GEOMETRY OF NUMBERS D

Tapani Matala-aho, Aalto University, 2023

Upper bound for a linear form

Theorem 1
Let

$$
\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}, \quad h_{1}, \ldots, h_{m} \in \mathbb{Z}^{+}
$$

be given. Then there exist $p, q_{1}, \ldots, q_{m} \in \mathbb{Z}$ with a $q_{k} \neq 0$, satisfying

$$
\left|q_{i}\right| \leq h_{i}, \quad i=1, \ldots, m
$$

and

$$
\left|p+q_{1} \alpha_{1}+\ldots+q_{m} \alpha_{m}\right|<\frac{1}{h_{1} \cdots h_{m}}
$$

Upper bound for a linear form

Proof. Write

$$
\begin{gathered}
L_{0} \bar{x}:=x_{0}+\alpha_{1} x_{1}+\ldots+\alpha_{m} x_{m}, \\
L_{k} \bar{x}:=x_{k}, \quad k=1, \ldots, m
\end{gathered}
$$

and put

$$
\begin{gather*}
\left|L_{0} \bar{x}\right|<\frac{1}{h}:=\frac{1}{h_{1} \cdots h_{m}} \tag{1}\\
\left|L_{k} \bar{x}\right| \leq h_{k}+1 / 2, \quad k=1, \ldots, m \tag{2}
\end{gather*}
$$

Upper bound for a linear form

Then $\left(L_{0}, L_{1}, \ldots, L_{m}\right): \mathbb{Z}^{m+1} \rightarrow \mathbb{R}^{m+1}$ defines a full lattice

$$
\begin{aligned}
\Lambda:= & \mathbb{Z} \bar{\ell}_{0}+\mathbb{Z} \bar{\ell}_{1}+\ldots+\mathbb{Z} \bar{\ell}_{m}= \\
& \mathbb{Z}(1,0, \ldots, 0)^{t}+\mathbb{Z}\left(\alpha_{1}, 1,0, \ldots, 0\right)^{t}+\ldots+\mathbb{Z}\left(\alpha_{m}, 0, \ldots, 1\right)^{t} \subseteq \mathbb{R}^{m+1}
\end{aligned}
$$

where we should find a non-zero vector

$$
\begin{aligned}
& \left(p+q_{1} \alpha_{1}+\ldots+q_{m} \alpha_{m}, q_{1}, \ldots, q_{m}\right)^{t}= \\
& p(1,0, \ldots, 0)^{t}+q_{1}\left(\alpha_{1}, 1,0, \ldots, 0\right)^{t}+\ldots+q_{m}\left(\alpha_{m}, 0, \ldots, 1\right)^{t}
\end{aligned}
$$

Upper bound for a linear form

Lattice determinant:

$$
\operatorname{det} \Lambda=\left|\operatorname{det}\left(\bar{\ell}_{0} \bar{\ell}_{1} \ldots \bar{\ell}_{m}\right)\right|=\left|\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{m} \tag{3}\\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & 1
\end{array}\right|=1 .
$$

Upper bound for a linear form

Now the conditions (1) and (2) determine a convex set

$$
\mathcal{C}:=\left\{\left(y_{0}, \ldots, y_{m}\right)^{t}| | y_{0}\left|<1 / h,\left|y_{k}\right| \leq h_{k}+1 / 2\right\} \subseteq \mathbb{R}^{m+1}\right.
$$

with volume

$$
\operatorname{vol} \mathcal{C}=\frac{2^{m+1}\left(h_{1}+1 / 2\right) \cdots\left(h_{m}+1 / 2\right)}{h_{1} \cdots h_{m}}>2^{m+1} \operatorname{det} \Lambda .
$$

By the first Minkowski's convex body there exists a non-zero vector

$$
\begin{equation*}
\overline{0} \neq \bar{y}=\left(p+q_{1} \alpha_{1}+\ldots+q_{m} \alpha_{m}, q_{1}, \ldots, q_{m}\right)^{t} \in \mathcal{C} \cap \wedge . \tag{4}
\end{equation*}
$$

Upper bound for a linear form

such that

$$
\left|q_{i}\right| \leq h_{i}, \quad \forall i=1, \ldots, m
$$

and

$$
\begin{equation*}
\left|p+q_{1} \alpha_{1}+\ldots+q_{m} \alpha_{m}\right|<\frac{1}{h_{1} \cdots h_{m}} \tag{5}
\end{equation*}
$$

where by (4) we have

$$
\left(p, q_{1}, \ldots, q_{m}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}
$$

Finally, if all $q_{1}=\ldots=q_{m}=0$ in (5), then also $p=0$. A contradiction.

