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Abstract. We show the existence of a continuous solution to
a nonlinear parabolic obstacle problem with a continuous time-
dependent obstacle. The solution is constructed by an adaptation
of the Schwarz alternating method. Moreover, if the obstacle is
Hölder continuous, we prove that the solution inherits the same
property.

1. Introduction

Consider the obstacle problem

∂u

∂t
≥ ∇ · A(x, t,∇u), u ≥ ψ,

where A(x, t, ξ) ≈ |ξ|p−2ξ, ξ ∈ Rn, p > 2n/(n + 2), and ψ is a contin-
uous obstacle depending on both space and time variables. We define
the solution to the obstacle problem as the smallest weak supersolution
above the given obstacle. Our definition is motivated by nonlinear po-
tential theory where the obstacle problem is a basic tool. It is essential
when proving convergence and comparison results as well as pointwise
behaviour of weak supersolutions and superparabolic functions, see [3],
[5], and [6].

Starting from the obstacle, we apply a modification of the Schwarz
alternating method and construct an increasing sequence of functions
using continuous solutions to Dirichlet boundary value problems. We
show that the limit of the sequence is the unique continuous solu-
tion to the obstacle problem. Moreover, we show that the solution to
the obstacle problem attains continuous boundary values continuously
provided that the complement of the domain is thick enough. If, in
addition, the obstacle is Hölder continuous, we prove that the solution
to the obstacle problem is Hölder continuous as well.

The existence of solutions to the parabolic obstacle problems via vari-
ational inequalities has been studied by Lions [8]. The method is based
on a time discretization and the semi-group property of the correspond-
ing differential quotient. See also [1], [9], [?], and [?]. In these works, a

2000 Mathematics Subject Classification. Primary 35K55. Secondary 35D05,
31C05, 31C45.

Key words and phrases. Nonlinear parabolic equations, obstacle problem, exis-
tence, Schwarz alternating method.

1



2 RIIKKA KORTE, TUOMO KUUSI, AND JUHANA SILJANDER

crucial assumption on the obstacle seems to be a suitable monotonicity
or regularity condition. In the case of smooth obstacles, our definition
of the solution to the parabolic obstacle problem coincides with the
standard definition via variational inequalities. Our method, however,
provides a new constructive way to obtain the solution to the general
parabolic obstacle problem. In particular, we also consider obstacles
which are merely continuous functions in time.

2. Preliminaries

Our notation is standard. In what follows, Q will stand for a space-
time box

Q = (a1, b1)× . . .× (an, bn)× (t1, t2)

in Rn × R. We also use the notation

K(x, r) = (x1 − r, x1 + r)× . . .× (xn − r, xn + r)

for the cube centered at x ∈ Rn.
Let Ω be an open set in Rn. The parabolic boundary of a cylinder

Ω× (t1, t2) ⊂ Rn × R is

∂p(Ω× (t1, t2)) = (Ω× {t1}) ∪ (∂Ω× (t1, t2]).

For the cylindrical domain, we often use the notation ΩT := Ω× (0, T ],
where 0 < T < ∞. If D′ is a bounded open subset of D and the closure
of D′ belongs to D, we denote D′ b D.

We now state our main assumptions. Let Ξ be an open set in Rn×R.
We assume that A : Ξ×Rn 7→ Rn is a Carathéodory function, that is,
(x, t) 7→ A(x, t, ξ) is measurable for every ξ in Rn and ξ 7→ A(x, t, ξ)
is continuous for almost every (x, t) ∈ Ξ. In addition, A satisfies the
growth bounds

A(x, t, ξ) · ξ ≥ α|ξ|p and |A(x, t, ξ)| ≤ β|ξ|p−1, (2.1)

for almost every (x, t) ∈ Ξ and every ξ ∈ Rn. Here α and β are positive
constants. Furthermore, we assume that A is monotonic in a sense that(A(x, t, ξ1)−A(x, t, ξ2)

) · (ξ1 − ξ2) > 0 (2.2)

whenever (x, t, ξi) ∈ Ξ× Rn, i = 1, 2, and ξ1 6= ξ2.
Let Ω be a bounded open set in Rn. The Sobolev space W 1,p(Ω)

is the space of real-valued functions f such that f ∈ Lp(Ω) and the
distributional first partial derivatives ∂f/∂xi, i = 1, 2, . . . , n, exist in
Ω and belong to Lp(Ω). We use the norm

‖f‖1,p,Ω =
( ∫

Ω

(|f |p + |∇f |p) dx
)1/p

.

