THE HIGHER INTEGRABILITY OF WEAK SOLUTIONS OF
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ABSTRACT. In this paper we establish that the gradient of weak solutions to porous
medium type systems admits the self-improving property of higher integrability.

1. INTRODUCTION AND RESULTS

In this article, we are interested in the self-improving property of higher integrability of
weak solutions to porous medium type systems, whose prototype is

du — A(lu|™ ) = 0.
This problem has been open for some time. For non-negative solutions to porous medium
type equations it has recently been solved by Gianazza & Schwarzacher [16]. Here, we are

able to treat signed solutions and the vectorial case. More precisely, we consider equations
(the case N = 1) or systems (the case N > 2) of the form

(1.1 Opu — div A(z,t,u, Du™) = divF in Qrp,
with u: Qp — RY, in a space-time cylinder Q7 := Q x (0,7), where Q C R" is
a bounded open domain, n > 2, T > 0, and we abbreviated u™ := |u|™ tu. The

assumptions on the vector field A: Q7 x RN x RV — RN™ are as follows. We assume
that A is measurable with respect to (x,t) € Qr for all (u,£) € RY x RN™, continuous
with respect to (u, &) fora.e. (z,t) € Qp, and moreover that A satisfies for some structural
constants 0 < v < L < oo the following growth and ellipticity conditions
A(m,t,u,f) . 6 > V|£‘2 ’
(1.2)
|A(z,t,u, )| < LIE],

for a.e. (x,t) € Qp and any (u, &) € RY x RV™. Note that these assumptions are com-
patible with the ones in [1] and [11, Chapter 3.5] in the scalar case. For the inhomogeneity
F: Qr — RN™ we assume that F' € L?(Qr, RV™). As usual, we suppose that the solu-
tions to (1.1) lie in a parabolic Sobolev space; the precise definition will be given below in
Definition 1.1.

In the stationary elliptic case it is by now well known that weak solutions to elliptic
systems of the type

(1.3) —divA(z,t,u,Du) =divF inQ,

locally belong to a slightly higher Sobolev space than a priori assumed. The so-called
self-improving property of higher integrability was first detected by Elcrat & Meyers [25].
Their proof is based, among other things, on a reverse Holder type inequality — a direct
consequence of a Caccioppoli type inequality (also called reverse Poincaré inequality) —
and some adaptation of the famous Gehring Lemma [15]; the nowadays standard interior
version can be retrieved from [17, Chapter 11, Theorem 1.2], for the boundary version
we refer to [22] and [13, Theorem 2.4]. Originally, Gehring’s lemma was developed to
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establish the higher integrability of the Jacobian of quasi-conformal mappings. Over time,
the self-improving property of higher integrability was first established for solutions of sta-
tionary elliptic systems [18] and later for minima of variational integrals [19] by Giaquinta
& Modica. A unified treatment in the language of quasi-minima is given in [21, Theo-
rem 6.7]. Corresponding global results for stationary elliptic problems with a Dirichlet
boundary condition were established in [21, Section 6.5], [13, Section 3].

The first higher integrability result for vectorial evolutionary problems goes back to
Giaquinta & Struwe [20, Theorem 2.1]. More precisely, quasilinear parabolic systems of
the type

(1.4) Oyu — div (a(az, t, u)Du) =divF inQr,

whose coefficients a continuously depend on (z, ¢, u) have been investigated. The tech-
nique of Giaquinta & Struwe does not carry over to the parabolic p-Laplacian system

Oyu — div (|DulP~*Du) = divF  in Qr,

or general parabolic systems with p-growth (the growth and coercivity condition from (1.2)
have to be replaced by a(z,t,u,&) - £ > v|¢|P and |a(z, t,u,&)| < L(JEP + 1)). The
obstruction relies in the fact that the parabolic p-Laplacian equation has a different ho-
mogeneity in the time and the diffusion term. In particular, multiples of a solution do not
anymore solve the differential equation. This problem has finally been solved by Kinnunen
& Lewis [23] who proved the higher integrability result for general parabolic systems with
p-growth. More precisely, they have shown that weak solutions from the natural energy
space C°([0,T7]; L2(Q,RY)) N L?(0,T; WP(Q,RY)) have a more integrable spatial
gradient, namely
Du € LV (Qr, RN™) for some e > 0.

loc

This shows that also in the case of parabolic systems with coefficients of p-growth and
coercivity energy solutions enjoy the self-improving property of higher integrability for the
gradient. The key to the result was the use of intrinsic cylinders in the sense of DiBenedetto
& Friedman [8, 9, 10, 7], i.e. cylinders of the form Q) o.x2-po2 Whose space-time scaling
depends on the spatial gradient of the solution via

7§[ | DulPdzdt ~ N\P.
Q

0,227 P g2

This important result has been generalized over time in various directions. The global result
with a Dirichlet boundary condition at the lateral boundary was established by Parviainen
[26]. Interior higher integrability for weak solutions of higher order degenerate parabolic
systems has been shown by Bogelein [4], while the corresponding global result was estab-
lished in [6]. The case of parabolic equations with non-standard p(z, t)-growth was treated
by Antonsev & Zhikov [2], while systems were treated by Zhikov & Pastukhova [29] and
independently by Bogelein & Duzaar [5].

For the porous medium equation, the question of higher integrability of the gradient,
even for non-negative solutions in the scalar case, remained an open problem for a while.
The reason was that when proving regularity of the gradient the degeneracy with respect to
u is much more difficult to handle. This difficulty has recently been overcome by Gianazza
& Schwarzacher [16] who proved that non-negative weak solutions to porous medium
equations of the type (1.1) enjoy the self-improving property of higher integrability. More
precisely, this means that the integrability Du "t e L2 (QT, ]R”) of weak solutions was
improved to

loc

Du™s € [*F¢ (QT,R”), for some € > 0.

loc

The main novelty with respect to the proof for the parabolic p-Laplacian in [23] is that
Gianazza & Schwarzacher work with cylinders which are intrinsically scaled with respect
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to u rather than the spatial gradient Du. This means that they consider cylinders of the
type (), 0,2 Whose space-time scaling is adapted to the solution u via the coupling

(1.5) 75[ W ddt & 0T
Q,.002

This is exactly the intrinsic scaling which is typically used in the proof of regularity of
u, as for instance Holder continuity of u, cf. [9]. At first glance it is quite surprising that
this approach also yields regularity of the spatial gradient. However, these cylinders are
better adapted to the equation and this is crucial for the proof. Nevertheless, the argument
becomes much more involved than the one for the parabolic p-Laplacian. The overall strat-
egy can be outlined as follows. First, one has to prove a reverse Holder type inequality on
certain intrinsic cylinders. To achieve this, Gianazza & Schwarzacher distinguish whether
a cylinder () belongs to the non-degenerate regime in which the inequality

7§[ lu — (u)g|™ T dadt < 575[ u™ 1 dxdt,
Q Q

holds true for some particular 0 < § < 1, or ) belongs to the degenerate regime in which
the opposite inequality is valid. In the non-degenerate regime they rely on the expansion
of positivity in order to guarantee that the solution does not become too small on the cylin-
der. In a second step, one usually constructs a covering of super-level sets of the spatial
gradient with intrinsic cylinders. However, this is not possible for the cylinders which are
intrinsically scaled with respect to u. Gianazza & Schwarzacher overcame this problem by
a very elegant idea. They weakened this property to the so-called sub-intrinsic cylinders
for which they succeeded to prove the covering property. Thereby, they call a cylinder
sub-intrinsic if (1.5) holds as an inequality, i.e. the mean value integral is bounded from
above by the right-hand side.

The methods of proof of this important result are only applicable in the scalar case for
non-negative solutions, because tools as the expansion of positivity are neither available in
the vectorial case, nor for signed solutions.

The present paper has its origin in the effort to extend the purely scalar result to the
vector-valued case. As a by-product of the vectorial case, we are able to deal also with
signed solutions in the scalar case. Moreover, contrary to Gianazza & Schwarzacher, we
start from the definition of weak (energy) solutions introduced in [28, Theorem 5.5], i.e.
we start with solutions satisfying Du™ € L%OC(QT, RN ™), see (1.8). As main result, we
prove that

Du™ € L2 (Qp,RY™),  for some £ > 0.

loc
We note that starting from a vectorial version of the energy estimate used in [16], a modi-
fication of our method also applies to the definition of weak solution as considered there.
The key to the higher integrability result in the vectorial case is to prove the reverse Holder
type inequality just by the use of an energy estimate and a gluing lemma as stated in Lem-
mas 3.1 and 3.2. In particular, it is important to omit the use of the expansion of positivity.
In fact, for the proof of the Sobolev-Poincaré type inequality in Lemma 4.3 we only use
the Gluing Lemma 3.2, the standard Sobolev inequality and some algebraic lemmas. Here,
we note that contrary to (1.5) we work with differently scaled cylinders which reflect more
clearly the behavior of the porous medium equation and which are adapted to the energy
space (1.8) (for the heuristics see also [16, Remark 5.6]). These cylinders are given by

(Qg) =B, x (fﬁlfmngtl , Gl’mgm'Tfl) with an intrinsic scaling of the form
m|2
(1.6) ﬁ[ ‘“2| dzdt ~ 62™
Q) @

so that in case that the mean value of u™ on the cylinder Q(ge) is zero, the scaling pa-
rameter 6 is comparable to [Du™|. A cylinder QE,H) is called sub-intrinsic if (1.6) holds
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as an inequality, where the mean value integral is bounded from above by the right-hand
side. Contrary to [16] we present a unified proof of the Sobolev-Poincaré type inequal-
ities on sub-intrinsic cylinders that works likewise in the non-degenerate and degenerate
regime. These inequalities are subsequently used to derive reverse Holder type inequalities
on intrinsic cylinders and sub-intrinsic cylinders additionally satisfying

(1.7) ]5[ | D™ *dadt > 6%
QY

For the final proof of the higher integrability we cover the super-level-sets of |[Du™| by
sub-intrinsic cylinders. Here, we rely on the construction by Gianazza & Schwarzacher.
The idea is to choose with the help of the intermediate value theorem for a given center z,
and radius p > 0 the scaling parameter 520;9 in such a way that

u™ 2 .
75[ ) O et = 2,
Qéﬁzo;a)(zo) Q ’

is satisfied, where Qgez‘”g) (20) = 2o + Qg}z“’). Unfortunately, the mapping o — gzo;g is

not monotone. Therefore, we modify the parameter 520;9 by a rising sun type construction,
i.e. we define

02050 = I?fif 0zir-

Then, the mapping o — 6., is monotonically decreasing and furthermore one can show
that the cylinders QE,GZ“Q) (z,) are still sub-intrinsic. A crucial observation at this point is
that by construction either the cylinders are intrinsic or satisfy (1.7). This allows to apply
our reverse Holder inequality. As in [16] our cylinders satisfy a Vitali covering property
which allows to cover the super-level-sets of | Du™| by countably many of these cylinders.
In this way, we obtain a reverse Holder inequality on the super-level-sets of | Du™|. In a
standard way, this implies the higher integrability by a Fubini type argument.

