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Inverse problem for Maxwell’s equation:
Do the electromagnetic measurements on the boundary
determine the inside of a body?

Invisibility cloaking
Can we coat a body with a special material so that it appear
like homogeneous material in all measurements?

Wormholes and virtual magnetic monopoles : Can we
construct from metamaterials objects that function as

Invisible tunnels?
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Artistic illustration by M. and J. Levin.
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1 Inverse conductivity problem

Consider a body Q2 ¢ R?. An electric potential u(z) causes

the current
J(x) = —o(x)Vu(z).

If the current has no sources inside the body, we have

V-o(z)Vu(x) = 0.
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Conductivity equation
V-o(z)Vu(z) =0 onQ c RY

Inverse problem: Do the measurements made on the
boundary determine the conductivity, that is, does the
Dirichlet-to-Neumann operator A,

Ay (ulpn) = v-oVulpn

determine the conductivity o(z) In Q27?

Figure: EIT at University of Kuopio.
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Assume that the current J(x) vanishes and ¢ = 1 outside
B(0, R). Then the problem

V-o(z)Vu(z) = =V-J(z) on R,
u(x) satisfies radiation condition when |z| — oo

IS equivalent to

Au(z) = =V-J(z) onR%\ Q,
v- Vulga = Ao (ulsn),
u(x) satisfies radiation condition when |z| — oo.
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For other physical problems, we define A as

Aulg) = v-Vulpa  for (A + k*n(z))u =0,

AWlan) = v-Vilan, for (A+q(z)+ E)p =0,

Alv x Elga) =v x Hlga, for Maxwell's equations.

Similar kind of operators can be defined also in time
domain, for example

Alv X Elgaxr) = v X H|gaxr, for Maxwell's equations.
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Some Positive results for inverse conductivity problem:

¥

Calderdén 1980: Solution of the linearized inverse
conductivity problem.

Sylvester-Uhlmann 1987: Uniqueness of inverse
conductivity problem in R?, d > 3.

Nachman 1996: Unigueness inverse conductivity
problem problem in R?

Astala-Paivarinta 2006: Uniqueness of Calderdn’s
problem in R? with L>-conductivity.

Astala-L.-Paivarinta 2005: Inverse problem for
anisotropic L>-conductivity in R?.

All these results need assumptions like

cl <o(zx) <col, c1,c0>0.

Next we consider non-uniqueness results.



Invariant formulation. Assume d > 3 and 2 ¢ R%. Using
the conductivity o we can define a Riemannian metric

¢ (z) = (deto(z)) V2 g7k ().
Then conductivity equation is the Laplace-Beltrami equation
Agu=0 1n{Q,
where

d
179 O 0
gu_ Z g 1/2 gl/QQJkax )
7,k=1

and g = det (g;;), [gi5] = [¢""] .
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Inverse problem: Can we determine the Riemannian
metric g by knowing

Ag i ulgo — Ovulgn, Agu=07

Consider a diffeomorphism, that is, a smooth
transformation £ : Q2 — () fixing the boundary. Then
F:(Q,9) — (€,9) Is an isometry, where g = F.g

8xp8xq

Pt v=F=1(y)
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Denoting u(y) = u(F~!(y)) we have
Agu=0 Ifandonlyif Ap,u=0.
We see that
Ng = AFp,q

Metrics ¢ and F. g define two different conductivities on 2
which appear the same in all boundary measurements.

F
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Non-uniqueness results  (L.-Taylor-Uhimann 2003)
Let (M, g) be a compact 2-dimensional manifold. Let

rog € M, and consider manifold

M = M\ {x}

with the metric
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Random walk on a Riemannian manifold.
We can interpret the conductivity as a Riemannian metric.

Random walk problem. Lety € oM and let v be the unit
normal vector. Consider a random walk process B*(t)
starting at the point y + cv, where y € OM and ¢ > 0 Is small.
Let us measure the probability distribution of the points
where B*(t) hits first time to the boundary. Does these
measurement determine the metric on M?

