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1. Polygons and the Euler Characteristic

Polygons and Tilings. Let us start by defining what we are talking about.
What is a polygon (in the plane)? One definition is that a polygon is a
collection of vertices, edges and one face. The vertices are some collection
of points in the plane from each of which leave two line segments (edges) to
some other vertex such that these edges form a chain (a cycle) meanining
we can move in some order along the edges to get back to the vertex we
started from. The area bounded by this chain is the face of the polygon.
The pictures 1, 2 and 3 show examples of polygons.

Figure 1. Regular polygons

Figure 2. Crooked polygons

Figure 3. Complicated polygons
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We notice that a polygon can be divided up into multiple smaller poly-
gons. This is called a tiling of a polygon.

Figure 4. Tiled polygons

We notice that every polygon can eventually be subdivided up into trian-
gles. This is due to triangles being the “simplest” polygon in the plane.
Why is this? A polygon with only two vertices must necessarily have only
one edge. Thus we cannot return to our starting vertex if following the edges
and thus do not bound anything “two-dimensional”.

About Dimensions.
What do we mean by the word dimension? In some sense the dimension of
a shape tells us in how many different independent directions we can move
in within a shape. A point is 0-dimensional, because we cannot move in any
directions within it. Piste on nollaulotteinen, koska emme voi liikkua sen
sisällä yhteenkään suuntaan. A line segment is 1-dimensional because we
can move in only one direction along it if we consider moving backwards to
be “negative” movement. An “area” of the plane is 2-dimensional because
we can move in exactly two “independent” directions within it. Any other
movement can be expressed as combining movement in these two directions.

Figure 5. Directions of movement within 0-, 1- and 2-
dimensional shapes.

Notice that we talk about moving within a shape. In this sense dimension
is a property “ìnside” the shape itself and independent of the surrounding
space in which the shape lives. Usually in mathematics you do not have to
think of a shape as living within any outside space.

Itse asiassa, jos käytämme hieman yleisempää määritelmää monikul-
mioille kuin äsken, niin Indeed, if we use a more general definition for a
polygon than before, we get the following.

• A point is a 0-dimensional polygon.
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• A line segment between two points is a 1-dimensional polygon.
• For example a cube (with its interior) is a 3-dimensional “polygon”,

a polyhedron.
• Similarly there exist n-dimensional “polygons”, n-polytopes, for all

dimensions n ∈ N (n a natural number). However when n ≥ 4 these
are not visualisable (by humans).

Figure 6. A cube, a 3-dimensional polyhedron and a ques-
tion mark representing an n-dimensional polytope, when n ≥
4.

The Euler Characteristic for shapes in the plane. Over time geometry
has moved to consider very, very complicated and abstract shapes/objects
(/spaces!). These are usually not graspable visually on a any level higher
than coarse intuition. Thus the question arises of how we know that these
shapes are “different” (on some coarseness of classification). To answer
this question mathematicians have realised that we can “calculate” other
mathematical objects, for example numbers, out of these geometric shapes
that depend only on the (on some level of coarseness) shape of the geometric
shape. These are called invariants and the most classical of these is the
Euler(-Poincaré) characteristic.

Definition 1.1 (The Euler(-Poincaré) characteristic). Let S be a tiling of
a shape in the plane. Then the Euler(-Poincaré) characteristic of S,
χ(S) (or just χ if S is clear from context) is

χ(S) = Number of vertices − Number of edges + Number of faces.

Esimerkiksi:
• A square has 4 vertices, 4 edges and 1 face. Thus

χ = 4 − 4 + 1 = 1.

• A square divided up into two triangles has 4 vertices, 5 edges and 2
faces. Thus

χ = 4 − 5 + 2 = 1.

• The square in picture 7 with a square hole has 8 vertices, 12 edges
and 4 faces. Thus

χ = 8 − 12 + 4 = 0.

• The square in picture 7 with two square holes has 12 vertices, 15
edges and 2 faces. Thus

χ = 12 − 15 + 2 = −1.
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Figure 7. More complicated shapes in the plane and their tilings.

Usually we write
V = Number of vertices
E = Number of edges
F = Number of faces

meaning
χ = V − E + F.