1.1. General Setting and Results. In this chapter we fix the notations, describe the gen-
eral setup and present our main result. First, we define what we mean by a weak energy
solution to the porous medium type system.

Definition 1.1. Assume that the vector field A: Qp x RY x RN? — RN" satisfies (1.2)
and that F' € L2 _(Qp, RV™). We identify a measurable map u: Q7 — R in the class

loc

(1.8) uwe C0,T); L™ (Q,RN))  with w™ e L2_(0,T; W,22(Q, RN
loc

loc loc

as a weak solution to the porous medium type system (1.1) if and only if the identity
(1.9) // [u- 0o — A(z,t,u, Du™) - Dy|dadt = // F - Dpdxdt
QT QT

holds true, for any testing function ¢ € C§°(Qp, RY). O

Existence of weak solutions can be deduced from [1] after the transformation v =
|u|™~1u; see also [3] for a different approach in the case of non-negative solutions.
Throughout the paper we work with parabolic cylinders of the type

m+1l m+1
QR(ZO) = BR(:CO) X (to —Rm t,+R ™™ ) € Qrp,
whose associated parabolic dimension is
di=n+1+21.

Our main result reads now as follows:
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Theorem 1.2. Let m > 1 and o > 2. Then, there exist constants €, = £,(n,m,v, L) €
(0,1] and ¢ = ¢(n,m,v,L) > 1 such that the following holds true: Whenever F €
LS (Q,RN™) and

u€ CO((0,7); LT (Q,RY))  with w™ € L (0, T; Wh(Q,RY))

loc loc loc

is a weak solution of Equation (1.1) under the assumptions (1.2) in the sense of Defini-
tion 1.1, there holds

Du™ € L2+81 (QT7RN7L)’

loc
where 1 := min{e,, c—2}. Moreover;, for every e € (0, 1] and every cylinder Qar(z,) €
Qr, we have the quantitative local higher integrability estimate

# | Du™ 7" dedt
QRr(20)

|u|2m 2 e m 2
1+ 5= + |F|* |dadt |Du™|"dadt
Qen(zo) L 1 Qan(20)

(1.10) +c]§[ |F|*Tedxdt.
2R

<c

The quantitative local estimate (1.10) can be easily converted into an estimate on the
standard parabolic cylinders Cr(z,) := Br(z,)x (t,—R2,t,+R?). The precise statement
is as follows.

Corollary 1.3. Under the assumptions of Theorem 1.2, the following estimate

# | Du™ 7" dedt
CR(ZD)
¢ 2 2 s 2
<= [1 + ]5[ [lul" + R |F|2]dxdt} ﬁ[ | Du™|"dzdt
R Car(z0) Car(zo)

+ c# |F|*Tedadt
C2r(z0)

holds true on any parabolic cylinder Car(2,) € Qr and for every e € (0,e1] and with a
constant ¢ = ¢(n,m, v, L).

Acknowledgments. We would like to thank Juha Kinnunen for many constructive dis-
cussions on the subject and his persuasive work to pursue this topic further. Without his
motivational efforts this work would probably not have come about. The third author was
supported by the Academy of Finland, project 308063.

2. PRELIMINARIES

2.1. Notations. In order not to overburden the notation, we abbreviate in the following
the power of a vector (or possibly negative number) by

u® = |u|*"'u, foru € RN anda >0,

where we interpret u® = 0 in the case v = 0 and « € (0, 1). Throughout the paper we
write z, = (Z,,t,) € R™ x R and use the space-time cylinders

2.1) QY (20) 1= By(,) x AP (t,),

where

A(g)(to) :

4

m+41 m+41 )

(to _ el—nzg po ;to + Hl—mg po
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with some scaling parameter # > 0. One of the most important notions for this paper is the
notion of sub-intrinsic cylinders. We call a cylinder Q(ge) (z,) sub-intrinsic, if and only if

2m
ﬁ[ ™ Gear < g2
QY (z) @

holds true. If the preceding inequality actually is an equality, we call the cylinder intrinsic.
In the case § = 1, we simply omit the parameter in our notation and write

Qg(zo) = Bg<xo) X (to - QmTﬂvto + meil)
instead of Qg,l)(zo), and, analogously, A,(t,) instead of Ag,l)(to). If z, is the origin, we
write (,, B, and A, for Q,(0), B,(0) and A,(0). Moreover, if the center z, is clear from
the context we omit it in our notation.

For a map u € L*(0,T;L'(2,R"Y)) and given measurable sets A C Q and E C
Q x (0,T) with positive Lebesgue measure the slicewise mean (u)4: (0,7) — R™ of u
on A is defined by

2.2) (u)a(t) ::][ u(t)dz, forae.te (0,7),
A
whereas the mean value (u)p € RY of v on E is defined by

(u)g = #Eudmdt.

Note thatif u € C°((0,7); L?(Q2, RY)) the slicewise means are defined for any ¢ € (0, 7).
If the set A is a ball B,(x,), then we abbreviate (u)qs,;o(t) := (u)p,(2,)(t) and if £ is

a cylinder of the form Qgg)(zo), we use the shorthand notation (u)ffj);g = (u) QW ()"
Finally, we define the boundary term
(2.3) blu™,a™] = mL_H(MmH — |u|m+1) —u- (am — um)

that will appear in the energy estimate from Lemma 3.1.

2.2. Auxiliary Material. In order to “re-absorb” certain terms, we will use the following
iteration lemma, which can be retrieved by a change of variable from [21, Lemma 6.1].

Lemma 2.1. Let 0 < ¢ < 1, A,C > 0and a,8 > 0. Then, there exists a constant
¢ = ¢(B,9) such that there holds: For any 0 < r < o and any non-negative bounded
function ¢: [r, o] — R satisfying

o(t) < Vp(s) + A(s® —to‘)_B—i—C forallr <t<s<op.
we have

¢(r) < c[A(e™ —r*) P +C.

Lemma 2.2. For any o > 1, there exists a constant ¢ = c(«) such that, for all a,b € RN
the following assertions hold true:

() Lla® = b < (|la|*~t + [b]*"Y)]a = b] < c]a® — b°,
(i) |a —b|* < c|aa - b~

i) |a® — b < (a2~ — b2~ 1) . (a—b).

The proof of (i) and (ii) can be found in [19, Lemma 2.2]. Inequality (iii) can be derived
by combining the proof of [7, Chapter I, Lemma 4.4] with (i). The next lemma provides
useful estimates for the boundary term b introduced in (2.3).

Lemma 2.3. There exists a constant ¢ = c(m) such that for any u,a € RY the following

assertions hold true:

m+1 m+1 m+41 m+41

. 2 2
Q) %|u 2 _aT| < blu™,a™] <c’u 2 —a 2

>
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2

’

(11) %|um _ am|2 < Uulm—l + |a‘m—1]b[um7am] < C|um —a™

(i) blu™, a™] < clu™ — a™|".
b

Proof. Using the auxiliary function ¢ € C?(RYN), ¢(z) =
the boundary term to

blu™, a™| = Tl - Sl - a™ - (u—a)
= ¢(u) = ¢(a) = Vo(a) - (u —a).

The Hessian of ¢ is given by the matrix

Hy(z) = |z|™ 1 (]IN +(m-1)%® =& ),

Tl < Tl

—L_|z|™*1, we can re-write
m—+1

whose eigenvalues are |x|™~! and m|x|™~!. Therefore, the integral formula for the re-
mainder in Taylor’s expansion yields

1
(2.4) blu™, a™] z/ la +t(u—a)|™ (1 —t)dt |u — al?.
0

Now, we distinguish between the cases |u| > |a| and |u| < |a|. In the first case, for any
t € (2,1) we have

la+t(u—a)| > tlu| — (1 —t)la| > 3lu| > 1(jul + |al),

from which we infer
1
(2.5) bu™,a™ > C/ (1 =ty dt (Jul + |a))™ u — a* = ¢ (Ju| + a))™Hu - af?,

3
1

where ¢ = ¢(m). In the second case |u| < |a|, we restrict ourselves to values ¢ € (0, 7).
Interchanging the roles of u, a and ¢, 1 — t we end up with the same estimate for |a 4 ¢(u —
a)|. In view of (2.4), this implies also in the remaining case for b[u", a™] the estimate
(2.5). Combining this with Lemma 2.2 (i), we arrive at the first claimed estimate, since
— m+l m+l 2

b[u™, a™] > c(m)(Jul + [a)™u — al* > e(m)[u"=" —a 2 |
For the second asserted estimate, we apply Lagrange’s formula for the remainder in Tay-
lor’s expansion, which yields

blu™ a™] <1 sup (u—a)- Hs(a+t(u—a))(u—a)

te(0,1)
< Zu—af? S la +t(u —a)|™
2.6) < c(m)(Jul + la)™ " u — al”.
In view of Lemma 2.2 (i), this yields the second estimate from (i), since
blu™, a™] < e(m)(ful + o))" u — af* < e(m)[u”F" —a™F"[*

The inequalities in (ii) are a consequence of (i) and Lemma 2.2 (i) applied with u = u =N ,

i=a" anda = j—’jl, since
[|u|m—1 + ‘a|m—1] b[um7 am] > c(m) [|u|m—1 + |a|m—1} ’u% o a% ’2

(m—=1) (m—=1)
e(m) [l #5 + Jal = i - af?

> c(m)|u™ — a™|?.

The reasoning for the second bound in (ii) is similar. The inequality (iii) also follows
from (2.6) and Lemma 2.2 (i), (ii), since

blu™, a™] < c(m)|u™ — a™||u—a| < c(m)u — ™| 5. 0
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The following estimate, which is known as the quasi-minimality of the mean value, can
be established by Young’s and Holder’s inequality.

