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Solving systems of equations is a common problem in mathematical and physical
applications. The solutions of an equation can be interpreted to be roots of a func-
tion, and hence solving a system of equations corresponds to finding the common
roots of the associated functions. The system of functions can be approximated
with polynomials, and the resulting multidimensional polynomial root-finding
problem can be solved with the Cayley resultant method which transforms the
root-finding problem into a polynomial eigenvalue problem. The goal of this thesis
is to implement and analyse the accuracy of a functioning root-finding algorithm
that solves a system of three equations in three variables by using the Cayley
resultant method. To reach this goal, we first discuss background material about
polynomial interpolation techniques, matrix polynomials, polynomial eigenvalue
problems, Chebyshev polynomials, and multidimensional resultants. We explain
how the Cayley resultant method transforms the system of polynomial equations
into a polynomial eigenvalue problem, and consider the conditioning of this trans-
formed problem in relation to the conditioning of the root-finding problem. We
describe in detail how the root-finder is implemented in practice, and character-
ize the accuracy of the implementation by solving example problems as well as
running the algorithm in different arithmetic precisions. These numerical exam-
ples demonstrate in practice the deterioration of the conditioning caused by the
Cayley resultant method, as well as the inability of the implementation to handle
high-degree inputs accurately in a manageable amount of time. We address the
poor numerical accuracy by showing how Newton’s method can be used to polish
inaccurate roots, and explain how future implementations employ domain subdi-
vision in order to handle high-degree inputs accurately. We conclude that while
the Cayley resultant method can lead to poor numerical stability, the implemen-
tation can still yield highly accurate solutions for a wide range of problems with
the help of additional post-processing of the roots via Newton’s method.
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Päiväys: 22. helmikuuta 2021 Sivumäärä: v + 51
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Yhtälöryhmien ratkaiseminen on yleinen ongelma matemaatiikan ja fysiikan so-
velluskohteissa. Yhtälön ratkaisu voidaan tulkita funktion nollakohdaksi, ja näin
ollen yhtälöryhmän ratkaiseminen vastaa funktioryhmän yhteisten nollakohtien
löytämistä. Ryhmä funktioita voidaa approksimoida polynomien avulla, ja näiden
polynomien nollakohdat voidaan ratkaista Cayley-resultanttimenetelmän avul-
la, joka muuttaa ongelman nollakohtien etsinnästä polynomien ominaisarvo-
ongelmaksi. Työn tavoitteena on toteuttaa toimiva nollakohtien ratkaisija, jo-
ka perustuu Cayley-resultanttimenetelmään, ja analysoida toteutuksen antamien
ratkaisujen tarkkuutta. Toteutus pyrkii ratkaisemaan yhteiset nollakohdat kolmen
kolmimuuttujaisen yhtälön yhtälöryhmälle. Päämäärän saavuttamiseksi työssä
käydään läpi taustatietoa polynomien interpoloinnista, matriisipolynomeista,
polynomien ominaisarvo-ongelmista, Chebyshev-polynomeista ja moniulotteisis-
ta resultanteista. Työssä selitetään, miten Cayley-resultanttimenetelmä muut-
taa ongelman nollakohtien löytämisestä polynomien ominaisarvo-ongelmaksi, ja
verrataan muunnetun ongelman kuntolukua alkuperäisen ongelman kuntolu-
kuun. Työssä käydään yksityiskohtaisesti läpi, miten ratkaisin on toteutettu
käytännössä, ja analysoidaan, millä tarkkuudella toteutus löytää erilaisten esi-
merkkiyhtälöryhmien nollakohdat. Lisäksi tarkastellaan aritmeettisen tarkkuu-
den vaikutusta laskettujen ratkaisujen tarkkuuteen. Näiden numeeristen esi-
merkkien avulla empiirisesti osoitetaan Cayley-resultanttimenetelmän aiheutta-
ma heikkeneminen ongelman kuntoluvussa sekä toteutuksen kyvyttömyys ratkais-
ta korkean asteen yhtälöryhmien nollakohtia tarkasti kohtuullisessa aikamäärässä.
Työssä selitetään, miten toteutus käyttää Newtonin menetelmää tarkentamaan
epätarkasti laskettuja nollakohtia ja miten tulevissa toteutuksissa käytetään
määrittelyjoukon osittamista mahdollistamaan korkea-asteisten yhtälöryhmien
nollakohtien ratkaiseminen hyvällä tarkkuudella. Loppupäätelmä on, että vaik-
ka Cayley-resultanttimenetelmä johtaa heikentyneeseen numeeriseen stabiilisuu-
teen, voi toteutus laskea erilaisten yhtälöryhmien nollakohdat hyvinkin tarkasti
hyödyntäen Newtonin menetelmää nollakohtien jälkikäsittelyssä.

Asiasanat: Cayley-resultanttimenetelmä, Chebyshev-kanta, yhtälöiden
ratkaiseminen

Kieli: Englanti
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Chapter 1

Introduction

Root-finding can be defined as the act of finding either zeros of univariate
functions or common zeros of several multivariate functions. The problem
of root-finding is ubiquitous in natural sciences and engineering, and for this
reason is of high interest in a wide range of applications. There are different
methods for root-finding such as homotopy continuation methods [2, 25],
resultant methods [1, 3, 6], and contouring algorithms such as marching
triangles [15]. In this work, we use the Cayley resultant method to find the
common zeros of three trivariate functions. More specifically, the aim is to
find the common zeros of three trivariate complex analytic functions in some
real interval. It is the real roots that often have physical meaning in real-
world applications, and hence they are the roots of interest in many contexts.
For this reason, this thesis focuses on finding the real roots and employs tools
that fit this purpose (e.g. Chebyshev interpolation, see Section 2.1).

The Cayley resultant method has been used to solve the bivariate version of
this problem in [19]. This thesis aims to expand on this work and implement a
root-finding algorithm in the trivariate setting. To our knowledge, no robust
implementation of the trivariate Cayley resultant method has been published
at the time of writing. We anticipate that this work will continue after the
thesis and hopefully lead to a research paper.

1.1 Problem statement

In this thesis, we consider the problem of finding the common real roots of
three trivariate functions f , g, and h. Any root-finding problem in some
real interval can be transformed into a root-finding problem in the interval

1



CHAPTER 1. INTRODUCTION 2

[−1, 1] through a change of variables. Hence, with no loss of generality we
limit each variable to belong to the interval [−1, 1], where the functions f ,
g, and h are possibly complex-valued and assumed to be analytic. In other
words, the problem is to find all triplets (x, y, z) ∈ Ω = [−1, 1]3 s.t.f(x, y, z)

g(x, y, z)
h(x, y, z)

 = 0, (1.1)

where the functions f , g, and h are analytic and possibly complex-valued in
Ω. We further assume that the solution set is zero-dimensional; that is, the
solutions to the problem are isolated. The Cayley resultant method cannot
be used to characterize a higher-dimensional solution set, which becomes
clear in Section 2.3 in which the Cayley resultant method is discussed. For
many real-world applications, zero-dimensionality of the solution set is not
a strong assumption and hence does not undermine the utility of a Cayley
resultant method based root-finding algorithm.

The aim of the thesis is to use the Cayley resultant method to create a func-
tional root-finding algorithm in MATLAB that can solve the given problem
as accurately as possible.

1.2 Structure of the thesis

This thesis consists of six chapters: introduction, background, methods, im-
plementation, numerical results, and conclusion. The chapter following the
introduction is the background chapter, in which the relevant theory for solv-
ing the root-finding problem is explained. This includes theory about polyno-
mial interpolation techniques, matrix polynomials and polynomial eigenvalue
problems, Chebyshev polynomials and the Chebyshev basis. Importantly, this
chapter explains the Cayley resultant matrix and how multidimensional re-
sultants transform a system of polynomial equations into a polynomial eigen-
value problem.

In the methods chapter, we explain how the root-finding problem can be
solved with the theory laid out in the previous chapter. While doing this,
the chapter outlines a plan for a practical implementation of the root-finding
algorithm. Here, we also consider the conditioning of the root-finding prob-
lem as well as how the proposed approach with the Cayley resultant maps
the original problem to another one which is mathematically equivalent but
may have a different condition number. The chapter following the methods
chapter is the implementation chapter, which explains how the root-finding
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algorithm was eventually implemented with a focus on the practical aspects
of the implementation.

In the numerical results chapter, we provide numerical results that character-
ize the accuracy of the implementation. We demonstrate the problems with
the accuracy of the root-finder by considering example problems in which the
Cayley resultant approach results in a higher condition number than what
the original root-finding problem has. To address the issue with inaccuracy,
we show how inaccurate roots can be polished via Newton’s method. We
further demonstrate the need for future work in handling high-degree input
functions as well as run the algorithm in different arithmetic precisions to
explore how varying degrees of precision affect the accuracy of the output.

Finally, we conclude the thesis by summarising the aim, the findings and the
future work in the conclusion chapter.



Chapter 2

Background

This chapter aims to deliver the required theoretical tools to use the Cayley
resultant method to solve the root-finding problem in (1.1). The topics that
require covering can be categorized under three subjects: polynomial interpo-
lation, matrix polynomials, and resultant methods. We follow this structure
in the presentation of the theoretical background, and divide this chapter
into three sections, one to address each of the aforementioned subjects.

2.1 Polynomial interpolation

The goal is to solve the problem in (1.1) by using the Cayley resultant
method, which will be explained in detail in Section 2.3. We will note already
here that resultant methods can be used to find the shared roots of polyno-
mials. Therefore, we need to transform the problem in (1.1) into polynomial
form. To do this, we employ polynomial interpolation in order to approxi-
mate the functions in (1.1) by trivariate polynomials. The problem in (1.1)
then becomes as follows: find all triplets (x, y, z) ∈ Ω s.t.pf (x, y, z)

pg(x, y, z)
ph(x, y, z)

 = 0, (2.1)

where pf , pg and ph are polynomial approximations of the functions f , g and
h, respectively. One way to approximate the system with polynomials is via
Lagrange interpolation.

4



CHAPTER 2. BACKGROUND 5

2.1.1 Lagrange interpolation

This section explains Lagrange interpolation in the form of two theorems.
Theorem 2.1.1 defines Lagrange interpolation, while Theorem 2.1.2 gives a
result for the accuracy of the Lagrange interpolant.

Theorem 2.1.1 (Lagrange interpolation [5, 7])
Let f be a real function that is continuous on some real interval [a, b]. For
any n+1 points x1 < x2 < ... < xn+1 ∈ [a, b], there exists a unique polynomial
Pn of degree less than or equal to n such that

Pn(xi) = f(xi), i = 1, ..., n+ 1.

This polynomial is called the polynomial interpolant of f of order n, and is
given by

Pn(xi) =
n+1∑
i=1

f(xi)Li(x),

where Li(x) are the fundamental Lagrange interpolation polynomials given by

Li(x) =
n+1∏

j=1,j 6=i

x− xj
xi − xj

.

