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ABSTRACT. In this paper we establish that the gradient of weak solutions to porous
medium type systems admits the self-improving property of higher integrability.

1. INTRODUCTION AND RESULTS

In this article, we are interested in the self-improving property of higher integrability of
weak solutions to porous medium type systems, whose prototype is

∂tu−∆
(
|u|m−1u

)
= 0.

This problem has been open for some time. For non-negative solutions to porous medium
type equations it has recently been solved by Gianazza & Schwarzacher [16]. Here, we are
able to treat signed solutions and the vectorial case. More precisely, we consider equations
(the case N = 1) or systems (the case N ≥ 2) of the form

(1.1) ∂tu− divA(x, t, u,Dum) = divF in ΩT ,

with u : ΩT → RN , in a space-time cylinder ΩT := Ω × (0, T ), where Ω ⊂ Rn is
a bounded open domain, n ≥ 2, T > 0, and we abbreviated um := |u|m−1u. The
assumptions on the vector field A : ΩT × RN × RNn → RNn are as follows. We assume
that A is measurable with respect to (x, t) ∈ ΩT for all (u, ξ) ∈ RN × RNn, continuous
with respect to (u, ξ) for a.e. (x, t) ∈ ΩT , and moreover that A satisfies for some structural
constants 0 < ν ≤ L <∞ the following growth and ellipticity conditions

(1.2)

{
A(x, t, u, ξ) · ξ ≥ ν|ξ|2 ,

|A(x, t, u, ξ)| ≤ L|ξ|,

for a.e. (x, t) ∈ ΩT and any (u, ξ) ∈ RN × RNn. Note that these assumptions are com-
patible with the ones in [1] and [11, Chapter 3.5] in the scalar case. For the inhomogeneity
F : ΩT → RNn we assume that F ∈ L2(ΩT ,RNn). As usual, we suppose that the solu-
tions to (1.1) lie in a parabolic Sobolev space; the precise definition will be given below in
Definition 1.1.

In the stationary elliptic case it is by now well known that weak solutions to elliptic
systems of the type

(1.3) − divA(x, t, u,Du) = divF in Ω,

locally belong to a slightly higher Sobolev space than a priori assumed. The so-called
self-improving property of higher integrability was first detected by Elcrat & Meyers [25].
Their proof is based, among other things, on a reverse Hölder type inequality – a direct
consequence of a Caccioppoli type inequality (also called reverse Poincaré inequality) –
and some adaptation of the famous Gehring Lemma [15]; the nowadays standard interior
version can be retrieved from [17, Chapter 11, Theorem 1.2], for the boundary version
we refer to [22] and [13, Theorem 2.4]. Originally, Gehring’s lemma was developed to
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establish the higher integrability of the Jacobian of quasi-conformal mappings. Over time,
the self-improving property of higher integrability was first established for solutions of sta-
tionary elliptic systems [18] and later for minima of variational integrals [19] by Giaquinta
& Modica. A unified treatment in the language of quasi-minima is given in [21, Theo-
rem 6.7]. Corresponding global results for stationary elliptic problems with a Dirichlet
boundary condition were established in [21, Section 6.5], [13, Section 3].

The first higher integrability result for vectorial evolutionary problems goes back to
Giaquinta & Struwe [20, Theorem 2.1]. More precisely, quasilinear parabolic systems of
the type

(1.4) ∂tu− div
(
a(x, t, u)Du

)
= divF in ΩT ,

whose coefficients a continuously depend on (x, t, u) have been investigated. The tech-
nique of Giaquinta & Struwe does not carry over to the parabolic p-Laplacian system

∂tu− div
(
|Du|p−2Du

)
= divF in ΩT ,

or general parabolic systems with p-growth (the growth and coercivity condition from (1.2)
have to be replaced by a(x, t, u, ξ) · ξ ≥ ν|ξ|p and |a(x, t, u, ξ)| ≤ L(|ξ|p + 1)). The
obstruction relies in the fact that the parabolic p-Laplacian equation has a different ho-
mogeneity in the time and the diffusion term. In particular, multiples of a solution do not
anymore solve the differential equation. This problem has finally been solved by Kinnunen
& Lewis [23] who proved the higher integrability result for general parabolic systems with
p-growth. More precisely, they have shown that weak solutions from the natural energy
space C0

(
[0, T ];L2(Ω,RN )

)
∩ Lp

(
0, T ;W 1,p(Ω,RN )

)
have a more integrable spatial

gradient, namely
Du ∈ Lp+εloc

(
ΩT ,RNn

)
for some ε > 0.

This shows that also in the case of parabolic systems with coefficients of p-growth and
coercivity energy solutions enjoy the self-improving property of higher integrability for the
gradient. The key to the result was the use of intrinsic cylinders in the sense of DiBenedetto
& Friedman [8, 9, 10, 7], i.e. cylinders of the form Q%,λ2−p%2 whose space-time scaling
depends on the spatial gradient of the solution via

−−
¨
Q%,λ2−p%2

|Du|pdxdt ≈ λp.

This important result has been generalized over time in various directions. The global result
with a Dirichlet boundary condition at the lateral boundary was established by Parviainen
[26]. Interior higher integrability for weak solutions of higher order degenerate parabolic
systems has been shown by Bögelein [4], while the corresponding global result was estab-
lished in [6]. The case of parabolic equations with non-standard p(x, t)-growth was treated
by Antonsev & Zhikov [2], while systems were treated by Zhikov & Pastukhova [29] and
independently by Bögelein & Duzaar [5].

For the porous medium equation, the question of higher integrability of the gradient,
even for non-negative solutions in the scalar case, remained an open problem for a while.
The reason was that when proving regularity of the gradient the degeneracy with respect to
u is much more difficult to handle. This difficulty has recently been overcome by Gianazza
& Schwarzacher [16] who proved that non-negative weak solutions to porous medium
equations of the type (1.1) enjoy the self-improving property of higher integrability. More
precisely, this means that the integrability Du

m+1
2 ∈ L2

loc

(
ΩT ,Rn

)
of weak solutions was

improved to

Du
m+1

2 ∈ L2+ε
loc

(
ΩT ,Rn

)
, for some ε > 0.

The main novelty with respect to the proof for the parabolic p-Laplacian in [23] is that
Gianazza & Schwarzacher work with cylinders which are intrinsically scaled with respect
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to u rather than the spatial gradient Du. This means that they consider cylinders of the
type Q%,θ%2 whose space-time scaling is adapted to the solution u via the coupling

(1.5) −−
¨
Q%,θ%2

um+1dxdt ≈ θ−
m+1
m−1 .

This is exactly the intrinsic scaling which is typically used in the proof of regularity of
u, as for instance Hölder continuity of u, cf. [9]. At first glance it is quite surprising that
this approach also yields regularity of the spatial gradient. However, these cylinders are
better adapted to the equation and this is crucial for the proof. Nevertheless, the argument
becomes much more involved than the one for the parabolic p-Laplacian. The overall strat-
egy can be outlined as follows. First, one has to prove a reverse Hölder type inequality on
certain intrinsic cylinders. To achieve this, Gianazza & Schwarzacher distinguish whether
a cylinder Q belongs to the non-degenerate regime in which the inequality

−−
¨
Q

|u− (u)Q|m+1dxdt ≤ δ−−
¨
Q

um+1dxdt,

holds true for some particular 0 < δ � 1, or Q belongs to the degenerate regime in which
the opposite inequality is valid. In the non-degenerate regime they rely on the expansion
of positivity in order to guarantee that the solution does not become too small on the cylin-
der. In a second step, one usually constructs a covering of super-level sets of the spatial
gradient with intrinsic cylinders. However, this is not possible for the cylinders which are
intrinsically scaled with respect to u. Gianazza & Schwarzacher overcame this problem by
a very elegant idea. They weakened this property to the so-called sub-intrinsic cylinders
for which they succeeded to prove the covering property. Thereby, they call a cylinder
sub-intrinsic if (1.5) holds as an inequality, i.e. the mean value integral is bounded from
above by the right-hand side.

The methods of proof of this important result are only applicable in the scalar case for
non-negative solutions, because tools as the expansion of positivity are neither available in
the vectorial case, nor for signed solutions.

The present paper has its origin in the effort to extend the purely scalar result to the
vector-valued case. As a by-product of the vectorial case, we are able to deal also with
signed solutions in the scalar case. Moreover, contrary to Gianazza & Schwarzacher, we
start from the definition of weak (energy) solutions introduced in [28, Theorem 5.5], i.e.
we start with solutions satisfying Dum ∈ L2

loc(ΩT ,RNn), see (1.8). As main result, we
prove that

Dum ∈ L2+ε
loc (ΩT ,RNn), for some ε > 0.

We note that starting from a vectorial version of the energy estimate used in [16], a modi-
fication of our method also applies to the definition of weak solution as considered there.
The key to the higher integrability result in the vectorial case is to prove the reverse Hölder
type inequality just by the use of an energy estimate and a gluing lemma as stated in Lem-
mas 3.1 and 3.2. In particular, it is important to omit the use of the expansion of positivity.
In fact, for the proof of the Sobolev-Poincaré type inequality in Lemma 4.3 we only use
the Gluing Lemma 3.2, the standard Sobolev inequality and some algebraic lemmas. Here,
we note that contrary to (1.5) we work with differently scaled cylinders which reflect more
clearly the behavior of the porous medium equation and which are adapted to the energy
space (1.8) (for the heuristics see also [16, Remark 5.6]). These cylinders are given by
Q

(θ)
% = B% × (−θ1−m%

m+1
m , θ1−m%

m+1
m ) with an intrinsic scaling of the form

(1.6) −−
¨
Q

(θ)
%

|um|2

%2
dxdt ≈ θ2m,

so that in case that the mean value of um on the cylinder Q(θ)
% is zero, the scaling pa-

rameter θ is comparable to |Dum|. A cylinder Q(θ)
% is called sub-intrinsic if (1.6) holds
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as an inequality, where the mean value integral is bounded from above by the right-hand
side. Contrary to [16] we present a unified proof of the Sobolev-Poincaré type inequal-
ities on sub-intrinsic cylinders that works likewise in the non-degenerate and degenerate
regime. These inequalities are subsequently used to derive reverse Hölder type inequalities
on intrinsic cylinders and sub-intrinsic cylinders additionally satisfying

(1.7) −−
¨
Q

(θ)
%

∣∣Dum
∣∣2dxdt & θ2m.

For the final proof of the higher integrability we cover the super-level-sets of |Dum| by
sub-intrinsic cylinders. Here, we rely on the construction by Gianazza & Schwarzacher.
The idea is to choose with the help of the intermediate value theorem for a given center zo
and radius % > 0 the scaling parameter θ̃zo;% in such a way that

−−
¨
Q

(θ̃zo;%)
% (zo)

|um|2

%2
dxdt = θ̃2m

zo;%

is satisfied, where Q(θ̃zo;%)
% (zo) = zo + Q

(θ̃zo;%)
% . Unfortunately, the mapping % 7→ θ̃zo;% is

not monotone. Therefore, we modify the parameter θ̃zo;% by a rising sun type construction,
i.e. we define

θzo;% := max
r≥%

θ̃zo;r.

Then, the mapping % 7→ θzo;% is monotonically decreasing and furthermore one can show
that the cylinders Q(θzo;%)

% (zo) are still sub-intrinsic. A crucial observation at this point is
that by construction either the cylinders are intrinsic or satisfy (1.7). This allows to apply
our reverse Hölder inequality. As in [16] our cylinders satisfy a Vitali covering property
which allows to cover the super-level-sets of |Dum| by countably many of these cylinders.
In this way, we obtain a reverse Hölder inequality on the super-level-sets of |Dum|. In a
standard way, this implies the higher integrability by a Fubini type argument.

1.1. General Setting and Results. In this chapter we fix the notations, describe the gen-
eral setup and present our main result. First, we define what we mean by a weak energy
solution to the porous medium type system.

Definition 1.1. Assume that the vector field A : ΩT × RN × RNn → RNn satisfies (1.2)
and that F ∈ L2

loc(ΩT ,RNn). We identify a measurable map u : ΩT → RN in the class

(1.8) u ∈ C0
(
(0, T );Lm+1

loc (Ω,RN )
)

with um ∈ L2
loc

(
0, T ;W 1,2

loc (Ω,RN )
)

as a weak solution to the porous medium type system (1.1) if and only if the identity¨
ΩT

[
u · ∂tϕ−A(x, t, u,Dum) ·Dϕ

]
dxdt =

¨
ΩT

F ·Dϕdxdt(1.9)

holds true, for any testing function ϕ ∈ C∞0 (ΩT ,RN ). �

Existence of weak solutions can be deduced from [1] after the transformation v =
|u|m−1u; see also [3] for a different approach in the case of non-negative solutions.

Throughout the paper we work with parabolic cylinders of the type

QR(zo) = BR(xo)×
(
to −R

m+1
m , to +R

m+1
m

)
b ΩT ,

whose associated parabolic dimension is

d := n+ 1 + 1
m .