Lemma 2.4. Let o« > 1. Then, for any bounded domain A C R* k € N, any u €
Le(A,RYN), and any a € RY there holds

][ lu— (u)A|adx < 2a][ |lu — a|“da.
A A

The following statement shows that mean values over subsets are still quasi-minimizing.
This is well known for « = 1. Here, we state the version for powers. As expected, the
quasi-minimality constant depends on the ratio of the measures of the set and the subset.

Lemma 2.5. Let o« > 1. Then there exists a universal constant ¢ = c(«) such that
whenever A C B C R¥, k € N, are two bounded domains and v € L**(B,RY), there

holds
c|B
][ |u® (u)A‘ dx |A|| ]{B lu® — (u)%|2dm.

Proof. We start by estimating the difference |(u)% — (u)%]|. Using Lemma 2.2 (i), (ii),
we obtain for a constant ¢ = ¢(«) that

(a
[(w)g — (w)a]? <c[ () 5272 + |(u) a[**2] | (w) 5 — (u) 4
< ef)(w) B2+ (w)a — () B2 2] |(u)p — (u) 4]

< c|(u)B|2a—2][A lu— ()5 + e (u)a — (w)5]*

< c][ ’ua — (u)%fdx—l— c][ ‘u —(u)p 20
c|B|
< T e - sl
From this estimate we conclude
]{3 }uo‘ — (u)%|2dx < 2][ }uo‘ — (u)%|2dx + 2’(u)aB - (u)‘j‘4|2

||AB|][ ‘u (u)B’ dz,

which proves the claim. (]

| 2

The following lemma is from [12, Lemma 6.2]. For convenience of the reader, we
nevertheless include the proof.

Lemma 2.6. Let o > 1. Then there exists a universal constant ¢ = ¢(«) such that for any
bounded domain A C R™, any u € L?** (A, RN), and any a € RY there holds

][ lu® — (u)i’gdx < c][ lu® — aa‘2dx.
A A

Proof. Using Lemma 2.2 (iii), we obtain for a constant ¢ = ¢(«) that

]{"u“—(u)%fdxgc]{l(u—(u)fx).(u2“_1 (u )2'171)
c][ (u—(u)a) - (u**~ ' —a®* Nda
A

c][ lu— (u)a||u** ' —a®* ™ !|da.
A

Q2.7)

IN
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In order to estimate the integrand from above we distinguish between two cases. In the
case |u| < 3|al, we have

la|* = |a® — u® + u®| < |a® — u®| +27%a|®

9o

and hence |a|* < 55—

|u® — a®|. In turn, this allows us to estimate

2a—1

‘u2a—1 _a2a—1| §2|a|2a—1 Sc(a)lua_aa| Call

which by Lemma 2.2 (ii) implies

2c0—1

(2.8) lu— (W) a||[u** =t —a** | < cla)|u® - (u)%‘é|ua —a®|"e

In the remaining case |a| < 2|u|, Lemma 2.2 (i) shows
lu— (u)a||u** =" —a®* | < cla) |u— (wa|([ul* + |al**7?)|u — af
< c(a) [ul?*~2[u — (u)a|ju — af
= c(a) [ul"*~"Ju — () ] — a].
An application of Lemma 2.2 (i) therefore yields
(2.9) lu— (u)a||u** =" —a** 7 <clu® — (w)4]||u® — a®].
Combining (2.8) and (2.9), we infer that in any case the estimate

|U_(U)AHu2a_1 _a2a—1|

<clu® — (u)i|é|u“ —a‘)‘!% +clu® = (u)4||[u* — a®

holds true for a constant ¢ = ¢(a). We insert this into (2.7) and apply Young’s inequality
twice. This leads to

Flur = @aPar <3 f ut = @i f Jue oo
A A A

Here we re-absorb the term % £, lu> — (u)%|?dz into the left-hand side and obtain the
asserted inequality. O

Finally, we ensure that the mean value is also a quasi-minimizer of a — §, b[u, a]dz.

Lemma 2.7. There exists a universal constant ¢ = c¢(m) such that for any bounded domain
A C R", any non-negative u € L™ (A, RYN), and any a € RY there holds

][ b[u, (u)a]dz < c][ blu, a]dx.
A A
Proof. Due to Lemmas 2.3 (i) and 2.6 we obtain

m+1

][Ab[u, (w)a]dz < ][A 0 — ()3

< c][ |um§rl —a" ’2dx < c][ blu, a]dz.
A A

This proves the asserted inequality. (|

|2d:z:

3. ENERGY BOUNDS

In this section we derive an energy inequality and a gluing lemma which follow from
the weak formulation (1.9) of the differential equation by testing with suitable testing func-
tions. Later on, they will be used in order to prove Sobolev-Poincaré and reverse Holder
type inequalities.
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Lemma 3.1. Let m > 1 and u be a weak solution to (1.1) in Qr in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, there exists a constant ¢ = c¢(m, v, L) such that on any cylinder Qéo) (20) € Qr with
0< o< 1land® > 0, and for any v € [0/2, 0) and any a € RY the following energy
estimate

blu™(-,t),a™
sup ][ Qm_l[#”dx + ﬁ[ ’Dum’2da:dt
tEAg.G) (t,,) BT(xo) QE'G) (Zo)

coff [l S Tl s
— 2 m+1 m+1 9
Q) L (e=7) o~ QY (=)

holds true, where b has been defined in (2.3).

Proof. Forv € L'(Qp,RY), we define the following mollification in time

[V]n(2,t) == %/0 es;tv(m,s) ds.

From the weak form (1.9) of the differential equation we deduce the mollified version
(without loss of generality we may assume that u € C°([0,7); L (2, RY)))

//Q [& [u]n - ¢ + [A(z, t,u, Du™)], - Dw} dzdt

T
(3.1) = —// [[F]];L~D<pdxdt—|—%/ u(O)/ e mpdsdz,
Qr Q 0

for any ¢ € L2(0,T; W) *(Q,RN)). Letn € C} (Bo(wo),[0,1]) be the standard cut off
function with n = 1in B,(z,) and |Dn| < -2~ and ¢ € Wl’w(Aég)(to), [0,1]) defined

o—r
by
1, fort > t, — 1",
C(t) = — m—1 mT-H m m
(to)f te ™ | fort € (L, — 00" 1, — 01 ™)
o m —r m

Furthermore, for given ¢ > 0 and t; € Agg) (t,) we define the cut-off function ¢, €
W (A (t,), 0,1]) by

1, fort € (t, — 01’mgﬁ7+b1,t1},
Ye(t):=q 1—L1(t—t1), forte (t1,t1+¢),
0, fort € [t1 +¢,t,).

We choose

p(,t) = n?(@)¢(): () (u™ (2, 1) — a™)
as testing function in the mollified version (3.1) of the differential equation. For the integral
containing the time derivative we compute

— 2 m m
//Qé”(zo) Ol - dedt = //Qg,m(zo) YDl - ([ulii — a™)dwdt
+//Qw)( )nZCwsat[[u]]h~(u’”— [u]p?)dadt

= //Qw)( )772@)5@ (#ﬂ|ﬂuﬂh|m+l —am- [[U]]h>dzdt

- // 72 Coo0y (b [[ulr, a™] ) dudt
0-0)
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_ //Q U 0 [l

where we also used the identity 0;[u], = —+([u]s — w), cf. [24, Chapter 2]. Since

[u]p — win L™ (Qr) we may pass to the limit & | 0 in the integral on the right-hand
side and therefore find that

li f
11;1¢1On //Q<9)(z )8t[[u n o dzdt
> —// n? (¢l + v )b[u™, a™|dzdt =: L. +11..
Qy(= o
At this point, we pass to the limit € | 0 and obtain for the first term
limL = 2 m. m
lim I, /BQ(%)U b[u™(-,t1), a™]dz,

forany ¢ € A&G) (to), whereas the term I1. can be estimated in the following way (observe
that the boundary term is non-negative)

b[ m]
[TI.| < // ¢'v] ™ dadt < // - pe= ——dzdt.
QY (20) Q¥ (=, =

Next, we consider the diffusion term in (3.1). After passing to the limit h | 0, we use the

ellipticity and growth assumption (1.2), and later on Young’s inequality. In this way, we
obtain

//Q“”( )A(xﬂf,u, Du™) - Dpdadt

= ﬂ » A(I7t’u, D'u,m) [UszaDum + QWCwa(um _ am) ®D’l7]d$dt
Qo (20)

v

1/// (. | Du™|dadt — 2L// ¢ |Dnl[u™ — a™| | Du™|dadt
Q7 (z0) Q4 (z0)

%// o 772C¢5‘Dum’2dxdt—c// , C¢E|DW\2’um—am’2dazdt
Q(Q )(ZO) QE} )(Zo)
Q47 ) Q) (0 7")

for a constant ¢ = ¢(m, v, L). Finally, we consider the right-hand side integrals in (3.1).
The second integral disappears in the limit & | 0, since ¢(0) = 0. In the integral containing
the inhomogeneity F' we pass to the limit 2 | 0 and subsequently apply Holder’s inequality.
In this way, we obtain

// F - Do dadt
QY (20)

= [772<¢5F -Du™ + 2nCY F - (u™ —a™) ® Dn} dxdt
QY (20)

m m 2
<v e | D™ + [ | F[2dadt.
T CR R (e—r)? ) (z0)

We combine these estimates and then pass to the limit € | 0. This leads to

t
/ b[um(.,tl),am}der%/l m+1/ |Dum|2dzdt
B, (z,) to—01=mr m By(zo)

v
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u" a™ blu ,
<c// |:| 2‘ L m[“ m+1]d$dt+c// ‘F‘dedt
Q(")(zn) Q - 7‘ o )

for any ¢, € A (t,), with a constant ¢ = ¢(m, v, L). In the preceding inequality we take

in the first term on the left-hand side the supremum over ¢; € A(e)( t,), and then pass to

the limit ¢; 1 ¢, + 6'~™r = . Finally, we take means on both sides. This procedure leads
to the claimed inequality. O

The following lemma serves to compare the slice-wise mean values at different times.
This is necessary since Poincaré’s and Sobolev’s inequality can only be applied slice-wise.
Such a result, which connects means on different time slices, is termed gluing Lemma.

Lemma 3.2. Let m > 1 and u be a weak solution to (1.1) in Qp in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).

