GEOMETRY OF NUMBERS C

Tapani Matala-aho, Aalto University, 2022

The first Minkowski's convex body theorem

The first Minkowski's convex body theorem. Let $n \in \mathbb{Z}^{+}$. Assume that $\Lambda \subseteq \mathbb{R}^{n}$ is a lattice with rank $\Lambda=n$ and $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body with

$$
\begin{aligned}
& \operatorname{vol} \mathcal{C}>2^{n} \operatorname{det} \Lambda \text { or } \\
& \operatorname{vol} \mathcal{C} \geq 2^{n} \operatorname{det} \Lambda, \quad \text { if } \mathcal{C} \quad \text { is compact. }
\end{aligned}
$$

Then, there exists a non-zero lattice point in \mathcal{C}. In fact, then $\# \mathcal{C} \cap \wedge \geq 3$.

Theorem of Blichfeldt

First we prove Blichfeldt's theorem.
Theorem 1

Blichfeldt. Let $n \in \mathbb{Z}^{+}$. Assume that a subset $\mathcal{R} \subseteq \mathbb{R}^{n}$ and a full lattice $\Lambda \subseteq \mathbb{R}^{n}$ are such that

$$
\begin{equation*}
\infty>\operatorname{vol} \mathcal{R}>\operatorname{det} \Lambda \tag{1}
\end{equation*}
$$

Then there exist points $\bar{r}_{1}, \bar{r}_{2} \in \mathcal{R}, \bar{r}_{1} \neq \bar{r}_{2}$, satisfying

$$
\begin{equation*}
\bar{r}_{1}-\bar{r}_{2} \in \Lambda \tag{2}
\end{equation*}
$$

Theorem of Blichfeldt

Proof. Recall the notation of the fundamental domain

$$
\begin{equation*}
\mathcal{F}=\mathcal{F}\left(\bar{I}_{1}, \ldots, \bar{I}_{n}\right):=\left\{x_{1} \bar{I}_{1}+\ldots+x_{n} \bar{I}_{n} \mid 0 \leq x_{i}<1\right\} \tag{3}
\end{equation*}
$$

and its translates

$$
\begin{equation*}
\mathcal{F}_{j}:=\bar{h}_{j}+\mathcal{F} \tag{4}
\end{equation*}
$$

with the fact that every $\bar{x} \in \mathbb{R}^{n}$ has a unique representation

$$
\begin{equation*}
\bar{x}=\bar{h}_{j}+\bar{f}, \quad \bar{h}_{j} \in \Lambda, \bar{f} \in \mathcal{F} \tag{5}
\end{equation*}
$$

Then, for $\bar{h}_{j} \in \Lambda$ we set

$$
\begin{equation*}
\mathcal{R}_{j}=\mathcal{R}\left(\bar{h}_{j}\right):=\mathcal{R} \cap \mathcal{F}_{j} . \tag{6}
\end{equation*}
$$

Theorem of Blichfeldt

It follows that

$$
\begin{equation*}
\sqcup \mathcal{R}_{j}=\mathcal{R} \tag{7}
\end{equation*}
$$

a disjoint union. In other words, our domain \mathcal{R} is divided into disjoint translates of the fundamental domain. Now we define translates

$$
\begin{equation*}
\mathcal{T}_{j}:=\mathcal{R}_{j}-\bar{h}_{j} \subseteq \mathcal{F}, \tag{8}
\end{equation*}
$$

which are pullbacks into the fundamental domain satisfying

$$
\begin{equation*}
\operatorname{vol} \mathcal{T}_{j}=\operatorname{vol} \mathcal{R}_{j} \tag{9}
\end{equation*}
$$

Theorem of Blichfeldt

Hence

$$
\begin{equation*}
\sum \operatorname{vol} \mathcal{T}_{j}=\sum \operatorname{vol} \mathcal{R}_{j}=\operatorname{vol} \mathcal{R} \stackrel{(1)}{>} \operatorname{det}(\Lambda)=\operatorname{vol} \mathcal{F} \tag{10}
\end{equation*}
$$

But

$$
\begin{equation*}
\cup \mathcal{T}_{j} \subseteq \mathcal{F} \tag{11}
\end{equation*}
$$

Therefore, there exist, say \mathcal{T}_{1} and \mathcal{T}_{2}, which overlap. Take a

$$
\begin{equation*}
\bar{f}_{0} \in \mathcal{T}_{1} \cap \mathcal{T}_{2} \tag{12}
\end{equation*}
$$

