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Abstract

We construct and classify all groups, given by triangular
presentations associated to the smallest thick generalized
quadrangle, that act simply transitively on the vertices of hyperbolic
triangular buildings of the smallest non-trivial thickness. In analogy
with the Ã2 case, we find both torsion and torsion free groups
acting on the same building.

These groups are the first examples of cocompact lattices acting
simply transitively on vertices of hyperbolic triangular Kac-Moody
buildings that are not right-angled.
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Preliminaries
Definitions

A graph is bipartite, if its set of vertices can be partitioned into two
disjoint subsets P and Q (“black” and “white” vertices) such that no
vertices in the same subset lie on common edge.

A generalized m-gon is a connected, bipartite graph of diameter m
and girth (length of the smallest circuit) 2m, in which each vertex
lies on at least two edges.

A generalized m-gon is thick if all vertices lie on at least three
edges.
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Figure: Generalized 3-gon: bipartite graph with diameter 3, girth 6.
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Figure: Generalized 4-gon: bipartite graph with diameter 4, girth 8.

Groups acting on hyperbolic buildings 6/41
R. Kangaslampi 2.5.2012



A polyhedron is a two-dimensional complex, which is obtained
from several oriented m-gons with words on their boundary, by
identifying sides with the same letters, respecting orientation.

A link is a graph, obtained as the intersection of a polyhedron and
a small sphere centered at a vertex.
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Preliminaries II
Hyperbolic buildings

Let P(p,m) be a tesselation of the hyperbolic plane by regular
polygons with p sides, with angles π/m, m ∈ Z+, in each vertex. A
hyperbolic building is a polygonal complex X , which can be
expressed as the union of subcomplexes called apartments, such
that

1. Every apartment is isomorphic to P(p,m).

2. For any two polygons of X , there is an apartment containing
both of them.

3. For any two apartments A1, A2 ∈ X containing same polygon,
there exists an isomorphism A1 → A2 fixing A1 ∩ A2.
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Figure: Example of a tiling of the hyperbolic plane with hexagons.

Groups acting on hyperbolic buildings 9/41
R. Kangaslampi 2.5.2012



Figure: Example of a tiling of the hyperbolic plane with triangles.
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Let Cp be a polyhedron whose faces are p-gons and links are
generalized m-gons with mp > 2m + p. We equip every face of Cp

with the hyperbolic metric such that all sides of the polygons are
geodesics and all angles are π/m. Then the universal covering of
such a polyhedron is a hyperbolic building. (Gaboriau & Paulin
2001)

Remark: If p = m = 3, ie. Cp is a simplex, and we equip with
Euclidean metric, the construction specializes to Euclidean
buildings.

⇒ To construct hyperbolic buildings with cocompact group actions,
it is sufficient to construct finite polyhedra with appropriate links.
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Polygonal presentations

Let G1, . . . ,Gn be disjoint connected bipartite graphs. Let Pi and
Qi be the sets of black and white vertices respectively in Gi . Let
P =

⋃
Pi , Q =

⋃
Qi , Pi ∩ Pj = ∅, Qi ∩Qj = ∅ for i 6= j and let λ be

a bijection λ : P → Q.

A set K of k -tuples (x1, x2, . . . , xk ), xi ∈ P, will be called a
polygonal presentation over P compatible with λ if

1. (x1, x2, x3, . . . , xk ) ∈ K implies that (x2, x3, . . . , xk , x1) ∈ K;
2. given x1, x2 ∈ P, then (x1, x2, x3, . . . , xk ) ∈ K for some

x3, . . . , xk if and only if x2 and λ(x1) are incident in some Gi ;
3. given x1, x2 ∈ P, then (x1, x2, x3, . . . , xk ) ∈ K for at most one

x3 ∈ P.
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We can associate a polyhedron K on n vertices with each
polygonal presentation K as follows: for every cyclic k -tuple
(x1, x2, x3, . . . , xk ) we take an oriented k -gon with the word
x1x2x3 . . . xk written on the boundary. To obtain the polyhedron we
identify the corresponding sides of the polygons, respecting
orientation.

A polyhedron K which corresponds to a polygonal presentation K
has graphs G1,G2, . . . ,Gn as vertex-links. (Vdovina 2002)
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Triagonal presentations for generalized 4-gon

We construct all polygonal presentations with k = 3 and n = 1 and
for which the graph G1 is a generalized 4-gon.

The smallest thick generalized 4-gon can be presented in the
following way:

“points” in P are pairs (i, j), where i, j = 1, ..., 6, i 6= j

“lines” in Q are triples (i1, j1), (i2, j2), (i3, j3) of those pairs,
where i1, i2, i3, j1, j2 and j3 are all different.