Then, for any cylinder Qg’)(zo) € Qp with0 < o < 1and 0 > 0 there exists ¢ € [3, 0]
such that for all t1,ts € A(Qe) (to) there holds

1
com
ot = oot G ([
Qe
Sor a constant ¢ = ¢(L).

Proof. Let t{,ts € AE,Q) (to) with t; < tp and assume that r € [, 0]. For § > 0 and
0 < e < 1, we define £, € W, (t; — €,t2 + €) by

0, fort,— o <t<t —e,
Ehte - forty —e <t <ty,
(1) = 1, forty <t <ty
LEe=t ' forty <t <ty+e,
0, forto +e <t <t,,

and a radial function Ws € Wy > (B,45(,)) by Us(z) := t5(|x — x,|), where

1, for0 <s<r,
Ys(s) = TE=E forr <s<r+4,
0, forr+0 <s<p,

for s € [0, o]. For fixed i € {1,..., N} we choose ¢. s = £ Use; as testing function in
the weak formulation (1.9), where e; denotes the i-th canonical basis vector in RY. In the
limit €, § | 0 we obtain

/ [u(- t2) —u(-,t1)] - e;da
B (x

r(2o)
t2 T — T, 1
= [A(z,t,u, Du™) + F] - ¢; ® dH" ™ (z)dt.
OB, (zo

|z — |

We multiply the preceding inequality by e; and sum over ¢ = 1, ..., N. This yields

/ [u(-, t2) — u(-, t1)]dw
Br(zo)

/ / A(z,t,u, Du™ )—l—F] AR (x)dt.
0B, (zo) |$ - $o|
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Here, we use the growth condition (1.2), and immediately get for any ¢1,t5 € Aée) (to)
and any 7 € [2, o] that there holds

‘/BT(%) [u(-,t2) — u(-, t1)]dz

t
g// [L|Du™| +|F|] dH™dt.
t1 OBT(CED)

Since

to e ta
/ / [L|Du™| + |F|]dzdt = / / / [L|Du™| + |F|]dH™ " dtdr
t1 BQ(LED) 0 t1 BBT(ID)

1% t
2/ // [L|Du™| + |F|]dH" " dtdr,
/2 Jty OB (o)

there exists a radius ¢ € [, o) with

tz t2
/ / [L|Du™| + |F|]dH"'dt < 2 / / [L|Du™| + |F|]dzdt.
t1 JOB,(x,) t1 JBy(xo)

Therefore, we choose in the above inequality » = ¢ and then take means on both sides of
the resulting inequality. This implies

c m
[@Weysta) = (W)e,sata)| < 2 /A o ]{9 . [|Dw™| + |F||dadt

_Lor ]§[ [|Dum| + \F\}dxdt
0 Q) (o)
for any t1,t5 € Aﬁ?’ (to) and with a constant ¢ = ¢(L). O

4. PARABOLIC SOBOLEV-POINCARE TYPE INEQUALITIES

Throughout this section we consider so-called sub-intrinsic cylinders. These cylinders
are characterized as follows: On the scaled cylinder Q(ge)(zo) € Qr with0 < p <1 and
6 > 0 the following coupling between the mean of |u|?>™ /o? on Qg}) (z,) and 6 holds true:

Ju[*™ d+2p2m
“4.1) ]§[ —5—dzdt <2777
QM (z0) @

The following Lemma is the first step towards a Poincaré type inequality for weak
solutions to the porous medium system. This is necessary because the standard Poincaré
inequality in R™ x R cannot be applied directly, since weak solutions u a priori do not
possess the necessary regularity with respect to time; note that we only assume for the
spatial derivative Du™ € L% (QT, RN ") while no regularity assumption with respect
to time is incorporated in the definition of weak solutions. Nevertheless, we are able to
prove some sort of Poincaré inequality. This is achieved by considering the space and time
direction separately. In z-direction we can apply the Poincaré inequality on R", while in

t-direction the needed regularity is gained from the gluing lemma.

Lemma 4.1. Let m > 1 and u be a weak solution to (1.1) in Qr in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, on any cylinder QE)G) (20) € Qr satisfying the sub-intrinsic coupling (4.1) for some
0 < 0 < 1and some 0 > 0, the inequality

2

m m(0)
|u — (™) 20
# ) > dl’dt
Qe ' (20) e
2

m o__ m 2
QY (20) 0 QL (z0)

holds true with a universal constant ¢ = ¢(n,m, L).
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Proof. In the following we shall again omit for simplification the reference point z, in
our notation. Moreover, we let ¢ € [£, o] be the radius from Lemma 3.2. By adding and
subtracting the slice-wise means ()7’ (t) as defined in (2.2), we obtain the inequality

| 2

m _ (pm\(0) u™ — ()2 (1)
]§[ [ = ™), (’; Jo | qpar < 3[# | (2)9 )] dadt
o o a0

t 3 foo | fo (@980 - @3 e

2
dt

1 2
= m (™) (®)
+ 7 . (u)g (r)dr — (u™), ]
4.3) =: 3[14 11 +111],

with the obvious meaning of I — III. In the following, we treat the terms of the right side
in order. We start with the term I. Using the fact that ¢ € [£, o], we can first replace the
slice-wise means (u)3'(t) by (u)y' (t) with the help of Lemma 2.5, and afterwards apply
Lemma 2.6, to obtain

2

2
m __ m(¢ m m t
or e oy

o
where ¢ = ¢(m,n). Since IIl < I, it remains to treat the term II. In turn, we apply
Lemma 2.2 (i) and Lemma 3.2 to infer that for any ¢, 7 € Ag)) there holds

()3 (0) ~ W3 ()
< e[| ma®I™ + 1) o(r) "] w)a(t) () ()]

1
com

< g (12w | 1wt s + ™

where ¢ = ¢(m, L). Taking squares on both sides, integrating with respect to ¢ and T over
Aée) and applying Holder’s inequality and the sub-intrinsic coupling (4.1), we infer

n—1

m=2 2
Q*HQ(M'_D Q(Qg) Q(Qe)
2
Sc[ﬁ[ [’Dum’_,_w@dxdt} ;
o

for a constant ¢ depending only on n, m, and L. At this point, we use the estimates for I —
IIT in (4.3) and obtain the claimed inequality. U

With the help of Lemma 4.1 we can now easily deduce a Poincaré type inequality. Later
on, Lemma 4.1 will also be the starting point for the proof of a Sobolev-Poincaré type
inequality; see Lemma 4.3.

Lemma 4.2. Let m > 1 and u be a weak solution to (1.1) in Qr in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).

Then, on any cylinder Q(Qe) (20) € Qr satisfying the sub-intrinsic coupling (4.1) for some
0 < 0 <1 and some 0 > 0, the following Poincaré type inequality

|um - (um)g‘g)‘g ’ 2
75[ 2 dadt < c# “D“m‘ + \F‘Q]dxdt,
QY (z0) 0 Q%7 (=)

holds true with a universal constant ¢ = ¢(n, m, L).
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Proof. In the following we shall again omit for simplification the reference point z, in our
notation. We will take estimate (4.2) from Lemma 4.1 as starting point for our considera-
tions. To the first integral on the right-hand side we apply Poincaré’s inequality slice wise

forae. t € A(Qe). In this way, we obtain

m o__ m 2
7§[ o ’U (;‘2 )@(t)’ dzdt < cﬁ[ o ‘Dum’dedt,
Qp Qo

where ¢ = ¢(n, m). Applying Hélder’s inequality to the second integral on the right-hand
side of (4.2) yields the claimed Poincaré type inequality on sub-intrinsic cylinders. U

The next statement can be interpreted as some sort of Sobolev-Poincaré inequality for
the L?-deviation of «™ from its mean value on the sub-intrinsic cylinder Qée) (zo). Later
on, we shall use this inequality to estimate the right-hand side in the energy inequality from
Lemma 3.1. As usual, this leads to a reduction in the integration exponent of the energy
term of the right-hand side, i.e. the integral containing Du"™. Similar to Lemma 4.2,
we take Lemma 4.1 as starting point in the proof. Then, the idea is to extract a part of the
integration exponent from the L2-oscillation integral by the sup-term (occurring in the left-
hand side of the energy estimate) and then to apply Sobolev’s inequality to the remainder.

Lemma 4.3. Let m > 1 and u be a weak solution to (1.1) in Qr in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, on any sub-cylinder Qée) (z0) € Qr asin (4.1) for some 0 < ¢ < 1 and some 6 > 0,
and for any given € € (0, 1] the following Sobolev-type inequality holds

() 12

]5[ !u _('U; )20 dadt
QY (20) 0

<e sup ][ gm—1 [u (1), (u™) 079} da
Bo(xo)

ol
teA? (t,)

QT
7
n c[ﬁ[ /Du’"quxdt] +07§[ |F|2dzdt.
en LIJQY (z0) QY (20)

for a universal constant c = c(n,m, L) and q := % < 1.

Proof. In the following, we shall again omit the reference point z, in our notation. As

in the proof of Lemma 4.2 we take inequality (4.2) from Lemma 4.1 as starting point.

