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Preface

These lecture notes cover basics of linear algebra from the standpoint of matrix computations:
general vector spaces and linear maps are not in the focus of attention, but the primary objects
of interest are matrices and (column) vectors that can directly be given as inputs to a computer.
The students are expected to have basic knowledge about matrices; for example, the material
presented during any of the courses MS-A00XX Matrix Algebra is sufficient. Many of the required
fundamental tools are also reviewed in these notes.

The three Chapters 1, 2 and 3 correspond, respectively, to the three main themes of the
lectures:

(1) Solvability and stability of linear systems Ax = b.

(2) Eigenvalue problems Av = λv and their fundamental applications.

(3) Least squares problems, their geometric interpretation and related matrix decomposi-
tions.

For simplicity and notational convenience, Chapters 1 and 3 consider real vectors and matrices,
even though the extension to the complex case would be straightforward. However, Chapter 2
touches upon the complex extension that cannot be avoided in the treatment of eigenvalue prob-
lems.

Matrices and subspaces are denoted by capital letters (e.g., A or E), vectors by bolded lower
case letters (e.g., x or b) and scalars by standard lowercase letters (e.g., α or aij). In particular,
the components of a vector x ∈ Rn are xj , j = 1, . . . , n. However, the zero scalar and the zero
vector of Rn are both denoted simply as 0. The Cartesian basis vectors for Rn are e1, e2, . . . , en
and the identity matrix is denoted as

I :=
�
e1, e2, . . . , en

�
∈ Rn×n.

We will frequently use such a notation to write matrices in terms of their column vectors. The
positive integers n and m are reserved for spatial dimensions and i, j, k, l ∈ N0 are used as generic
indices.
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CHAPTER 1

Linear systems

Let A ∈ Rm×n and b ∈ Rm. In this chapter, we focus on the following simple problem: Find
x ∈ Rn such that

(1) Ax = b.

To be more precise, we tackle the following questions:

(1) Is the problem (1) solvable? Is the solution unique?

(2) How much does the solution x change if A or b is perturbed slightly?

(3) How accurately can (1) be solved using a computer?

Before starting our analysis by considering the unique solvability of (1), let us make a couple
of fundamental definitions that will be indispensable in what follows.

Definition 0.1. The linear span of the vectors q1, . . . , qk ∈ Rn is the set

span(q1, . . . , qk) :=
�
z ∈ Rn

�� z =

k�

j=1

αjqj for some α ∈ Rk
�
.

Moreover, q1, . . . , qk ∈ Rn are called linearly independent if

k�

j=1

αjqj = 0 ∈ Rn

is equivalent to α = 0 ∈ Rk.

If one stacks the vectors q1, . . . , qk ∈ Rn as the columns of a matrix (as we will do frequently),

(2) Q =
�
q1, q2, . . . , qk

�
∈ Rn×k,

then obviously

(3) span(q1, . . . , qk) =
�
z ∈ Rn

�� z = Qα for some α ∈ Rk
�
.

Moreover, q1, . . . , qk are linearly independent if and only if

(4) Qα = 0 ⇐⇒ α = 0,

i.e., Qα ∈ Rn vanishes if and only if α ∈ Rk does.

1. Solvability of linear systems

The main aim of this section is to study the existence and uniqueness of a solution to (1).
These properties can be characterized in terms of the nullspace and the range of the matrix A. In
the following, we will denote the columns of A by a1,a2, . . . ,an ∈ Rm (cf. (2)).

Definition 1.1. Let A ∈ Rm×n. The range of A is the set

(5) R(A) =
�
y ∈ Rm | y = Ax for some x ∈ Rn

�
= span(a1, . . . ,an) ⊂ Rm

and the nullspace of A is the set

N(A) = {x ∈ Rn | Ax = 0} ⊂ Rn.
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8 1. LINEAR SYSTEMS

The sets R(A) and N(A) are closed under addition and scalar multiplication. Indeed, if
x,y ∈ N(A), then

A(αx+ βy) = αAx+ βAy = 0,

meaning that also αx + βy ∈ N(A) for any α,β ∈ R. Similarly, if x,y ∈ R(A), i.e. x = Az and
y = Aw for some z,w ∈ Rn, then

A(αz + βw) = αAz + βAw = αx+ βy,

i.e., αx+ βy ∈ R(A) for any α,β ∈ R. This means that the subsets R(A) ⊂ Rm and N(A) ⊂ Rn

are actually subspaces.

Definition 1.2. Let E ⊂ Rn be nonempty and such that for any x,y ∈ E and α ∈ R

x+ y ∈ E and αx ∈ E.

Then E is called a subspace of Rn. (In particular, Rn itself as well the trivial subspace {0} are
subspaces of Rn.)

The range of the matrix A induces a condition for the existence of a solution to the equation (1).
By definition, for any b ∈ R(A), there exists z ∈ Rn such that

b = Az.

On the other hand, if (1) has a solution, then obviously b ∈ R(A). To sum up, there exists a
solution to the linear system (1) if and only if b ∈ R(A) = span(a1, . . . ,an).

The uniqueness of a solution is studied via the homogeneous problem: Find y ∈ Rn such that

Ay = 0 ⇐⇒ y ∈ N(A).

If the homogeneous equation only has the trivial solution y = 0, a solution to the linear system
(1) is unique (if one exists).

Lemma 1.1. Assume that (1) has a solution. The solution is unique if and only if N(A) = {0}
is the trivial subspace.

Proof. Let x ∈ Rn be a solution of (1) and assume first that N(A) is nontrivial, i.e., there
exists 0 �= z ∈ N(A). Then,

A(x+ z) = Ax+Az = Ax = b,

meaning that we have constructed a second, distinct solution x+ z �= x. This proves the ‘only if’
part of the claim.

In order to prove the ‘if part’, assume that N(A) = {0} and let x1,x2 ∈ Rn both be solutions
to (1), i.e.,

Ax1 = b and Ax2 = b.

Subtracting the two equations gives

A(x1 − x2) = 0.

Hence, x1 − x2 ∈ N(A), which means by assumption that x1 − x2 = 0, and thus all solutions to
(1) must be the same. �

To summarize the above observations, the problem (1) has a unique solution if and only if

(6) b ∈ R(A) and N(A) = {0}.
Moreover, the proof of Lemma 1.1 indicates that if x ∈ Rn is a solution of (1), then x+ z is also
a solution for any z ∈ N(A), which characterizes the possible nonuniqueness related to (1).

It turns out that the combined condition (6) can be true for all b ∈ Rm only if n = m, i.e.,
only if A is a square matrix. This claim can be proved by relating the dimensions of N(A) and
R(A) to each other and to n. To this end, we need the concept of basis.

Definition 1.3. Let E ⊂ Rn be a subspace. A basis of E is a set of linearly independent
vectors {q1, . . . , qk} ⊂ Rn such that

E = span(q1, . . . , qk).



1. SOLVABILITY OF LINEAR SYSTEMS 9

With the notation of the above definition, for each x ∈ E there exists a coordinate vector
α ∈ Rk such that

(7) x =
k�

i=1

qiαi ⇐⇒ x = Qα,

where Q = [q1, . . . , qk] ∈ Rn×k is a matrix with the basis vectors as its columns. As the basis
vectors are by definition linearly independent, such a coordinate presentation is unique. Indeed, if
(7) holds for two coordinate vectors α, α̃ ∈ Rk, then subtracting the corresponding representations
yields

Q(α− α̃) = 0 =⇒ α− α̃ = 0

by virtue of (4).
Take note that there exists infinitely many different bases for any nontrivial subspace {0} �=

E ⊂ Rn. However, it can be proven that each basis of a subspace E has the same number of basis
vectors (the proof is omitted).

Definition 1.4. Let E ⊂ Rn be a subspace and {q1, . . . , qk} ⊂ Rn its basis. Then the
dimension of E is defined to be

dim(E) = k = #{q1, . . . , qk}.
For a matrix A ∈ Rm×n, dim(R(A)) is called the rank of A. (In particular, the dimension of Rn

itself is n since, e.g., the Cartesian basis vectors e1, . . . , en form its basis. No other subspace of
Rn has the maximal dimension n.)

In the following example two different bases are introduced for the same subspace.

Example 1.1. Let

A =



1 1
0 −1
2 2


 .

The column vectors of A are clearly linearly independent and so they form a basis for R(A) ⊂ R3;
see (5). Let

w1 =



1
0
2


 , w2 =



0
1
0




be another pair of vectors in R3 and denote W = [w1,w2] ∈ R3×2.
To study if w1 and w2 also form a basis for R(A), one has to check two conditions:

• Are the vectors w1 and w2 linearly independent? (This is obviously true in the considered
setting.)

• Can any y ∈ R(A) be represented as a linear combination of w1 and w2? (This is not
quite obvious.)

The latter question can be answered by first introducing a generic element of R(A), i.e. y = Az
for some z ∈ R2, and then trying to express it as a linear combination of w1 and w2. In other
words, one must check if for any z ∈ R2, there exists x ∈ R2 such that

Wx = x1w1 + x2w2 = Az,

that is, 

1 0
0 1
2 0


x =



1 1
0 −1
2 2


 z.

Gaussian elimination gives 

1 0
0 1
0 0


x =



1 1
0 −1
0 0


 z,
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and thus x1 = z1 + z2 and x2 = −z2 provides the needed solution. In consequence, {w1,w2} is a
basis of R(A). (Note that we did not need to separately check whether w1 and w2 belong to R(A)
because we knew to begin with that the dimension of R(A) is two.)

We start the actual discussion on the relationship between the dimensions of R(A) and N(A)
with another example in R3.

Example 1.2. Let

A =




1 0 1
0 2 2
−1 1 0


 .

The nullspace of A can be computed by solving the equation

(8) Ax = 0.

Using Gaussian elimination, it is straightforward to deduce that the solutions to (8) are exactly
the scalar multiples of

x =



−1
−1
1


 , i.e., N(A) =

�
x ∈ R3 | x = s[−1,−1, 1]T for some s ∈ R

�
.

Hence, the dimension of N(A) is one.
Recall that

R(A) = {y ∈ R3 | y = Ax for some x ∈ R3},
which is the linear span of the column vectors of A. To deduce the dimension of R(A), we introduce
a special basis for R3, namely

v1 =



−1
−1
1


 , v2 =



1
0
0


 , v3 =



0
1
0


 .

The first vector v1 is a basis for N(A), and the main idea is to choose the other two so that
the three vectors are linearly independent and thus they together form a basis for R3. Denote
V = [v1,v2,v3]. Since the columns of V ∈ R3×3 form a basis for R3, any vector x ∈ R3 can be
given as their linear combination, i.e., as x = Vα for some α ∈ R3. Hence, the range of A can
be alternatively expressed as

R(A) = {y ∈ R3 | y = A(Vα) for some α ∈ R3}.
By construction v1 ∈ N(A), and so

A(Vα) = (AV )α = [Av1, Av2, Av3]α = [0, Av2, Av3]α = α2Av2 + α3Av3.

Hence, R(A) is the linear span of the vectors Av2 and Av3, which are linearly independent because
they are by construction the (linearly independent) first and second columns of A. In particular,
the dimension of R(A) is two.

In Example 1.2,

dim(N(A)) + dim(R(A)) = 3,

which is the dimension of the considered space R3. The basic idea of Example 1.2 is also valid for
a general A ∈ Rm×n, although one needs to use more general arguments to demonstrate that the
candidates for the basis vectors of R(A) are linearly independent.

Theorem 1.1. For any A ∈ Rm×n,

(9) dim(R(A)) + dim(N(A)) = n.

Proof. Let {v1, . . . ,vk} be a basis for N(A); in particular, it is assumed that the dimension
of N(A) is k. We introduce auxiliary vectors w1, . . . ,wn−k such that

{v1, . . .vk,w1, . . . ,wn−k}
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is a basis for the whole Rn.1 Define V ∈ Rn×k and W ∈ Rn×(n−k) via

V =
�
v1, . . . ,vk

�
and W =

�
w1, . . . ,wn−k

�
.

Because the columns of the composite matrix [V, W ] ∈ Rn×n form a basis for Rn, any x ∈ Rn can
be written as x = [V, W ]α for some α ∈ Rn. In particular,

R(A) =
�
y ∈ Rn | y = A[V, W ]α for some α ∈ Rn

�
,

where

A[V,W ]α =
�
Av1, . . . , Avk, Aw1, . . . , Awn−k

�
α

=
�
0, . . . , 0, Aw1, . . . , Awn−k]α

=
n−k�

i=1

αi+kAwi

is a linear combination of n− k vectors. Hence, R(A) can be represented as a linear span of n− k
vectors, and so its dimension is at most n− k.

Completing the proof amounts to showing that the vectors Aw1, . . . , Awn−k are linearly
independent, i.e., that they form a basis for R(A). Let α ∈ Rn−k be such that

n−k�

i=1

αi(Awi) =
�
Aw1, . . . , Awn−k

�
α = AWα = 0,

that is, Wα ∈ N(A). Since the columns of V ∈ Rn×k form, by assumption, a basis for N(A),
there exists (a unique) β ∈ Rk such that Wα = V β, or in an equivalent form,

[V, W ]

�
β
−α

�
= 0.

Since the columns of [V, W ] ∈ Rn×n form a basis for Rn by our construction, it must hold that
β = 0 and −α = 0. In particular, since α vanishes, Aw1, . . . , Awn−k are linearly independent. �

Let us then return to the unique solvability of (1). In order for the ‘unique solvability con-
ditions’ (6) to hold for all b ∈ Rm, one must obviously have R(A) = Rm and N(A) = {0}. In
particular, this yields

dim
�
R(A)

�
+ dim

�
N(A)

�
= m+ 0 = m.

By virtue of Theorem 1.1, this is possible only if m = n and thus A is a square matrix. In other
words, if m �= n, i.e., A is not square, either (6) does not have any solution for some b ∈ Rm, or
no solution for (6) is unique, or both.

Let us complete this section by considering the important special case of square matri-
ces, i.e., m = n. According to the above considerations, (1) has a solution for all b ∈ Rn if
and only if R(A) = Rn, i.e., rank(A) = dim(R(A)) = n. However, due to Theorem 1.1, this also
guarantees that dim(N(A)) = 0, i.e., N(A) = {0}, and the solution is also unique. Vice versa,
the solution to (1) is unique if and only if dim(N(A)) = 0, which also guarantees the existence
of a solution by virtue of Theorem 1.1. To summarize, for square matrices the existence and the
uniqueness of a solution to (1) are equivalent conditions.

There are also several other conditions that guarantee the unique solvability of (1) for all
b ∈ Rn when m = n, as indicated by the following corollary.

Corollary 1.1. Let m = n in (1). There exists a unique solution to (1) for any b ∈ Rn if
and only if one of the following equivalent conditions holds:

(1) R(A) = Rn,
(2) A has linearly independent columns (or rows),
(3) N(A) = {0},
(4) det(A) �= 0, or

1Such w1, . . . ,wn−k could be constructed, e.g., via a variant of the Gram–Schmidt orthogonalization process

considered in Chapter 3.



12 1. LINEAR SYSTEMS

(5) 0 is not an eigenvalue of A.

Proof. The conditions (1) and (3) were already covered in the above discussion. The con-
dition (2) is equivalent to (1) due to (5). The condition (4) is equivalent to (2) by fundamental
properties of the determinant (details are omitted). Finally, having 0 as an eigenvalue is equiva-
lent to having a nontrivial nullspace, i.e., (5) and (3) are equivalent conditions (eigenvalues will
be considered in detail in Chapter 2). �

To sum up, if any of the above conditions (1)–(5) holds for A ∈ Rn×n, then (1) is uniquely
solvable for any b ∈ Rn. This unique solution depends linearly on the right-hand side of the
equation: Let x1,x2 ∈ Rn be the solutions of (1) for the right-hand sides b1, b1 ∈ Rn, respectively.
Then for any α,β ∈ R,

A(αx1 + βx2) = αAx1 + βAx2 = αb1 + βb2,

and thus αx1 + βx2 is the solution of (1) corresponding to b = αb1 + βb2. Because any linear
map can be represented as a matrix (in a given basis), it follows that the solution to (1) can be
given as

(10) x = A−1b,

for some A−1 ∈ Rn×n, if any of the (equivalent) conditions in Corollary 1.1 holds. The matrix
A−1 is called the inverse of A and if such exists, A is called invertible. In particular,

A−1A =
�
A−1a1, . . . , A

−1an

�
= [e1, . . . , en] = I

since the solution to Ax = aj , j = 1, . . . , n, is obviously the jth Cartesian basis vector ej ∈ Rn.
One can argue in the same way that also AA−1 = I, because A is obviously the inverse of A−1

(simply consider the symmetry between (1) and (10)).

2. Norms and inner products

To study the stability of the solution to (1) with respect to perturbations, inaccuracies or
uncertainties in b and A, we need tools for measuring the ‘size’ of a vector or a matrix. This
section will also introduce the concept or orthogonality via inner products.