The interpolant Pn defined as in Theorem 2.1.1 agrees with the function f
at every interpolation point, but not necessarily anywhere else. Various sets
of points can be used in performing Lagrange interpolation, and the set of
points that is used determines the resulting polynomial interpolant for the
function. However, not all choices of interpolation points result in an equally
good polynomial approximation. Here, by a “good” interpolant we mean a
polynomial interpolant that does not differ much from f in the uniform norm
in the interval [a, b]. In other words, the “best” interpolant would minimize
the quantity

‖Rn‖ = sup{|f(x)− Pn(x)| : x ∈ [a, b]}.

In fact, we can characterize this quantity via Theorem 2.1.2.

Theorem 2.1.2 (Error of Lagrange interpolant [5, 7])
Let f be as in Theorem 2.1.1. If f is n+ 1 times differentiable in (a,b), then
for all x ∈ [a, b] and for all choices of n+1 interpolation points x1 < x2 <
... < xn+1 ∈ [a, b], there exists ξ ∈ (a, b) s.t. the error between f and the
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polynomial interpolant of order n is

Rn(x) = f(x)− Pn(x) =
fn+1(ξ)

(n+ 1)!

n+1∏
j=1

(x− xj). (2.2)

For equidistant interpolation points, the error Rn tends to exhibit large os-
cillations near the endpoints of the interval. This is referred to as Runge’s
phenomenon, and can lead to a very high value for the maximal discrepancy
‖Rn‖.

The problem of finding the set of n + 1 interpolation points that minimize
the interpolation error ‖Rn‖ is a difficult problem to solve in general as the
minimizing set of nodes depends on the function f . Instead, we attempt to
decrease the intensity of Runge’s phenomenon by choosing the interpolation
points such that

sup

{∣∣∣∣∣
n+1∏
j=1

(x− xj)

∣∣∣∣∣ : x ∈ [a, b]

}
(2.3)

is minimized.

2.1.2 Chebyshev polynomials and Chebyshev nodes

The goal of reducing Runge’s phenomenon by minimizing (2.3) can be achieved
by interpolating the function at the roots of the Chebyshev polynomials.

Definition 2.1.1 (Chebyshev polynomial of the first kind)
The Chebyshev polynomials of the first kind are defined as

Tn(x) = cos
(
n cos−1(x)

)
, x ∈ [−1, 1], n ∈ N.

The set of Chebyshev polynomials {T0, T1, ...} is a degree-graded polynomial
basis of C[x]. The term degree-graded means that Tj has degree j for all
j ∈ N. Although not evident from the definition, this result readily follows
from the following proposition.

Proposition 2.1.3 (Polynomial representation of the Chebyshev polynomi-
als [11])
For n ≥ 2, the Chebyshev polynomials Tn satisfy the recurrence relation

Tn(x) = 2xTn−1 − Tn−2(x),

where T0(x) = 1 and T1(x) = x.
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The roots of the Chebyshev polynomials of the first kind are referred to as
Chebyshev nodes. The Chebyshev nodes of degree n are the roots of the nth
degree Chebyshev polynomial, and are given as [11]

xk = cos

(
2k − 1

2n
π

)
, k = 1, ..., n.

We denote the set of the Chebyshev nodes of degree n by Hn.

Theorem 2.1.4 (Smallest possible uniform norm [11])
Let

xk = cos

(
2k − 1

2(n+ 1)
π

)
, k = 1, ..., n+ 1,

be the elements of Hn+1. The monic polynomial T̃n+1 defined by

T̃n+1(x) =
n+1∏
k=1

(x− xk)

has the smallest possible uniform norm in [−1, 1] in the sense that

||T̃n+1||∞ ≤ ||pn+1||∞

for any other monic polynomial pn+1 of degree n+ 1. Moreover,

||T̃n+1(x)||∞ = 2−n.

It follows from Theorem 2.1.4 that interpolating at the Chebyshev nodes
minimizes (2.3) and yields the desired polynomial interpolant in the interval
[−1, 1]. From this result, it would be straightforward to derive the desired
interpolation points in any interval [a, b] by using an affine transformation
that maps the Chebyshev nodes in the interval [−1, 1] into the interval [a, b].
The resulting interpolation nodes would be yk = b−a

2
xk + a+b

2
, where xk are

the Chebyshev nodes. In this thesis however, we only consider polynomial
interpolation in the interval [−1, 1] as this makes the mathematical treatment
of the topic as well as the practical implementation easier without losing in
generality.

2.1.3 Optimality of interpolation nodes

The aim of reducing Runge’s phenomenon by minimizing (2.3) was motivated
by the problem of finding the set of n+ 1 interpolation points that minimize
the interpolation error ‖Rn‖ of (2.2) for a given function f . This led to
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the choice of the Chebyshev nodes as the interpolation nodes. Although the
Chebyshev nodes do minimize (2.3), it is not clear how well they minimize
the interpolation error ‖Rn‖ of (2.2). The following example demonstrates
that the Chebyshev nodes are not the minimizer of the interpolation error
for all functions f .

Example 2.1.5
Let us approximate the function f(x) = ex with a degree 2 polynomial. Inter-

polating at the Chebyshev nodes H3 = {−
√
3
2
, 0,

√
3
2
} yields a polynomial inter-

polant whose error measured as the uniform norm in the interval [−1, 1] is ap-
proximately 0.0565. Interpolating at competitor nodes S3 = {−0.88, 0, 0.88}
yields a polynomial interpolant whose error is approximately 0.0519. In other
words, the Chebyshev nodes do not minimize the interpolation error for the
function f .

A related problem is to find the set of n+1 interpolation points that minimize
the maximum possible interpolation error ‖Rn‖ over all continuous functions
f . As the goal of this work is to create a generic root-finding algorithm that
can handle different user-specified input functions, minimizing the worst-case
error is a suitable approach as well.

Theoretically, minimizing the worst-case error over all continuous functions
corresponds to minimizing the Lebesgue constant. Although the minimizing
nodes for the worst-case error are not known, it is known that the Lebesgue
constant grows with the degree of the interpolant n as per O(log n) when
the minimizing nodes are used [24, Section 2.5], and that the Chebyshev
nodes yield similar logarithmic growth [24, Section 2.2]. The Chebyshev
nodes are not necessarily the minimizing nodes as the constant factor can be
significantly larger, but they provide a near-optimal choice of interpolation
points that have significant practical benefits (see Section 2.1.4), and their
use is thus well justified.

2.1.4 Interpolation in the Chebyshev basis

There exists a computationally efficient way of performing Lagrange inter-
polation at the Chebyshev nodes which utilizes the Fast Fourier Transform
(FFT). This will naturally lead to a representation of the polynomial inter-
polant in the Chebyshev basis as opposed to the monomial basis.
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2.1.4.1 Univariate case

Theorem 2.1.6 (Interpolation in the Chebyshev basis [17])
Using the Chebyshev nodes of degree n as interpolation points, the resulting
polynomial interpolant of f is given in the Chebyshev basis as

Pn(x) =
n∑
i=0

′
ciTi(x),

where the prime in the notation means that the first term in the summation
is halved. The coefficients in the sum can be computed as

ci(x) =
2

n+ 1

n∑
k=0

f(xk)Ti(xk).

This is equivalent to a discrete Fourier transform of a function g given by

g(θ) = f(cos θ).

Using the same definitions as in Theorem 2.1.6, the theorem tells us that
we can find the coefficients ci in the Chebyshev expansion by computing the
coefficients in the discrete Fourier series of the transformed function g. This
can be done in a computationally efficient way via FFT that has a compu-
tational complexity of O(n log n). In this way, we can perform polynomial
interpolation in the Chebyshev nodes efficiently.

2.1.4.2 Multivariate case

Sometimes it is required to perform a polynomial interpolation for a multi-
variate function. To extend the concept of interpolating a function in the
Chebyshev basis into higher dimensions, we need multidimensional Cheby-
shev nodes that are defined through a Cartesian product construction of
standard Chebyshev nodes.

Definition 2.1.2 (Multidimensional Chebyshev nodes)
Let n ≥ 2 and let Hm1, Hm2, . . . , Hmn be sets of Chebyshev nodes of degrees
m1,m2, . . . ,mn, respectively. The set of n-dimensional Chebyshev nodes as-
sociated with Hm1 , Hm2 , . . . , Hmn is the Cartesian product Hm1×Hm2×· · ·×
Hmn which is denoted by Hm1×m2×···×mn.

Theorem 2.1.6 naturally extends to the multivariate setting, where the mul-
tivariate function is interpolated at multidimensional Chebyshev nodes [9].
Performing n-dimensional interpolation at n-dimensional Chebyshev nodes
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can be done by using the n-dimensional FFT (fftn in MATLAB) to effi-
ciently find the coefficients in the n-dimensional Chebyshev expansion of the
function.

Theorem 2.1.4 also extends to the multidimensional case in a straightforward
manner. In other words, using multidimensional Chebyshev nodes as inter-
polation points minimizes the multidimensional analogue of (2.3) and gives
the desired polynomial interpolant for an n-variate function in the domain
[−1, 1]n. The interpolating polynomial will have a degree less than or equal
to mk − 1 in the kth variable, 1 ≤ k ≤ n.

2.2 Matrix polynomials and polynomial eigen-

value problems

In order to understand in Section 2.3 how the Cayley resultant method trans-
forms a system of polynomial equations into a polynomial eigenvalue prob-
lem, we need to understand some key properties of matrix polynomials and
polynomial eigenvalue problems.

In this writing, a matrix polynomial of degree l refers to a matrix-valued
function A : C → Cm×n s.t. A(x) =

∑l
j=0Ajx

j where A0, ..., Al ∈ Cm×n.
If A(x) is a square matrix polynomial and the leading coefficient matrix Al
is the identity matrix, we call A(x) a monic matrix polynomial. The set of
m × n matrix polynomials over the complex field in an indeterminate x is
denoted by C[x]m×n.

Matrix polynomials can equivalently be seen as matrices with polynomial
elements. In this writing, we use the terms “matrix polynomial” and “poly-
nomial matrix” interchangeably.

Proposition 2.2.1 (Existence of inverse)
For a square matrix polynomial A(x) ∈ C[x]n×n, there exists an inverse ma-
trix polynomial A−1(x) ∈ C[x]n×n s.t. A(x)A−1(x) = I if and only if the
determinant of A(x) is a nonzero constant.

Proof. Let A(x), A−1(x) ∈ C[x]n×n s.t. A(x)A−1(x) = I. As the determinant
is multiplicative, this implies that detA(x) detA−1(x) = 1R. By applying a
Laplace expansion, it can be seen that the determinant of a matrix can be
given as a sum of products of the elements. As all elements of A(x) belong
to C[x], it follows that detA(x) also belongs to C[x]. Moreover, by a similar
reasoning we have that detA−1(x) ∈ C[x]. This implies that detA(x) is a
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unit of C[x]. The only units of C[x] are the nonzero constants. This proves
one direction of the claim.

For the other direction, assume that detA(x) is a nonzero constant. Then,
(detA(x))−1 adj A(x) is an inverse of A(x).

Proposition 2.2.1 a well known result, the proof of which has previously been
discussed for example in [20, p. 16].

Example 2.2.2
Consider the two matrix polynomials

A(x) =

[
1 x
0 1

]
∈ C[x]2×2,

B(x) =

[
x 1
0 x

]
∈ C[x]2×2.