The Sobolev space with zero boundary values, W 1,p
0 (Ω), is the closure

of C∞
0 (Ω) with respect to the Sobolev norm. By the parabolic Sobolev

space
Lp(t1, t2; W

1,p(Ω)),
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t1 < t2, we mean the space of functions u such that the function x 7→
u(x, t) belongs to W 1,p(Ω) for almost every t1 < t < t2 and the norm

(∫ t2

t1

∫

Ω

(|u(x, t)|p + |∇u(x, t)|p) dx dt

)1/p

is finite. The definition of the space Lp(t1, t2; W
1,p
0 (Ω)) is analogous.

Definition 2.3. Let Ξ be an open set in Rn × R. A function u is
a weak solution in Ξ provided that whenever Ω × (τ1, τ2) b Ξ, then
u ∈ Lp(t1, t2; W

1,p(Ω)) and it satisfies the integral equality∫ τ2

τ1

∫

Ω

(A(x, t,∇u) · ∇φ− u
∂φ

∂t

)
dx dt = 0 (2.4)

for all φ ∈ C∞
0 (Ω× (τ1, τ2)). We call a weak solution as A-parabolic.

A function u is a weak supersolution (subsolution) in Ξ provided
that whenever Ω × (τ1, τ2) b Ξ, then u ∈ Lp(t1, t2; W

1,p(Ω)) and the
integral above is non-negative (non-positive) for all non-negative φ ∈
C∞

0 (Ω× (τ1, τ2)).

Now we can proceed to the exact definition of a solution to the
obstacle problem.

Definition 2.5. A function u ∈ C(ΩT ) solves the obstacle problem
with the obstacle ψ ∈ C(ΩT )∩L∞(ΩT ), if it has the following properties

(1) u ≥ ψ in ΩT ,
(2) u is a weak supersolution in ΩT ,
(3) u is a weak solution, i.e. A-parabolic, in the set {u > ψ},
(4) u is the smallest weak supersolution above ψ, i.e. if v is a weak

supersolution in ΩT and v ≥ ψ, then v ≥ u.

Finally, we define so-called A-superparabolic functions via compari-
son principle, see [3] and [5]. This is an essential class of functions in
our proof.

Definition 2.6. Let Ξ be an open set in Rn × R. A function u : Ξ →
(−∞,∞] is called A-superparabolic if

(i) u is lower semicontinuous,
(ii) u is finite in a dense subset of Ξ,
(iii) u satisfies the comparison principle on each space-time box Q b

Ξ: If h is A-parabolic in Q and continuous on Q, and, if h ≤ u
on ∂pQ, then h ≤ u in the whole Q.

A function u is A-subparabolic if −u is Ã-superparabolic, where

Ã(x, t, ξ) = −A(x, t,−ξ), (x, t, ξ) ∈ Rn × R× Rn.

The monotonicity of the operator, see assumption (2.2), guarantees the
comparison principle between lower semicontinuous weak supersolu-
tions and upper semicontinuous weak subsolutions, see e.g. [3]. By [7],



4 RIIKKA KORTE, TUOMO KUUSI, AND JUHANA SILJANDER

every weak supersolution has a lower semicontinuous representative. In
particular, by the comparison principle, every weak supersolution has
an A-superparabolic representative.

In the proof, we construct an increasing sequence of uniformly bounded
continuous weak supersolutions. The following theorem in [6] shows
that also the limit is a weak supersolution. See also [5].

Theorem 2.7. Let Ξ be an open set in Rn × R. Suppose that ui,
i = 1, 2, . . . , is an increasing sequence of uniformly locally bounded
weak supersolutions to (2.4) in Ξ. Then the limit

u = lim
i→∞

ui

is a weak supersolution.