Our main result reads now as follows:
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Theorem 1.2. Let m ≥ 1 and σ > 2. Then, there exist constants εo = εo(n,m, ν, L) ∈
(0, 1] and c = c(n,m, ν, L) ≥ 1 such that the following holds true: Whenever F ∈
Lσloc(ΩT ,RNn) and

u ∈ C0
(
(0, T );Lm+1

loc (Ω,RN )
)

with um ∈ L2
loc

(
0, T ;W 1,2

loc (Ω,RN )
)

is a weak solution of Equation (1.1) under the assumptions (1.2) in the sense of Defini-
tion 1.1, there holds

Dum ∈ L2+ε1
loc

(
ΩT ,RNn

)
,

where ε1 := min{εo, σ−2}. Moreover, for every ε ∈ (0, ε1] and every cylinderQ2R(zo) b
ΩT , we have the quantitative local higher integrability estimate

−−
¨
QR(zo)

∣∣Dum
∣∣2+ε

dxdt

≤ c

[
1 +−−
¨
Q2R(zo)

[
|u|2m

R2
+ |F |2

]
dxdt

] εm
m+1

−−
¨
Q2R(zo)

∣∣Dum
∣∣2dxdt

+ c−−
¨
Q2R

|F |2+εdxdt.(1.10)

The quantitative local estimate (1.10) can be easily converted into an estimate on the
standard parabolic cylindersCR(zo) := BR(xo)×(to−R2, to+R

2). The precise statement
is as follows.

Corollary 1.3. Under the assumptions of Theorem 1.2, the following estimate

−−
¨
CR(zo)

∣∣Dum
∣∣2+ε

dxdt

≤ c

Rε

[
1 +−−
¨
C2R(zo)

[
|u|2m +R2|F |2

]
dxdt

] εm
m+1

−−
¨
C2R(zo)

∣∣Dum
∣∣2dxdt

+ c−−
¨
C2R(zo)

|F |2+εdxdt

holds true on any parabolic cylinder C2R(zo) b ΩT and for every ε ∈ (0, ε1] and with a
constant c = c(n,m, ν, L).

Acknowledgments. We would like to thank Juha Kinnunen for many constructive dis-
cussions on the subject and his persuasive work to pursue this topic further. Without his
motivational efforts this work would probably not have come about. The third author was
supported by the Academy of Finland, project 308063.

2. PRELIMINARIES

2.1. Notations. In order not to overburden the notation, we abbreviate in the following
the power of a vector (or possibly negative number) by

uα := |u|α−1u, for u ∈ RN and α > 0,

where we interpret uα = 0 in the case u = 0 and α ∈ (0, 1). Throughout the paper we
write zo = (xo, to) ∈ Rn × R and use the space-time cylinders

(2.1) Q(θ)
% (zo) := B%(xo)× Λ(θ)

% (to),

where
Λ(θ)
% (to) :=

(
to − θ1−m%

m+1
m , to + θ1−m%

m+1
m

)
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with some scaling parameter θ > 0. One of the most important notions for this paper is the
notion of sub-intrinsic cylinders. We call a cylinder Q(θ)

% (zo) sub-intrinsic, if and only if

−−
¨
Q

(θ)
% (zo)

|u|2m

%2
dxdt ≤ θ2m

holds true. If the preceding inequality actually is an equality, we call the cylinder intrinsic.
In the case θ = 1, we simply omit the parameter in our notation and write

Q%(zo) := B%(xo)×
(
to − %

m+1
m , to + %

m+1
m

)
instead of Q(1)

% (zo), and, analogously, Λ%(to) instead of Λ
(1)
% (to). If zo is the origin, we

write Q%, B% and Λ% for Q%(0), B%(0) and Λ%(0). Moreover, if the center zo is clear from
the context we omit it in our notation.

For a map u ∈ L1(0, T ;L1(Ω,RN )) and given measurable sets A ⊂ Ω and E ⊂
Ω × (0, T ) with positive Lebesgue measure the slicewise mean (u)A : (0, T ) → RN of u
on A is defined by

(2.2) (u)A(t) := −
ˆ
A

u(t) dx, for a.e. t ∈ (0, T ),

whereas the mean value (u)E ∈ RN of u on E is defined by

(u)E := −−
¨
E

udxdt.

Note that if u ∈ C0((0, T );L2(Ω,RN )) the slicewise means are defined for any t ∈ (0, T ).
If the set A is a ball B%(xo), then we abbreviate (u)xo;%(t) := (u)B%(xo)(t) and if E is

a cylinder of the form Q
(θ)
% (zo), we use the shorthand notation (u)

(θ)
zo;% := (u)

Q
(θ)
% (zo)

.
Finally, we define the boundary term

b[um,am] := m
m+1

(
|a|m+1 − |u|m+1

)
− u ·

(
am − um

)
(2.3)

that will appear in the energy estimate from Lemma 3.1.

2.2. Auxiliary Material. In order to “re-absorb” certain terms, we will use the following
iteration lemma, which can be retrieved by a change of variable from [21, Lemma 6.1].

Lemma 2.1. Let 0 < ϑ < 1, A,C ≥ 0 and α, β > 0. Then, there exists a constant
c = c(β, ϑ) such that there holds: For any 0 < r < % and any non-negative bounded
function φ : [r, %]→ R≥0 satisfying

φ(t) ≤ ϑφ(s) +A
(
sα − tα

)−β
+ C for all r ≤ t < s ≤ %.

we have
φ(r) ≤ c

[
A(%α − rα)−β + C

]
.

Lemma 2.2. For any α > 1, there exists a constant c = c(α) such that, for all a, b ∈ RN
the following assertions hold true:

(i) 1
c

∣∣aα − bα
∣∣ ≤ (|a|α−1 + |b|α−1

)
|a− b| ≤ c

∣∣aα − bα
∣∣,

(ii) |a− b|α ≤ c
∣∣aα − bα

∣∣,
(iii)

∣∣aα − bα
∣∣2 ≤ c(a2α− 1 − b2α− 1

)
· (a− b).

The proof of (i) and (ii) can be found in [19, Lemma 2.2]. Inequality (iii) can be derived
by combining the proof of [7, Chapter I, Lemma 4.4] with (i). The next lemma provides
useful estimates for the boundary term b introduced in (2.3).

Lemma 2.3. There exists a constant c = c(m) such that for any u, a ∈ RN the following
assertions hold true:

(i) 1
c

∣∣um+1
2 − a

m+1
2

∣∣2 ≤ b[um,am] ≤ c
∣∣um+1

2 − a
m+1

2

∣∣2,
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(ii) 1
c |u

m − am|2 ≤
[
|u|m−1 + |a|m−1

]
b[um,am] ≤ c|um − am|2,

(iii) b[um,am] ≤ c|um − am|m+1
m .

Proof. Using the auxiliary function φ ∈ C2(RN ), φ(x) = 1
m+1 |x|

m+1, we can re-write
the boundary term to

b[um,am] = 1
m+1 |u|

m+1 − 1
m+1 |a|

m+1 − am · (u− a)

= φ(u)− φ(a)−∇φ(a) · (u− a).

The Hessian of φ is given by the matrix

Hφ(x) = |x|m−1
(
IN + (m− 1) x

|x| ⊗
x
|x|
)
,

whose eigenvalues are |x|m−1 and m|x|m−1. Therefore, the integral formula for the re-
mainder in Taylor’s expansion yields

b[um,am] ≥
ˆ 1

0

|a+ t(u− a)|m−1(1− t) dt |u− a|2.(2.4)

Now, we distinguish between the cases |u| ≥ |a| and |u| < |a|. In the first case, for any
t ∈ ( 3

4 , 1) we have

|a+ t(u− a)| ≥ t|u| − (1− t)|a| ≥ 1
2 |u| ≥

1
4 (|u|+ |a|),

from which we infer

(2.5) b[um,am] ≥ c
ˆ 1

3
4

(1− t) dt (|u|+ |a|)m−1|u− a|2 = c (|u|+ |a|)m−1|u− a|2,

where c = c(m). In the second case |u| < |a|, we restrict ourselves to values t ∈ (0, 1
4 ).

Interchanging the roles of u, a and t, 1− t we end up with the same estimate for |a+ t(u−
a)|. In view of (2.4), this implies also in the remaining case for b[um,am] the estimate
(2.5). Combining this with Lemma 2.2 (i), we arrive at the first claimed estimate, since

b[um,am] ≥ c(m)(|u|+ |a|)m−1|u− a|2 ≥ c(m)
∣∣um+1

2 − a
m+1

2

∣∣2.
For the second asserted estimate, we apply Lagrange’s formula for the remainder in Tay-
lor’s expansion, which yields

b[um,am] ≤ 1
2 sup
t∈(0,1)

(u− a) ·Hφ(a+ t(u− a))(u− a)

≤ m
2 |u− a|

2 sup
t∈(0,1)

|a+ t(u− a)|m−1

≤ c(m)(|u|+ |a|)m−1|u− a|2.(2.6)

In view of Lemma 2.2 (i), this yields the second estimate from (i), since

b[um,am] ≤ c(m)(|u|+ |a|)m−1|u− a|2 ≤ c(m)
∣∣um+1

2 − a
m+1

2

∣∣2.
The inequalities in (ii) are a consequence of (i) and Lemma 2.2 (i) applied with ũ = u

m+1
2 ,

ã = a
m+1

2 and α = 2m
m+1 , since[

|u|m−1 + |a|m−1
]
b[um,am] ≥ c(m)

[
|u|m−1 + |a|m−1

]∣∣um+1
2 − a

m+1
2

∣∣2
= c(m)

[
|ũ|

2(m−1)
m+1 + |ã|

2(m−1)
m+1

]
|ũ− ã|2

≥ c(m)|um − am|2.

The reasoning for the second bound in (ii) is similar. The inequality (iii) also follows
from (2.6) and Lemma 2.2 (i), (ii), since

b[um,am] ≤ c(m)|um − am| |u− a| ≤ c(m)|um − am|1+ 1
m . �
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The following estimate, which is known as the quasi-minimality of the mean value, can
be established by Young’s and Hölder’s inequality.

Lemma 2.4. Let α ≥ 1. Then, for any bounded domain A ⊂ Rk, k ∈ N, any u ∈
Lα(A,RN ), and any a ∈ RN there holds

−
ˆ
A

∣∣u− (u)A
∣∣αdx ≤ 2α −

ˆ
A

|u− a|αdx.

The following statement shows that mean values over subsets are still quasi-minimizing.
This is well known for α = 1. Here, we state the version for powers. As expected, the
quasi-minimality constant depends on the ratio of the measures of the set and the subset.

Lemma 2.5. Let α ≥ 1. Then there exists a universal constant c = c(α) such that
whenever A ⊂ B ⊂ Rk, k ∈ N, are two bounded domains and u ∈ L2α(B,RN ), there
holds

−
ˆ
B

∣∣uα − (u)αA
∣∣2dx ≤ c |B|

|A|
−
ˆ
B

∣∣uα − (u)αB
∣∣2dx.

Proof. We start by estimating the difference |(u)αB − (u)αA|. Using Lemma 2.2 (i), (ii),
we obtain for a constant c = c(α) that∣∣(u)αB − (u)αA

∣∣2 ≤ c[|(u)B |2α−2 + |(u)A|2α−2
]∣∣(u)B − (u)A

∣∣2
≤ c
[
|(u)B |2α−2 + |(u)A − (u)B |2α−2

]∣∣(u)B − (u)A
∣∣2

≤ c |(u)B |2α−2−
ˆ
A

∣∣u− (u)B
∣∣2dx+ c

∣∣(u)A − (u)B
∣∣2α

≤ c−
ˆ
A

∣∣uα − (u)αB
∣∣2dx+ c−

ˆ
A

∣∣u− (u)B
∣∣2αdx

≤ c |B|
|A|
−
ˆ
B

∣∣uα − (u)αB
∣∣2dx.

From this estimate we conclude

−
ˆ
B

∣∣uα − (u)αA
∣∣2dx ≤ 2−

ˆ
B

∣∣uα − (u)αB
∣∣2dx+ 2

∣∣(u)αB − (u)αA
∣∣2

≤ c |B|
|A|
−
ˆ
B

∣∣uα − (u)αB
∣∣2dx,

which proves the claim. �

The following lemma is from [12, Lemma 6.2]. For convenience of the reader, we
nevertheless include the proof.

Lemma 2.6. Let α > 1. Then there exists a universal constant c = c(α) such that for any
bounded domain A ⊂ Rn, any u ∈ L2α

(
A,RN

)
, and any a ∈ RN there holds

−
ˆ
A

∣∣uα − (u)αA
∣∣2dx ≤ c−

ˆ
A

∣∣uα − aα
∣∣2dx.

Proof. Using Lemma 2.2 (iii), we obtain for a constant c = c(α) that

−
ˆ
A

∣∣uα − (u)αA
∣∣2dx ≤ c−

ˆ
A

(
u− (u)A

)
·
(
u2α− 1 − (u)2α− 1

A

)
dx

= c−
ˆ
A

(
u− (u)A

)
·
(
u2α− 1 − a2α− 1

)
dx

≤ c−
ˆ
A

∣∣u− (u)A
∣∣∣∣u2α− 1 − a2α− 1

∣∣dx.(2.7)



THE HIGHER INTEGRABILITY OF WEAK SOLUTIONS OF POROUS MEDIUM SYSTEMS 9

In order to estimate the integrand from above we distinguish between two cases. In the
case |u| ≤ 1

2 |a|, we have

|a|α =
∣∣aα − uα + uα

∣∣ ≤ ∣∣aα − uα
∣∣+ 2−α|a|α

and hence |a|α ≤ 2α

2α−1 |u
α − aα|. In turn, this allows us to estimate∣∣u2α− 1 − a2α− 1

∣∣ ≤ 2|a|2α−1 ≤ c(α)|uα − aα|
2α−1
α ,

which by Lemma 2.2 (ii) implies

(2.8)
∣∣u− (u)A

∣∣∣∣u2α− 1 − a2α− 1
∣∣ ≤ c(α)

∣∣uα − (u)αA
∣∣ 1
α |uα − aα|

2α−1
α .

