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Main result

Theorem

If there exists a uniformly quasiregular mapping on a compact
Riemannian manifold Mn, there exists a quasiregular mapping
g : Rn → Mn. In other words, the manifold Mn is quasiregularly
elliptic.

A three-dimensional compact Riemannian manifold M3 is elliptic if
and only if there exists a uniformly quasiregular mapping on M3.



Outline

1 Definitions

2 Rescaling principle and its consequences

3 3-dimensional elliptic manifolds

4 Follow-up



Outline

1 Definitions

2 Rescaling principle and its consequences

3 3-dimensional elliptic manifolds

4 Follow-up



Quasiregular mappings

Let D ⊂ Rn
be a domain and f : D → Rn

a non-constant mapping
of the Sobolev class W 1,n

loc (D). We consider only
orientation-preserving mappings, which means that the Jacobian
determinant Jf (x) ≥ 0 for a.e. x ∈ D. Such a mapping is said to
be K-quasiregular, where 1 ≤ K <∞, if

max
|h|=1

|f ′(x)h| ≤ K min
|h|=1

|f ′(x)h|

for a.e. x ∈ D, when f ′ is the formal matrix of weak derivatives.



Quasiregular mappings on manifolds

We generalize the definition to Riemannian manifolds with the help
of bilipschitz-continuous coordinate charts:

Let M and N be n-dimensional Riemannian manifolds. A
non-constant continuous mapping f : M → N is K -quasiregular if
for every ε > 0 and every m ∈ M there exists bilipschitz-continuous
charts (U, ϕ), m ∈ U, and (V , ψ), f (m) ∈ V , so that the mapping
ψ ◦ f ◦ ϕ−1 is (K + ε)-quasiregular.

A non-constant quasiregular mapping can be redefined in a set of
measure zero such that the mapping is made continuous, open and
discrete.



Uniformly quasiregular mappings

Let M be a compact Riemannian manifold. A non-injective
mapping f from a domain D ⊂ M onto itself is called uniformly
quasiregular (uqr) if there exists a constant 1 ≤ K ≤ ∞ such that
all the iterates f k are K -quasiregular.

We will assume our uniformly quasiregular mappings to be
non-injective. In other words, we assume the branch set

Bf = {x ∈ M | f is not locally homeomorphic at x}

to be non-empty.



Fatou and Julia sets

We define the Fatou set of a uqr mapping f : M → M as

Ff = {x ∈ M : there exists an open set U ⊂ M such that x ∈ U

and the family {f k | k ∈ Z+}|U is normal}.

The Julia set of the mapping f is Jf = M \ Ff .
By the definition, Fatou sets are open, and therefore Julia sets are
closed. Both Fatou and Julia set are completely invariant.

Theorem

Let f : M → M be a uqr mapping, with deg(f ) ≥ 2, on a compact
Riemannian manifold M. Then the Julia set Jf of the mapping f
is non-empty.
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Rescaling principle on a manifold

Theorem

Let F be a family of K -quasiregular mappings f : Ω→ Mn, where
Mn is a closed compact Riemannian manifold, and Ω ⊂ Rn a
domain. If the family F is not equicontinuous at a point a ∈ Ω,
there exists a sequence of real numbers rj ↘ 0, a sequence of
points aj → a, a sequence of mappings {fj} ⊂ F and a
non-constant K -quasiregular mapping h : Rn → Mn such that

fj(rjx + aj)→ h(x)

locally uniformly in Rn. Especially Mn is K -quasiregularly elliptic.



Manifolds supporting uqr mappings are elliptic I

We use the rescaling principle to prove the first part of our main
theorem.

Let f : Mn → Mn be a K ′-quasiregular mapping on a smooth,
oriented, compact Riemannian n-manifold M, with a non-empty
branch set. Let x0 ∈ Jf , and let ϕ : U → Rn be such a
L-bilipschitz-continuous coordinate mapping in some
neighbourhood U of the point x0 that ϕ(x0) = 0 and
ϕ(U) = B(0, 1).

Define a composite mapping

fν := f ν ◦ ϕ−1|B(0,1) : B(0, 1)→ Mn

from the iterates f ν of f and the coordinate mapping ϕ.



Manifolds supporting uqr mappings are elliptic II

All the mappings fν , ν ∈ N, are K -quasiregular with the same
constant K = K (K ′, L).