2.1. Vector norm. The size of a vector x ∈ Rn is measured by a (vector) norm. The concept
of norm is not unique, but there are many useful norms as we will see in what follows.

Definition 2.1. A function � · � : Rn → R is a norm if it satisfies

(i) �x� ≥ 0 for all x ∈ Rn and �x� = 0 if and only if x = 0,

(ii) �x+ y� ≤ �x�+ �y� for all x,y ∈ Rn,

(iii) �αx� = |α|�x� for all x ∈ Rn and α ∈ R.

Definition 2.1 formalizes what one expects from a reasonable measure of length. As an ex-
ample, consider the space R2 and associate to each x ∈ R2 a geometric vector x1i + x2j as in
Figure 1. A natural way to measure the length of such a vector x is via the Pythagorean theorem,
i.e., by introducing the Euclidean norm � · �2 : R2 → R defined via

�x�2 :=
�
x2
1 + x2

2

�1/2
.

This function obviously has the following properties:

(i) Positivity: For all x ∈ R2,

�x�2 ≥ 0,

with the equality holding only if and only if x = 0.
(ii) Scaling: The distance measured by � · �2 is scaling invariant, that is,

�αx�2 = |α|�x�2
for all α ∈ R.
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x

x1i

x2j

Figure 1. The geometric
idea behind measuring the
length of a vector in R2.

x

y

x+ y

α

Figure 2. The geometric
idea behind the triangle in-
equality.

(iii) Triangle inequality: The three vectors x,y,x + y ∈ R2 form a triangle in the plane;
see Figure 2. For every triangle, the sum of the lengths of two sides is larger than the
length of the third one, that is,

�x+ y�2 ≤ �x�2 + �y�2.
Hence, �·�2 : R2 → R is a norm in accordance with Definition 2.1. In fact, the geometric properties
of the Euclidean norm are the motivation for the general norm of Definition 2.1. Notice also that
the Euclidean norm, a.k.a. the 2-norm, generalizes to an arbitrary spatial dimension by defining
� · �2 : Rn → R through

(11) �x�2 =
� n�

i=1

|xi|2
�1/2

.

The norms used in linear algebra can be divided into generic norms and problem specific
norms. Problem specific norms are used when vectors have some special interpretation; they
can, e.g., represent coefficients in linear combinations of some elementary functions (cf., e.g., poly-
nomials represented as linear combinations of monomials or a truncated Fourier series). Most
theory in linear algebra is given in terms of generic norms that operate on generic vectors that
have no special interpretation as such.

The most commonly used norm in Rn is the Euclidean norm introduced in (11). Other
regularly used norms include the family of p-norms (most often the case p = 1)

(12) �x�p =
� n�

i=1

|xi|p
�1/p

, 1 ≤ p < ∞.

and the ∞-norm, �x�∞ = maxi |xi|. The latter can be obtained as a limit of the p-norms when
p → ∞. The 1 and ∞-norms are often employed because the related operator norms are easy to
compute, as we will learn in the following. Proving that � · �1 and � · �∞ (or more generally � · �p)
really are norms is left as an exercise.

Example 2.1. (a problem specific norm) Consider a first order polynomial p(x) = α0 + α1x
with real coefficients. The size of such a polynomial can be measured by the square integral

� 1

0

p2(x) dx =

� 1

0

(α2
0 + 2α0α1x+ α2

1x
2) dx = α2

0 + α0α1 +
1

3
α2
1.

On the other hand, any vector in R2 can be identified with a first order polynomial via
�
α0

α1

�
←→ α0 + α1x.
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Measuring the length of a vector defining the coefficients of a first order polynomial in, say, the
2-norm does not have any immediate interpretation. Instead it is more natural to measure the size
of the coefficient vector using the function

(13)

����
�
α0

α1

����� :=
�
α2
0 + α0α1 +

1

3
α2
1

�1/2

,

which is the square root of the square integral of the first order polynomial α0 + α1x introduced
above. We will later prove that (13) really defines a norm, that is, it satisfies the conditions of
Definition 2.1.

2.2. Inner product. To begin with, let n = 2 and consider two nonzero geometric vectors
x1i+x2j and y1i+y2j. It follows from the cosine theorem that the angle between the two vectors,
say θ, satisfies

�x�22 + �y�22 − 2�x�2�y�2 cos θ = �x− y�22 = �x�22 + �y�22 − 2(x1y1 + x2y2),

or, in other words,

cos θ =
x1y1 + x2y2
�x�2�y�2

.

Motivated by this formula, we define the dot product as

x · y = x1y1 + x2y2.

The dot product introduces the concept of orthogonality in the space R2, that is, when x · y = 0,
then the two vectors x and y form a right angle (or one/both of them vanish). We generalize the
dot product to an arbitrary spatial dimension by defining

x · y :=
n�

i=1

xiyi = xTy

for all x,y ∈ Rn. In particular, x,y ∈ Rn are said to be orthogonal (in the sense of the dot
product or the Euclidean inner product) if x · y = 0, which actually also matches the geometric
intuition for n = 3.

The basic properties of the dot product motivate the definition of a general inner product; it
is easy to check that the dot product is an inner product.

Definition 2.2. A mapping �·, ·� : Rn×Rn → R is an inner product if the following properties
hold:

(i) Positive definiteness: �x,x� ≥ 0 for all x ∈ Rn and �x,x� = 0 if and only if x = 0.

(ii) Symmetry: �x,y� = �y,x� for all x,y ∈ Rn.

(iii) Bilinearity: �αx+ βy, z� = α�x, z�+ β�y, z� for all x,y, z ∈ Rn and α,β ∈ R.

The conditions (ii) and (iii) together imply that also �z,αx + βy� = α�z,x� + β�z,y�. Take
note that different inner products define different concepts of orthogonality in Rn via the relation
�x,y� = 0.

Before moving on to vector norms that are induced by inner products, let us relate orthogo-
nality and linear independence, starting with a definition.

Definition 2.3. A set of vectors {q1, q2, . . . , qk} ⊂ Rn is called orthogonal with respect to
an inner product �·, ·� : Rn × Rn → R if

�
qi, qj

�
= 0

for all i �= j.

It turns out that an orthogonal set of vectors is always linearly independent, unless one of the
vectors is the zero vector.

Lemma 2.1. If the nonzero vectors q1, . . . , qk ∈ Rn compose a set of orthogonal vectors (with
respect to any inner product), then they are linearly independent.
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Proof. Let α ∈ Rk be such that

(14)
k�

i=1

αiqi = 0.

Taking the inner product of the left-hand side of this identity with qj , j = 1, . . . , k, and using (iii)
of Definition 2.2 yields

� k�

i=1

αiqi, qj

�
=

k�

i=1

αi�qi, qj� = αj�qj , qj�,

where the second step is just the orthogonality assumption. On the other hand, taking the inner
product of the right-hand side of (14) with qj results in

�0, qj� = 0 �0, qj� = 0

due to (iii) of Definition 2.2. Altogether we have deduced that

(15) αj�qj , qj� =
� k�

i=1

αiqi, qj

�
= �0, qj� = 0.

for any j = 1, . . . , k. Since �qj , qj� > 0 by (i) of Definition 2.2 and our assumption on the
orthogonal vectors, it must hold that αj = 0 for all j = 1, . . . , k. Thus the vectors q1, . . . , qk are
linearly independent. �

A byproduct of Lemma 2.1 is that any set of n nonzero orthogonal vectors {q1, . . . , qn} ⊂ Rn

forms a basis for the whole of Rn. Indeed, it can be straightforwardly proven that any set of
n linearly independent vectors must be a basis for an n-dimensional (sub)space. Hence, for any
x ∈ Rn, there exists a representation

(16) x =
n�

i=1

αiqi

with some α ∈ Rn. By taking the inner products of this identity with the orthonormal basis
vectors q1, . . . , qn one at a time, it can be deduced as in the proof of Lemma 2.1 that (cf. (15))

(17) αj =
�x, qj�
�qj , qj�

, j = 1, . . . , n,

which provides a means to numerically compute the coefficients in the expansion (16). The (pro-
jection) formula (17) for the coefficients of (16) becomes even simpler if �qj , qj� = 1 for all
j = 1, . . . , n. Such a basis is called orthonormal, that is, the basis vectors are orthogonal and
normalized, i.e., of unit length. This statement makes more sense after the definition of norms
induced by inner products. The (numerical) construction of orthonormal bases is considered in
Chapter 3.

To motivate the connection between inner products and norms, observe that the dot product
obviously has a special connection to the Euclidean norm:

�x�2 = (x · x)1/2

for all x ∈ Rn. This observation holds more generally: any inner product induces a norm.

Lemma 2.2. Let �·, ·� be an inner product in Rn. Then the function

(18) �x� := �x,x�1/2 , x ∈ Rn,

is a norm. In addition, such a norm satisfies the Cauchy–Schwarz inequality

(19) |�x,y�| ≤ �x��y�
for all x,y ∈ Rn.
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Proof. We need to check that � · � : Rn → R satisfies the conditions (i-iii) of Definition 2.1
and that (19) holds.

By the positive definiteness of an inner product,

�x� := �x,x�1/2 ≥ 0,

where the equality holds only if x = 0. This validates (i) of Definition 2.1. Furthermore, due to
properties (ii) and (iii) of Definition 2.2,

�αx� = �αx,αx�1/2 =
�
α2�x,x�

�1/2
= |α|�x�,

which demonstrates that (iii) of Definition 2.1 is also satisfied.
Let us next prove the Cauchy–Schwarz inequality (19), which obviously holds if x = 0 or

y = 0 since then both sides of (19) vanish due to (i) and (iii) of Definition 2.2 (note that, e.g.,
�0,y� = 0�0,y� = 0). Let thus x,y ∈ Rn be nonzero vectors and decompose x as (cf. (17))

x =
�x,y�
�y�2 y +

�
x− �x,y�

�y�2 y

�
.

Using (ii) and (iii) of Definition 2.2, we thus obtain that

�x�2 =
�x,y�2
�y�4 �y�2 + 2

� �x,y�
�y�2 y,x− �x,y�

�y�2 y

�
+

����x− �x,y�
�y�2 y

����
2

=
�x,y�2
�y�2 + 2

� �x,y�2
�y�2 − �x,y�2

�y�4 �y�2
�
+

����x− �x,y�
�y�2 y

����
2

=
�x,y�2
�y�2 +

����x− �x,y�
�y�2 y

����
2

.

Dropping the second (positive) term on the right-hand side and multiplying the ensuing inequality
by �y�2 results in

�x�2�y�2 ≥ �x,y�2 or |�x,y�| ≤ �x��y�,
which is the Cauchy–Schwarz inequality.

Finally, the triangle inequality, i.e. (ii) of Definition 2.1, follows by expanding,

�x+ y�2 = �x�2 + 2 �x,y�+ �y�2 ≤ �x�2 + 2�x��y�+ �y�2 = (�x�+ �y�)2

where the inequality is a trivial consequence of (19). �

We complete this section by pointing out a one-to-one correspondence between positive definite
matrices and inner products.

Definition 2.4. A matrix A ∈ Rn×n is called positive semidefinite if

(20) xTAx = x ·Ax ≥ 0

for all x ∈ Rn. If the second equality in (20) holds only for x = 0, then A is called positive definite.
(Nota bene: Sometimes symmetry of A is included in the definition of positive definiteness.)

Take note that any positive definite matrix A ∈ Rn×n is invertible: If x ∈ N(A), i.e., Ax = 0,
then

0 = xTAx ≥ 0,

where the latter equality holds if and only if x = 0. Hence, N(A) = {0} and A is invertible due
to the condition (3) in Corollary 1.1. However, most invertible matrices are not positive definite.

The following lemma demonstrates that any inner product in Rn can be characterized with
the help of the Euclidean inner product and a suitable symmetric positive definite matrix. In turn,
any symmetric positive definite matrix defines an inner product.
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Lemma 2.3. For any inner product �·, ·� : Rn × Rn → R, there exists a symmetric positive
definite matrix A ∈ Rn×n such that

(21) �x,y� = yTAx.

for all x ∈ Rn. On the other hand, the formula (21) defines an inner product for any symmetric
positive definite A ∈ Rn×n.

Proof. We start with the second part of the claim. Let A ∈ Rn×n be an arbitrary symmetric
positive definite matrix and set

�x,y�A := yTAx.

We need to check that �·, ·�A : Rn × Rn → R is an inner product, that is, we need to validate the
conditions (i–iii) in Definition 2.2. (i) As A is positive definite,

�x,y�A = xTAx ≥ 0 for all x ∈ Rn,

where the equality holds if and only if x = 0. (ii) The symmetry requirement for an inner product
is satisfied due to the assumed symmetry of A and the symmetry of the Euclidean inner product:

�x,y�A = yTAx = yTATx = (Ay)Tx = xTAy = �y,x�A.
(iii) The bilinearity follows from the (bi)linearity of matrix product (homework).

To complete the proof, let �·, ·� : Rn × Rn → R be an arbitrary inner product. Our aim is to
construct a symmetric positive definite matrix A ∈ Rn×n such that

�x,y� = yTAx.

Expanding x =
�n

i=1 xiei and y =
�n

j=1 yjej in the Cartesian basis, it follows that

�x,y� =
�

n�

i=1

xiei,
n�

j=1

yjej

�
=

n�

i,j=1

xiyj �ei, ej� ,

where we repeatedly employed (iii) of Definition 2.2. We now define the matrix A ∈ Rn×n

elementwise as aji = �ei, ej�, i, j = 1, . . . , n. Clearly, aij = aji, i.e., A is symmetric. Moreover,

�x,y� =
n�

i,j=1

xiyjaji =
n�

j=1

yj

n�

i=1

ajixi = yTAx

by the definition of matrix-vector product. Finally, the constructed A is positive definite since

xTAx = �x,x� > 0 for all 0 �= x ∈ Rn

because �·, ·� was assumed to be an inner product; see (i) of Definition 2.2. �

2.3. Matrix norm. In addition to measuring the length of a vector x, we also need to be
able to measure the ‘size’ of a given matrix A ∈ Rm×n. Let us begin the discussion with an
example.

Example 2.2. Let

A =

�
1 0.2
0.1 0.8

�
.

The matrix A associates every vector x ∈ R2 with another one Ax ∈ R2. Such a mapping can be
visualized (at least) in two ways:

(1) Draw some pixel image into the plane (e.g., a clown). Map the coordinates of the pixel
corners as in Figure 3. Coloring the skewed pixels with the same color as their preimages
results in a deformed image that describes the action of A. See Figure 3.

(2) Due to the linearity of matrix multiplication,

Ax = �x�2 A
�

x

�x�2

�
.

Hence, all information in the matrix A is actually contained in the set

A(S) = {Av | �v�2 = 1}
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Figure 3. Two pixelwise discretizations of a clown and their images under the
action of the matrix A from Example 2.2.
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Figure 4. The image of the Euclidean unit sphere under the action of the matrix
A from Example 2.2. The red circle is the unit sphere and the blue ellipse its
image.

since any vector can be given as a vector of unit length times a suitable scalar. The set
A(S) is compared with its preimage, i.e. the unit circle S (or, more generally, the unit
sphere), in Figure 4.

The second way to visualize the multiplication by a matrix suggest a way to measure its size.

Definition 2.5. Let � ·� be some vector norm. The corresponding operator norm for a matrix
A ∈ Rm×n is defined as

�A�op := max
0�=x∈Rn

�Ax�
�x� = max

�x�=1
�Ax�.

The definition of an operator norm depends on the considered vector norm. In other words,
different vector norms induce different operator norms. The operator norm measures the maximal
stretching of the unit sphere under the action of a matrix A; note that even the unit sphere itself,
i.e.,

S := {x ∈ Rn | �x� = 1}
depends on the investigated vector norm. In Example 2.2, where the Euclidean norm was em-
ployed, the operator norm is simply the semi-major axis of the blue ellipse in Figure 4, i.e.,
�A�op ≈ 1.08.

In linear algebra, it is customary to drop the subscript from � · �op and denote both a vector
norm and the corresponding operator norm in the same way. We follow this convention during
these lectures. In particular, the operator norms induced by 1, ∞ and 2-norms are denoted by
� · �1, � · �∞ and � · �2, respectively, or simply by � · � if the considered vector norm is clear from
the context.

All operator norms share two useful properties, as indicated by the following lemma.
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Lemma 2.4. Any operator norm satisfies,

(22) �AB� ≤ �A��B� , A ∈ Rl×m, B ∈ Rm×n

and

(23) �Ax� ≤ �A��x� , A ∈ Rm×n, x ∈ Rn.

Proof. Homework. �
Computing the value of an operator norm requires one to find the maximum of �Ax��x�−1

over Rn or equivalently that of �Ax� over the unit sphere corresponding to the examined vector
norm. For the operator norms induced by the vector norms � · �1, � · �2 and � · �∞, this maximum
can be found explicitly. This is one of the reasons why these three norms are used as generic
norms in linear algebra.

