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Abstract. We give a relatively simple and transparent proof for
Harnack’s inequality for certain degenerate doubly nonlinear par-
abolic equations. In particular, we consider the case where the
Lebesgue measure is replaced with a doubling Borel measure which
supports a Poincaré inequality.

1. Introduction

Our purpose is to study the local behaviour of nonnegative weak solu-
tions to the doubly nonlinear parabolic equation

div(|Du|p−2Du) =
∂(up−1)

∂t
, 1 < p < ∞. (1.1)

When p = 2 we have the standard heat equation. Observe that the
solutions to (1.1) can be scaled by nonnegative factors, but due to the
nonlinearity of the term (up−1)t we cannot add a constant to a solution.
As far as we know, equation (1.1) has first been studied by Trudinger
in [Tru], where he proved a Harnack inequality for nonnegative weak
solutions. The proof was based on Moser’s celebrated work [Mo1] and
used a parabolic version of the John-Nirenberg lemma. Twenty years
later the proof of the parabolic John-Nirenberg lemma was simplified
by Fabes and Garofalo, see [FaGa]. However, the parabolic BMO still
remains technically demanding. Our main objective is to give a rel-
atively simple and transparent proof for Harnack’s inequality using
the approach of Moser in [Mo2]. In particular, the parabolic John-
Nirenberg lemma is replaced with a lemma due to Bombieri in [BoGi]
and [Bomb]. Let us point out a slightly unexpected phenomenon, which
is related to the parabolic BMO. In the case p = 2 it is known that
if u is a nonnegative solution, then log u is a subsolution to the same
equation. However, if p 6= 2, then log u is not a subsolution to equation
(1.1). Instead it is a subsolution to an equation of the p-parabolic type
studied in [DiBe].
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To show that our proof is based on a general principle we consider
the case where the Lebesgue measure is replaced with a more general
Borel measure. The measure is assumed to be doubling and to support
a Poincaré inequality. The precise definitions will be given below. The
corresponding result in the elliptic case for measures induced by Muck-
enhoupt’s weights has been studied by Fabes, Kenig and Serapioni in
[FKS]. See also [ChFr]. The weighted theory in the parabolic case
has been studied by Chiarenza and Serapioni in [ChSe]. However, in
their approach the role of the measure is somewhat different. For the
heat equation Grigor’yan and Saloff-Coste observed that the doubling
condition and the Poincaré inequality are not only sufficient but also
necessary conditions for a scale invariant parabolic Harnack principle
on Riemannian manifolds, see [SaCo1], [SaCo2] and [Gri]. Our conti-
bution is to show the sufficiency for the general p 6= 2 in a Euclidean
space. It is a very interesting question whether also the necessity holds
in this case. Moreover, the doubling condition and the Poincaré in-
equality are rather standard assumptions in analysis on metric spaces,
see for example [HaK] and references therein. It is well known that
Moser’s technique is essentially based on a combination of a Sobolev
and a Caccioppoli type inequalities. We take a full advatange of a
metric space result, which states that the doubling property and the
Poincaré inequality imply a Sobolev type inequality, see [BCLS] [HaK],
[SaCo1], [SaCo2].

Our argument applies to more general equations of the type

divA(x, t, u,Du) =
∂(up−1)

∂t
,

where A is a Caratheodory function and satisfies the standard struc-
tural conditions (see for example [DiBe], [DBUV], [WZYL])

A(x, t, u,Du) ·Du ≥ C0|Du|p,
|A(x, t, u, Du)| ≤ C1|Du|p−1,

where C0 and C1 are positive constants. However, for expository pur-
poses, we only consider equation (1.1).

2. Preliminaries

In this section we describe our assumptions and results more precisely.
Let µ be a Borel measure and suppose that Ω is an open set in Rn.
The Sobolev space H1,p(Ω, µ) is defined to be the completion of C∞(Ω)
with respect to the norm

‖u‖1,p,Ω =
( ∫

Ω

|u|p dµ
)1/p

+
( ∫

Ω

|Du|p dµ
)1/p

.
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A function belongs to the local Sobolev space H1,p
loc (Ω, µ)) if it belongs

to H1,p(Ω′, µ) for every open subset Ω′ of Ω, whose closure is a compact
subset of Ω. The Sobolev space with zero boundary values H1,p

0 (Ω, µ)
is the closure of C∞

0 (Ω) with respect to the Sobolev norm. For the
basic properties of weighted Sobolev spaces we refer to [HKM].

We denote by Lp(t1, t2; H
1,p(Ω)), t1 < t2, the space of functions such

that for almost every t, t1 ≤ t ≤ t2, the function x 7→ u(x, t) belongs
to H1,p(Ω, µ) and

∫ t2

t1

∫

Ω

(|u(x, t)|p + |Du(x, t)|p) dµ(x) dt < ∞.

Notice that the time derivative ut is deliberately avoided. The defini-
tion for the space Lp

loc(t1, t2; H
1,p
loc (Ω, µ) is clear.