In the remaining case |a| < 2|u|, Lemma 2.2 (i) shows∣∣u− (u)A
∣∣∣∣u2α− 1 − a2α− 1

∣∣ ≤ c(α)
∣∣u− (u)A

∣∣(|u|2α−2 + |a|2α−2
)
|u− a|

≤ c(α) |u|2α−2
∣∣u− (u)A

∣∣|u− a|
= c(α) |u|α−1

∣∣u− (u)A
∣∣|u|α−1|u− a|.

An application of Lemma 2.2 (i) therefore yields∣∣u− (u)A
∣∣∣∣u2α− 1 − a2α− 1

∣∣ ≤ c ∣∣uα − (u)αA
∣∣∣∣uα − aα

∣∣.(2.9)

Combining (2.8) and (2.9), we infer that in any case the estimate∣∣u− (u)A
∣∣∣∣u2α− 1 − a2α− 1

∣∣
≤ c |uα − (u)αA

∣∣ 1
α
∣∣uα − aα

∣∣ 2α−1
α + c

∣∣uα − (u)αA
∣∣∣∣uα − aα

∣∣
holds true for a constant c = c(α). We insert this into (2.7) and apply Young’s inequality
twice. This leads to

−
ˆ
A

∣∣uα − (u)αA
∣∣2dx ≤ 1

2 −
ˆ
A

∣∣uα − (u)αA
∣∣2dx+ c−

ˆ
A

∣∣uα − aα
∣∣2dx.

Here we re-absorb the term 1
2
−́
A
|uα − (u)αA|2dx into the left-hand side and obtain the

asserted inequality. �

Finally, we ensure that the mean value is also a quasi-minimizer of a 7→ −́
A
b[u, a]dx.

Lemma 2.7. There exists a universal constant c = c(m) such that for any bounded domain
A ⊂ Rn, any non-negative u ∈ Lm+1(A,RN ), and any a ∈ RN there holds

−
ˆ
A

b
[
u, (u)A

]
dx ≤ c−

ˆ
A

b[u, a]dx.

Proof. Due to Lemmas 2.3 (i) and 2.6 we obtain

−
ˆ
A

b
[
u, (u)A

]
dx ≤ c −

ˆ
A

∣∣um+1
2 − (u)

m+1
2

A

∣∣2dx

≤ c −
ˆ
A

∣∣um+1
2 − a

m+1
2

∣∣2dx ≤ c−
ˆ
A

b[u, a]dx.

This proves the asserted inequality. �

3. ENERGY BOUNDS

In this section we derive an energy inequality and a gluing lemma which follow from
the weak formulation (1.9) of the differential equation by testing with suitable testing func-
tions. Later on, they will be used in order to prove Sobolev-Poincaré and reverse Hölder
type inequalities.



10 V. BÖGELEIN, F. DUZAAR, R. KORTE, AND C. SCHEVEN

Lemma 3.1. Let m ≥ 1 and u be a weak solution to (1.1) in ΩT in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, there exists a constant c = c(m, ν, L) such that on any cylinderQ(θ)

% (zo) b ΩT with
0 < % ≤ 1 and θ > 0, and for any r ∈ [%/2, %) and any a ∈ RN the following energy
estimate

sup
t∈Λ

(θ)
r (to)

−
ˆ
Br(xo)

θm−1 b
[
um(·, t),am

]
%
m+1
m

dx+−−
¨
Q

(θ)
r (zo)

∣∣Dum
∣∣2dxdt

≤ c−−
¨
Q

(θ)
% (zo)

[∣∣um − am
∣∣2

(%− r)2
+ θm−1 b

[
um,am

]
%
m+1
m − rm+1

m

]
dxdt+ c−−

¨
Q

(θ)
% (zo)

|F |2dxdt,

holds true, where b has been defined in (2.3).

Proof. For v ∈ L1(ΩT ,RN ), we define the following mollification in time

JvKh(x, t) := 1
h

ˆ t

0

e
s−t
h v(x, s) ds.

From the weak form (1.9) of the differential equation we deduce the mollified version
(without loss of generality we may assume that u ∈ C0([0, T );L2

loc(Ω,RN )))¨
ΩT

[
∂tJuKh · ϕ+ JA(x, t, u,Dum)Kh ·Dϕ

]
dxdt

= −
¨

ΩT

JF Kh ·Dϕdxdt+ 1
h

ˆ
Ω

u(0) ·
ˆ T

0

e−
s
hϕdsdx,(3.1)

for any ϕ ∈ L2(0, T ;W 1,2
0 (Ω,RN )). Let η ∈ C1

0

(
B%(xo), [0, 1]

)
be the standard cut off

function with η ≡ 1 in Br(xo) and |Dη| ≤ 2
%−r and ζ ∈ W 1,∞(Λ(θ)

% (to), [0, 1]
)

defined
by

ζ(t) :=

 1, for t ≥ to − θ1−mr
m+1
m ,

(t−to)θm−1+%
m+1
m

%
m+1
m −r

m+1
m

, for t ∈
(
to − θ1−m%

m+1
m , to − θ1−mr

m+1
m

)
.

Furthermore, for given ε > 0 and t1 ∈ Λ
(θ)
r (to) we define the cut-off function ψε ∈

W 1,∞(Λ(θ)
% (to), [0, 1]

)
by

ψε(t) :=


1, for t ∈

(
to − θ1−m%

m+1
m , t1

]
,

1− 1
ε (t− t1), for t ∈ (t1, t1 + ε),

0, for t ∈ [t1 + ε, to).

We choose
ϕ(x, t) = η2(x)ζ(t)ψε(t)

(
um(x, t)− am

)
as testing function in the mollified version (3.1) of the differential equation. For the integral
containing the time derivative we compute¨

Q
(θ)
% (zo)

∂tJuKh · ϕdxdt =

¨
Q

(θ)
% (zo)

η2ζψε∂tJuKh ·
(
JuKmh − am

)
dxdt

+

¨
Q

(θ)
% (zo)

η2ζψε∂tJuKh ·
(
um − JuKmh

)
dxdt

≥
¨
Q

(θ)
% (zo)

η2ζψε∂t

(
1

m+1

∣∣JuKh∣∣m+1 − am · JuKh
)

dxdt

=

¨
Q

(θ)
% (zo)

η2ζψε∂t
(
b
[
JuKmh ,a

m
])

dxdt
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= −
¨
Q

(θ)
% (zo)

η2
(
ζψ′ε + ψεζ

′)b[JuKmh ,a
m
]
dxdt,

where we also used the identity ∂tJuKh = − 1
h (JuKh − u), cf. [24, Chapter 2]. Since

JuKh → u in Lm+1
loc (ΩT ) we may pass to the limit h ↓ 0 in the integral on the right-hand

side and therefore find that

lim inf
h↓0

¨
Q

(θ)
% (zo)

∂tJuKh · ϕdxdt

≥ −
¨
Q

(θ)
% (zo)

η2
(
ζψ′ε + ψεζ

′)b[um,am]dxdt =: Iε + IIε.

At this point, we pass to the limit ε ↓ 0 and obtain for the first term

lim
ε↓0

Iε =

ˆ
B%(xo)

η2b
[
um(·, t1),am

]
dx,

for any t1 ∈ Λ
(θ)
r (to), whereas the term IIε can be estimated in the following way (observe

that the boundary term is non-negative)

|IIε| ≤
¨
Q

(θ)
% (zo)

ζ ′b
[
um,am

]
dxdt ≤

¨
Q

(θ)
% (zo)

θm−1 b
[
um,am

]
%
m+1
m − rm+1

m

dxdt.

Next, we consider the diffusion term in (3.1). After passing to the limit h ↓ 0, we use the
ellipticity and growth assumption (1.2), and later on Young’s inequality. In this way, we
obtain¨

Q
(θ)
% (zo)

A(x, t, u,Dum) ·Dϕdxdt

=

¨
Q

(θ)
% (zo)

A(x, t, u,Dum) ·
[
η2ζψεDum + 2ηζψε(u

m − am)⊗Dη
]
dxdt

≥ ν
¨
Q

(θ)
% (zo)

η2ζψε
∣∣Dum

∣∣2dxdt− 2L

¨
Q

(θ)
% (zo)

ηζψε|Dη|
∣∣um − am

∣∣∣∣Dum
∣∣dxdt

≥ ν
2

¨
Q

(θ)
% (zo)

η2ζψε
∣∣Dum

∣∣2dxdt− c
¨
Q

(θ)
% (zo)

ζψε|Dη|2
∣∣um−am∣∣2dxdt

≥ ν
2

¨
Q

(θ)
% (zo)

η2ζψε
∣∣Dum

∣∣2dxdt− c
¨
Q

(θ)
% (zo)

∣∣um − am
∣∣2

(%− r)2
dxdt,

for a constant c = c(m, ν, L). Finally, we consider the right-hand side integrals in (3.1).
The second integral disappears in the limit h ↓ 0, since ϕ(0) = 0. In the integral containing
the inhomogeneity F we pass to the limit h ↓ 0 and subsequently apply Hölder’s inequality.
In this way, we obtain¨

Q
(θ)
% (zo)

F ·Dϕdxdt

=

¨
Q

(θ)
% (zo)

[
η2ζψεF ·Dum + 2ηζψεF · (um − am)⊗Dη

]
dxdt

≤ ν
4

¨
Q

(θ)
% (zo)

[
η2ζψε

∣∣Dum
∣∣2 +

∣∣um − am
∣∣2

(%− r)2

]
dxdt+ c

¨
Q

(θ)
% (zo)

|F |2dxdt.

We combine these estimates and then pass to the limit ε ↓ 0. This leads to
ˆ
Br(xo)

b
[
um(·, t1),am

]
dx+ ν

4

ˆ t1

to−θ1−mr
m+1
m

ˆ
B%(xo)

∣∣Dum
∣∣2dxdt
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≤ c
¨
Q

(θ)
% (zo)

[∣∣um − am
∣∣2

(%− r)2
+ θm−1 b

[
um,am

]
%
m+1
m − rm+1

m

]
dxdt+ c

¨
Q

(θ)
% (zo)

|F |2dxdt

for any t1 ∈ Λ
(θ)
r (to), with a constant c = c(m, ν, L). In the preceding inequality we take

in the first term on the left-hand side the supremum over t1 ∈ Λ
(θ)
% (to), and then pass to

the limit t1 ↑ to + θ1−mr
m+1
m . Finally, we take means on both sides. This procedure leads

to the claimed inequality. �

The following lemma serves to compare the slice-wise mean values at different times.
This is necessary since Poincaré’s and Sobolev’s inequality can only be applied slice-wise.
Such a result, which connects means on different time slices, is termed gluing Lemma.

Lemma 3.2. Let m ≥ 1 and u be a weak solution to (1.1) in ΩT in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, for any cylinder Q(θ)

% (zo) b ΩT with 0 < % ≤ 1 and θ > 0 there exists %̂ ∈ [%2 , %]

such that for all t1, t2 ∈ Λ
(θ)
% (to) there holds

∣∣(u)xo;%̂(t2)− (u)xo;%̂(t1)
∣∣ ≤ c %

1
m

θm−1
−−
¨
Q

(θ)
% (zo)

[∣∣Dum
∣∣+ |F |

]
dxdt,

for a constant c = c(L).

Proof. Let t1, t2 ∈ Λ
(θ)
% (to) with t1 < t2 and assume that r ∈ [%2 , %]. For δ > 0 and

0 < ε� 1, we define ξε ∈W 1,∞
0 (t1 − ε, t2 + ε) by

ξε(t) :=



0, for to − θ1−m%
m+1
m ≤ t ≤ t1 − ε,

t−t1+ε
ε , for t1 − ε < t < t1,
1, for t1 ≤ t ≤ t2,

t2+ε−t
ε , for t2 < t < t2 + ε,
0, for t2 + ε ≤ t ≤ to,

and a radial function Ψδ ∈W 1,∞
0 (Br+δ(xo)) by Ψδ(x) := ψδ(|x− xo|), where

ψδ(s) :=


1, for 0 ≤ s ≤ r,

r+δ−s
δ , for r < s < r + δ,
0, for r + δ ≤ s ≤ %,

for s ∈ [0, %]. For fixed i ∈ {1, . . . , N} we choose ϕε,δ = ξεΨδei as testing function in
the weak formulation (1.9), where ei denotes the i-th canonical basis vector in RN . In the
limit ε, δ ↓ 0 we obtainˆ

Br(xo)

[
u(·, t2)− u(·, t1)

]
· ei dx

=

ˆ t2

t1

ˆ
∂Br(xo)

[
A(x, t, u,Dum) + F

]
· ei ⊗

x− xo
|x− xo|

dHn−1(x)dt.

We multiply the preceding inequality by ei and sum over i = 1, . . . , N . This yieldsˆ
Br(xo)

[
u(·, t2)− u(·, t1)

]
dx

=

ˆ t2

t1

ˆ
∂Br(xo)

[
A(x, t, u,Dum) + F

] x− xo
|x− xo|

dHn−1(x)dt.
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Here, we use the growth condition (1.2)2 and immediately get for any t1, t2 ∈ Λ
(θ)
% (to)

and any r ∈ [%2 , %] that there holds∣∣∣∣ˆ
Br(xo)

[
u(·, t2)− u(·, t1)

]
dx

∣∣∣∣ ≤ ˆ t2

t1

ˆ
∂Br(xo)

[
L
∣∣Dum

∣∣+ |F |
]

dHn−1dt.

