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Successive minima

Notations

Let a ∈ Rn and R ∈ R≥0. For an a-centered Euclidean n-ball of radius R

we use notation

Bn(R, a) := {x ∈ Rn| ‖x − a‖2 ≤ R}.

and a shorthand notation

Bn(R) := Bn(R, 0)

for an origin-centered ball.
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Successive minima

Successive minima

Definition 1

Let n ∈ Z+. Let Λ ⊆ Rn be a full lattice and let C be a non-empty subset

of Rn. The successive minima λ1, ..., λn of C with respect to Λ are given by

λj = λj(C,Λ) = inf
{
λ > 0 | rank

〈
(λC) ∩ Λ

〉
Z ≥ j

}
. (1)

Note, that λj = λj(C,Λ) depends on the set C and the lattice Λ.

Lemma 2

0 < λ1 ≤ · · · ≤ λn <∞.
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Successive minima

The first Minkowski’s convex body theorem revised

Theorem 3

Let n ∈ Z+. Assume that Λ ⊆ Rn is a lattice with rank Λ = n and C ⊆ Rn

is a central symmetric convex body. Then

vol(λ1 · C) ≤ 2n det Λ. (2)

Note that

vol(λ1 · C) = λn1 vol(C). (3)
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Successive minima

The first Minkowski’s convex body theorem revised

Proof. If not (2), then vol (λ1 · C) > 2n det Λ which means that there

exists a λ < λ1 such that vol (λ · C) > 2n det Λ. By the first Minkowski’s

convex body theorem there exists a non-zero point in (λ · C) ∩ Λ. Thus

rank
〈
(λ · C) ∩ Λ

〉
Z ≥ 1 (4)

which contradicts the definition of

λ1 = inf{λ > 0 | rank 〈(λC) ∩ Λ〉Z ≥ 1}. (5)
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Successive minima

Successive minima

Example 4

Let k < l ∈ Z+ and define an orthotope or cuboid

T :=
{
x ∈ R3

∣∣ |x1| ≤
1

k
, |x2| ≤

1

l
, |x3| ≤ kl

}
.

Then λ1 = 1
kl < λ2 = k < λ3 = l are the successive minima of T with

respect to a lattice Z3.

Proof.

λT :=
{

(λx1, λx1, λx1)
∣∣ |λx1| ≤

λ

k
, |λx2| ≤

λ

l
, |λx3| ≤ λkl

}
. (6)
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Successive minima

Successive minima

0. If λ < 1
kl , then there are no non-zero lattice points in λT because

|λx1| ≤
λ

k
< 1, |λx2| ≤

λ

l
< 1, 0 ≤ |λx3| ≤ λkl < 1

}
. (7)

1. If λ = 1
kl , then

|λx1| ≤
λ

k
=

1

k2l
< 1, |λx2| ≤

λ

l
=

1

kl2
< 1, |λx3| ≤ λkl = 1

}
. (8)

Hence λx1 = λx2 = 0 but λx3 = 1, if we choose x3 = kl . Therefore

(0, 0, 1) ∈ ( 1
kl · T ) ∩ Λ and thus

λ1 = inf{λ > 0 | rank 〈(λT ) ∩ Λ〉Z ≥ 1} =
1

kl
. (9)
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Successive minima

Successive minima

2. If λ = k , then

|λx1| ≤
λ

k
= 1, |λx2| ≤

λ

l
=

k

l
< 1, |λx3| ≤ λkl = k2l > 1

}
. (10)

Hence λx2 = 0 but λx1 = λx3 = 1, if we choose x1 = 1/k and x3 = kl .

Therefore (0, 0, 1), (1, 0, 1) ∈ (kT ) ∩ Λ but (1, 0, 1) 6∈ (λT ) ∩ Λ if λ < k.