Let t1 < t2 and 1 < p < ∞. A nonnegative function u which belongs
to Lp

loc(t1, t2; H
1,p
loc (Ω, µ)) is a weak solution to (1.1) in Ω× (t1, t2) if

∫ t2

t1

∫

Ω

(
|Du|p−2Du ·Dη − up−1∂η

∂t

)
dµ dt = 0 (2.1)

for all η ∈ C∞
0 (Ω×(t1, t2)). Further, we say that u is a supersolution to

(1.1), if the integral (2.1) is nonnegative for all η ∈ C∞
0 (Ω×(t1, t2)) with

η ≥ 0. If this integral is nonpositive, we say that u is a subsolution.

The measure µ is doubling if there exists a universal constant D0 ≥ 1
such that

µ(B(z, 2R)) ≤ D0µ(B(z, R)) (2.2)

for every z ∈ Rn and R > 0. Here B(z, R) denotes the open ball
with center z and radius R. The dimension of the measure is defined
as dµ = log2 D0. Note that in the case of the Lebesgue measure the
dimension is n.

The measure is said to support a weak (1, p)-Poincaré inequality if there
exist constants P0 > 0 and τ ≥ 1 such that∫

B(z,R)

|v − vB(z,R)| dµ ≤ P0R
(∫

B(z,τR)

|Dv|p dµ
)1/p

, (2.3)

for every v ∈ H1,p
loc (Rn, µ), z ∈ Rn and R > 0. Here we use the notation

vB(z,R) =

∫

B(z,R)

v dµ =
1

µ(B(z, R))

∫

B(z,R)

v dµ.

The word weak refers to the possibility that τ > 1. If τ = 1, the space
is said to support a (1, p)-Poincaré inequality. Indeed, in the Euclidean
case the weak Poincaré inequality implies the Poincaré inequality, see
Theorem 3.4 in [HaK]. Thus we may take τ = 1 in (2.3).
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From now on we assume that the measure µ is doubling and supports
the weak (1, p)-Poincaré inequality. Moreover, we assume that the
measure is nontrivial in the sense that the measure of every nonempty
open set is strictly positive and measure of every bounded set is finite.
These assumptions imply a weak (κ, p)-Sobolev-Poincaré inequality for
some κ > p possibly with a different τ , see [BCLS] and [HaK]. More
precisely, there are κ = κ(p,D0, P0) > p, C = C(p,D0, P0) > 0 and
τ ′ ≥ 1 such that

(∫

B(z,R)

|v − vB(z,R)|κ dµ
)1/κ

≤ CR
(∫

B(z,τ ′R)

|Dv|p dµ
)1/p

, (2.4)

for every z ∈ Rn and R > 0. Again, by Theorem 3.4 in [HaK] we may
take τ ′ = 1 in (2.4).

For Sobolev functions with the zero boundary values we have the follow-
ing version of Sobolev’s inequality. Suppose that u ∈ H1,p

0 (B(z, R), µ).
Then there exists constants C = C(p,D0, P0) and κ = κ(p,D0, P0) > p
such that

(∫

B(z,R)

|v|κ dµ
)1/κ

≤ CR
(∫

B(z,R)

|Dv|p dµ
)1/p

. (2.5)

For the proof we refer, for example, to [KS].

κ =

{ dµp

dµ−p
, p < dµ

∈ (p,∞), p ≥ dµ

, (2.6)

where dµ is the dimension of the measure.

For any fixed 0 < σ ≤ 1, τ ∈ R and for a ball B(z, r) ⊂ Rn with r > 0,
we denote

σU+ = B(z, σr)×
(
τ +

1

2
rp − 1

2
(σr)p, τ +

1

2
rp +

1

2
(σr)p

)
,

σU− = B(z, σr)×
(
τ − 1

2
rp − 1

2
(σr)p, τ − 1

2
rp +

1

2
(σr)p

)
.

and

Q = B(z, r)× (τ − rp, τ + rp).

We show that the following parabolic Harnack inequality holds for a
weak solution to (1.1).

Theorem 2.1. Let u ≥ ρ > 0 be a weak solution to equation (1.1) in
Q and let 0 < σ < 1. Then we have

ess sup
σU−

u ≤ C ess inf
σU+

u, (2.7)

where the constant C depends only on p, D0, P0 and σ.
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Note carefully that the constant in (2.7) is independent of ρ. A modi-
fication of the proof shows that the technical assumption u ≥ ρ can be
removed and the result holds for all nonnegative solutions.

It has come to our attention that a similar question has been studied in
a recent work by Gianazza and Vespri [GiVe] using a different method.

It is well-known that the local Hölder continuity of a weak solution is a
consequence of the Harnack inequality also in the parabolic case when
p = 2, see [Mo1]. However, due to the nonlinearity of the term (up−1)t,
it is not clear how to modify the same proof for the doubly nonlinear
equation (1.1). The local Hölder continuity of the solution has been
proved in [Ve] using different method.

2.1. Preliminary results. Suppose that t1 ≤ τ1 < τ2 ≤ t2. If the test
function η vanishes only on the lateral boundary ∂Ω× (τ1, τ2), then the
boundary terms

∫

Ω

u(x, τ1)
p−1η(x, τ1) dµ = lim

σ→0

1

σ

∫ τ1+σ

τ1

∫

Ω

u(x, t)p−1η(x, t) dµ dt

and∫

Ω

u(x, τ2)
p−1η(x, τ2) dµ = lim

σ→0

1

σ

∫ τ2

τ2−σ

∫

Ω

u(x, t)p−1η(x, t) dµ dt

have to be included. In the case of a supersolution to the doubly
nonlinear equation (1.1) the condition becomes

∫ τ2

τ1

∫

Ω

|Du|p−2Du ·Dη dµ dt

+

[∫

Ω

up−1η dµ

]τ2

t=τ1

−
∫ τ2

τ1

∫

Ω

up−1∂η

∂t
dµ dt ≥ 0

(2.8)

for almost every τ1, τ2 with t1 < τ1 < τ2 < t2.