Sinceˆ t2

t1

ˆ
B%(xo)

[
L
∣∣Dum

∣∣+ |F |
]
dxdt =

ˆ %

0

ˆ t2

t1

ˆ
∂Br(xo)

[
L
∣∣Dum

∣∣+ |F |
]
dHn−1dtdr

≥
ˆ %

%/2

ˆ t2

t1

ˆ
∂Br(xo)

[
L
∣∣Dum

∣∣+ |F |
]
dHn−1dtdr,

there exists a radius %̂ ∈ [%2 , %) withˆ t2

t1

ˆ
∂B%̂(xo)

[
L
∣∣Dum

∣∣+ |F |
]
dHn−1dt ≤ 2

%

ˆ t2

t1

ˆ
B%(xo)

[
L
∣∣Dum

∣∣+ |F |
]
dxdt.

Therefore, we choose in the above inequality r = %̂ and then take means on both sides of
the resulting inequality. This implies∣∣(u)xo;%̂(t2)− (u)xo;%̂(t1)

∣∣ ≤ c

%

ˆ
Λ

(θ)
% (to)

−
ˆ
B%(xo)

[∣∣Dum
∣∣+ |F |

]
dxdt

=
c %

1
m

θm−1
−−
¨
Q

(θ)
% (zo)

[∣∣Dum
∣∣+ |F |

]
dxdt

for any t1, t2 ∈ Λ
(θ)
% (to) and with a constant c = c(L). �

4. PARABOLIC SOBOLEV-POINCARÉ TYPE INEQUALITIES

Throughout this section we consider so-called sub-intrinsic cylinders. These cylinders
are characterized as follows: On the scaled cylinder Q(θ)

% (zo) b ΩT with 0 < % ≤ 1 and
θ > 0 the following coupling between the mean of |u|2m/%2 on Q(θ)

% (zo) and θ holds true:

(4.1) −−
¨
Q

(θ)
% (zo)

|u|2m

%2
dxdt ≤ 2d+2θ2m.

The following Lemma is the first step towards a Poincaré type inequality for weak
solutions to the porous medium system. This is necessary because the standard Poincaré
inequality in Rn × R cannot be applied directly, since weak solutions u a priori do not
possess the necessary regularity with respect to time; note that we only assume for the
spatial derivative Dum ∈ L2

loc

(
ΩT ,RNn

)
, while no regularity assumption with respect

to time is incorporated in the definition of weak solutions. Nevertheless, we are able to
prove some sort of Poincaré inequality. This is achieved by considering the space and time
direction separately. In x-direction we can apply the Poincaré inequality on Rn, while in
t-direction the needed regularity is gained from the gluing lemma.

Lemma 4.1. Let m ≥ 1 and u be a weak solution to (1.1) in ΩT in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, on any cylinder Q(θ)

% (zo) b ΩT satisfying the sub-intrinsic coupling (4.1) for some
0 < % ≤ 1 and some θ > 0, the inequality

−−
¨
Q

(θ)
% (zo)

∣∣um − (um)
(θ)
zo;%

∣∣2
%2

dxdt

≤ c−−
¨
Q

(θ)
% (zo)

∣∣um − (um)zo;%(t)
∣∣2

%2
dxdt+ c

[
−−
¨
Q

(θ)
% (zo)

[∣∣Dum
∣∣+ |F |

]
dxdt

]2

(4.2)

holds true with a universal constant c = c(n,m,L).
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Proof. In the following we shall again omit for simplification the reference point zo in
our notation. Moreover, we let %̂ ∈ [%2 , %] be the radius from Lemma 3.2. By adding and
subtracting the slice-wise means (u)m%̂ (t) as defined in (2.2), we obtain the inequality

−−
¨
Q

(θ)
%

∣∣um − (um)
(θ)
%

∣∣2
%2

dxdt ≤ 3

[
−−
¨
Q

(θ)
%

∣∣um − (u)m%̂ (t)
∣∣2

%2
dxdt

+
1

%2
−
ˆ

Λ
(θ)
%

∣∣∣∣−ˆ
Λ

(θ)
%

[
(u)m%̂ (t)− (u)m%̂ (τ)

]
dτ

∣∣∣∣2dt
+

1

%2

∣∣∣∣−ˆ
Λ

(θ)
%

(u)m%̂ (τ)dτ − (um)(θ)
%

∣∣∣∣2
]

=: 3
[
I + II + III

]
,(4.3)

with the obvious meaning of I – III. In the following, we treat the terms of the right side
in order. We start with the term I. Using the fact that %̂ ∈ [%2 , %], we can first replace the
slice-wise means (u)m%̂ (t) by (u)m% (t) with the help of Lemma 2.5, and afterwards apply
Lemma 2.6, to obtain

I ≤ c−−
¨
Q

(θ)
%

∣∣um − (u)m% (t)
∣∣2

%2
dxdt ≤ c−−

¨
Q

(θ)
%

∣∣um − (um)%(t)
∣∣2

%2
dxdt,

where c = c(m,n). Since III ≤ I, it remains to treat the term II. In turn, we apply
Lemma 2.2 (i) and Lemma 3.2 to infer that for any t, τ ∈ Λ

(θ)
% there holds∣∣(u)m%̂ (t)− (u)m%̂ (τ)

∣∣
≤ c
[
|(u)%̂(t)|m−1 + |(u)%̂(τ)|m−1

]∣∣(u)%̂(t)− (u)%̂(τ)
∣∣

≤ c %
1
m

θm−1
−−
¨
Q

(θ)
%

[∣∣Dum
∣∣+ |F |

]
dxdt

[
|(u)%̂(t)|m−1 + |(u)%̂(τ)|m−1

]
,

where c = c(m,L). Taking squares on both sides, integrating with respect to t and τ over
Λ

(θ)
% and applying Hölder’s inequality and the sub-intrinsic coupling (4.1), we infer

II ≤ c

%
2(m−1)
m θ2(m−1)

[
−−
¨
Q

(θ)
%

|u|2mdxdt

]m−1
m
[
−−
¨
Q

(θ)
%

[∣∣Dum
∣∣+ |F |

]
dxdt

]2

≤ c
[
−−
¨
Q

(θ)
%

[∣∣Dum
∣∣+ |F |

]
dxdt

]2

,

for a constant c depending only on n,m, and L. At this point, we use the estimates for I –
III in (4.3) and obtain the claimed inequality. �

With the help of Lemma 4.1 we can now easily deduce a Poincaré type inequality. Later
on, Lemma 4.1 will also be the starting point for the proof of a Sobolev-Poincaré type
inequality; see Lemma 4.3.

Lemma 4.2. Let m ≥ 1 and u be a weak solution to (1.1) in ΩT in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, on any cylinder Q(θ)

% (zo) b ΩT satisfying the sub-intrinsic coupling (4.1) for some
0 < % ≤ 1 and some θ > 0, the following Poincaré type inequality

−−
¨
Q

(θ)
% (zo)

∣∣um − (um)
(θ)
zo;%

∣∣2
%2

dxdt ≤ c−−
¨
Q

(θ)
% (zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt,

holds true with a universal constant c = c(n,m,L).
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Proof. In the following we shall again omit for simplification the reference point zo in our
notation. We will take estimate (4.2) from Lemma 4.1 as starting point for our considera-
tions. To the first integral on the right-hand side we apply Poincaré’s inequality slice wise
for a.e. t ∈ Λ

(θ)
% . In this way, we obtain

−−
¨
Q

(θ)
%

∣∣um − (um)%(t)
∣∣2

%2
dxdt ≤ c−−

¨
Q

(θ)
%

∣∣Dum
∣∣2dxdt,

where c = c(n,m). Applying Hölder’s inequality to the second integral on the right-hand
side of (4.2) yields the claimed Poincaré type inequality on sub-intrinsic cylinders. �

The next statement can be interpreted as some sort of Sobolev-Poincaré inequality for
the L2-deviation of um from its mean value on the sub-intrinsic cylinder Q(θ)

% (zo). Later
on, we shall use this inequality to estimate the right-hand side in the energy inequality from
Lemma 3.1. As usual, this leads to a reduction in the integration exponent of the energy
term of the right-hand side, i.e. the integral containing Dum. Similar to Lemma 4.2,
we take Lemma 4.1 as starting point in the proof. Then, the idea is to extract a part of the
integration exponent from the L2-oscillation integral by the sup-term (occurring in the left-
hand side of the energy estimate) and then to apply Sobolev’s inequality to the remainder.

Lemma 4.3. Let m ≥ 1 and u be a weak solution to (1.1) in ΩT in the sense of Def-
inition 1.1, where the vector-field A fulfills the growth and ellipticity assumptions (1.2).
Then, on any sub-cylinder Q(θ)

% (zo) b ΩT as in (4.1) for some 0 < % ≤ 1 and some θ > 0,
and for any given ε ∈ (0, 1] the following Sobolev-type inequality holds

−−
¨
Q

(θ)
% (zo)

∣∣um − (um)
(θ)
zo;%

∣∣2
%2

dxdt

≤ ε sup
t∈Λ

(θ)
% (to)

−
ˆ
B%(xo)

θm−1 b
[
um(·, t), (um)

(θ)
zo;%

]
%
m+1
m

dx

+
c

ε
2
n

[
−−
¨
Q

(θ)
% (zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ)
% (zo)

|F |2dxdt.

for a universal constant c = c(n,m,L) and q := n
d < 1.

Proof. In the following, we shall again omit the reference point zo in our notation. As
in the proof of Lemma 4.2 we take inequality (4.2) from Lemma 4.1 as starting point.
Moreover, we abbreviate (um)%(t) by (um)%. From the context, it is clear that (um)% is
to be interpreted as a function of t. To the first integral on the right-hand side we apply
the lower bound for the boundary term from Lemma 2.3 (ii) and Hölder’s inequality with
exponents m(n+2)

m−1 , n+2
d . In this way, we obtain

−−
¨
Q

(θ)
%

∣∣um − (um)%(t)
∣∣2

%2
dxdt

=
c

%2
−−
¨
Q

(θ)
%

∣∣um − (um)%
∣∣ 4
n+2
∣∣um − (um)%

∣∣ 2n
n+2 dxdt

≤ c

%2
−−
¨
Q

(θ)
%

[
|um| 1m + |(um)%|

1
m

] 2(m−1)
n+2

b
[
um, (um)%

] 2
n+2
∣∣um − (um)%

∣∣ 2n
n+2 dxdt

≤ c

%2

[
−−
¨
Q

(θ)
%

[
|um| 1m + |(um)%|

1
m

]2m
dxdt

] m−1
m(n+2)

·
[
−−
¨
Q

(θ)
%

b
[
um, (um)%

] 2
d
∣∣um − (um)%

∣∣ 2nd dxdt

] d
n+2
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≤ c

%2

[
−−
¨
Q

(θ)
%

|u|2mdxdt

] m−1
m(n+2)

[
−−
¨
Q

(θ)
%

b
[
um, (um)%

] 2
d
∣∣um − (um)%

∣∣ 2nd dxdt

] d
n+2

.

Now, we use the sub-intrinsic coupling (4.1), Hölder’s inequality with exponents d
2 , d

d−2

and for a.e. t ∈ Λ
(θ)
% Sobolev’s inequality slicewise (note that 2n

d ≥ 1, since n ≥ 2). This
yields

−−
¨
Q

(θ)
%

∣∣um − (um)%(t)
∣∣2

%2
dxdt

≤ c θ
2(m−1)
n+2

%
2d
n+2

[
−−
¨
Q

(θ)
%

b
[
um, (um)%

] 2
d
∣∣um − (um)%

∣∣ 2nd dxdt

] d
n+2

= c

[
−−
¨
Q

(θ)
%

[
θm−1 b

[
um, (um)%

]
%
m+1
m

] 2
d

∣∣um − (um)%
∣∣ 2nd

%
2n
d

dxdt

] d
n+2

≤ c

[
−
ˆ

Λ
(θ)
%

[
−
ˆ
B%

θm−1 b
[
um, (um)%

]
%
m+1
m

dx

] 2
d
[
−
ˆ
B%

∣∣um − (um)%
∣∣ 2n
d−2

%
2n
d−2

dx

] d−2
d

dt

] d
n+2

≤ c sup
t∈Λ

(θ)
%

[
−
ˆ
B%

θm−1 b
[
um(·, t), (um)%(t)

]
%
m+1
m

dx

] 2
n+2

·

[
−
ˆ

Λ
(θ)
%

[
−
ˆ
B%

∣∣um − (um)%
∣∣ 2n
d−2

%
2n
d−2

dx

] d−2
d

dt

] d
n+2

≤ c sup
t∈Λ

(θ)
%

[
−
ˆ
B%

θm−1 b
[
um(·, t), (um)

(θ)
%

]
%
m+1
m

dx

] 2
n+2
[
−−
¨
Q

(θ)
%

∣∣Dum
∣∣ 2nd dxdt

] d
n+2

,

with a universal constant c = c(n,m). In the last line we have used Lemma 2.7 in order to
replace in the boundary term b the slice wise mean (um)%(t) by the mean (um)

(θ)
% . Insert-

ing this inequality into (4.2) and applying Young’s and Hölder’s inequality, this results for
any ε ∈ (0, 1] in

−−
¨
Q

(θ)
%

∣∣um − (um)
(θ)
%

∣∣2
%2

dxdt

≤ c sup
t∈Λ

(θ)
%

[
−
ˆ
B%

θm−1 b
[
um(·, t), (um)

(θ)
%

]
%
m+1
m

dx

] 2
n+2
[
−−
¨
Q

(θ)
%

∣∣Dum
∣∣ 2nd dxdt

] d
n+2

+ c

[
−−
¨
Q

(θ)
%

[∣∣Dum
∣∣+ |F |

]
dxdt

]2

≤ ε sup
t∈Λ

(θ)
%

−
ˆ
B%

θm−1 b
[
um(·, t), (um)

(θ)
%

]
%
m+1
m

dx+
c

ε
2
n

[
−−
¨
Q

(θ)
%

∣∣Dum
∣∣ 2nd dxdt

] d
n

+ c−−
¨
Q

(θ)
%

|F |2dxdt.

