+1 − ak)p−1|Bk−1|
CRp

k

(∫

Bk−1

(vkφk)κ dx

)p/κ

≥ 1
C

(ak+1 − ak)p−1Rn−p
k

(∣∣{v ≥ ak+1} ∩Bk

∣∣
∣∣Bk

∣∣

)p/κ

≥ 1
C

(ak+1 − ak)p−1Rn−p
k δp/κ.

(3.7)

Here we used the fact that, by the choice of ak+1, we have

∣∣{v ≥ ak+1} ∩Bk

∣∣ ≥ δ
∣∣Bk

∣∣.
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Moreover, the choice of ak leads to

A0(ak+1 − ak)p−1

∫

Bk−1

|∇φk|pvp
k dx

≤ C(ak+1 − ak)p−1|{vk > 0} ∩Bk−1|
Rp

k

≤ C(ak+1 − ak)p−1|Bk−1|δ
Rp

k

.

(3.8)

Since p/κ < 1, a combination of (3.7) and (3.8) yields that the second term
in (3.6) is small compared to the first term provided that δ is small enough.
Consequently,

I1 ≥ 1
C

(ak+1 − ak)p−1Rn−p
k δp/κ. (3.9)

Furthermore, we estimate the second term in (3.5) as

|I2| ≤ pA1

∫

{ak<v<ak+1}∩Bk−1

|∇v|p−1φp−1
k |∇φk| dx

≤ 1
4

A0

ak+1 − ak

∫

{ak<v<ak+1}∩Bk−1

|∇v|pφp
k dx

+ C(ak+1 − ak)p−1

∫

{ak<v<ak+1}∩Bk−1

|∇φk|p dx

≤ 1
4
I1 + C(ak+1 − ak)p−1Rn−p

k δ.

(3.10)

Here we have applied growth conditions and Young’s inequality. By (3.9),
it follows that when δ is small enough,

|I2| ≤ 1
2
I1.

Thus, by (3.4) and (3.5), we have

µu(Bk−1) ≥ 1
2
I1 + I3. (3.11)

We then estimate I3. Observe carefully that

wk = (v − ak+1)+

is an A-subsolution in ARk
= 3

2Bk \Bk. Let θk ∈ C∞
0 (1

2ARk
), 0 ≤ θk ≤ 1, be

such that θk = 1 in 1
3ARk

(i.e. on the support of ∇φk) and |∇θk| ≤ C/Rk.
We set φ̃k = θkφk. Note that φk ≤ φ̃k and |∇φk| ≤ |∇φ̃k| ≤ C/Rk. Thus,
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by growth conditions and Hölder’s inequality, we obtain

|I3| ≤pA1

∫

{v≥ak+1}∩Bk−1

|∇v|p−1φp−1
k |∇φk| dx

≤pA1

∫

Bk−1

|∇wk|p−1φ̃p−1
k |∇φ̃k| dx

≤C
∣∣Bk−1

∣∣
(∫

Bk−1

|∇wk|pφ̃p
k dx

)(p−1)/p

×
(
‖∇φ̃k‖p

∞

∣∣{wk > 0} ∩Bk−1

∣∣
∣∣Bk−1

∣∣

)1/p

≤CRn−1
k δ1/p

(∫

Bk−1

|∇wk|pφ̃p
k dx

)(p−1)/p

.

(3.12)

We use the Caccioppoli estimate, Lemma 2.2, in 3
2Bk \Bk and obtain

∫
3
2
Bk\Bk

|∇wk|pφ̃p
k dx ≤ C

∫
3
2
Bk\Bk

wp
k|∇φ̃k|p dx. (3.13)

Let q = p/(p + 1). Since supp(∇φ̃k) ⊂ 1
2ARk

, it follows by reverse Hölder’s
inequality, Lemma 2.3, that∫

3
2
Bk\Bk

wp
k|∇φ̃k|p dx ≤ C‖∇φ̃k‖p

∞

∫
1
2
ARk

wp
k dx

≤ C

Rp
k

(∫
3
2
Bk\Bk

wq
k dx

)p/q

.