The family of mappings F = {fν | ν ∈ N} is not normal, since
x0 = ϕ−1(0) ∈ Jf , meaning that 0 ∈ JF .

Starting with a uqr mapping f : M → M we have thus constructed
a family F = {fν | ν ∈ N} of K -quasiregular mappings

fν = f ν ◦ ϕ−1|B(0,1) : B(0, 1)→ M,

and the family F is not normal at the origin. Now we can use the
rescaling principle, and as a limit mapping we get a K -quasiregular
mapping g : Rn → M.
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3-dimensional elliptic manifolds

Thurston’s conjecture states that after a three-manifold is splitten
into its connected sum and the Jaco-Shalen-Johannson torus
decomposition, the remaining components each admit exactly one
of the following model geometries: S3, R3, H3, S2 × R, H2 × R,
S̃L2(R), Nil, or Sol. (G. Perelman 2002)

By J. Jormakka (1988), the only closed elliptic 3-manifolds are
those manifolds which are covered by S3, S2 × R or R3.

We already know that manifolds covered by S3 support uqr
mappings (K. Peltonen 1999). The Euclidean space forms and
manifolds covered by S2 × R are considered in the thesis.



Lattès-type uqr mappings I

Let Υ be a discrete group of isometries of Rn. A mapping
h : Rn → M is automorphic with respect to Υ in the strong sense
if

1 h ◦ γ = h for any γ ∈ Υ,

2 Υ acts transitively on the fibres Oy = h−1(y).

By the latter condition we mean that for any two points x1, x2 with
h(x1) = h(x2) there is an isometry γ ∈ Υ such that x2 = γ(x1).



Lattès-type uqr mappings II

Theorem

Let Υ be a discrete group such that h : Rn → M is automorphic
with respect to Υ in the strong sense. If there is a similarity
A = λO, λ ∈ R, λ 6= 0, and O an orthogonal transformation, such
that

AΥA−1 ⊂ Υ,

then there is a unique solution f : h(Rn)→ h(Rn) to the Schröder
functional equation

f ◦ h = h ◦ A

and f is a uniformly quasiregular mapping.

Note that f k ◦ h = h ◦ Ak for all k.



3-dimensional Euclidean space forms I

By J. Wolf (1984) there are just 6 affine diffeomorphism classes of
compact connected flat 3-dimensional Riemannian manifolds. They
are represented by the manifolds R3/Γ, where Γ is one of 6 groups.
We consider here the case G2 and the corresponding manifold M2

from the thesis as an example.

In the polyhedron schema for M2 we have a cube where we identify
opposite vertical faces and glue the top to the bottom of the cube
with a twist of angle π.



3-dimensional Euclidean space forms II

We obtain a Lattès-type uqr mapping on M2 as follows:

Construct a covering map g2 : T 3 → M2 such that T 3 covers
the manifold twice.

Define mapping F2 : R3 → R3 as F2 : x 7→ 3x .

F2 and covering map π1 induce a mapping F ′2 on the torus.

The mapping F2 descends to a Lattès-type uqr mapping
f2 : M2 → M2.

R3 F2−−−−→ R3

π2

y yπ2

T 3 F ′
2−−−−→ T 3

g2

y yg2

M2
f2−−−−→ M2



Manifolds covered by S2 × R

There are only two orientable compact 3-manifolds which have
S2 × R as the Riemannian covering space: the sphere bundle
S2 × S and the connected sum of two projective 3-spaces P3#P3.
We take here P3#P3 as an example.

The manifold P3#P3 is obtained by identifying diametrical points
of the boundary spheres K1 and K2 of S2 × I .



Manifold P3#P3 I

The dotted 2-sphere separates this manifold into two punctured
projective spaces. The fibres are the radii of S2 × I ; any two
diametrical radii form one fibre.



Manifold P3#P3 II

Let us look at the projective space P3#P3 as a block in R3:



Manifold P3#P3 III

We define a covering map g : R3 → P3#P3 which takes each
one-by-one cube in R3 to P3#P3 according to the previous picture.
We use the mapping F : R3 → R3, where F : x 7→ 2x for any
x ∈ R3. The mappings F and g again induce a mapping f to the
manifold:

R3 F−−−−→ R3

g

y yg

P3#P3 f−−−−→ P3#P3

The mapping f is a well-defined and uniformly quasiregular
mapping of Lattès type.
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