GEOMETRY OF NUMBERS

Exercises 2022

Problems denoted by \diamond may be challenging.
First set: problems 1-7.
Second set: problems 8-13.
Third set: problems 14-19.
Fourth set: problems 20-25.
Fifth set: problems 26-30.

1. Let R be a commutative ring with unity and $n \in \mathbb{Z}^{+}$. In the Cartesian product

$$
R^{n}:=R \times \ldots \times R=\left\{\bar{x}=\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in R\right\}
$$

we set standard identity relation, addition and scalar product by

$$
\begin{aligned}
& \bar{x}=\bar{y} \quad \Leftrightarrow \quad x_{i}=y_{i} \quad \forall i=1, \ldots, n ; \\
& \bar{x}+\bar{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) ; \\
& r \cdot \bar{x}=\left(r x_{1}, \ldots, r x_{n}\right)
\end{aligned}
$$

for $\bar{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{y}=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}$ and $r \in R$. Show that

$$
\left(R^{n},+, \cdot\right)
$$

is an R-module and $\operatorname{rank}_{R} R^{n}=n$.
2. (a) Show that

$$
\langle(1,0),(1,1)\rangle_{\mathbb{Z}}=\langle(-1,0),(0,1)\rangle_{\mathbb{Z}} .
$$

(b) Show that

$$
\langle(-2,0),(1,1)\rangle_{\mathbb{Z}} \cong \mathbb{Z}^{2}
$$

(c) Let $e, \pi \in \mathbb{R}^{+}$. Show that

$$
\left\langle(e, 0)^{t},(0, \pi)^{t}\right\rangle_{\mathbb{Z}}
$$

is a full lattice in \mathbb{R}^{2}.
3. Prove, that

$$
\|\bar{x}\|_{1}=\sum_{k=1}^{n}\left|x_{k}\right|,
$$

for $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)^{t} \in \mathbb{C}^{n}$, determines a norm.
4. Let $\lambda \in \mathbb{R}_{\geq 0}$ and assume that $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body. Prove that

$$
\lambda \mathcal{C}:=\{\lambda \bar{a} \mid \bar{a} \in \mathcal{C}\}
$$

is also a central symmetric convex body.
5. (a) Show that $\mathcal{B}_{1}^{n}(1)$ is a central symmetric convex body.
(b) Show that $\mathcal{B}_{1 / 2}^{2}(1)$ is not a convex body.
6. Let $L=\left[\bar{l}_{1}, \ldots, \bar{l}_{r}\right]$, where $\bar{l}_{1}, \ldots, \bar{l}_{r} \in \mathbb{R}^{n}$. Prove that

$$
\operatorname{det}\left(L^{t} L\right)=\operatorname{det}\left[\bar{l}_{i} \cdot \bar{l}_{j}\right]_{1 \leq i, j \leq r},
$$

where \cdot is the standard inner product in \mathbb{R}^{n}.
7. \diamond Let $L=\left[\bar{l}_{1}, \ldots, \bar{l}_{r}\right]$, where $\bar{l}_{1}, \ldots, \bar{l}_{r} \in \mathbb{R}^{n}$. Prove

$$
\operatorname{det}\left[\bar{l}_{i} \cdot \bar{l}_{j}\right]_{1 \leq i, j \leq r} \geq 0
$$

8. Let $\lambda \in \mathbb{R}_{\geq 0}, \mathcal{C} \subseteq \mathbb{R}^{n}$ and assume that $\operatorname{vol} \mathcal{C}$ exists. Show that

$$
\operatorname{vol} \lambda \mathcal{C}=\lambda^{n} \operatorname{vol} \mathcal{C}
$$

9. Let $r \in \mathbb{R}_{\geq 0}$.
(a) \diamond Compute the volume of the 4 -ball $\mathcal{B}_{2}^{4}(r)$.
(b) \diamond Compute the volume of the n-octahedron $\mathcal{B}_{1}^{n}(r), n \in \mathbb{Z}_{\geq 1}$.
10. (a) Show that $(\sqrt{3}, \sqrt{3})$ and $(1,1)$ are linearly independent over \mathbb{Z}.
(b) Show that $(\sqrt{3}, \sqrt{3})$ and $(1,1)$ are linearly dependent over \mathbb{R}.
11. (a) Compute the determinant of the integer lattice

$$
\mathbb{Z} \bar{e}_{1}+\ldots+\mathbb{Z} \bar{e}_{n} .
$$

(b) Compute the determinant of the lattice

$$
\left\langle(2,-1,1)^{t},(1,3,-2)^{t}\right\rangle_{\mathbb{Z}}
$$

12. Define a lattice

$$
\Lambda:=\left\langle\bar{e}_{1}+\bar{e}_{2}, \bar{e}_{2}+\bar{e}_{3}, \bar{e}_{3}+\bar{e}_{1}\right\rangle_{\mathbb{Z}}
$$

in \mathbb{R}^{3}.
(a) Is Λ a full lattice?
(b) Compute the determinant of the lattice Λ.
(c) Determine the matrix of the linear map L associated to Λ.
13. Prove the equality

$$
\mathcal{D}=L \mathcal{E},
$$

formula (41) announced in Lecture notes C.
14. Find a subset \mathcal{S}_{1} in \mathbb{R}^{2} which is convex and whose area $\operatorname{vol} \mathcal{S}_{1}=10$, but \mathcal{S}_{1} does not contain any integer points.
15. Find a subset \mathcal{S}_{2} in \mathbb{R}^{2} which is symmetric with respect to the origin and whose area $\operatorname{vol} \mathcal{S}_{2}=10$, but \mathcal{S}_{2} does not contain any integer points.
16. Sketch a picture of the subset \mathcal{S}_{3} in \mathbb{R}^{2} defined by

$$
\mathcal{S}_{3}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}| | x_{1}^{2}-2 x_{2}^{2} \mid<1\right\} .
$$