(3.14)

Hölder’s inequality yields
(∫

3
2
Bk\Bk

wq
k dx

)p/q

≤
(∣∣{wk > 0} ∩Bk−1

∣∣
∣∣Bk−1

∣∣

)p(1−q)/q (∫
3
2
Bk\Bk

wk dx

)p

≤δ

(∫
3
2
Bk\Bk

wk dx

)p

.

(3.15)

We substitute (3.13), (3.14), and (3.15) into (3.12) and end up with

|I3| ≤CRn−p
k δ(p−1)/p+1/p

(∫
3
2
Bk\Bk

wk dx

)p−1

≤CRn−p
k δ

(∫

Bk−1

(v − ak+1)+ dx

)p−1

.

(3.16)

Furthermore, the weak Harnack inequality, Theorem 2.4, implies that∫

Bk−1

(v − ak+1)+ dx ≤
∫

Bk−1

(v − inf
Bk−2

v) dx ≤ C( inf
Bk−1

v − inf
Bk−2

v).
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Using the estimates above, we conclude

|I3| ≤CRn−p
k δ

(
inf

Bk−1

v − inf
Bk−2

v
)p−1

. (3.17)

A combination of (3.9), (3.11), and (3.17) gives

1
C

(ak+1 − ak)p−1Rn−p
k δp/κ ≤ µu(Bk−1) + CRn−p

k δ
(

inf
Bk−1

v − inf
Bk−2

v
)p−1

.

This further implies that, when δ is small enough,

ak+1 − ak ≤ C
(
Rp−n

k µu(Bk−1)
)1/(p−1)

+
1
2
( inf
Bk−1

v − inf
Bk−2

v). (3.18)

The lower semicontinuity of u leads to

u(x0) ≤ lim inf
x→x0

u(x) ≤ lim inf
k→∞

inf
∂Bk

u = lim inf
k→∞

inf
∂Bk

v ≤ lim sup
k→∞

ak.

Moreover, the comparison principle implies v ≤ u and hence

lim
k→∞

inf
Bk

v ≤ lim
k→∞

inf
Bk

u ≤ u(x0).

Thus, by summing up (3.18), we end up with

u(x0) ≤ 2a3 + C

∞∑

k=1

(
Rp−n

k µu(Bk)
)1/(p−1)

.

By the weak Harnack principle and the comparison principle, we have

a3|{v ≥ a3} ∩B2| ≤
∫

B2

v dx ≤
∫

B1

u dx ≤ C
∣∣B1

∣∣ inf
B1

u,

from which it follows by
∣∣{v ≥ a3} ∩ B2

∣∣ ≥ δ
∣∣B2

∣∣ that a3 ≤ C infB1 u. The
estimate

∞∑

k=1

(
Rp−n

k µu(Bk)
)1/(p−1)

=
∞∑

k=1

(
Rp−n

k µu(Bk)
)1/(p−1) Rk−1 −Rk

Rk

≤
∫ R

0

(
sp−nµu(B(x0, s))

)1/(p−1) ds

s

then concludes the proof. ¤

Proof of the upper bound following Trudinger and Wang. Let v be the A-
supersolution defined in (3.2). The main idea in the proof is to introduce
comparison solutions with zero boundary values and measures given by µv.
Let wk ∈ W 1,p

0 (4
3Bk+1) solve the equation

div
(A(x,∇wk)

)
= µv in

4
3
Bk+1,

k = 0, 1, . . . The existence of such a solution follows by the fact that µv

belongs to W−1,p′(4
3Bk+1). Subtraction of equations of v and wk using the

smooth approximation of the test function
(
v − max

∂ 4
3
Bk+1

v − wk

)
+
∈ W 1,p

0 (
4
3
Bk+1)
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in weak formulations, yields
∫

{v−max
∂ 4

3 Bk+1
v≥wk}

〈A(x,∇v)−A(x,∇wk),∇(v − wk)
〉
dx = 0.

It follows that ∇(v −max∂ 4
3
Bk+1

v − wk)+ = 0, and thus

wk ≥ v − max
∂ 4

3
Bk+1

v. (3.19)

Next, since wk is nonnegative A-harmonic function in 3
2Bk+2 \Bk+2, the

Harnack inequality, Theorem 2.5, gives

max
∂ 4

3
Bk+2

wk ≤ C min
∂ 4

3
Bk+2

wk.