The 2-norm of a matrix can be computed using the following lemma that utilizes eigenvalues
of a symmetric matrix. Recall that an eigenvalue of a matrix A ∈ Rn×n is such λ ∈ C that

(24) Ax = λx

for some 0 �= x ∈ Cn that is called an eigenvector corresponding to λ.2 Eigenvalues and eigenvec-
tors will be studied in detail in Chapter 2. Here, we only need the following result that should be
familiar from the basic matrix algebra course: Any symmetric matrix B ∈ Rn×n has n orthonormal
real eigenvectors (with respect to the dot product/Euclidean inner product), that is,

Bqj = λjqj , j = 1, . . . , n,

with �qj�2 = 1 for all j = 1, . . . , n and qj · qk = qT
j qk = 0 for all j �= k. Moreover, B can be

decomposed as

(25) B = QΛQT

where Q = [q1, . . . , qn] ∈ Rn×n has the orthonormal eigenvectors as its columns and Λ =
diag(λ1, . . . ,λn) ∈ Rn×n is a diagonal matrix composed of the real eigenvalues (some of which
may be same). In particular, QTQ = I because the columns of Q are orthonormal, i.e., Q is an
orthogonal matrix.

Lemma 2.5. For any A ∈ Rm×n,

�A�2 =
�
λmax(A

TA)
�1/2

,

where λmax(A
TA) is the largest eigenvalue of the symmetric matrix ATA.

Proof. By the monotonicity of the second power,

�A�22 := max
0�=x∈Rn

�Ax�22
�x�22

= max
0�=x∈Rn

xTATAx

�x�22
= max

0�=x∈Rn

xTQΛQTx

�x�22
,

where QΛQT is an eigendecomposition of the symmetric matrix ATA ∈ Rn×n, with an orthogonal
Q ∈ Rn×n and a diagonal Λ ∈ Rn×n as in (25). Defining y = QTx and noting that x = Qy runs
through the whole of Rn when y does so, we get

(26) �A�22 = max
0�=y∈Rn

yTΛy

�Qy�22
= max

0�=y∈Rn

�n
i=1 λiy

2
i

yTQTQy
= max

0�=y∈Rn

�n
i=1 λiy

2
i

�y�22
,

where λi, i = 1, . . . , n, are the real eigenvalues of ATA ∈ Rn×n and we also employed the identity
QTQ = I.

Notice that all λi, i = 1, . . . , n, are nonnegative (because ATA is positive semidefinite):

0 ≤ �Aqi�22 = qT
i A

TAqi = λiq
T
i qi = λi,

where we used the orthonormality of the (eigen)columns of Q (cf. (25)). A straightforward estimate
thus gives

�A�22 ≤ max
0�=y∈Rn

λmax(A
TA)

�n
i=1 y

2
i

�y�22
= λmax(A

TA) max
0�=y∈Rn

�y�22
�y�22

= λmax(A
TA).

2In particular, a real matrix may have complex eigenvalues and eigenvectors.
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Letting 1 ≤ k ≤ n be such that λk = λmax(A
TA) and choosing y = ek in (26) to be the kth

Cartesian basis vector, we finally get

�A�22 ≥ λmax(A
TA),

which completes the proof as we have altogether established that λmax(A
TA) ≤ �A�22 ≤ λmax(A

TA).
�

Corollary 2.1. Lemma 2.5 remains valid if λmax(A
TA) is replaced by λmax(AAT ).

Proof. It can be shown that the min{n,m} largest eigenvalues of the symmetric matrices
ATA ∈ Rn×n and AAT ∈ Rm×m are the same3 (when counted according to their algebraic
multiplicity); a proof will be presented in connection to singular values in Chapter 3. The assertion
is an immediate consequence of the aforementioned fact. �

It can also be shown that the operator norms of A ∈ Rm×n corresponding to the 1 and ∞
vector norms can be computed simply as

�A�1 = max
1≤j≤n

m�

i=1

|aij | and �A�∞ = max
1≤i≤m

n�

j=1

|aij |,

that is, as the maximal absolute column and row sums of A, respectively.
The operator norms form a subclass of all matrix norms. In other words, every matrix norm

is not an operator norm, but all operator norms are matrix norms as indicated by the lemma
succeeding the following definition.

Definition 2.6. A function � · � : Rm×n → R is a matrix norm if

(i) �A� ≥ 0 and �A� = 0 if and only if A = 0 is the zero matrix,

(ii) �A+B� ≤ �A�+ �B�,
(iii) �αA� = |α|�A�

for all A,B ∈ Rm×n and α ∈ R.

Lemma 2.6. Let � · � denote a vector norm and also the corresponding operator norm. Then
� · � is also a matrix norm in accordance with Definition 2.6.

Proof. Let us verify the conditions (i–iii) of Definition 2.6 one at a time.
(i) Obviously,

�A� := max
0�=x∈Rn

�Ax�
�x� ≥ 0.

Moreover, if any element of A ∈ Rm×n is nonzero, it is easy to find x ∈ Rn such that Ax is also
nonzero. Hence, �A� > 0 if A is not the zero matrix.

(ii) Due to the definition of the operator norm and the linearity of matrix multiplication,

�A+B� = max
0�=x∈Rn

�Ax+Bx�
�x� ≤ max

0�=x∈Rn

��Ax�
�x� +

�Bx�
�x�

�
≤ max

0�=x∈Rn

�Ax�
�x� + max

0�=x∈Rn

�Bx�
�x� ,

where the second step is the triangle inequality for the vector norm and the last step corresponds
to a simple property of the max function: “The maximum of a sum is less than the sum of the
maxima of the summands”.

(iii) Finally, it holds that

�αA� = max
0�=x∈Rn

�αAx�
�x� = max

0�=x∈Rn

|α|�Ax�
�x� = |α| max

0�=x∈Rn

�Ax�
�x� = |α|�A�

by the scaling property of the vector norm. �

3This is not very difficult to believe: AAT v = λv ⇒ ATA(AT v) = λ(AT v) and ATAv = λv ⇒ AAT (Av) =
λ(Av).
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As indicated by Definition 2.6, a matrix norm can simply be defined as a function from the
space of matrices Rm×n to nonnegative real numbers — as long as it satisfies the conditions of
Definition 2.6. Examples of such directly defined matrix norms are the Frobenius norm,

�A�F :=




m�

i=1

n�

j=1

|aij |2



1/2

,

and the max-norm,

�A�max = max
1≤i≤m

max
1≤j≤n

|aij |.

It is straightforward to verify that both of these really are matrix norms in accordance with
Definition 2.6. (The proofs are analogous to showing that the 2 and ∞ vector norms are norms.)

3. Stability of the solution

In this section, we consider the equation (1) in the case that m = n and the matrix A is
invertible, i.e., A ∈ Rn×n has an inverse A−1 ∈ Rn×n. Recall that the existence of an inverse A−1

is equivalent to the unique solvability of (1) for all b ∈ Rn, and Corollary 1.1 lists conditions that
guarantee the latter. In this section, we employ the norms introduced in the previous section to
study how perturbations of A and b in (1) affect the corresponding solution.

Let x be the solution to the linear system (1), δA ∈ Rn×n and δb ∈ Rn. The perturbations
δA and δb model (additive) uncertainties and inaccuracies in A and b, respectively. The general
intuition should thus be that δA and δb are small(ish) compared to A and b, respectively. To be
more precise, we consider the perturbed linear equation

(27) (A+ δA)x̃ = b+ δb.

and study the difference between the solution x ∈ Rn of (1) and the ‘perturbed solution’ x̃ ∈ Rn

of (27).
To make such considerations meaningful, we need to first pose a condition under which the

unique solvability of (27) follows from that of (1). The topological interpretation of the following
theorem is that the invertible matrices form an open subset in the space of all matrices equipped
with some operator topology. In layman’s terms, if a matrix is invertible, then so are all nearby
matrices.

Theorem 3.1. Let � · � be an operator norm. If A ∈ Rn×n is invertible and δA ∈ Rn×n

satisfies

(28) �δA� <
1

�A−1� ,

then A+ δA is also invertible.

Proof. Our aim is to prove that A + δA satisfies the condition (3) of Corollary 1.1, from
which its invertibility follows. The reverse triangle inequality (homework) for 0 �= z ∈ Rn gives,

(29)
�(A+ δA)z�

�z� ≥ �Az� − �δAz�
�z� ≥ min

0�=z∈Rn

�Az�
�z� − max

0�=z∈Rn

�δAz�
�z� .

We make the chance of variables y = Az, i.e. z = A−1y, in the first term on the right-hand side
of (29), which leads to

min
0�=z∈Rn

�Az�
�z� = min

0�=y∈Rn

�y�
�A−1y� =

�
max

0�=y∈Rn

�A−1y�
�y�

�−1

= �A−1�−1

due to the monotonicity of the inverse power on the positive real axis R+. Substituting this back
in (29) and recalling the definition of an operator norm, yields

�(A+ δA)z�
�z� ≥ 1

�A−1� − �δA� > 0,
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where the strict inequality is our assumption. Equivalently,

�(A+ δA)z� ≥
�

1

�A−1� − �δA�
�
�z� > 0

for all 0 �= z ∈ Rn. Hence, the nullspace N(A+ δA) cannot contain any nonzero vectors. �

The following corollary indicates that the norm of the inverse of A + δA can, in fact, be
controlled by the norms of the inverse A−1 and the perturbation δA.

Corollary 3.1. Under the assumptions of Theorem 3.1, it holds that

��(A+ δA)−1
�� ≤ �A−1�

1− �δA��A−1�
for any operator norm � · �.

Proof. Using (22), we first of all obtain
��(A+ δA)−1

�� =
���(I + δAA−1)A

�−1�� =
��A−1(I + δAA−1)−1

�� ≤ �A−1�
��(I + δAA−1)−1

��.
By the definition of an operator norm,

(30) �(I + δAA−1)−1� = max
0�=x∈Rn

�(I + δAA−1)−1x�
�x� = max

0�=y∈Rn

�y�
�(I + δAA−1)y� ,

where the second step corresponds to the change of variables x = (I+δAA−1)y. Furthermore, the
denominator on the right-hand side of (30) can be estimated with the help of the reverse triangle
inequality as follows:

(31)
��(I + δAA−1)y

�� ≥ �y� − �δAA−1y� ≥
�
1− �δA��A−1�

�
�y� > 0,

where we also twice used (23) as well as our assumption on the size of �A−1�. Plugging (30) and
(31) in turns in the first estimate of this proof, we finally get

��(A+ δA)−1
�� ≤ �A−1� max

0�=y∈Rn

�y�
�(I + δAA−1)y� ≤ �A−1� max

0�=y∈Rn

�y��
1− �δA��A−1�

�
�y�

=
�A−1�

1− �δA��A−1� ,

which completes the proof. �

By subtracting the equations (1) and (27), we obtain a linear system that determines the error
x̃− x, that is,

(32) (A+ δA)(x̃− x) = δb− δAx.

The following theorem relates the (relative) error to the relative sizes of the perturbations, i.e. �δb�/�b�
and �δA�/�A�, and the condition number of A, defined as

κ(A) := �A��A−1�.
Take note that the condition number of a matrix depends on the considered (operator) norm.

Theorem 3.2. Suppose the assumptions of Theorem 3.1 are valid. Then it holds that

(33)
�x̃− x�
�x� ≤ κ(A)

1− �δA�
�A� κ(A)

��δb�
�b� +

�δA�
�A�

�

for any � · � operator norm and the corresponding condition number κ(A).

Proof. According to Theorem 3.1, the matrix A + δA ∈ Rn×n is invertible and the error
x̃− x can thus be solved from (32) as

x̃− x = (A+ δA)−1(δb− δAx).

In particular,

�x̃− x� ≤ �(A+ δA)−1��δb− δAx� ≤ �(A+ δA)−1� (�δb�+ �δAx�) .



4. SOLVING Ax = b ON A COMPUTER 23

due to basic properties of an operator norm and the triangle inequality. The stability result of
Corollary 3.1 yields

�x̃− x� ≤ �A−1�
1− �δA��A−1� (�δb�+ �δAx�) .

Dividing by �x� and using the estimate �δAx� ≤ �δA��x� gives

(34)
�x̃− x�
�x� ≤ �A−1�

1− �δA��A−1�

��δb�
�x� + �δA�

�
=

�A��A−1�
1− �δA�

�A� �A−1��A�

� �δb�
�A��x� +

�δA�
�A�

�
,

where the latter step is mere algebraic manipulation. Since �b� = �Ax� ≤ �A��x�, we finally
obtain

(35)
�x̃− x�
�x� ≤ �A−1��A�

1− �δA�
�A� �A−1��A�

��δb�
�b� +

�δA�
�A�

�
.

Substituting the definition of the condition number κ(A) completes the proof. �

4. Solving Ax = b on a computer

Computers operate using finite precision arithmetic: numbers are not stored exactly nor are
operations performed exactly. A simple model for error in arithmetic operations is

(36) fl(a� b) = (1 + δ)(a� b),

where a, b ∈ R, � is one of the elementary operations, i.e. � = +, −, ∗ or /, and |δ| ≤ u, where
u is the machine unit or the machine epsilon. The result of a given operation in finite precision is
denoted by fl(a � b). The size of the machine epsilon depends on how numbers are represented,
but it is typically of the size u = 2.22 · 10−16.

As an example, due to the finite precision, a numerically computed LU decomposition4 pro-
duced, say, by MATLAB is not exact, but only an approximation of an exact one. The triangular
matrices L ∈ Rn×n and U ∈ Rn×n given by the computer do not exactly satisfy A = LU for a
given A ∈ Rn×n, but instead

LU = A+ δA.

Hence, the utilization of the LU decomposition does not solve the equation (1), but a related linear
system.

(A+ δA)x̃ = b.

An interesting and practical question is: How close is x to x̃?
The answer can be given in two steps,

• Estimate the size of δA. For the LU decomposition, it can be shown that

�δA� ≤ nu�L��U�
for the Frobenius, 1 and ∞ norms. In most cases, the ratio (�L��U�)/�A� is of moderate
size, but one can also construct examples for which it tends to infinity. Fortunately, such
examples are rarely encountered in practice.

• Use Theorem 3.2 to obtain an estimate for the relative change in the solution:

�x̃− x�
�x� ≤ κ(A)

1− �δA�
�A� κ(A)

�δA�
�A� .

Observe that the relative error �δA�/�A� is amplified by the condition number κ(A)
both in the numerator and the denominator.

4Recall that the LU decomposition is a way of factoring a matrix A as a product of a lower L and an upper
U triangular matrix. It is commonly used by, e.g., mathematical software to solve systems of linear equations.
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The heuristic of MATLAB is to assume that �δA�/�A� behaves like the machine epsilon and to
issue a warning if κ(A) is sufficiently large.

To summarize, if κ(A) ≥ 1016, the given linear system cannot be solved on a computer using
(mere) double precision arithmetic. Even small floating point errors are amplified by κ(A) so that
they become significant. To conclude: All theoretically solvable linear systems cannot be
solved on a computer!

4.1. The bad example: Hilbert matrix. A classical example of a linear system that can-
not be solved accurately on a computer arises from approximation theory. Consider approximating
a given function f on the interval (0, 1) by the nth degree polynomials Pn in the sense of least
squares. In other words, one is interested in the solution of the problem

(37) min
p∈Pn

1

2

� 1

0

(f − p)2 dx.

This minimization problem is quadratic and can, in principle, be solved rather easily.
The naive approach is to represent the nth degree polynomials in the monomial basis {xj−1}n+1

j=1

as

p(x) :=

n+1�

j=1

αjx
j−1,

which means that each polynomial in Pn has a one-to-one correspondence with a coefficient vector
α ∈ Rn+1. Analogously, the original problem (37) is equivalent to a certain minimization problem
over Rn+1:

(38) min
α∈Rn+1

1

2

� 1

0

�
f −

n+1�

j=1

αjx
j−1
�2

dx.

The solution of (38) can be characterized, e.g., by taking the gradient with respect to the coefficient
vector and equating it to zero. For each i = 1, . . . , n+ 1, this corresponds to

∂

∂αi

1

2

� 1

0

�
f −

n+1�

j=1

αjx
j−1
�2

dx =

� 1

0

� n+1�

j=1

αjx
j−1 − f

�
xi−1 dx

=

n+1�

j=1

αj

� 1

0

xi+j−2 dx−
� 1

0

fxi−1 dx = 0.

These n+ 1 linear equations can be presented in a matrix form: Find α ∈ Rn+1 such that

(39) Hα = b,

where Hij =
� 1

0
xi+j−2 dx and bi =

� 1

0
fxi−1 dx for i, j = 1, . . . , n + 1. The integrals defining

H ∈ R(n+1)×(n+1) can be computed by hand to obtain

Hij =
1

i+ j − 1
, i, j = 1, . . . , n+ 1.

The condition number of this so-called Hilbert matrix grows extremely rapidly as a function of the
dimension n. As an example, for n = 15 the condition number is already so large that the linear
system (39) cannot be accurately solved using a computer.