There is a well-recognized difficulty with the test functions. Namely,
in proving estimates we usually need a test function which depends on
the solution itself. Then we cannot avoid that the “forbidden quantity”
ut shows up in the calculation of ηt. In most cases one can easily
overcome this difficulty by using an equivalent definition in terms of
Steklov averages, as on pages 18 and 25 in [DiBe] and in Chapter 2
of [WZYL]. Alternatively, one can proceed using convolutions with
smooth mollifiers as on pages 199–121 in [AS].

We start with an elementary lemma.

Lemma 2.1. Suppose that u ≥ ρ > 0 is a supersolution. Then v = u−1

is a subsolution.
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Proof. Let ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0. Formally we choose the

test function η = u2(1−p)ϕ. Then

Dη = −2(p− 1)u1−2pϕDu + u2(1−p)Dϕ

and
∂η

∂t
= −2(p− 1)u1−2pϕ

∂u

∂t
+ u2(1−p)∂ϕ

∂t
.

A substituttion of these in (2.8) leads to

0 ≤− 2(p− 1)

∫ t2

t1

∫

Ω

|Du|pu1−2pϕdµ dt

+

∫ t2

t1

∫

Ω

u2(1−p)|Du|p−2Du ·Dϕ dµdt

+ 2(p− 1)

∫ t2

t1

∫

Ω

u−pϕ
∂u

∂t
dµ dt−

∫ t2

t1

∫

Ω

u1−p ∂ϕ

∂t
dµ dt.

An integration by parts gives
∫ t2

t1

∫

Ω

u−pϕ
∂u

∂t
dµ dt = − 1

p− 1

∫ t2

t1

∫

Ω

∂(u1−p)

∂t
ϕ dµ dt

=
1

p− 1

∫ t2

t1

∫

Ω

u1−p ∂ϕ

∂t
dµ dt.

Therefore, we obtain

0 ≤
∫ t2

t1

∫

Ω

|Du|p−2Du ·Dϕ u2(1−p) dµ dt +

∫ t2

t1

∫

Ω

u1−p ∂ϕ

∂t
dµ dt

=−
∫ t2

t1

∫

Ω

(
|Dv|p−2Dv ·Dϕ− vp−1∂ϕ

∂t

)
dµ dt

since Du = −v−2Dv. ¤

The following weighted Poincaré inequality is a consequence of the
doubling property (2.2) and the (1, p)-Poincaré inequality (2.3). For
the proof we refer to [SaCo1].

Theorem 2.2. Suppose that u ∈ H1,p(B(z, R), µ). Let

φ(x) =
(
1− |x− z|

R

)θ

+
,

where θ > 0. Then there exists a constant C = C(p,D0, P0, θ) such
that for all 0 < r < R∫

B(z,r)

|u− uφ|pφ dµ ≤ Crp

∫

B(z,r)

|Du|pφ dµ,

where

uφ =

∫
B(z,r)

uφ dµ∫
B(z,r)

φ dµ
.
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The following abstract lemma is originally due to Bombieri, see [BoGi]
and [Bomb]. The proof is an easy modification of the proof by Moser
in [Mo2]. See also [SaCo1].

Lemma 2.2. Let ν be a Borel measure and θ, A and γ be positive
constants, 0 < δ < 1 and 0 < q ≤ ∞. Let Uσ be bounded measurable
sets with Uσ′ ⊂ Uσ for 0 < δ ≤ σ′ < σ ≤ 1. Moreover, if q < ∞, we
assume that the doubling condition ν(U1) ≤ Aν(Uδ) holds. Let f be a
positive measurable function on U1 which satisfies the reverse Hölder
inequality

(∫

Uσ′
f q dν

)1/q

≤
( A

(σ − σ′)θ

∫

Uσ

f s dν
)1/s

with 0 < s < q. Assume further that f satisfies

ν({x ∈ U1| log f > λ}) ≤ Aν(Uδ)

λγ

for all λ > 0. Then
(∫

Uδ

f q dν
)1/q

≤ C,

where C depends only on θ, γ, q and A.

Proof. We denote

ψ = ψ(σ) = log
(∫

Uσ

f q dν
)1/q

.

First, Hölder’s inequality gives
∫

Uσ

f s dν =
1

ν(Uσ)

∫

log f≤ψ/2

f s dν +
1

ν(Uσ)

∫

log f>ψ/2

f s dν

≤ exp(ψs/2) +
(∫

Uσ

f q dν
)s/q(ν({log f > ψ/2})

ν(Uσ)

)(q−s)/q

≤ exp(ψs/2) + exp(ψs)

(
A

(ψ/2)γ

)(q−s)/q

.

Then, if s = 2ψ−1 log
(
ψγ/A2γ

)
, we have

∫

Uσ

f s dν ≤ 2 exp(ψs/2).