Moreover, we abbreviate (u"™),(t) by (u"),. From the context, it is clear that (u™), is

to be interpreted as a function of ¢. To the first integral on the right-hand side we apply

the lower bOl(lIld gor the boundary term from Lemma 2.3 (ii) and Holder’s inequality with
n+2) n42

exponents L= 142 n this way, we obtain

oy,
Qo

4 2n_
nt2 |um — (um)9| nt2dedt

IN

2o 2 20
]é[ {lum|# + |(um)9|;} +2 b[um, (um>g] == ’um - (um)g "+ qodt
Q

m—1

L 12m (T2
*} dzdt

IN

1
o+ (u™),

_d_
n+2

F 2n
. []%?g,) b[um7 (um)g] d |um _ (um)Q’ d dl’dt:|
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d

c 2m #112) m m % m m % e
< |ul“"dzdt blu™, (u™)]? |u™ — (u™),| * dadt .
o Q¥ Q¥

Now, we use the sub-intrinsic coupling (4.1), Holder’s inequality with exponents 4, -4
and for a.e. t € Ag,e) Sobolev’s inequality slicewise (note that 27" > 1, since n > 2). This
yields

2
mo__ m t
f
Qo

%

692(::21) 2 2n #
< — ]5[ blu™, (u™),]*|u™ — (u™),| ¢ dadt
omiz Q5"

—c|ff g B[ (@) T [ — (),
Q) o i

2 2n_ d—2 o
b m7 m q m o __ m a—2 3 n+2
SV { [ o [, (u >Q]dz] { / [ = ()| dx] dt]
Aée) B, o™ B, pd-2

oy [ 0]
B,

0
teA

blum(-,t), (u™ (6) s o =%
<c¢ sup ][ gm—1 [ ( m+1u Je ]dx # fDum| ¢ daxdt ,
teA) VB, Q”

with a universal constant ¢ = ¢(n, m). In the last line we have used Lemma 2.7 in order to

replace in the boundary term b the slice wise mean (u),(¢) by the mean (um)(ge). Insert-
ing this inequality into (4.2) and applying Young’s and Holder’s inequality, this results for
any € € (0,1] in

m my(0) |2
|“ — (u™), |
f el

o
blu™(-,t), (u™ % iz 2n wr
<c¢ sup {][ gm—1 [w"( 31+(1 Je }dm} bé[ ‘Dum‘ddxdt}
tGAg) B, o™ Q(Qe)

2
+ c[ﬁ[ o [|Dum| + |F|}dxdt}
Qo

m m(0)
b[u™ (-, 1), m
<e sup ][ gm—1 [w"( iﬂu )e ]dx + iz {ﬁ[ ‘Dumfzd dxdt}
tEAE_;e) B, Qg‘))

+ cﬁ[ |F|?dadt.
QY

This completes the proof of the Sobolev-Poincaré type inequality. U

3

5. REVERSE HOLDER INEQUALITY

As it is well known, the core of each higher-integrability result is a so-called reverse
Holder inequality for the quantity in question, which in our case is the gradient Du™.
These reverse Holder inequalities result in a certain way from the previously established
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Caccioppoli-type estimate and Sobolev-Poincaré-type inequalities. In principle, the right-
hand side integrals of the Caccioppoli inequality are estimated by applying the Sobolev-
Poincaré inequalities. However, the proof turns out to be more subtle than originally ex-
pected. The assumption that a sub-intrinsic coupling assumption must be imposed for the

cylinder Qéeg) (z,) is obvious, since this was presupposed in Lemma 4.3. However, this is
not sufficient because the factor ! in the energy estimate has to be converted into an
L™+ oscillation integral of u. This is done by a super-intrinsic coupling on the cylin-
der Qge)(zo); see the assumption (5.1)5. Both assumptions together, i.e. (5.1); and (5.1)o,

mean that the cylinder Qé?(zo) is intrinsic in some sense. On such an intrinsic cylinder

the oscillations of u are small compared to the mean value of u. This case could be called
the non-degenerate case.

Proposition 5.1. Let m > 1 and u be a weak solution to (1.1) in Qr in the sense of
Definition 1.1, where the vector-field A fulfills the structural assumptions (1.2). Then, on
any cylinder Qg;) (20) € Qr with an intrinsic coupling of the form

Jul®™ 2m |ul*™
5.1 5 dadt < 6™ < 5 dzdt
(5, (20) QW (=) ©

Jor some 0 < 9 < 1 and 0 > 0, the following reverse Holder type inequality holds true

1
75[ |Du™ *dedt < CHK |Dum|2qudt} + cﬁ[ |F[?dzdt,
QY (z0) Q57 (20) Q57 (20)

Sor some universal constant ¢ = ¢(n, m, v, L) and where q := T<L

Proof. Once again, we omit the reference to the center z, in the notation. We consider
radii 7, s with o < r < s < 2p. From the energy estimate in Lemma 3.1, we obtain

blu™(-,t), (u™ 7@
sup ][ R lf ) ]dx+7§[ |Du™|*dzdt
tenl? / Br rom Q"
u™ — (u™); blu™, (u™)r
o (s—1) Q® s — e
+c]§[ |F|?dzdt
Q"
(5.2) =: 14+ 1141,
with the obvious meaning of I-III. We abbreviate
m+41
S 2m
(5.3) Rr,s = T mE1 )

—

s
and observe that s 5w — r'm < (s — r)"=m . This together with Lemma 2.5 yields for

the first term

o () (O]
(5.4) 1< cRIET 75[ N [ = @™

52

For the second term we use the intrinsic coupling (5.1)2, Lemma 2.3 (ii), (iii), Holder’s
inequality and Lemma 2.5 to infer that

b (
chnisﬁ[ Qm*Idedt
S QY

S m

m

m _ m(0)]2 ;;I blu™ m(0)
ScRgSM[ W(dedt] ﬁ[ bl (@) 7]
*oe Q

m+41
52 S m
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m (,,m\(0)
m—1 b M
+CR72"78 (um)£9)| m ]5[(0) dedt
QS

52

m m\(0) |2
2 |“ — (u™)r |
S CRT’S#Q(‘H) S—2d$dt
” (6)2
2 ’“ "= (u™)s ’
< ch]%2 L deat,

Inserting the estimates for I and II above and applying Lemma 4.3, we find for any € €
(0, 1] that

my. m(0)
sup ][ Gm_lb[u ( ’ti;(lu ) ]da: + 75[ o ’Du’"]2dxdt
- B Qr

teal?/ B T
4m 1b[um(~7t),(um)§9)]
< cR2 e sup ][ om- S dz
ten® /B, s m
1 1
q
+M[ |Dum|2qudt] +]§[ |F|2dzdt .
e Lo Q"
With the choice ¢ = ——, this yields
2¢RTSTT
blu™(-,t), (u™ ©)
sup ][ gm—1 [ ( 21+(1 )r ]dach 75[ |Dum|2dxdt
teA?J By rom Qi
blu™ - 1), u™ (9)
S% sup][ gm—1 [ ( 12+(1 )s }dx
teAl? / Bs §m
am(n+2) 7
m(n q _4m_
F R M[ |Dum|2qudt} ¥ cR;.;L;lﬁ[ |F2dzdt,
0 0
QQQ QQQ
for a constant ¢ = c¢(n, m, v, L). To re-absorb the term 3 |. . . ] from the right-hand side into

the left-hand side, we apply the Iteration Lemma 2.1. This leads to the claimed reverse
Holder type inequality, i.e. to

blu™(-,t), (u™ 2
sup ][ gm—1 [w"( 71+(1 )e] dx + ﬁ[ ‘Dumfdxdt
teal?) 7 Bo o™ Q)
1
<c []5[ |Dum|2qudt} +c ]5[ |F|2dzdt.
Q) o
20 2e
This finishes the proof of Proposition 5.1. (]

The next lemma deals with the degenerate case which is characterized by the fact that
u is small compared to the oscillations of uw. In terms of integral quantities this means

that on the one hand Qgeg) (zo) is sub-intrinsic, and on the other hand the scaling parameter
6?™ is smaller than the mean of |Du™|? on Qg))(zo). As in the non-degenerate case,
we need the assumption (5.5)4, i.e. that Qé?(zo) is sub-intrinsic, as a prerequisite for the
application of Lemma 4.3, which serves to deal with some of the right-hand side integrals
of the Caccioppoli type estimate. However, during this procedure, a term of the order of
magnitude §6>™ appears, and it is precisely there where we need assumption (5.5),, which
converts this term into the oscillation term that can be re-absorbed into the left-hand side
of Caccioppoli’s inequality.
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Proposition 5.2. Let m > 1 and u be a weak solution to (1.1) in Qp in the sense of
Definition 1.1, where the vector-field A fulfills the structure assumptions (1.2). Then, on

any cylinder Qg;) (20) € Qr satisfying a coupling of the form

2m

(5.5) ]§[ [l et < 62m < K¢ {|Dum|2 + |F|2] dadt
©(z.) (20)? QY (=)

for some scaling parameter 6 > 0 and some constant K > 1, the following reverse Holder

type inequality holds true

1
75[ |Du™|*dedt < ¢ M[ |Dum|2qudt} + c7§[ |F[?dxdt,
Q4" (z0) §2 (z0) Q57 ()

2
(n+2)(m—1)

with a constant ¢ = c(n,m,v, L)K 00" and q := % < 1.

Proof. We omit in our notation the reference to the center z,. Furthermore, we consider
radii r, s with o < r < s < 2p. As in the proof of Proposition 5.1 we start from inequality
(5.2) which follows from the energy estimate in Lemma 3.1 and we recall the abbreviation
(5.3). The estimate (5.4) for I is the same as in the proof of Proposition 5.1. This is clear,
since we did not use hypothesis (5.1) for their proof. Therefore, it remains to consider the
term II. Applying Young’s inequality, Lemma 2.3 (iii), and Lemma 2.5, we infer for any
d € (0,1] that

b, ()
< RQ% " g1 Ol W)

m+1
QS S m
4m
m4+1 b m re)
< §0%m 4 ]§[ [w", (u 2) i dadt
) mF1L Ql® S
m m __ m (9) 2
< 07 + ﬁ[ il G L WP
6;;;+1 Q¥ 52
4m
F um _ um ge) 2
< sgrm 4 s [ = @ e,
swr Mo 52
From (5.4), the preceding estimate and Lemma 4.3 we obtain for §,¢ € (0, 1] that
m+1
I+H§592m+c o2 5sup][ Gml <1 ) }dx
5 1 tEA(g) S

1
) .
+ M[ ]Dum|2qudt} it ]§[ |F|2dxdt].
Qs QY

Moreover, from the coupling (5.5)2 we infer that
02 < 2dK]§[ " [[Du™? + |F|?*]dzdt.
Q’V‘

We insert the estimates for I and II into (5.2) and choose § = 2~ (4+1D) =1 This allows
us to re-absorb the integral of | Du™|? into the left-hand side. Proceeding in this way, we

obtain
blu™ 'at ) m 5‘0)
sup gm—1 [u (1), (u™) ]dx—i— ’Du”"’zdxdt
m+1 Q(e)

teAl® o

m m(0)
4m b ',t , s
< chm+1 ’R"Hrl sup ][ gm—1 [u ( ) (u ) }dl‘

m+41
teAgG) B S m
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1
1 q
—|—cKm+1Rm“ . []5[ ]Duqudxdt} +]§[ [|F|*dzdt|.
en LU g® QY

At this stage the choice ¢ = ———1—— yields

2cK mFI R

b m ° t , m Se)
sup ][ gm—1 [w7( ,Z+(1u )] dz + 7§[ ’Dum|2dxdt
B = Q¥

reAl® r

1
< 5 Sup
teA?