For the local Hölder continuity of A-parabolic functions, we refer to
DiBenedetto [2]. Define a weighted distance between points (x, s) and
(y, t) as

dM((x, s), (y, t))

=M (p−2)/(2p)
(
M−|p−2|/(2p)|x− y|+ M |p−2|/(2p)|s− t|1/p

)
,

where M > 0. The corresponding distance between the space-time
cylinder ΩT = Ω× (0, T ) and an open set Ξ ⊂ ΩT is defined as

(M,p)− dist(Ξ, ΩT ) = inf
(x,s)∈Ξ, (y,t)∈∂pΩT

dM((x, s), (y, t)).

Theorems 1.1 on pages 41 and 77 in [2] gives us the following theorem.

Theorem 2.8. Let u be an A-parabolic function in ΩT and suppose
that

M = osc
ΩT

u < ∞.

Let Ξ b ΩT . Then there are constants C > 1 and 0 < σ < 1 depending
only on data such that

|u(x, s)− u(y, t)| ≤ CM
( dM((x, s), (y, t))

(M, p)− dist(Ξ, ΩT )

)σ

for all (x, s), (y, t) ∈ Ξ.

The existence of solutions to the Dirichlet boundary value problem in
space-time cylinders with the continuous boundary data follows by the
monotonicity of the operator, see e.g. Lions [8] or Showalter [9]. For the
continuity of the solution up to the boundary, we need to assume some
geometric properties of the complement of the set. The complement
Ωc = Rn \Ω has positive geometric density at a point x0 ∈ ∂Ω if there
exist constants 0 < α < 1 and ρ > 0 such that for all δ < ρ,∣∣B(x0, δ) ∩ Ω

∣∣ ≤ α
∣∣B(x0, δ)

∣∣.
The condition is enough to show that the weak solution to the Dirichlet
boundary value problem attains continuously the continuous boundary
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values at the point (x0, t0), 0 < t0 < T . For the proof, see [2]. More
generally, if the complement of Ω is p-thick at x0 ∈ ∂Ω, i.e.

∫ 1

0

(cap(Ωc ∩B(x0, r), B(x0, 2r))

cap(B(x0, r), B(x0, 2r))

)1/(p−1)dr

r
= ∞,

then the weak solution attains continuously the continuous boundary
values at (x0, t0), 0 ≤ t0 ≤ T . In the case of evolutionary p-Laplace
equation, the result is due to Kilpeläinen and Lindqvist [3]. For the
general case, see Skrypnik [10] and the references therein. Recall that
if the complement has positive geometric density at x0, then it is also
p-thick at x0. We state the result as an existence theorem.

Theorem 2.9. Let Ω be an open set and assume that Ωc is p-thick
at x0 ∈ ∂Ω. Let ϑ ∈ C(ΩT ). Then there is a unique A-parabolic
function u ∈ C(ΩT ) such that u is continuous at (x0, t0) and u(x0, t0) =
ϑ(x0, t0), 0 ≤ t0 ≤ T .

3. The existence theorem

The following theorem is our main result.

Theorem 3.1. Let Ω ⊂ Rn be an open bounded set and let ψ be a
continuous bounded obstacle in ΩT . Then there exists a unique solution
to the obstacle problem. If, in addition, Ωc is p-thick at x0 ∈ ∂Ω and
ψ is continuous up to the boundary in a neighborhood of (x0, t0), then
u is continuous at (x0, t0) and u(x0, t0) = ψ(x0, t0).

We split the proof of Theorem 3.1 into two steps. We first construct
a candidate for a solution to the obstacle problem using solutions to
the Dirichlet boundary value problem. We show that the obtained
function is continuous and A-superparabolic, and it satisfies properties
(1) and (3) of Definition 2.5. To finish the proof, we need to show that
the obtained function is also a weak supersolution. This we establish
by showing that every continuous A-superparabolic function is a weak
supersolution. That the candidate is the smallest supersolution above
the obstacle, follows by the construction.

Note that in [6] it is shown that every bounded A-superparabolic
function is a weak supersolution, see also [5]. However, the existence
of a solution to the obstacle problem is used in the proof. Hence we
present an alternative proof in the case of continuous A-superparabolic
functions.

We construct a candidate for a solution to the obstacle problem as
follows.

