GEOMETRY OF NUMBERS E

Tapani Matala-aho, Aalto University, 2023

References

围 Lenny Fukshansky, Link: Geometric Number Theory, Lecture notes.
埥 W. M. Schmidt, Diophantine approximation. Lecture Notes in
Mathematics, 785. Springer, Berlin, 1980.
See, pages 3-9.

Notations

Let $\bar{a} \in \mathbb{R}^{n}$ and $R \in \mathbb{R}_{\geq 0}$. For an \bar{a}-centered Euclidean n-ball of radius R we use notation

$$
\mathcal{B}^{n}(R, \bar{a}):=\left\{\bar{x} \in \mathbb{R}^{n} \mid\|\bar{x}-\bar{a}\|_{2} \leq R\right\} .
$$

and a shorthand notation

$$
\mathcal{B}^{n}(R):=\mathcal{B}^{n}(R, \overline{0})
$$

for an origin-centered ball.

Successive minima

Definition 1

Let $n \in \mathbb{Z}^{+}$. Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice and let \mathcal{C} be a non-empty subset of \mathbb{R}^{n}. The successive minima $\lambda_{1}, \ldots, \lambda_{n}$ of \mathcal{C} with respect to Λ are given by

$$
\begin{equation*}
\lambda_{j}=\lambda_{j}(\mathcal{C}, \Lambda)=\inf \left\{\lambda>0 \mid \operatorname{rank}\langle(\lambda \mathcal{C}) \cap \Lambda\rangle_{\mathbb{Z}} \geq j\right\} \tag{1}
\end{equation*}
$$

Note, that $\lambda_{j}=\lambda_{j}(\mathcal{C}, \Lambda)$ depends on the set \mathcal{C} and the lattice Λ.
Lemma 2

$$
0<\lambda_{1} \leq \cdots \leq \lambda_{n}<\infty
$$

The first Minkowski's convex body theorem revised

Theorem 3
Let $n \in \mathbb{Z}^{+}$. Assume that $\Lambda \subseteq \mathbb{R}^{n}$ is a lattice with $\operatorname{rank} \Lambda=n$ and $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body. Then

$$
\begin{equation*}
\operatorname{vol}\left(\lambda_{1} \cdot \mathcal{C}\right) \leq 2^{n} \operatorname{det} \Lambda \tag{2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{vol}\left(\lambda_{1} \cdot \mathcal{C}\right)=\lambda_{1}^{n} \operatorname{vol}(\mathcal{C}) \tag{3}
\end{equation*}
$$

The first Minkowski's convex body theorem revised

Proof. If not (2), then $\operatorname{vol}\left(\lambda_{1} \cdot \mathcal{C}\right)>2^{n} \operatorname{det} \Lambda$ which means that there exists a $\lambda<\lambda_{1}$ such that $\operatorname{vol}(\lambda \cdot \mathcal{C})>2^{n} \operatorname{det} \Lambda$. By the first Minkowski's convex body theorem there exists a non-zero point in $(\lambda \cdot \mathcal{C}) \cap \Lambda$. Thus

$$
\begin{equation*}
\operatorname{rank}\langle(\lambda \cdot \mathcal{C}) \cap \Lambda\rangle_{\mathbb{Z}} \geq 1 \tag{4}
\end{equation*}
$$

which contradicts the definition of

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\lambda>0 \mid \operatorname{rank}\langle(\lambda \mathcal{C}) \cap \Lambda\rangle_{\mathbb{Z}} \geq 1\right\} \tag{5}
\end{equation*}
$$

Successive minima

Example 4

Let $k<I \in \mathbb{Z}^{+}$and define an orthotope or cuboid

$$
\mathcal{T}:=\left\{\bar{x} \in \mathbb{R}^{3}| | x_{1}\left|\leq \frac{1}{k},\left|x_{2}\right| \leq \frac{1}{l},\left|x_{3}\right| \leq k l\right\} .\right.
$$

Then $\lambda_{1}=\frac{1}{k l}<\lambda_{2}=k<\lambda_{3}=l$ are the successive minima of \mathcal{T} with respect to a lattice \mathbb{Z}^{3}.

Proof.

$$
\begin{equation*}
\lambda \mathcal{T}:=\left\{\left(\lambda x_{1}, \lambda x_{1}, \lambda x_{1}\right)| | \lambda x_{1}\left|\leq \frac{\lambda}{k},\left|\lambda x_{2}\right| \leq \frac{\lambda}{l},\left|\lambda x_{3}\right| \leq \lambda k l\right\}\right. \tag{6}
\end{equation*}
$$

Successive minima

0 . If $\lambda<\frac{1}{k l}$, then there are no non-zero lattice points in $\lambda \mathcal{T}$ because

$$
\begin{equation*}
\left.\left|\lambda x_{1}\right| \leq \frac{\lambda}{k}<1,\left|\lambda x_{2}\right| \leq \frac{\lambda}{l}<1,0 \leq\left|\lambda x_{3}\right| \leq \lambda k \mid<1\right\} . \tag{7}
\end{equation*}
$$

1. If $\lambda=\frac{1}{k l}$, then

$$
\begin{equation*}
\left.\left|\lambda x_{1}\right| \leq \frac{\lambda}{k}=\frac{1}{k^{2} l}<1,\left|\lambda x_{2}\right| \leq \frac{\lambda}{l}=\frac{1}{k l^{2}}<1,\left|\lambda x_{3}\right| \leq \lambda k l=1\right\} . \tag{8}
\end{equation*}
$$