Theorem of Blichfeldt

Thus

$$
\begin{array}{ll}
\bar{f}_{0}=\bar{r}_{1}-\bar{h}_{1}, & \bar{r}_{1} \in \mathcal{R}_{1}, \quad \bar{h}_{1} \in \Lambda ; \tag{13}\\
\bar{f}_{0}=\bar{r}_{2}-\bar{h}_{2}, \quad \bar{r}_{2} \in \mathcal{R}_{2}, \quad \bar{h}_{2} \in \Lambda,
\end{array}
$$

where

$$
\begin{equation*}
\mathcal{R}_{1} \cap \mathcal{R}_{2}=\emptyset \tag{14}
\end{equation*}
$$

Hence

$$
\begin{gather*}
\bar{r}_{1} \neq \bar{r}_{2} \quad \text { and } \tag{15}\\
\bar{r}_{1}-\bar{r}_{2}=\bar{h}_{1}-\bar{h}_{2} \in \Lambda .
\end{gather*}
$$

The first Minkowski's convex body theorem/Non-compact version

Theorem 2

The first Minkowski's convex body theorem. Let $n \in \mathbb{Z}^{+}$. Assume that $\Lambda \subseteq \mathbb{R}^{n}$ is a lattice with rank $\Lambda=n$ and $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body with

$$
\begin{equation*}
\operatorname{vol} \mathcal{C}>2^{n} \operatorname{det} \Lambda . \tag{16}
\end{equation*}
$$

Then, there exists a non-zero lattice point in \mathcal{C}.

The first Minkowski's convex body theorem

Proof. Consider the volume of the dilation

$$
\begin{equation*}
\operatorname{vol} \frac{1}{2} \mathcal{C}=\frac{1}{2^{n}} \operatorname{vol} \mathcal{C} \stackrel{(16)}{>} \operatorname{det} \Lambda . \tag{17}
\end{equation*}
$$

By Theorem 1 there exist disjoint points $\bar{r}_{1}, \bar{r}_{2} \in \frac{1}{2} \mathcal{C}$ such that $\bar{x}:=\bar{r}_{1}-\bar{r}_{2} \in \Lambda \backslash\{\overline{0}\}$. The assumption $-\mathcal{C}=\mathcal{C}$ implies $-\bar{r}_{2} \in \frac{1}{2} \mathcal{C}$. Thus we have $2 \bar{r}_{1},-2 \bar{r}_{2} \in \mathcal{C}$. Therefore, by convexity

$$
\begin{equation*}
\frac{1}{2}\left(2 \bar{r}_{1}\right)+\frac{1}{2}\left(-2 \bar{r}_{2}\right)=\bar{r}_{1}-\bar{r}_{2}=\bar{x} \in \mathcal{C} . \tag{18}
\end{equation*}
$$

Hence there exists a non-zero vector

$$
\begin{equation*}
\bar{x} \in \mathcal{C} \cap \wedge . \quad \square \tag{19}
\end{equation*}
$$

Undressed Minkowski

In particular, if Λ is the integer lattice \mathbb{Z}^{n}, then we have the following handy version for a bunch of cases.

Theorem 3

If $\mathcal{B} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body such that

$$
\begin{equation*}
\operatorname{vol} \mathcal{B}>2^{n} \tag{20}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{B} \cap \mathbb{Z}^{n} \neq\{\overline{0}\} . \tag{21}
\end{equation*}
$$

Undressed Minkowski/Compact case

Next we will prove a compact version of Theorem 3.
Theorem 4

If $\mathcal{B} \subseteq \mathbb{R}^{n}$ is a compact central symmetric convex body such that

$$
\begin{equation*}
\operatorname{vol} \mathcal{B} \geq 2^{n} \tag{22}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{B} \cap \mathbb{Z}^{n} \neq\{\overline{0}\} . \tag{23}
\end{equation*}
$$

Undressed Minkowski/Compact case

Proof. Now we may suppose vol $\mathcal{B}=2^{n}$. Suppose on the contrary that \mathcal{B} does not contain a non-zero point from \mathbb{Z}^{n}.

Because the set \mathcal{B} is compact, the maximum $M_{1}:=\max \left\{\|\bar{x}\|_{2} \mid \bar{x} \in \mathcal{B}\right\}$ exists. Now we write $M:=\left\lceil M_{1}\right\rceil+1$ and define an n-cube

$$
\begin{equation*}
\square(S):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in S^{n}| | x_{i} \mid \leq M, i=1, \ldots n\right\} \tag{24}
\end{equation*}
$$

in \mathbb{R}^{n}. First we see $\mathcal{B} \subseteq \square(\mathbb{R})$.