Thus

λ2 = inf{λ > 0 | rank 〈(λT ) ∩ Λ〉Z ≥ 2} = k . (11)
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Successive minima

Successive minima

3. If λ = l , then

|λx1| ≤
l

k
> 1, |λx2| ≤

λ

l
= 1, |λx3| ≤ λkl = kl2 > 1

}
. (12)

Therefore (0, 0, 1), (1, 0, 1), (0, 1, 0) ∈ (l · T )∩ Λ but (0, 1, 0) 6∈ (λT )∩ Λ if

λ < l . Thus

λ3 = inf{λ > 0 | rank 〈(λT ) ∩ Λ〉Z ≥ 3} = l . (13)
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Successive minima

Successive minima

Furthermore, in this example holds

rank 〈(λjT ) ∩ Λ〉Z = j , j = 1, 2, 3. (14)
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Successive minima

Successive minima

Example 5

Define a triangle or hexagonal lattice

Λ2 :=
〈
`1, `2

〉
Z , `1 :=

1

2
e1, `2 :=

1

4
e1 +

√
3

4
e2.

Now ‖`1‖2 = ‖`2‖2 = 1
2 , so that `1 and `2 stay at the boundary of the

2-ball

B2(1/2) := {x ∈ R2| ‖x‖2 ≤ 1/2}

of radius 1
2 . Thus λ1 = λ2 = 1 are the successive minima of B2(1/2) with

respect to the lattice Λ2.
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Successive minima

Successive minima

Example 6

If we choose a different 2-ball, B2(1). Then β1 = β2 = 1/2 are the

successive minima of B2(1) with respect to a lattice Λ2. Namely,

rank
〈(1

2
· B2(1)

)
∩ Λ2

〉
Z

= 2

because `1, `2 ∈
(

1
2 · B

2(1)
)
∩ Λ2 but

(
λ · B2(1)

)
∩ Λ2 = {0} for all

0 < λ < 1
2 .
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Successive minima

Successive minima

Therefore

β1 = inf
{
λ > 0

∣∣ rank
〈
(λB2(1)) ∩ Λ2

〉
Z ≥ 1

}
=

1

2
,

β2 = inf
{
λ > 0

∣∣ rank
〈
(λB2(1)) ∩ Λ2

〉
Z ≥ 2

}
=

1

2
.

(15)

Now we have found linearly independent lattice points y1 := `1, y2 := `2

such that

‖y1‖2 = β1,

‖y2‖2 = β2.
(16)
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Successive minima

Successive minima

More generally, let

βk := βk(Bn(1),Λ), k = 1, . . . , n, (17)

be the successive minima of Bn(1) with respect to a full lattice Λ ⊆ Rn.

Are there linearly independent lattice points y1, . . . , yn ∈ Λ such that

‖yk‖2 = βk ∀ k = 1, . . . , n? (18)

Lemma 7

There are linearly independent lattice points y1, . . . , yn ∈ Λ such that

‖yk‖2 = βk ∀ k = 1, . . . , n. (19)
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Successive minima

Successive minima

Proof. Note that

y ∈ β · Bn(1) ⇔ ‖y‖2 ≤ β. (20)

By the definition

βk = inf
{
λ > 0

∣∣ rank
〈
(λ · Bn(1)) ∩ Λ

〉
Z ≥ k

}
. (21)

Thus there exist k linearly independent vectors y1, . . . , yk such that

y1, . . . , yk ∈ (βk · Bn(1)) ∩ Λ. (22)

Hence we may write

‖y1‖2 ≤ . . . ≤ ‖yk‖2 ≤ βk . (23)
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Successive minima

Successive minima

If we now suppose

β := ‖yk‖2 < βk , (24)

then

y1, . . . , yk ∈ (β · Bn(1)) ∩ Λ. (25)

Thus, by (21) we have

βk ≤ β. (26)

A contradiction.
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Shortest vector in a lattice

Shortest vector in a lattice

A non-zero vector s ∈ Λ is called a minimal vector or a shortest vector in

the lattice Λ ⊆ Rn, if

σ = σΛ := ‖s‖2 ≤ ‖h‖2, ∀ h ∈ Λ \ {0}. (27)

It can be proved that minimal vectors exist.

Let

β1 = inf
{
λ > 0

∣∣ rank
〈
(λ · Bn(1)) ∩ Λ

〉
Z ≥ 1

}
. (28)

be the first minimum of Bn(1) with respect to a lattice Λ ⊆ Rn.
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Shortest vector in a lattice

Shortest vector in a lattice

Lemma 8

Let s be a minimal vector of the full lattice Λ. Then

σ = β1, (29)

where β1 is given in (17).