Primitive vector

An integer vector

$$
\left(r_{0}, r_{1}, \ldots, r_{m}\right)^{t} \in \mathbb{Z}^{m+1}
$$

is primitive, if the greatest common divisor satisfies

$$
\operatorname{gcd}\left(r_{0}, r_{1}, \ldots, r_{m}\right)=1
$$

Let

$$
\operatorname{gcd}\left(p, q_{1}, \ldots, q_{m}\right)=d \in \mathbb{Z}_{\geq 2}
$$

Primitive vector

and suppose the integer vector

$$
\left(p, q_{1}, \ldots, q_{m}\right)^{t}=d\left(s, r_{1}, \ldots, r_{m}\right)^{t}, \quad\left(s, r_{1}, \ldots, r_{m}\right)^{t} \in \mathbb{Z}^{m+1}
$$

satisfies the estimate

$$
\left|p+q_{1} \alpha_{1}+\ldots+q_{m} \alpha_{m}\right|<\frac{1}{h}
$$

Then

$$
\left|s+r_{1} \alpha_{1}+\ldots+r_{m} \alpha_{m}\right|<\frac{1}{d h}<\frac{1}{h}
$$

Primitive vector

Thus we have also a primitive solution

$$
\left(s, r_{1}, \ldots, r_{m}\right)^{t} \in \mathbb{Z}^{m+1}
$$

for equation

$$
\left|p+q_{1} \alpha_{1}+\ldots+q_{m} \alpha_{m}\right|<\frac{1}{h}
$$

Primitive vector

Theorem 2

Let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ and $h_{1}, \ldots, h_{m} \in \mathbb{Z}^{+}$be given. Then there exist a primitive vector

$$
\left(p, q_{1}, \ldots, q_{m}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}
$$

with a $q_{k} \neq 0$, satisfying

$$
\left|q_{i}\right| \leq h_{i}, \quad \forall i=1, \ldots, m
$$

and

$$
\left|p+q_{1} \alpha_{1}+\ldots+q_{m} \alpha_{m}\right|<\frac{1}{h_{1} \cdots h_{m}}
$$

Dirichlet's theorem

Theorem 2 with $m=1$:
Corollary 3

Let $\alpha \in \mathbb{R}, h \in \mathbb{Z}^{+}$be given. Then there exist $p, q \in \mathbb{Z}$, such that

$$
1 \leq q \leq h, \quad p \perp q,
$$

and

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q h} .
$$

$s a+t b=1$

Theorem 2 with $m=1$:
Corollary 4

Let $a \in \mathbb{Z}, b \in \mathbb{Z}^{+}, a \perp b, b \geq a+1$ be given. Then there exist $s, t \in \mathbb{Z}$ such that

$$
1 \leq|s| \leq b-1, \quad s \perp t
$$

and

$$
\begin{equation*}
s a+t b=1 \tag{6}
\end{equation*}
$$

$s a+t b=1$

Proof. Denote

$$
\begin{equation*}
\alpha:=\frac{a}{b}, \quad b=h+1, h \geq 1 \tag{7}
\end{equation*}
$$

By Theorem 2 there exist $p, q \in \mathbb{Z}$ such that

$$
\begin{equation*}
|p+q \alpha|<\frac{1}{h}, \quad p \perp q, \quad 1 \leq q \leq h . \tag{8}
\end{equation*}
$$

It follows

$$
\begin{equation*}
|p b+q a|<\frac{h+1}{h} \leq 2 . \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
|p b+q a| \leq 1 \tag{10}
\end{equation*}
$$