Hence $\lambda x_{1}=\lambda x_{2}=0$ but $\lambda x_{3}=1$, if we choose $x_{3}=k l$. Therefore $(0,0,1) \in\left(\frac{1}{k l} \cdot \mathcal{T}\right) \cap \Lambda$ and thus

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\lambda>0 \mid \operatorname{rank}\langle(\lambda \mathcal{T}) \cap \Lambda\rangle_{\mathbb{Z}} \geq 1\right\}=\frac{1}{k l} \tag{9}
\end{equation*}
$$

Successive minima

2. If $\lambda=k$, then

$$
\begin{equation*}
\left.\left|\lambda x_{1}\right| \leq \frac{\lambda}{k}=1,\left|\lambda x_{2}\right| \leq \frac{\lambda}{l}=\frac{k}{l}<1,\left|\lambda x_{3}\right| \leq \lambda k l=k^{2} l>1\right\} . \tag{10}
\end{equation*}
$$

Hence $\lambda x_{2}=0$ but $\lambda x_{1}=\lambda x_{3}=1$, if we choose $x_{1}=1 / k$ and $x_{3}=k /$.
Therefore $(0,0,1),(1,0,1) \in(k \mathcal{T}) \cap \Lambda$ but $(1,0,1) \notin(\lambda \mathcal{T}) \cap \Lambda$ if $\lambda<k$.
Thus

$$
\begin{equation*}
\lambda_{2}=\inf \left\{\lambda>0 \mid \operatorname{rank}\langle(\lambda \mathcal{T}) \cap \Lambda\rangle_{\mathbb{Z}} \geq 2\right\}=k \tag{11}
\end{equation*}
$$

Successive minima

3. If $\lambda=I$, then

$$
\begin{equation*}
\left.\left|\lambda x_{1}\right| \leq \frac{l}{k}>1,\left|\lambda x_{2}\right| \leq \frac{\lambda}{l}=1,\left|\lambda x_{3}\right| \leq \lambda k l=k l^{2}>1\right\} . \tag{12}
\end{equation*}
$$

Therefore $(0,0,1),(1,0,1),(0,1,0) \in(I \cdot \mathcal{T}) \cap \wedge$ but $(0,1,0) \notin(\lambda \mathcal{T}) \cap \wedge$ if $\lambda<I$. Thus

$$
\begin{equation*}
\lambda_{3}=\inf \left\{\lambda>0 \mid \operatorname{rank}\langle(\lambda \mathcal{T}) \cap \Lambda\rangle_{\mathbb{Z}} \geq 3\right\}=I \tag{13}
\end{equation*}
$$

Successive minima

Furthermore, in this example holds

$$
\begin{equation*}
\operatorname{rank}\left\langle\left(\lambda_{j} \mathcal{T}\right) \cap \Lambda\right\rangle_{\mathbb{Z}}=j, \quad j=1,2,3 \tag{14}
\end{equation*}
$$

Successive minima

Example 5

Define a triangle or hexagonal lattice

$$
\Lambda_{2}:=\left\langle\bar{\ell}_{1}, \bar{\ell}_{2}\right\rangle_{\mathbb{Z}}, \quad \bar{\ell}_{1}:=\frac{1}{2} \bar{e}_{1}, \bar{\ell}_{2}:=\frac{1}{4} \bar{e}_{1}+\frac{\sqrt{3}}{4} \bar{e}_{2} .
$$

Now $\left\|\bar{\ell}_{1}\right\|_{2}=\left\|\bar{\ell}_{2}\right\|_{2}=\frac{1}{2}$, so that $\bar{\ell}_{1}$ and $\bar{\ell}_{2}$ stay at the boundary of the 2-ball

$$
\mathcal{B}^{2}(1 / 2):=\left\{\bar{x} \in \mathbb{R}^{2} \mid\|\bar{x}\|_{2} \leq 1 / 2\right\}
$$

of radius $\frac{1}{2}$. Thus $\lambda_{1}=\lambda_{2}=1$ are the successive minima of $\mathcal{B}^{2}(1 / 2)$ with respect to the lattice Λ_{2}.

Successive minima

Example 6

If we choose a different 2 -ball, $\mathcal{B}^{2}(1)$. Then $\beta_{1}=\beta_{2}=1 / 2$ are the successive minima of $\mathcal{B}^{2}(1)$ with respect to a lattice Λ_{2}. Namely,

$$
\operatorname{rank}\left\langle\left(\frac{1}{2} \cdot \mathcal{B}^{2}(1)\right) \cap \Lambda_{2}\right\rangle_{\mathbb{Z}}=2
$$

because $\bar{\ell}_{1}, \bar{\ell}_{2} \in\left(\frac{1}{2} \cdot \mathcal{B}^{2}(1)\right) \cap \Lambda_{2}$ but $\left(\lambda \cdot \mathcal{B}^{2}(1)\right) \cap \Lambda_{2}=\{\overline{0}\}$ for all $0<\lambda<\frac{1}{2}$.