(a) Is the set \mathcal{S}_{3} symmetric with respect to the origin?
(b) Is the set \mathcal{S}_{3} convex?
17. (a) Find the area of the set \mathcal{S}_{3}.
(b) How many integer points does the set \mathcal{S}_{3} contain?
18. Let α_{1} and α_{2} be real numbers and n a positive integer. Prove that there are integers p_{1}, p_{2}, q such that $1 \leq q \leq n$ and

$$
\left(\alpha_{1}-\frac{p_{1}}{q}\right)^{2}+\left(\alpha_{2}-\frac{p_{2}}{q}\right)^{2} \leq \frac{4}{\pi n q^{2}} .
$$

19. Let $\alpha \in \mathbb{R}, h \in \mathbb{Z}^{+}$be given. Prove by Minkowski's convex body theorem that there exist $p, q \in \mathbb{Z}$, such that $1 \leq q \leq h, \quad p \perp q$, and

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q h} .
$$

20. Determine the area of the ellipse

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 5 x^{2}+16 x y+13 y^{2}<2\right\} .
$$

(See B:(42)-(47)).
21. Prove by Minkowski's convex body theorem that the Diophantine equation

$$
5 x^{2}+16 x y+13 y^{2}=1
$$

has a solution $(x, y) \in \mathbb{Z}^{2}$.
22. Consider the lattice

$$
\Lambda=\left\langle(1,0)^{t},(-1,1 / 2)^{t}\right\rangle_{\mathbb{Z}}
$$

(a) Find all shortest vectors in Λ.
(b) Estimate the length σ of the shortest vector by formula $\mathrm{E}(40)$:

$$
\sigma \leq \frac{2}{\sqrt{\pi}} \Gamma(1+n / 2)^{1 / n}(\operatorname{det} \Lambda)^{1 / n} .
$$

23. Consider the lattice

$$
\Lambda=\left\langle(1,0,0)^{t},(-1,1 / 2,1)^{t},(0,-1 / 2,1 / 2)^{t}\right\rangle_{\mathbb{Z}}
$$

(a) Find one of the shortest vectors in Λ.
(b) Estimate the length σ of the shortest vector by formula $\mathrm{E}(40)$.
24. Consider the lattice

$$
\Lambda_{\pi}:=\left\langle(\pi, 1 / 7)^{t},(1,1 / 22)^{t}\right\rangle_{\mathbb{Z}} .
$$

(a) Find one of the shortest vectors in Λ_{π}.
(b) Estimate the length σ of the shortest vector by formula $\mathrm{E}(40)$.
25. Determine the successive minima of the rectangle

$$
\mathcal{K}=\left\{(x, y) \in \mathbb{R}^{2}| | x\left|\leq \frac{1}{3},|y| \leq \frac{1}{5}\right\}\right.
$$

with respect to the lattice

$$
\Lambda=\left\langle\bar{e}_{1}, \bar{e}_{2}\right\rangle_{\mathbb{Z}} .
$$

26. Determine the sphere lattice packing density

$$
\Delta_{2}\left(\mathcal{B}^{2}\left(\sigma_{\Lambda_{\pi}} / 2\right), \Lambda_{\pi}\right)
$$

of the lattice Λ_{π} defined above.
27 . Let $\Lambda_{n} \subseteq \mathbb{R}^{n}$ be a full lattice. By using the estimate

$$
\sigma_{\Lambda_{n}} \leq \frac{2}{\sqrt{\pi}} \Gamma(1+n / 2)^{1 / n}\left(\operatorname{det} \Lambda_{n}\right)^{1 / n}\left(\Delta_{\mathcal{B}, n}\right)^{1 / n}
$$

and results from the lectures show either (a) or (b):
(a)

$$
\sigma_{\Lambda_{2}} \leq\left(\frac{2}{\sqrt{3}}\right)^{1 / 2}\left(\operatorname{det} \Lambda_{2}\right)^{1 / 2}
$$

(b)

$$
\sigma_{\Lambda_{3}} \leq 2^{1 / 6}\left(\operatorname{det} \Lambda_{3}\right)^{1 / 3}
$$

28. In the lattices of problems $22,23,24$ estimate the lengths of minimal vectors by using above formulae in problem 27.
29. Consider the face-centered cubic lattice

$$
\Lambda_{f c c}:=\left\langle(1,1,0)^{t},(1,-1,0)^{t},(0,1,-1)^{t}\right\rangle_{\mathbb{Z}} .
$$

(a) Find one of the shortest vectors in $\Lambda_{f c c}$.
(b) Estimate the length $\sigma_{\Lambda_{f c c}}$ of the shortest vector by a formula in problem 27.
30. Determine the sphere lattice packing density

$$
\Delta_{3}\left(\mathcal{B}^{3}\left(\sigma_{\Lambda_{f c c}} / 2\right), \Lambda_{f c c}\right)
$$

of the face-centered cubic lattice $\Lambda_{f c c}$.