Based on the previous conversation we notice that
V = Number of 0-dimensional polygons
E = Number of 1-dimensional polygons
F = Number of 2-dimensional polygons

and thus
χ =V − E + F = 1 · V + (−1) · E + (−1) · (−1) · F

=(−1)0 · V + (−1)1 · E + (−1)2 · F

=
2∑

k=0
(−1)k · Number of k-dimensional polygons.

2. Surfaces and the Euler characteristic

Topology. Topology is the most flexible (or correspondingly the coarsest)
sub-(or sup)field of geometry. Shapes/objects are differentiated only by how
they differ from each other by “non-continuous” transformations. Examples
of continuous transformations are stretching, twisting or crunching. Ex-
amples of non-continuous transformations are making holes, separating or
gluing.

Examples of topological shapes. In figures 8, 9, 10, 11, 12 and 13.

Polygons from the perspective of topology. Because of the flexibility
of the topological perspective, the polygons talked about previously are
(from the perspective of topology) all the exact same. All are incarnations
or ways to represent the disk. Thus in our tilings we are no longer restricted
to using straight lines. The most important thing is that every “tile” is a
topological disk. The topological perspective also means that the triangle
is no longer the simplest “polygon”. Edges can curve and one edge can
even curve all the way back to its starting vertex. In topology the “n-
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Figure 8. Topological circles. Notice the two differently
“oriented” trefoil-knots, which live in 3-dimensional space in-
stead of the plane.

Figure 9. Topological line segments or 1-dimensional polygons.

Figure 10. Topological disks. Notice the sphere with a hole
and the cone.

Figure 11. Topological annuli (an annulus). The cross rep-
resents a hole the size of a single point.

dimensional polygons” are called n-cells and “tilings” created from them
cell decompositions.

• Points (vertices) are still 0-dimensional cells.
• Line segments and circles (edges) are 1-dimensional cells.
• Disks (faces) are 2-dimensional cells.

There exist such weird and pathological topological shapes that they do
not necessarily have cell decompositions.
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Figure 12. Topological spheres.

Figure 13. Two topological “donuts” (tori (a torus)) and
one “genus 2 surface”.

Figure 14. Polygons stretched into disks.

Let us redefine the Euler characteristic.

Definition 2.1 (Euler(-Poincaré) characteristic). Let S be a cell decompo-
sition of a shape. Then the Euler(-Poincaré) characteristic of the shape
S, χ(S) (or just χ if S is clear from context) is

χ(S) = Number of 0-cells − Number of 1-cells + Number of 2-cells.

The following is a fundamental fact.

Theorem 2.2. If two shapes are the same from the perspective of topology
then their Euler characteristics χ also agree. Thus the Euler characteristic
is a topological invariant.
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Figure 15. Curved tilings for the disk.

Figure 16. “Polygons” that are simpler than a triangle.

Gluing. Gluing is not a continuous transformation. Thus the sum of the
Euler characteristics χ is not necessarily the same as the Euler characteristic
χ of the glued together shape.

Lemma 2.3. Let S be two shapes S1 and S2 though of as a single discon-
nected shape. Then for the Euler characteristic it holds that

χ(S) = χ(S1) + χ(S2).

Figure 17. n triangles. According to lemma 2.3 χ =∑n
k=1(3 − 3 + 1) = n · 1 = n.

Lemma 2.4. Let the cell decomposition (or tiling) of a shape Sold (connected
or not) have two different 1-cells each of which have two 0-cells at their ends
(meaning two line segments with a total of four different vertices). If the
shape S is glued together by these cells then the glued together shape Snew
has

χ(Snew) = χ(Sold) − 1.
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Figure 18. Gluings using lemma 2.4.

Lemma 2.5. Let the cell decomposition (or tiling) of a shape Sold (connected
or not) have two different topological circles (meaning a chain of edges and
vertices) which have the same cell decomposition (meaning the chain has the
same number of edges and vertices). If the shape S is glued together by these
circles then the glued together shape Snew has

χ(Snew) = χ(Sold).

Figure 19. Gluings using lemma 2.5.

Lemma 2.6. Let the cell decomposition (or tiling) of a shape Sold (connected
or not) have two different topological disks (meaning faces) the bounding
circles of which have the same cell decomposition (meaning the chain has
the same number of edges and vertices). If the shape S is glued together by
these disks then the glued together shape Snew has

χ(Snew) = χ(Sold) − 2.