Successive minima

Therefore

$$
\begin{align*}
& \beta_{1}=\inf \left\{\lambda>0 \mid \operatorname{rank}\left\langle\left(\lambda \mathcal{B}^{2}(1)\right) \cap \Lambda_{2}\right\rangle_{\mathbb{Z}} \geq 1\right\}=\frac{1}{2} \\
& \beta_{2}=\inf \left\{\lambda>0 \mid \operatorname{rank}\left\langle\left(\lambda \mathcal{B}^{2}(1)\right) \cap \Lambda_{2}\right\rangle_{\mathbb{Z}} \geq 2\right\}=\frac{1}{2} \tag{15}
\end{align*}
$$

Now we have found linearly independent lattice points $\bar{y}_{1}:=\bar{\ell}_{1}, \bar{y}_{2}:=\bar{\ell}_{2}$ such that

$$
\begin{align*}
& \left\|\bar{y}_{1}\right\|_{2}=\beta_{1} \tag{16}\\
& \left\|\bar{y}_{2}\right\|_{2}=\beta_{2}
\end{align*}
$$

Successive minima

More generally, let

$$
\begin{equation*}
\beta_{k}:=\beta_{k}\left(\mathcal{B}^{n}(1), \Lambda\right), \quad k=1, \ldots, n, \tag{17}
\end{equation*}
$$

be the successive minima of $\mathcal{B}^{n}(1)$ with respect to a full lattice $\Lambda \subseteq \mathbb{R}^{n}$.
Are there linearly independent lattice points $\bar{y}_{1}, \ldots, \bar{y}_{n} \in \Lambda$ such that

$$
\begin{equation*}
\left\|\bar{y}_{k}\right\|_{2}=\beta_{k} \quad \forall k=1, \ldots, n ? \tag{18}
\end{equation*}
$$

Lemma 7

There are linearly independent lattice points $\bar{y}_{1}, \ldots, \bar{y}_{n} \in \Lambda$ such that

$$
\begin{equation*}
\left\|\bar{y}_{k}\right\|_{2}=\beta_{k} \quad \forall k=1, \ldots, n . \tag{19}
\end{equation*}
$$

Successive minima

Proof. Note that

$$
\begin{equation*}
\bar{y} \in \beta \cdot \mathcal{B}^{n}(1) \quad \Leftrightarrow \quad\|\bar{y}\|_{2} \leq \beta \tag{20}
\end{equation*}
$$

By the definition

$$
\begin{equation*}
\beta_{k}=\inf \left\{\lambda>0 \mid \operatorname{rank}\left\langle\left(\lambda \cdot \mathcal{B}^{n}(1)\right) \cap \Lambda\right\rangle_{\mathbb{Z}} \geq k\right\} \tag{21}
\end{equation*}
$$

Thus there exist k linearly independent vectors $\bar{y}_{1}, \ldots, \bar{y}_{k}$ such that

$$
\begin{equation*}
\bar{y}_{1}, \ldots, \bar{y}_{k} \in\left(\beta_{k} \cdot \mathcal{B}^{n}(1)\right) \cap \Lambda . \tag{22}
\end{equation*}
$$

Hence we may write

$$
\begin{equation*}
\left\|\bar{y}_{1}\right\|_{2} \leq \ldots \leq\left\|\bar{y}_{k}\right\|_{2} \leq \beta_{k} \tag{23}
\end{equation*}
$$

Successive minima

If we now suppose

$$
\begin{equation*}
\beta:=\left\|\bar{y}_{k}\right\|_{2}<\beta_{k}, \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{y}_{1}, \ldots, \bar{y}_{k} \in\left(\beta \cdot \mathcal{B}^{n}(1)\right) \cap \wedge . \tag{25}
\end{equation*}
$$

Thus, by (21) we have

$$
\begin{equation*}
\beta_{k} \leq \beta \tag{26}
\end{equation*}
$$

A contradiction.

Shortest vector in a lattice

A non-zero vector $\bar{s} \in \Lambda$ is called a minimal vector or a shortest vector in the lattice $\Lambda \subseteq \mathbb{R}^{n}$, if

$$
\begin{equation*}
\sigma=\sigma_{\Lambda}:=\|\bar{s}\|_{2} \leq\|\bar{h}\|_{2}, \quad \forall \bar{h} \in \Lambda \backslash\{\overline{0}\} . \tag{27}
\end{equation*}
$$

It can be proved that minimal vectors exist.
Let

$$
\begin{equation*}
\beta_{1}=\inf \left\{\lambda>0 \mid \operatorname{rank}\left\langle\left(\lambda \cdot \mathcal{B}^{n}(1)\right) \cap \Lambda\right\rangle_{\mathbb{Z}} \geq 1\right\} . \tag{28}
\end{equation*}
$$

be the first minimum of $\mathcal{B}^{n}(1)$ with respect to a lattice $\Lambda \subseteq \mathbb{R}^{n}$.

Shortest vector in a lattice

Lemma 8
Let \bar{s} be a minimal vector of the full lattice Λ. Then

$$
\begin{equation*}
\sigma=\beta_{1} \tag{29}
\end{equation*}
$$

where β_{1} is given in (17).