Proof. By Lemma 7 we know there exists a lattice vector y1 such that

‖y1‖2 = β1. (30)

Thus

σ ≤ β1. (31)
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Shortest vector in a lattice

Shortest vector in a lattice

If we assume

σ < β1, (32)

then

s ∈ (σ · Bn(1)) ∩ Λ. (33)

But

(λ · Bn(1)) ∩ Λ = {0} (34)

for all 0 < λ < β1 by the definition

β1 = inf
{
λ > 0

∣∣ rank
〈
(λ · Bn(1)) ∩ Λ

〉
Z ≥ 1

}
. (35)
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Shortest vector in a lattice

An estimate for the first minimum

By Theorem 3 we have

vol (β1 · Bn(1)) ≤ 2n det Λ. (36)

Using Bn(β1) = βn1 · Bn(1) and (36) we get

vol (β1 · Bn(1)) =
πn/2βn1

Γ(1 + n/2)
≤ 2n det Λ. (37)

Hence we get an estimate

β1 ≤
2√
π

Γ(1 + n/2)1/n (det Λ)1/n
(38)

for the first minimum of Bn(1) with respect to a lattice Λ ⊆ Rn.
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Shortest vector in a lattice

An estimate for shortest vectors

Let s be a minimal vector of the lattice Λ. Then

‖s‖2 = β1. (39)

Thus by (38) we have an estimate for shortest vectors.

Lemma 9

Let s be a minimal vector of the full lattice Λ ⊆ Rn. Then

σΛ = ‖s‖2 ≤
2√
π

Γ(1 + n/2)1/n (det Λ)1/n . (40)
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Shortest vector in a lattice

Examples

Example 10

n = 2.

σΛ = ‖s‖2 ≤
2√
π

(det Λ)1/2 ≤ 1.1284 (det Λ)1/2 . (41)

Example 11

Λ = Z2.

σ(Z2) ≤ 2√
π
≤ 1.1284, (42)

while the true value of the shortest vectors is σ(Z2) = 1.
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Shortest vector in a lattice

Examples

Example 12

Define a triangular (hexagonal) lattice

Λt2 :=
〈
`1, `2

〉
Z , `1 = e1, `2 =

1

2
e1 +

√
3

2
e2. (43)

By (41) we get an estimate

σΛt2 ≤
2√
π

√√
3

2
=

√
2
√

3

π
≤ 1.051, (44)

while the true value of the shortest vectors in the lattice Λt2 is σΛt2 = 1.
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Lattice packing

Lattice packing

Definition 13

Let Λ ⊆ Rn be a full lattice and let P ⊆ Rn be a compact set with

volP ≤ det Λ. The sets h + P form a lattice packing

Λ + P = ∪
h∈Λ

(h + P) (45)

of P, if

int (hi + P) ∩ int (hj + P) = ∅ ∀i 6= j . (46)

NOTE: The interiors of different sets hi + P are disjoint but there are

different sets whose boundaries may intersect.
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Lattice packing

Lattice packing

Lemma 14

Let Λ ⊆ Rn be a full lattice. Suppose K ⊆ Rn is a central symmetric

convex body containing no non-zero lattice Λ points. Then(
hi +

1

2
K
)
∩
(
hj +

1

2
K
)

= ∅ ∀i 6= j . (47)

Proof. Assume there exist hi 6= hj ∈ Λ such that

hi +
1

2
k i = hj +

1

2
k j (48)

for some k i , k j ∈ K.
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Lattice packing

Lattice packing

As in the proof of the first Minkowski’s theorem we get

hi − hj =
1

2
k j −

1

2
k i ∈ K. (49)

Hence hi = hj because K does not contain non-zero lattice points.