(m—1)(n+2) 477L(nl+2) 2 9
+ K~ mtDn Rr(’;rﬂr n ]§[ |Dum| dxdt + 7[% ‘F‘ dxdt].
@ Q5

Now, we apply the Iteration Lemma 2.1 to re-absorb the sup-term from the right-hand side
into the left. This leads us to

m 6)
sup][ gm—1 blum(, m(l e ]da:—i—ﬁ[ |Dum|2dxdt
o Q)

teAl
1
m |24 ¢ 2
<c |Du™|"dadt| +c |F|*dadt,
Qs Qs

. (m—1)(n+2) . .
where the constant ¢ is of the form ¢(n, m,v, L)K ~ =+D=n . This finishes the proof of

the Proposition. O

m+41
S m

m m(0)
f el @],
B

6. PROOF OF THE HIGHER INTEGRABILITY

As we have seen in the last chapter, one can establish reverse Holder inequalities in
both the degenerate and the non-degenerate regime. It should be recalled, however, that
the cylinders on which these reverse Holder inequalities are valid, are essentially scaled

by the solution u. More precisely, the relationship between fom () Wg‘ﬁd;gdt, the scal-

ing parameter 6 and ﬁﬂQ(Qe) () | Du™|2dzdt plays the decisive role. Therefore, the main
objective in the proof of the higher integrability theorem is to find parabolic cylinders cov-
ering the super-level set of the spatial gradient of w™ in the sense of a Vitali-type covering,
such that on each cylinder either a coupling in the form of (5.1) or in the form of (5.5)
holds true. These cylinders will be constructed by some sort of stopping time argument,
combined with a rising sun type construction. This very nice idea, which has already been
explained in the introduction, goes back to [16]. Once the covering has been constructed by
means of such cylinders, the application of the reverse Holder inequalities leads to a quan-
titative estimate of | Du'|? on the super-level sets in terms of |[Du™|??, for ¢ = % < 1.
The decay in terms of the super-level sets can then be converted into the higher integrability
of Du™

Before we start the construction of the system of non-uniform cylinders reflecting the
character of the porous medium system as explained above, we fix the setup. We consider
a fixed cylinder Qsr (Yo, 7o) = Bsr(yo) X (7’0 — (8R) mrIl,To + (SR)WTﬂ) € Qr with
R € (0, 1]. In the following, we abbreviate Q, := Q,(y,, 7o) for ¢ € (0,8R] and define

7§[ B {(ZL% + |Dum? +|F|2]dxdt1

At this point, we recall the notation for space-time cylinders QQO (zo) from (2.1), which

1
m+1

Ao =1+

will be used in the following construction. Moreover, we observe that Q(j) (20) C Qur
whenever z, € Qar, 0 € (0,R] and 6 > 1.
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6.1. Construction of a non-uniform system of cylinders. The following construction of
a non-uniform system of cylinders is similar to the one in [16, 27]. Let z, € Q2g. For a
radius ¢ € (0, R] we define

~ ~ 2m
0,=0,,,:=inf {6 € [Xo,0) : // i dadt < 9’”“}.
[Qel Hop ey 2

Note that 99 is well defined, since the set of those 6§ > ), for which the integral condition
is satisfied, is non-empty. In fact, in the limit § — oo the integral on the left-hand side
converges to zero, while the right-hand side blows up with speed #”*!. Note also that the
condition in the infimum above can be rewritten as

|u|2m
75[ —dzdt < 6°™.
Q¢ (z) @

Therefore, we either have that

1 |U|2m 72 2
6, =X, and ]§[ 5 dxdt < Ggm = A",
Q) @

or that

n |u|2m _2m
(6.1) 0, > X, and 7§[(§@>(z e dzdt = 6

holds true. In any case we have Ht Rk > Ao > 1. On the other hand, if A\, < ] r then (again
by definition and the fact that Q(GR) (20) C Q4 R) we have

2m 2m
gt = // | 2l dzdt < // ‘ dxdt < 4dF2\mHl
1Qrl QYR (z,) |QR| Qan (

Therefore, we end up with the bound

(6.2) O < 471 )\,

Next, we establish that the mapping (0, R] 3 ¢ — 59 is continuous. To this end, consider
0 € (0,R] and € > 0, and define 64 := 0, + . Then, there exists 6 = d(e, ¢) > 0 such

that
1 // Jul™ 41
dzdt < 07
Q| J QU+ 2,y 72 i

for all radii r € (0, R] with |r — p| < ¢. Indeed, the preceding strict inequality holds by the
very definition of 6, with r = p, since the integral on the left-hand side decreases with the

replacement of 59 by 6. (note that the domain of integration shrinks), while the right-hand
side strictly increases. The claim now follows, since both, i.e. the integral on the right and
the left hand side, are continuous with respect to the radius. With other words, we have
shown that 6, < 0y = 59 + ¢ for r sufficiently close to g. Therefore, it remains to prove
§T >0_ = 59 — ¢ for r close to p. This is clear from the construction if _ < ), since
0, > A, for any 7. In the other case, after diminishing 0 = d(e, 0) > 0if necessary, we get

m+1
o //(u 5 " dudt > o7

for all € (0, R] with |r — | < 4. For r = p, this is a direct consequence of the definition
of gg, since otherwise, we would have 5 < 6_, which is a contradiction. For r with
|r — o] < § the claim follows from the continuity of both sides as a function of r. By
definition of HT, the preceding inequality implies 9 >0_ = 9 — g, as claimed. This

(6.3)

completes the proof of the continuity of (0, R] 2 ¢ — GQ.
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Unfortunately, the mapping (0, R] > 0 — 59 might not be monotone. For this reason

we modify 6, in a way, such that the modification — denoted by 6, — becomes monotone.
The precise construction is as follows: We define
0,=0. .,:= max 0, ..
0 zoie “T I Ve

This construction can be viewed as a rising sun construction, because on those intervals
(0,7) on which 8, < 6, for r € (p,7), one replaces 6, by 6. Then, by construction the
mapping (0, R] 3 ¢ — 6, is continuous and monotonically decreasing; see Figure 1 for an
illustration of the construction.

99,69

A

1

1

1

!
r 0 o) R

FIGURE 1. Illustration of the rising sun construction

Moreover, the cylinders Qgeg) (z,) are sub-intrinsic whenever ¢ < s. More specifically,
we have

U 2m
(6.4) ]%2(%)(2 ) %dxdt <05™ forany 0 < o<s<R.

In fact, the definition of 6, and its monotonicity imply 55 <05 < 8,,so that Qge") (z0) C

() (2o). Therefore, we have

2m 0 m—1 2m
ﬁ[ ™ et < () ]§[ R iy
Q9 (z,) S s Q) (z,) S

m—1_ ~
e 2m __ -1 +1 2
<(32) @ =yt <oz,

S

> D

)

We now define
R if 6, = Ao,

6.5) =1 N '
mln{s €lo,R]:0s = ‘93} iff, > Xo.
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In particular, we have 6, = 5@ for any r € [p, 0; see again Figure 1. Next, we claim that
dt2

(6.6) 0, < (Z) "9, forany s € (o, R).

In the case that 8, = A, we know that also 6, = X, so that (6.6) trivially holds. Therefore,
it remains to consider the case 8, > A,. If s € (p, 9], then 6, = 05, and the claim (6.6)
follows again. Finally, if s € (g, R], then the monotonicity of ¢ — 6,, (6.1) and (6.4)

imply
| |2m %
u m-+41
0,=0;= [ // dz dt}
¢ Qg QP () €
d+2

> 2m m+1 <
S : m+ l: // |U| dxdt:| < (f) +105.
g |Qs| 09 (2,) 52 0

We now apply (6.6) with s = R. Since 0 = HR the estimate (6.2) for gR yields
R m+1 4R m+1
. < —_— .
6.7) eg_(g) O < (g) Mo

In the following, we consider the system of concentric cylinders Q(Qezmg)(zo) with radii
0 € (0, R] and z, € Q2r. Note that the cylinders are nested in the sense that

S‘)Zv;")(z(,) C Qi"w)(zo) whenever 0 < r < s < R.

The inclusion holds true due to the monotonicity of the mapping o — 6, .,. The disad-
vantage of this system of nested cylinders is, that in general the cylinders only fulfill a
sub-intrinsic coupling condition.

6.2. Covering property. Here, we will prove a Vitali type covering property for the cylin-
ders constructed in the last section. The precise result is the following

Lemma 6.1. There exists a constant ¢ = é(n, m) > 20 such that the following holds true:

Let F be any collection of cylinders Q( . ’")( ), where Qy”) (2) is a cylinder of the form
constructed in Section 6.1 with radius r € (0, %) Then there exists a countable subfamily
G of disjoint cylinders in F such that

(6.8) Jecla
QeF Qeg
where @ denotes the %—times enlarged cylinder Q, ie. if Q = Eﬁz”)(z), then @ =
Q7 (2).
Proof. For j € N we consider the sub-collection

_{Q(ezr 6]:7<7'<2J1

27¢
and choose G; C Fj as follows. We let G, be any maximal disjoint collection of cylinders
in 7. Note that G, is finite, since by (6.7) and the definition of F; the LT -measure of
each cylinder Q € G; is bounded from below. Now, assume that Gy, Gs, ..., Gir_1 have
already been selected for some integer £ > 2. Then, we choose Gj, to be any maximal
disjoint subcollection of

k—1
{Qefk:QﬂQ*:(Z)foranyQ* € Ugj}.

j=1

Note again that also Gy, is finite. Finally, we define

G:=Jg
j=1
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Then, G is a countable collection of disjoint cylinders and G C F. At this point it remains
to prove that for each Q € F there exists a cylinder Q* € G with Q N Q* # (), and that
this implies Q) C @*

To this aim fix Q = Q4 * )(z) € F. Then, there exists j € N such that @@ € Fj.
By the maximality of G;, there exists a cylinder Q* = fﬁi”*)(z*) S ngl G, with
QNQ* # 0. We know that r < 57— 1A and r, > 21_?6, so that r < 2r,. This ensures that
By (z) C Bagy, (). In the followmg we shall prove

(6.9) O < G4TT 0,

By 7. € [r., R] we denote the radius from (6.5) associated to the cylinder QT.ZZ*”*)(z*).

Recall that either Q%*”* ) (z4) is intrinsic or 7, = R and §,,.,, = A,. In the latter case
we have due to the definition of 0., that

Hz*;r* - )\o S 92;7‘ .