Construction 3.2. Let F = {Qk}k be a dense family of space-time
boxes in ΩT ending at the instant t = T . For example, one can take
all the space-time boxes

Q = (a1, b1)× . . .× (an, bn)× (t, T ),
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where ai, bi, t ∈ Q, ai < bi, i = 1, . . . , n, 0 ≤ t < T and Q ⊂ ΩT .
Construct sequences (ϕk)k as follows:

ϕ0 = ψ, ϕk+1 = max{ϕk, vk}, k = 0, 1, 2, . . . ,

where vk is A-parabolic function in Qk with the boundary values ϕk

on ∂pQ
k and vk = ϕk in ΩT \Qk. The limit of the construction is

u = lim
k→∞

ϕk. (3.3)

The construction has the following basic properties.

(i) The sequence (ϕk)k is pointwise increasing, and, thus, ϕk ≥ ψ
for all k = 1, 2, . . ..

(ii) By the maximum principle,

|ϕk(x, t)| ≤ sup
ΩT

|ψ|

for every (x, t) ∈ ΩT and k = 0, 1, 2, . . ..
(iii) As a maximum of continuous functions, ϕk is continuous for all

k = 0, 1, 2, . . ..
(iv) If v ≥ ψ is a weak supersolution, then v ≥ u. Indeed, by the

comparison principle, ϕk ≤ v for every k = 0, 1, 2, . . ..
(v) The function ϕk is a weak subsolution in the set {ϕk > ψ}

for any k = 1, 2, . . ., because, in this set, it is obtained as a
maximum of finitely many weak subsolutions.

(vi) As a limit of an increasing sequence of continuous functions, u
is lower semicontinuous. Thus the set {u > ψ} is open.

We begin the proof by showing that u is A-superparabolic.

Lemma 3.4. Suppose that ψ is a continuous obstacle. Then the limit u
of Construction 3.2 satisfies the comparison principle in all space-time
boxes Q ⊂ ΩT .

Proof. We fix a space-time box Q = (a1, b1)× . . . (an, bn)× (t1, t2). Let
h be an A-parabolic function in Q such that it is continuous up to
the parabolic boundary ∂pQ and h ≤ u on ∂pQ. To prove the lemma,
we need to show that h ≤ u in Q. Fix ε > 0. By the continuity of
functions h and ϕk, the sets

Ek = Q ∩ {ϕk > h− ε}, k = 1, 2, . . . ,

are open with respect to the relative topology. Moreover, the col-
lection of the sets Ek covers ∂pQ. The compactness of ∂pQ and the
monotonicity of the sequence (ϕk)k then implies that there is k0 such
that ϕk0 > h− ε on ∂pQ.

Since the sets Ek are open, there exists Qk1 ∈ F , k1 ≥ k0, such that

∂pQ
k1 ∩ {t < t2} ⊂ Ek0

and
(Q \ Ek0) ⊂ Qk1 .
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Now

h ≤ ϕk0 + ε ≤ ϕk1 + ε on ∂pQ
k1 ∩ {t < t2},

and, since vk1 is A-parabolic in Qk1 ∈ F with the boundary values ϕk1

on ∂pQ
k1 , we have

h ≤ vk1 + ε ≤ ϕk1+1 + ε in Qk1 ∩ {t < t2}
by the comparison principle. Thus it follows that h ≤ u + ε in Q. The
claim follows by letting ε → 0. ¤

We next show that whenever the limit u of Construction 3.2 does
not hinder the obstacle, it is A-parabolic. The result shows Property
(3) in Definition 2.5.

Lemma 3.5. Suppose that ψ is a continuous obstacle. Let u be as in
Construction 3.2. Then u is A-parabolic in the set {u > ψ}.
Proof. Let z0 = (x0, t0) ∈ ΩT be such that u(z0) > ψ(z0). The set
{u > ψ} is open, and, hence, there is

Qr = K(x0, r)× (t0 − rp, t0 + rp)

such that Qr ⊂ {u > ψ}. Let ϕk, k = 0, 1, . . ., be as in Construction
3.2. We cover Qr/2 with the open sets Qr ∩ {ϕk > ψ}, and by the

compactness and monotonicity of {ϕk}, we find k0 such that Qr/2 ⊂
{ϕk0 > ψ}.

We collect from the construction all space-time boxes Qki−1, ki−1 <
ki, i = 1, 2, . . ., such that

∂p

(
Qki−1 ∩ {t < t0 + (r/2)p}) ⊂ Qr/2 \Qr/4.