The determinant of A(x) is 1 which is a nonzero constant; hence, A(x) is
invertible. One can check that the matrix polynomial A−1(x) given by

A−1(x) =

[
1 −x
0 1

]
∈ C[x]2×2

satisfies A(x)A−1(x) = A−1(x)A(x) = I and is thus the inverse of the matrix
polynomial A(x).

The determinant of B(x) is x2 which is not a nonzero constant. Hence, B(x)
is not invertible.

Definition 2.2.1 (Eigenvalue)
Let A(x) ∈ C[x]m×n and let C(x) be the field of rational functions over C.
We call λ ∈ C a finite eigenvalue of A(x) if

rankCA(λ) < rankC(x)A(x).

The discussion of infinite eigenvalues of a matrix polynomial is omitted as
only finite eigenvalues are of interest to us in the root-finding problem.

Example 2.2.3
Consider again the two matrix polynomials

A(x) =

[
1 x
0 1

]
∈ C[x]2×2,

B(x) =

[
x 1
0 x

]
∈ C[x]2×2.
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First, we note that

rankC(x)A(x) = rankC(x)B(x) = 2.

The determinant of A(x) is 1 which is a nonzero constant. Hence, A(x) is
full rank for all x ∈ C. This implies that for all values of z ∈ C it holds that

rankCA(z) = rankC(x)A(x),

and the matrix polynomial A(x) has no finite eigenvalues.

For the matrix polynomial B(x), it holds that

B(0) =

[
0 1
0 0

]
∈ C[x]2×2,

which is of rank 1. Hence,

rankCB(0) < rankC(x)B(x),

and 0 is an eigenvalue of B(x).

Definition 2.2.2 (Equivalence)
Two matrix polynomials A(x) ∈ C[x]m×n and B(x) ∈ C[x]m×n are called
equivalent if there exist matrix polynomials E(x) ∈ C[x]m×m and F (x) ∈
C[x]n×n with constant nonzero determinants s.t.

A(x) = E(x)B(x)F (x).

If two matrix polynomials A(x) and B(x) are equivalent, we write A(x) ∼
B(x).

In particular, the finite eigenvalues of equivalent matrix polynomials are the
same. To see this, first note that the square matrix polynomials E(x) and
F (x) of Definition 2.2.2 are full rank over C(x) as their determinants are
not identically zero. Hence, A(x) and B(x) are the same rank over C(x).
Moreover, for all z ∈ C the matrices E(z) and F (z) are full rank as their
determinants are nonzero, and hence A(z) and B(z) have the same rank for
all z ∈ C. It then follows from Definition 2.2.1 that the finite eigenvalues of
the matrix polynomials A(x) and B(x) coincide.

By Theorem 2.2.4 below, every matrix polynomial is equivalent with a specific
type of diagonal matrix polynomial called the Smith normal form.
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Theorem 2.2.4 (Smith normal form [13, Theorem S1.1])
For every matrix polynomial A(x) ∈ C[x]m×n, there exist matrix polynomials
E(x) ∈ C[x]m×m and F (x) ∈ C[x]n×n with constant nonzero determinants
s.t.

E(x)A(x)F (x) = S(x),

where S(x) ∈ C[x]m×n is a diagonal matrix polynomial with r ≤ n non-zero
entries:

S(x) =



s1(x) . . . . . . 0
. . .

... sr(x)
...

... 0
...

. . .

0 . . . . . . 0


.

Moreover, each diagonal element of S(x) divides its successor, that is, si(x) |
si+1(x) for all i = 1, 2, . . . , r − 1. Such a matrix polynomial S(x) is called
the Smith normal form of A(x).

Example 2.2.5
Consider the matrix polynomial

A(x) =

[
1 x
x 2x2

]
∈ C[x]2×2.

The matrix polynomial A(x) can be expressed in terms of its Smith normal
form as

A(x) =

[
1 0
x 1

] [
1 0
0 x2

] [
1 x
0 1

]
,

where the matrix polynomials [
1 0
x 1

]
,

[
1 x
0 1

]
have constant nonzero determinants. This being the case, it also holds that
the matrix polynomial A(x) is equivalent with its Smith normal form

SP (x) =

[
1 0
0 x2

]
.
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The Smith normal form can be used to prove Corollary 2.2.6 relating to the
finite eigenvalues of a regular matrix polynomial, that is, a square matrix
polynomial whose determinant is not identically zero.

Corollary 2.2.6
The finite eigenvalues of a regular matrix polynomial A(x) are the zeros of
its determinant detA(x).

Proof. LetA(x) ∈ C[x]n×n be a regular matrix polynomial, and let S(x) be its
Smith normal form. By using the multiplicative property of the determinant,
it follows that

detA(x) = detE(x) detS(x) detF (x)

for some matrix polynomials E(x) and F (x) s.t. detE(x) = c1 ∈ C and
detF (x) = c2 ∈ C. The equation can then be expressed as

detA(x) = c1c2

n∏
i=1

si(x).

As A(x) is a regular matrix polynomial and hence its determinant is not
identically zero, it follows that its Smith normal form S(x) cannot have
any zero diagonal elements. Hence, S(x) is full rank over C(x), that is,
rankC(x)S(x) = n. The eigenvalues of S(x) are those values of λ ∈ C for
which

rankCS(λ) < rankC(x)S(x) = n.

This happens if and only if detS(λ) = 0. Hence, the eigenvalues of S(x) are
the zeros of detS(x). The finite eigenvalues of equivalent matrices coincide,
and hence the finite eigenvalues of the regular matrix polynomial A(x) are
those of its Smith normal form S(x), that is, the zeros of detS(x). Moreover,
as it holds that

detA(x) = c1c2 detS(x),

the zeros detS(x) are the zeros of detA(x). Hence, the finite eigenvalues of
a regular matrix polynomial A(x) are the zeros of detA(x).

Corollary 2.2.7
λ ∈ C is a finite eigenvalue of a regular matrix polynomial A(x) if and only
if there exists a nonzero vector v such that A(λ)v = 0.

Proof. Let A(x) ∈ C[x]n×n be a regular matrix polynomial, and let λ ∈ C.
By Corollary 2.2.6, the finite eigenvalues of A(x) are the zeros of detA(x).
It is widely known that detA(λ) = 0 if and only if the columns of A(λ) are
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linearly dependent. In other words, detA(λ) = 0 if and only if there exist
γi ∈ C, i = 1, 2, . . . , n such that

n∑
i=1

γia∗,i(λ) = 0,

where a∗,i(λ) denotes the ith column of A(λ), and

v :=

γ1...
γn

 6= 0.

Moreover,

n∑
i=1

γia∗,i(λ) = 0 ⇐⇒ A(λ)

γ1...
γn

 = 0.

This shows that detA(λ) = 0 if and only if there exists a nonzero v ∈ Cn

s.t. A(λ)v = 0. In other words, λ is a finite eigenvalue of A(x) if and only if
there exists a nonzero v ∈ Cn s.t. A(λ)v = 0.

The preceding corollaries give two characterizations for a finite eigenvalue of
a regular matrix polynomial that are simpler to work with than the generic
definition given by Definition 2.2.1.

Definition 2.2.3 (Linearization)
Let A(x) ∈ C[x]n×n with degA(x) > 1. A linear matrix polynomial L(x) ∈
C[x](n+p)×(n+p) with degL(x) = 1 is called a linearization of the matrix poly-
nomial A(x) if

L(x) ∼
[
A(x) 0

0 Ip

]
.

From the fact that eigenvalues of equivalent matrix polynomials coincide,
it follows that the eigenvalues of a matrix polynomial A(x) coincide with
the eigenvalues of its linearization. In this way, we can characterize the
eigenstructure of a higher degree matrix polynomial A(x) by a linear matrix
polynomial of larger size.

Let A(x) =
∑l

j=0Ajx
j ∈ C[x]n×n be a matrix polynomial of degree l. Its

linearization is of degree one and can thus be represented as L(x) = L1x−L0.
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One example of a linearization of A(x) is given by defining L1 and L0 as [12]

L1 =

[
I(l−1)n 0

0 Al

]
and

L0 =


0 I . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 I
−A0 −A1 . . . −Al−2 −Al−1

 .
If we define

Ã1:l−1 =
[
A1 . . . Al−2 Al−1

]
,

then we can write the linearization more compactly as

L1x− L0 =

[
I(l−1)n 0

0 Al

]
x−

[
0(l−1)n×n I(l−1)n
−A0 −Ã1:l−1

]
. (2.4)

The linearization L1x − L0 in (2.4) is called the companion pencil of the
matrix polynomial A(x).

The intention is to find the eigenvalues of the matrix polynomial A(x) by
finding the eigenvalues of its linearization. The eigenvalues of the lineariza-
tion L1x−L0 can be computed by solving the generalized eigenvalue problem
L0v = L1xv. This can be done in a backward stable manner (see Section 3.4)
by using the QZ-algorithm implemented in MATLAB’s eig function [26].

In some situations, it is needed to find a linearization of a matrix polynomial
expressed in the Chebyshev basis (see Section 2.1.2). We can express the
matrix polynomial A(x) in the Chebyshev basis as A(x) =

∑l
j=0A

′
jTj(x).

It is possible to construct a linearization of A(x) expressed in terms of the
coefficient matrices A′j. One example of this type of linearization is [28]

L′1x− L′0 =

[
A′l 0
0 I(l−1)n

]
x

−1

2


−A′l−1 In − A′l−2 −A′l−3 . . . −A′0
In 0 In

. . . . . . . . .

In 0 In
2In 0

 . (2.5)
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The linearization L′1x−L′0 in (2.5) is called the colleague pencil of the matrix
polynomial A(x).

In this work, we will mostly use the colleague pencil for linearization. It was
recently proved for scalar polynomials, which can be seen as 1 × 1 matrix
polynomials, that linearizing via the colleague pencil yields a backward sta-
ble method to compute the roots [18]. At the time of writing, we are not
aware whether this result extends to computing the eigenvalues of matrix
polynomials of larger size.

2.3 Resultant methods

Hidden variable resultant methods are a class of methods to solve polynomial
root-finding problems. Our goal is to solve the trivariate problem given in
(2.1); hence, we will motivate the use of resultant methods in the context of
this trivariate system.

2.3.1 The use of resultants in root-finding

The first step in hidden variable resultant methods is hiding the last variable,
which is done by considering a trivariate polynomial p(x, y, z) as a bivariate
polynomial p(x, y) with z-dependent coefficients. If p has maximal degree n
in each variable, then

p(x, y, z) =
n∑

i1,i2,i3=0

αi1i2i3x
i1yi2zi3 =

n∑
i1,i2=0

αi1i2(z)xi1yi2 = p[z](x, y).

In principle, any variable could be hidden, but to simplify the exposition, we
will always hide the last variable.

We will first find all z∗ ∈ C s.t. the bivariate polynomials pf [z
∗], pg[z

∗] and
ph[z

∗] of (2.1) have at least one common root. Then, we find all y∗ ∈ C s.t.
the univariate polynomials pf [y

∗, z∗], pg[y
∗, z∗] and ph[y

∗, z∗] have at least one
common root. The univariate root-finding problems can then be treated as
polynomial eigenvalue problems of 1 × 1 matrix polynomials, which can be
solved through the linearization given in (2.4) or (2.5). Linearization trans-
forms the problem into a generalized eigenvalue problem which can be solved
by using a standard QZ-algorithm. In this way, we can find the solutions one
component at a time.