Regardless of the above explained difficulties, the original polynomial approximation problem
(37) can be solved efficiently and accurately. The trick is to use some other basis polynomials
in place of the monomials. For example, the use of Legendre polynomials leads to significantly
improved stability.



CHAPTER 2

Eigenvalue problems

This second chapter discusses eigenvalues of matrices and their applications. The main ap-
plication considered in these notes is the definition of matrix valued functions such as the matrix
power or matrix exponential. Such functions are used, e.g., to solve recursive equations or to
study the behavior of a system of ordinary differential equations close to an equilibrium point. In
addition, eigenvalues and eigenvectors serve as a (computational) tool in many problems arising,
e.g., from mathematics, statistics, physics or computer sciences.

We will discuss the following themes:

(1) Basic eigenvalue theory with emphasis on Hermitian matrices,

(2) Similarity transformations,

(3) Matrix exponential and its applications.

The eigenvalues and eigenvectors of a squarematrix A ∈ Cn×n are the solutions of the following
problem: Find (λ,v) ∈ C× (Cn \ {0}) such that

(40) Av = λv.

It should be emphasized that an eigenvector can never be the zero vector. When considering
eigenvalues, we need to employ complex numbers C and the spaces of complex valued vectors Cn

and matrices Cn×n as even real matrices may have complex eigenvalues and vectors.
Almost all theory we have discussed thus far during these lectures directly applies to vectors

in Cn. The only notable exception is the definition of an inner product: The symmetry, i.e. (ii) of
Definition 2.2 in Chapter 1, is replaced by the conjugate symmetry condition

�x,y� = �y,x�.
This also means that the bilinearity condition (iii) of Definition 2.2 turns into sesquilinearity, i.e.,
the linearity with respect to the second variable turns into antilinearity: �x,αy� = α�x,y�. The
Euclidean inner product and norm are defined in Cn as

�x,y� := x · y = y∗x and �x�2 := (x∗x)1/2,

where the ‘overline’ marks componentwise complex conjugation and ∗ denotes the conjugate trans-
pose,

x∗ = xT .

In particular, if x = a+ ib for some a, b ∈ Rn, then

x = a− ib.

1. Basic eigenvalue theory

The equation (40) can be reformulated as

(A− λI)v = 0.

In other words, if λ ∈ C is an eigenvalue of A, then the matrix A− λI has a nontrivial nullspace
consisting of the corresponding eigenvectors. The eigenvalues can be determined by using the
connection between the nullspace and the determinant indicated by Corollary 1.1 in Chapter 1:
N(A− λ) is nontrivial if and only if

det (A− λI) = 0.

25
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When an eigenvalue has been found, the related eigenvector(s) are computed by finding a basis for
N(A − λI). The equation (40) defines the eigenvalues λ ∈ C uniquely, but there exists infinitely
many eigenvectors for each eigenvalue: the eigenvectors corresponding to an eigenvalue λ form a
subspace of Cn called the eigenspace,

Eλ := N(A− λI).

The dimension of Eλ can be any integer between 1 and n and it is called the geometric multiplicity
µG(λ) of the eigenvalue λ.

Example 1.1. Let

A =

�
3 −1
1 1

�
.

The eigenvalues of A are the solutions to the equation

det(A− λI) = det

�
3− λ −1
1 1− λ

�
= (3− λ)(1− λ) + 1 = λ2 − 4λ+ 4 = (λ− 2)2 = 0.

Hence, there is only one eigenvalue λ = 2 that is a double root of the characteristic polynomial.
The eigenspace corresponding to the eigenvalue λ = 2 is E2 = N(A− 2I). Because

A− 2I =

�
1 −1
1 −1

�
,

it is easy to deduce that E2 = span{[1, 1]T } is a one-dimensional subspace of R2.

Definition 1.1. The characteristic polynomial of a matrix A ∈ Cn×n is defined as

pA(λ) = det (A− λI),

i.e., as the polynomial whose roots define the eigenvalues.

Recall the subdeterminant rule that can be employed in analyzing determinants or computing
them by hand.1 The rule can be applied either column-wise,

detA = (−1)j−1
n�

i=1

(−1)i−1aij det [A]i,j ,

or row-wise,

detA = (−1)j−1
n�

i=1

(−1)i−1aji det [A]j,i.

In the above formulas, j is the index of the column or the row with respect to which the determinant
is expanded. Moreover, [A]i,j ∈ C(n−1)×(n−1) is the square matrix that is obtained by removing
the ith row and the jth column from the matrix A. A couple of examples are in order.

Example 1.2. Let

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33




Then

[A]1,1 =

�
a22 a23
a32 a33

�
, [A]1,2 =

�
a21 a23
a31 a33

�
, [A]1,3 =

�
a21 a22
a31 a32

�
.

1Mathematical software such as MATLAB do not numerically evaluate determinants using the subdeterminant
rule. Typically, they first form a suitable factorization of the examined matrix involving only triangular matrices,

e.g., the LU decomposition. Then two properties of the determinant are used: (i) The determinant of a product

is the product of the determinants and (ii) the determinant of a triangular matrix is the product of its diagonal
elements.
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Example 1.3. For

A =




1 2 0 0
3 4 0 5
0 6 7 0
8 0 0 10


 ,

the subdeterminant rule with respect to the first row gives

detA = det



4 0 5
6 7 0
0 0 10


− 2 det



3 0 5
0 7 0
8 0 10


.

Applying the subdeterminant rule next to [A]1,1, we obtain

det



4 0 5
6 7 0
0 0 10


 = 4det

�
7 0
0 10

�
+ 5det

�
6 7
0 0

�
= 280.

The determinant of [A]1,2 is computed recursively according to the same procedure. This gives
det [A]1,2 = −70 and altogether detA = 420.

With the help of the subdeterminant rule, it is straightforward to prove that pA is always a
polynomial of degree n.

Lemma 1.1. If A ∈ Cn×n, then pA(λ) = det (A− λI) is a polynomial of degree n. Moreover,
the coefficient of the nth order term is (−1)n.

Proof. The proof is based on induction with respect to the dimension of a square matrix.

Base case: For a general A ∈ C2×2,

det (A− λI) = det

�
a11 − λ a12
a21 a22 − λ

�
= λ2 − (a11 + a22)λ+ (a11a22 − a12a21)

is clearly a second order polynomial and the coefficient of the term λ2 is 1 = (−1)2.

Induction assumption: For any B ∈ Ck×k, det (B − λI) is a polynomial of degree k and the

coefficient of the kth order term is (−1)k.

Induction step: Let A ∈ C(k+1)×(k+1) be arbitrary. The subdeterminant rule yields

(41) det (A− λI) = (a11 − λ) det([A− λI]1,1) +
k�

i=2

(−1)i−1ai1 det([A− λI]i,1).

By the induction assumption, each subdeterminant appearing in (41) is a polynomial of degree k
having (−1)k as the coefficient of the kth order term. Hence, the sum term on the right-hand side
of (41) amounts to a polynomial of degree k in λ, and the first term on the right-hand side of (41)
is a polynomial of degree k+ 1 in λ having (−1)k+1 as the coefficient of the (k+ 1)th order term.
Thus, det(A− λI) is altogether a polynomial of degree k + 1 having (−1)k+1 as the coefficient of
the (k + 1)th order term, which completes the proof. �

As the eigenvalues of a matrix A are the roots of its characteristic polynomial pA, the eigen-
values can be studied by investigating the characteristic polynomial.

Lemma 1.2. A matrix A ∈ Cn×n has at most n distinct eigenvalues.

Proof. The eigenvalues of A ∈ Cn×n are the roots of the characteristic polynomial pA.
Because the polynomial pA is exactly of the order n, it has at most n distinct roots (and altogether
n complex roots if counted according to their multiplicity). �
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Eigenvalues can be multiple roots of the characteristic polynomial, as in Example 1.1. Assume
A ∈ Cn×n has the distinct eigenvalues λ1, . . . ,λk, where 1 ≤ k ≤ n. By virtue of the fundamental
theorem of algebra, the characteristic polynomial can be factored as

(42) pA(λ) = (−1)n
k�

i=1

(λ− λi)
µA(λi),

where
�k

i=1 µA(λi) = n since pA(λ) is of degree n. The positive integer power µA(λi) is the
algebraic multiplicity of the eigenvalue λi, i.e., its multiplicity as a root of the characteristic
polynomial. Recall that the dimension of the eigenspace Eλi

= N(A − λiI) was dubbed the
geometric multiplicity of the eigenvalue λi and denoted by µG(λi). It can be shown that the
geometric multiplicity µG(λi) is at most the same as the algebraic multiplicity µA(λi) for all
i = 1, . . . , k (the proof is omitted). However, if µA(λi) = 1, then also µG(λi) = µA(λi) = 1
because each eigenvalue has at least one-dimensional eigenspace.

The eigenvectors related to different eigenvalues are linearly independent.

Theorem 1.1. Any eigenvectors v1, . . . ,vk ∈ Cn corresponding to the distinct eigenvalues
λ1, . . . ,λk ∈ C of A ∈ Cn×n are linearly independent.

Proof. The proof is based on induction with respect to the number of considered eigenvalues.

Base case (i.e., any pair of eigenvectors are linearly independent): Without loss of generality, we
may only consider the first two eigenvalues λ1 and λ2; the proof for any other pair would be
analogous. Moreover, we may assume that λ1 �= 0 because one of the two eigenvalues must be
nonzero, and we can rename the eigenvalues if necessary.

We argue by contradiction: Assume that the corresponding eigenvectors v1 and v2 are linearly
dependent, that is, there exists 0 �= α ∈ C such that

v1 = αv2.

Multiplying this equation with A and using the definition of eigenvectors gives

λ1v1 = αλ2v2, i.e., v1 =
λ2

λ1
αv2.

Subtracting the above identities leads to

�
1− λ2

λ1

�
αv2 = 0.

As α �= 0 by assumption and v2 �= 0 by definition, it must hold that λ2/λ1 = 1, which is a
contradiction because λ1 and λ2 are distinct. Hence, v1 and v2 are linearly independent.

Induction assumption: Assume that any j vectors in the set {v1, . . . ,vk} are linearly independent
(1 ≤ j ≤ k − 1).

Induction step: Consider any j + 1 vectors in {v1, . . . ,vk}. After renumbering, we may assume
that they are v1, . . . ,vj+1.

Let α ∈ Cj+1 be such that

(43)

j+1�

i=1

αivi = 0.

Multiplying (43) by A gives

j+1�

i=1

αiλivi = 0.
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Without loss of generality, we may assume that λ1 �= 0; at most one of the distinct eigenvalues is
zero and we may rename the eigenvalues and eigenvectors if need be. Hence,

α1v1 +

j+1�

i=2

αi
λi

λ1
vi = 0.

Subtracting this from (43), we get

j+1�

i=2

αi

�
1− λi

λ1

�
vi = 0.

Since the j eigenvectors v2, . . . ,vj+1 are linearly independent by the induction assumption and
λi/λ1 �= 1 since the considered eigenvalues are distinct, it must hold that αi = 0 for all i =
2, . . . , j + 1. Using this information, say, in (43), it follows that also α1 = 0, i.e., α = 0, and thus
v1, . . . ,vj+1 are linearly independent. �

If the geometric and the algebraic multiplicity for each eigenvalue of A ∈ Rn×n are the same,
Theorem 1.1 implies that there exists n linearly independent eigenvectors v1, . . . ,vn for A: If
µG(λ) = µA(λ) for all eigenvalues, one can find µA(λ) linearly independent eigenvectors from each
eigenspace Eλ of A because µG(λ) = µA(λ) is its dimension. Since Theorem 1.1 guarantees that
eigenvectors corresponding to distinct eigenvalues are automatically linearly independent and the
algebraic multiplicities sum to n (cf. (42)), one can indeed altogether find n linearly independent
eigenvectors. On the other, if µG(λ) < µA(λ) for any eigenvalue λ, there does not exist a full set
of linearly independent eigenvectors. On the positive side, if A has n distinct eigenvalues, then
µG(λ) = µA(λ) = 1 for all eigenvalues and there are n linearly independent eigenvectors.

Assume then that A ∈ Rn×n has n linearly independent eigenvectors and stack them as the
columns of a matrix:

V :=
�
v1, . . . ,vn

�
∈ Cn×n.

The matrix product AV gives

(44) AV =
�
Av1, . . . , Avn

�
=
�
λ1v1, . . . ,λnvn

�
,

where the eigenvalues are repeated according to their algebraic/geometric multiplicity. If Λ ∈ Cn×n

is the diagonal matrix carrying the eigenvalues of A in the corresponding order, i.e.,

Λ =




λ1

λ2

. . .

λn


 ,

then (44) can be rewritten as

AV = V Λ.

As V has linearly independent columns, it is invertible (see (2) in Corollary 1.1) and we obtain

(45) A = V ΛV −1.

This is an eigendecomposition for the matrix A. If the algebraic and geometric multiplicities are
not the same for all eigenvalues, such a decomposition does not exist. If a decomposition of the
type (45) exists, A is called diagonalizable. Finally, note that a decomposition of the form (45) is
never unique: one can change the order of the eigenvalues, the length of the eigenvectors, or even
pick different bases for the eigenspaces.

Remark 1.1. The decomposition (45) has the following intuitive interpretation: The linear
map represented by A ∈ Rn×n in the standard/Cartesian basis has a diagonal representation
Λ ∈ Rn×n in the eigenbasis {v1, . . . ,vn}. To understand this, let α ∈ Rn be the coordinates of an
arbitrary x ∈ Rn in the basis {v1, . . . ,vn}, that is,

x = Vα ⇐⇒ α = V −1x.
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Hence,

Ax = V ΛV −1x = V (Λα),

which just means that the coordinates of the image vector Ax ∈ Rn in the eigenbasis {v1, . . . ,vn}
are Λα ∈ Rn. In other words, the action of the considered linear map on the coordinates of x in the
basis {v1, . . . ,vn} is realized by a diagonal matrix Λ, i.e., the coordinates change according to the
rule α �→ Λα. This is why a matrix with a representation of the form (45) is called diagonalizable.

2. Hermitian matrices

Hermitianmatrices are encountered in numerous applications. They have also many nice prop-
erties that make them ‘easily approachable’. We start our treatment with a couple of definitions
that will be put to use immediately afterwards.

Definition 2.1. A matrix A ∈ Cn×n is Hermitian if A∗ = A. In particular, a real matrix is
Hermitian if and only if it is symmetric, i.e. AT = A.

Definition 2.2. A matrix U ∈ Cn×n is unitary if U∗ = U−1. In particular, a real matrix is
unitary if and only if it is orthogonal, i.e. UT = U−1.

By definition, the diagonal elements of a Hermitian matrix must be real. Observe also that
the columns (or the rows) of a unitary matrix form an orthonormal basis for Cn, that is, they are
of unit Euclidean length and mutually orthogonal with respect to the Euclidean inner product.
Indeed, if U ∈ Cn×n is unitary and we write U = [u1, . . . ,un], then

(46) U∗U =




u∗
1u1 u∗

1u2 · · · u∗
1un

u∗
2u1 u∗

2u2 · · · u∗
2un

...
...

. . .
...

u∗
nu1 u∗

nu2 · · · u∗
nun


 = I,

meaning that the off-diagonal inner products vanish and the squared norms on the diagonal equal
one.

Our first aim is to show that any Hermitian matrix A ∈ Cn×n is unitarily diagonalizable, that
is, there exists a (nonunique) decomposition

(47) A = QΛQ∗,

where Q ∈ Cn×n is unitary and Λ ∈ Rn×n a diagonal matrix with real entries. This property is
closely related to the fact that the eigenvalues of a Hermitian matrix are real and eigenvectors
corresponding to different eigenvalues are orthogonal.

Lemma 2.1. The eigenvalues of a Hermitian A ∈ Cn×n are real.

Proof. Let λ be an arbitrary eigenvalue of A and let v be a corresponding eigenvector. In
particular,

v∗Av = v∗(λv) = λ�v�22.
On the other hand, as A∗ = A,

v∗Av = v∗A∗v = (Av)∗v = (λv)∗v = λ�v�22.
Subtracting these identities leads to

(λ− λ)�v�22 = 2 Imλ �v�22 = 0.

Since v �= 0 by definition, it must hold that Imλ = 0, i.e., λ is real. �

Lemma 2.2. Let q1, q2 ∈ Cn be eigenvectors corresponding to distinct eigenvalues λ1,λ2 ∈ R
of a Hermitian matrix A ∈ Cn×n, respectively. Then q1 and q2 are orthogonal in the sense that
q∗
1q2 = 0.
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Proof. As the eigenvalues of a Hermitian matrix are real, it holds that

λ1q
∗
1q2 = (λ1q1)

∗q2 = (Aq1)
∗q2 = q∗

1A
∗q2 = q∗

1Aq2.

On the other hand,

λ2q
∗
1q2 = q∗

1(λ2q2) = q∗
1Aq2.

Subtracting these equalities gives

(λ2 − λ1)q
∗
1q2 = 0,

which proves the claim since λ2 �= λ1 by assumption. �

Now we have the necessary tools to establish the unitary decomposition (47).