(Tits & Weiss 2002)
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(12) (34) (56)
(12) (35) (46)
(12) (36) (45)
(13) (24) (56)
(13) (25) (46)
(13) (26) (45)
(14) (23) (56)
(14) (25) (36)
(14) (26) (35)
(15) (23) (46)
(15) (24) (36)
(15) (26) (34)
(16) (23) (45)
(16) (24) (35)
(16) (25) (34)
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We denote the elements of P by xi and the elements of Q by yi ,
i = 1, 2, . . . , 15. In all cases we define the basic bijection
λ : P → Q by λ(xi) = yi .

We build a tableau as follows: For each row take three pairs
(i1, j1), (i2, j2), and (i3, j3), where i1, i2, i3, j1, j2 and j3 are all different
and in 1, 2, . . . , 6. These are our points: x1 = (1, 2), x2 = (1, 3),...,
x15 = (5, 6).

Then we label the rows by y1, . . . , y15 in such a way that the result
is an incidence tableau that gives a triagonal presentation with the
basic bijection λ.
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(12) (34) (56) ⇒ x1 x10 x15

(12) (35) (46) x1 x11 x14

(12) (36) (45) x1 x12 x13

(13) (24) (56) x2 x7 x15

(13) (25) (46) x2 x8 x14

(13) (26) (45) x2 x9 x13

(14) (23) (56) x3 x6 x15

(14) (25) (36) x3 x8 x12

(14) (26) (35) x3 x9 x11

(15) (23) (46) x4 x6 x14

(15) (24) (36) x4 x7 x12

(15) (26) (34) x4 x9 x10

(16) (23) (45) x5 x6 x13

(16) (24) (35) x5 x7 x11

(16) (25) (34) x5 x8 x10
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y1 : x1 x10 x15

y2 : x1 x11 x14

y10 : x1 x12 x13

y3 : x2 x7 x15

y9 : x2 x8 x14

y15 : x2 x9 x13

y14 : x3 x6 x15

y4 : x3 x8 x12

y13 : x3 x9 x11

y6 : x4 x6 x14

y7 : x4 x7 x12

y11 : x4 x9 x10

y8 : x5 x6 x13

y12 : x5 x7 x11

y5 : x5 x8 x10
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y1 : x1 x10 x15

y2 : x1 x11 x14

y10 : x1 x12 x13

y3 : x2 x7 x15

y9 : x2 x8 x14

y15 : x2 x9 x13

y14 : x3 x6 x15

y4 : x3 x8 x12

y13 : x3 x9 x11

y6 : x4 x6 x14

y7 : x4 x7 x12

y11 : x4 x9 x10

y8 : x5 x6 x13

y12 : x5 x7 x11

y5 : x5 x8 x10
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y1 : x1 x10 x15

y2 : x1 x11 x14

y10 : x1 x12 x13

y3 : x2 x7 x15

y9 : x2 x8 x14

y15 : x2 x9 x13

y14 : x3 x6 x15

y4 : x3 x8 x12

y13 : x3 x9 x11

y6 : x4 x6 x14
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This corresponds to the triplets

(x1, x1, x10), (x5, x5, x8)
(x1, x15, x2), (x5, x10, x12)
(x2, x11, x9), (x6, x6, x14)
(x2, x14, x3), (x7, x7, x12)
(x3, x7, x4), (x8, x13, x9)
(x3, x15, x13), (x9, x14, x15)
(x4, x8, x6), (x10, x13, x11)
(x4, x12, x11)

As a result, we obtain 21196 different incidence tableaus, which
can be divided into 45 different equivalence classes of triagonal
presentations.
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Figure: Graph G1 for the obtained presentation T1 with λ(xi ) = yi .
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For a polygonal presentation Ti , i = 1, . . . , 45, take 15 oriented
regular hyperbolic triangles with angles π/4, write words from the
presentation on their boundaries and glue together sides with the
same letters, respecting orientation.

The result is a hyperbolic polyhedron with one vertex and 15
triagonal faces, and its universal covering is a triangular hyperbolic
building. The fundamental group Γi , i = 1, . . . , 45 of the
polyhedron acts simply transitively on vertices of the building. The
group Γi has 15 generators and 15 relations (from Ti ).

To distinguish groups Γi it is sufficient to distinguish the isometry
classes of polyhedra, according to the Mostow-type rigidity for
hyperbolic buildings (Xie 2006).
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Dual graphs

We define dual graphs with 30 vertices: first 15 correspond to the
edges of the triangles in a triagonal presentation, and the second
15 correspond to the faces of the triangles.