The remaining question then is, how can we find all z∗ ∈ C s.t. the bivariate
polynomials pf [z

∗], pg[z
∗] and ph[z

∗] have at least one common root, or find
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all y∗ ∈ C s.t. the univariate polynomials pf [y
∗, z∗], pg[y

∗, z∗] and ph[y
∗, z∗]

have at least one common root? To do this, we need a multidimensional
resultant [10, Ch. 13].

Let us denote the ring of d-variate polynomials with complex coefficients of
maximal degree n in variables x1, ..., xd by Cn[x1, ..., xd].

Definition 2.3.1 (Multidimensional resultant as defined in [21])
Let d ≥ 2 and n ≥ 0. A functional T : (Cn[x1, ..., xd−1])

d → C is a multidi-
mensional resultant if, for any set of d polynomials q1, ..., qd ∈ Cn[x1, ..., xd−1],
T (q1, ..., qd) is a polynomial in the coefficients of q1, ..., qd and T (q1, ..., qd) = 0
if and only if ∃x∗ ∈ C̃d−1 s.t. q1(x

∗)
...

qd(x
∗)

 = 0,

where C̃ denotes the extended complex plane (see Section 2.3.3 for explanation
of roots at infinity).

As we are considering a system of three polynomials, we are interested in
the case d = 3 in Definition 2.3.1. Notice that pf [z], pg[z], ph[z] ∈ Cn[x, y] for
some n ∈ N. If, for some multidimensional resultant T : (Cn[x, y])3 → C it
holds that T (pf [z], pg[z], ph[z]) = 0, then ∃(x∗, y∗) ∈ C̃2 s.t.pf [z](x∗, y∗)

pg[z](x∗, y∗)
ph[z](x∗, y∗)

 = 0.

In other words, the zeros of the three-dimensional resultant give us the desired
values for z∗. As we are looking for solutions in Ω = [−1, 1]3, we can discard
all zeros outside Ω. In a similar way, we can use a two-dimensional resultant
to find the desired values for y∗.

However, using multidimensional resultants in the described way leads to a
practical problem: it can be very numerically unstable to directly compute
the zeros of a multidimensional resultant. For numerical stability, it is rec-
ommended to consider a matrix whose determinant is a multidimensional
resultant (see [21]). Such a matrix is called a multidimensional resultant ma-
trix. After hiding a variable, the entries of the multidimensional resultant
matrix become univariate polynomials in the hidden variable. The zeros of
the resultant are then the eigenvalues of the multidimensional resultant ma-
trix polynomial, which can be computed by using a more numerically stable
method such as the QZ-algorithm.
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In the introduction to this thesis, we made a remark that the Section 2.3
would shed light on why the solution set to the problem is assumed to be
zero-dimensional. The fact that the eigenvalues of a specific type of matrix
polynomial are used to yield the desired roots makes this evident. As the
amount of eigenvalues of a matrix polynomial of a finite size is always fi-
nite, the method clearly cannot capture the solutions when the roots are not
isolated.

In the next section, we show how to construct a specific type of multidimen-
sional resultant matrix, called the Cayley resultant matrix.

2.3.2 The Cayley resultant

The Cayley resultant [4] can be defined through the Cayley function.

Definition 2.3.2 (Cayley function as defined in [21])
Let q1, ..., qd ∈ Cn[x1, ..., xd−1] be polynomials that all have the same degree in
each variable. The Cayley function associated with polynomials q1, ..., qd is a
multivariate polynomial in 2d−2 variables, denoted by fCayley = fCayley(q1, ..., qd),
and is given by

fCayley =

(
d−1∏
i=1

(si − ti)

)−1
det


q1(s1, s2, ..., sd−1) . . . qd(s1, s2, ..., sd−1)
q1(t1, s2, ..., sd−1) . . . qd(t1, s2, ..., sd−1)

...
. . .

...
q1(t1, t2, ..., td−1) . . . qd(t1, t2, ..., td−1)

 .

By applying the Laplace expansion for the Cayley function, we can see that
the degree of fCayley is the same in both sk and td−k for all 1 ≤ k ≤ d − 1.
Let us denote the degree corresponding to both sk and td−k by τk. Based on
the Laplace expansion, it also holds that τk ≤ kn − 1 for all 1 ≤ k ≤ d − 1.
Let {φ0, φ1, ...} be a degree-graded polynomial basis (i.e. φj has degree j for
all j) of C[x]. The Cayley function can be expanded as

fCayley =

τ1∑
i1=0

· · ·
τd−1∑
id−1=0

τd−1∑
j1=0

· · ·
τ1∑

jd−1=0

Ai1,...,id−1,j1,...,jd−1

d−1∏
k=1

φik(sk)
d−1∏
k=1

φjk(tk),

(2.6)

where A is a tensor of size (τ1+1)×· · ·×(τd−1+1)×(τd−1+1)×· · ·×(τ1+1).

The Cayley resultant matrix is defined as an unfolding of the tensor A in the
following way (see [23, Sec. 2.3] for an unfolding of a tensor).
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Definition 2.3.3 (Cayley resultant matrix as defined in [21])
Let {φ0, φ1, ...} be a degree-graded basis of C[x], and let q1, ..., qd ∈ Cn[x1, ..., xd−1]
have the same degree in each variable. The Cayley resultant matrix associated

with q1, ..., qd with respect to the basis {φ0, φ1, ...} is the
(∏d−1

k=1(τk + 1)
)
×(∏d−1

k=1(τk + 1)
)

matrix formed by the unfolding of the tensor A in (2.6).

This matrix is denoted by RCayley.

As for any other resultant matrix, it holds that the determinant of the Cayley
resultant matrix, detRCayley, is identically zero if and only if the system of
polynomial equations q1(x1, ..., xd−1)...

qd(x1, ..., xd−1)

 = 0

has a solution in C̃d−1 (i.e. infinite roots are also registered).

2.3.3 Roots at infinity

To understand what it means to have a root at infinity, we need to consider
homogeneous coordinates. The set of homogeneous coordinates corresponding
to a point (x1, x2, ..., xd−1) ∈ Cd−1 is any set of d coordinates of the form
(x1X, x2X, ..., xd−1X,X), where X ∈ C\{0}.

Next, we will see how homogeneous coordinates and the roots of a polynomial
are connected. For a polynomial p(x1, x2, ..., xd−1) of total degree n, we can
define a homogeneous polynomial in d variables as

p̃(x1, x2, ..., xd−1, X) = Xn p
(x1
X
,
x2
X
, ...,

xd−1
X

)
.

The polynomial p̃ has the same degree n in each term. It is straightforward
to see that if x∗ = (x∗1, x

∗
2, ..., x

∗
d−1) is a root of p, then any set of homogeneous

coordinates corresponding to x∗ is a root of p̃. The converse is also true: if

x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
d−1, X

∗) is a root of p̃, where X∗ 6= 0, then
(
x̃∗1
X∗
,
x̃∗2
X∗
, ...,

x̃∗d−1

X∗

)
is a root of p. However, it is also possible that p̃ has a nonzero root x̃∗ =
(x̃∗1, x̃

∗
2, ..., x̃

∗
d−1, X

∗) with X∗ = 0. In such a case, we say that the polynomial
p has a root at infinity associated with the root x̃∗ = (x̃∗1, x̃

∗
2, ..., x̃

∗
d−1, 0) (or

any of its nonzero scalar multiples) of the homogeneous polynomial p̃. We
say that two or more polynomials share a root at infinity if their associated
homogeneous polynomials share a nonzero root with dth component equal to
zero.
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Example 2.3.1
Consider the bivariate polynomial p(x, y) = x2 + y2 − 1 whose roots define
the unit circle. The corresponding homogeneous polynomial is p̃(x, y, z) =
x2 + y2 + z2. It is easy to verify that the point (1, i, 0) is a root of p̃. Hence,
p has a root at infinity.



Chapter 3

Methods

With the help of the tools presented in Chapter 2, we now propose a method
to solve the problem in (1.1). The details of each step of the method are
explained in this chapter while keeping in mind the ultimate aim of creating
a MATLAB function that computes the solutions to the problem. At the end
of the chapter, we consider how the presented method affects the conditioning
of the root-finding problem. We begin the chapter by giving an overall idea
of the proposed method in the form of an outline.

3.1 Method outline

First, we interpolate the system in the Chebyshev basis to receive a polyno-
mial approximation. Then, we hide the z-variable and compute the Cayley
resultant matrix polynomial for the polynomial system. We compute the
eigenvalues of this matrix polynomial through linearization. These eigenval-
ues correspond to the z-components of the solutions. We substitute these
back into the polynomials, and apply the Cayley resultant method now to
the resulting bivariate systems. In this way, we compute the shared roots
one component at a time.

3.2 Polynomial interpolation

As explained in Section 2.3, the Cayley resultant can be used to solve a
polynomial root-finding problem. Hence, we will first transform the system
of functions into a system of polynomials by using the Lagrange interpolation,
which will yield a polynomial approximation of the system (this choice is in

22
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fact temporary; see Section 4.2). The problem in (1.1) then becomes the one
given in (2.1), where pf , pg and ph are the polynomial approximations of the
functions f , g and h, respectively.

The orders of the polynomial interpolants pf , pg and ph will be user-specified.
The user will input maximal degrees nf , ng and nh for the polynomials pf , pg
and ph, respectively. The interpolation nodes are then the three-dimensional
Chebyshev nodes H(nf+1)×(nf+1)×(nf+1), H(ng+1)×(ng+1)×(ng+1), and H(nh+1)×

(nh+1)×(nh+1) for pf , ph, and pg, respectively.

Polynomial interpolation at the Chebyshev nodes provides a reasonably good
interpolant, as explained in Section 2.1.3. An efficient implementation of this
is through the FFT, which yields the polynomial expansion in the Chebyshev
basis, as explained in Theorem 2.1.6. To perform this in practice, we use the
fftn function in MATLAB.

Now, pf , pg and ph belong to Cn[x, y, z] for some n. In order to use the Cayley
resultant method, the degrees need to be the same in both x and y of each
polynomial (see Definition 2.3.3). Notice that we do not have this condition
for z as this will be the first hidden variable. In the scope of this thesis, this
limitation is addressed by adding small perturbations to the polynomials. In
other words, we add to pf the monomials xnf , ynf and znf each multiplied
by some very small but nonzero value, and we do the same for pg and ph
(now with monomials xng , yng , zng and xnh , ynh , znh , respectively). By abuse
of notation, we call these perturbed polynomials pf , pg and ph, and now they
have the same degree in both x and y (and in z, which was not required; the
perturbation was done in each variable for even treatment of the variables).
These polynomials represent a slightly different system; hence, the solutions
only approximate those of the original polynomial problem.