This completes the proof of the Sobolev-Poincaré type inequality. �

5. REVERSE HÖLDER INEQUALITY

As it is well known, the core of each higher-integrability result is a so-called reverse
Hölder inequality for the quantity in question, which in our case is the gradient Dum.
These reverse Hölder inequalities result in a certain way from the previously established
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Caccioppoli-type estimate and Sobolev-Poincaré-type inequalities. In principle, the right-
hand side integrals of the Caccioppoli inequality are estimated by applying the Sobolev-
Poincaré inequalities. However, the proof turns out to be more subtle than originally ex-
pected. The assumption that a sub-intrinsic coupling assumption must be imposed for the
cylinder Q(θ)

2% (zo) is obvious, since this was presupposed in Lemma 4.3. However, this is
not sufficient because the factor θm−1 in the energy estimate has to be converted into an
Lm+1-oscillation integral of u. This is done by a super-intrinsic coupling on the cylin-
der Q(θ)

% (zo); see the assumption (5.1)2. Both assumptions together, i.e. (5.1)1 and (5.1)2,
mean that the cylinder Q(θ)

2% (zo) is intrinsic in some sense. On such an intrinsic cylinder
the oscillations of u are small compared to the mean value of u. This case could be called
the non-degenerate case.

Proposition 5.1. Let m ≥ 1 and u be a weak solution to (1.1) in ΩT in the sense of
Definition 1.1, where the vector-field A fulfills the structural assumptions (1.2). Then, on
any cylinder Q(θ)

2% (zo) b ΩT with an intrinsic coupling of the form

(5.1) −−
¨
Q

(θ)
2% (zo)

|u|2m

(2%)2
dxdt ≤ θ2m ≤ −−

¨
Q

(θ)
% (zo)

|u|2m

%2
dxdt

for some 0 < % ≤ 1 and θ > 0, the following reverse Hölder type inequality holds true

−−
¨
Q

(θ)
% (zo)

∣∣Dum
∣∣2dxdt ≤ c

[
−−
¨
Q

(θ)
2% (zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ)
2% (zo)

|F |2dxdt,

for some universal constant c = c(n,m, ν, L) and where q := n
d < 1.

Proof. Once again, we omit the reference to the center zo in the notation. We consider
radii r, s with % ≤ r < s ≤ 2%. From the energy estimate in Lemma 3.1, we obtain

sup
t∈Λ

(θ)
r

−
ˆ
Br

θm−1 b
[
um(·, t), (um)

(θ)
r

]
r
m+1
m

dx+−−
¨
Q

(θ)
r

∣∣Dum
∣∣2dxdt

≤ c−−
¨
Q

(θ)
s

∣∣um − (um)
(θ)
r

∣∣2
(s− r)2

dxdt+ c−−
¨
Q

(θ)
s

θm−1 b
[
um, (um)

(θ)
r

]
s
m+1
m − rm+1

m

dxdt

+ c−−
¨
Q

(θ)
s

|F |2dxdt

=: I + II + III,(5.2)

with the obvious meaning of I–III. We abbreviate

(5.3) Rr,s :=
s
m+1
2m

s
m+1
2m − rm+1

2m

,

and observe that s
m+1
2m − rm+1

2m ≤ (s − r)m+1
2m . This together with Lemma 2.5 yields for

the first term

I ≤ cR
4m
m+1
r,s −−
¨
Q

(θ)
s

∣∣um − (um)
(θ)
s

∣∣2
s2

dxdt.(5.4)

For the second term we use the intrinsic coupling (5.1)2, Lemma 2.3 (ii), (iii), Hölder’s
inequality and Lemma 2.5 to infer that

II ≤ cR2
r,s−−
¨
Q

(θ)
s

θm−1 b
[
um, (um)

(θ)
r

]
s
m+1
m

dxdt

≤ cR2
r,s

[
−−
¨
Q

(θ)
s

∣∣um − (um)
(θ)
r

∣∣2
s2

dxdt

]m−1
2m

−−
¨
Q

(θ)
s

b
[
um, (um)

(θ)
r

]
s
m+1
m

dxdt
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+ cR2
r,s

∣∣(um)(θ)
r

∣∣m−1
m −−
¨
Q

(θ)
s

b
[
um, (um)

(θ)
r

]
s2

dxdt

≤ cR2
r,s−−
¨
Q

(θ)
s

∣∣um − (um)
(θ)
r

∣∣2
s2

dxdt

≤ cR2
r,s−−
¨
Q

(θ)
s

∣∣um − (um)
(θ)
s

∣∣2
s2

dxdt.

Inserting the estimates for I and II above and applying Lemma 4.3, we find for any ε ∈
(0, 1] that

sup
t∈Λ

(θ)
r

−
ˆ
Br

θm−1 b
[
um(·, t), (um)

(θ)
r

]
r
m+1
m

dx+−−
¨
Q

(θ)
r

∣∣Dum
∣∣2dxdt

≤ cR
4m
m+1
r,s

[
ε sup
t∈Λ

(θ)
s

−
ˆ
Bs

θm−1 b
[
um(·, t), (um)

(θ)
s

]
s
m+1
m

dx

+
1

ε
2
n

[
−−
¨
Q

(θ)
s

∣∣Dum
∣∣2qdxdt

] 1
q

+−−
¨
Q

(θ)
s

|F |2dxdt

]
.

With the choice ε = 1

2cR
4m
m+1
r,s

, this yields

sup
t∈Λ

(θ)
r

−
ˆ
Br

θm−1 b
[
um(·, t), (um)

(θ)
r

]
r
m+1
m

dx+−−
¨
Q

(θ)
r

∣∣Dum
∣∣2dxdt

≤ 1
2 sup
t∈Λ

(θ)
s

−
ˆ
Bs

θm−1 b
[
um(·, t), (um)

(θ)
s

]
s
m+1
m

dx

+ cR
4m(n+2)
n(m+1)
r,s

[
−−
¨
Q

(θ)
2%

∣∣Dum
∣∣2qdxdt

] 1
q

+ cR
4m
m+1
r,s −−
¨
Q

(θ)
2%

|F |2dxdt,

for a constant c = c(n,m, ν, L). To re-absorb the term 1
2 [. . . ] from the right-hand side into

the left-hand side, we apply the Iteration Lemma 2.1. This leads to the claimed reverse
Hölder type inequality, i.e. to

sup
t∈Λ

(θ)
%

−
ˆ
B%

θm−1 b
[
um(·, t), (um)

(θ)
%

]
%
m+1
m

dx+−−
¨
Q

(θ)
%

∣∣Dum
∣∣2dxdt

≤ c
[
−−
¨
Q

(θ)
2%

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ)
2%

|F |2dxdt.

This finishes the proof of Proposition 5.1. �

The next lemma deals with the degenerate case which is characterized by the fact that
u is small compared to the oscillations of u. In terms of integral quantities this means
that on the one hand Q(θ)

2% (zo) is sub-intrinsic, and on the other hand the scaling parameter

θ2m is smaller than the mean of |Dum|2 on Q(θ)
% (zo). As in the non-degenerate case,

we need the assumption (5.5)1, i.e. that Q(θ)
2% (zo) is sub-intrinsic, as a prerequisite for the

application of Lemma 4.3, which serves to deal with some of the right-hand side integrals
of the Caccioppoli type estimate. However, during this procedure, a term of the order of
magnitude δθ2m appears, and it is precisely there where we need assumption (5.5)2, which
converts this term into the oscillation term that can be re-absorbed into the left-hand side
of Caccioppoli’s inequality.
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Proposition 5.2. Let m ≥ 1 and u be a weak solution to (1.1) in ΩT in the sense of
Definition 1.1, where the vector-field A fulfills the structure assumptions (1.2). Then, on
any cylinder Q(θ)

2% (zo) b ΩT satisfying a coupling of the form

(5.5) −−
¨
Q

(θ)
2% (zo)

|u|2m

(2%)2
dxdt ≤ θ2m ≤ K −−

¨
Q

(θ)
% (zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt

for some scaling parameter θ > 0 and some constant K ≥ 1, the following reverse Hölder
type inequality holds true

−−
¨
Q

(θ)
% (zo)

∣∣Dum
∣∣2dxdt ≤ c

[
−−
¨
Q

(θ)
2% (zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ)
2% (zo)

|F |2dxdt,

with a constant c = c(n,m, ν, L)K
(n+2)(m−1)
n(m+1) and q := n

d < 1.

Proof. We omit in our notation the reference to the center zo. Furthermore, we consider
radii r, s with % ≤ r < s ≤ 2%. As in the proof of Proposition 5.1 we start from inequality
(5.2) which follows from the energy estimate in Lemma 3.1 and we recall the abbreviation
(5.3). The estimate (5.4) for I is the same as in the proof of Proposition 5.1. This is clear,
since we did not use hypothesis (5.1)2 for their proof. Therefore, it remains to consider the
term II. Applying Young’s inequality, Lemma 2.3 (iii), and Lemma 2.5, we infer for any
δ ∈ (0, 1] that

II ≤ R2
r,s−−
¨
Q

(θ)
s

θm−1 b
[
um, (um)

(θ)
r

]
s
m+1
m

dxdt

≤ δθ2m +
R

4m
m+1
r,s

δ
m−1
m+1

−−
¨
Q

(θ)
s

b
[
um, (um)

(θ)
r

] 2m
m+1

s2
dxdt

≤ δθ2m +
cR

4m
m+1
r,s

δ
m−1
m+1

−−
¨
Q

(θ)
s

∣∣um − (um)
(θ)
r

∣∣2
s2

dxdt

≤ δθ2m +
cR

4m
m+1
r,s

δ
m−1
m+1

−−
¨
Q

(θ)
s

∣∣um − (um)
(θ)
s

∣∣2
s2

dxdt.

From (5.4), the preceding estimate and Lemma 4.3 we obtain for δ, ε ∈ (0, 1] that

I + II ≤ δθ2m +
cR

4m
m+1
r,s

δ
m−1
m+1

[
ε sup
t∈Λ

(θ)
s

−
ˆ
Bs

θm−1 b
[
um(·, t), (um)

(θ)
s

]
s
m+1
m

dx

+
1

ε
2
n

[
−−
¨
Q

(θ)
s

∣∣Dum
∣∣2qdxdt

] 1
q

+−−
¨
Q

(θ)
s

|F |2dxdt

]
.

Moreover, from the coupling (5.5)2 we infer that

θ2m ≤ 2dK−−
¨
Q

(θ)
r

[
|Dum|2 + |F |2

]
dxdt.

We insert the estimates for I and II into (5.2) and choose δ = 2−(d+1)K−1. This allows
us to re-absorb the integral of |Dum|2 into the left-hand side. Proceeding in this way, we
obtain

sup
t∈Λ

(θ)
r

−
ˆ
Br

θm−1 b
[
um(·, t), (um)

(θ)
r

]
r
m+1
m

dx+−−
¨
Q

(θ)
r

∣∣Dum
∣∣2dxdt

≤ c εK
m−1
m+1R

4m
m+1
r,s sup

t∈Λ
(θ)
s

−
ˆ
Bs

θm−1 b
[
um(·, t), (um)

(θ)
s

]
s
m+1
m

dx
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+ cK
m−1
m+1R

4m
m+1
r,s

[
1

ε
2
n

[
−−
¨
Q

(θ)
s

∣∣Dum
∣∣2qdxdt

] 1
q

+−−
¨
Q

(θ)
s

[
|F |2dxdt

]
.

At this stage the choice ε = 1

2cK
m−1
m+1R

4m
m+1
r,s

yields

sup
t∈Λ

(θ)
r

−
ˆ
Br

θm−1 b
[
um(·, t), (um)

(θ)
r

]
r
m+1
m

dx+−−
¨
Q

(θ)
r

∣∣Dum
∣∣2dxdt

≤ 1
2 sup
t∈Λ

(θ)
s

−
ˆ
Bs

θm−1 b
[
um(·, t), (um)

(θ)
s

]
s
m+1
m

dx

+ cK
(m−1)(n+2)

(m+1)n R
4m(n+2)
(m+1)n
r,s

[[
−−
¨
Q

(θ)
2%

∣∣Dum
∣∣2qdxdt

] 1
q

+−−
¨
Q

(θ)
2%

|F |2dxdt

]
.