There is an edge between vertices i (from 1− 15) and j (from
16− 30), if edge i is on the boundary of the face j in the triagonal
presentation. Thus we obtain bipartite trivalent graphs with 30
vertices.
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Figure: Dual graph of G1
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The presentations occur pair-wise: in the set of the 45
non-equivalent triagonal representations we have 22 pairs of
isomorphic dual graphs. Therefore, when we take the dual graphs
into account as invariants to distinguish the presentations, we
finally have 23 non-isomorphic groups.
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Classification

We obtain a complete classification of groups acting simply
transitively on the vertices of hyperbolic triangular buildings of the
smallest non-trivial thickness, since simply-transitive action on
vertices is an analogue of a triangle presentation.
(Cartwright-Mantero-Steger-Zappa 1993)

“Proof“: It is enough to consider quadrangles, since there are no
three-valent generalized hexagons or octagons. Minimal non-trivial
thickness is obviously 3.
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Result 1. There are 45 non-equivalent torsion free triangle
presentations associated to the smallest thick generalized
quadrangle. These give rise to 23 non-isomorphic torsion free
groups, acting simply transitively on vertices of triangular
hyperbolic buildings of smallest non-trivial thickness.
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If we allow torsion, that is triangles of the type (xi , xi , xi), we obtain
many more presentations:

Result 2. There are 7159 non-equivalent triangle presentations
corresponding to groups with torsion associated to the smallest
generalized quadrangle. These give rise to 168 non-isomorphic
groups, acting on vertices of a triangular hyperbolic buildings with
the smallest thick generalized quadrangle as the link of each
vertex.
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It is known (Swiatkowski 1998) that up to isomorphism, there are at
most two triangular hyperbolic buildings with the smallest
generalized quadrangle as the link of each vertex, admitting a
simply transitive action.

Comparing the links of order 2 in our polyhedra, we can divide the
presentations into two sets regarding whether the obtained group
acts on building 1 or 2.
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Figure: A 2-link from far, details missing
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Figure: A part of the 2-link more closely

Groups acting on hyperbolic buildings 34/41
R. Kangaslampi 2.5.2012



Torsion-free groups:
(1) T1, T4, T5, T8, T9, T11, T13, T15, T17, T18, T19, T23

(2) T2, T3, T6, T7, T10, T12, T14, T16, T20, T21, T22

Torsion groups:
(1) T24, T27, T29, T33, . . . , T189

(2) T25, T26, T28, T30, . . . , T191

In analogy with the Ã2 case, we find both torsion and torsion free
groups acting on the same building.

The building number (2) coincides with the Kac-Moody building
with the minimal generalized quadrangle as the link of each vertex
and equilateral triangular chambers.
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Construction of polyhedra with n-gonal faces

Given a generalized quadrangle G we shall denote by G′ the graph
arising by calling black (respectively white) vertices of G black
(respectively white) vertices of G′.

Starting from on of our previous torsion-free triagonal
presentations, we construct a polyhedron, whose faces are
m-gons and whose m vertices have links G or G′.
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Let w = z1 . . . zm be a word of length m in three letters a, b and c
such that z1 = a, z2 = b, z3 = c, zm 6= a, and zt 6= zt+1 for all
t = 1, . . . ,m − 1.

Define 45 such words w : For each of the 15 triples (xi , xj , xk ) in K
take a 3-cover (x1

i , x
2
j , x

3
k ), (x1

k , x
2
i , x

3
j ) and (x1

j , x
2
k , x

3
i ).

(By glueing together triangles with these words on the boundary,
we would obtain a polyhedron with 45 triagonal faces and 3
vertices, each of them with the group G as the link.)

Then we construct 45 m-tuples: for each triple (x1
α, x

2
β , x

3
γ ) we

define an m-tuple, which corresponds a word w with a = x1
α,

b = x2
β and c = x3

γ .
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If we glue together the m-gones with these words on the boundary,
we obtain a polyhedron with 45 m-gonal faces and m vertices,
wich all have the link G or G′.

The type of the link can be seen from the letters of the edges
meeting at that vertex. Set

Sign(ab) = Sign(bc) = Sign(ca) = 1

and
Sign(ba) = Sign(cb) = Sign(ac) = −1.

Then for vertex t = 1, . . . ,m − 1 the group Gt of the link is G if
Sign(zt , zt+1) = 1 and G′ if Sign(zt , zt+1) = −1. For the last vertex
we have Gm = G if Sign(zm, a) = 1 and G′ if Sign(zm, a) = −1.
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Let us denote the set of m-tuples by Tm. Then we have the
obtained following:

Result 3. The above constructed subset Tm ⊂ P × · · · × P is a
polygonal presentation. It defines a polyhedron X whose faces are
m-gones and whose m vertices have links G or G′.

Corollary: The universal covering of X is a hyperbolic building with
m-gonal chambers and links G and G′.

Groups acting on hyperbolic buildings 39/41
R. Kangaslampi 2.5.2012



The story continues...

Surface subgroups? (already found in some of these groups)
Residual finiteness?
Kazdan’s property T?
Buildings with different links?
Geometric or combinatorial construction instead of a computer
search?
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