For future implementations, we will try to remove the condition on the de-
grees of x and y in order to be able to deal with any possible input without
the need for perturbation of the polynomials. This requires more thorough
understanding of the Cayley resultant matrix and its construction. For exam-
ple, the suggestions in [16] might remove the need to have such a restriction
on the degree structures of the polynomials.
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3.3 Solving the polynomial root-finding prob-

lem

We can construct the Cayley resultant matrix polynomial for the polynomial
system in (2.1) by first hiding the variable z. In this case d = 3, and the
Cayley function is a polynomial in four variables:

fCayley =
1

(s1 − t1)(s2 − t2)
det

pf [z](s1, s2) pg[z](s1, s2) ph[z](s1, s2)
pf [z](t1, s2) pg[z](t1, s2) ph[z](t1, s2)
pf [z](t1, t2) pg[z](t1, t2) ph[z](t1, t2)

 ,

(3.1)

which can be expanded as

fCayley =

τ1∑
i1=0

τ2∑
i2=0

τ2∑
j1=0

τ1∑
j2=0

Ai1,i2,j1,j2 [z]Ti1(s1)Ti2(s2)Tj1(t1)Tj2(t2),

where A[z] is a tensor of size (τ1 + 1) × (τ2 + 1) × (τ2 + 1) × (τ1 + 1) with
entries in C[z].

In practice, we perform this expansion by interpolating the multivariate poly-
nomial fCayley in an efficient way via FFT. By our earlier observations in Sec-
tion 2.3, the degree of fCayley in both s1 and t2 is τ1 ≤ n− 1, and the degree
in both s2 and t1 is τ2 ≤ 2n − 1, where n is the maximum of the degrees
nf , ng and nh. In order to interpolate fCayley, it is required to consider the
degree in the hidden variable z as well. By applying the Laplace expansion,
it is quite straightforward to see that the degree of fCayley in z is τ3 ≤ 3n. In
fact, the values for all of τ1, τ2 and τ3 can be readily computed from nf , ng
and nh, and one sees that

τ1 = max{nf , ng, nh} − 1,

τ2 = max{nf + ng, nf + nh, ng + nh} − 1,

τ3 = nf + ng + nh.

Interpolating fCayley in the five-dimensional Chebyshev nodes H(τ1+1)×(τ2+1)×

(τ2+1)×(τ1+1)×(τ3+1) interpolates fCayley exactly; in other words, the polynomial
interpolant is equal to fCayley. Lagrange interpolation at the Chebyshev
nodes can be performed via FFT (see Section 2.1.4). In this way, we are able
to compute the tensor A[z] efficiently.

The decision to compute fCayley through polynomial interpolation as op-
posed to an analytical calculation was done based on two qualities that are
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important for any numerical method: efficiency and accuracy. Polynomial
interpolation is efficient by virtue of FFT, and we know that polynomial
interpolation will yield an exact polynomial interpolant given enough inter-
polation nodes. Hence, polynomial interpolation is a satisfactory choice for
expanding the Cayley function. It may also be possible to compute the Cay-
ley function analytically, but as of now, we are not aware of how to do this.
For a future implementation, the prospect of expanding the Cayley function
analytically will be considered in more detail.

There is one practical problem in the interpolation of fCayley, however. When-
ever it happens that s1 = t1 or s2 = t2 in (3.1), the denominator becomes
zero and fCayley is not defined. This must happen for some of the interpo-
lation points in H(τ1+1)×(τ2+1)×(τ2+1)×(τ1+1)×(τ3+1) when the Chebyshev nodes
H(τ1+1) and H(τ2+1) overlap. However, we know that it is possible to divide
the determinantal expression in (3.1) by (s1 − t1)(s2 − t2), and to be pre-
cise, fCayley in fact denotes this resulting polynomial. Hence, fCayley should
be continuous even at points where s1 = t1 or s2 = t2. We can compute
the values at these points by using the L’Hospital’s rule on (3.1) and then
evaluating the resulting expression in these problematic points. With this
additional step, we are able to perform the interpolation and compute the
tensor A[z]. The Cayley resultant matrix polynomial RCayley[z] is then the
((τ1 + 1)(τ2 + 1)) × ((τ1 + 1)(τ2 + 1)) matrix with entries in C[z] formed by
the unfolding of the tensor A[z].

The Cayley resultant matrix polynomial RCayley[z] is singular if and only if
∃(x∗, y∗) ∈ C̃2 s.t. pf [z](x∗, y∗)

pg[z](x∗, y∗)
ph[z](x∗, y∗)

 = 0.

Hence, the eigenvalues of the matrix polynomial RCayley[z] give all the z-
components of the solutions to (2.1). Since we use the Chebyshev basis
for RCayley[z], it is more convenient to compute the eigenvalues through the
colleague pencil given in (2.5). The computation of the eigenvalues is done by
applying the QZ-algorithm (the eig function in MATLAB) to the generalized
eigenvalue problem corresponding to this linearization.

Let Sz be the set that contains all the z-components of the solutions. In
other words, Sz = {z∗ ∈ Ω : RCayley[z

∗] = 0}. We will substitute all z∗ ∈ Sz
back into the equations and next hide the variable y. In other words, we will
consider the following problem: for all z∗ ∈ Sz, find all the values of y such
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that pf [z∗, y](x)
pg[z

∗, y](x)
ph[z

∗, y](x)

 = 0

has a solution. We can solve the y-components in a very similar way as the
z-components. This time, we need to consider three subproblems of finding
all the values of y such that the following three equations have a solution:(

pf [z
∗, y](x)

pg[z
∗, y](x)

)
= 0;

(
pf [z

∗, y](x)
ph[z

∗, y](x)

)
= 0;

(
pg[z

∗, y](x)
ph[z

∗, y](x)

)
= 0.

All of these problems can be solved with the Cayley resultant matrix in a
familiar way, only this time with d = 2 which simplifies the construction of
the resultant matrix. Let then the set Sz,y consist of the tuples (z∗, y∗) that
solve all the above equations. In other words, for all the tuples (z∗, y∗) ∈ Sz,y,
the system pf [z∗, y∗](x)

pg[z
∗, y∗](x)

ph[z
∗, y∗](x)

 = 0 (3.2)

has a solution. Now, we have three univariate polynomials left whose roots
we need to find. We can treat each polynomial as a 1×1 matrix polynomial,
and use the linearization in (2.5) to find their roots. All the values of x s.t.
all the three polynomials in (3.2) are simultaneously zero then give us the
x-coordinates of the solutions. The final solution set Sz,y,x then contains all
the triplets (z∗, y∗, x∗) s.t. pf (x∗, y∗, z∗)pg(x

∗, y∗, z∗)
ph(x

∗, y∗, z∗)

 = 0.

In other words, the elements of Sz,y,x give the solutions to the polynomial
approximation of the initial problem given in (2.1).

The resultant method may also yield infinite roots (see Definition 2.3.1).
Infinite roots are not of interest to us and all computed roots corresponding
to an infinite root can be ignored.



CHAPTER 3. METHODS 27

3.4 Numerical considerations

The aim of this section is to characterize the error in the output of the Cayley
resultant method based root-finder. This error is defined as the difference
between the computed output and the exact solution to the problem. We
call this difference the (absolute) forward error.

When the computed solution differs from the exact solution to the prob-
lem, we can view this inaccurate solution as an exact solution to a different
problem. The size of this difference in the problems is referred to as the (ab-
solute) backward error. An algorithm is called backward stable if the norm
of the backward error is bounded above by the product of machine preci-
sion and a moderate constant. By “moderate constant” we usually mean
some low-degree polynomial in the input size with coefficient of order 1 in
the monomial basis [14]. The numerical methods used in the root-finding
algorithm are backward stable numerical methods, such as the QZ-algorithm
for solving the generalized eigenvalue problem [26].

The backward error together with the condition number yields a bound on
the forward error given by

forward error . condition number× backward error, (3.3)

which comes from a first order expansion for the worst-case forward error
[14]. When the backward error is small, this first order expansion delivers
a useful rule of thumb for how the forward error behaves. As we employ
backward stable numerical methods, the backward error is small, although
at least of the size of machine epsilon ε (2−52 in MATLAB). However, in order
to give a bound for the forward error, we also need to consider the behaviour
of the condition number.

3.4.1 Condition number

Let S and D be two Banach spaces. Given a problem whose solution s ∈ S
depends on some data d ∈ D, we can characterize how changes in d affect
the value for s. Denote the change in d by δd and the resulting change in
s by δs. The absolute condition number tells us the upper bound, to first
order, for δs given δd. The absolute condition number is [21]

lim
ε→0

sup
‖δd‖≤ε

‖δs‖
‖δd‖

,

where ‖·‖ is some chosen norm defined in S or D, depending on the argument.
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A related concept is the relative condition number, which is given by [21]

lim
ε→0

sup
‖δd‖≤ε

‖δs‖
‖δd‖

‖s‖−1

‖d‖−1
.

The relative condition number would give a more relevant measure of the
sensitivity of the problem to perturbations as it takes into account the relative
sizes of the error and the perturbation. However, it is often easier to derive
results for the absolute condition number, and indeed there are more precisely
formulated results for how the absolute condition number associated with the
Cayley resultant method can behave (see [21]). As a result, we will primarily
consider the absolute conditioning of the problem. Theorem 3.4.1 lets us
characterize the absolute condition number of a simple root as a solution to
the root-finding problem with the Jacobian matrix. A root is called simple
if the Jacobian is invertible at the root [19].

Theorem 3.4.1 (Absolute condition number of a simple root (see [19]))
Let (x∗, y∗, z∗) ∈ C3 be a simple root of the polynomial root-finding problem
given in (2.1). The absolute condition number of (x∗, y∗, z∗) associated with
root-finding is ‖J(x∗, y∗, z∗)−1‖2, where the Jacobian is given by

J(x, y, z) =


∂pf
∂x

(x, y, z)
∂pf
∂y

(x, y, z)
∂pf
∂z

(x, y, z)
∂pg
∂x

(x, y, z) ∂pg
∂y

(x, y, z) ∂pg
∂z

(x, y, z)
∂ph
∂x

(x, y, z) ∂ph
∂y

(x, y, z) ∂ph
∂z

(x, y, z)

 .
Definition 3.4.1 (Absolute condition number of a finite eigenvalue of a reg-
ular matrix polynomial [19, 27])
Let z∗ be a finite eigenvalue of a regular matrix polynomial R(z). The con-
dition number of z∗ as an eigenvalue of R(z) is defined by

κ(z∗, R) = lim
ε→0+

sup

{
1

ε
min |ẑ − z∗| : det(R̂(ẑ)) = 0

}
,

where the supremum is taken over the set of matrix polynomials R̂(z) such
that

max
z∈[−1,1]

‖R̂(z)−R(z)‖2 ≤ ε.

Theorem 3.4.2 (Worsening of condition (see [21]))
There exist pf , pg and ph in (2.1) with a simple root (x∗, y∗, z∗) ∈ C3 such
that

κ(z∗, RCayley[z]) ≥ ‖J(x∗, y∗, z∗)−1‖32
and ‖J(x∗, y∗, z∗)−1‖2 > 1.
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By contrasting Theorem 3.4.2 with Theorem 3.4.1, we can conclude that the
condition number for finding an eigenvalue of RCayley[z] can be more than the
cube of the condition number for finding a root of the associated root-finding
problem. Hence, the Cayley resultant method transforms the root-finding
problem into an eigenproblem of possibly poorer condition number.