Theorem 2.1. For any Hermitian matrix A ∈ Cn×n, there exists a unitary Q ∈ Cn×n and a
diagonal Λ ∈ Rn×n such that the decomposition (47) is valid.

Proof. The proof is based on induction with respect to the dimension n of a Hermitian
matrix.

Base case (n = 1): A Hermitian 1 × 1 matrix is a single real number, say, a ∈ R that can be
decomposed as a = 1 a 1, i.e., Λ = a itself and Q = 1.

Induction assumption: The claim is true for n = k.

Induction step: Let A ∈ C(k+1)×(k+1) be Hermitian and note that it has at least one eigenvalue
λ1 ∈ R with a corresponding eigenvector q1 satisfying �q1�2 = 1 (take any eigenvector for λ
and divide it by its 2-norm). Introduce k auxiliary unit vectors q2, . . . , qk+1 ∈ Ck+1 that are
mutually orthogonal as well as orthogonal to q1; such can be found, e.g., via the Gram–Schmidt
orthogonalization process that will be discussed in Chapter 3. We denote

Q̃ =
�
q2, . . . , qk+1

�
∈ C(k+1)×k and Q =

�
q1, Q̃

�
∈ C(k+1)×(k+1),

and note that Q is unitary (see (46)).
Consider

Q∗AQ =
�
q1, Q̃

�∗
A
�
q1, Q̃

�
=

�
q∗
1

Q̃∗

�
�
Aq1, AQ̃

�

=

�
q∗
1Aq1 q∗

1AQ̃

Q̃∗Aq1 Q̃∗AQ̃

�
=

�
λ1q

∗
1q1 (λ1q1)

∗ Q̃

λ1Q̃
∗q1 Q̃∗AQ̃

�
=

�
λ1 0

0 Q̃∗AQ̃

�
,

where the last step follows from the fact that q1 is of unit length and orthogonal to the columns

of Q̃. Since the matrix Q̃∗AQ̃ ∈ Ck×k is obviously Hermitian, by the induction assumption there
exists a unitary Q1 ∈ Ck×k and a diagonal matrix Λ1 ∈ Rk×k such that

Q̃∗AQ̃ = Q∗
1Λ1Q1.

In consequence,

Q∗AQ =

�
λ1 0
0 Q∗

1Λ1Q1

�
=

�
1 0
0 Q∗

1

� �
λ1 0
0 Λ1

� �
1 0
0 Q1

�
.

Due to the unitarity of Q, it follows that

(48) A = Q

�
1 0
0 Q∗

1

� �
λ1 0
0 Λ1

� �
1 0
0 Q1

�
Q∗ =

�
Q

�
1 0
0 Q∗

1

���
λ1 0
0 Λ1

��
Q

�
1 0
0 Q∗

1

��∗

This completes the proof: (48) is a unitary decomposition of the form (47) because
�
Q

�
1 0
0 Q∗

1

��∗�
Q

�
1 0
0 Q∗

1

��
=

�
1 0
0 Q1

�
Q∗Q

�
1 0
0 Q∗

1

�
=

�
1 0
0 Q1

� �
1 0
0 Q∗

1

�
= I,

where we used the unitarity of both Q and Q1. �
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The decomposition (47) can alternatively be given as

AQ = QΛ ⇐⇒
�
Aq1, . . . , Aqn

�
=
�
λ1q1, . . . ,λnqn

�
,

which demonstrates that the columns of the unitary matrix Q are orthonormal eigenvectors for
A and the diagonal elements of Λ, i.e. λ1, . . . ,λn, are the corresponding eigenvalues (repeated
according to their algebraic/geometric multiplicity). In particular, the orthogonal eigenvectors
q1, . . . , qn form an eigenbasis for the whole of Cn×n (cf. Lemma 2.1).

As we already know, the eigenvalues of a matrix A are the roots of the corresponding char-
acteristic polynomial. For a Hermitian matrix, the eigenvalues can also be characterized by an
optimization problem related to the Rayleigh quotient.

Definition 2.3. For a Hermitian matrix A ∈ Cn×n, the corresponding Rayleigh quotient is
defined as

R(A,x) =
x∗Ax

x∗x
=

x∗Ax

�x�22
∈ R.

(The Rayleigh quotient is real-valued because the numerator x∗Ax = x∗A∗x = (x∗Ax)∗ = x∗Ax
is real as it equals its complex conjugate.)

Let the (real) eigenvalues of a Hermitian A ∈ Cn×n be arranged in increasing order, i.e.,

λ1 ≤ λ2 ≤ . . . ≤ λn,

where the eigenvalues are repeated according to their algebraic (or geometric) multiplicity. It is
easy to see that the minimal and maximal values of the Rayleigh quotient are the smallest and
largest eigenvalues of A, respectively.

Theorem 2.2. For a Hermitian matrix A ∈ Cn×n, it holds that

λ1 = min
0�=x∈Cn

R(A,x) and λn = max
0�=x∈Cn

R(A,x),

where λ1 is the smallest eigenvalue of A and λn the largest.

Proof. Expand an arbitrary x ∈ Cn in an orthonormal eigenbasis of A,

x =

n�

i=1

αiqi, α ∈ Cn.

It follows that (homework),

x∗Ax =

n�

i=1

|αi|2λi and x∗x =

n�

i=1

|αi|2,

and the Rayleigh quotient can thus be estimated from below as

R(A,x) =
x∗Ax

x∗x
=

�n
i=1 |αi|2λi�n
i=1 |αi|2

≥ λ1

�n
i=1 |αi|2�n

i=1 |αi|2
= λ1.

On the other hand, choosing α1 = 1 and αi = 0 for i = 2, . . . , n directly gives

R(A,x) =

�n
i=1 |αi|2λi�n
i=1 |αi|2

= λ1.

This proves the first part of the claim. The second part follows via an analogous argument. �

The other eigenvalues of a Hermitian matrix A can be characterized via

λk = min
dimU=k

max
0�=x∈U

x∗Ax

x∗x
,

where the outer minimization is over subspaces of dimension k. This is known as the Courant–
Fisher min-max theorem.
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3. Similarity transformations

If a matrix A ∈ Cn×n does not have n linearly independent eigenvectors, it is not diagonaliz-
able. However, one can still look for some other decomposition of the form

(49) A = SBS−1,

where B is a simpler matrix than the original A in some suitable sense. For example, if Bn is
easier to evaluate than An, then the decomposition (49) is useful when defining matrix valued
functions via power series expansion because

An = SBnS−1.

A decomposition of the form (49) merits a separate definition.

Definition 3.1. The matrices A ∈ Cn×n and B ∈ Cn×n are called similar if there exists an
invertible S ∈ Cn×n such that (49) is valid.

In the spirit of Remark 1.1, two matrices are similar if they represent the same linear mapping
in different basis. As an example, if A represents a certain linear map in the Cartesian basis, then
B of (49) gives the same linear map in the basis defined by the columns of S. In particular, a
diagonalizable matrix is represented by a diagonal matrix in an eigenbasis — and the eigenbasis
can be chosen to be orthonormal if the matrix in question is Hermitian.

Lemma 3.1. If A,B ∈ Cn×n are similar, then the associated characteristic polynomials are
the same, i.e., pA = pB.

Proof. Assume that A = SBS−1. Using basic properties of the determinant, we deduce

pA(λ) = det(A− λI) = det
�
SBS−1 − λSS−1

�
= det

�
S(B − λI)S−1

�

= det(S) det(B − λI) det(S−1) = det(S) det (B − λI) det(S)−1

= det (B − λI) = pB(λ),

which proves the claim. �

In what follows, we will introduce two decompositions of the form (49) that are valid for
any square matrix A ∈ Cn×n, independently of whether A has a full set of linearly independent
eigenvectors or not. We will start with the Schur decomposition and then briefly discuss the
Jordan normal form. Both of these are theoretical tools that are rarely numerically computed in
practice. We will omit the existence proof for the Jordan normal form to keep the presentation
compact.

The Schur decomposition states that any square matrix is unitarily similar to an upper (or
lower) triangular matrix. In other words, for each square matrix there exists an orthonormal
basis in which the corresponding linear mapping is represented by an upper triangular matrix
(cf. Remark 1.1).

Theorem 3.1. For any A ∈ Cn×n, there exist a unitary Q ∈ Cn×n and an upper triangular
T ∈ Cn×n such that

(50) A = QTQ∗.

Proof. The proof is based on induction with respect to the dimension n.

Base case (n = 1): A general 1 × 1 matrix is a single complex number, say, a ∈ C that can be
decomposed as a = 1 a 1, i.e., T = a itself and Q = 1.

Induction assumption: The claim is true for n = k.

Induction step: We begin as in the proof of Theorem 2.1: Let A ∈ C(k+1)×(k+1) and note that
it has at least one eigenvalue λ1 ∈ C with a corresponding eigenvector q1 satisfying �q1�2 = 1.
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Introduce k auxiliary unit vectors q2, . . . , qk+1 ∈ Ck+1 that are mutually orthogonal as well as
orthogonal to q1. We denote

Q̃ =
�
q2, . . . , qk+1

�
∈ C(k+1)×k and Q =

�
q1, Q̃

�
∈ C(k+1)×(k+1),

and note that Q is unitary. Exactly as in the proof of Theorem 2.1, we get

Q∗AQ =

�
q∗
1Aq1 q∗

1AQ̃

Q̃∗Aq1 Q̃∗AQ̃

�
=

�
λ1q

∗
1q1 q∗

1AQ̃

λ1Q̃
∗q1 Q̃∗AQ̃

�
=

�
λ1 q∗

1AQ̃

0 Q̃∗AQ̃

�
,

where we used the fact that q1 is a unit vector and orthogonal to the columns of Q̃ by construction
(, but we could not get rid of the top right block as A is not assumed to be Hermitian).

By the induction assumption, for Q̃∗AQ̃ ∈ Ck×k there exists an upper triangular T1 ∈ Ck×k

and a unitary Q1 ∈ Ck×k such that

Q̃∗AQ̃ = Q1T1Q
∗
1.

Hence,

Q∗AQ =

�
λ1 q∗

1AQ̃
0 Q1T1Q

∗
1

�
=

�
λ1 q∗

1AQ̃(Q1Q
∗
1)

0 Q1T1Q
∗
1

�
=

�
1 0
0 Q1

� �
λ1 q∗

1AQ̃Q1

0 T1

� �
1 0
0 Q∗

1

�

and by the unitarity of Q,
(51)

A = Q

�
1 0
0 Q1

� �
λ1 q∗

1AQ̃Q1

0 T1

� �
1 0
0 Q∗

1

�
Q∗ =

�
Q

�
1 0
0 Q1

���
λ1 q∗

1AQ̃Q1

0 T1

��
Q

�
1 0
0 Q1

��∗
.

It is easy check that (51) is a decomposition of the required form (50). Indeed, as T1 ∈ Ck×k is
upper triangular, so is the midmost matrix in (51). Moreover,

�
Q

�
1 0
0 Q1

��∗�
Q

�
1 0
0 Q1

��
= I,

which corresponds exactly to the last formula in the proof of Theorem 2.1. �

Theorem 3.1 states that any square matrix A is similar to an upper triangular T . Since
pA(λ) = pT (λ) = det(T − λI) by Lemma 3.1 and the determinant of the upper triangular matrix
T − λI is the product of its diagonal elements, the eigenvalues of A are on the diagonal of T
repeated according to their algebraic multiplicities (cf. (42)).

To complete this section, we introduce the Jordan normal form that indicates any square
matrix A ∈ Cn×n is similar to an ‘almost diagonal’ matrix, i.e., to a Jordan matrix that is an
upper triangular, block diagonal matrix of the form

(52) J =




Jn1
(λ1)

Jn2
(λ2)

. . .

Jnl
(λl)


 ∈ Cn×n.

Here Jnj
(λj) ∈ Cnj×nj is a Jordan block related to an eigenvalue λj ,

Jnj (λj) =




λj 1
λj 1

. . .
. . .

λj 1
λj



.

Take note that n1 + n2 + · · ·+ nl = n and J has nonzero elements only on its main diagonal and
on its first superdiagonal.

Each eigenvalue is repeated according to its geometric multiplicity in J of (52). On the other
hand, by summing the sizes nj of the Jordan blocks corresponding to a particular eigenvalue, one
gets the algebraic multiplicity of that eigenvalue. In consequence, if the algebraic and the geometric
multiplicity are the same for each eigenvalue, all Jordan blocks in (52) are of the size 1×1 and J is,
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in fact, a diagonal matrix carrying the eigenvalues repeated according to their algebraic/geometric
multiplicities. To be slightly more precise, the total number of nonzero elements, i.e. ones, on the
first superdiagonal of J is

k�

j=1

�
µA(λj)− µG(λj)

�
,

where λ1, . . . ,λk are the distinct eigenvalues of A.
The following, slightly vague theorem ends this section.

Theorem 3.2. Any A ∈ Cn×n has a decomposition

(53) A = PJP−1

where J ∈ Cn×n is as in (52) and the invertible matrix P ∈ Cn×n has eigenvectors and so-called
generalized eigenvectors of A as its columns.

4. Matrix exponential

Similarity transformations can be used to calculate matrix valued functions such as the square
root or the exponential of a matrix. In this section, we concentrate on the matrix exponential and
its application to qualitative analysis of systems of ordinary differential equations.

For a scalar argument t ∈ R, the exponential function can be defined, e.g., via its power series
expansion:

(54) et =

∞�

j=0

tj

j!
.

According to basic calculus courses, the series in (54) converges for any t ∈ R (and the convergence
is, in fact, uniform on any bounded subset of R). In particular, it can be shown that one is allowed
to differentiate the series termwise:

d

dt
et =

∞�

j=0

d

dt

tj

j!
=

∞�

j=1

j
t(j−1)

j!
=

∞�

j=1

t(j−1)

(j − 1)!
=

∞�

j=0

tj

j
= et.

In exactly the same manner, one also obtains that

d

dt
eat = aeat

for any constant a ∈ C. As a consequence, the solution2 to the initial value problem

(55) x�(t) = ax(t) for t > 0, x(0) = x0 ∈ C,
is obviously x(t) = x0e

at = eatx0. An interesting and practically relevant question is how this
argumentation can be generalized if the scalar-valued function x : R+ → C is replaced in (55)
by a vector-valued version x : R+ → Cn and the scalar coefficient a ∈ C is replaced by a matrix
A ∈ Cn×n.

To begin with, notice that we can formally define etA even if A ∈ Cn×n:

(56) etA :=
∞�

j=0

(tA)j

j!
=

∞�

j=0

tjAj

j!
,

where A0 is defined to be the identity matrix I ∈ Rn×n. The right-hand side of (56) makes
algebraic sense since A is a square matrix. In particular, it seems that etA is also a n× n matrix
for any t ∈ R. However, it is not quite obvious that the series on the right-hand side of (56)
converges (in any reasonable sense), and so it is also not obvious if (56) can be taken as the
definition of the matrix exponential function. To this end, let us define

SN (t) :=
N�

j=0

tjAj

j!

2In fact, we do not prove on this course that (55) and its vectorial counterpart (58) are uniquely solvable —
although they are.
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to be the Nth partial sum in the infinite series on the right-hand side of (56). For example on the
course Euclidean spaces, it is proven that in any finite-dimensional normed vector space a sequence
converges if and only if it is a Cauchy sequence. In our case, this means that limN→∞ SN (t)
exists,3 i.e., (56) makes sense, if and only if

(57) �SN (t)− SM (t)� → 0 as N,M → 0

for some matrix norm � · � on Cn×n.4

Let us then prove (57) for an arbitrary operator norm; recall that operator norms form a
subclass of matrix norms. Without loss of generality we may assume that N > M (the case
M = N is trivial and if M > N , we can swap the names of the indices). By repetitively applying
the triangle inequality and other basic properties of operator norms, we obtain

�SN (t)− SM (t)� =
���

N�

j=M+1

tjAj

j!

��� ≤
N�

j=M+1

��� t
jAj

j!

��� ≤
N�

j=M+1

(|t|�A�)j
j!

=

N−(M+1)�

k=0

(|t|�A�)k+(M+1)

(k + (M + 1))!
≤ (|t|�A�)M+1

(M + 1)!

N−(M+1)�

k=0

(|t|�A�)k
k!

≤ (|t|�A�)M+1

(M + 1)!

∞�

k=0

(|t|�A�)k
k!

=
(|t|�A�)M+1

(M + 1)!
e|t|�A�,

which converges to zero as M (and N) tend to infinity since the factorial in the denominator grows
considerably faster than the power in the numerator. Hence, SN is a Cauchy sequence, and thus
it converges for any (fixed) t ∈ R and A ∈ Cn×n. In particular, it makes sense to use (56) as the
definition of the matrix exponential function.