$s a+t b=1$

If $p b+q a=0$, then $b \mid q$. But $b=h+1$ and $q \leq h$. A contradiction. Thus

$$
\begin{equation*}
|p b+q a|=1 \tag{11}
\end{equation*}
$$

Which means that there exist $s, t \in \mathbb{Z}$ such that

$$
1 \leq|s| \leq b-1, \quad s \perp t
$$

and

$$
\begin{equation*}
s a+t b=1 \tag{12}
\end{equation*}
$$

Infiniteness of primitive solutions

Theorem 5

Let $1, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be linearly independent over \mathbb{Q}. Then there exist infinitely many primitive vectors

$$
\begin{equation*}
\bar{v}_{k}=\left(p_{k}, q_{1, k}, \ldots, q_{m, k}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\} \tag{13}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left|p_{k}+q_{1, k} \alpha_{1}+\ldots+q_{m, k} \alpha_{m}\right|<\frac{1}{h_{1, k} \cdots h_{m, k}}:=\frac{1}{h_{k}} \tag{14}
\end{equation*}
$$

with $h_{i, k}:=\max \left\{1,\left|q_{i, k}\right|\right\}$, for $i=1, \ldots, m$.

Infiniteness of primitive solutions

Proof. Suppose on the contrary, that there exist only finitely many primitive solutions for (14). Then by the linear independence and assumption (13) there exists a minimum

$$
\begin{equation*}
\min \left|p_{k}+q_{1, k} \alpha_{1}+\ldots+q_{m, k} \alpha_{m}\right|:=\frac{1}{R}>0 \tag{15}
\end{equation*}
$$

Choose then

$$
\hat{h}_{i} \in \mathbb{Z}^{+}, \quad \hat{h}:=\hat{h}_{1} \cdots \hat{h}_{m}, \quad \frac{1}{\hat{h}} \leq \frac{1}{R}
$$

Infiniteness of primitive solutions

Now by Theorem 2 there exists a primitive solution

$$
\left(\hat{p}, \hat{q}_{1}, \ldots, \hat{q}_{m}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}
$$

with

$$
\max \left\{1,\left|\hat{q}_{i}\right|\right\} \leq \hat{h}_{i}, \quad \forall i=1, \ldots, m
$$

satisfying

$$
\left|\hat{p}+\hat{q}_{1} \alpha_{1}+\ldots+\hat{q}_{m} \alpha_{m}\right|<\frac{1}{\hat{h}} \leq \frac{1}{R}
$$

which contradicts (15).

Lower bounds

Theorem 6

Let $1, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be linearly independent over \mathbb{Q}. If there exist positive constants $c, \omega \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
\left|\beta_{0}+\beta_{1} \alpha_{1}+\ldots+\beta_{m} \alpha_{m}\right| \geq \frac{c}{\left(h_{1} \cdots h_{m}\right)^{\omega}} \tag{16}
\end{equation*}
$$

holds for all

$$
\left(\beta_{0}, \beta_{1}, \ldots, \beta_{m}\right) \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}, \quad h_{k}=\max \left\{1,\left|\beta_{k}\right|\right\},
$$

then

$$
\begin{equation*}
\omega \geq 1 \tag{17}
\end{equation*}
$$

Lower bounds

Assume on the contrary that

$$
\omega<1
$$

By Theorem 5 there exists an infinity of primitive vectors satisfying

$$
\left|p_{k}+q_{1, k} \alpha_{1}+\ldots+q_{m, k} \alpha_{m}\right|<\frac{1}{h_{1, k} \cdots h_{m, k}}
$$

and by (16) we have

$$
\begin{equation*}
\frac{c}{\left(h_{1, k} \cdots h_{m, k}\right)^{\omega}} \leq\left|p_{k}+q_{1, k} \alpha_{1}+\ldots+q_{m, k} \alpha_{m}\right|<\frac{1}{h_{1, k} \cdots h_{m, k}} . \tag{18}
\end{equation*}
$$

Choose now $h_{1, k}, \ldots, h_{m, k}$ such that

$$
\left(h_{1, k} \cdots h_{m, k}\right)^{1-\omega} \geq \frac{1}{c}
$$

A contradiction with (18).