Using these results we can build surfaces step-by-step out of polygons.
However we also have the following result.

Theorem 2.7. Every surface “of finite size” can be tiled using “triangles”.

Using this we can also cut up every surface back into polygons. This leads
to the following results.
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Figure 20. Gluings using lemma 2.6.

Theorem 2.8. Let S1 and S2 be “completely 2-dimensional” surfaces “of
finite size” “without a boundary”. Then both S1 and S2 are the same shape
from the perspective of topology if and only if χ(S1) = χ(S2) and they’re
both either “orientable” or “nonorientable”.

Theorem 2.9. Let S1 and S2 be “completely 2-dimensional” surfaces “of
finite size” “with 1-dimensional boundary”. Then both S1 and S2 are the
same shape from the perspective of topology if and only if χ(S1) = χ(S2),
they’re both either “orientable” or “nonorientable” and they have the same
number of components in their boundary.

The exercises show that for “orientable” surfaces the condition on the
Euler characteristic χ means the number of “donut holes”.
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Figure 21. A “nonorientable” surface, with one “nonori-
entable donut hole”, a Klein bottle embedded into 3-
dimensional space. Picture by en:User:Lethe on Wikipedia.
Licensed under CC-BY-SA 3.0 Unported.

.

3. Problems

(1) Untiled polygons
a) Calculate the Euler characteristic χ for the untiled polygons in

figures 1 and 3 (as many as you feel like).
b) Bonus: Prove what the Euler characteristic for an untiled poly-

gon is in general.
(2) Euler characteristics of other dimensional polygons

a) Calculate the Euler characteristic χ for a point, a 0-dimensional
polygon.

b) Calculate the Euler characteristic χ for a line segment, a 1-
dimensional polygon.

c) Calculate the Euler characteristic χ for a cube (with interior in-
cluded), a 3-dimensional polygon, by first calculating the char-
acteristic for its surface and then substracting 1 from the result,
meaning

χ = V − E + F − 1.

This −1 is (−1)3 · 3-dimensional polygons.
d) Guess what the Euler characteristic χ is for an n-dimensional

polygon.
(3) Tiling invariance of the Euler characteristic

a) Calculate the Euler characteristic χ for the tiled polygons in
figure 4 (as many as you feel like).

https://en.wikipedia.org/wiki/User:Lethe
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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b) In some tiling add a new vertex onto an edge. How does this
affect the Euler characteristic χ.

c) In some tiling and some nontriangular polygon add a new edge
between two vertices. How does this affect the Euler character-
istic χ?

d) In some tiling remove an edge from in between two polygons
such that the resulting combined area of the plane is still a
polygon. How does this affect the Euler characteristic χ?

e) In some tiling straighten the edges of some polygon by removing
a vertex from between them. How does this affect the Euler
characteristic χ?

f) Bonus: Deduce (or finish the proof) that every tiling of a cer-
tain figure in the plane has the same Euler characteristic mean-
ing it is an invariant of the polygon.

(4) The effect of holes on the Euler characteristic

Figure 22. Polygons with holes

a) Calculate the Euler characteristic χ for the polygons with holes
in figure 22.

b) Guess (Bonus: or prove) the formula for the Euler character-
istic χ of a polygon with n holes. You can use the result in
problem 3.f) to help yourself.

(5) Gluing by an edge
a) Calculate the Euler characteristic χ for the shapes in figure 18.
b) Find a shape so that if you glue it together with something

using lemma 2.4, the Euler characteristic does not change?
c) Bonus: Prove lemma 2.4.

(6) Gluing by a circle
a) Calculate the Euler characteristic χ for the shapes in figure 19.
b) Find a shape so that if you glue it together with something

using lemma 2.5, the Euler characteristic does not change?
c) Bonus: Prove lemma 2.5.

(7) Gluing by a disk
a) Calculate the Euler characteristic χ for the shapes in figure 20.
b) Find a shape so that if you glue it together with something

using lemma 2.6, the Euler characteristic does not change?
c) Bonus: Prove lemma 2.6.

(8) Donut holes Calculate the Euler characteristic χ for a surface with
n “donut holes”.
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a) Using the result in problem 4.b) and lemma 2.5.
b) Using the result in problem 6.a) and lemma 2.6.
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