Further, k i = k j . Therefore(
hi +

1

2
K
)
∩
(
hj +

1

2
K
)

= ∅ ∀i 6= j . (50)
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Lattice packing

Lattice packing

Corollary 15

Let Λ ⊆ Rn be a full lattice. Suppose K ⊆ Rn is a central symmetric

compact convex body containing no non-zero lattice Λ points satisfying

vol
1

2
K ≤ det Λ. (51)

Then

Λ +
1

2
K (52)

is a lattice packing.
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Lattice packing

Lattice packing densities

Definition 16

Let Λ ⊆ Rn be a full lattice and let P ⊆ Rn be a compact set with

volP ≤ det Λ. A lattice packing density is given by

∆n(P,Λ) :=
volP
det Λ

. (53)

The supremum over all lattices packing lattices Λ of P is denoted by

∆n(P) := sup
Λ

∆n(P,Λ). (54)
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Lattice packing

Lattice packing density

Lemma 17

Let L : Rn → Rn be a one to one linear transformation. Then

∆n(LP) = ∆n(P). (55)

Proof. First we note

∆n(LP, LΛ) =
vol(LP)

det(LΛ)
=

det L · volP
det L · det Λ

= ∆n(P,Λ). (56)

From the injectivity of L follows that Λ is a lattice packing lattice of P

exactly when LΛ is a lattices packing lattice of LP.
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Lattice packing

Lattice packing density

Therefore

∆n(P) = sup
Λ

∆n(P,Λ)

= sup
LΛ

∆n(LP, LΛ)

= sup
Λ′=LΛ

∆n(LP,Λ′)

= ∆n(LP),

(57)

where the last supremum is determined over all lattices packing lattices Λ′

of LP.
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The second revision of the first Minkowski’s theorem

The second revision of the first Minkowski’s theorem

Theorem 18

Let Λ ⊆ Rn be a full lattice and let C ⊆ Rn be central symmetric compact

convex body. Assume

vol C > 2n · det Λ ·∆n (C) . (58)

Then there exists a non-zero lattice point in C.
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The second revision of the first Minkowski’s theorem

The second revision of the first Minkowski’s theorem

Proof. Assume, on the contrary, that C ∩ Λ = {0}. By the first

Minkowski’s theorem we have vol(C) ≤ 2n det Λ which implies

vol( 1
2 · C) ≤ det Λ. Thus Λ + 1

2C is a lattice packing by Corollary 15. By

Lemma 17 and the definition of density

∆n (C) = ∆n

(
1

2
C
)
≥ ∆n

(
1

2
C,Λ

)
=

vol
(

1
2C
)

det Λ
=

(
1

2

)n vol (C)

det Λ
.

(59)
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Lattice sphere packing

Lattice sphere packing

The spheres (balls) Bn(R, h) centered at lattice points h form a lattice

packing

Bn(R) + Λ = ∪
h∈Λ
Bn(R, h), (60)

if

intBn(R, hi ) ∩ intBn(R, hj) = ∅ ∀i 6= j . (61)

The interiors of different spheres are disjoint but there are different spheres

whose boundaries may intersect.
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Lattice sphere packing

Lattice sphere packing densities

Obviously the maximum radius of any lattice sphere packing is

R = σΛ/2 = β1/2, half of the length σ = σΛ := ‖s1‖2 of a shortest vector

s1 in Λ. Therefore we define

Definition 19

Let Λ ⊆ Rn be a full lattice. A sphere lattice packing density is given by

∆n(Bn(σΛ/2),Λ) :=
volBn(σΛ/2)

det Λ
. (62)

The maximal sphere packing density, the supremum over all lattices Λ, is

denoted by

∆B,n := sup
Λ

∆n(Bn(σΛ/2),Λ). (63)
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Lattice sphere packing

Lattice sphere packing densities

Hereby

∆n(Bn(σΛ/2),Λ) =
πn/2σnΛ

2nΓ(1 + n/2) det Λ
≤ ∆B,n. (64)

Hence, we may refine estimate (40) as follows

Lemma 20

Let s be a minimal vector of the full lattice Λ ⊆ Rn. Then

σΛ = ‖s‖2 ≤
2√
π

Γ(1 + n/2)1/n (det Λ)1/n (∆B,n)1/n . (65)
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Lattice sphere packing

Triangular (hexagonal) lattice

Example 21

Let Λt2 be the triangular (hexagonal) lattice

Λt2 :=
〈
`1, `2

〉
Z , `1 = e1, `2 =

1

2
e1 +

√
3

2
e2. (66)

The sphere lattice packing density with respect to the triangular lattice

Λt2 is given by

∆2(B2(σΛt2/2),Λt2) =
volB2(1/2)

det Λt2

=
π(1/2)2

√
3/2

=
π

2
√

3
= 0.906899 . . . .