Inverse conductivity problem
IS equivalent
to a random walk problem.

Figure by Z. Ganim (MIT).
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Assume Aju = 0, u|gps = h. Then by the Feynman-Kac
formula

w(z) = E(h(B*(7))), h=ulonm.
where B”*(t) Is Brownian motion starting at x and 7 Is hitting

time to oM.

Normal derivative of u can be found by moving the starting
point z to boundary. This yields

Anrg = A]Tj,g

Two manifolds having same boundary measurements
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Conductivity equation and a ball with a cloaked pocket.
(Greenleaf-L.-Uhlmann 2003)

Let B(0,2) C R? be a ball of radius 2 and B(0, 1) a ball of
radius 1. Consider the map

F:B(0,2)\ {0} — B(0,2)\ B(0,1), F(z)=(—=—+1)—.
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Conductivity equation and a ball with a cloaked pocket.
(Greenleaf-L.-Uhlmann 2003)

Let B(0,2) C R? be a ball of radius 2 and B(0, 1) a ball of
radius 1. Consider the map

F:B(0,2)\ {0} — B(0,2)\ B(0,1), F(z)=(—=—+1)—.

Denote

- . OxP Oz
g=Fig, thatis, g;i(y Z o0 Gpq(x

p,qg=1
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Let g1 = 9, be the Euclidian metric in 5(0,2) and ¢ = 1 be
the corresponding conductivity. For g = F,g we denote

~_ g*/2g7% forx € B(0,2) \ B(0,1)
L for z € B(0,1)

Then in the spherical coordinates
(r,@,0) — (rsinfcos ¢, rsinfsin ¢, r cos §) we have

2(r —1)?sinf 0 0
o= 0 2sin 0 0 ;1< z| <2
0 0  2(sinf)~!

Theorem 1 (Greenleaf-L.-Uhlmann 2003) The boundary
measurements for ¢ and o coincide, that is, A; = A,.

—p. 16/58



All boundary measurements for the homogeneous
conductivity o = 1 and the degenerated conductivity ¢ are
the same.

H

i

Figure: Analytic solutions for the currents.
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2 Invisibility and metamaterials.

In 2006, metamaterials were proposed and tested to realize
invisibility cloaking for the non-zero frequency case.

# Optical Conformal Mapping by U. Leonhardt, Science 2006.

# Controlling electromagnetic fields by J. Pendry, D. Schurig
and D. R. Smith, Science 2006.

#® Metamaterial Electromagnetic Cloak at Microwave Frequencies Dy

Schurig et al, Science 2006.
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How to create material parameters for cloaking?
As before, let ¢;; = 9;; and g = F,g with

X X
oy

00

Define the permittivity ¢ and permeability ;1 using the same
formula that used for the conductivity,

F:B(0,2)\ {0} — B(0,2)\ B(0,1), F(x)=(

™

| 1g1"?g7* forz € B(0,2)\ B(0,1)
R L for z € B(0,1)
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Differential forms and transformations of coordinates.
Let z = (2!, 2%, 2). We consider electric field £ as 1-form

E(z) = Ei(z)dz' + Eo(x)dx? + Es(x)dx’.
Electric displacement D is 2-form,
D(z) = Dyo(x)dz! A dz? + Dig(x)dat A da® + Dog(z)dz? A da?.

When ~ Is a curve and X is a surface, we can define

/E and /D.
Y by

Similarly, H 1s 1-form and B is 2-form. Note that
V x E =iwB has a coordinate invariant meaning and can
be written as dF = iwB where d Is the exterior differential.
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Let F: R? — R be diffeomorphism. Denote 7 = F(z) and
function « we define the “push-forward” in F’, denoted
Fyu = u, as

U(7) = u(F17)).