Now, we apply the Iteration Lemma 2.1 to re-absorb the sup-term from the right-hand side
into the left. This leads us to

sup
t∈Λ

(θ)
%

−
ˆ
B%

θm−1 b
[
um(·, t), (um)

(θ)
%

]
%
m+1
m

dx+−−
¨
Q

(θ)
%

∣∣Dum
∣∣2dxdt

≤ c
[
−−
¨
Q

(θ)
2%

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ)
2%

|F |2dxdt,

where the constant c is of the form c(n,m, ν, L)K
(m−1)(n+2)

(m+1)n . This finishes the proof of
the Proposition. �

6. PROOF OF THE HIGHER INTEGRABILITY

As we have seen in the last chapter, one can establish reverse Hölder inequalities in
both the degenerate and the non-degenerate regime. It should be recalled, however, that
the cylinders on which these reverse Hölder inequalities are valid, are essentially scaled
by the solution u. More precisely, the relationship between −−̃

Q
(θ)
% (zo)

|u|2m
%2 dxdt, the scal-

ing parameter θ and −−̃
Q

(θ)
% (zo)

|Dum|2dxdt plays the decisive role. Therefore, the main
objective in the proof of the higher integrability theorem is to find parabolic cylinders cov-
ering the super-level set of the spatial gradient of um in the sense of a Vitali-type covering,
such that on each cylinder either a coupling in the form of (5.1) or in the form of (5.5)
holds true. These cylinders will be constructed by some sort of stopping time argument,
combined with a rising sun type construction. This very nice idea, which has already been
explained in the introduction, goes back to [16]. Once the covering has been constructed by
means of such cylinders, the application of the reverse Hölder inequalities leads to a quan-
titative estimate of |Dum|2 on the super-level sets in terms of |Dum|2q , for q = n

d < 1.
The decay in terms of the super-level sets can then be converted into the higher integrability
of Dum.

Before we start the construction of the system of non-uniform cylinders reflecting the
character of the porous medium system as explained above, we fix the setup. We consider
a fixed cylinder Q8R(yo, τo) ≡ B8R(yo) ×

(
τo − (8R)

m+1
m , τo + (8R)

m+1
m

)
b ΩT with

R ∈ (0, 1]. In the following, we abbreviate Q% := Q%(yo, τo) for % ∈ (0, 8R] and define

λo := 1 +

[
−−
¨
Q4R

[
|u|2m

(4R)2
+
∣∣Dum

∣∣2 + |F |2
]
dxdt

] 1
m+1

.

At this point, we recall the notation for space-time cylinders Q(θ)
% (zo) from (2.1), which

will be used in the following construction. Moreover, we observe that Q(θ)
% (zo) ⊂ Q4R

whenever zo ∈ Q2R, % ∈ (0, R] and θ ≥ 1.
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6.1. Construction of a non-uniform system of cylinders. The following construction of
a non-uniform system of cylinders is similar to the one in [16, 27]. Let zo ∈ Q2R. For a
radius % ∈ (0, R] we define

θ̃% ≡ θ̃zo;% := inf

{
θ ∈ [λo,∞) :

1

|Q%|

¨
Q

(θ)
% (zo)

|u|2m

%2
dxdt ≤ θm+1

}
.

Note that θ̃% is well defined, since the set of those θ ≥ λo for which the integral condition
is satisfied, is non-empty. In fact, in the limit θ → ∞ the integral on the left-hand side
converges to zero, while the right-hand side blows up with speed θm+1. Note also that the
condition in the infimum above can be rewritten as

−−
¨
Q

(θ)
% (zo)

|u|2m

%2
dxdt ≤ θ2m.

Therefore, we either have that

θ̃% = λo and −−
¨
Q

(θ̃%)
% (zo)

|u|2m

%2
dxdt ≤ θ̃2m

% = λ2m
o ,

or that

(6.1) θ̃% > λo and −−
¨
Q

(θ̃%)
% (zo)

|u|2m

%2
dxdt = θ̃2m

%

holds true. In any case we have θ̃R ≥ λo ≥ 1. On the other hand, if λo < θ̃R then (again

by definition and the fact that Q(θ̃R)
R (zo) ⊂ Q4R), we have

θ̃m+1
R =

1

|QR|

¨
Q

(θ̃R)

R (zo)

|u|2m

R2
dxdt ≤ 42

|QR|

¨
Q4R

|u|2m

(4R)2
dxdt ≤ 4d+2λm+1

o .

Therefore, we end up with the bound

θ̃R ≤ 4
d+2
m+1λo.(6.2)

Next, we establish that the mapping (0, R] 3 % 7→ θ̃% is continuous. To this end, consider
% ∈ (0, R] and ε > 0, and define θ+ := θ̃% + ε. Then, there exists δ = δ(ε, %) > 0 such
that

1

|Qr|

¨
Q

(θ+)
r (zo)

|u|2m

r2
dxdt < θm+1

+

for all radii r ∈ (0, R] with |r−%| < δ. Indeed, the preceding strict inequality holds by the
very definition of θ̃% with r = %, since the integral on the left-hand side decreases with the
replacement of θ̃% by θ+ (note that the domain of integration shrinks), while the right-hand
side strictly increases. The claim now follows, since both, i.e. the integral on the right and
the left hand side, are continuous with respect to the radius. With other words, we have
shown that θ̃r ≤ θ+ = θ̃% + ε for r sufficiently close to %. Therefore, it remains to prove
θ̃r ≥ θ− := θ̃% − ε for r close to %. This is clear from the construction if θ− ≤ λo, since
θ̃r ≥ λo for any r. In the other case, after diminishing δ = δ(ε, %) > 0 if necessary, we get

(6.3)
1

|Qr|

¨
Q

(θ−)
r (zo)

|u|2m

r2
dxdt > θm+1

−

for all r ∈ (0, R] with |r− %| < δ. For r = %, this is a direct consequence of the definition
of θ̃%, since otherwise, we would have θ̃% ≤ θ−, which is a contradiction. For r with
|r − %| < δ the claim follows from the continuity of both sides as a function of r. By
definition of θ̃r, the preceding inequality implies θ̃r ≥ θ− = θ̃% − ε, as claimed. This
completes the proof of the continuity of (0, R] 3 % 7→ θ̃%.
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Unfortunately, the mapping (0, R] 3 % → θ̃% might not be monotone. For this reason
we modify θ̃% in a way, such that the modification – denoted by θ% – becomes monotone.
The precise construction is as follows: We define

θ% ≡ θzo;% := max
r∈[%,R]

θ̃zo;r .

This construction can be viewed as a rising sun construction, because on those intervals
(%, r̄) on which θ̃r < θ̃r̄, for r ∈ (%, r̄), one replaces θ̃r by θ̃r̄. Then, by construction the
mapping (0, R] 3 % 7→ θ% is continuous and monotonically decreasing; see Figure 1 for an
illustration of the construction.

θ
˜
ϱ,θϱ

λo

r

θr=θ
˜

r

ϱ

θϱ

θ
˜

ϱ

ϱ˜

θ
ϱ
~ = θ

˜

ϱ
~

R

θ
˜
ϱ

θϱ

FIGURE 1. Illustration of the rising sun construction

Moreover, the cylinders Q(θ%)
s (zo) are sub-intrinsic whenever % ≤ s. More specifically,

we have

−−
¨
Q

(θ%)
s (zo)

|u|2m

s2
dxdt ≤ θ2m

% for any 0 < % ≤ s ≤ R.(6.4)

In fact, the definition of θs and its monotonicity imply θ̃s ≤ θs ≤ θ%, so that Q(θ%)
s (zo) ⊂

Q
(θ̃s)
s (zo). Therefore, we have

−−
¨
Q

(θ%)
s (zo)

|u|2m

s2
dxdt ≤

(θ%
θ̃s

)m−1

−−
¨
Q

(θ̃s)
s (zo)

|u|2m

s2
dxdt

≤
(θ%
θ̃s

)m−1

θ̃2m
s = θm−1

% θ̃m+1
s ≤ θ2m

% .

We now define

(6.5) %̃ :=

{
R if θ% = λo,

min
{
s ∈ [%,R] : θs = θ̃s

}
if θ% > λo.
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In particular, we have θr = θ̃%̃ for any r ∈ [%, %̃]; see again Figure 1. Next, we claim that

θ% ≤
( s
%

) d+2
m+1

θs for any s ∈ (%,R].(6.6)

In the case that θ% = λo we know that also θs = λo, so that (6.6) trivially holds. Therefore,
it remains to consider the case θ% > λo. If s ∈ (%, %̃], then θ% = θs, and the claim (6.6)
follows again. Finally, if s ∈ (%̃, R], then the monotonicity of % 7→ θ%, (6.1) and (6.4)
imply

θ% = θ̃%̃ =

[
1

|Q%̃|

¨
Q

(θ%̃)

%̃
(zo)

|u|2m

%̃2
dxdt

] 1
m+1

≤
( s
%̃

) d+2
m+1

[
1

|Qs|

¨
Q

(θs)
s (zo)

|u|2m

s2
dxdt

] 1
m+1

≤
( s
%

) d+2
m+1

θs.

We now apply (6.6) with s = R. Since θR = θ̃R the estimate (6.2) for θ̃R yields

θ% ≤
(R
%

) d+2
m+1

θR ≤
(4R

%

) d+2
m+1

λo.(6.7)

In the following, we consider the system of concentric cylinders Q(θzo;%)
% (zo) with radii

% ∈ (0, R] and zo ∈ Q2R. Note that the cylinders are nested in the sense that

Q
(θzo;r)
r (zo) ⊂ Q

(θzo;s)
s (zo) whenever 0 < r < s ≤ R.

The inclusion holds true due to the monotonicity of the mapping % 7→ θzo;%. The disad-
vantage of this system of nested cylinders is, that in general the cylinders only fulfill a
sub-intrinsic coupling condition.

6.2. Covering property. Here, we will prove a Vitali type covering property for the cylin-
ders constructed in the last section. The precise result is the following

Lemma 6.1. There exists a constant ĉ = ĉ(n,m) ≥ 20 such that the following holds true:
Let F be any collection of cylinders Q(θz;r)

4r (z), where Q(θz;r)
r (z) is a cylinder of the form

constructed in Section 6.1 with radius r ∈ (0, Rĉ ). Then there exists a countable subfamily
G of disjoint cylinders in F such that

(6.8)
⋃
Q∈F

Q ⊂
⋃
Q∈G

Q̂,

where Q̂ denotes the ĉ
4 -times enlarged cylinder Q, i.e. if Q = Q

(θz;r)
4r (z), then Q̂ =

Q
(θz;r)
ĉr (z).

Proof. For j ∈ N we consider the sub-collection

Fj :=
{
Q

(θz;r)
4r (z) ∈ F : R

2j ĉ < r ≤ R
2j−1ĉ

}
and choose Gj ⊂ Fj as follows: We let G1 be any maximal disjoint collection of cylinders
in F1. Note that G1 is finite, since by (6.7) and the definition of F1 the Ln+1-measure of
each cylinder Q ∈ G1 is bounded from below. Now, assume that G1,G2, . . . ,Gk−1 have
already been selected for some integer k ≥ 2. Then, we choose Gk to be any maximal
disjoint subcollection of{

Q ∈ Fk : Q ∩Q∗ = ∅ for any Q∗ ∈
k−1⋃
j=1

Gj
}
.

Note again that also Gk is finite. Finally, we define

G :=

∞⋃
j=1

Gj .
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Then, G is a countable collection of disjoint cylinders and G ⊂ F . At this point it remains
to prove that for each Q ∈ F there exists a cylinder Q∗ ∈ G with Q ∩ Q∗ 6= ∅, and that
this implies Q ⊂ Q̂∗.

To this aim fix Q = Q
(θz;r)
4r (z) ∈ F . Then, there exists j ∈ N such that Q ∈ Fj .

By the maximality of Gj , there exists a cylinder Q∗ = Q
(θz∗;r∗ )
4r∗

(z∗) ∈
⋃j
i=1 Gi with

Q ∩ Q∗ 6= ∅. We know that r ≤ R
2j−1ĉ and r∗ > R

2j ĉ , so that r ≤ 2r∗. This ensures that
B4r(x) ⊂ B20r∗(x∗). In the following we shall prove

(6.9) θz∗;r∗ ≤ 64
d+2
m+1 θz;r .

By r̃∗ ∈ [r∗, R] we denote the radius from (6.5) associated to the cylinder Q(θz∗;r∗ )
r∗ (z∗).

Recall that either Q(θz∗;r∗ )
r̃∗

(z∗) is intrinsic or r̃∗ = R and θz∗;r∗ = λo. In the latter case
we have due to the definition of θz;r that

θz∗;r∗ = λo ≤ θz;r .

Therefore, we may assume that Q(θz∗;r∗ )
r̃∗

(z∗) is intrinsic, which means

θm+1
z∗;r∗ =

1

|Qr̃∗ |

¨
Q

(θz∗;r∗ )

r̃∗
(z∗)

|u|2m

r̃2
∗

dydτ.(6.10)

In the following, we distinguish between the cases r̃∗ ≤ R
η and r̃∗ > R

µ , where µ := 16.
In the latter case we exploit (6.10) and the definition of λo and θz;r to obtain

θm+1
z∗;r∗ ≤

(4R

r̃∗

)2 1

|Qr̃∗ |

¨
Q4R

|u|2m

(4R)2
dydτ ≤

(4R

r̃∗

)d+2

λm+1
o ≤ (4µ)d+2θm+1

z;r .

This shows that

θz∗;r∗ ≤ (4µ)
d+2
m+1 θz;r .