Lower bounds

Usually, in the existing literature, the above results are only given in terms of

$$
H_{k}:=\max _{i=1, \ldots, m}\left|q_{i, k}\right| .
$$

Theorem 7

Let $1, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be linearly independent over \mathbb{Q}. Then there exist infinitely many primitive vectors $\bar{v}_{k}=\left(p_{k}, q_{1, k}, \ldots, q_{m, k}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}$ satisfying

$$
\begin{equation*}
\left|p_{k}+q_{1, k} \alpha_{1}+\ldots+q_{m, k} \alpha_{m}\right|<\frac{1}{H_{k}^{m}} \tag{19}
\end{equation*}
$$

Lower bounds

One may wonder, if the exponent in (19) could be improved? Theorem 8 shows that the upper bound in (19) is best possible up to a constant factor for an arbitrary m-tuple $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of real numbers.

Lower bounds

Theorem 8

Let $\alpha=\alpha_{0}$ be an algebraic integer of degree $\operatorname{deg}_{\mathbb{Q}} \alpha=m+1$ and
$\alpha_{i}=\sigma_{i}(\alpha), i=0,1, \ldots, m$, where σ_{i} are the field monomorphisms of the field $\mathbb{Q}(\alpha)$. Then

$$
\begin{equation*}
\left|p+q_{1} \alpha+\ldots+q_{m} \alpha^{m}\right|>\frac{1}{H^{m}(3 m)^{m} A^{m^{2}}}, \quad A=\max _{i=0,1, \ldots, m}\left\{1,\left|\alpha_{i}\right|\right\} \tag{20}
\end{equation*}
$$

for all

$$
\left(p, q_{1}, \ldots, q_{m}\right)^{t} \in \mathbb{Z}^{m+1}, \quad 1 \leq H=\max _{i=1, \ldots, m}\left|q_{i}\right|
$$

Lower bounds

We divide the proof in two cases. If $\left|p+q_{1} \alpha+\ldots+q_{m} \alpha^{m}\right| \geq 1$, we are done. From now on we suppose $\left|p+q_{1} \alpha+\ldots+q_{m} \alpha^{m}\right|<1$. Immediately

$$
|p|<1+\left|q_{1} \alpha+\ldots+q_{m} \alpha^{m}\right| \leq 1+m H \max \{1,|\alpha|\}^{m}
$$

implying

$$
\begin{aligned}
\left|p+q_{1} \alpha_{i}+\ldots+q_{m} \alpha_{i}^{m}\right| & <|p|+\left|q_{1} \alpha_{i}+\ldots+q_{m} \alpha_{i}^{m}\right| \\
& \leq 1+m H \max \{1,|\alpha|\}^{m}+m H \max \left\{1,\left|\alpha_{i}\right|\right\}^{m} \\
& \leq 3 m H\left(\max _{i=0,1, \ldots, m}\left\{1,\left|\alpha_{i}\right|\right\}\right)^{m} \\
& =3 m H A^{m}
\end{aligned}
$$

Lower bounds

Because $\alpha=\alpha_{0}$ is an algebraic integer of degree $\operatorname{deg}_{\mathbb{Q}} \alpha=m+1$, then

$$
\Theta:=p+q_{1} \alpha+\ldots+q_{m} \alpha^{m} \in \mathbb{Z}[\alpha] \backslash\{0\}
$$

is a non-zero algebraic integer and its field norm is an integer. Hence

$$
\begin{aligned}
1 \leq|N(\Theta)| & =\left|\Theta_{0} \Theta_{1} \cdots \Theta_{m}\right| \\
& \leq|\Theta| \prod_{i=1}^{m}\left|p+q_{1} \alpha_{i}+\ldots+q_{m} \alpha_{i}^{m}\right| \\
& \leq|\Theta|(3 m H)^{m} A^{m^{2}} .
\end{aligned}
$$