Theorem 3.4.2 does not guarantee that this drop in conditioning takes place,
but it shows that it might for some systems. For an example of such a system,
let Q be a 3×3 orthonormal matrix such that QQT = I, and for 1 ≤ i, j ≤ 3
let qij denote the element in position (i, j) of Q. Let u < 1, and consider the
polynomial systempf (x, y, z)

pg(x, y, z)
ph(x, y, z)

 :=

x2 + u(q11x+ q12y + q13z)
y2 + u(q21x+ q22y + q23z)
z2 + u(q31x+ q32y + q33z)

 = 0. (3.4)

It is straightforward to see that 0 ∈ C3 is a root of this polynomial system.
The Jacobian at 0 is J(0) = uQ. Therefore, the absolute condition number
associated with the root 0 is ‖J(0)−1‖ = u−1. It can be shown that the abo-
sulte condition number for computing the eigenvalue z∗ = 0 of the associated
Cayley resultant matrix polynomial RCayley[z] is κ(z∗, RCayley[z]) = u−3 [21].
Hence, this type of system exhibits the same worsening of condition as shown
possible by Theorem 3.4.2. We will try to replicate this behaviour in practice
in Section 5.2 by testing the root-finder with systems where the transformed
problem suffers from worse conditioning.

3.4.2 Missing a root

The absolute condition number tells us to first order how much small pertur-
bations in the data can alter the solutions in the worst case. We can use the
absolute condition number together with the absolute backward error to give
a bound for the absolute forward error as expressed in (3.3). The absolute
backward error is at least of the order of the machine precision ε (2−52 in
MATLAB). Hence, if the condition number is larger than ε−1, the error in
the computed root can be of order 1 or higher. In this case, the root can be
mapped outside the interval [−1, 1] which would result in missing the root
entirely.

We saw in Section 3.4.1 that the condition number of the root-finding problem
can get raised to the third power when it is transformed into an eigenvalue
problem of the Cayley resultant matrix polynomial. Hence, it can happen
that the condition number of some root z∗ associated with the root-finding



CHAPTER 3. METHODS 30

problem is naturally lower than ε−1, and becomes higher than this after
raising to the third power. In such a case, the root z∗ might be missed entirely,
while the original condition number guarantees that this would not happen
in a numerically stable root-finding algorithm. If the condition number of
the original problem were higher than ε−1 to begin with, one could not blame
the method for missing the root. However, it is inappropriate to miss a root
when the condition number of the original problem does not permit this.

Even if the solution is not missed entirely, its computed value might be
significantly inaccurate due to poor conditioning. To address this problem,
we will employ the Newton’s method to polish the computed roots, although
more sophisticated methods can also be used (see [19]).

3.4.3 Spurious solutions

A well-known problem with resultant based methods is the occurrence of
spurious solutions. The resultant can be numerically singular even when the
polynomials pf , ph and pg do not share a root in the desired domain (see [19,
Section 7.6]). An easy solution to this problem is to substitute the candidate
solutions back into the system and leave out those that do not yield the value
zero for each polynomial.



Chapter 4

Implementation

In the process of implementing the root-finder in practice, we were able to
adopt the method presented in Chapter 3 to a great degree. However, often
new ideas emerge and unexpected problems arise during the practical im-
plementation of a plan, and the plan has to be modified accordingly. This
chapter discusses these new ideas and how unexpected problems were ad-
dressed in the final implementation.

4.1 Choice of interpolation points for the Cay-

ley function

When the Chebyshev nodes H(τ1+1) and H(τ2+1) overlap, the denominator of
the Cayley function in (3.1) becomes zero at some of the interpolation points.
The idea presented in Chapter 3 was to use L’Hospital’s rule to evaluate the
Cayley function at these problematic points. However, using the L’Hospital’s
rule in the polynomial interpolation of fCayley causes a practical problem:
computing the derivatives consumes most of the computational time, and
makes the root-finder impractically slow.

In this thesis, we primarily focus on the accuracy of the root-finder; hence,
the discussion of the running time in this section will be done in a rather loose
manner. In order to get an idea of how different implementations compare
to each other, all values of running time presented in this section refer to
how long it takes for the algorithm to run on the same computer that we can
access at the time of writing.

When L’Hospital’s rule is involved, computing a single component of the

31
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solutions for a system of degree 5 already takes a high amount of time (hun-
dreds of seconds depending on the complexity of the input and how many
interpolation points overlap). This implies that solving systems of high de-
gree is impractical if not infeasible with this type of implementation, even if
there is some room for optimizing the running time.

The slowness is caused by the evaluation of the derivatives of fCayley at
the points where the Chebyshev nodes Hτ1+1 and Hτ2+1 overlap. A way to
circumvent this problem is to choose the interpolation points in such a way
that these two sets of Chebyshev points are disjoint. In other words, we
will use the set of five-dimensional Chebyshev points Hκ1×κ2×κ2×κ1×(τ3+1) as
interpolation points, where κ1 ≥ τ1 + 1 and κ2 ≥ τ2 + 1, and Hκ1 and Hκ2

are disjoint. As we are not reducing the amount of interpolation points, the
resulting polynomial interpolant will still interpolate fCayley exactly. The
resulting tensor A[z] in (2.6) will be of size κ1 × κ2 × κ2 × κ1. The tensor

Ã[z] given by

Ã[z](i1, i2, i3, i4) = A[z](i1, i2, i3, i4), 1 ≤ i1, i4 ≤ τ1 +1, 1 ≤ i2, i3 ≤ τ2 +1

is a tensor of size (τ1 + 1)× (τ2 + 1)× (τ2 + 1)× (τ1 + 1) which leaves out the
additional zero entries of A[z] caused by the addition of interpolation points.
We can then define the Cayley resultant matrix polynomial as the unfolding
of the tensor Ã[z] in the standard way given in Definition 2.3.3.

In order to make Hκ1 and Hκ2 disjoint, we choose κ1 = n and κ2 = 2n, where
n denotes the maximum of the user-specified maximal degrees nf , ng and nh.
Now, the Chebyshev nodes Hκ1 and Hκ2 are disjoint (proof in Appendix A),
and there is no need to use the L’Hospital’s rule in evaluating fCayley. When
there is no need to evaluate the derivatives of the Cayley function, the root-
finder is able to compute one of the components of the solutions for a system
of degree 5 in a few seconds, as opposed to the hundreds of seconds that it
took the previous implementation to perform the same computation.

In the new implementation of the root-finder, solving the eigenvalue prob-
lem becomes the bottleneck for higher degrees (approximately degree 5 and
higher). Solving the eigenvalue problem is the bottleneck in the 2D prob-
lem solved in [19] as well. In terms of running time, this is the best we can
do. Solving the eigenvalue problem is done by employing the QZ-algorithm
implemented in the eig function in MATLAB whose running time we can-
not affect. Hence, in an ideal implementation the rest of the algorithm runs
faster than the eig function, in which case the eigenvalue problem becomes
the bottleneck.
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4.2 Omitting the polynomial interpolation of

the system

The resultant methods can only be used to solve polynomial root-finding
problems, and hence the plan proposed in Chapter 3 included finding poly-
nomial interpolants pf , pg and ph for functions f , g and h. The plan was then
to use these polynomial interpolants in evaluating values of the Cayley func-
tion in order to perform a polynomial interpolation for the Cayley function
itself. The key observation is that even if the Cayley function is not initially
in polynomial form, its interpolant will be, which allows for the construction
of the Cayley resultant matrix polynomial even if the initial form of the Cay-
ley function is not polynomial. This allows for the use of the functions f , g
and h directly in the Cayley function in place of the polynomial interpolants
pf , pg and ph. By using the functions f , g and h directly, we will be finding

a polynomial interpolant for some function f̂Cayley resembling the original
Cayley function, which is given by

f̂Cayley =
1

(s1 − t1)(s2 − t2)
det

f(s1, s2, z) g(s1, s2, z) h(s1, s2, z)
f(t1, s2, z) g(t1, s2, z) h(t1, s2, z)
f(t1, t2, z) g(t1, t2, z) h(t1, t2, z)

 .

We make sure that the polynomial interpolant of f̂Cayley will have high enough
degrees in each variable by perturbing the functions f , g and h in the same
way we perturbed the polynomials pf , pg and ph (see Section 3.2).

The polynomial interpolant of this type of modified Cayley function f̂Cayley is
not necessarily equal to the Cayley function constructed by using the poly-
nomial approximations of the system functions. Both of these approaches
approximate the original problem, and the remaining question is, is it prefer-
able to have the truncation error at (1) the polynomial approximation of the
system, and then proceed to interpolate the Cayley function exactly, or (2)
polynomial interpolation of the Cayley function?

The motivation for skipping the polynomial interpolation of the system func-
tions is that the fewer manipulations we perform to the input data, the better.
However, we do not present mathematically formulated results that would
support this decision. Hence, in future work beyond this thesis, we will
need to investigate further the mathematical consequences of the decision of
omitting the polynomial interpolation of the system.

For simplicity, we make the polynomial interpolant of the modified Cay-
ley function f̂Cayley to have the same degree structure as the Cayley func-
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tion fCayley constructed through polynomial interpolants of the system func-

tions. In other words, we choose the interpolation points for f̂Cayley to
be the same points as for fCayley: the five-dimensional Chebyshev nodes
Hκ1×κ2×κ2×κ1×(τ3+1). The resulting polynomial interpolant pf̂Cayley

is not nec-

essarily equal to the original function f̂Cayley, but is a polynomial approxi-
mation. We can express the interpolant pf̂Cayley

as

pf̂Cayley
=

κ1−1∑
i1=0

κ2−1∑
i2=0

κ2−1∑
j1=0

κ1−1∑
j2=0

Âi1,i2,j1,j2 [z]Ti1(s1)Ti2(s2)Tj1(t1)Tj2(t2),

and we again define the tensor Ã[z] of size (τ1 + 1) × (τ2 + 1) × (τ2 +
1) × (τ1 + 1) through the tensor Â[z] as explained in Section 4.1. We then
compute the Cayley resultant matrix polynomial as the ((τ1 + 1)(τ2 + 1))×
((τ1 + 1)(τ2 + 1)) matrix with entries in C[z] formed by the unfolding of the
tensor Ã[z]. Then, we proceed to solve the problem similarly to what was
outlined in Section 3.3.

When the functions f , g and h are low-degree polynomials, skipping the
polynomial interpolation of the system does not change how the root-finder
works. In order to characterize the numerical consequences of this change in
practice, we consider non-polynomial systems in Section 5.3.

4.3 Solving fewer subproblems

The Cayley resultant method is used to compute the shared roots one com-
ponent at a time as explained in Section 3.3. However, in order to avoid
unnecessary computations, the second and third component of the solutions
are computed with only one bivariate subproblem and one univariate sub-
problem (as opposed to three bivariate subproblems and three univariate
subproblems as described in Section 3.3). The resulting solutions computed
in this way might not be roots of all of the functions, but only some of
them. The roots that other subproblems do not share are then eliminated by
substituting every candidate solution into the original system of equations
and only keeping those that actually solve the system. If the resulting value
has a modulus larger than the threshold 10−12 for any function, the root is
discarded. This also discards any other spurious solutions that the Cayley
resultant method might yield.
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Numerical results

In this chapter, numerical results are presented. We characterize the accuracy
of the root-finder by considering various example systems as well as running
the algorithm in different arithmetic precisions. Some of the example systems
we consider exhibit worsened conditioning of the transformed problem (see
Section 3.4.1). We demonstrate the need for domain subdivision, and show
how inaccurate roots can be polished by using Newton’s method.