This is true if ψ ≥ 4A1/γ and ψ is also so large that s < q. Con-
sequently, the lower bound on ψ depends on A, γ and q. We call it
A1.
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Next, we take a logarithm from the reverse Hölder inequality and use
the estimate above:

ψ(σ′) ≤1

s

(
log

( 2A

(σ − σ′)θ

)
+ ψ(σ)s/2

)

=
ψ(σ)

2

(
log

( 2A

(σ − σ′)θ

)
/ log

(
ψγ/A2γ

)
+ 1

)
.

Suppose further that

ψγ/A2γ ≥
( 2A

(σ − σ′)θ

)2

or

ψ ≥ A2

(σ − σ′)2θ/γ
,

where A2 depends only on A and γ. Then, for ψ(σ) large we have an
estimate

ψ(σ′) ≤ 3

4
ψ(σ).

On the other hand, if

ψ(σ) ≤ min
(
A1,

A2

(σ − σ′)2θ/γ

)

we have from the doubling condition that

ψ(σ′) ≤ log
( ν(Uσ)

ν(Uσ′)

)
+ ψ(σ) ≤ log A + min

(
A1,

A2

(σ − σ′)2θ/γ

)
.

We collect the results obtained so far: There exists a constant C de-
pending only on A, γ and q such that.

ψ(σ′) ≤ 3

4
ψ(σ) + C

(
1 +

1

(σ − σ′)2θ/γ

)
.

The assertion follows now by a standard iteration argument (see e.g.
[Giaq]). ¤

3. Estimates for super- and subsolutions

3.1. Caccioppoli estimates. The following three lemmata are essen-
tially consequences of choosing a correct test function in (2.1).

Lemma 3.1. Suppose that u ≥ ρ > 0 is a supersolution in Ω× (t1, t2)
and let ε > 0 with ε 6= p− 1. Then there exists a constant C = C(p, ε)
such that∫ t2

t1

∫

Ω

|Du|pu−ε−1ϕp dµ dt + ess sup
t1<t<t2

∫

Ω

up−1−εϕp dµ

≤ C

∫ t2

t1

∫

Ω

up−1−ε|Dϕ|p dµ dt + C

∫ t2

t1

∫

Ω

up−1−εϕp−1
∣∣∣∂ϕ

∂t

∣∣∣ dµ dt

for every ϕ ∈ C∞
0 (Ω× (t1, t2)) with ϕ ≥ 0.
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Proof. Formally we choose the test function η = u−εϕp so that

Dη = −εu−ε−1ϕpDu + u−εDϕp

and

∂η

∂t
= −εu−ε−1ϕp ∂u

∂t
+ u−ε ∂ϕp

∂t
,

where ϕ ∈ C∞
0 (Ω× (t1, t2)) with ϕ ≥ 0. Let t1 < τ1 < τ2 < t2. We first

integrate by parts to get

−
∫ τ2

τ1

∫

Ω

up−1∂η

∂t
dµ dt +

[∫

Ω

up−1η dµ

]τ2

t=τ1

=
ε

p− 1− ε

∫ τ2

τ1

∫

Ω

∂up−1−ε

∂t
ϕp dµ dt−

∫ τ2

τ1

∫

Ω

up−1−ε ∂ϕp

∂t
dµ dt

+

[∫

Ω

up−1−εϕp dµ

]τ2

t=τ1

≤ p(p− 1)

|p− 1− ε|
∫ τ2

τ1

∫

Ω

up−1−ε
∣∣∣∂ϕ

∂t

∣∣∣ϕp−1 dµ dt

+
p− 1

p− 1− ε

[∫

Ω

up−1−εϕp dµ dt

]τ2

t=τ1

.

Hence a substitution of η in (2.8) gives

0 ≤− ε

∫ τ2

τ1

∫

Ω

|Du|pu−ε−1ϕp dµ dt

+ p

∫ τ2

τ1

∫

Ω

|Du|p−1ϕp−1|Dϕ|u−ε dµ dt

+
p(p− 1)

|p− 1− ε|
∫ τ2

τ1

∫

Ω

up−1−ε
∣∣∣∂ϕ

∂t

∣∣∣ϕp−1 dµ dt

+
p− 1

p− 1− ε

[∫

Ω

up−1−εϕp dµ dt

]τ2

t=τ1

=− εI1 + pI2 +
p(p− 1)

|p− 1− ε|I3 +
p− 1

p− 1− ε
I4.

Young’s inequality implies

I2 =

∫ τ2

τ1

∫

Ω

(|Du|ϕu−(ε+1)/p
)p−1(|Dϕ|u−ε+(ε+1)(p−1)/p

)
dµ dt

≤ γI1 + c(γ)

∫ τ2

τ1

∫

Ω

|Dϕ|pu−εp+(ε+1)(p−1) dµ dt

= γI1 + c(γ)

∫ τ2

τ1

∫

Ω

|Dϕ|pup−1−ε dµ dt,

9



where γ > 0. Thus we have

I1 − 2(p− 1)

ε(p− 1− ε)
I4

≤ 2p c(ε/2)

ε

∫ τ2

τ1

∫

Ω

|Dϕ|pup−1−ε dµ dt +
2p(p− 1)

ε|p− 1− ε|I3,

where we have chosen γ = ε/2. Furthermore, if ε < p− 1 by choosing
τ2 = t2 and τ1 = τ > t1 such that∫

Ω

up−1−ε(x, τ)ϕp(x, τ) dµ ≥ 1

2
ess sup
t1<t<t2

∫

Ω

up−1−εϕpdµ

we obtain

ess sup
t1<t<t2

∫

Ω

up−1−εϕp dµ

≤ C

∫ t2

τ1

∫

Ω

|Dϕ|pup−1−ε dµ dt + C

∫ t2

τ1

∫

Ω

up−1−ε
∣∣∣∂ϕ

∂t

∣∣∣ϕp−1 dµ dt

≤ C

∫ t2

t1

∫

Ω

|Dϕ|pup−1−ε dµ dt + C

∫ t2

t1

∫

Ω

up−1−ε
∣∣∣∂ϕ

∂t

∣∣∣ϕp−1 dµ dt.