There are infinitely many such space-time boxes.
Next, note that ϕki−1 is a subsolution in Qr/2. Then the comparison

principle implies that

vki
≥ ϕki−1 in Qki−1 ∩ {t < t0 + (r/2)p}.

Hence ϕki
is A-parabolic in Qki−1 ∩ {t < t0 + (r/2)p}. It follows that

ϕki
is A-parabolic in Qr/4 for every i = 1, 2, . . .. By Theorem 2.8,

the A-parabolic functions ϕki
, i = 1, 2, . . ., and hence also u, have a

uniform modulus of continuity in Qr/8.
The obtained A-parabolicity of the subsequence remains to the limit

in Qr/8. Indeed, it is easy to see that the limit is A-sub- and A-
superparabolic in Qr/8. By the comparison principle and the continuity
of u, we obtain that u is also A-parabolic in Qr/8. Since being A-
parabolic is a local property, it follows that u isA-parabolic in {u > ψ}.
This finishes the proof. ¤

The next lemma tells that Construction 3.2 is stable. By this we
mean that the limit does not change if we change the space-time boxes
in the construction. We have the following uniqueness result.
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Lemma 3.6. Suppose that ψ is a continuous obstacle. Then the limit
u of Construction 3.2 is unique, and, in particular, independent of the
choices of space-time boxes.

Proof. We take two limits of the construction, u1 and u2. Let ϕi
k and

vi
k, k = 0, 1, . . . , generate ui, i = 1, 2. Clearly, u1 ≥ ϕ2

0 = ψ.
Suppose then that u1 ≥ ϕ2

k in ΩT . Let Q be the space-time box,
where v2

k is obtained from ϕ2
k. The function v2

k solves the Dirichlet
boundary value problem in Q with boundary values ϕ2

k on ∂pQ. Since
u1 ≥ ϕ2

k on ∂pQ, we conclude that u1 ≥ v2
k in Q by Lemma 3.4. But

ϕ2
k+1 = max{ϕ2

k, v
2
k} in Q,

and it follows that u1 ≥ ϕ2
k+1 in Q. The induction argument then

shows that u1 ≥ u2. Interchanging the roles of u1 and u2 finishes the
proof. ¤

The uniqueness leads to the comparison of limits.

Lemma 3.7. Suppose that ψ1 and ψ2 are continuous obstacles. If
ψ1 ≤ ψ2, then the corresponding limits u1 and u2 of Construction 3.2
satisfy u1 ≤ u2.

Proof. Since the limits u1 and u2 do not depend on the choice of space-
time boxes Qk, k = 1, 2, . . ., we can use the same family F to construct
u1 and u2. Let ϕi

k and vi
k, i = 1, 2, k = 1, 2, . . ., generate u1 and u2. We

have ϕ1
0 ≤ ϕ2

0, because ϕi
0 = ψi, i = 1, 2. Assume then that ϕ1

k ≤ ϕ2
k

for some k ≥ 0. In particular, this means that ϕ1
k ≤ ϕ2

k on ∂pQk.
It follows by the comparison principle for A-superparabolic functions
that v1

k ≤ v2
k in Qk and hence ϕ1

k+1 ≤ ϕ2
k+1. The induction argument

concludes the proof. ¤

Remark 3.8. Lemma 3.7 implies that if ‖ψ − ψ̃‖∞ ≤ ε, then also ‖u−
ũ‖∞ ≤ ε. This can be seen by considering obstacle problems with

obstacles ψ − ε, ψ̃ and ψ + ε. Indeed, it follows from the construction
that adding a constant to the obstacle changes the solution by the same
constant.

We next show that the limit u is continuous in ΩT whenever the
obstacle is continuous. Moreover, if Ωc is p-thick at some point, then u
is continuous at that point. This shows the continuity in Theorem 3.1.

Lemma 3.9. Suppose that ψ is a continuous obstacle. Then the limit
u of Construction 3.2 is continuous in ΩT . If, in addition, Ωc is p-thick
at x0 ∈ ∂Ω and ψ is continuous up to the boundary in a neighborhood
of (x0, t0), then u is continuous at (x0, t0) and u(x0, t0) = ψ(x0, t0).