Assume first that min∂ 4
3
Bk+2

wk = 0. The weak Harnack inequality then

implies that wk = 0 in 3
2Bk+2 and hence

max
∂ 4

3
Bk+2

v − max
∂ 4

3
Bk+1

v ≤ 0. (3.20)

Assume next the positivity of min∂ 4
3
Bk+2

wk. Since wk takes continuously

zero boundary values on ∂ 4
3Bk+1 and wk ≥ 0, it follows that

µmin{wk,min
∂ 4

3 Bk+2
wk}(

4
3
Bk+1) = µwk

(
4
3
Bk+1) = µv(

4
3
Bk+1).

Thus, after approximating wk, we have

( min
∂ 4

3
Bk+2

wk)µv(
4
3
Bk+1)

≥
∫

4
3
Bk+1

min{wk, min
∂ 4

3
Bk+2

wk} dµmin{wk,min
∂ 4

3 Bk+2
wk}

=
∫

4
3
Bk+1

〈A(x,∇min{wk, min
∂ 4

3
Bk+2

wk}),∇min{wk, min
∂ 4

3
Bk+2

wk}
〉
dx

≥A0

∫
4
3
Bk+1

|∇min{wk, min
∂ 4

3
Bk+2

wk})|p dx

≥A0( min
∂ 4

3
Bk+2

wk)p capp(
4
3
Bk+2,

4
3
Bk+1)

≥CRn−p
k ( min

∂ 4
3
Bk+2

wk)p.

Since min∂ 4
3
Bk+2

wk > 0, the Harnack inequality leads to

max
∂ 4

3
Bk+2

wk ≤ C

(
Rp−n

k µv(
4
3
Bk+1)

)1/(p−1)

.

This, in view of (3.19), implies

max
∂ 4

3
Bk+2

v − max
∂ 4

3
Bk+1

v ≤ C
(
Rp−n

k µu(Bk)
)1/(p−1)

.
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Consequently, together with (3.20), we obtain

lim sup
k→∞

max
∂ 4

3
Bk+2

v ≤ max
∂ 4

3
B3

v + C
∞∑

k=2

(
Rp−n

k µu(Bk)
)1/(p−1)

.

Since v is A-harmonic and nonnegative in 3
2B3 \B3, the Harnack inequality

and the comparison principle give

max
∂ 4

3
B3

v ≤ C min
∂ 4

3
B3

v ≤ C min
∂ 4

3
B3

u = C inf
4
3
B3

u,

where the last equality follows by the minimum principle. The weak Harnack
inequality for nonnegative A-supersolutions further implies

inf
4
3
B3

u ≤ C

∫

B(x0,R)
u dx ≤ C inf

B(x0,R)
u.

The lower semicontinuity of u, on the other hand, yields

u(x0) ≤ lim
k→∞

inf
Bk\ 3

2
Bk+1

u

= lim
k→∞

inf
Bk\ 3

2
Bk+1

v

≤ lim sup
k→∞

max
∂ 4

3
Bk+2

v

≤C
∞∑

k=2

(
Rp−n

k µu(Bk)
)1/(p−1)

+ C inf
B(x0,R)

u.

As before, this leads to the result. ¤

We next prove the lower bound. Observe that here we do not need to use
the Poisson modification of u.

Proof of the lower bound following Trudinger and Wang. Take a smooth cut-
off function θk ∈ C∞

0 (5
4Bk+1), 0 ≤ θk ≤ 1, such that θk = 1 in Bk+1. Let

wk ∈ W 1,p
0 (Bk) solve the equation

div
(A(x,∇wk)

)
= θkµu in Bk,

k = 0, 1, . . .. The existence of such solutions follows by the fact that µu be-
longs to W−1,p′(Bk) and θk is smooth. Note that by the minimum principle,
wk is nonnegative and, moreover, it is A-harmonic in Bk \ 5

4Bk+1 taking
continuously zero boundary values on ∂Bk.