For 1-form E(z) = Ey(z)da! + Eo(z)dz? + Es(x)dz® we
define £ = F.E, where

E(@) = Ei(3)dZ" + Fy(3)dz? + E5(3)d3>

3 3 |
= > (Z(DF”)?(:E) Ek(F—l(af))>dzzﬂ.

j=1 k=1

Similar transformation law is valid for 2-forms.
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We consider permittivity ¢(x) and permeabillity ;. (x) as linear
operators that map 1-forms to 2-forms,

D(x) =¢e(x)E(x), B(x)=p(x)H(x). (1)

The transformation law from € to € = Fe In diffeomorphism
FIs given by

o | t
e(xr) = det (DF (2)) DF(z)e(x) DF(x) e

The same transformation law is valid of L and o.
Then (1) yields that D = ¢F and B = iH.
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If the 1-forms F and H on B(0, 2) satisfy Maxwell's
equations

VX FE=iwuH, V xH=—iwegE on B(0,2)
and € = F.cp and i = F.uo then E = F.E, H = F.H satisfy

V x E=iwi(z)H, V xH=—iwe(z)E on B(0,2)\ B(0,1).

Moreover, the light rays in metric g go around the ball
B(0,1). One possibility is to define E = H = 0 in B(0, 1).

//\
)
<

~_ Y vV -
B
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If the 1-forms F and H on B(0, 2) satisfy Maxwell's
equations

VX FE=iwuH, V xH=—iwegE on B(0,2)

and € = F.cp and i = F.uo then E = F.E, H = F.H satisfy

~

V x E=iwi(z)H, V xH=—iwe(z)E on B(0,2)\ B(0,1).

Moreover, the light rays in metric g go around the ball
B(0,1). One possibility is to define E = H = 0 in B(0, 1).

We consider the question: What happens on 0B(0,1)?

A D
e -
\

} —
g
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Figure: Invisibility cloak for 4 cm waves build using
metamaterials, Schurig et al, Science 2006.
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3 Distributional solutions for

differential equations

Consider relations

~ ~

D=¢E, B=IJH.

Later, the elements of matrices ;1 and ¢ will have values ~
and 0 on 0B(0,1).
There are two alternatives:

1. We need to consider undefined products like 0 - oo, or
2. Consider equations in sense of distributions.
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Notations

Letz = (2!, 2%,...,2%) e RYand a = (a1, a9, ..., a4) € N°

We denote

and
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Definition of distributions.  Let D = C5°(R?) be the space
of the test functions,

D={¢:RY—C : 0% are continuous for all «,
¢(x) =0 1If |x| > s for some s > 0}.

We say that a linear operator A : D — C Is a distribution if
for any s > 0 there are N and C such that

M) < C > max|9%¢|, forall ¢ € D satisfying ¢|,-,=0.

| <N

We denote (), ¢) = A(¢). All continuous functions
h: R — C define a distribution

(h, 6) = /R h(a)o() da.

There are also other distributions, like (4, ¢) = ¢(0).
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If h Is a continuously differentiable function

| ih@)o(a) dz = [ hia)(—5-ola) da, o€ D.

Imitating this, we define that a distribution A\ has the
derivative \' = -2\ that is given by

X6) =\ (—5-0)), €D
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Consider now examples:

I, >0
0, =<0

0
H(x) =
8:13H( r) = d(x), (x) {
This means that for all functions ¢ € D we have

7 H,0) | H@)(=52 ) do = 6(0) = (6,9)
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Let P(y) = >_aj<m @ay”. Distributions A and f satisty
PO)\ = F If

Example: Integrable functions £, F, and G satisfy
VxE=F V- -E=G

In distributional sense If
/ E-V xqbd:z::/ F-¢dx ¢ecD?
R3 R3
and

_/IRBE.v¢dx:/ Godr 1 eD.