Proof. Let ε > 0. Suppose first that z1 = (x1, t1) is an interior point,
or in Ω× {T}. First, we denote

Qr = K(x1, r)× (t1 − rp, min{t1 + rp, T}).
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Let r be so small that Qr does not intersect ∂pΩT and

osc
Qr

ψ := max
Qr

ψ −min
Qr

ψ ≤ ε

4
.

Let h solve the Dirichlet boundary value problem with h = ψ on
∂pQr. The solution exists by Theorem 2.9, and h ∈ C(Qr). We define
the following modified obstacle

ψ̃ =





ψ on ΩT \Qr,

h in Qr/2,
2(r−s)

r
h + 2s−r

r
ψ on ∂Qs, r/2 ≤ s < r,

i.e. the interpolation between h and ψ. Clearly ψ̃ is continuous. More-
over, by the maximum principle, we have

|ψ − ψ̃| ≤ ε

4
on ΩT .

Let ũ be the limit of the construction with the obstacle ψ̃, and let ϕ̃k,
k = 0, 1, . . ., be the generating sequence. By the comparison of limits,
see Remark 3.8, we have

|u− ũ| ≤ ε

4
on ΩT .

Next, since ψ̃ is A-parabolic in Qr/2, we obtain that ϕ̃k is a weak
subsolution in Qr/2 for all k = 0, 1, . . .. This is based on the fact that if
ϕ̃k−1 is a weak subsolution in Ξ ⊂ ΩT and w is A-parabolic in Q ⊂ ΩT

such that w = ϕ̃k−1 on ∂Q ∩ Ξ, then

ϕ̃k =

{
ϕ̃k−1, in Ξ \Q,

w, in Ξ ∩Q,

is a weak subsolution in Ξ, see the proof of Lemma 3.5 in [6]. Similarly
as in the proof of Lemma 3.5, we conclude that ũ is continuous in
Qr/4. Therefore, there is 0 < δ < r/4 such that osc ũ < ε/2 in Qδ.
Consequently, we have

osc u ≤ osc ũ + 2 sup |u− ũ| < ε

2
+

ε

2
= ε in Qδ.

This shows the continuity in the interior points.
Suppose then that Ωc is p-thick at x0 and ψ is continuous up to the

boundary in a neighborhood of (x0, t0). Set z0 = (x0, t0). We denote

Ur =
(
K(x0, r)× (t0 − rp, t0 + rp)

) ∩ ΩT , r > 0.

Let r > 0 be so small that ψ is continuous on Ur and

osc
Ur

ψ ≤ ε

4
.

Let ψ̃ and ũ be defined as in the proof of interior points, but using Ur

instead of Qr. By the p-thickness of (K(x0, r) ∩ Ω)c, ψ̃ is continuous
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at z0. Since ψ̃ is A-parabolic in Ur/2, ϕ̃k is a weak subsolution in Ur/2

for all k = 1, 2, . . ..
To this end, let g solve the Dirichlet boundary value problem in Ur/2

with the boundary values gb, where

gb =





supΩT
ψ̃ on ∂pUr/2 \ ∂pΩT ,

ψ̃ on Ur/4 ∩ ∂pΩT ,
2(r−2s)

r
ψ̃ + 4s−r

r
supΩT

ψ̃ on Us ∩ ∂pΩT , r/4 < s < r/2,

i.e. gb equals supΩT
ψ̃ outside Ur/2, h in Ur/4 and, in Ur/2 \ Ur/4, gb

is an interpolation between supΩT
ψ̃ and h. By the p-thickness of

(K(x0, r/2) ∩ Ω)c at x0, the A-parabolic function g is continuous at
z0.

Moreover, for the subsolutions ϕ̃k we have that ϕ̃k ≤ g on ∂pUr/2,
and, consequently, we obtain ϕ̃k ≤ g in Ur/2, k = 1, 2, . . ., by the com-
parison principle. Hence also ũ ≤ g in Ur/2. But this means that ũ is

between functions ψ̃ and g in C(Ur) which coincide and are continuous
at z0. Therefore, there is 0 < δ < r/4 such that

|ũ(z0)− ũ(z)| < ε

2
for all z ∈ Uδ. As before, this leads to the continuity of u at z0, and
concludes the proof. ¤

3.1. The final step. To prove Theorem 3.1, we still need to show
that the limit is a weak supersolution. The following theorem gives the
desired result.