Proof. By Lemma 7 we know there exists a lattice vector \bar{y}_{1} such that

$$
\begin{equation*}
\left\|\bar{y}_{1}\right\|_{2}=\beta_{1} \tag{30}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sigma \leq \beta_{1} \tag{31}
\end{equation*}
$$

Shortest vector in a lattice

If we assume

$$
\begin{equation*}
\sigma<\beta_{1} \tag{32}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{s} \in\left(\sigma \cdot \mathcal{B}^{n}(1)\right) \cap \wedge . \tag{33}
\end{equation*}
$$

But

$$
\begin{equation*}
\left(\lambda \cdot \mathcal{B}^{n}(1)\right) \cap \Lambda=\{\overline{0}\} \tag{34}
\end{equation*}
$$

for all $0<\lambda<\beta_{1}$ by the definition

$$
\begin{equation*}
\beta_{1}=\inf \left\{\lambda>0 \mid \operatorname{rank}\left\langle\left(\lambda \cdot \mathcal{B}^{n}(1)\right) \cap \Lambda\right\rangle_{\mathbb{Z}} \geq 1\right\} \tag{35}
\end{equation*}
$$

An estimate for the first minimum

By Theorem 3 we have

$$
\begin{equation*}
\operatorname{vol}\left(\beta_{1} \cdot \mathcal{B}^{n}(1)\right) \leq 2^{n} \operatorname{det} \Lambda \tag{36}
\end{equation*}
$$

Using $\mathcal{B}^{n}\left(\beta_{1}\right)=\beta_{1}^{n} \cdot \mathcal{B}^{n}(1)$ and (36) we get

$$
\begin{equation*}
\operatorname{vol}\left(\beta_{1} \cdot \mathcal{B}^{n}(1)\right)=\frac{\pi^{n / 2} \beta_{1}^{n}}{\Gamma(1+n / 2)} \leq 2^{n} \operatorname{det} \Lambda \tag{37}
\end{equation*}
$$

Hence we get an estimate

$$
\begin{equation*}
\beta_{1} \leq \frac{2}{\sqrt{\pi}} \Gamma(1+n / 2)^{1 / n}(\operatorname{det} \Lambda)^{1 / n} \tag{38}
\end{equation*}
$$

for the first minimum of $\mathcal{B}^{n}(1)$ with respect to a lattice $\Lambda \subseteq \mathbb{R}^{n}$.

An estimate for shortest vectors

Let \bar{s} be a minimal vector of the lattice Λ. Then

$$
\begin{equation*}
\|\bar{s}\|_{2}=\beta_{1} . \tag{39}
\end{equation*}
$$

Thus by (38) we have an estimate for shortest vectors.
Lemma 9
Let \bar{s} be a minimal vector of the full lattice $\Lambda \subseteq \mathbb{R}^{n}$. Then

$$
\begin{equation*}
\sigma_{\Lambda}=\|\bar{s}\|_{2} \leq \frac{2}{\sqrt{\pi}} \Gamma(1+n / 2)^{1 / n}(\operatorname{det} \Lambda)^{1 / n} . \tag{40}
\end{equation*}
$$

Examples

Example 10
$n=2$.

$$
\begin{equation*}
\sigma_{\Lambda}=\|\bar{s}\|_{2} \leq \frac{2}{\sqrt{\pi}}(\operatorname{det} \Lambda)^{1 / 2} \leq 1.1284(\operatorname{det} \Lambda)^{1 / 2} \tag{41}
\end{equation*}
$$

Example 11
$\Lambda=\mathbb{Z}^{2}$.

$$
\begin{equation*}
\sigma\left(\mathbb{Z}^{2}\right) \leq \frac{2}{\sqrt{\pi}} \leq 1.1284 \tag{42}
\end{equation*}
$$

while the true value of the shortest vectors is $\sigma\left(\mathbb{Z}^{2}\right)=1$.

Examples

Example 12

Define a triangular (hexagonal) lattice

$$
\begin{equation*}
\Lambda_{t 2}:=\left\langle\bar{\ell}_{1}, \bar{\ell}_{2}\right\rangle_{\mathbb{Z}}, \quad \bar{\ell}_{1}=\bar{e}_{1}, \bar{\ell}_{2}=\frac{1}{2} \bar{e}_{1}+\frac{\sqrt{3}}{2} \bar{e}_{2} \tag{43}
\end{equation*}
$$

By (41) we get an estimate

$$
\begin{equation*}
\sigma_{\Lambda_{t 2}} \leq \frac{2}{\sqrt{\pi}} \sqrt{\frac{\sqrt{3}}{2}}=\sqrt{\frac{2 \sqrt{3}}{\pi}} \leq 1.051 \tag{44}
\end{equation*}
$$

while the true value of the shortest vectors in the lattice $\Lambda_{t 2}$ is $\sigma_{\Lambda_{t 2}}=1$.

Lattice packing

Definition 13

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice and let $\mathcal{P} \subseteq \mathbb{R}^{n}$ be a compact set with $\operatorname{vol} \mathcal{P} \leq \operatorname{det} \Lambda$. The sets $\bar{h}+\mathcal{P}$ form a lattice packing

$$
\begin{equation*}
\Lambda+\mathcal{P}=\underset{\bar{h} \in \Lambda}{\cup}(\bar{h}+\mathcal{P}) \tag{45}
\end{equation*}
$$

of \mathcal{P}, if

$$
\begin{equation*}
\operatorname{int}\left(\bar{h}_{i}+\mathcal{P}\right) \cap \operatorname{int}\left(\bar{h}_{j}+\mathcal{P}\right)=\emptyset \quad \forall i \neq j \tag{46}
\end{equation*}
$$

NOTE: The interiors of different sets $\bar{h}_{i}+\mathcal{P}$ are disjoint but there are different sets whose boundaries may intersect.