RB
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4 Mathematical theory of cloaking for
Maxwell's equation

We consider

V x E=iwi(z)H, VxH=—iwez)E+J onB0,2)
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Definition 1 We say that (E, H) is a finite energy solution
for Maxwell's equations on N = B(0,2) and denote

V x E=iwi(z)H, VxH=—iwez)E+.J onN,

if £, H, D =¢F and B = i H are forms in N which
coefficients are integrable functions,

/EjkEjEkda:<oo, ﬁijijda:<oo,
N N

Maxwell’s equations hold in a neighbourhood of 0N, and

~

[ (V%0 E v iviia) ) do =0,

—~ ~

/N((v X ¢)-ﬁ[+¢-(iw€(aj)E—J))dx:()

for all ¢, ¢ having coefficients in D = C§°(NN).
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Theorem 2 Consider Maxwell’'s equations in N = B(0, 2),
V x F=iwi(z)H, VxH=—iwez)E+J onN,

where .J vanishes near dB(0,1). Then

® If J =0, the boundary measurements coincide with the
boundary measurements in a homogeneous ball
B(0,2).

# If a solution exists for a source J, then £ and H vanish
iIn a domain ry < |z| < 1.

» Finite energy solutions do not exist for generic J.
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Theorem 3 Consider Maxwell’'s equations in N = B(0, 2),
V x F=iwi(z)H, VxH=—iwez)E+J onN,

where .J vanishes near dB(0,1). Then

® If J =0, the boundary measurements coincide with the
boundary measurements in a homogeneous ball
B(0,2).

# If a solution exists for a source J, then £ and H vanish
iIn a domain ry < |z| < 1.

» Finite energy solutions do not exist for generic J.

Thus passive objects in B(0, 1) can be cloaked. Cloaking of
active objects is challenging.
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Theorem 4 Consider Maxwell’'s equations in N = B(0, 2),
V x F=iwi(z)H, VxH=—iwez)E+J onN,

where .J vanishes near dB(0,1). Then

® If J =0, the boundary measurements coincide with the
boundary measurements in a homogeneous ball
B(0,2).

# If a solution exists for a source J, then £ and H vanish
iIn a domain ry < |z| < 1.

» Finite energy solutions do not exist for generic J.

Thus passive objects in B(0, 1) can be cloaked. Cloaking of
active objects is challenging.

Remedy: We coat both sides of 0B(0, 1) with metamaterial,
or put a perfectly conducting lining on 0B(0, 1).
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|dea of the proof: We consider the map

F:B(0,2)\ {0} — B(0,2)\ B(0,1) ¢ N = B(0,2).

If £ and H are solutions on N with € and i, then

~

E=(FYE, H=(FYW,H, J=(FY.J onB0,2))\{0}
satisfy
VX E=1iwugH, V xH=—iwek+J on B(0,2)\{0}.
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|dea of the proof: We consider the map

F:B(0,2)\ {0} — B(0,2)\ B(0,1) ¢ N = B(0,2).

If £ and H are solutions on N with € and i, then

~

E=(FYE H=EF"YH, J=F"Y.J onB02))\{0}
satisfy

VX FE=iwuH, VxH=—iwegE+J on B(0,2)\{0}.
Since the fields £ and H have finite energy and the set {0}

has a Hausdorff dimension d < 1, the solutions can be
extended to solutions on whole B(0, 2).
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Consider next the boundary conditions on ¥ = 9B(0, 1).
Next, assume that £ and H are solutions on N with ¢ and 7.
If F is a piecewise smooth function having jump across

¥ =0B(0,1),

~

VXxE = {VxE}+vx(E"—E )ixs(x)
= function part + delta distribution on .
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Consider next the boundary conditions on ¥ = 9B(0, 1).
Next, assume that £ and H are solutions on N with ¢ and 7.

If F is a piecewise smooth function having jump across
¥ =0B(0,1),

~

VxE = {VxE}+vx(Et—E)és(x)
= function part + delta distribution on .

Since V x F = iwB is a function, the delta distribution part
of V x E has to vanish. Hence

VXE‘;H_—VXE‘Z_:O.
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Recall that the transformation law E = F.E in local
coordinates Is

B =Y. (S0P 5@ BF @) )d

j=1 “Nk=1

Using this we see that in the exterior domain
v x Elsy = 0.