0. .0 e .
Therefore, we may assume that QS wirs) (z4) is intrinsic, which means

(6.10) oot = //
o IQT | (92* ) Zx)

In the following, we distinguish between the cases 7, < £ o and 7, > %, where p := 16.
In the latter case we exploit (6.10) and the definition of A, and 8., to obtain

2m
9;n+r1 < // |u‘ d dr < (4R> /\m+1 < (4U)d+292}7ﬂ+1'
T \Qr* n T ’

This shows that
d+2
ez*;r* < (4N) ot GZ;T .
Therefore, it suffices to consider the case 7, < % Since 7 > ry and |z —x,| < dr44r, <

12r,, we know that B,z (x,) C B,z (x). In addition, we have

m+1 141

(6.11) |t —t.| < 0L (4r) 5 + 0L () T

ZaiTx

Without restriction one can now assume .., < 0, ., , because otherwise (6.9) trivially

holds. Now, the monotonicity of o — 6., and r < 2r, < 2r, < pur, yield
ez*;r* Z ez;r Z ez

ST
so that
OL=m (47,) " |t — b, < 2017 2(47«*) Gl (4r)
—m ;Lrl 1-m m+1
<2.8% ol o T <0 wﬂ*(ur*) m

But this means 0 : © )
A4FZ:W (te) C Aug‘”* (t).
Therefore, from (6.10) and (6 4) with p = s = ur,, we obtain
m+1 // |u|2m 2 dud < d+29m+1
z*,r* = ( yar M zr
|Qr* =) () (U7)?
This implies that

d+2
ez*;r* < MT_H ez;r-
This finishes the proof of (6.9). With (6.11), r < 2r,, and (6.9) we conclude

m+41

0L (4r) 5 4 |t — L] < 200, (4r) W 4 0L (4ry)

(771—1)(d+2)i| m+1
m+41

01 m m
2*17"*

<4m 142255 .64
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m+1

< QL (er) T,

ZuiTx

for a constant ¢ = é(n,m) > 4. This yields the inclusion Afﬁ,”)(t) C Agi*”*)(t*).

After possibly enlarging ¢, so that & > 20, this implies Q C Q* = ng_i*”*)(z*). This
establishes (6.8) and completes the proof of the Vitali covering type Lemma. (]

6.3. Stopping time argument. For A > )\, and r € (0, 2R], we define the super-level set
of the function | Du™| by

E(r,\) = {z € Q, : z is a Lebesgue point of [Du™ | and | Du™|(z) > )\m}.

The Lebesgue points are to be understood with regard to the cylinders constructed in Sec-
tion 6.1. Note that £ a.e. point is a Lebesgue point with respect to these cylinders; cf.
[14, 2.9.1] and the Vitali type covering Lemma 6.1. For fixed radii R < R; < Ry < 2R,
we consider the concentric parabolic cylinders

Qr € Qr, CQr, € Q2r.

m—+1 m+1

Note that the inclusion Q(QK’)(ZO) = By(o) X (to — ' ™0 w0, to+ K0 ) C Qp,
holds true, whenever z, € Qg,, £ € [Xo,00) and ¢ € (0,Rs — Ry]. We fix 2z, €
E(R1, \) and abbreviate 6, = 6, for s € (0, R] throughout this section. By Lebesgue’s
Differentiation Theorem, cf. [14, 2.9.1] we have that

6.12) lim

[[Du™* 4 [P dedt > [ Du [ (z) > A2
sl0 Q.(€95>(ZU)

In the following, we consider values of A satisfying

4¢R )fﬁﬁ o1
Ry — Ry ’

where ¢ = &(n,m) denotes the constant from the Vitali-type covering Lemma 6.1. For
radii s with

(6.13) A> B\,  where B:= (

Ry — Ry

Cc

(6.14) <s<R

we have, by the definition of \,, for any s as in (6.14) that

|2 2 |Q4r|

‘Q4R‘ —
egn 1 )\zn-&-l

[|Du | + | P 2| dzdt

4R

T Qs

AR+
<(3) A"
<( 4R )'H%A?m
T \Ry - Ry °

= B2mAZT < N2,

In the last chain of inequalities we used (6.7), (6.14) and d + (d+2$’1“1) = 2’"”(1T1r2). On

the other hand, on behalf of (6.12) we find a sufficiently small radius 0 < s < f2=%1 such
that the above integral with ans) (zo) as domain of integration, possesses a value larger
than A\?™. Consequently, by the absolute continuity of the integral there exists a maximal
radius 0 < g,, < @ such that

(6.15) ﬁ[ 0n ) [\Dum|2 + \Fﬂdxdt = \2m,
ngﬁ;zO (20)
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The maximality of the radius g, implies in particular that

(6.16) 75[ o {|Dum|2 + |F|2} dzdt < \*™  forany s € (p.,, R).
Qs (20)

. _ 0
Finally, we know from the construction that Qggi zo )(

in turn is contained in Q g, .

%,) is contained in Qg,. (2,), which

6.4. A Reverse Holder Inequality. As before, we consider z, € E(r1,\) with A as in
(6.13) and abbreviate 0,, = 0._,,. . As in (6.5) we construct the radius ¢., € [o.,, R].

Exactly at this point, we pass from the possibly sub-intrinsic cylinder QQZQZ")(zO) to the

intrinsic cylinder Q( “’z°)(zo). Observe that 6, = 6, for any s € [o.,,0-,], and, in

particular, 05, = 0, . Our aim now is to prove the following reverse Holder inequality

m|2
]§[<9920>(ZO)|DU | dzdt

1
6.17) < cM[ |Dum|2qudt} + c]§[ o |FPdzdt,
Q4fz° (20) Qup? (20)
with ¢ := % < 1 and ¢ = ¢(n,m,v, L). We distinguish between the cases in which

0z, < QQZ 0r 0z, > 20,,. Inthe case 02, < 20., we apply Proposition 5.1 on the intrinsic

cylinder Q oo (20) (note that Q; QZO)(ZO) is intrinsic and, thanks to (6.4), Q( gz")(zo) is
sub- 1ntr1ns1c) and obtain

75[ ) |Dum|2dxdt
Qo (2

< 2”%[ oo ) |Dum|dadt
QE::)ZO (20)
1
< c[ﬁ[ ) ’Duqudxdt} +c]§[(9 : |F|2dxdt
Q2 90z, ( Q N“-;ZO (Zo)

1
< 0[75[ p |Dum| ‘Idxdt} + 07§[ 0 |F|?dzdt,
Qi QZ” (2o Qupr® (20)

where ¢ = ¢(n, m, V L). In the other case g,, > 20, , we want to apply Proposition 5.2 on

the cylinder Q( 0zo) (z0). However, this is only permitted if the hypothesis (5.5) is satisfied.
First, we notice that (5.5)1 is an immediate consequence of (6.4), and therefore we only
need to verify (5.5)s. To this aim, we consider two cases. If 99% = \,, We obtain (5.5)
by the following computation

gam — y2m < \2m 75[ oy [IDun P
’ inzo (20)
Here we used (6.15) for the last identity. If 6,, > A, then by construction Qéi"z")(zo)

is intrinsic. Moreover, since 9., > o0.,, we can apply (6.4) with (g, s) replaced by
(0., 30=,). This together with Lemma 4.2 and (6.16) (applied with s = g, € (0.,, R])
ensures that

e
6, = M[ dxdt]
o QU (z) €,

m my (ezy) (2 m (Gos,)
( |

[ — (™), 5 e 12

< Bl dedt|  + 20
(002,) 02 L
Q?zo (ZO) %o on

3k
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[ 2
|um _ (um)( é’io) %m
Z203;0z4
<c dxdt
(00z,) 52
QEZO (ZO) z

o

1
_a |ul*™ 2m
fo M[ da dt]
QY (2, (502,)

5 C@zo

1
2m
< CH[ (| Du[* + |F|2]dxdt} o770,
(992 ) Zo
Qs., ° (20)

<eA+ 27w,

for a constant ¢ = ¢(n, m, L). Re-absorbing 2*%0920 into the left-hand side and using
(6.15), we find that

b
0,, <ch=c ]§[ [|Dum‘2+|F|2}dmdt )
’ Qw2 (z0)

for a constant ¢ = ¢(n, m, L) > 1. This yields (5.5), in the second case with K = ¢*™ >

1. Therefore, we are allowed to apply Proposition 5.2 on the cylinder Q( ez0) (20), thereby
obtaining that

ﬁ[ . |DumPdedt
Qo (z0)

1
< cbé[ o ) \Dum‘zqudt} + c7§[ 60 ) |F|2dxdt.
Qz %o (20) Q %o (ZO)

20z,

In conclusion, we have shown that in any case the claimed reverse Holder inequality (6.17)
holds true.

6.5. Estimate on super-level sets. So far we have shown that if \ satisfies (6.13), then
for every z, € E(Ry, \) there exists a cylinder QQ;" o) (zo) with Q((EZZZ‘”QZO)(,ZO) C Qr,
such that (6.15), (6.16) and (6.17) hold true on this specific cylinder. As before, we abbre-
viate 0,, =0.,.,. . We define the super-level set of the inhomogeneity F' by

F(r,\) = {z € @, : zis a Lebesgue point of F' and |F| > )\m}.
As for the super-level set E(r, \) the Lebesgue points have to be understood with regard to

the cylinders constructed in Section 6.1. Using (6.15) and (6.17) we obtain for € (0, 1]
(to be specified later in a universal way) that

A2 = ﬁ[ ) [|Dum|2+ |FI?] dedt
Qure’ (2o

1
S C [# (0 ) |Dum|2qudt:| + C# 0 ) ‘F‘Qdiﬁdt
Q4Qizo (20) Qo (20)

4oz,

; // | Du™|*dzdt
\Q o) (2,)| M@z GonBR )
Cc

U // |F|2dadt,
|Q(99zu)(zo)| Qii}iz")(zo)ﬁF(Rzm)\)

4oz,

Q=

S chm)\2m+c
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for a constant ¢ = ¢(n, m, v, L). In the preceding inequality we choose the 7 in the form
n?m = i This choice allows the re-absorption of %/\2’” into the left-hand side. Further-
more, we use Holder’s inequality and (6.16) to estimate

1

; // | Du™ [ ddt E
QY ()| Halize’ Gonmramy

q
< M[ § |Dum‘2dxdt} < A2m(-0),
on ( (7)