Lattice packing

Lemma 14

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice. Suppose $\mathcal{K} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body containing no non-zero lattice Λ points. Then

$$
\begin{equation*}
\left(\bar{h}_{i}+\frac{1}{2} \mathcal{K}\right) \cap\left(\bar{h}_{j}+\frac{1}{2} \mathcal{K}\right)=\emptyset \quad \forall i \neq j . \tag{47}
\end{equation*}
$$

Proof. Assume there exist $\bar{h}_{i} \neq \bar{h}_{j} \in \Lambda$ such that

$$
\begin{equation*}
\bar{h}_{i}+\frac{1}{2} \bar{k}_{i}=\bar{h}_{j}+\frac{1}{2} \bar{k}_{j} \tag{48}
\end{equation*}
$$

for some $\bar{k}_{i}, \bar{k}_{j} \in \mathcal{K}$.

Lattice packing

As in the proof of the first Minkowski's theorem we get

$$
\begin{equation*}
\bar{h}_{i}-\bar{h}_{j}=\frac{1}{2} \bar{k}_{j}-\frac{1}{2} \bar{k}_{i} \in \mathcal{K} . \tag{49}
\end{equation*}
$$

Hence $\bar{h}_{i}=\bar{h}_{j}$ because \mathcal{K} does not contain non-zero lattice points.
Further, $\bar{k}_{i}=\bar{k}_{j}$. Therefore

$$
\begin{equation*}
\left(\bar{h}_{i}+\frac{1}{2} \mathcal{K}\right) \cap\left(\bar{h}_{j}+\frac{1}{2} \mathcal{K}\right)=\emptyset \quad \forall i \neq j . \quad \square \tag{50}
\end{equation*}
$$

Lattice packing

Corollary 15

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice. Suppose $\mathcal{K} \subseteq \mathbb{R}^{n}$ is a central symmetric compact convex body containing no non-zero lattice Λ points satisfying

$$
\begin{equation*}
\operatorname{vol} \frac{1}{2} \mathcal{K} \leq \operatorname{det} \Lambda \tag{51}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Lambda+\frac{1}{2} \mathcal{K} \tag{52}
\end{equation*}
$$

is a lattice packing.

Lattice packing densities

Definition 16

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice and let $\mathcal{P} \subseteq \mathbb{R}^{n}$ be a compact set with $\operatorname{vol} \mathcal{P} \leq \operatorname{det} \Lambda$. A lattice packing density is given by

$$
\begin{equation*}
\Delta_{n}(\mathcal{P}, \Lambda):=\frac{\operatorname{vol} \mathcal{P}}{\operatorname{det} \Lambda} . \tag{53}
\end{equation*}
$$

The supremum over all lattices packing lattices Λ of \mathcal{P} is denoted by

$$
\begin{equation*}
\Delta_{n}(\mathcal{P}):=\sup _{\Lambda} \Delta_{n}(\mathcal{P}, \Lambda) \tag{54}
\end{equation*}
$$

Lattice packing density

Lemma 17

Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a one to one linear transformation. Then

$$
\begin{equation*}
\Delta_{n}(L \mathcal{P})=\Delta_{n}(\mathcal{P}) \tag{55}
\end{equation*}
$$

Proof. First we note

$$
\begin{equation*}
\Delta_{n}(L \mathcal{P}, L \Lambda)=\frac{\operatorname{vol}(L \mathcal{P})}{\operatorname{det}(L \Lambda)}=\frac{\operatorname{det} L \cdot \operatorname{vol} \mathcal{P}}{\operatorname{det} L \cdot \operatorname{det} \Lambda}=\Delta_{n}(\mathcal{P}, \Lambda) \tag{56}
\end{equation*}
$$

From the injectivity of L follows that Λ is a lattice packing lattice of \mathcal{P} exactly when $L \Lambda$ is a lattices packing lattice of $L \mathcal{P}$.

Lattice packing density

Therefore

$$
\begin{align*}
\Delta_{n}(\mathcal{P}) & =\sup _{\Lambda} \Delta_{n}(\mathcal{P}, \Lambda) \\
& =\sup _{L \Lambda} \Delta_{n}(L \mathcal{P}, L \Lambda) \\
& =\sup _{\Lambda^{\prime}=L \Lambda} \Delta_{n}\left(L \mathcal{P}, \Lambda^{\prime}\right) \tag{57}\\
& =\Delta_{n}(L \mathcal{P}),
\end{align*}
$$

where the last supremum is determined over all lattices packing lattices Λ^{\prime} of $L \mathcal{P}$.

The second revision of the first Minkowski's theorem

Theorem 18

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice and let $\mathcal{C} \subseteq \mathbb{R}^{n}$ be central symmetric compact convex body. Assume

$$
\begin{equation*}
\operatorname{vol} \mathcal{C}>2^{n} \cdot \operatorname{det} \Lambda \cdot \Delta_{n}(\mathcal{C}) \tag{58}
\end{equation*}
$$

Then there exists a non-zero lattice point in \mathcal{C}.

The second revision of the first Minkowski's theorem

Proof. Assume, on the contrary, that $\mathcal{C} \cap \Lambda=\{\overline{0}\}$. By the first Minkowski's theorem we have $\operatorname{vol}(\mathcal{C}) \leq 2^{n} \operatorname{det} \Lambda$ which implies $\operatorname{vol}\left(\frac{1}{2} \cdot \mathcal{C}\right) \leq \operatorname{det} \Lambda$. Thus $\Lambda+\frac{1}{2} \mathcal{C}$ is a lattice packing by Corollary 15. By Lemma 17 and the definition of density

$$
\begin{equation*}
\Delta_{n}(\mathcal{C})=\Delta_{n}\left(\frac{1}{2} \mathcal{C}\right) \geq \Delta_{n}\left(\frac{1}{2} \mathcal{C}, \Lambda\right)=\frac{\operatorname{vol}\left(\frac{1}{2} \mathcal{C}\right)}{\operatorname{det} \Lambda}=\left(\frac{1}{2}\right)^{n} \frac{\operatorname{vol}(\mathcal{C})}{\operatorname{det} \Lambda} \tag{59}
\end{equation*}
$$