Let us then consider the vectorial counterpart of (55), that is, a system of ordinary differential
equations of the form

(58) x�(t) = Ax(t) for t > 0, x(0) = x0,

where A ∈ Cn×n is the coefficient matrix, x : R+ → Cn is the solution, and x0 ∈ Cn carries the
initial values. Analogously to the case of a single differential equation in (55), the solution to this
problems is

x(t) = etAx0

as we will demonstrate next. First of all, the initial condition is satisfied:

e0Ax0 = Ix0 = x0

because all but the first term in the series on the right-hand side of (56) vanish when t = 0.5 As
in the scalar-valued case, it can moreover be argued that the series on the right-hand side of (56)
can be differentiated term by term, which yields

d

dt

�
etAx0

�
=
� ∞�

j=0

d

dt

tjAj

j!

�
x0 =

� ∞�

j=1

j
t(j−1)Aj

j!

�
x0 =

� ∞�

j=1

A
t(j−1)A(j−1)

(j − 1)!

�
x0

=
�
A

∞�

j=0

tjAj

j

�
x0 = A

�
etAx0

�

as desired.

3Observe that the space of n × n matrices, i.e. Cn×n, is a vector space (consider scalar multiplication and

addition of matrices) and it is also finite-dimensional (any n2 matrices that have only one nonzero element at
mutually different locations form a basis for Cn×n).

4In fact, it does not matter which matrix norm is used since all norms on a finite-dimensional vector space

define the same topology (cf. the third exercise sheet).
5It is agreed that (0A)0 = I, which can be reasoned by continuity: if t tends to zero from either side,

then (tA)0 = t0A0 = I converges to the identity matrix. (This same convention is actually used already in the
scalar-valued definition (54): e0 = 00 := 1.)
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Similarity transformations can be utilized to write matrix exponentials in more accessible
forms; when analyzing this, we drop the ‘time variable’ to simplify the notation and because the
matrix exponential eA also has other applications than systems of ordinary differential equations.
For a diagonalizable matrix one simply exploits its similarity with a diagonal matrix, and for the
other matrices the standard help is the Jordan normal form. Both of these approaches are theo-
retical tools that are usually not implemented numerically in practice; there are other numerical
algorithms for computing the matrix exponential of a given square matrix.

Let us start with a diagonalizable A ∈ Cn×n such that

A = XΛX−1,

where X ∈ Cn×n is invertible and the diagonal matrix Λ ∈ Cn×n has the eigenvalues of A,
i.e. λ1, . . . ,λn, on its diagonal (repeated according to their algebraic multiplicity). Clearly,

Aj = XΛjX−1 = X




λj
1

λj
2

. . .

λj
n


X

−1.

It easily follows that

eA =
∞�

j=0

Aj

j!
= X

� ∞�

j=0

Λj

j!

�
X−1 = XeΛX−1,(59)

which further reduces to

eA = X




�∞
j=0

λj
1

j! �∞
j=0

λj
2

j!

. . .
�∞

j=0
λj
n

j!



X−1 = X




eλ1

eλ2

. . .

eλn


X

−1.

This means that calculating the matrix exponential of a diagonalizable A essentially amounts to
exponentiating its eigenvalues (as well as computing its eigenvalues and eigenbasis to begin with).

Example 4.1. The matrix

A :=

�
1 2
2 1

�
=

�
1 1
−1 1

� �
−1 0
0 3

� �
1 1
−1 1

�−1

is obviously diagonalizable (as (i) we have already diagonalized it and (ii) it is Hermitian/sym-
metric). According to the above considerations, the matrix exponential of A can be written as

eA =

�
1 1
−1 1

� �
e−1 0
0 e3

� �
1 1
−1 1

�−1

.

The exponential of a non-diagonalizable A ∈ Cn×n can be transformed into a more tractable
form by resorting to the Jordan normal form (53): If A, P and J are as in Theorem 3.2, then

eA = P eJP−1,

which can be deduced in exactly the same way as (59). Furthermore, it can be argued rather
straightforwardly that

eJ =




eJn1
(λ1)

eJn2
(λ2)

. . .

eJnl
(λl).


 ,

where the Jordan blocks Jnj
(λj), j = 1, . . . , l, are as in (52). The exponentials of the Jordan

blocks, i.e. eJnj
(λj) ∈ Cnj×nj , j = 1, . . . , l, can still be written down explicitly with the help of the

eigenvalues of A and factorials, but we save our strength by not doing this here.
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4.1. Qualitative analysis of differential equations. The matrix exponential is typically
not numerically computed, but it can, e.g., be used to obtain qualitative understanding about the
behavior of a solution to a system of differential equations close to so-called equilibrium points.
Consider the rather general (autonomous) system of ordinary differential equations

(60) x�(t) = F (x(t)) for t > 0, x(0) = x0 ∈ Rn,

where x : R+ → Rn is the solution and F : Rn → Rn is a nice enough function (e.g., twice
continuously differentiable). Observe, in particular, that for a real-valued A the system (58) is a
special case of (60). An equilibrium point x̃ ∈ Rn of (60) is such that

F (x̃) = 0.

If a solution to (60) ends up at a certain time t̃ ≥ 0 to an equilibrium point, i.e. x(t̃) = x̃, it
will stay there forever, i.e. x(t) = x̃ for all t ≥ t̃, as the right-hand side of (60), and thus also the
derivative of the solution in question, vanishes at the equilibrium.

Close to an equilibrium point x̃, the right hand side of (60) can be linearized as

F (x) ≈ F (x̃) +DF (x̃)(x− x̃) = DF (x̃)(x− x̃),

where DF (x̃) ∈ Rn×n is the Jacobian matrix of F evaluated at x̃. By plugging this approximation
in (60), one obtains that

x�(t) ≈ DF (x̃)(x(t)− x̃) ⇐⇒ d

dt
(x(t)− x̃) ≈ DF (x̃)(x(t)− x̃),

or

(61) y�(t) ≈ DF (x̃)y

after introducing the spatially shifted solution y(t) := x(t)− x̃. The approximation in (61) is good
if one only studies the solution of (60) close to the equilibrium point x̃, that is, solutions of (61)
close to the origin. In this case, a solution y(t) to (61) is essentially a matrix exponential function
defined by the Jacobian matrix DF (x̃); cf. (58) and its solution formula with A = DF (x̃). Thus,
the eigenvalues of the Jacobian matrix determine the local behavior of the system (60) close to
the equilibrium point.

Example 4.2. As an example, consider a Lotka–Volterra model

(62) x�(t) = F (x(t)) :=

�
2
3x1(t)− 4

3x1(t)x2(t)

x1(t)x2(t)− x2(t)

�
for t > 0, x(0) = x0.

This model describes the interaction between predator and prey populations (with certain parameter
choices). The unknowns x1 and x2 are the number of predators and the number of preys, respec-
tively. A rough understanding about the behavior of the solutions to the Lotka–Volterra system
can be obtained by visualizing the vector field F defining the right-hand side of (62): F (z) gives
a tangent to the trajectory of any solution x(t) of (62) passing through z ∈ R2; see Figure 1.

Our interest lies with the behavior of the system close to equilibrium points x̃ ∈ R2, where
F (x̃) = 0. The studied Lotka–Volterra model has two equilibrium points, namely x̃1 = [1, 0.5]T

and x̃2 = [0, 0]T . Around these points, the behavior of the system can be approximated by the
corresponding linearized systems, that is,

y�
j(t) = DF (x̃j)yj(t), j = 1, 2,

where yj(t) = x(t)− x̃j, j = 1, 2. For (62),

DF (x) =

�
2
3 − 4

3x2 − 4
3x1

x2 x1 − 1

�
,

and so

DF (x̃1) =

�
0 − 4

3
1
2 0

�
and DF (x̃2) =

�
2
3 0
0 −1

�
.

Both linearized systems can now be exactly solved and the behavior of their solutions studied using
the matrix exponential.
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Figure 1. The arrows visualize the vector field F : R2 → R2 for the Lotka–
Volterra model of Example 4.2. A trajectory starting from the black circle is
visualized by red stars. The system has two equilibrium points, (1, 0.5) and (0, 0).





CHAPTER 3

Least squares problems

The last theme of these lecture notes are least squares problems that arise, e.g., from the need
to fit the parameters of a linear mathematical model to given measurements. To minimize the
effect of measurement errors on the estimated parameters, the measurement is typically repeated
several times. This leads to an overdetermined problem that includes more observations than
model parameters. (In this chapter, we return to the setting where the considered vectors and
matrices are real-valued.)

1. Motivation, definition and equivalence to normal equation

We start with two examples:

Example 1.1. A simple example of a least squares problem is the determination of a spring
constant from several measurements. Assume that we have at our disposal n weights mi, i =
1, . . . , n, and can measure the elongation xi of the spring when the weight mi is attached to it.
In addition, assume that the gravity g is known and we are dealing with an ideal spring, meaning
that the elongation of the spring under the mass mi behaves as

xi = kgmi, i = 1, . . . , n,

where k ∈ R is the spring constant. By repeating the measurement with all available weights, one
obtains a (trivial) linear system for k:




gm1

gm2

...
gmn


 k =




x1

x2

...
xn


 .

Due to measurement errors, this system does not typically have a solution. Instead, one determines
(an estimate for) the parameter k by minimizing the 2-norm of the residual: Let

A =




gm1

gm2

...
gmn


 ∈ Rn×1 and b =




x1

x2

...
xn


 ∈ Rn,

and seek k as a solution to

min
k∈R

�Ak − b�22.

It follows easily that

�Ak − b�22 = (Ak − b)T (Ak − b) = (ATA)k2 − 2(AT b)k + �b�22,
which is an equation for an upwards opening parabola in the variable k. The spring constant
can thus be solved by computing the zero of the derivative with respect to k, which gives k =
(ATA)−1AT b.

Example 1.2. As a second example, let us consider finding an ellipsoid that is the best fit to
a given set of points x(i) ∈ R2, i = 1, . . . , n. There are several ways to define what “best” means
and to compute the fit, but for simplicity we have opted to follow an approach that is based on the

41
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Figure 1. A small cylindrical object and two ellipses fitted to its cross section.

so-called conic section presentation of an ellipse. In this presentation, an ellipse is defined as a
set

(63)
�
(x1, x2) ∈ R2 | x2

1+Ax2
2+Bx1x2+Cx1+Dx2+E = 0, A,B,C,D,E ∈ R, B2−4A < 0

�
,

which makes fitting an ellipse to a set of points relatively easy, but some work would be needed to
find out the semi-axes and center-point of the ellipse.

To be more precise, the task is to define the coefficients A,B,C,D and E so that the data
points x(i) ∈ R2, i = 1, . . . , n, satisfy the equation defining the set (63) ‘as well as possible’.
The simplest way to formulate such an optimality condition is to look for A,B,C,D and E that
minimize the sum of the squared discrepancies

(64)

n�

i=1

��
x
(i)
1

�2
+A

�
x
(i)
2

�2
+Bx

(i)
1 x

(i)
2 + Cx

(i)
1 +Dx

(i)
2 + E

�2
.

Let us collect the unknown coefficients A,B,C,D and E into a single vector α = [A,B,C,D,E]T ∈
R5 and set

A =




�
x
(1)
2

�2
x
(1)
1 x

(1)
2 x

(1)
1 x

(1)
2 1�

x
(2)
2

�2
x
(2)
1 x

(2)
2 x

(2)
1 x

(2)
2 1

...
...

...
...

...�
x
(n)
2

�2
x
(n)
1 x

(n)
2 x

(n)
1 x

(n)
2 1




and b = −




�
x
(1)
1

�2
�
x
(2)
1

�2
...�

x
(n)
1

�2



.

With this notation, the minimization of (64) can be rewritten as follows: find the minimizer
α ∈ R5 of

�Aα− b�22,
which is of the general least squares form that we will study in more detail in what follows.

Motivated by the preceding two examples, we define a least squares (LSQ) solution of our
original linear system (1) as follows:

Definition 1.1 (LSQ problem). Let A ∈ Rm×n and b ∈ Rm. A vector x ∈ Rn is called a
least squares solution of the equation (1) if it minimizes the squared discrepancy

(65) �Ax− b�22
measured in the 2-norm.

It turns out that minimizing (65) is equivalent to solving the so-called normal equation,

(66) ATAx = AT b.
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This is not very surprising since (66) characterizes the points where the gradient of the squared
sum (65) vanishes (homework). If N(A) = {0}, then also N(ATA) = {0}1, meaning that ATA is
invertible and (66) has a unique solution. However, it is not quite obvious that (66) always has at
least one solution; will prove such an existence result later in this chapter.

Theorem 1.1. Assume that (66) has at least one solution (as it always has!). Then x ∈ Rn

is a minimizer of (65) if and only if it solves (66).

Proof. Let x ∈ Rn be a solution to (66) and write an arbitrary x̃ ∈ Rn in the form x̃ = x+z,
i.e., set z = x̃− x. Then, it holds that

�Ax̃− b�22 = �A(x+ z)− b�22 = �(Ax− b) +Az�22 =
�
(Ax− b) +Az

�T �
(Ax− b) +Az

�

= �Ax− b�22 + (Ax− b)TAz + (Az)T (Ax− b) + �Az�22
= �Ax− b�22 + 2zT (ATAx−AT b) + �Az�22
= �Ax− b�22 + �Az�22 ≥ �Ax− b�22,(67)

where the penultimate step follows from x being a solution of the normal equation. In other words,
x is a solution of the least squares problem because �Ax−b�2 ≤ �Ax̃−b�2 for an arbitrary x̃ ∈ Rn.

Let x̃ now also be a least squares solution, which means that equality holds in (67). This
implies that z = x̃− x belongs to N(A). Hence,

ATAx̃ = ATA(x+ z) = ATAx+ATAz = AT b,

i.e., x̃ is also a solution to the normal equation (66). �

The next goal is to enhance our geometric understanding about the normal equation (66):
What is the intuitive reason for it being equivalent to the least squares problem (65)? To this end,
we need to introduce the concept of a projection.

2. Projection matrices

Projection matrices are related to decompositions of a given vector x ∈ Rn into two parts. To
this end, let V and W be subspaces of Rn and assume that

(68) V ∩W = {0} and V +W = Rn,

where
V +W = {v +w | v ∈ V and w ∈ W}.

This means that Rn is the direct sum of V and W, which is expressed as Rn = V ⊕W.

Lemma 2.1. If Rn = V ⊕W, i.e. (68) is valid, then any x can be decomposed uniquely as

x = v +w,

where v ∈ V and w ∈ W.

Proof. Due to (68), it is obvious that any x ∈ Rn has the required decomposition, and so
we only need to worry about its uniqueness. Let v, ṽ ∈ V and w, w̃ ∈ W be such that

v +w = x = ṽ + w̃.

Hence,
V � v − ṽ = w̃ −w ∈ W,

and by the first condition in (68), it must hold that

v − ṽ = w̃ −w = 0,

as the zero vector is the only common element of V and W. In other words, v = ṽ and w = w̃,
and thus the decomposition must be unique. �

1Obviously N(A) ⊂ N(ATA), but also N(ATA) ⊂ N(A): if z ∈ N(ATA), then 0 = zT (ATAz) = �Az�22, i.e.,
z ∈ N(A).
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The projections, or projection matrices PV , PW ∈ Rn×n associated to a decomposition Rn =
V ⊕W are defined via

PVx = v and PWx = w,

where v ∈ V and w ∈ W are the unique vectors such that x = v+w. It would be straightforward
to prove that such matrices exist, i.e., that the functions sending x to its unique components
in V and W are linear mappings. However, we take a more constructive path and find explicit
representations for PV and PW .

Let {v1, . . . ,vk} and {w1, . . . ,wl} be basis for V and W, that is, these sets of vectors are
linearly independent and

V = span{v1, . . . ,vk} and W = span{w1, . . . ,wl}.
According to (68), any vector in Rn can be presented as a joint linear combination of {v1, . . . ,vk}
and {w1, . . . ,wl}. Let us prove that the joint set of vectors {v1, . . . ,vk,w1, . . . ,wl} is also linearly
independent: Let α ∈ Rk+l be such that

k�

i=1

αivi +
l�

j=1

αk+jwj = 0 ⇐⇒ V �
k�

i=1

αivi = −
l�

j=1

αl+kwl ∈ W,

where both sides must vanish by virtue of (68). Because {v1, . . . ,vk} and {w1, . . . ,wl} are
separately linearly independent, this means that the whole vector α ∈ Rk+l must vanish. Hence,
{v1, . . . ,vk,w1, . . . ,wl} is a set of linearly independent vectors that span Rn, i.e., they form a
basis for Rn. In particular, their total number k + l must equal the dimension of Rn; in the
following, we write l = n− k.

We stack the two bases as columns of the matrices W ∈ Rn×k and V ∈ Rn×(n−k), respectively:

V = [v1, . . . ,vk] and W = [w1, . . . ,wn−k].

With this notation, the two subspaces can be expressed as V = R(V ) and W = R(W ); see (5).
The decomposition of Rn related to V and W is thus

x = v +w = V zV +WzW = [V, W ]

�
zV

zW

�

for some ‘coordinate vectors’ zV ∈ Rk and zW ∈ Rn−k. Because the columns of [W, V ] ∈ Rn×n

are a (linearly independent) basis for Rn, the matrix [W, V ] is invertible. Hence,
�
zV

zW

�
= [V, W ]−1x.