5.1 Example with three spheres

Consider a system of equations that describes three spheres. The first sphere
is centered around the point ( 1

2
, 1
2
, 0) and has radius 1√

2
. The second sphere

is centered around the point (−1
2
, 1
2
, 0) and has radius 1√

2
, and the third

sphere is centered around the point (0, 0, 0) and has radius 1
2
. This system

of equations is given byf(x, y, z)
g(x, y, z)
h(x, y, z)

 :=

(x− 1√
2
)2 + (y − 1√

2
)2 + z2 − 1

2

(x+ 1√
2
)2 + (y − 1√

2
)2 + z2 − 1

2

x2 + y2 + z2 − 1
4

 = 0,

and represents a root-finding problem, albeit a rather simple one as the
functions are low-degree polynomials. It is straightforward to check that the
only intersection points of these spheres are (0, 1

2
,
√
3
4

) and (0, 1
2
,−
√
3
4

). The
root-finder is able to find both roots, and the error in the computed roots is
of order 10−15. The error is computed as the distance, given by the 2-norm,
between the numerically computed root and the analytically computed root.
The accuracy in the computed roots seems promising as the error is not much
larger than the machine epsilon ε (roughly 10−16 in MATLAB).

35
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5.2 Examples of weakened conditioning

In this section, we analyse three systems of equations where the transformed
problem has an increased condition number as explained in Section 3.4.1.
Each system is constructed based on (3.4) and hence has (0, 0, 0) as a shared
root, while the eigenvalue problem associated with finding the z-component
of the root has a condition number κ = u−3.

The condition number for the original root-finding problem is κ = u−1, and
hence for some values of u it happens that the condition number of the
transformed problem is higher than ε−1, the inverse of the machine epsilon,
while the condition number of the original problem is not. This can lead to
the method missing a root when it should not (see Section 3.4.2), which is
undesirable behaviour. The aim of this section is to see whether this happens
in practice.

Let the following set of functions be called System 1:
f1(x, y, z) = x2 + u 1√

3
(x+ y + z)

g1(x, y, z) = y2 + u
(
x
√

2
3
− y 1√

6
− z 1√

6

)
h1(x, y, z) = z2 + u 1√

2
(y − z).

Let the following set of functions be called System 2:
f2(x, y, z) = x2 + ux

g2(x, y, z) = y2 + u
(
y 1√

2
+ z 1√

2

)
h2(x, y, z) = z2 + u

(
y 1√

2
− z 1√

2

)
,

and finally, let the following set of functions be called System 3:
f3(x, y, z) = x2 + u

(
x
√
3

2
+ y

√
3
4

+ z 1
4

)
g3(x, y, z) = y2 + u

(
−x1

2
+ y 3

4
+ z

√
3
4

)
h3(x, y, z) = z2 + u

(
−y 1

2
+ z

√
3
2

)
.

In numerical computations, (0, 0, 0) might be an unusually easy root to find.
Hence, we shift the variables x, y and z by x0, y0 and z0, respectively, drawn
from a uniform distribution in the interval [−1, 1]. We evaluate the accuracy
of the implementation by computing the z-component of this shifted root
(x0, y0, z0). We do no compute all the components of the root for practical
reasons: the running time is smaller and the code is easier to manage.
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The error in the z-component of the root was computed for all u ∈ {10−i : i =
0, 1, . . . , 16}. This was repeated 104 times with new x0, y0 and z0 generated in
every iteration. The averages of the error for each value of u were computed.
The results are shown in Figure 5.1.

Figure 5.1: Inaccuracy of the z-component of the root (x0, y0, z0) as a function
of the parameter u for the shifted Systems 1, 2, and 3.

The behaviour of error in Systems 1 and 3 is almost identical. System 2
follows a similar trend with slight variation in the height and location of the
inaccuracy peak. In all of the three systems, the inaccuracy in the computed
root increases as the value for u decreases, up until u reaches approximately
the value 10−4 for Systems 1 and 3, and the value 10−5 for System 2. At
these inaccuracy peaks, the error is approximately 10−3 for Systems 1 and
3, and 10−4.5 for System 2. When the value for u decreases even further, the
error starts decreasing and is of order 10−7 when u = 10−16 for all systems.

The fact that the inaccuracy starts to stagnate and stops growing as u de-
creases can be curious considering that the condition number κ = u−3 keeps
increasing. One possible explanation for this stagnation behaviour can be
attributed to the quadratic terms in the systems. The condition number is
based on a first-order approximation of the system in the vicinity of the so-
lution, and the derivative of the quadratic terms become zero at the solution
(x0, y0, z0). Hence, the quadratic terms do not influence the condition num-
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ber, although in practice, they do contribute to the system significantly when
the perturbation has a similar order of magnitude as ε and when u becomes
small enough. However, this explanation is merely a tentative guess, and
more effort will be put into finding the correct explanation of this behaviour
in the future.

With small values of u, the condition number becomes larger than the inverse
of the backward error, ε−1, which causes the bound for the forward error to
be of order 1 or higher. It was expected that this could cause the root to
be entirely missed. However, we are not able to observe this behaviour in
Figure 5.1 as the inaccuracy in the root is of order 10−3 at worst. In this case,
it seems that merely a high condition number does not guarantee that the
solution is inaccurate. Therefore, it still remains an open question whether
the algorithm misses roots for some systems.

However, the condition number of the original root-finding problem is u−1,
and so the root-finding problem should not exhibit as high inaccuracy as 10−3

when u = 10−4. This claim follows from the upper bound for the forward
error which can be computed as backward error times condition number
as expressed in (3.3). The backward error is approximately the machine
epsilon ε ≈ 10−16, and so for u = 10−4, the upper bound becomes εu−1 ≈
10−12, which is much smaller than the observed error of order 10−3. Hence,
this example shows that the conditioning is indeed worse in the transformed
problem (the absolute conditioning in the transformed problem is u−3, and
for that reason at u = 10−4 we have an upper bound εu−3 ≈ 10−4 which is
close to the error we observe).

5.3 Non-polynomial example, domain subdi-

vision and Newton’s method

In this section, the aim is to compare the numerical accuracy of a root-finder
that omits the polynomial interpolation of the system, and a root-finder that
first finds polynomial interpolants for f , g and h and then computes fCayley
by using these interpolants (see Section 4.2). We also demonstrate the need
for domain subdivision, and show how inaccurate roots can be polished via
Newton’s method.
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5.3.1 Omitting the system interpolation

Let us consider the following set of functions:
f(x, y, z) = cos(2πx) cos(2πy) cos(2πz)

g(x, y, z) = y

h(x, y, z) = x2 + y2 + z2 − 1.

The polynomial interpolation of the functions is done by utilising the chebfun
package in MATLAB, which can be used to represent every function as a
trivariate polynomial expressed in the Chebyshev basis to roughly 15 digits
of relative accuracy in the domain [−1, 1]3. For the function f , this requires
a polynomial interpolant that has a degree 28 in each x, y and z.

The original idea was to interpolate the Cayley function exactly based on
the degrees of the polynomial approximations of the system functions. The
degree structure of the polynomial interpolant of the Cayley function is then
determined by the maximum of the degrees of the polynomial approxima-
tions, denoted by n (see Section 4.1). For large degrees, solving the eigenvalue
problem takes an impractically high amount of time. For this problem, n = 6
is the highest value for the maximal degree of the polynomial interpolants
that allows the algorithm to solve the eigenvalue problem in a convenient
amount of time. Hence, we use chebfun to approximate the system func-
tions with polynomials that have a maximal degree n = 6 in each variable,
instead of a maximal degree 28 that would be required in order to represent
the functions to 15 digits of relative accuracy (this causes a large truncation
error; Section 5.3.2 addresses this point). In the no-system-interpolation de-
sign, we use the same value n = 6 to determine the degree structure of the
polynomial interpolant of the Cayley function.

It can be calculated by hand that the set of common roots to the set of
functions is{(
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We define the error in the output as the 2-norm of the difference between the
numerically computed root and the exact root. In the no-system-interpolation
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design, the errors in the numerically computed roots are in the range be-
tween 10−2 and 10−1. These errors remain similarly distributed in the same
range when we perform the same computation by first finding polynomial
interpolants for f , g and h and then computing fCayley by using these inter-
polants. This implies that skipping the interpolation of the system does not
significantly weaken or improve the accuracy of the root-finder. However,
individual examples like these do not constitute reliable empirical evidence,
especially in the absence of theoretical results supporting the claim. The nu-
merical consequences of skipping the polynomial interpolation of the system
is something that will be more closely analysed for the future implementa-
tions of the root-finder.

5.3.2 Domain subdivision

Using a low-degree approximant for a function that would require an inter-
polant of high degree will surely introduce a large truncation error. This
effect is demonstrated by the fact that the difference between the function
f and its degree 6 approximant is of order 1 in the uniform norm in the
domain [−1, 1]3. The high error in the computed roots is likely the result of
this effect. This issue can be solved by subdividing the domain into small
enough regions so that a local approximant of degree 6 achieves 15 digits of
relative accuracy in each subdomain. These local approximants can then be
used to solve roots locally. This approach is described in [19] for the bivariate
problem. In order to accurately handle inputs requiring a high-degree inter-
polant, domain subdivision will be adopted for the trivariate root-finder in
future implementations. Thus, in addition to investigating the effect of omit-
ting the polynomial interpolation of the system, this example demonstrates
that using a low-degree approximant globally can hinder the performance,
and motivates the implementation of domain subdivision in the future.

5.3.3 Newton’s method

For the problem under consideration, it was observed that the error is in
the range between 10−2 and 10−1. It is likely that such a high inaccuracy is
caused by truncation error and that it can be reduced with domain subdivi-
sion. However, it is also possible to polish the computed solutions through
Newton’s method.

Newton’s method is an iterative method that under some assumptions pro-
duces successively better approximations that converge to a root [8, 22].
Given some initial guess (x0, y0, z0) ∈ C3, Newton’s method finds the next
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iterate (xi+1, yi+1, zi+1) based on the current value (xi, yi, zi) asxi+1

yi+1

zi+1

 =

xiyi
zi

−

∂f
∂x

(x, y, z) ∂f
∂y

(x, y, z) ∂f
∂z

(x, y, z)
∂g
∂x

(x, y, z) ∂g
∂y

(x, y, z) ∂g
∂z

(x, y, z)
∂h
∂x

(x, y, z) ∂h
∂y

(x, y, z) ∂h
∂z

(x, y, z)


−1 f(xi, yi, zi)

g(xi, yi, zi)
h(xi, yi, zi)

 .
Characterization of the convergence rate as well as the conditions for con-
vergence are given by the Newton-Kantorovich theorem. Loosely speaking,
the Newton-Kantorovich theorem states that the convergence is quadratic
if the initial guess is close enough to the root; the functions are sufficiently
smooth; and the root is simple (i.e. the Jacobian is invertible at the root),
while linear convergence is possible under milder assumptions [8, 22].