We conclude the same estimate for ε > p− 1, if we choose τ1 = t1 and
τ2 = τ . Now the result follows with the constant C depending on ε
and p. Remark that the constant blows up as ε tends to 0 or p− 1. ¤

Next, we show a corresponding result for a subsolution. Observe that
in the following lemma we may have quantities which are not finite a
priori. Nevertheless, we can make our calculations with a truncated
test function. After we have a control on the quantities, we obtain the
result by letting the level of truncation go to infinity. In fact, this also
justifies the formal calculations made in the proof of Lemma 3.5.

Lemma 3.2. Suppose that u ≥ ρ > 0 is a subsolution and let ε > 0.
Then there exists a constant C = C(ε, p) such that

∫ t2

t1

∫

Ω

|Du|puε−1ϕp dµ dt + ess sup
t1<t<t2

∫

Ω

up−1+εϕp dµ

≤ C

∫ t2

t1

∫

Ω

up−1+ε|Dϕ|p dµ dt + C

∫ t2

t1

∫

Ω

up−1+εϕp−1
∣∣∣∂ϕ

∂t

∣∣∣ dµ dt

for every ϕ ∈ C∞
0 (Ω× (t1, t2)) with ϕ ≥ 0.

Proof. This time we formally choose the test function η = uεϕp. Oth-
erwise the assertion follows as in the proof of Lemma 3.1. The constant
C blows up as ε tends to 0. ¤

Finally, we show a Caccioppoli type estimate for the logarithm of a
supersolution.
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Lemma 3.3. Suppose that u ≥ ρ > 0 is a supersolution. Then there
exists a constant C = C(p) such that

∫ t2

t1

∫

Ω

|D(log u)|pϕp dµ dt + ess sup
t1<t<t2

∣∣∣
∫

Ω

log uϕp dµ
∣∣∣

≤ C

∫ t2

t1

∫

Ω

|Dϕ|p dµ dt + C

∫ t2

t1

∫

Ω

| log u|ϕp−1
∣∣∣∂ϕ

∂t

∣∣∣ dµ dt

for every ϕ ∈ C∞
0 (Ω× (t1, t2)) with ϕ ≥ 0.

Proof. Let η = u1−pϕp, where ϕ ∈ C∞
0 (Ω × (t1, t2)) and ϕ ≥ 0. We

again integrate by parts and obtain

−
∫ τ2

τ1

∫

Ω

up−1∂η

∂t
dµ dt +

[∫

Ω

up−1η dµ

]τ2

t=τ1

=(p− 1)

∫ τ2

τ1

∫

Ω

∂ log u

∂t
ϕp dµ dt−

∫ τ2

τ1

∫

Ω

∂ϕp

∂t
dµ dt

+

[∫

Ω

ϕp dµ

]τ2

t=τ1

=− p(p− 1)

∫ τ2

τ1

∫

Ω

log u ϕp−1∂ϕ

∂t
dµ dt

+ (p− 1)

[∫

Ω

log u ϕp dµ

]τ2

t=τ1

,

where t1 < τ1 < τ2 < t2. We denote v = log u and substitute η in (2.8)
to get

0 ≤−
∫ τ2

τ1

∫

Ω

|Dv|pϕp dµ dt +
p

p− 1

∫ τ2

τ1

∫

Ω

|Dv|p−1|Dϕ|ϕp−1 dµ dt

+

[∫

Ω

vϕp dµ

]τ2

t=τ1

+ p

∫ τ2

τ1

∫

Ω

|v|ϕp−1

∣∣∣∣
∂ϕ

∂t

∣∣∣∣ dµ dt.

We apply Young’s inequality for the second term and obtain∫ τ2

τ1

∫

Ω

(|Dv|ϕ)p−1|Dϕ| dµ dt

≤ p− 1

2p

∫ τ2

τ1

∫

Ω

|Dv|pϕp dµ dt + C

∫ τ2

τ1

∫

Ω

|Dϕ|p dµ dt.

Consequently, we have∫ τ2

τ1

∫

Ω

|Dv|pϕp dµ dt−
[∫

Ω

vϕp dµ

]τ2

t=τ1

≤ C

∫ τ2

τ1

∫

Ω

|Dϕ|p dµ dt + C

∫ τ2

τ1

∫

Ω

|v|ϕp−1

∣∣∣∣
∂ϕ

∂t

∣∣∣∣ dµ dt.

(3.1)

Now the claim follows in the standard way as in the proof of Lemma
3.1. ¤

11



Remark. In (3.1) the test function ϕ does not need to have a compact
support in time. We will use this fact in the future.