On the other hand,

zV = [I, 0]

�
zV

zW

�
and zW = [0, I]

�
zV

zW

�
,

where I ∈ Rk×k, 0 ∈ Rk×(n−k) in the first formula and I ∈ R(n−k)×(n−k), 0 ∈ R(n−k)×k in the
second one. Altogether, we have thus deduced that

(69) PVx = V zV = V [I, 0]

�
zV

zW

�
= [V, 0][V, W ]−1x,

where the second 0 belongs to Rn×(n−k). Similarly,

(70) PWx = WzW = W [0, I]

�
zV

zW

�
= [0, W ][V, W ]−1x,

where the latter 0 belongs to Rn×k. In other words, PV = [V, 0][V, W ]−1 and PW = [0, W ][V, W ]−1,
where the zeros denote zero matrices of appropriate sizes.

By construction, the matrices PV and PW must satisfy

P 2
V = PV and P 2

W = PW .

Indeed, e.g., PVx is already an element of V, and so its unique decomposition of the form (68)
must be PVx = PVx+ 0, i.e., P 2

Vx = PV(PVx) = PVx for all x ∈ Rn. This could also be verified
by a direct calculation based on (69). In other words, the projection matrices PV and PW are
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identity maps on their respective ranges. This is a fundamental property that can be taken as the
definition of a projection (matrix).

Definition 2.1. A matrix P ∈ Rn×n is a projection if it satisfies

(71) P 2 = P.

Each projection matrix is related to a decomposition of the space Rn into two parts. Let
P ∈ Rn×n be a projection and consider the decomposition

(72) x = Px+ (I − P )x,

that is, V = R(P ) and W = R(I − P ). Due to the property P = P 2 it is easy to see that these
two subspaces satisfy the conditions (68): The second one is already proven by (72). On the other
hand, if x belongs to both R(P ) and R(I − P ), it can be given as x = (I − P )z for some z, but
as P is a projection, it also holds that Px = x. Putting these together,

x = Px = P (I − P )z = (P − P 2)z = (P − P )z = 0,

i.e., the zero vector is the only common element of R(P ) and R(I − P ). Note that I − P is also a
projection:

(I − P )(I − P ) = I − P − P + P 2 = I − 2P + P = I − P,

where we once again utilized the identity P 2 = P .
A special projection is related to subspaces V and W that are orthogonal.

Definition 2.2. Let V and W be subspaces of Rn and �·, ·� : Rn × Rn → R be some inner
product. The subspaces V and W are orthogonal with respect to �·, ·� if

�v,w� = 0

for all v ∈ V and w ∈ W.

We also need the definition for the orthogonal complement of a subspace V.
Definition 2.3. Let V be subspace of Rn and �·, ·� : Rn × Rn → R some innerpoduct. The

orthogonal complement of V is the subspace

(73) V⊥ := {w ∈ Rn | �w,v� = 0 for all v ∈ V}.
(Proving that V⊥ is actually a subspace is left as an exercise.)

It holds that

(74) V ∩ V⊥ = {0} and V + V⊥ = Rn,

i.e., V ⊕ V⊥ = Rn. Indeed, if v ∈ V also belongs to V⊥, then by definition

�v,v� = 0, i.e., v = 0.

On the other hand, if {v1, . . . ,vk} is an orthonormal basis for V,2 i.e., the vectors are orthogonal
(cf. Definition 2.3) and of unit length in the norm defined by the considered inner product, then
any x ∈ Rn can be written as

(75) x =

k�

i=1

�x,vi�vi +
�
x−

k�

i=1

�x,vi�vi

�
=: vx +wx,

which gives x as a sum of a vector in V and another in V⊥: Clearly, vx ∈ V and proving that
wx ∈ V⊥ is left as a homework (write an arbitrary element of V in the orthonormal basis, take
its inner product with wx and employ the orthonormality of the basis vectors). In fact, vx is
the orthogonal projection of x onto V and wx the orthogonal projection of x onto V⊥, as will be
defined in the following.

For the rest of this chapter, we only consider orthogonal complements with respect to the
Euclidean inner product. A projection matrix related to an orthogonal decomposition Rn =
V ⊕ V⊥ is called an orthogonal projection matrix. Let {v1, . . . ,vk} and {v⊥

1 , . . . ,v
⊥
n−k} be (not

2Such a basis can be constructed by the Gram–Schmidt ortogonalization process as we will learn later.
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necessarily orthonormal) bases for V and V⊥, respectively, and define the matrices V ∈ Rn×k and
V ⊥ ∈ Rn×(n−k) in the standard manner, i.e.,

V = [v1, . . . ,vk] and V ⊥ = [v⊥
1 , . . . ,v

⊥
n−k].

Note once again that V = R(V ) = span(v1, . . . ,vk) and V⊥ = R(V ⊥) = span(v⊥
1 , . . . ,v

⊥
n−k). By

definition (73), the columns of V are orthogonal to those of V ⊥ (in the Euclidean inner product),
meaning that

(76) V TV ⊥ = 0.

On the other hand, the decomposition of Rn related to V and V⊥ is

(77) x = V zV + V ⊥zV ⊥

for some yet-to-be-defined zV ∈ Rk and zV ⊥ ∈ Rn−k. Multiplying from the left by V T and using
the orthogonlity property (76), we get

V Tx = V TV zV .

Because N(V TV ) = N(V ) is trivial as the columns of V ∈ Rn×k are linearly independent, V TV ∈
Rk×k is invertible and zV can be solved as

zV = (V TV )−1V Tx.

The projection matrix related to the decomposition Rn = V ⊕ V⊥ is thus

(78) PV = V (V TV )−1V T ∈ Rn×n,

see (77). In particular, the orthogonal projection does not require one to form a basis for V⊥: the
auxiliary basis {v⊥

1 , . . . ,v
⊥
n−k} of V ⊥ does not anymore appear in (78). Moreover, if {v1, . . . ,vk}

are orthonormal, then V is orthogonal/unitary, i.e. V TV = I, and so

(79) PVx = V I−1V Tx = V



vT
1 x
...

vT
k x


 =

k�

i=1

(vT
i x)vi,

which corresponds to the first term in (75).
An othonormal projection satisfies some useful identities. First of all, since inversion and

transposition commute, we have

PT
V =

�
V (V TV )−1V T

�T
= (V T )T

�
(V TV )T

�−1
V T = V (V TV )−1V T = PV ,

and hence also,

(80) PT
V (I − PV) = PV(I − PV) = PV − P 2

V = PV − PV = 0.

After transposition, this yields

(81) (I − PV)
TPV = 0.

In fact, I − PV is the orthogonal projection onto V⊥ (homework).

Example 2.1. Let a,x ∈ R2. Consider a decomposition of the vector x into two components,
one parallel and the other orthogonal to a. Such a decomposition can be constructed as in (75):

x =
aTx

�a�22
a+

�
x− aTx

�a�22
a

�
=

1

�a�22
aaTx+

�
I − 1

�a�22
aaT

�
x,

where the division by �a�22 corresponds to normalization of a, i.e., a/�a�2 is a unit vector. The
two components of this decomposition are orthogonal (see Figure 2) and the related projection
matrices are

(82) P =
1

�a�22
aaT .

and I − P .
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b

a

Pb

Figure 2. Orthogonal
projection of a onto b.

b

a

Pb

Figure 3. One possible
oblique projection of a onto
b.

Example 2.2. Let a, c,x ∈ R2 be such that [a, c] ∈ R2×2 is invertible, i.e., a and c are
linearly independent. Consider the decomposition of x in the basis defined by a and c:

(83) x = αa+ βc.

The coefficients α and β can be solved from the linear system

[a, b]

�
α
β

�
= x,

and the parameter α can then be extracted from the solution via

α = [1, 0][a, b]−1x,

where [1, 0] ∈ R1×2. Thus, one of the two projection matrices related to this decomposition is

P = [a, 0][a, b]−1,

where [a, 0] ∈ R2×2 (cf. (69)).

3. Geometric interpretation of a least squares solution

With the help of projection matrices, we can now understand the geometry behind the least
squares problem (65) and the related normal equation (66). Let P ∈ Rm be an orthogonal
projection from Rm to R(A). As P keeps elements in R(A) fixed, the least squares functional can
be rewritten as

�Ax− b�22 = �PAx− b�22 = �P (Ax− b)− (I − P )b�22
= �PAx− Pb�2 −

�
P (Ax− b)

�T
(I − P )b−

�
(I − P )b

�T �
P (Ax− b)

�
+ �(I − P )b�22

= �Ax− Pb�+ �(I − P )b�22,(84)

where the last step follows from (80) or/and (81). Because the second term on the right-hand side
of (84) does not depend on x, to minimize the least squares functional, x should be chosen such
that

(85) Ax = Pb,
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which has a (not-necessarily-unique) solution because Pb ∈ R(A) by definition. In other words, a
minimizer of (65) is such x that Ax equals the orthogonal projection of b onto R(A).

If N(A) = {0}, i.e, Aα = 0 if and only if α = 0, the columns of A are a (linearly in-
dependent) basis for R(A). Thus, the definition of an orthogonal projection matrix (78) gives
P = A(ATA)−1AT and (85) turns into

(86) Ax = A(ATA)−1AT b.

In particular, the unique solution of the normal equation (66), i.e.,

x = (ATA)−1AT b

clearly satisfies (86) — as it should because it is the unique minimizer of (65) if N(A) = N(ATA) =
{0} according to Theorem 1.1.

4. QR decomposition

The normal equation approach to solving the least squares problem has two drawbacks: First
of all, if A does not have a trivial nullspace, the normal equation is not uniquely solvable. Secondly,
even if N(A) = {0}, the conditioning of the normal equation is much worse than that of the original
problem (1): For example if A ∈ Rn×n, the condition numbers corresponding to the 2-norm satisfy

κ2(A
TA) = κ2(A)2,

which follows from Lemma 2.5 of Chapter 1 and the fourth exercise sheet after noticing that ATA
is symmetric. According to the discussion in Section 1, if the condition number is squared, solving
a linear system becomes much more sensitive to, e.g., floating point errors. In some extreme cases,
resorting to the normal equation may even lead to loss of information, as demonstrated by the
following example.

Example 4.1. Let

A =



1 1
� 0
0 �


 so that AT =

�
1 � 0
1 0 �

�
.

Hence,

ATA =

�
1 + �2 1

1 1 + �2

�
.

In floating point arithmetics fl(1 + �2) = 1 when � is sufficiently small; note that for � � 1, the
square �2 is much smaller that � itself. When this happens,

fl(ATA) =

�
1 1
1 1

�
,

i.e., data is lost and, in this case, the normal equation is even no longer uniquely solvable. In
Matlab, this happens if � < 10−9.

To avoid the dramatic decrease in stability due to the normal equation approach and the
related floating point errors, the least squares problem is typically solved using either the QR or
the singular value (SVD) decomposition for the matrix A. Both methods can be understood as
ways to compute an orthonormal basis for the subspace R(A).

The simplest way to compute the QR decomposition is via the Gram–Schmidt orthogonal-
ization process that is based on the following Lemma. In what follows, “orthogonality” refers to
orthogonality in the sense of the Euclidean inner product.

Lemma 4.1. Let {q1, . . . , qk} ⊂ Rm, k < m, be a set of orthonormal vectors, i.e., �qi�2 = 1,
i = 1, . . . , k, and

qT
i qj = 0 for i �= j.

In addition, assume that a ∈ Rm does not belong to span(q1, . . . , qk) and define

(87) qk+1 =
q̃k+1

�q̃k+1�2
, where q̃k+1 = a−

k�

i=1

(aTqi)qi.
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Then {q1, . . . , qk+1} ⊂ Rn is a set of orthonormal vectors and

(88) span(q1, . . . , qk+1) = span(q1, . . . , qk,a).

Proof. To begin with note that q̃k+1 defined in (87) is a nonzero vector because a /∈
span(q1, . . . , qk), i.e., a cannot be given as a linear combination of q1, . . . , qk.

To prove the orthonormality of the set {q1, . . . , qk+1} it is enough to prove that qk+1 is of
unit Euclidean length and orthogonal to q1, . . . , qk. From the first equation in (87), it is obvious
that �qk+1�2 = 1. Moreover, since qk+1 and q̃k+1 are parallel, it is actually enough to show that
q̃k+1 is orthogonal to q1, . . . , qk: for any j = 1, . . . , k, we have

q̃T
k+1qj =

�
a−

k�

i=1

(aTqi)qi

�T
qj = aTqj −

k�

i=1

(aTqi)(q
T
i qj) = aTqj − aTqj = 0

due to the orthonormality of {q1, . . . , qk}.
Although (88) follows straightforwardly from the definition of linear span, let us anyway

carefully prove it for the sake of completeness. Assume first that x ∈ span(q1, . . . , qk+1), i.e.,

x =
k+1�

i=1

αiqi =
k�

i=1

αiqi + αk+1qk+1

for some α ∈ Rk+1. Note that (87) can be rewritten in the form

qk+1 =
1

�q̃k+1�2

�
a−

k�

i=1

(aTqi)qi

�
.

Hence,

x =

k�

i=1

αiqi +
αk+1

�q̃k+1�2

�
a−

k�

i=1

(aTqi)qi

�
=

k�

i=1

�
αi −

αk+1a
Tqi

�q̃k+1�2

�
qi +

αk+1

�q̃k+1�2
a,

which is obviously in span(q1, . . . , qk,a), meaning that span(q1, . . . , , qk+1) ⊂ span(q1, . . . , qk,a).

On the other hand, if x ∈ span(q1, . . . , qk,a), then for some α ∈ Rk+1,

x =
k�

i=1

αiqi + αk+1a =
k�

i=1

αiqi + αk+1

�
�q̃k+1�2 qk+1 +

k�

i=1

(aTqi)qi

�

=
k�

i=1

(αi + αk+1a
Tqi)qi + αk+1�q̃k+1�2 qk+1,

which clearly belongs to span(q1, . . . , qk+1). Hence, also span(q1, . . . , qk,a) ⊂ span(q1, . . . , qk+1),
which completes the proof. �

The intuitive idea of (87) is that one first subtracts from a its projections onto the one-
dimensional subspaces defined by q1, . . . , qn, leaving only the component of a orthogonal to
span(q1, . . . , qk), and then this component is normalized. In fact, one can write the second equa-
tion of (87) in the form

q̃k+1 = (I − Pk)a,

where Pk ∈ Rm×m is the orthogonal projection matrix onto the subspace span(q1, . . . , qk); see
(79).

Using Lemma 4.1, it is straightforward to compute an orthonormal basis for the subspace

R(A) = span(a1, . . . ,an) ⊂ Rm,

assuming the columns a1, . . . ,an of the matrix A ∈ Rm×n are linearly independent, i.e., assuming
N(A) = {0}. Indeed, such basis {q1, . . . , qn} can be recursively obtained via

qj =
q̃j

�q̃j�2
, where q̃j = aj −

j−1�

i=1

(aT
jqi)qi, for j = 1, . . . , n.
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In other words, one first defines q1 by simply normalizing a1, then one computes a unit vector
q2 that is orthogonal to q1 and satisfies span(q1, q2) = span(q1,a2) = span(a1,a2), then one
continues by computing a unit vector q2 that is orthogonal to both q1 and q2 and satisfies

span(q1, q2, q3) = span(q1, q2,a3) = span(a1,a2,a3),

and so on until qn is computed and it holds that span(q1, . . . , qn) = span(a1, . . . ,an) = R(A).
Take note that one can get the original columns of A back via

(89) aj = �q̃j�2 qj +

j−1�

i=1

(aT
jqi)qi, j = 1, . . . , n,

which demonstrates that, for any j = 1, . . . , n, the jth column aj of A can be given as a linear
combination of q1, . . . , qj , i.e., of (only) the first j orthonormal basis vectors of R(A) produced

by the Gram–Schmidt process. Defining in the standard manner Q = [q1, . . . , qn] ∈ Rm×n and
collecting the coefficients in the linear combinations of (89) as columns of an upper triangular
matrix R ∈ Rn×n, the equations (89) can be written neatly in a matrix form

A = QR.

To be more precise, R can be given elementwise as

Ri,j =





aT
jqi if i < j,

�q̃i�2 if i = j,

0 if i > j.

Note also that QTQ = I ∈ Rn×n because the columns of Q are orthonormal.
Once a QR decomposition has been computed for A,3 the least squares problem (65) can be

formulated equivalently as the equation

Rx = QT b.