Since the jJump across X is zero,
vx Els_ =0.

In this way we see that both v x E|x,_ =0 and v x H|yx_ = 0.
These boundary conditions are overdetermined and lead to
a non-existence result.
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Cloaking of an infinite cylinder.  Let
N = B5(0,2) x RC R, D =DB5(0,1) x R.

We use cylindrical coordinates (r, 6, z) and the
transformation

F : N\({0,0} xR)— N\D,
L +r
2

F(r,0,z) = ( 0, 2).

In N\ D we define the metric g = F.g, g = d,; and

e \ﬂwakﬁxxem@m\ﬁmﬂ)
67" for x € B(0,1)

In D metric g;;, = ¢, IS Euclidian and € = i = 1.
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In the cloaking of an infinite cylinder the cylindrical
coordinates are

(r,0,2) — (rcosf,rsiné, z).
In these coordinates, ¢ and x are

(r—1) 0 0
€= [l = 0 (r— 1)1 0 o 1<r<2.
0 0 4(r—1)
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Theorem 5 Let D = B5(0,1) x R C R® be an infinite
cylinder and N = B5(0,2) x R. Consider

V x E=iwi(z)H, VxH=—iwexz)E+J onAN.

# The finite energy solutions do not exist generally.

# The finite energy solutions exists if on 0D we put a
surface with the Soft-and-Hard boundary condition,

69°E|3D:O and QQ-H’(QD:O.

Here ey is the unit vector to #-direction and B»(0,1) C R? is
the two-dimensional unit disc.
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Theorem 6 Let D = B5(0,1) x R C R® be an infinite
cylinder and N = B5(0,2) x R. Consider

V x E=iwi(z)H, VxH=—iwexz)E+J onAN.

# The finite energy solutions do not exist generally.

#® The finite energy solutions exists if on 9D we put a
surface with the Soft-and-Hard boundary condition,

69°E|3D:O and 69°H’5D:O.

Here ey is the unit vector to #-direction and B»(0,1) C R? is
the two-dimensional unit disc.

Figure: SH surfaces created by Kildal et al.
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What happens for solutions without the SH lining?
Consider an approximative invisibility cloak built using
materials that have uniformly bounded anisotropy ratio L,

that Is, max gy /€, < L and max pigg/ 11 < L. FOr this end,
consider the map

O O

B(0,2) \ B(0,2r) 0,2)\ B(0,1+7)

B(
F
—>

B(0,1+r) B(0,1 +r)
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M1 M2
Denote M; = B(0,2) \ B(0,2r) and My = B(0,1 +r).
Consider in the cylindrical coordinates a vertically polarized
E field that is independent of z-variable. Let E = (F~1),E,
E = u;(r,0)é, in M;, j =1,2. Then (A + k?)u; = 0 and

ur(r,0) = > (andj (kr) + bo H,) (kr)e™,
UQ(T,H): Z CnJ|n|(kT)€m9.

n=——aoo
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When L — oo or equivalently » — 0, the fields £ and H
converge to the solutions of

V x F = iwé—kKnem
V x H=—iwD + Jnew-

Here the coefficients of B = 1H and D = ¢E are smooth
functions and

Kpew = 56527 Inew = 3h527

where dy, IS a measure supported on > = 90B(0,1), and s,
and s;, are smooth functions.
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An alternative formulation without the SH lining.
Let us write

~ ~

Byoy = B + (iw)_lse(Sg, Dy =D — (iw)_lshég.
We can write

V x FE = iwénew,
V x H = —iwﬁnew

but there are some problems: Formulation of the
constitutive laws is unclear and the effective medium theory
for composite medium should be developed for
distributional fields.
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Approximate invisibility coating. Build an approximative
invisibility cloak using materials that have the maximal
anisotropy ratio 4 - 10%.