3.2. Reverse Hölder inequality for a supersolution. For τ0 ∈ R
and a ball B(z, r) ⊂ Rn we set

Q0 = Q0(z, τ0, r) = B(z, r)× (τ0 − rp, τ0 + rp).

We also define

σQ = σQ(z, τ, r, T ) = B(z, σr)× (
τ − T (σr)p, τ + T (σr)p

)

for any τ ∈ R, 0 < σ ≤ 1 and T > 0. The parameter T is going to be
chosen so that the time intervals between different lemmata match.

In the following lemma our goal is to obtain a constant which is inde-
pendent of the parameter s. In the standard approach of Moser [Mo1]
only a finite iteration is needed. In that case there is no need to control
the asymptotic behaviour of the constant. In our approach the number
of iterations is not bounded and we have to make a geometrically con-
vergent partition of the cylinder Q in order to obtain a uniform bound
for the constant.

Lemma 3.4. Suppose that u ≥ ρ > 0 is a supersolution in Q0 and
let Q ⊂ Q0 and 0 < δ < 1. Then there exist positive constants C =
C(p, q, D0, P0, T, δ) and θ = θ(p,D0) such that

(∫

σ′Q
uq dµ dt

)1/q

≤
( C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

for all 0 < δ ≤ σ′ < σ ≤ 1 and for all 0 < s < q < q0, where
q0 = (p− 1)(2− p/κ) and κ > p is as in (2.6).

Proof. The proof is based on the successive use of Sobolev’s inequality
and Caccioppoli’s estimate. Let γ = 2− p/κ. We fix σ and divide the
interval (σ′, σ) into k parts by setting

σ0 = σ, σk = σ′, σj = σ − (σ − σ′)
1− γ−j

1− γ−k
.

We shall fix k later. We denote Qj = σjQ = Bj × Tj. We also choose
test functions with the following properties:

supp (ϕj) ⊂ Qj−1,

0 ≤ ϕj ≤ 1 in Qj−1, ϕj = 1 in Qj,

|Dϕj| ≤ C
γj

r(σ − σ′)
,

∣∣∣∂ϕj

∂t

∣∣∣ ≤ C

T

( γj

r(σ − σ′)

)p

in σjQ.

12



Furthermore, let α = p − 1 − ε, 0 < ε < p − 1. An application of
Hölder’s inequality yields

∫

Qj+1

uγα dµ dt

≤
∫

Tj+1

(∫

Bj+1

uαϕp
j dµ

)(κ−p)/κ(∫

Bj+1

(
uα/pϕj

)κ
dµ

)p/κ

dt

≤ |Tj|µ(Bj)

|Tj+1|µ(Bj+1)

(
ess sup

Tj

∫

Bj

uαϕp
j dµ

)(κ−p)/κ

×
∫

Tj

(∫

Bj

(
uα/pϕj

)κ
dµ

)p/κ

dt.

Since the measure µ is doubling and σj+1 ≥ min(δ, (γ + 1)−1)σj, the
first factor on the right hand side is bounded by a constant independent
of j, r, σ and σ′. We now use Sobolev’s inequality together with
Caccioppoli’s estimate and obtain

∫

Qj+1

uγα dµ dt

≤C
(

ess sup
Tj

∫

Bj

uαϕp
j dµ

)(κ−p)/κ

rp

∫

Tj

∫

Bj

∣∣D(uα/pϕj)
∣∣p dµ dt

≤C
(

ess sup
Tj

∫

Bj

uαϕp
j dµ

+
1

δT

∫

Tj

∫

Bj

αp|Du|pu−ε−1ϕp
j + up−1−ε|Dϕj|p dµ dt

)γ

≤C
( ∫

Tj

∫

Bj

up−1−ε
(
|Dϕj|p +

∣∣∣∂ϕj

∂t

∣∣∣
)

dµ dt
)γ

≤C
( γjp

(σ − σ′)p

∫

Qj

uα dµ dt
)γ

.

(3.2)

Careful study of the proof of Lemma 3.1 shows that the constant C is
indeed independent of α; the term αp in the inequality above cancels
the impact of the singularity of the constant in Lemma 3.1 when ε is
close to p− 1.

The next step in the proof is to iterate (3.2). Observe that the condition
0 < α < p−1 must be satisfied. This gives an upper bound q0 = γ(p−1)
for q. For the iteration, we fix q and s with q > s, and k such that
sγk−1 ≤ q ≤ sγk. Let ρ0 such that ρ0 ≤ s and q = γkρ0. Denote

13



ρj = γjρ0 for j = 0, . . . , k. Then we have

(∫

Qk

uq dµ dt
)1/q

≤
( Cγk

σ − σ′

)p/ρk−1
(∫

Qk−1

uρk−1 dµ dt
)1/ρk−1

≤ ...

≤
( cprod(k)

(σ − σ′)γ∗

∫

σQ

uρ0 dµ dt
)1/ρ0

,

where

cprod(k) = Cγ∗
k−1∏
j=0

(
γj+1

)pγ−j

and

γ∗ = p

k−1∑
j=0

γ−j =
pγ

γ − 1
(1− γ−k).