Lower bounds

Theorem 9

Let $1, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be linearly independent over \mathbb{Q}. If there exist positive constants $c, \omega \in \mathbb{R}^{+}$such that

$$
\left|p_{k}+q_{1, k} \alpha_{1}+\ldots+q_{m, k} \alpha_{m}\right|>\frac{c}{H_{k}^{\omega}}
$$

for all

$$
\bar{v}_{k}=\left(p_{k}, q_{1, k}, \ldots, q_{m, k}\right)^{t} \in \mathbb{Z}^{m+1}, \quad 1 \leq H_{k}=\max \left|q_{i, k}\right|
$$

then

$$
\omega \geq m
$$

Lower contra upper

$$
\begin{gather*}
\frac{1}{H^{m+\frac{m^{\log (3 m)+m^{2} \log A} \log H}{}}}<\left|p+q_{1} \alpha+\ldots+q_{m} \alpha^{m}\right| \underset{\#=\infty}{<} \frac{1}{H^{m}} . \tag{21}\\
\frac{1}{H^{m+\frac{m^{2} \log m}{\log \log H}}}<\left|p+q_{1} e+q_{2} e^{2}+\cdots+q_{m} e^{m}\right| \underset{\#=\infty}{<} \frac{1}{H^{m}} . \tag{22}
\end{gather*}
$$

a.a.

Theorem 10

For almost all $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ wrt Lebesgue measure, there exist infinitely many primitive vectors $\bar{v}_{k}=\left(p_{k}, q_{1, k}, \ldots, q_{m, k}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}$, with $H_{k}:=\max \left|q_{i, k}\right|, \quad i=1, \ldots, m$, satisfying

$$
\begin{equation*}
\left|p_{k}+q_{1, k} \alpha_{1}+\ldots+q_{m, k} \alpha_{m}\right|<\frac{1}{H_{k}^{m} \log H_{k}} \tag{23}
\end{equation*}
$$

Further (23) is the best bound for a.a.

By (20) we know that (23) is not valid for all m-tuples $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of real numbers.

Simultaneous approximations

Theorem 11

Let $\alpha_{1}, \ldots, \alpha_{m}, f_{1}, \ldots, f_{m} \in \mathbb{R}, h \in \mathbb{Z}_{\geq 1}$, be given and suppose

$$
\begin{equation*}
f_{1}+\ldots+f_{m}=1 \tag{24}
\end{equation*}
$$

Then there exist a primitive vector $\left(q, p_{1}, \ldots, p_{m}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}$ such that $1 \leq q \leq h$ and

$$
\begin{equation*}
\left|q \alpha_{i}+p_{i}\right|<\frac{1}{h^{f_{i}}} \quad \forall i=1, \ldots, m . \tag{25}
\end{equation*}
$$

Simultaneous approximations

Write

$$
\begin{gathered}
L_{0} \bar{x}:=x_{0}, \\
L_{i} \bar{x}:=x_{0} \alpha_{i}+x_{i}, \quad i=1, \ldots, m
\end{gathered}
$$

and put

$$
\begin{gather*}
\left|L_{0} \bar{x}\right| \leq h+1 / 2, \tag{26}\\
\left|L_{i} \bar{x}\right|<\frac{1}{h^{f_{i}}}, \quad i=1, \ldots, m . \tag{27}
\end{gather*}
$$

Simultaneous approximations

Then $\left(L_{0}, L_{1}, \ldots, L_{m}\right): \mathbb{Z}^{m+1} \rightarrow \mathbb{R}^{m+1}$ defines a full lattice

$$
\begin{aligned}
\Lambda:= & \mathbb{Z} \bar{\ell}_{0}+\mathbb{Z} \bar{\ell}_{1}+\ldots+\mathbb{Z} \bar{\ell}_{m}= \\
& \mathbb{Z}\left(1, \alpha_{1}, \ldots, \alpha_{m}\right)^{t}+\mathbb{Z}(0,1,0, \ldots, 0)^{t}+\ldots+\mathbb{Z}(0, \ldots, 0,1)^{t} \subseteq \mathbb{R}^{m+1}
\end{aligned}
$$

where we should find a non-zero vector

$$
\begin{aligned}
& \left(q, q \alpha_{1}+p_{1}, \ldots, q \alpha_{m}+p_{m}\right)^{t}= \\
& q\left(1, \alpha_{1}, \ldots, \alpha_{m}\right)^{t}+p_{1}(0,1,0, \ldots, 0)^{t}+\ldots+p_{m}(0, \ldots, 0,1)^{t}
\end{aligned}
$$

satisfying (25).