By subtracting equations of u and wk, while using the smooth approxi-
mation of the test function

(
wk − u + min

∂Bk

u
)
+
∈ W 1,p

0 (Bk),

in weak formulations, we obtain

0 ≤
∫

Bk

(
wk − u + min

∂Bk

u
)
+

dµu −
∫

Bk

(
wk − u + min

∂Bk

u
)
+

dµwk

=
∫

{u−min∂Bk
u≤wk}∩Bk

〈A(x,∇u)−A(x,∇wk),∇(wk − u)
〉
dx ≤ 0.
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Thus we have ∇(wk − u + min∂Bk
u)+ = 0 and consequently

wk ≤ u−min
∂Bk

u. (3.21)

Assume first the positivity of min∂Bk+1
wk. This readily implies with the

aid of the weak Harnack inequality that

min
∂ 2

3
Bk

wk ≥ 1
C

∫
2
3
Bk

wk dx ≥ 1
C

∫

Bk+1

wk dx ≥ 1
C

min
∂Bk+1

wk > 0.

Take a cut-off function φ ∈ C∞
0 (Bk), 0 ≤ φ ≤ 1, such that φ = 1 in 2

3Bk,
and |∇φ| ≤ C/Rk. By the maximum principle for A-harmonic functions,
wk = min{wk, max∂ 2

3
Bk

wk} in the support of ∇φ. Moreover, the minimum
principle implies

min
∂ 2

3
Bk

wk ≤ min{wk, max
∂ 2

3
Bk

wk}

in 2
3Bk. Thus, by approximating wk, we obtain

( min
∂ 2

3
Bk

wk)µu(Bk+1)

≤
∫

Bk

min{wk, max
∂ 2

3
Bk

wk}φp dµwk

=
∫

Bk

〈A(x,∇wk),∇(min{wk, max
∂ 2

3
Bk

wk}φp)
〉
dx

≤A1

∫

Bk

|∇min{wk, max
∂ 2

3
Bk

wk}|pφp dx

+ pA1 max
∂ 2

3
Bk

wk

∫

Bk

|∇min{wk, max
∂ 2

3
Bk

wk}|p−1φp−1|∇φ| dx.

The Caccioppoli estimate for the nonnegative weak subsolution

max
∂ 2

3
Bk

wk −min{wk, max
∂ 2

3
Bk

wk}

in Bk gives∫

Bk

|∇min{wk, max
∂ 2

3
Bk

wk})|pφp dx ≤ C(max
∂ 2

3
Bk

wk)p

∫

Bk

|∇φ|p dx.

Thus, by applying Young’s inequality and the Harnack inequality

max
∂ 2

3
Bk

wk ≤ C min
∂ 2

3
Bk

wk,

we end up with

( min
∂ 2

3
Bk

wk)µu(Bk+1) ≤ CRn−p
k ( min

∂ 2
3
Bk

wk)p.

Using the minimum principle and the positivity of min∂ 2
3
Bk

wk, we arrive at
(
Rp−n

k µu(Bk+1)
)1/(p−1)

≤ min
∂Bk+1

wk.

Hence, by (3.21), we conclude that
(
Rp−n

k µu(Bk+1)
)1/(p−1)

≤ C( min
∂Bk+1

u−min
∂Bk

u). (3.22)
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Assume next that min∂Bk+1
wk = 0. Then the weak Harnack inequality

implies that wk = 0 in Bk. Especially, wk, and hence also u, are A-harmonic
in Bk+1. Therefore, the Harnack inequality implies that

min
∂Bk+1

u ≤ inf
Bk+2

u ≤ C sup
Bk+2

u ≤ Cu(x0).

In this case, by summing up (3.22), we have by the nonnegativity of u that

u(x0) ≥ 1
C

k∑

j=1

(
Rp−n

j µu(Bj)
)1/(p−1)

=
1
C

∞∑

j=1

(
Rp−n

j µu(Bj)
)1/(p−1)

,

since µu(Bj) = 0 for all j > k.
Consequently, in all cases, we obtain

u(x0) ≥ lim
k→∞

min
∂Bk

u ≥ 1
C

∞∑

k=1

(
Rp−n

k µu(Bk)
)1/(p−1)

.

The estimate
∞∑

k=1

(
Rp−n

k µu(Bk)
)1/(p−1) =

∞∑

k=1

(
Rp−n

k µu(Bk)
)1/(p−1) Rk−1 −Rk

Rk

≥ 1
2

∫ R

0

(
sp−nµu(B(x0, s))

)1/(p−1) ds

s

completes the proof. ¤
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