Lattice sphere packing

The spheres (balls) $\mathcal{B}^{n}(R, \bar{h})$ centered at lattice points \bar{h} form a lattice packing

$$
\begin{equation*}
\mathcal{B}^{n}(R)+\Lambda=\underset{\bar{h} \in \Lambda}{\cup} \mathcal{B}^{n}(R, \bar{h}) \tag{60}
\end{equation*}
$$

if

$$
\begin{equation*}
\operatorname{int} \mathcal{B}^{n}\left(R, \overline{h_{i}}\right) \cap \operatorname{int} \mathcal{B}^{n}\left(R, \overline{h_{j}}\right)=\emptyset \quad \forall i \neq j \tag{61}
\end{equation*}
$$

The interiors of different spheres are disjoint but there are different spheres whose boundaries may intersect.

Lattice sphere packing densities

Obviously the maximum radius of any lattice sphere packing is
$R=\sigma_{\Lambda} / 2=\beta_{1} / 2$, half of the length $\sigma=\sigma_{\Lambda}:=\left\|\bar{s}_{1}\right\|_{2}$ of a shortest vector
\bar{s}_{1} in Λ. Therefore we define
Definition 19

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice. A sphere lattice packing density is given by

$$
\begin{equation*}
\Delta_{n}\left(\mathcal{B}^{n}\left(\sigma_{\Lambda} / 2\right), \Lambda\right):=\frac{\operatorname{vol} \mathcal{B}^{n}\left(\sigma_{\Lambda} / 2\right)}{\operatorname{det} \Lambda} \tag{62}
\end{equation*}
$$

The maximal sphere packing density, the supremum over all lattices Λ, is denoted by

$$
\begin{equation*}
\Delta_{\mathcal{B}, n}:=\sup _{\Lambda} \Delta_{n}\left(\mathcal{B}^{n}\left(\sigma_{\Lambda} / 2\right), \Lambda\right) . \tag{63}
\end{equation*}
$$

Lattice sphere packing densities

Hereby

$$
\begin{equation*}
\Delta_{n}\left(\mathcal{B}^{n}\left(\sigma_{\Lambda} / 2\right), \Lambda\right)=\frac{\pi^{n / 2} \sigma_{\Lambda}^{n}}{2^{n} \Gamma(1+n / 2) \operatorname{det} \Lambda} \leq \Delta_{\mathcal{B}, n} \tag{64}
\end{equation*}
$$

Hence, we may refine estimate (40) as follows
Lemma 20
Let \bar{s} be a minimal vector of the full lattice $\Lambda \subseteq \mathbb{R}^{n}$. Then

$$
\begin{equation*}
\sigma_{\Lambda}=\|\bar{s}\|_{2} \leq \frac{2}{\sqrt{\pi}} \Gamma(1+n / 2)^{1 / n}(\operatorname{det} \Lambda)^{1 / n}\left(\Delta_{\mathcal{B}, n}\right)^{1 / n} . \tag{65}
\end{equation*}
$$

Triangular (hexagonal) lattice

Example 21

Let $\Lambda_{t 2}$ be the triangular (hexagonal) lattice

$$
\begin{equation*}
\Lambda_{t 2}:=\left\langle\bar{\ell}_{1}, \bar{\ell}_{2}\right\rangle_{\mathbb{Z}}, \quad \bar{\ell}_{1}=\bar{e}_{1}, \bar{\ell}_{2}=\frac{1}{2} \bar{e}_{1}+\frac{\sqrt{3}}{2} \bar{e}_{2} \tag{66}
\end{equation*}
$$

The sphere lattice packing density with respect to the triangular lattice $\Lambda_{t 2}$ is given by

$$
\begin{align*}
& \Delta_{2}\left(\mathcal{B}^{2}\left(\sigma_{\Lambda_{t 2}} / 2\right), \Lambda_{t 2}\right)=\frac{\operatorname{vol} \mathcal{B}^{2}(1 / 2)}{\operatorname{det} \Lambda_{t 2}} \\
& =\frac{\pi(1 / 2)^{2}}{\sqrt{3} / 2}=\frac{\pi}{2 \sqrt{3}}=0.906899 \ldots \tag{67}
\end{align*}
$$

The sphere lattice packing density in dimension 2

In 1831? C.F. Gauss proved that the sphere lattice packing density given in (67) is the best among all lattices in \mathbb{R}^{2} :

Theorem 22

$$
\begin{equation*}
\Delta_{\mathcal{B}, 2}=\sup _{\Lambda} \Delta_{2}\left(\mathcal{B}^{2}\left(\sigma_{\Lambda} / 2\right), \Lambda\right)=\frac{\pi}{2 \sqrt{3}}=0.906899 \ldots, \tag{68}
\end{equation*}
$$

where the supremum is determined over all lattices $\Lambda \subseteq \mathbb{R}^{2}$.

In 1910 Thue proved that (68) actually gives the best sphere packing density in dimension 2.