Using the inaccurate roots given by the algorithm as the initial guesses,
Newton’s method makes all the computed roots exact to machine precision
in four iterations. This demonstrates the possibility of polishing inaccurate
roots as long as they are not entirely missed, and highlights the risk of missing
a root as the largest numerical concern.

5.4 Accuracy in various arithmetic precisions

In order to gain insight on the numerical stability of the algorithm, we will
investigate how running the algorithm in various precisions affects the accu-
racy of the output. We use the shifted System 1 from Section 5.2 since we
already were able to verify that the algorithm can give inaccurate roots for
this system. Similar to Section 5.2, the root whose accuracy we measure is
(x0, y0, z0), where x0, y0 and z0 are drawn from a uniform distribution in the
interval [−1, 1].

As the system is polynomial and hence can be interpolated exactly, the algo-
rithm should not introduce any truncation errors. Thus, the only source of
error should be rounding errors that are affected by the arithmetic precision.
Hence, the error should decrease by one order of magnitude when adding one
more digit.

We use variable-precision accuracy (vpa function in MATLAB) to alter the
arithmetic precision. The computation of the Cayley function was done ana-
lytically for this example due to practical problems with using vpa in conjunc-
tion with the fftn function in MATLAB. The computation of the eigenvalues
of the Cayley resultant matrix polynomial is the most numerically unstable
part of the algorithm, and hence this experiment will still give insight on the
numerical behaviour of the implementation.
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When we compute the eigenvalues of the Cayley matrix polynomial, we mul-
tiply the eigenvalue problem by random orthonormal matrices U and V s.t.
the eigenvalue problem L0w = λL1w becomes UL0V w = λUL1V w, where
L1λ− L0 is the Colleague linearization of the Cayley resultant matrix poly-
nomial. We do this in order to prevent the eigenvectors of this eigenvalue
problem from having an unnaturally simple structure that could make the
eigenvalues particularly easy to compute and in this way decrease the in-
accuracy in the output. One example of such a structure is having many
zero-valued components.

We ran the algorithm in 16, 32 and 64 significant digits. The error in the
z-component of the root was computed for all u ∈ {10−i : i = 0, 1, . . . , 32}
for each arithmetic precision. This was repeated 50 times with new shifts
x0, y0 and z0 and new random orthonormal matrices U and V generated in
every iteration. The averages of the error for each value of u were computed
for every arithmetic precision. The results are shown in Figure 5.2.

Figure 5.2: Inaccuracy of the z-component of the root as a function of the
parameter u computed in three different arithmetic precisions: 16, 32 and 64
significant digits.

Increasing the amount of digits by n should improve the accuracy of the
solutions by n orders of magnitude. We can see this behaviour in Figure 5.2
for u ≥ 10−6 when the error has not yet started to stagnate for any of the
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arithmetic precisions. Until the stagnation starts to take place, the error
increases in a cubic fashion as u decreases for each arithmetic precision.
Theory predicts this behaviour as the condition number for the solution is
κ = u−3.

Changing the arithmetic precision affects the location and the value of the
highest inaccuracy. The error starts to stagnate when it reaches the same
order of magnitude that the value for u has. With 16 digits, this happens
when both the error and u reach approximately the value 10−6; with 32
digits, this happens when both the error and u reach approximately the
value 10−10; and with 64 digits, this happens when both the error and u
reach approximately the value 10−18. Increasing the amount of digits by 16
seems to decrease the highest inaccuracy, as well as the value for u at which
this peak is reached, by four orders of magnitude.

All of the linear terms in the system are scaled by u, while the quadratic
terms are not. It may be that for this reason, the quadratic terms begin
to dominate when the error reaches the same order of magnitude that the
value for u has. This would explain why the stagnation begins when the
error reaches the value of u, and would also support the suggestion from
Section 5.2 that the stagnation behaviour might be caused by the quadratic
terms in the system.

As the value for u decreases after reaching the peak inaccuracy, the accuracy
starts increasing significantly faster with 64 digits than for 32 digits. A sim-
ilar difference in the rate at which the accuracy changes is not as noticeable
between 16 and 32 digits.

5.5 Summary of numerical results

Section 5.1 gave an example of a low-degree root-finding problem that the
implementation can solve close to machine precision. However, in Section 5.2
we saw that the error in the computed solutions for three different systems
were significantly higher than what is permitted by the condition number of
the solution to a standard root-finding problem. The behaviour of the error as
a function of the parameter u seemed to be in line with the theoretical result
that the condition number would get cubed as a result of using the Cayley
resultant method, apart from the fact that the error started to stagnate after
reaching a peak value for some value of u even though the condition number
continued to increase.

The observations in Section 5.4 were consistent with the observations of Sec-
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tion 5.2. It was observed that the error in the computed root of System 1
increases in a cubic manner as the parameter u decreases before reaching
the peak inaccuracy for all three different arithmetic precisions. This implies
that the condition number indeed is cubed, and supports the idea that the
Cayley resultant method causes a worsening in the condition of the solutions.
The stagnation behavior of the error occurred for all arithmetic precisions
when the error reached a value close to the value of u, which is likely a fea-
ture of this particular example system, and not an intrinsic feature of the
implementation.

Section 5.3 showed that skipping the system interpolation does not always
have a significant impact on the accuracy of the computed solutions. This
topic will be investigated further for future implementations of the root-
finder. The section also demonstrated the need for domain subdivision in
order to handle high-order inputs with decent accuracy. This will be included
in the root-finding algorithm in the future.

It is concluded that the implementation does not exhibit ideal numerical sta-
bility as the Cayley resultant method can cause a deterioration in the condi-
tioning. However, yielding inaccurate solutions is not a significant limitation
of the algorithm as it is possible to improve the accuracy of the computed
roots by applying the Newton’s method as seen in Section 5.3. It is still an
open question under what conditions, if any, the implementation can miss a
root entirely.



Chapter 6

Conclusion

The aim of this thesis consisted of three main parts: (1) to explain how
the Cayley resultant method can be used in solving trivariate root-finding
problems; (2) to implement a functioning root-finder in MATLAB based on
the proposed method; and (3) to characterize the numerical accuracy of the
implementation through theoretical as well as practical results.

The aim (1) was reached to a satisfactory degree. Reaching (1) required us to
cover background knowledge in polynomial interpolation techniques, matrix
polynomials and polynomial eigenvalue problems, Chebyshev polynomials
and the Chebyshev basis. It was also described how the Cayley resultant
transforms a system of polynomial equations into a polynomial eigenvalue
problem.

The aim (3) was reached to an adequate degree with some room for fu-
ture work. We outlined how the Cayley resultant method transforms the
root-finding problem into a problem of worse conditioning, and were able to
demonstrate this in practice. We saw how using global low-degree approxi-
mants without employing domain subdivision can lead to a high truncation
error. Further exploration is needed in trying to determine whether the algo-
rithm can miss a root entirely under some conditions, and whether omitting
the polynomial interpolation of the system is numerically beneficial.

Based on the numerical results, we conclude that the aim (2) was reached
to some degree with plenty of room for future work. The implementation
is able to solve some root-finding problems close to machine precision, while
it can be highly inaccurate for other problems. The algorithm suffers from
two major sources of error: the worsening of the conditioning of the problem
caused by the Cayley resultant method, and a large truncation error for
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high-degree input functions.

To increase the accuracy, the implementation introduces additional post-
processing of inaccurately computed roots via Newton’s method, which can
greatly enhance the accuracy of the roots. The ability to polish any root
that is found suggests that the largest concern for the performance of the
implementation is the possibility of missing a root entirely. The problem
with large truncation errors for high-degree inputs can be addressed via do-
main subdivision. This is an essential part of the algorithm that will be
implemented in the future.

One aspect to consider for future implementations is how to handle inputs of
any degree. In the current implementation, the construction of the Cayley
resultant matrix requires perturbing the polynomial system with suitable
monomials. For future implementations of the algorithm, we will consider
alternative methods to handle any possible input.
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Appendix A

Disjointness of Hn and H2n

Let q1, q2, and q3 be trivariate polynomials that have the same degree in
every variable. Let n be the maximum of these degrees. The Cayley function
defined based on the polynomials q1, q2, and q3 is

fCayley =
1

(s1 − t1)(s2 − t2)
det

q1(s1, s2) q2(s1, s2) q3(s1, s2)
q1(t1, s2) q2(t1, s2) q3(t1, s2)
q1(t1, t2) q2(t1, t2) q3(t1, t2)

 .

The degree of the Cayley function in s1 and t2 is less than or equal to n− 1,
and in s2 and t1 it is less than or equal to 2n− 1. Thus, using n points for s1
and t2 and 2n points for s2 and t1 interpolates the polynomial fCayley exactly.

One complication for the numerical interpolation of the Cayley function is
the fact that when s1 and t1 or when s2 and t2 are equal, the determinant
and the divisor (s1− t1)(s2− t2) become zero at the same time. In such cases
L’Hospital’s rule would need to be employed. However, if we use Chebyshev
points as the interpolation points, then we can use Proposition A.0.1 to
conclude that the divisor can never be zero, and thus L’Hospital’s rule is not
needed. This follows from the fact that when the sets of interpolation points
for si and ti are disjoint, si− ti is always nonzero at all interpolation points.

Proposition A.0.1
Let n ∈ Z+. Let Hn be the set of n Chebyshev points, and let H2n be the set
of 2n Chebyshev points. The sets Hn and H2n are disjoint.

Proof. The elements of Hn are the roots of the Chebyshev polynomial of the
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first kind of degree n. These roots Hk
n are

Hk
n = cos

(
2k − 1

2n
π

)
, k = 1, 2, ..., n.

Likewise, the elements of H2n are

Hk
2n = cos

(
2k − 1

4n
π

)
, k = 1, 2, ..., 2n.

We notice that the argument of cosine is always in the interval [0, π]. In
this interval, cosine is strictly decreasing. Hence, any two sets of Chebyshev
points are disjoint if and only if the corresponding sets of arguments of cosine
are disjoint. Let us refer to the elements of these sets as xkn and xk2n, where

xkn =
2k − 1

2n
π, k = 1, 2, ..., n,

and

xk2n =
2k − 1

4n
π, k = 1, 2, ..., 2n.

We can further ignore the multiplication by π, as multiplying all elements
of the two sets by a nonzero constant does not affect the disjointness of the
sets. We call these new sets yn and y2n such that

ykn =
2k − 1

2n
, k = 1, 2, ..., n,

and

yk2n =
2k − 1

4n
, k = 1, 2, ..., 2n.

We want to show that ysn 6= yt2n ∀s = 1, 2, ..., n; t = 1, 2, ..., 2n. Let us prove
this by contradiction.

Assume that ∃s, t ∈ Z+ such that yns = y2nt . Then

2s− 1

2n
=

2t− 1

4n
.

After multiplying both sides by 4n, we have that

2(2s− 1) = 2t− 1.

We note that the left side is always an even number, and the right side is
always odd. Hence, the equality cannot hold, and ysn 6= yt2n ∀s, t ∈ Z+. This
proves that the sets yn and y2n are disjoint, which further proves that the
sets of roots Hk

n and Hk
2n are disjoint.
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