Therefore, it suffices to consider the case r̃∗ ≤ R
µ . Since r̃∗ ≥ r∗ and |x−x∗| < 4r+4r∗ ≤

12r∗, we know that B4r̃∗(x∗) ⊂ Bµr̃∗(x). In addition, we have

(6.11) |t− t∗| ≤ θ1−m
z;r (4r)

m+1
m + θ1−m

z∗;r∗(4r∗)
m+1
m .

Without restriction one can now assume θz;r ≤ θz∗;r∗ , because otherwise (6.9) trivially
holds. Now, the monotonicity of % 7→ θz;% and r ≤ 2r∗ ≤ 2r̃∗ ≤ µr̃∗ yield

θz∗;r∗ ≥ θz;r ≥ θz;µr̃∗ ,
so that

θ1−m
z∗;r∗(4r̃∗)

m+1
m + |t− t∗| ≤ 2θ1−m

z∗;r∗(4r̃∗)
m+1
m + θ1−m

z;r (4r)
m+1
m

≤ 2 · 8
m+1
m θ1−m

z;µr̃∗
r̃
m+1
m
∗ ≤ θ1−m

z;µr̃∗
(µr̃∗)

m+1
m .

But this means
Λ

(θz∗;r∗ )
4r̃∗

(t∗) ⊂ Λ
(θz;µr̃∗ )

µr̃∗
(t).

Therefore, from (6.10) and (6.4) with % = s = µr̃∗, we obtain

θm+1
z∗;r∗ ≤

µ2

|Qr̃∗ |

¨
Q

(θz;µr̃∗ )

µr̃∗
(z)

|u|2m

(µr̃∗)2
dydτ ≤ µd+2θm+1

z;r .

This implies that

θz∗;r∗ ≤ µ
d+2
m+1 θz;r.

This finishes the proof of (6.9). With (6.11), r ≤ 2r∗, and (6.9) we conclude

θ1−m
z;r (4r)

m+1
m + |t− t∗| ≤ 2θ1−m

z;r (4r)
m+1
m + θ1−m

z∗;r∗(4r∗)
m+1
m

≤ 4
m+1
m

[
1 + 2 · 2

m+1
m · 64

(m−1)(d+2)
m+1

]
θ1−m
z∗;r∗r

m+1
m
∗
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≤ θ1−m
z∗;r∗(ĉr∗)

m+1
m ,

for a constant ĉ = ĉ(n,m) > 4. This yields the inclusion Λ
(θz;r)
4r (t) ⊂ Λ

(θz∗;r∗ )
ĉr∗

(t∗).

After possibly enlarging ĉ, so that ĉ ≥ 20, this implies Q ⊂ Q̂∗ = Q
(θz∗;r∗ )
ĉr∗

(z∗). This
establishes (6.8) and completes the proof of the Vitali covering type Lemma. �

6.3. Stopping time argument. For λ > λo and r ∈ (0, 2R], we define the super-level set
of the function |Dum| by

E(r, λ) :=
{
z ∈ Qr : z is a Lebesgue point of

∣∣Dum
∣∣ and

∣∣Dum
∣∣(z) > λm

}
.

The Lebesgue points are to be understood with regard to the cylinders constructed in Sec-
tion 6.1. Note that Ln+1 a.e. point is a Lebesgue point with respect to these cylinders; cf.
[14, 2.9.1] and the Vitali type covering Lemma 6.1. For fixed radii R ≤ R1 < R2 ≤ 2R,
we consider the concentric parabolic cylinders

QR ⊆ QR1
⊂ QR2

⊆ Q2R.

Note that the inclusion Q(κ)
% (zo) = B%(xo)×

(
to−κ1−m%

m+1
m , to +κ1−m%

m+1
m

)
⊂ QR2

holds true, whenever zo ∈ QR1
, κ ∈ [λo,∞) and % ∈ (0, R2 − R1]. We fix zo ∈

E(R1, λ) and abbreviate θs ≡ θzo;s for s ∈ (0, R] throughout this section. By Lebesgue’s
Differentiation Theorem, cf. [14, 2.9.1] we have that

(6.12) lim
s↓0
−−
¨
Q

(θs)
s (zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt ≥

∣∣Dum
∣∣2(zo) > λ2m.

In the following, we consider values of λ satisfying

(6.13) λ > Bλo, where B :=
( 4ĉR

R2 −R1

) n+2
m+1

> 1,

where ĉ = ĉ(n,m) denotes the constant from the Vitali-type covering Lemma 6.1. For
radii s with

R2 −R1

ĉ
≤ s ≤ R(6.14)

we have, by the definition of λo, for any s as in (6.14) that

−−
¨
Q

(θs)
s (zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt ≤ |Q4R|

|Q(θs)
s |
−−
¨
Q4R

[∣∣Dum
∣∣2 + |F |2

]
dxdt

≤ |Q4R|
|Qs|

θm−1
s λm+1

o

≤
(4R

s

)d+
(d+2)(m−1)

m+1

λ2m
o

≤
( 4ĉR

R2 −R1

)d+
(d+2)(m−1)

m+1

λ2m
o

= B2mλ2m
o < λ2m.

In the last chain of inequalities we used (6.7), (6.14) and d+ (d+2)(m−1)
m+1 = 2m(n+2)

m+1 . On
the other hand, on behalf of (6.12) we find a sufficiently small radius 0 < s < R2−R1

ĉ such
that the above integral with Q(θs)

s (zo) as domain of integration, possesses a value larger
than λ2m. Consequently, by the absolute continuity of the integral there exists a maximal
radius 0 < %zo <

R2−R1

ĉ such that

−−
¨
Q

(θ%zo
)

%zo
(zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt = λ2m.(6.15)



26 V. BÖGELEIN, F. DUZAAR, R. KORTE, AND C. SCHEVEN

The maximality of the radius %zo implies in particular that

−−
¨
Q

(θs)
s (zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt < λ2m for any s ∈ (%zo , R].(6.16)

Finally, we know from the construction that Q
(θ%zo )

ĉ%zo
(zo) is contained in Qĉ%zo (zo), which

in turn is contained in QR2 .

6.4. A Reverse Hölder Inequality. As before, we consider zo ∈ E(r1, λ) with λ as in
(6.13) and abbreviate θ%zo ≡ θzo;%zo

. As in (6.5) we construct the radius %̃zo ∈ [%zo , R].

Exactly at this point, we pass from the possibly sub-intrinsic cylinder Q
(θ%zo )
%zo (zo) to the

intrinsic cylinder Q
(θ%zo )

%̃zo
(zo). Observe that θs = θ%zo for any s ∈ [%zo , %̃zo ], and, in

particular, θ%̃zo = θ%zo . Our aim now is to prove the following reverse Hölder inequality

−−
¨
Q

(θ%zo
)

%zo
(zo)

∣∣Dum
∣∣2dxdt

≤ c
[
−−
¨
Q

(θ%zo
)

4%zo
(zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ%zo
)

4%zo
(zo)

|F |2dxdt,(6.17)

with q := n
d < 1 and c = c(n,m, ν, L). We distinguish between the cases in which

%̃zo ≤ 2%zo or %̃zo > 2%zo . In the case %̃zo ≤ 2%zo we apply Proposition 5.1 on the intrinsic

cylinder Q
(θ%zo )

%̃zo
(zo) (note that Q

(θ%zo )

%̃zo
(zo) is intrinsic and, thanks to (6.4), Q

(θ%zo )

2%̃zo
(zo) is

sub-intrinsic) and obtain

−−
¨
Q

(θ%zo
)

%zo
(zo)

∣∣Dum
∣∣2dxdt

≤ 2d−−
¨
Q

(θ%zo
)

%̃zo
(zo)

∣∣Dum
∣∣2dxdt

≤ c
[
−−
¨
Q

(θ%zo
)

2%̃zo
(zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ%zo
)

2%̃zo
(zo)

|F |2dxdt

≤ c
[
−−
¨
Q

(θ%zo
)

4%zo
(zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ%zo
)

4%zo
(zo)

|F |2dxdt,

where c = c(n,m, ν, L). In the other case %̃zo > 2%zo , we want to apply Proposition 5.2 on

the cylinderQ
(θ%zo )
%zo (zo). However, this is only permitted if the hypothesis (5.5) is satisfied.

First, we notice that (5.5)1 is an immediate consequence of (6.4), and therefore we only
need to verify (5.5)2. To this aim, we consider two cases. If θ%zo = λo, we obtain (5.5)2
by the following computation

θ2m
%zo

= λ2m
o < λ2m = −−

¨
Q

(θ%zo
)

%zo
(zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt.

Here we used (6.15) for the last identity. If θ%zo > λo, then by construction Q
(θ%zo )

%̃zo
(zo)

is intrinsic. Moreover, since 1
2 %̃zo > %zo , we can apply (6.4) with (%, s) replaced by

(%zo ,
1
2 %̃zo). This together with Lemma 4.2 and (6.16) (applied with s = %̃zo ∈ (%zo , R])

ensures that

θ%zo =

[
−−
¨
Q

(θ%zo
)

%̃zo
(zo)

|u|2m

%̃2
zo

dxdt

] 1
2m

≤
[
−−
¨
Q

(θ%zo
)

%̃zo
(zo)

∣∣um − (um)
(θ%zo )

zo; 12 %̃zo

∣∣2
%̃2
zo

dxdt

] 1
2m

+

∣∣(um)
(θ%zo )

zo; 12 %̃zo

∣∣ 1
m

%̃
1
m
zo
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≤ c
[
−−
¨
Q

(θ%zo
)

%̃zo
(zo)

∣∣um − (um)
(θ%zo )

zo;%̃zo

∣∣2
%̃2
zo

dxdt

] 1
2m

+ 2−
1
m

[
−−
¨
Q

(θ%zo
)

1
2
%̃zo

(zo)

|u|2m

( 1
2 %̃zo)

2
dxdt

] 1
2m

≤ c
[
−−
¨
Q

(θ%zo
)

%̃zo
(zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt

] 1
2m

+ 2−
1
m θ%zo

≤ c λ+ 2−
1
m θ%zo ,

for a constant c = c(n,m,L). Re-absorbing 2−
1
m θ%zo into the left-hand side and using

(6.15), we find that

θ%zo ≤ c λ = c

[
−−
¨
Q

(θ%zo
)

%zo
(zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt

] 1
2m

,

for a constant c = c(n,m,L) ≥ 1. This yields (5.5)2 in the second case with K = c2m ≥
1. Therefore, we are allowed to apply Proposition 5.2 on the cylinder Q

(θ%zo )
%zo (zo), thereby

obtaining that

−−
¨
Q

(θ%zo
)

%zo
(zo)

|Dum|2dxdt

≤ c
[
−−
¨
Q

(θ%zo
)

2%zo
(zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ%zo
)

2%zo
(zo)

|F |2dxdt.

In conclusion, we have shown that in any case the claimed reverse Hölder inequality (6.17)
holds true.

6.5. Estimate on super-level sets. So far we have shown that if λ satisfies (6.13), then
for every zo ∈ E(R1, λ) there exists a cylinder Q

(θzo;%zo )
%zo (zo) with Q

(θzo;%zo )

ĉ%zo
(zo) ⊂ QR2

such that (6.15), (6.16) and (6.17) hold true on this specific cylinder. As before, we abbre-
viate θ%zo ≡ θzo;%zo

. We define the super-level set of the inhomogeneity F by

F (r, λ) :=
{
z ∈ Qr : z is a Lebesgue point of F and |F | > λm

}
.

As for the super-level set E(r, λ) the Lebesgue points have to be understood with regard to
the cylinders constructed in Section 6.1. Using (6.15) and (6.17) we obtain for η ∈ (0, 1]
(to be specified later in a universal way) that

λ2m = −−
¨
Q

(θ%zo
)

%zo
(zo)

[∣∣Dum
∣∣2 + |F |2

]
dxdt

≤ c
[
−−
¨
Q

(θ%zo
)

4%zo
(zo)

∣∣Dum
∣∣2qdxdt

] 1
q

+ c−−
¨
Q

(θ%zo
)

4%zo
(zo)

|F |2dxdt

≤ c η2mλ2m + c

[
1∣∣Q(θ%zo )

4%zo
(zo)

∣∣
¨
Q

(θ%zo
)

4%zo
(zo)∩E(R2,ηλ)

∣∣Dum
∣∣2qdxdt

] 1
q

+
c∣∣Q(θ%zo )

4%zo
(zo)

∣∣
¨
Q

(θ%zo
)

4%zo
(zo)∩F (R2,ηλ)

|F |2dxdt,



28 V. BÖGELEIN, F. DUZAAR, R. KORTE, AND C. SCHEVEN

for a constant c = c(n,m, ν, L). In the preceding inequality we choose the η in the form
η2m = 1

2c . This choice allows the re-absorption of 1
2λ

2m into the left-hand side. Further-
more, we use Hölder’s inequality and (6.16) to estimate[

1∣∣Q(θ%zo )

4%zo
(zo)

∣∣
¨
Q

(θ%zo
)

4%zo
(zo)∩E(R2,ηλ)

∣∣Dum
∣∣2qdxdt

] 1
q−1

≤
[
−−
¨
Q

(θ%zo
)

4%zo
(zo)

∣∣Dum
∣∣2dxdt

]1−q

≤ λ2m(1−q).