(67)
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Lattice sphere packing

The sphere lattice packing density in dimension 2

In 1831? C.F. Gauss proved that the sphere lattice packing density given

in (67) is the best among all lattices in R2:

Theorem 22

∆B,2 = sup
Λ

∆2(B2(σΛ/2),Λ) =
π

2
√

3
= 0.906899 . . . , (68)

where the supremum is determined over all lattices Λ ⊆ R2.

In 1910 Thue proved that (68) actually gives the best sphere packing

density in dimension 2.
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Lattice sphere packing

Minimal vectors in dimension 2

Corollary 23

Let Λ ⊆ R2 be a full lattice. Then

σΛ ≤
(

2√
3

)1/2

(det Λ)1/2 ≤ 1.07457 (det Λ)1/2 . (69)

Proof. Estimate (65) with n = 2 and (68) give

σΛ ≤
2√
π

Γ(2)1/2 (det Λ)1/2 (∆B,2)1/2

=
2√
π

(
π

2
√

3

)1/2

(det Λ)1/2 =

(
2√
3

)1/2

(det Λ)1/2 .

(70)
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Lattice sphere packing

Examples

Example 24

In the triangular (hexagonal) lattice Λt2 we get an estimate

σΛt2 ≤ 1, (71)

while the true value of the shortest vectors in the lattice Λt2 is σΛt2 = 1.
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Lattice sphere packing

Examples

Example 25

Problem 24. Consider the lattice

Λπ =
〈
(π, 1/7)t , (1, 1/22)t

〉
Z. (72)

By (69) we have an estimate

σΛπ ≤
(

2√
3

det Λ

)1/2

=

∣∣∣∣ 2√
3

(
π

22
− 1

7

)∣∣∣∣1/2

= 0.0081466 . . . . (73)

For example

‖22(1, 1/22)t − 7(π, 1/7)t‖2 = 0.0088514 . . . . (74)

Thus 22(1, 1/22)t − 7(π, 1/7)t can not be a minimal vector.
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Lattice sphere packing

Examples

We will show that

σΛπ = ‖355(1, 1/22)t − 113(π, 1/7)t‖2 = 0.00649357 . . . . (75)

Proof. Take an arbitrary vector

v(a, b) := a(π, 1/7)t − b(1, 1/22)t ∈ Λπ, a, b ∈ Z, (76)

and estimate its length

‖v(a, b)‖ =

√
(aπ + b)2 +

(
22a− 7b

7 · 22

)2

(77)

from below.
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Lattice sphere packing

Examples

1. If

22a− 7b = 0, (78)

then

a = k7, b = k22, k ∈ Z \ {0}. (79)

Now

‖v(a, b)‖ =

√
(aπ − b)2 +

(
22a− 7b

7 · 22

)2

=
√

k2(7π − 22)2 = |k||7π − 22| ≥ 0.0088514 . . . .

(80)
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Lattice sphere packing

Examples

2. If

|22a− 7b| ≥ 2, (81)

then

‖v(a, b)‖ =

√
(aπ − b)2 +

(
22a− 7b

7 · 22

)2

>

√
0 +

(
2

7 · 22

)2

=
1

7 · 11
= 0.012987 . . . .

(82)
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Lattice sphere packing

Examples

3. Let

|22a− 7b| = 1, (83)

then

a = 1 + k7, b = 3 + k22, k ∈ Z, (84)

see Basic Number Theory course. Now

‖v(a, b)‖2 =

√
(aπ − b)2 +

(
22a− 7b

7 · 22

)2

=

√
(aπ − b)2 +

(
1

7 · 22

)2

.