The constant C depends on q since the constant in Lemma 3.1 has a
singularity at ε = 0. Obviously cprod(k) is uniformly bounded on k.
From Hölder’s inequality we obtain

(∫

σ′Q
uq dµ dt

)1/q

≤
( C

(σ − σ′)γ∗

)1/ρ0
(∫

σQ

us dµ dt
)1/s

.

Furthermore, since sγk−1 ≤ ρ0γ
k, we have ρ0 ≥ s/γ and consequently

the required estimate follows with θ = pγ2/(γ − 1). ¤

3.3. Estimate for the essential supremum of a subsolution.

Lemma 3.5. Suppose that u ≥ ρ > 0 is a subsolution in Q. Let
0 < δ < 1. Then there exist positive constants C = C(p,D0, P0, T, δ)
and θ = θ(p,D0), such that

ess sup
σ′Q

u ≤
( C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

for all 0 < δ ≤ σ′ < σ ≤ 1 and for all s > 0.

Proof. Without loss of generality we can choose T = 1. Let the choices
of test functions and σj be the same as in the proof of Lemma 3.4 with
an exception that

σj = σ − (σ − σ′)(1− γ−j).

As in the proof of Lemma 3.4 we obtain from the Sobolev’s inequality
and from Lemma 3.2 that∫

Qj+1

uγα dµ dt ≤ C
( αpγjp

(σ − σ′)p

∫

Qj

uα dµ dt
)γ

, (3.3)
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where

γ = 2− p

κ
, α = p− 1 + ε, ε ≥ 1.

In Lemma 3.2 the constant is singular as ε is close to 0. We deliberately
avoid this singularity by choosing ε ≥ 1. Moreover, we choose αj = pγj,
j = 0, 1, . . . . We iterate the inequality above and obtain

(∫

Q0

up dµ dt
)1/p

≥
((σ − σ′)

C

)γ−1+γ−2+···+γ−k k∏
j=1

γ2j/γj
(∫

Qk

uγkp dµ dt
)1/γkp

We let k tend to infinity and get the result for s ≥ p from Hölder’s
inequality.

If s < p, then we have

ess sup
σ′Q

u ≤
( C

(σ − σ′)θ

)1/p(∫

σQ

up dµ dt
)1/p

≤
(p− s

2p
ess sup

σQ
u
)(p−s)/p( 2p

p− s

)(p−s)/p

×
( C

(σ − σ′)θ

)1/p(∫

σQ

us dµ dt
)1/p

≤ 1

2
ess sup

σQ
u +

(
(p− s)s−p C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

≤ 1

2
ess sup

σQ
u +

( C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

,

where we used Young’s inequality. By a standard iteration argument
(see e.g. [Giaq] Lemma 5.1) we obtain the result. ¤

3.4. Logarithmic estimate for a supersolution. We already have
the reverse Hölder inequalities for both super- and subsolutions. Next
we show that the condition for the logarithm in the assumptions of
Lemma 2.2 holds.

Let 0 < σ ≤ 1, τ ∈ R, T > 0 and B(z, r) ⊂ Rn. We define

σQ+ = σQ+(z, r, τ) = B(z, σr)× (τ, τ + T (σr)p),

σQ− = σQ−(z, r, τ) = B(z, σr)× (τ − T (σr)p, τ)

and

σQ = B(z, σr)× (τ − Trp, τ + Trp).

Let dν = dµ dt.
15



Lemma 3.6. Suppose that u ≥ ρ > 0 is a supersolution in Q. Fur-
thermore, let

ϕ(x, t) = ϕ(x) =
(
1− 2

|x− z|
(1 + σ)r

)
+
,

where 0 < σ < 1 and (x, t) ∈ B(z, r)× (τ − (σr)p, τ + (σr)p). Let

β =

∫

B(z,r)

log u(x, τ)ϕp(x) dµ(x).

Then there exist constants C = C(p,D0, P0, σ, T ) and C ′ = C ′(p,D0,σ,T )
such that

ν
({(x, t) ∈ σQ−| log u > λ + β + C ′}) ≤ C

λp−1
ν(σQ−)

and

ν
({(x, t) ∈ σQ+| log u < −λ + β − C ′}) ≤ C

λp−1
ν(σQ+).

for every λ > 0.

Proof. Let

N =

∫

B(z,r)

ϕp(x) dµ(x),

so that we have
(1− σ

1 + σ

)p

µ(B(z, σr)) ≤ N ≤ µ(B(z, r)).

We also denote

v(x, t) = log u(x, t)− β, V (t) =
1

N

∫

B(z,r)

v(x, t)ϕp(x) dµ(x).

Remark that V (τ) = 0. Since ϕ is independent of t, we obtain from
(3.1) that

∫ t2

t1

∫

B(z,r)

|Dv|pϕp dµ dt−
[∫

B(z,r)

vϕp dµ

]t2

t=t1

≤ C

∫ t2

t1

∫

B(z,r)

|Dϕ|p dµ dt,

where τ − (σr)p ≤ t1 < t2 ≤ τ + (σr)p. Furthermore, the weighted
Poincaré inequality 2.2 yields

∫

B(z,r)

|Dv|pϕp dµ ≥ 1

Crp

∫

B(z,r)

|v − V (t)|pϕp dµ

≥ (1− σ)p

Crp

∫

B(z,σr)

|v − V (t)|p dµ.
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It follows that

1

CNrp

∫ t2

t1

∫

B(z,r)

|v − V (t)|p dµ dt + V (t1)− V (t2)

≤ C(t2 − t1)

rp

µ(B(z, r))

N

≤ C ′ t2 − t1
T (σr)p

.