Theorem 3.10. A continuous A-superparabolic function is a weak su-
persolution.

To prove Theorem 3.10, we construct an increasing sequence of su-
persolutions uk that converge pointwise to u. Then, by Theorem 2.7,
u is a supersolution as a limit of an increasing sequence of uniformly
bounded supersolutions. First, we need the following lemma.

Lemma 3.11. Let Q be a space-time box, r ∈ R and 1 ≤ k ≤ n.
Define Q1 = {(x, t) ∈ Q : xk < r} and Q2 = {(x, t) ∈ Q : xk > r}.
If v is a continuous A-superparabolic function in Q, and v is a weak
supersolution in Q1 and in Q2, then v is a weak supersolution in Q.

Proof. Let U ε = Q ∩ {r − ε < xk < r + ε} and construct functions

vε =

{
hε, in Uε,

v, in Q \ Uε,

where hε is the solution of the Dirichlet problem in U ε with boundary
values v. Since v is A-superparabolic in Q, we have by the comparison
principle that vε is an increasing sequence and vε → v pointwise as
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ε → 0. Hence, by Theorem 2.7, it is enough to show that vε is a weak
supersolution.

By a similar argument as in Lemma 3.5 of [6], it is straightforward
to show that vε is a weak supersolution both in Q1 and Q2. Since vε

is also a weak supersolution in U ε and being a supersolution is a local
property, the result of the claim follows. ¤

We now generate an increasing sequence of weak supersolutions ap-
proximating the continuous A-superparabolic function. Let

K0 = K(x0, r0) b Ω

be a dyadic cube. Let {Kj
k}2nk

j=1 be the set of dyadic subcubes of K0 of

kth generation. Set Qj
k = Kj

k × (0, T ) and Q0 = K0 × (0, T )

Let uk solve the Dirichlet boundary value problem in Qj
k with uk = u

on ∂pQ
j
k, k = 1, 2, . . ., for every j = 1, . . . , 2nk. The function uk is

continuous in ΩT and A-parabolic in each Qj
k, for every k = 1, 2, . . .

and j = 1, . . . , 2nk.

Lemma 3.12. The function uk is a continuous weak supersolution in
Q0.

Proof. If we can show that uk is A-superparabolic in Q0, the result
follows by Lemma 3.11. We do this directly from the definition. First
of all, due to the construction of uk, it is clear that uk is lower semi-
continuous as well as finite in a dense subset of Q0. Hence, we only
need to show the comparison principle.

Fix a space-time box Q ⊂ Q0 and an A-parabolic function h for
which h ≤ uk in ∂pQ and h ∈ C(Q). Since u is A-superparabolic and

uk ≤ u, we have h ≤ u in Q. Moreover, since u = uk on ∂pQ
j
k, we

obtain h ≤ uk also in ∂pQ
j
k ∩ Q. Thus h ≤ uk on ∂p(Q ∩ Qj

k). As uk

is A-parabolic in every Qj
k, the comparison principle yields h ≤ uk in

Q ∩Qj
k for every j separately, and hence also in the whole Q. ¤

Since being a weak supersolution is a local property, the following
lemma together with Theorem 2.7 shows that u is a weak supersolution.

Lemma 3.13. The sequence uk, k = 1, 2, . . ., is increasing, and uk → u
almost everywhere in K(x0, r0/2)× (0, T ) as k →∞.

Proof. Let k1 < k2. On ∂pQ
j
k2

, j = 1, 2, . . . , 2k2n, we have by the
comparison principle that uk1 ≤ u. Hence it follows, again by the com-
parison principle, that uk1 ≤ uk2 in Qj

k2
, j = 1, 2, . . . , 2k2n. Therefore,

the sequence is increasing.
Let then ε, δ > 0. We set

U = K0(x0, r0/2)× (δ, T − δ) b ΩT .
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Let ũ be a smooth function such that |u − ũ| < ε/2 on U . This is
possible by the continuity of u. We set

wk = (ũ− uk − ε/2)+.

Clearly wk = 0 on ∂Kj
k × [δ, T − δ] for every j = 1, 2, . . . , 2nk.

Next, we apply Sobolev-Poincaré inequality and obtain that
∫ T−δ

δ

∫

Kj
k

wp
k dx dt ≤ C2−kp

∫ T−δ

δ

∫

Kj
k

|∇wk|p dx dt.