Undressed Minkowski/Compact case

Consequently, there are only finitely many lattice points outside \mathcal{B} but inside $\square(\mathbb{Z})$ or

$$
\begin{equation*}
\# \square(\mathbb{Z}) \backslash \mathcal{B}<\infty \tag{25}
\end{equation*}
$$

Since \mathcal{B} is compact and $\square(\mathbb{Z}) \backslash \mathcal{B}$ is finite, there exists a $b>1$ such that $b \mathcal{B} \subseteq \square(\mathbb{R})$ and $b \mathcal{B} \cap \square(\mathbb{Z})$ does not contain a non-zero point. But

$$
\begin{equation*}
\text { vol } b \mathcal{B}=b^{n} \text { vol } \mathcal{B}>2^{n} \tag{26}
\end{equation*}
$$

which yields to a contradiction.

Minkowski/Compact body version

Theorem 5

The first Minkowski's convex body theorem. Let $n \in \mathbb{Z}^{+}$. Assume that $\Lambda \subseteq \mathbb{R}^{n}$ is a lattice with rank $\Lambda=n$ and $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a compact central symmetric convex body with

$$
\begin{equation*}
\operatorname{vol} \mathcal{C} \geq 2^{n} \operatorname{det} \Lambda \tag{27}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{C} \cap \Lambda \neq\{\overline{0}\} . \tag{28}
\end{equation*}
$$

Minkowski/Compact body version

Proof. Let L be the linear map defined by the lattice Λ. Because $\Lambda=L \mathbb{Z}^{n}$ is a full lattice, then $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a bijection and $\operatorname{det} \Lambda=|\operatorname{det} L|$. The set $\mathcal{B}:=L^{-1} \mathcal{C}$ is a compact central symmetric convex body and its volume satisfies the inequality

$$
\begin{equation*}
\operatorname{vol} \mathcal{B}=\left|\operatorname{det} L^{-1}\right| \cdot \operatorname{vol} \mathcal{C} \geq \frac{1}{|\operatorname{det} L|} \cdot 2^{n} \operatorname{det} \Lambda=2^{n} \tag{29}
\end{equation*}
$$

Therefore there exists an $\bar{x} \neq \overline{0}$ such that

$$
\begin{equation*}
\bar{x} \in \mathcal{B} \cap \mathbb{Z}^{n} \tag{30}
\end{equation*}
$$

Further, $L \bar{x} \neq \overline{0}$ and

$$
\begin{equation*}
L \bar{x} \in \mathcal{C} \cap \wedge . \quad \square \tag{31}
\end{equation*}
$$

Minkowski/Linear map version

Corollary 6

Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a one to one linear transformation. Assume $\mathcal{B} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body such that

$$
\begin{gathered}
\operatorname{vol} \mathcal{B}>2^{n} \quad \text { or } \\
\operatorname{vol} \mathcal{B} \geq 2^{n}, \quad \text { if } \mathcal{B} \quad \text { is compact. }
\end{gathered}
$$

Then

$$
\begin{equation*}
\mathcal{C} \cap \Lambda \tag{32}
\end{equation*}
$$

contains a non-zero point, where $\mathcal{C}:=L \mathcal{B}$ and $\Lambda:=L\left(\mathbb{Z}^{n}\right)$.

Minkowski/Linear map version

Proof. All we need to know is

$$
\operatorname{vol} \mathcal{C}=\operatorname{vol} L \mathcal{B}=|\operatorname{det} L| \operatorname{vol} \mathcal{B}\left\{\begin{array}{l}
>2^{n} \operatorname{det} \Lambda, \tag{33}\\
\geq 2^{n} \operatorname{det} \Lambda, \quad \mathcal{B} \text { compact }
\end{array}\right.
$$

Thus $\mathcal{C} \cap \Lambda=L \mathcal{B} \cap L\left(\mathbb{Z}^{n}\right)$ contains a non-zero point.

A Diophantine equation

Prove that the Diophantine equation

$$
\begin{equation*}
2 x^{2}+10 x y+13 y^{2}=1 \tag{34}
\end{equation*}
$$

has a non-trivial solution $(x, y) \in \mathbb{Z}^{2}$. Define

$$
\begin{equation*}
\mathcal{E}:=\left\{\bar{x} \in \mathbb{R}^{2} \mid 2 x^{2}+10 x y+13 y^{2}<2\right\}, \quad \Lambda=\mathbb{Z}^{2} \tag{35}
\end{equation*}
$$

Note, that
$\mathcal{E}=\left\{\bar{x} \in \mathbb{R}^{2} \mid(2 x+5 y)^{2}+y^{2}<4\right\}=\left\{\bar{x} \in \mathbb{R}^{2} \left\lvert\,\left(x+\frac{5}{2} y\right)^{2}+\left(\frac{y}{2}\right)^{2}<1\right.\right\}$