By denoting

w(x, t) = v(x, t) + C ′ t− τ

T (σr)p
, W (t) = V (t) + C ′ t− τ

T (σr)p

we obtain

1

CNrp

∫ t2

t1

∫

B(z,r)

|w −W (t)|p dµ dt + W (t1)−W (t2) ≤ 0.

From this we conclude that W (t1) ≤ W (t2) for all τ − (σr)p ≤ t1 <
t2 ≤ τ + (σr)p. Since W is a monotonic function it is differentiable
almost everywhere. As a consequence we have

1

CNrp

∫

B(z,r)

|w −W (t)|p dµ−W ′(t) ≤ 0 (3.4)

for almost every t ∈ (t1, t2). Let

E−
λ (t) = {(x, t) ∈ σQ−|w(x, t) > λ}.

We observe that∫

σB

|w −W (t)|p dµ ≥ (λ−W (t))pµ(E−
λ (t)) ≥ µ(E−

λ (t))λp

because W (t) ≤ W (τ) = 0 as τ > t > t− (σr)p. Thus we have

− W ′(t)
(λ−W (t))p

+ C
µ(E−

λ (t))

Nrp
≤ 0

for almost every τ > t > t− (σr)p. We integrate this over the interval
(τ − (σr)p, τ) and obtain

ν(E−
λ )

Nrp
≤ C

[
(λ−W (t))−(p−1)

]τ

t=τ−(σr)p ≤
C

λp−1
.

This yields

ν
({(x, t) ∈ σQ− | log u > λ + β + C ′}) ≤ Cν(σQ−)

λp−1
.

Now, let
E+

λ (t) = {(x, t) ∈ σQ+|w(x, t) < −λ}.
As in the case of Q− we conclude that∫

σB(z,r)

|w −W (t)|p dµ ≥ µ(E+
λ (t))(λ + W (t))p ≥ µ(E−

λ (t))λp
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because W (t) ≥ W (τ) = 0 as τ ≤ t ≤ τ + (σrp). Thus, from (3.4), we
have

− W ′(t)
(λ + W (t))p

+ C
µ(E+

λ (t))

ν(Q+)
≤ 0

for almost every τ < t ≤ t + (σr)p. An integration over the interval
(τ, τ + (σr)p) gives

ν(E+
λ )

ν(σQ+)
≤ −C

[
(λ + W (t))−(p−1)

]τ+(σr)p

t=τ
≤ C

λp−1
.

Therefore

ν
({(x, t) ∈ σQ+ | log u < −λ + β − C ′ }) ≤ Cν(σQ+)

λp−1

and the claim follows. ¤

4. Harnack’s inequality

First we prove a weak Harnack inequality. Here U± are as before
Theorem 2.1.

Theorem 4.1. Let u ≥ ρ > 0 be a supersolution in Q. Then there
exist constants C = C(p,D0, P0, q, δ) and q0 = (p− 1)(2− p/κ), κ > p
as in (2.6), such that

(∫

δU−
uq dµ dt

)1/q

≤ C ess inf
δU+

u,

for 0 < δ < 1 and 0 < q < q0.

Proof. We fix 0 < δ < 1. Let ϕ be as in the assumptions of Lemma
3.6 and let β and C ′ be the corresponding constants. We define v+ =
u−1eβ−C′ and v− = u e−β−C′ . We apply Lemma 3.6 for the function u
and have

ν
({(x, t) ∈ 1 + δ

2
U+| log(v+) > λ}) ≤ C

λp−1
ν
(1 + δ

2
U+

)

and

ν
({(x, t) ∈ 1 + δ

2
U−| log(v−) > λ}) ≤ C

λp−1
ν
(1 + δ

2
U−

)
.

We also used a fact that ν(B(z, σR)×(τ, τ±(σR)p)) ≤ Cν(δU±). From
Lemma 2.1 we obtain that v+ is a subsolution in Q. Consequently,
Lemma 3.5 yields

ess sup
σ′U+

v+ ≤
( C

(σ − σ′)θ

∫

σU+

(v+)s dµ dt
)1/s
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for all δ ≤ σ′ < σ ≤ (1 + δ)/2 and for all s > 0. Note that we
have chosen a suitable parameter T to match the time scales between
lemmata. We now use Lemma 2.2 and obtain

ess sup
δU+

v+ ≤ C. (4.1)

Furthermore, we have from the corollary of Lemma 3.4 for v− that
(∫

σ′U−
(v−)q dµ dt

) 1
q ≤

( C

(σ − σ′)θ

∫

σU−
(v−)s dµ dt

) 1
s

for every δ ≤ σ′ < σ ≤ (1 + δ)/2, 0 < s < q < q0. From Lemma 2.2 we
obtain (∫

δU−
(v−)q dµ dt

)1/q

≤ C.

Multiplying this with (4.1) gives
(∫

δU−
uq dµ dt

)1/q

≤ C ess inf
δU+

u

and the result follows. ¤

Now we are ready to prove Harnack’s inequality.

Proof of theorem 2.1. We apply Lemma 4.1 with δ = (1 + σ)/2.
The result follows now from Lemma 3.5. ¤
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