There are (at least) two ways to deduce this. First of all, sinceN(ATA) = N(A) = 0 by assumption,
the unique solution of the least squares problem (65) is the unique solution of the normal equation
(66). On the other hand, since

AT = RTQT and ATA = RTQTQR = RT IR = RTR,

the normal equation can be written as

RTRx = RTQT b ⇐⇒ Rx = QT b,

where the last step follows by multiplying from the left by the inverse of RT .4

The second way is based on using the reformulation (85) of the least squares problem and
writing the orthogonal projection matrix P ∈ Rm×m onto R(A) with the help of the orthonormal
basis {q1, . . . , qn}, that is,

P = Q
�
QTQ

�−1
QT = QI−1QT = QQT

according to (78). Hence, (85) reduces to

Ax = QRx = QQT b ⇐⇒ Rx = QT b,

where “⇒” follows by multiplying from left with QT and “⇐” by multiplying from left with Q.
There are two ways to numerically implement the Gram–Schmidt process, or the computation

of a QR decomposition, namely classical and modified. In floating point arithmetics these two
procedures have very different numerical stability properties. The more stable modified Gram–
Schmidt procedure can be implemented in Matlab as follows:

3Observe that when introducing the QR decomposition, we assumed that the columns of A ∈ Rm×n are linearly

independent, i.e., N(A) = {0}, and so everything that follows is conditional on this assumption. In particular, this
excludes the case n > m.

4Observe that both R and RT are invertible: As triangular square matrices, their eigenvalues are their diagonal
elements �q̃i�2 > 0, i = 1, . . . , n. Hence, zero is not an eigenvalue for either of these square matrices, and thus they

are both invertible.
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function [Q,R] = my gsmith(A)

Q = [];

for i=1:size(A,2)

q = A(:,i);

for k=1:size(Q,2)

R(k,i) = q'*Q(:,k);

q = q - R(k,i)*Q(:,k);

end

R(i,i) = norm(q);

Q(:,i) = q/R(i,i);

end

And the classical Gram-Schmidt procedure as follows:

function [Q,R] = my c gsmith(A)

Q = [];

for i=1:size(A,2)

q = A(:,i);

for k=1:size(Q,2)

R(k,i) = q'*Q(:,k);

end

for k=1:size(Q,2)

q = q - R(k,i)*Q(:,k);

end

R(i,i) = norm(q);

Q(:,i) = q/R(i,i);

end

In exact arithmetics, both these algorithms return Q ∈ Rm×n such that QTQ = I and
R(Q) = R(A) as well as an upper triangular R ∈ Rn×n such that A = QR. However, the two
implementations of the Gram–Schmidt process have very different numerical stability properties.
The exact definition of numerical stability is in this case rather complicated. One can, e.g., measure
the orthogonality of Q, i.e. �I − QTQ�, or the accuracy of the decomposition, i.e. �A − QR�, in
some suitable matrix norm. The loss of orthogonality is more prone to stability issues than the
accuracy of the decomposition. For the modified Gram–Schmidt, one can prove numerical stability
in both of these measures, whereas the classical Gram–Schmidt is not numerically stable.

5. Singular value decomposition

The singular value decomposition (SVD) is a general matrix factorization that can be formed
for any matrix. For a symmetric (or Hermitian) and positive definite matrix, the SVD coincides
with the unitary diagonalization, or the eigenvalue decomposition; more generally, the eigenvalue
and singular value decompositions are almost equivalent for any symmetric matrix, meaning that
they can be obtained from one another by simply changing signs of certain matrix elements.

The intuitive idea behind the singular value decomposition is the following: Any matrix
A ∈ Rm×n can be represented as a diagonal matrix Σ ∈ Rm×n between a certain orthonor-
mal basis {v1, . . . ,vn} for Rn and another orthonormal basis {u1, . . . ,um} for Rm.5 In other
words, Ax can be evaluated by first computing the coordinates of x in the orthonormal basis
{v1, . . . ,vn}, then scaling these coordinates by certain non-negative scalars, and finally interpret-
ing the scaled coordinates as the coordinates of Ax in the basis {u1, . . . ,um}. If m > n, the
coordinates/projections of Ax corresponding to un+1, . . . ,um are automatically set to zero; if

5Here and in what follows, “orthonormal” is to be understood in the sense of the Euclidean inner product.
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n > m, the coordinates/projections of x corresponding to vm+1, . . . ,vn do not affect Ax in any
way.

Forming the SVD corresponds to finding the aforementioned orthonormal basis {v1, . . . ,vn}
and {u1, . . . ,um}, i.e., the right-hand and left-hand singular vectors, as well as the corresponding
‘scaling scalars’

σ1 ≥ σ2 ≥ σmin{m,n} ≥ 0

that are called the singular values, are arranged in decreasing order, and are the diagonal elements
of Σ ∈ Rm×n. We denote by p ≤ min{m,n} the largest index for which the corresponding singular
value is positive, i.e., σp > 0 but σp+1 = 0 (or p = min{m,n}). Note that, according to the above
explanation, all information in A is actually encoded in {v1, . . . ,vp}, {u1, . . . ,up} and σ1, . . . ,σp

because the components of x in the directions vp+1, . . . ,vn are either scaled by zero singular values
or altogether ignored when evaluating Ax. It will turn out that p = rank(A) = dim(R(A)).

Let us formulate the above ‘construction’ in a matrix form. A SVD for A ∈ Rm×n is

(90) A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal (or unitary) matrices, i.e., their columns are the
aforementioned orthonormal basis for Rm×m and Rn×n, respectively, and Σ ∈ Rm×n carries the
singular values in the decreasing order on its diagonal. To be more precise, when n > m, Σ takes
the form

Σ =




σ1

σ2

. . .

σm


 ,

and in the case m > n, Σ has the form

Σ =




σ1

σ2

. . .

σn



,

that is, there are extra zeros either at the right edge (n > m) or at the bottom (m > n) of Σ. The
SVD is not unique: the matrices U and V can be chosen in different ways.

Let us verify that the decomposition (90) is concordant with the verbal explanation of the
SVD presented in the beginning of this section: For any x ∈ Rn we have

Ax = UΣV Tx = UΣ



vT
1 x
...

vT
nx


 = U




σ1v
T
1 x
...

σmin{m,n}vT
min{m,n}x

0


 =

min{m,n}�

i=1

σi(v
T
i x)ui

=

p�

i=i

σiui(v
T
i x),(91)

where in the third to last step 0 ∈ Rm−n if m > n and otherwise it should be ignored. As
vT
1 x, . . . ,v

T
nx are the coordinates/projections of x ∈ Rn in the orthonormal basis {v1, . . . ,vn},

the decomposition (90) is exactly of the desired form. In particular, the right-hand side of (90)
demonstrates that A is completely determined by the first p singular values and singular vectors.

We still need to prove that any matrix really has a SVD. We start with a lemma that is related
to the eigenvalues and eigenvectors of ATA, i.e., entities that will turn out to be closely related to
the SVD of A itself.

Lemma 5.1. Let A ∈ Rm×n. Let {v1, . . . ,vn} ⊂ Rn be an orthonormal set of eigenvectors for
ATA ∈ Rn×n arranged so that the corresponding eigenvalues, λ1, . . . ,λn, form a non-increasing
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sequence. Let p denote the number of those v1, . . . ,vn that correspond to positive eigenvalues.
Then, Avi = 0 for i = p+ 1, . . . , n, and

(92) ui :=
1√
λi

Avi, i = 1, . . . , p,

form an orthonormal set in Rm. In particular, 0 ≤ p ≤ min{m,n}.
Proof. To begin with, note that there really exists an orthonormal eigenbasis {v1, . . . ,vn} ⊂

Rn for ATA ∈ Rn×n because it is symmetric (or Hermitian); see Theorem 2.1 of Chapter 2 and
the succeeding discussion. Moreover, all eigenvalues of ATA are non-negative since ATA is positive
semi-definite:

0 ≤ �Avi�22 = vT
i A

TAvi = λi�vi�22 = λi

for any i = 1, . . . , n. This formula also proves that Avi = 0 if and only if λi = 0, i.e., if and only
if i = p+ 1, . . . , n; in particular, none of the vectors u1, . . . ,up defined by (92) is a zero vector.

Let us then take a closer look at the (left-hand singular) vectors defined by (92). It holds that

uT
i uj =

1�
λiλj

vT
i A

TAvj =
λj�
λiλj

vT
i vj

which vanishes when i �= j due to the orthonormality of {v1, . . . ,vp}. On the other hand,

�ui�22 = uT
i ui =

λi√
λiλi

vT
i vi = �vi�22 = 1,

which completes the proof of the orthonormality of {u1, . . . ,up}.
Finally, because {v1, . . . ,vp} is an orthonormal set in Rn and {u1, . . . ,up} is an orthonormal

set in Rn, it must hold that p ≤ n and p ≤ m, i.e., p ≤ min{m,n}. �

As a side note, observe that all positive eigenvalues of ATA ∈ Rn×n are also eigenvalues of
AAT ∈ Rm×m with u1, . . . ,up being the corresponding orthonormal eigenvectors:

AATui =
1√
λi

A(ATAvi) = λi

� 1√
λi

Avi

�
= λiui

for i = 1, . . . , p.

Theorem 5.1. Let A ∈ Rm×n. Then there exists an integer 0 ≤ p ≤ min{m,n}, positive
coefficients σ1 ≥ σ2 ≥ · · · ≥ σp > 0 and sets of orthonormal vectors {v1, . . . ,vp} ⊂ Rn and
{u1, . . . ,up} ⊂ Rm such that

A =

p�

i=1

σiuiv
T
i .

Proof. Let {v1, . . . ,vn} ⊂ Rn be an orthonormal eigenbasis for ATA ∈ Rn organized in the
same way as in Lemma 5.1. Let x ∈ Rn be arbitrary and write it in the eigenbasis of ATA ∈ Rn

as

x =

n�

i=1

(vT
i x)vi.

Because Avi = 0 for i = p+ 1, . . . , n by Lemma 5.1, we have

Ax =

n�

i=1

(vT
i x)Avi =

p�

i=1

(vT
i x)Avi =

p�

i=1

(vT
i x)

√
λiui =

p�

i=1

√
λiuiv

T
i x

where the orthonormal vectors u1, . . . ,up are defined by (92). After defining σi =
√
λi, i =

1, . . . , p, the proof is complete. �

Let 0 ≤ p ≤ min{m,n}, {v1, . . . ,vn}, {u1, . . . ,up} and σ1 ≥ σ2 ≥ · · · ≥ σp > 0 be as defined
in Lemma 5.1 and Theorem 5.1. Based on Theorem 5.1, the matrix form of SVD, i.e. (90), is
obtained by defining σp+1, . . . ,σmin{m,n} = 0 and introducing the missing orthonormal columns of
U , i.e., up+1, . . . ,um, via, e.g., the Gram–Schmidt orthogonalization process. It is easy to check
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that with these choices (91) is valid for any x ∈ Rn by virtue of Theorem 5.1, and thus we have
proved the existence of (90) for any A ∈ Rm×n.

Although the ‘extra singular vectors’ up+1, . . . ,um and vp+1, . . . ,vn are not actually needed in
constructing A (cf. Theorem 5.1), they can be used to determine R(A), N(A) and their orthogonal
complements.

Theorem 5.2. Let A ∈ Rm×n, consider its SVD given by (90) and denote (still) by p the
number of positive singular values of A. Then,

(1) R(A) = span(u1, . . . ,up),
(2) N(A) = span(vp+1, . . . ,vn),
(3) R(A)⊥ = span(up+1, . . . ,um),
(4) N(A)⊥ = span(v1, . . . ,vp).

In particular, rank(A) = dim(R(A)) = p.

Proof. According to Theorem 5.1,

R(A) =
�
y ∈ Rm

�� y =

p�

i=1

σi(v
T
i x)ui for some x ∈ Rn

�

which clearly is a subset of span(u1, . . . ,up). On the other hand, an arbitrary element in
span(u1, . . . ,up), say,

y =

p�

i=1

αiui, α ∈ Rp,

can be written as

A
� p�

j=1

αj

σj
vj

�
=

p�

i=1

σiui

� p�

j=1

αj

σj
vT
i vj

�
=

p�

i=1

σi
αi

σi
ui = y

due to the orthonormality of {v1, . . . ,vp}. Hence also span(u1, . . . ,up) ⊂ R(A), and altogether
R(A) = span(u1, . . . ,up). This also proves that rank(A) = p. Moreover, since the m− p vectors
up+1, . . . ,um are mutually orthonormal as well as orthogonal to R(A), they must form a basis for
the m− p dimensional orthogonal complement R(A)⊥.

Let then x ∈ N(A) be arbitrary and write it in the orthonormal basis {v1, . . . ,vn} of Rn as

x =
n�

j=1

αjvj , α ∈ Rn.

By Theorem 5.1,

0 = Ax = A
� n�

j=1

αjvj

�
=

p�

i=1

σiui

� n�

j=1

αjv
T
i vj

�
=

p�

i=1

σiαiui

due to the orthonormality of {v1, . . . ,vn}. Since σ1, . . . ,σp are positive and u1, . . . ,up are linearly
independent, it must hold that α1 = · · · = αp = 0, meaning that

x =
n�

j=p+1

αjvj ∈ span(vp+1, . . . ,vn).

In other words, N(A) ⊂ span(vp+1, . . . ,vn). On the other hand, via an analogous calculation it fol-
lows easily that any x ∈ span(vp+1, . . . ,vn) belongs to N(A), and so N(A) = span(vp+1, . . . ,vn).
Finally, the remaining orthonormal vectors v1, . . . ,vp must form a basis for the n − (n − p) = p
dimensional orthogonal complement N(A)⊥.

�

We complete these lecture notes by demonstrating the SVD can be used for solving least
squares problems even if N(A) = 0.
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Theorem 5.3. Let A ∈ Rm×n and b ∈ Rm. Consider the SVD of A given by (90) and denote
(still) by p the number of positive singular values of A. Then, the vector

(93) x† :=
p�

j=1

1

σj
(uT

j b)vj

is a solution to the normal equation (66).

Proof. The proof is simply a straightforward computation based on the representations

A =

p�

i=1

σiuiv
T
i and AT =

� p�

j=1

σjujv
T
j

�T
=

p�

j=1

σj

�
ujv

T
j

�T
=

p�

j=1

σjvju
T
j

provided by Theorem 5.1. Indeed,

Ax† =
p�

i=1

σiuiv
T
i

� p�

j=1

1

σj
(uT

j b)vj

�
=

p�

i=1

σiui

� p�

j=1

1

σj
(uT

j b)(v
T
i vj)

�

=

p�

i=1

σi

σi
(uT

i b)ui =

p�

i=1

(uT
i b)ui,

where we once again used the orthonormality of {v1, . . . ,vp}. Analogously,

AT (Ax†) =
p�

j=1

σjvju
T
j

� p�

i=1

(uT
i b)ui

�
=

p�

j=1

σjvj

� p�

i=1

(uT
i b)(u

T
j ui)

�
=

p�

j=1

σj(u
T
j b)vj ,

which equals

AT b =

p�

j=1

σjvju
T
j b =

p�

j=1

σj(u
T
j b)vj ,

and so the proof is complete. �

Corollary 5.1. Let A ∈ Rm×n and b ∈ Rm. Consider the SVD of A given by (90) and
denote (still) by p the number of positive singular values of A. All solutions of the least squares
problem (65) are of the form

(94) x = x† + z

for some z ∈ N(A).

Proof. Since we have (finally!) found a solution x† to the normal equation (66) indepen-
dently of whether N(A) = {0}, by virtue of Theorem 1.1 we know that x is a solution of the least
squares problem (65) if and only if it solves the normal equation (66). In consequence, it is enough
to prove that all solutions of the normal equation (66) are of the form (94).

Let x be of the form (94). Obviously,

ATAx = ATAx† +ATAz = AT b+ 0 = AT b,

and so x solves the normal equation (66). On the other hand, if x is an arbitrary solution of the
normal equation, we may define z = x− x†, i.e., x = x† + z. It follows that

ATAz = ATAx−ATAx† = AT b−AT b = 0.

Hence, z ∈ N(ATA) = N(A) and so x is of the form (94). This completes the proof. �

According to Theorems 5.2 and 5.3, the special least squares solution x† belongs to
span(v1, . . . ,vp) = N(A)⊥. Hence, any (other) solution (94) to the least squares problem (65)
satisfies

�x�22 = �x† + z�22 = �x†�22 + 2zTx† + �z�22 = �x†�22 + �z�22 ≥ �x†�22,
and so x† is the solution to (65) with the smallest Euclidean norm, i.e. the unique so-called
minimum norm solution to (65).
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Finally, by comparing (93) to (91), it is rather obvious that one has the representation

x† = A†b, where A† = V Σ†UT ∈ Rn×m

and Σ† ∈ Rn×m is of the form

Σ =




σ−1
1

σ−1
2

. . .

σ−1
p

0
. . .

0




if m > n and of the form

Σ =




σ−1
1

σ−1
2

. . .

σ−1
p

0
. . .

0




if n > m. To put it short, A† is defined based on the SVD of A by reversing the roles of U and
V , inverting all positive singular values on the diagonal of Σ, and making the dimensions of Σ†

compatible via introduction of extra zeros. The ‘almost-an-inverse-matrix’ A† ∈ Rn×m is called
the Moore–Penrose pseudoinverse of A ∈ Rm×n.

THE END