We insert this above, and multiply the result, i.e. the inequality where we already fixed n
and re-absorbed )\2m by |Q Ooz,) zo)| This leads to the inequality

<c // o A2m(=0)| Dy *dadt
Qup® (20)NE(R2 )

+c//(9 ) |F|2dzdt,
Qup? (20)NF(R2,mA)

again with ¢ = ¢(n, m, v, L). Now, (6.16) with the choice s = ép, allows us to estimate
A2™ from below. The precise argument is as follows: Using in turn (6.16), the monotonic-

d+2
ity of o — 0, and (6.6), i.e. that 0zp, < 0, < gt 0z,.,, we obtain that

2m m 2 1 m 2
A > # (Oeg,,) |D'U/ | dzdt Z W# (0o ) |D'U/ | dxdt.
Q: (20) ¢ mFt Qzp,.° (20)

LQZ

m | o eso)
A2 ‘Qm (20)

LL’z

Inserting this above and keeping in mind that ¢ depends only on n and m, we deduce

//(9 ) \Dumfdxdt < c//(s A= Dy [* dgdt
Qe (2o 220 (z)NB(Ra,10)

Coz, 40

(6.18) +c//(9 ) |F|?dzdt
Qa2 (20)NF(R2m)\)

with ¢ = ¢(n,m,v, L).
So far, we showed that for any value A\ > B\, the super-level set E (R, A) can be cov-

ered by a family F = {Q( zoiezo) (20) } of parabolic cylinders with center z, € E(R1, \),
which are contained in Qr,, ‘and such that on each cylinder the estimate (6.18) holds true.
At this point, we use the Vitali type Covering Lemma 6.1 and gain a countable subfamily

(0=;:0-, }
i c F
{Q492 (2) i€EN
consisting of pairwise disjoint cylinders, such that the %-times enlarged cylinders
0250z, . . .
Qg 0. ’)(zi) are contained in () r, and cover the super-level set E(R;, A), i.e.

E(Ry, ) U Q( 2 (2) C Q-

050, L C .
Since the cylinders Qi QZ‘»’ ) (z;) are pairwise disjoint we obtain from (6.18) that

Dmddt< // Dm2ddt
//E(Rl,/\)| u ‘ X Z (8%927( )| u | €T

<ec / A2m(1=a) | Daym quxdt
Z Q4;7’ 1 (2)NE(Ra\) | |
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ved [,
=1

0s.)
Qugr " ()NF (R2,m))

< c// A2(=0) | Dy™ [P dadt + c// |F*dadt,
E(R2,m\) F(R2,n\)

where the constant ¢ depends only on n, m, v, and L. On E(Ry,n\) \ E(R1,\) we have
the pointwise bound ]Du’”‘Q < A2™ and therefore

// |Du™|*dedt < // A2=0) | D™ [*ddt,
E(R1,nA\\E(R1,\) E(R2,m)\)

We combine the last two inequalities and get the following reverse Holder inequality on
super-level sets

// | Du™*dzdt
E(R1,n\)

<c // A21=0| Dy [*1dzdt + ¢ // |F|2dzdt.
E(Ra,m\) F(R2,n\)

Here, we replace nA by ) and recall that < 1 depends only on n, m, v, and L. With this
replacement we obtain for any A > nB\, =: A; that

// | Du™|*dedt
E(Rl ))‘)

(6.19) <c // A2(=0) | Dy™ P dadt + ¢ // |F[*dadt
E(R2,\) F(R2,\)

holds true with a constant ¢ = ¢(n, m, v, L). This is the desired estimate on super-level
sets.

|F|2dadt

6.6. Proof of the gradient estimate. For k& > \; we define the truncation of | Du™| by

o,
and for r € (0, 2R] the corresponding super-level set
Ex(r,A) i= {2 € Q.+ [Du™|, > A"}

Note that |[Du™];, < |Du™] ae., as well as Ex(r,\) = 0 for k < X and Ex(r,\) =
E(r,\) for k > A. Therefore, it follows from (6.19) that

/[E - | Du™ 27| Du™|* dadt
k 1,

< c// A2=0) | D™ P dadt + ¢ // |F*dadt,
Ej(R2,\) F(R2,)\)

whenever k& > X\ > \;. Since Ey(r,\) = () for k¥ < ), the last inequality also holds in
this case. Now, we multiply the preceding inequality by A"~ !, where ¢ € (0, 1] will be
chosen later in a universal way, and integrate the result with respect to A over the interval
(A1, 00). This gives

o
(6.20) / Asml [ // \Du"”\i‘zqypumyzqudt} dA
A1 Ei(R1,A)
<c / Am(2=2ate)-1 [ // ]Duqudxdt} dA
A1 Ei(R2,))
+c/ Asm—l[// F%xdt} d.
A F(Ra,)\)

|Dum’k = min{’Dum
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Here we exchange the order of integration with the help of Fubini’s theorem. For the
integral on the left-hand side Fubini’s theorem implies

/ Txem-t [ // |Dum|i2q|Dum|2qudt} dA
A1 Ek(Rl,)\)
1
|Du™ "
// yD m|E 2q’Dum‘2q[/ /\Em‘ld/\}dxdt
Ep(R1,A A1

- // [[Du [ [ Du 2 = A7 [ Du [ D | daat,
Ey(R1,M1)

while for the first integral on the right-hand side we find that

)\m(272q+€)*1 |://' |Dum|2qd$dt:| d\
)\1 Ek(R2u)\)

1
ag [ [P
// | Du™| [ / Am(2_2‘1+5)‘1d)\] dadt
Ej(R2,A\1) A

S - Du™ 2721 Dy | * dadt
s [, D e

< ﬁ// | Dw™ || Du™ | dadt.
a Ej(R2,A1)

Finally, for the last integral in (6.20) we obtain

[ee]
/ em—l [ // |F|2dxdt} dX
A1 F(R2,\)

|F|m
// FZ‘[ / )\EmldA] dxdt
F(RQ,)\l) )\1
<= // |F|>Tedadt
F(Rg,)\l)
L // |F>edadt.
QQR

We insert these estimates into (6.20) and multiply by em. This leads to

/[E - )|D w2 D [P dadt
k 1,71

<A€m// |Du™| | Du™ | dadt
Ey(R1,M1)

m|2 2¢+e

IN
m

|D ’Dum|2qda:dt

1 — 4 JIE (Rs )

+ c// |F|*Tedadt.
Q2r

The last inequality is now combined with the corresponding inequality on the complement
Qr, \ Ex(R1, 1), i.e. with the inequality

// | Du™ 27" | Du™ | dadt
Qry \Ex(R1,\1)

< xem // | D)% D [* v,
Qr, \Ekr(R1,\1)
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We also take into account that | Du™|;, < |Du™|. All together this gives the inequality

// | Du™ 277 | Du | dadt
QRr;

< e // |Dum|i_2q+€’Dum|2qudt
l—q QR,

+A§m// |Dum\2dxdt+c// |F[2+edzdt,
Q2r Q2r

where ¢, = c.(n, m,v, L) > 1. Now, we choose

_1-q

where ¢, := > < 1.
Cx

0 < e < min{e,, 0 — 2},

Note that £, depends only on n,m, v, and L. Moreover, observe that A; = (nBX,)® <
BX;,sincenn < 1, B > 1and 0 < ¢ < 1. Therefore, from the previous inequality we

conclude that for any pair of radii Ry, Ry with R < R; < Ry < 2R there holds

// | Du™ |2 | D dadt
QR,
<3 // | Du™ 2727 | Du | * dadt
QRry

Ry—Ry ¢ Q2r Q2r .

We can now apply the Iteration Lemma 2.1 to the last inequality, which yields

// |Dum|2’2q+E\Dum{2qudtgcAf,m// |Dumy2dxdt+c// |F[>**dzdt.
Qr Q2r Q2r

k

On the left side we apply Fatou’s Lemma and pass to the limit K — oo. In the result, we

go over to means on both sides. This gives

7§[ \Dum\2+5dxdtgcA§m]§[ |DuM\2dxdt+c7§[ |F[>**dzdt.
Qr Q2r Q2r

At this point, we estimate A\, with the help of the energy estimate from Lemma 3.1 applied
with § = 1 and @ = 0 and Holder’s inequality. This leads to the bound

|u|2m mh»l
1+7§[ [ +F2}dxdt ,
R2
Qsr

where ¢ = ¢(m, v, L). Inserting this above, we deduce

75[ ’Dum|2+6dxdt
Qr

2m wEH»l
1+ 75[ Pu >+ |F|2] dzdt # |Dum’2dxdt + c]§[ |F|*Tedadt,
Qsr R Q2R Q2R

Mo <c

<c

where ¢ = ¢(n, m, v, L). The claimed estimate (1.10) involving the cylinders Qg and Q2g
now follows by a covering argument. This completes the proof of Theorem 1.2. U
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6.7. Proof of Corollary 1.3. It remains to deduce a corresponding estimate on a standard
parabolic cylinder Cor(2,) := Bag(1,) % (t, — (2R)?,t, + (2R)?) € Q7. To this end,
we rescale the solution u, the vector-field A, and the right-hand side F’ via

v(z,t) == u(z, + R, t, + R%t)
B(z,t,u,§) = RA(QJO + Rz, t, + R*t,u, %5)
G(z,t) .= RF(x, + Ra,t, + R*t),

whenever (z,t) € Cy and (u, &) € RY xRY™. Then v is a weak solution of the differential
equation

Opv — divB(z, t,v, Dv™) = divG inQy C Oy,
in the sense of Definition 1.1. Moreover, the assumptions (1.2) are satisfied for the rescaled

vector-field B in place of A. Therefore, the estimate (1.10) is applicable to v on the
cylinder ()5, which yields

75[ | D™ | dadt
1

o
gc[1+7§[ [|v|2m+|G|2]dxdt} 7§[ |Dvm]2dxdt+c7§[ |G[2edadt,
2 Q2 Q2

for every € € (0,¢,], with a constant ¢ = ¢(n,m, v, L). Scaling back and recalling that
Q2 C Cs, we arrive at the estimate

R2+f]§[ | Du™| e dadt
CR(ZO)

AT
<cR? {1 + 75[ [ul*™ + R2|F|2]da:dt] 7§[ |Dumy2dxdt
Car(2o) Cor(zo)

+ cR2+E]§[ |F|**edadt.
C2r(20)
Dividing both sides by R?*¢ yields the assertion of Corollary 1.3. O
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