We insert this above, and multiply the result, i.e. the inequality where we already fixed η
and re-absorbed 1

2λ
2m, by

∣∣Q(θ%zo )

4%zo
(zo)

∣∣. This leads to the inequality

λ2m
∣∣∣Q(θ%zo )

4%zo
(zo)

∣∣∣ ≤ c¨
Q

(θ%zo
)

4%zo
(zo)∩E(R2,ηλ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt

+ c

¨
Q

(θ%zo
)

4%zo
(zo)∩F (R2,ηλ)

|F |2dxdt,

again with c = c(n,m, ν, L). Now, (6.16) with the choice s = ĉ%zo allows us to estimate
λ2m from below. The precise argument is as follows: Using in turn (6.16), the monotonic-
ity of % 7→ θ% and (6.6), i.e. that θĉ%zo ≤ θ%zo ≤ ĉ

d+2
m+1 θĉ%zo , we obtain that

λ2m > −−
¨
Q

(θĉ%zo
)

ĉ%zo
(zo)

∣∣Dum
∣∣2dxdt ≥ 1

ĉ
(m−1)(d+2)

m+1

−−
¨
Q

(θ%zo
)

ĉ%zo
(zo)

∣∣Dum
∣∣2dxdt.

Inserting this above and keeping in mind that ĉ depends only on n and m, we deduce¨
Q

(θ%zo
)

ĉ%zo
(zo)

∣∣Dum
∣∣2dxdt ≤ c

¨
Q

(θ%zo
)

4%zo
(zo)∩E(R2,ηλ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt

+ c

¨
Q

(θ%zo
)

4%zo
(zo)∩F (R2,ηλ)

|F |2dxdt(6.18)

with c = c(n,m, ν, L).
So far, we showed that for any value λ > Bλo the super-level set E(R1, λ) can be cov-

ered by a family F ≡
{
Q

(θzo;%zo )

4%zo
(zo)

}
of parabolic cylinders with center zo ∈ E(R1, λ),

which are contained in QR2 , and such that on each cylinder the estimate (6.18) holds true.
At this point, we use the Vitali type Covering Lemma 6.1 and gain a countable subfamily{

Q
(θzi;%zi

)

4%zi
(zi)
}
i∈N
⊂ F

consisting of pairwise disjoint cylinders, such that the ĉ
4 -times enlarged cylinders

Q
(θzi;%zi

)

ĉ%zi
(zi) are contained in QR2 and cover the super-level set E(R1, λ), i.e.

E(R1, λ) ⊂
∞⋃
i=1

Q
(θzi;%zi

)

ĉ%zi
(zi) ⊂ QR2

.

Since the cylinders Q
(θzi;%zi

)

4%zi
(zi) are pairwise disjoint we obtain from (6.18) that

¨
E(R1,λ)

∣∣Dum
∣∣2dxdt ≤

∞∑
i=1

¨
Q

(θzi;%zi
)

ĉ%zi
(zi)

∣∣Dum
∣∣2dxdt

≤ c
∞∑
i=1

¨
Q

(θzi;%zi
)

4%zi
(zi)∩E(R2,ηλ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt
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+ c

∞∑
i=1

¨
Q

(θzi;%zi
)

4%zi
(zi)∩F (R2,ηλ)

|F |2dxdt

≤ c
¨

E(R2,ηλ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt+ c

¨
F (R2,ηλ)

|F |2dxdt,

where the constant c depends only on n, m, ν, and L. On E(R1, ηλ) \E(R1, λ) we have
the pointwise bound

∣∣Dum
∣∣2 ≤ λ2m and therefore¨

E(R1,ηλ)\E(R1,λ)

∣∣Dum
∣∣2dxdt ≤

¨
E(R2,ηλ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt.

We combine the last two inequalities and get the following reverse Hölder inequality on
super-level sets¨

E(R1,ηλ)

∣∣Dum
∣∣2dxdt

≤ c
¨

E(R2,ηλ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt+ c

¨
F (R2,ηλ)

|F |2dxdt.

Here, we replace ηλ by λ and recall that η < 1 depends only on n,m, ν, and L. With this
replacement we obtain for any λ ≥ ηBλo =: λ1 that¨

E(R1,λ)

∣∣Dum
∣∣2dxdt

≤ c
¨

E(R2,λ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt+ c

¨
F (R2,λ)

|F |2dxdt(6.19)

holds true with a constant c = c(n,m, ν, L). This is the desired estimate on super-level
sets.

6.6. Proof of the gradient estimate. For k > λ1 we define the truncation of |Dum| by∣∣Dum
∣∣
k

:= min
{∣∣Dum

∣∣, km},
and for r ∈ (0, 2R] the corresponding super-level set

Ek(r, λ) :=
{
z ∈ Qr :

∣∣Dum
∣∣
k
> λm

}
.

Note that |Dum|k ≤ |Dum| a.e., as well as Ek(r, λ) = ∅ for k ≤ λ and Ek(r, λ) =
E(r, λ) for k > λ. Therefore, it follows from (6.19) that¨

Ek(R1,λ)

∣∣Dum
∣∣2−2q

k

∣∣Dum
∣∣2qdxdt

≤ c
¨

Ek(R2,λ)

λ2m(1−q)∣∣Dum
∣∣2qdxdt+ c

¨
F (R2,λ)

|F |2dxdt,

whenever k > λ ≥ λ1. Since Ek(r, λ) = ∅ for k ≤ λ, the last inequality also holds in
this case. Now, we multiply the preceding inequality by λεm−1, where ε ∈ (0, 1] will be
chosen later in a universal way, and integrate the result with respect to λ over the interval
(λ1,∞). This givesˆ ∞

λ1

λεm−1

[¨
Ek(R1,λ)

∣∣Dum
∣∣2−2q

k

∣∣Dum
∣∣2qdxdt

]
dλ(6.20)

≤ c
ˆ ∞
λ1

λm(2−2q+ε)−1

[¨
Ek(R2,λ)

∣∣Dum
∣∣2qdxdt

]
dλ

+ c

ˆ ∞
λ1

λεm−1

[¨
F (R2,λ)

|F |2dxdt

]
dλ.
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Here we exchange the order of integration with the help of Fubini’s theorem. For the
integral on the left-hand side Fubini’s theorem impliesˆ ∞

λ1

λεm−1

[¨
Ek(R1,λ)

∣∣Dum
∣∣2−2q

k

∣∣Dum
∣∣2qdxdt

]
dλ

=

¨
Ek(R1,λ1)

∣∣Dum
∣∣2−2q

k

∣∣Dum
∣∣2q[ˆ |Dum|

1
m
k

λ1

λεm−1dλ

]
dxdt

= 1
εm

¨
Ek(R1,λ1)

[∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2q − λεm1 ∣∣Dum

∣∣2−2q

k

∣∣Dum
∣∣2q]dxdt,

while for the first integral on the right-hand side we find thatˆ ∞
λ1

λm(2−2q+ε)−1

[¨
Ek(R2,λ)

∣∣Dum
∣∣2qdxdt

]
dλ

=

¨
Ek(R2,λ1)

∣∣Dum
∣∣2q[ ˆ |Dum|

1
m
k

λ1

λm(2−2q+ε)−1dλ

]
dxdt

≤ 1
m(2−2q+ε)

¨
Ek(R2,λ1)

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

≤ 1
2m(1−q)

¨
Ek(R2,λ1)

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt.

Finally, for the last integral in (6.20) we obtainˆ ∞
λ1

λεm−1

[¨
F (R2,λ)

|F |2dxdt

]
dλ

=

¨
F (R2,λ1)

|F |2
[ ˆ |F | 1m

λ1

λεm−1dλ

]
dxdt

≤ 1
εm

¨
F (R2,λ1)

|F |2+εdxdt

≤ 1
εm

¨
Q2R

|F |2+εdxdt.

We insert these estimates into (6.20) and multiply by εm. This leads to¨
Ek(R1,λ1)

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

≤ λεm1
¨

Ek(R1,λ1)

∣∣Dum
∣∣2−2q

k

∣∣Dum
∣∣2qdxdt

+
c ε

1− q

¨
Ek(R2,λ1)

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

+ c

¨
Q2R

|F |2+εdxdt.

The last inequality is now combined with the corresponding inequality on the complement
QR1 \Ek(R1, λ1), i.e. with the inequality¨

QR1
\Ek(R1,λ1)

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

≤ λεm1
¨
QR1
\Ek(R1,λ1)

∣∣Dum
∣∣2−2q

k

∣∣Dum
∣∣2qdxdt.
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We also take into account that |Dum|k ≤ |Dum|. All together this gives the inequality
¨
QR1

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

≤ c∗ε

1− q

¨
QR2

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

+ λεm1

¨
Q2R

∣∣Dum
∣∣2dxdt+ c

¨
Q2R

|F |2+εdxdt,

where c∗ = c∗(n,m, ν, L) ≥ 1. Now, we choose

0 < ε ≤ min{εo, σ − 2}, where εo :=
1− q
2c∗

< 1.

Note that εo depends only on n,m, ν, and L. Moreover, observe that λε1 ≡ (ηBλo)
ε ≤

Bλεo, since η ≤ 1, B ≥ 1 and 0 < ε ≤ 1. Therefore, from the previous inequality we
conclude that for any pair of radii R1, R2 with R ≤ R1 < R2 ≤ 2R there holds
¨
QR1

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

≤ 1
2

¨
QR2

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt

+ c
( R

R2−R1

)m(n+2)
m+1

λεmo

¨
Q2R

∣∣Dum
∣∣2dxdt+ c

¨
Q2R

|F |2+εdxdt.

We can now apply the Iteration Lemma 2.1 to the last inequality, which yields
¨
QR

∣∣Dum
∣∣2−2q+ε

k

∣∣Dum
∣∣2qdxdt ≤ c λεmo

¨
Q2R

∣∣Dum
∣∣2dxdt+ c

¨
Q2R

|F |2+εdxdt.

On the left side we apply Fatou’s Lemma and pass to the limit k → ∞. In the result, we
go over to means on both sides. This gives

−−
¨
QR

∣∣Dum
∣∣2+ε

dxdt ≤ c λεmo −−
¨
Q2R

∣∣Dum
∣∣2dxdt+ c−−

¨
Q2R

|F |2+εdxdt.

At this point, we estimate λo with the help of the energy estimate from Lemma 3.1 applied
with θ = 1 and a = 0 and Hölder’s inequality. This leads to the bound

λo ≤ c

[
1 +−−
¨
Q8R

[
|u|2m

R2
+ |F |2

]
dxdt

] 1
m+1

,

where c = c(m, ν, L). Inserting this above, we deduce

−−
¨
QR

∣∣Dum
∣∣2+ε

dxdt

≤ c

[
1 +−−
¨
Q8R

[
|u|2m

R2
+ |F |2

]
dxdt

] εm
m+1

−−
¨
Q2R

∣∣Dum
∣∣2dxdt+ c−−

¨
Q2R

|F |2+εdxdt,

where c = c(n,m, ν, L). The claimed estimate (1.10) involving the cylindersQR andQ2R

now follows by a covering argument. This completes the proof of Theorem 1.2. �
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6.7. Proof of Corollary 1.3. It remains to deduce a corresponding estimate on a standard
parabolic cylinder C2R(zo) := B2R(xo) × (to − (2R)2, to + (2R)2) b ΩT . To this end,
we rescale the solution u, the vector-field A, and the right-hand side F via

v(x, t) := u(xo +Rx, to +R2t)

B(x, t, u, ξ) := RA
(
xo +Rx, to +R2t, u, 1

Rξ
)

G(x, t) := RF (xo +Rx, to +R2t),

whenever (x, t) ∈ C2 and (u, ξ) ∈ RN×RNn. Then v is a weak solution of the differential
equation

∂tv − divB(x, t, v,Dvm) = divG in Q2 ⊂ C2,

in the sense of Definition 1.1. Moreover, the assumptions (1.2) are satisfied for the rescaled
vector-field B in place of A. Therefore, the estimate (1.10) is applicable to v on the
cylinder Q2, which yields

−−
¨
Q1

∣∣Dvm
∣∣2+ε

dxdt

≤ c
[
1 +−−
¨
Q2

[
|v|2m + |G|2

]
dxdt

] εm
m+1

−−
¨
Q2

∣∣Dvm
∣∣2dxdt+ c−−

¨
Q2

|G|2+εdxdt,

for every ε ∈ (0, εo], with a constant c = c(n,m, ν, L). Scaling back and recalling that
Q2 ⊂ C2, we arrive at the estimate

R2+ε−−
¨
CR(zo)

∣∣Dum
∣∣2+ε

dxdt

≤ cR2

[
1 +−−
¨
C2R(zo)

[
|u|2m +R2|F |2

]
dxdt

] εm
m+1

−−
¨
C2R(zo)

∣∣Dum
∣∣2dxdt

+ cR2+ε−−
¨
C2R(zo)

|F |2+εdxdt.

Dividing both sides by R2+ε yields the assertion of Corollary 1.3. �
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[6] V. Bögelein and M. Parviainen. Self-improving property of nonlinear higher order parabolic systems near
the boundary. NoDEA Nonlinear Differential Equations Appl., 17 (2010), no. 1, 21–54.

[7] E. DiBenedetto. Degenerate parabolic equations. Springer-Verlag, Universitytext xv, 387, New York, NY,
1993.

[8] E. DiBenedetto and A. Friedman. Regularity of solutions of nonlinear degenerate parabolic systems.
J. Reine Angew. Math., 349 (1984), 83–128.
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systems”. J. Reine Angew. Math. (Crelles J.), 363 (1985), 217–220.

[11] E. DiBenedetto, U. Gianazza, and V. Vespri. Harnack’s inequality for degenerate and singular parabolic
equations. Springer Monographs in Mathematics, 2011.
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