(85)
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Lattice sphere packing

Examples

3. So, it is up to find the minimum of

|aπ − b| = |(1 + 7k)π − (3 + 22k)|, k ∈ Z. (86)

We have

|(1 + 7k)π − (3 + 22k)| =

(22− 7π)k − (π − 3), k ≥ π−3
22−7π ;

π − 3− (22− 7π)k , k < π−3
22−7π .

(87)

Because π−3
22−7π = 15.9966 . . ., then the minima of the above function

pieces are attained at k = 16 and k = 15, respectively, where the

minimum (22− 7π)16− (π − 3) is smaller.
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Lattice sphere packing

Examples

Hence 113(π, 1/7)t − 355(1, 1/22)t will be a minimal vector and

‖v(a, b)‖2 ≥ ‖v(113, 355)‖2 = ‖113(π, 1/7)t − 355(1, 1/22)t‖2

=

√
(113π − 355)2 +

(
1

7 · 22

)2

= 0.00649357 . . . .

(88)
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Lattice sphere packing

The SVP-problem

Example 25 and other exercise problems show that finding a shortest

vector may be quite challenging even in dimension 2 and 3.

The SVP-problem: Create a polynomial time algorithm that finds a

shortest vector in an arbitrary dimension n.

It is generally not known whether such an algorithm exists.

Thereby, people are investigating quantum-safe or post-quantum

cryptosystems based e.g. on the hardness of the SVP-problem.
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Lattice sphere packing

The sphere packing density in dimension 3/The Kepler

problem

The Kepler conjecture 1611: In dimension 3 the best sphere packing

density is π
3
√

2
= 0.74048 . . ..

In 1831 C.F. Gauss proved the Kepler bound for lattice sphere packings:

Theorem 26

∆B,3 =
π

3
√

2
= 0.74048 . . . , (89)
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Lattice sphere packing

The sphere packing density in dimension 3/The Kepler

problem

Density (89) may be received by the face-centered cubic lattice

Λfcc =
〈
(1, 1, 0)t , (1,−1, 0)t , (0, 1,−1)t

〉
Z, (90)

Finally in 1998 T.C. Hales proved the full Kepler conjecture, namely, that

(89) indeed is the best sphere packing in dimension 3.
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Lattice sphere packing

Minimal vectors in dimension 3

Corollary 27

Let Λ ⊆ R3 be a full lattice. Then

σΛ ≤ 21/6 (det Λ)1/3 . (91)
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Lattice sphere packing

The Kepler problem in dimension n

In dimension n ≥ 4 the sphere packing problem is open. However, the

optimal lattice packing is known in dimension n ∈ {2, 3, 4, 5, 6, 7, 8, 24}.

See more at Lenny Fukshansky’s web-page

Link: Talk 32. Sphere packing, lattices, and Epstein zeta function.
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Lattice sphere packing

The third revision of the first Minkowski’s theorem

Theorem 28

Let Λ ⊆ Rn be a full lattice and let C ⊆ Rn be central symmetric compact

convex body. Then

vol(λ1C) ≤ 2n · det Λ ·∆n (C) . (92)
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Lattice sphere packing

The third revision of the first Minkowski’s theorem

Proof. Assume, on the contrary, that vol (λ1 · C) > 2n · det Λ ·∆n (C).

Then there exists a λ < λ1 such that

vol (λ · C) > 2n · det Λ ·∆n (C) = 2n · det Λ ·∆n (λ · C) . (93)

By Theorem 18 there exists a non-zero point in (λ · C) ∩ Λ. Thus

rank
〈
(λ · C) ∩ Λ

〉
Z ≥ 1 (94)

which contradicts the definition of

λ1 = inf{λ > 0 | rank 〈(λC) ∩ Λ〉Z ≥ 1}. (95)
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The second Minkowski’s convex body theorem

The second Minkowski’s convex body theorem

Theorem 29

Let n ∈ Z+. Assume that Λ ⊆ Rn is a lattice with rank Λ = n and C ⊆ Rn

is a central symmetric convex body. Then

2n

n!
det Λ ≤ λ1 · · ·λnV (C) ≤ 2n det Λ.
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