Simultaneous approximations

Lattice determinant:

$$
\operatorname{det} \Lambda=\left|\operatorname{det}\left(\bar{\ell}_{0} \bar{\ell}_{1} \ldots \bar{\ell}_{m}\right)\right|=\left|\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{28}\\
\alpha_{1} & 1 & 0 & \ldots & 0 \\
\alpha_{2} & 0 & 1 & \ldots & 0 \\
. & . & . & \ldots & . \\
\alpha_{m} & 0 & 0 & \ldots & 1
\end{array}\right|=1 .
$$

Note, that the matrices (3) and (28) are transposes to each other.

Simultaneous approximations

Therefore we define a set
$\mathcal{C}=\left\{\left(x_{0}, x_{1}, \ldots, x_{m}\right)^{t} \in \mathbb{R}^{m+1}| | x_{0}\left|\leq h+1 / 2,\left|x_{0} \alpha_{i}+x_{i}\right|<\frac{1}{h^{f_{i}}}, i=1, \ldots, m\right\}\right.$.
The set \mathcal{C} is a central symmetric convex body and its volume satisfies

$$
\operatorname{vol} \mathcal{C}=(2 h+1) \frac{2}{h^{f_{1}}} \cdots \frac{2}{h^{f_{m}}}>2^{m+1} \operatorname{det} \Lambda .
$$

Simultaneous approximations

The first Minkowski's convex body theorem gives a vector

$$
\overline{0} \neq q\left(1, \alpha_{1}, \ldots, \alpha_{m}\right)^{t}+p_{1}(0,1,0, \ldots, 0)^{t}+\ldots+p_{m}(0, \ldots, 0,1)^{t} \in \mathcal{C} \cap \wedge .
$$

Hence we have a $(m+1)$-tuple

$$
\left(q, p_{1}, \ldots, p_{m}\right) \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}
$$

satisfying the inequalities (25).

Infiniteness of primitive solutions

Theorem 12

Let $f_{1}, \ldots, f_{m} \in \mathbb{R}^{+}$satisfy $f_{1}+\ldots+f_{m}=1$, and let at least one of the numbers $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be irrational. Then there exist infinitely many primitive vectors

$$
\bar{v}_{k}=\left(q_{k}, p_{1, k}, \ldots, p_{m, k}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}, \quad q_{k} \in \mathbb{Z}^{+}
$$

satisfying

$$
\begin{equation*}
\left|q_{k} \alpha_{i}+p_{i, k}\right|<\frac{1}{q_{k}^{f_{i}}}, \quad \forall i=1, \ldots, m \tag{29}
\end{equation*}
$$

Infiniteness of primitive solutions

Proof. Let α_{2} be irrational. If there were only finitely many primitive solutions for (29), then there exists a minimum

$$
\begin{equation*}
\min _{k}\left|q_{k} \alpha_{2}+p_{2, k}\right|:=\frac{1}{R}>0 . \tag{30}
\end{equation*}
$$

Choose then

$$
\hat{h} \in \mathbb{Z}^{+}, \quad \frac{1}{\hat{h}^{f_{2}}} \leq \frac{1}{R}
$$

Now by Theorem 11 there exist $\hat{q}, \hat{p}_{2} \in \mathbb{Z}$ such that

$$
\begin{equation*}
\left|\hat{q} \alpha_{2}+\hat{p}_{2}\right|<\frac{1}{\hat{h}^{f_{2}}} \leq \frac{1}{R} . \tag{31}
\end{equation*}
$$

which contradicts (30).