Consequently, by summing these estimates up, we obtain
∫

U

wp
k dx dt ≤ C2−kp

∫

U

|∇wk|p dx dt. (3.14)

Since uk is a weak supersolution in Q0, we conclude by the energy esti-
mate, see Proposition 3.1, p. 24 in [2], for the nonnegative subsolution
supΩT

ψ − uk that
∫

U

|∇uk|p dx dt ≤ C(K0, T )
(max{1, oscΩT

ψ}
min{1, δ, r0}

)p

.

This implies that there is a constant C independent of k such that
∫

U

|∇wk|p dx dt ≤ C.

Therefore, we obtain by (3.14) that
∣∣U ∩ {wk > γ}

∣∣ ≤ 2−kpγ−pC

for all γ > 0. This means that wk converges in measure to 0 as k →∞.
Thus there is a subsequence such that wki

→ 0 almost everywhere in
U as i →∞. This implies by the monotonicity of uk that

lim
k→∞

uk ≥ ũ− ε/2 > u− ε almost everywhere in U.

The result follows, since uk ≤ u for all k and the inequality above holds
for all positive ε and δ. ¤

4. Hölder continuity of the solution

The following theorem characterizes the Hölder continuity of the
solution to the obstacle problem provided that the obstacle is Hölder
continuous.

Theorem 4.1. Suppose u is the solution for the obstacle problem and
the obstacle ψ is Hölder continuous with the Hölder exponent α. Then
also u is Hölder continuous with the Hölder exponent σα

α+σ
. Here σ is

as in Theorem 2.8.
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Proof. Since u is A-parabolic in the set {u > ψ} and ψ is Hölder
continuous, the only points in which the Hölder condition can fail are
the boundary points of the set {u > ψ}. Suppose z0 belongs to this
boundary and consider a space-time cube Qρ centered at z0. Since ψ
is Hölder continuous in ΩT , we have

osc
Qρ

ψ ≤ C1ρ
α

for some C1 > 0 independent of ρ. Moreover, by the maximum princi-

ple, we can choose a modified obstacle ψ̃ below ψ in such a way that

‖ψ̃ − ψ‖∞ < 2 osc
Qρ

ψ

and ψ̃ is A-parabolic in Qρ/2. Fix δ > 0 and ρ = δσ/(α+σ). Let δ be
small enough so that δ < ρ/2 and Qρ ⊂ ΩT . Now, similarly as in

Lemma 3.5, the solution ũ for the modified obstacle ψ̃ is A-parabolic
in Qδ and hence, by Theorem 2.8,

osc
Qδ

ũ ≤ C

(
δ

ρ

)σ

.

Note that u is solution to the obstacle problem in ΩT with the contin-
uous obstacle ψ and therefore

M = osc
ΩT

u ≤ osc
ΩT

ψ.

By Remark 3.8, this yields

osc
Qδ

u ≤ osc
Qδ

ũ + 2 sup
Qδ

|u− ũ|

≤ C

(
δ

ρ

)σ

+ 2‖ψ̃ − ψ‖∞ ≤ C

(
δ

ρ

)σ

+ Cρα ≤ Cδασ/(α+σ)

as required. ¤
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[3] Tero Kilpeläinen and Peter Lindqvist. On the Dirichlet boundary value prob-
lem for a degenerate parabolic equation. SIAM J. Math. Anal., 27(3):661–683,
1996.

[4] David Kinderlehrer and Guido Stampacchia. An introduction to variational in-
equalities and their applications, volume 88 of Pure and Applied Mathematics.
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980.

[5] Juha Kinnunen and Peter Lindqvist. Pointwise behaviour of semicontinuous
supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. (4),
185(3):411–435, 2006.



14 RIIKKA KORTE, TUOMO KUUSI, AND JUHANA SILJANDER

[6] Riikka Korte, Tuomo Kuusi, and Mikko Parviainen. A connection between
a general class of superparabolic functions and supersolutions. (submitted),
2008.

[7] Tuomo Kuusi. Lower semicontinuity of weak supersolutions to a nonlinear
parabolic equation. (submitted), 2007.

[8] Jacques-Louis Lions. Quelques méthodes de résolution des problèmes aux lim-
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