Minimal vectors in dimension 2

Corollary 23
Let $\Lambda \subseteq \mathbb{R}^{2}$ be a full lattice. Then

$$
\begin{equation*}
\sigma_{\Lambda} \leq\left(\frac{2}{\sqrt{3}}\right)^{1 / 2}(\operatorname{det} \Lambda)^{1 / 2} \leq 1.07457(\operatorname{det} \Lambda)^{1 / 2} \tag{69}
\end{equation*}
$$

Proof. Estimate (65) with $n=2$ and (68) give

$$
\begin{align*}
\sigma_{\Lambda} & \leq \frac{2}{\sqrt{\pi}} \Gamma(2)^{1 / 2}(\operatorname{det} \Lambda)^{1 / 2}\left(\Delta_{\mathcal{B}, 2}\right)^{1 / 2} \\
& =\frac{2}{\sqrt{\pi}}\left(\frac{\pi}{2 \sqrt{3}}\right)^{1 / 2}(\operatorname{det} \Lambda)^{1 / 2}=\left(\frac{2}{\sqrt{3}}\right)^{1 / 2}(\operatorname{det} \Lambda)^{1 / 2} \tag{70}
\end{align*}
$$

Examples

Example 24

In the triangular (hexagonal) lattice $\Lambda_{t 2}$ we get an estimate

$$
\begin{equation*}
\sigma_{\Lambda_{t 2}} \leq 1 \tag{71}
\end{equation*}
$$

while the true value of the shortest vectors in the lattice $\Lambda_{t 2}$ is $\sigma_{\Lambda_{t 2}}=1$.

Examples

Example 25

Problem 24. Consider the lattice

$$
\begin{equation*}
\Lambda_{\pi}=\left\langle(\pi, 1 / 7)^{t},(1,1 / 22)^{t}\right\rangle_{\mathbb{Z}} \tag{72}
\end{equation*}
$$

By (69) we have an estimate

$$
\begin{equation*}
\sigma_{\Lambda_{\pi}} \leq\left(\frac{2}{\sqrt{3}} \operatorname{det} \Lambda\right)^{1 / 2}=\left|\frac{2}{\sqrt{3}}\left(\frac{\pi}{22}-\frac{1}{7}\right)\right|^{1 / 2}=0.0081466 \ldots \tag{73}
\end{equation*}
$$

For example

$$
\begin{equation*}
\left\|22(1,1 / 22)^{t}-7(\pi, 1 / 7)^{t}\right\|_{2}=0.0088514 \ldots \tag{74}
\end{equation*}
$$

Thus $22(1,1 / 22)^{t}-7(\pi, 1 / 7)^{t}$ can not be a minimal vector,

Examples

We will show that

$$
\begin{equation*}
\sigma_{\Lambda_{\pi}}=\left\|355(1,1 / 22)^{t}-113(\pi, 1 / 7)^{t}\right\|_{2}=0.00649357 \ldots \tag{75}
\end{equation*}
$$

Proof. Take an arbitrary vector

$$
\begin{equation*}
v(a, b):=a(\pi, 1 / 7)^{t}-b(1,1 / 22)^{t} \in \Lambda_{\pi}, a, b \in \mathbb{Z} \tag{76}
\end{equation*}
$$

and estimate its length

$$
\begin{equation*}
\|v(a, b)\|=\sqrt{(a \pi+b)^{2}+\left(\frac{22 a-7 b}{7 \cdot 22}\right)^{2}} \tag{77}
\end{equation*}
$$

from below.

Examples

1. If

$$
\begin{equation*}
22 a-7 b=0, \tag{78}
\end{equation*}
$$

then

$$
\begin{equation*}
a=k 7, b=k 22, \quad k \in \mathbb{Z} \backslash\{0\} . \tag{79}
\end{equation*}
$$

Now

$$
\begin{align*}
\|v(a, b)\| & =\sqrt{(a \pi-b)^{2}+\left(\frac{22 a-7 b}{7 \cdot 22}\right)^{2}} \tag{80}\\
& =\sqrt{k^{2}(7 \pi-22)^{2}}=|k \| 7 \pi-22| \geq 0.0088514 \ldots
\end{align*}
$$

Examples

2. If

$$
\begin{equation*}
|22 a-7 b| \geq 2 \tag{81}
\end{equation*}
$$

then

$$
\begin{align*}
\|v(a, b)\| & =\sqrt{(a \pi-b)^{2}+\left(\frac{22 a-7 b}{7 \cdot 22}\right)^{2}} \tag{82}\\
& >\sqrt{0+\left(\frac{2}{7 \cdot 22}\right)^{2}}=\frac{1}{7 \cdot 11}=0.012987 \ldots
\end{align*}
$$

Examples

3. Let

$$
\begin{equation*}
|22 a-7 b|=1, \tag{83}
\end{equation*}
$$

then

$$
\begin{equation*}
a=1+k 7, \quad b=3+k 22, \quad k \in \mathbb{Z}, \tag{84}
\end{equation*}
$$

see Basic Number Theory course. Now

$$
\begin{align*}
\|v(a, b)\|_{2} & =\sqrt{(a \pi-b)^{2}+\left(\frac{22 a-7 b}{7 \cdot 22}\right)^{2}} \tag{85}\\
& =\sqrt{(a \pi-b)^{2}+\left(\frac{1}{7 \cdot 22}\right)^{2}}
\end{align*}
$$

Examples

3. So, it is up to find the minimum of

$$
\begin{equation*}
|a \pi-b|=|(1+7 k) \pi-(3+22 k)|, \quad k \in \mathbb{Z} \tag{86}
\end{equation*}
$$

We have

$$
|(1+7 k) \pi-(3+22 k)|=\left\{\begin{array}{lc}
(22-7 \pi) k-(\pi-3), & k \geq \frac{\pi-3}{22-7 \pi} \tag{87}\\
\pi-3-(22-7 \pi) k, & k<\frac{\pi-3}{22-7 \pi}
\end{array}\right.
$$

Because $\frac{\pi-3}{22-7 \pi}=15.9966 \ldots$, then the minima of the above function pieces are attained at $k=16$ and $k=15$, respectively, where the minimum $(22-7 \pi) 16-(\pi-3)$ is smaller.