Dirichlet's theorem on simultaneous approximations

Theorem 13

Let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be given. Then there exist a primitive vector $\left(q, p_{1}, \ldots, p_{m}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}$ such that $q \in \mathbb{Z}^{+}$and

$$
\begin{equation*}
\left|\alpha_{i}+\frac{p_{i}}{q}\right|<\frac{1}{q^{1+1 / m}}, \quad \forall i=1, \ldots, m \tag{32}
\end{equation*}
$$

Dirichlet's theorem on simultaneous approximations

Theorem 14

Let at least one of the numbers $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be irrational. Then there exist infinitely many primitive vectors

$$
\bar{v}_{k}=\left(q_{k}, p_{1, k}, \ldots, p_{m, k}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}, \quad q_{k} \in \mathbb{Z}^{+}
$$

satisfying

$$
\begin{equation*}
\left|\alpha_{i}+\frac{p_{i, k}}{q_{k}}\right|<\frac{1}{q_{k}^{1+1 / m}}, \quad \forall i=1, \ldots, m \tag{33}
\end{equation*}
$$

Nearest integer

We will use the notation $\|\alpha\|_{m}=\|\alpha\|$ for the distance of a real number α to the nearest integer

$$
\|\alpha\|_{m}=\min _{k \in \mathbb{Z}}|\alpha-k| .
$$

Note, that

$$
\|\alpha\|_{m} \leq|\alpha-k|,
$$

for all $k \in \mathbb{Z}$.

Simultaneous linear forms/Infinity of primitive solutions

Let at least one of the numbers $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ be irrational. Then there exist infinitely many primitive vectors

$$
\left(q, p_{1}, \ldots, p_{m}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}, \quad q \in \mathbb{Z}^{+},
$$

satisfying

$$
\begin{equation*}
\left|q \alpha_{i}+p_{i}\right|<\frac{1}{q^{1 / m}}, \quad \forall i=1, \ldots, m \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
q^{1 / m}\left\|q \alpha_{i}\right\|<1, \quad \forall i=1, \ldots, m \tag{35}
\end{equation*}
$$

Case $m=2$

Set $m=2$ and let at least one of the numbers $\alpha, \beta \in \mathbb{R}$ be irrational.
Then there exist infinitely many solutions $q \in \mathbb{Z}^{+}$to

$$
\begin{align*}
& q^{1 / 2}\|q \alpha\|<1 \\
& q^{1 / 2}\|q \beta\|<1 . \tag{36}
\end{align*}
$$

Hence also for

$$
\begin{equation*}
q\|q \alpha\|\|q \beta\|<1 \tag{37}
\end{equation*}
$$

without any assumption on the pair (α, β).

Littlewood conjecture

Define a Littlewood quantity

$$
\ell(\alpha, \beta)=\inf _{q \in \mathbb{Z} \geq 1}\{q\|q \alpha\|\|q \beta\|\}
$$

LITTLEWOOD CONJECTURE:

Let $(\alpha, \beta) \in \mathbb{R}^{2}$, then

$$
\begin{equation*}
\ell(\alpha, \beta)=0 \tag{38}
\end{equation*}
$$

Badly approximable

It can be proved, that there exist badly approximable m-tuples $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, meaning the existence of such a constant $0<\gamma<1$ that

$$
\begin{equation*}
\max _{i=1, \ldots, m}\left|q \alpha_{i}+p_{i}\right|>\frac{\gamma}{q^{1 / m}} \tag{39}
\end{equation*}
$$

for all

$$
\left(q, p_{1}, \ldots, p_{m}\right)^{t} \in \mathbb{Z}^{m+1} \backslash\{\overline{0}\}, \quad q \in \mathbb{Z}^{+}
$$

BAD

The set of badly approximable numbers

$$
\begin{equation*}
\text { Bad }:=\left\{\alpha \in \mathbb{R} \mid \exists \mu(\alpha) \in \mathbb{R}^{+}: q\|q \alpha\| \geq \mu(\alpha) \quad \forall q \in \mathbb{Z}_{\geq 1}\right\} \tag{40}
\end{equation*}
$$

Thus, if $\alpha \in \operatorname{Bad}$, then there exists a positive constant $\mu=\mu(\alpha)$ such that

$$
\begin{equation*}
q\|q \alpha\| \geq \mu \quad \Rightarrow \quad\left|\alpha-\frac{p}{q}\right| \geq \frac{\mu}{q^{2}} \tag{41}
\end{equation*}
$$

for all rationals $p / q \in \mathbb{Q}$.