Let the incoming wave be a TE-polarized plane wave with
k = 1. The #-component of B-field of the total wave is:

16 T T T T T 16

14t 1 141
12f 1 12f

101 h 10

S\

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

| |

£ N o N S (o)} [ee]
T T T T T T
| |

B N o N e )] [ee]
T T T T T T

With SH lining. Without SH lining.
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16 16

141 14+

12+ 125

10f 10f

H N o N B ] (e¢]
5
L 4

S N o N B (] (o]

0 0.5 1 15 2 2.5 0 0.5 1 15 2 2.5 3

L=1600 L=40000.

The real part of the y-component of the total B-field on the
ine {(x,0,0): = € |0,3]}. Blue solid curve is the field with no
ohysical lining. Red dashed curve is the field with SHS
Ining.
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16 16

141 14+

12+ 125

10f 10f

| |

H N o N B ] (e¢]
T T T T T T
| |

B N o N B (] (o]
T T T T T T

0 0.5 1 15 2 2.5 0 0.5 1 15 2 2.5 3

L=1600 L=40000.

The real part of the y-component of the scattered B-field on
the line {(z,0,0) : x € [0, 3|}. Blue solid curve is the field
with no physical lining. Red dashed line is the field with
Soft-and-Hard lining.
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270

—p. 48/58



Benefits of SH lining:

The L?-norm of the far field pattern of the scattered field
with SH lining is only 2% of the scattered field without SH
lining.

Summary:. When cloaking active objects in a ball or any

objects in a cylinder, we have to use a PEC lining or a
Soft-and-Hard lining. Otherwise, the fields blow up.
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Summary on existence and blow up of waves:
In cloaking of 3D ball with an approximative cloak:

Passive objects cloaked: Solutions exist on the limit, no
blow up on limit.

Active objects cloaked: Solutions do not exist on the limit,
we have not yet studied the possible blow up. (See also
Zhang-Chen-Wu-Kong, Arxiv 19. Oct. 2007 on boundary
currents)

In cloaking of a cylinder with an approximative cloak:

Vacuum inside: Solutions do not exist on the limit. Itis
shown that the blow up happens on the limit.

Soft-and-Hard surface inside: Solutions exist on the limit,
no blow up on the limit.
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5 Electromagnetic wormhole device

Let M = M;#M> where

My =R3\ (B(O,1) U B(P, 1)),
M2 — 82 X [Oa 1]




St x [0,L] c R®.

(

Building a wormhole for electromagnetic waves.
T

Let T" be the two-dimensional finite cylinder

R3\ K.

T) < p}and N =

= {z € R?: dist(z,

Let K

We put on 0K the soft-and-hard boundary condition and

cover K with “invisibility cloaking material”.
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Let ¢ be a smooth metric on the wormhole manifold M.
Using a closed path v ¢ M and a diffeomorphism

F:M\~— N\0K

we define g = F,g and choose ¢ and x In NV to correspond g.
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The set

U={z: dist(z,K)>1} C R3

can be considered both as a subset of V and M.

Theorem 7 All measurements of fields £ and HinU Cc M
and U C N coincide with currents that are supported in U.

Thus (N, €, 1) behaves as the wormhole M in all external
measurements.
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The set

U={z: dist(z,K)>1} C R3

can be considered both as a subset of V and M.

Theorem 8 All measurements of fields £ and HinU Cc M
and U C N coincide with currents that are supported in U.

Thus (N, €, 1) behaves as the wormhole M in all external
measurements.
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Ray tracing simulations:
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A ray travelling inside.

Rays travelling outside.



Ray tracing simulations:

Length of handle << 1. Length of handle ~ 1.

Pictures how an end of the wormhole looks like when the
other end Is over an infinite chess board and under the blue
sky.

—p. 56/58



Possible applications in future:

# Invisible optical fibers.

# Components for optical computers.

# 3D video displays: ends of invisible tunnels work as

light source in 3D voxels.

# Light beam collimation.

# Virtual magnetic monopoles.

#® Scopes for Magnetic Resonance Imaging devices.
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Thank you!
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