Examples

Hence $113(\pi, 1 / 7)^{t}-355(1,1 / 22)^{t}$ will be a minimal vector and

$$
\begin{align*}
\|v(a, b)\|_{2} & \geq\|v(113,355)\|_{2}=\left\|113(\pi, 1 / 7)^{t}-355(1,1 / 22)^{t}\right\|_{2} \\
& =\sqrt{(113 \pi-355)^{2}+\left(\frac{1}{7 \cdot 22}\right)^{2}} \tag{88}\\
& =0.00649357 \ldots
\end{align*}
$$

The SVP-problem

Example 25 and other exercise problems show that finding a shortest vector may be quite challenging even in dimension 2 and 3 .

The SVP-problem: Create a polynomial time algorithm that finds a shortest vector in an arbitrary dimension n.

It is generally not known whether such an algorithm exists.
Thereby, people are investigating quantum-safe or post-quantum cryptosystems based e.g. on the hardness of the SVP-problem.

The sphere packing density in dimension 3/The Kepler

 problemThe Kepler conjecture 1611: In dimension 3 the best sphere packing density is $\frac{\pi}{3 \sqrt{2}}=0.74048 \ldots$.
In 1831 C.F. Gauss proved the Kepler bound for lattice sphere packings:
Theorem 26

$$
\begin{equation*}
\Delta_{\mathcal{B}, 3}=\frac{\pi}{3 \sqrt{2}}=0.74048 \ldots \tag{89}
\end{equation*}
$$

The sphere packing density in dimension 3/The Kepler

 problemDensity (89) may be received by the face-centered cubic lattice

$$
\begin{equation*}
\Lambda_{f c c}=\left\langle(1,1,0)^{t},(1,-1,0)^{t},(0,1,-1)^{t}\right\rangle_{\mathbb{Z}} \tag{90}
\end{equation*}
$$

Finally in 1998 T.C. Hales proved the full Kepler conjecture, namely, that (89) indeed is the best sphere packing in dimension 3.

Minimal vectors in dimension 3

Corollary 27

Let $\Lambda \subseteq \mathbb{R}^{3}$ be a full lattice. Then

$$
\begin{equation*}
\sigma_{\Lambda} \leq 2^{1 / 6}(\operatorname{det} \Lambda)^{1 / 3} \tag{91}
\end{equation*}
$$

The Kepler problem in dimension n

In dimension $n \geq 4$ the sphere packing problem is open. However, the optimal lattice packing is known in dimension $n \in\{2,3,4,5,6,7,8,24\}$.

See more at Lenny Fukshansky's web-page
Link: Talk 32. Sphere packing, lattices, and Epstein zeta function.

The third revision of the first Minkowski's theorem

Theorem 28
Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full lattice and let $\mathcal{C} \subseteq \mathbb{R}^{n}$ be central symmetric compact convex body. Then

$$
\begin{equation*}
\operatorname{vol}\left(\lambda_{1} \mathcal{C}\right) \leq 2^{n} \cdot \operatorname{det} \Lambda \cdot \Delta_{n}(\mathcal{C}) \tag{92}
\end{equation*}
$$

The third revision of the first Minkowski's theorem

Proof. Assume, on the contrary, that $\operatorname{vol}\left(\lambda_{1} \cdot \mathcal{C}\right)>2^{n} \cdot \operatorname{det} \Lambda \cdot \Delta_{n}(\mathcal{C})$.
Then there exists a $\lambda<\lambda_{1}$ such that

$$
\begin{equation*}
\operatorname{vol}(\lambda \cdot \mathcal{C})>2^{n} \cdot \operatorname{det} \Lambda \cdot \Delta_{n}(\mathcal{C})=2^{n} \cdot \operatorname{det} \Lambda \cdot \Delta_{n}(\lambda \cdot \mathcal{C}) . \tag{93}
\end{equation*}
$$

By Theorem 18 there exists a non-zero point in $(\lambda \cdot \mathcal{C}) \cap \Lambda$. Thus

$$
\begin{equation*}
\operatorname{rank}\langle(\lambda \cdot \mathcal{C}) \cap \Lambda\rangle_{\mathbb{Z}} \geq 1 \tag{94}
\end{equation*}
$$

which contradicts the definition of

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\lambda>0 \mid \operatorname{rank}\langle(\lambda \mathcal{C}) \cap \Lambda\rangle_{\mathbb{Z}} \geq 1\right\} \tag{95}
\end{equation*}
$$

The second Minkowski's convex body theorem

Theorem 29
Let $n \in \mathbb{Z}^{+}$. Assume that $\Lambda \subseteq \mathbb{R}^{n}$ is a lattice with $\operatorname{rank} \Lambda=n$ and $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body. Then

$$
\frac{2^{n}}{n!} \operatorname{det} \Lambda \leq \lambda_{1} \cdots \lambda_{n} \vee(\mathcal{C}) \leq 2^{n} \operatorname{det} \Lambda
$$