A Diophantine equation

Define a linear map by setting

$$
\begin{equation*}
L \bar{x}=L(x, y):=\left(x+\frac{5}{2} y, \frac{y}{2}\right) . \tag{37}
\end{equation*}
$$

It holds

$$
L=\left[\begin{array}{cc}
1 & \frac{5}{2} \tag{38}\\
0 & \frac{1}{2}
\end{array}\right], \quad \operatorname{det} L=\frac{1}{2}
$$

Therefore L is bijective. Using (36) we see that

$$
\begin{equation*}
L \mathcal{E}=\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \alpha^{2}+\beta^{2}<1,(\alpha, \beta)=L \bar{x}, \bar{x} \in \mathbb{R}^{2}\right\} \tag{39}
\end{equation*}
$$

A Diophantine equation

Write

$$
\begin{equation*}
\mathcal{D}:=\left\{(A, B) \in \mathbb{R}^{2} \mid A^{2}+B^{2}<1\right\} . \tag{40}
\end{equation*}
$$

By surjectivity of L we have

$$
\begin{equation*}
\mathcal{D}=L \mathcal{E} . \tag{41}
\end{equation*}
$$

A Diophantine equation

Because

$$
\begin{equation*}
\pi=\operatorname{vol} \mathcal{D}=\operatorname{det} L \cdot \operatorname{vol} \mathcal{E}=\frac{1}{2} \operatorname{vol} \mathcal{E} \tag{42}
\end{equation*}
$$

we get

$$
\begin{equation*}
\operatorname{vol} \mathcal{E}=2 \pi>2^{2} \operatorname{det} \Lambda=4 \tag{43}
\end{equation*}
$$

In addition \mathcal{E} is a central symmetric convex body. Therefore, $\mathcal{E} \cap \mathbb{Z}^{2}$ contains a non-zero point, say $(a, b) \in \mathbb{Z}^{2}$, meaning

$$
\begin{equation*}
0<2 a^{2}+10 a b+13 b^{2}<2 \quad \Rightarrow \quad 2 a^{2}+10 a b+13 b^{2}=1 \tag{44}
\end{equation*}
$$

Linear forms/Compact version

Theorem 7

Let

$$
L_{i} \bar{x}:=\alpha_{i 1} x_{1}+\ldots+\alpha_{i N} x_{N}, \quad i=1, \ldots, N
$$

be homogeneous linearly independent linear forms with $\alpha_{i j} \in \mathbb{R}$. Assume

$$
\begin{equation*}
\tau_{1}, \ldots, \tau_{N} \in \mathbb{R}^{+}, \quad|\operatorname{det} L| \leq \tau_{1} \cdots \tau_{N} \tag{45}
\end{equation*}
$$

Then there exists a $\bar{q} \in \mathbb{Z}^{N} \backslash\{\overline{0}\}$ such that

$$
\begin{equation*}
\left|L_{i} \bar{q}\right| \leq \tau_{i} \quad \forall i=1, \ldots, N \tag{46}
\end{equation*}
$$

Linear forms

Proof. Define a linear map

$$
\begin{gather*}
L:=\left(L_{1}, L_{2}, \ldots, L_{N}\right)^{T}, \tag{47}\\
L \bar{x}:=\left[\begin{array}{c}
L_{1} \bar{x} \\
L_{2} \bar{x} \\
\vdots \\
L_{N} \bar{x}
\end{array}\right]=\left[\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \ldots & \alpha_{1 N} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \ldots & \alpha_{2 N} \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \ldots & \alpha_{3 N} \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
\alpha_{N 1} & \alpha_{N 2} & \alpha_{N 3} & \ldots & \alpha_{N N}
\end{array}\right] \bar{x} \tag{48}
\end{gather*}
$$

By the linear independence of the linear forms follows $\operatorname{det} L \neq 0$. Hence $L: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is bijective.

Linear forms

We have $\Lambda:=L\left(\mathbb{Z}^{N}\right)$ and $\operatorname{det} \Lambda=|\operatorname{det} L| \neq 0$. Therefore Λ is a full lattice.
Further,

$$
\begin{align*}
\Lambda & =L\left(\mathbb{Z}^{N}\right)=\mathbb{Z} \bar{\ell}_{1}+\mathbb{Z} \bar{\ell}_{2}+\ldots+\mathbb{Z} \bar{\ell}_{N} \\
& =\mathbb{Z}\left[\begin{array}{c}
\alpha_{11} \\
\alpha_{21} \\
\alpha_{31} \\
\vdots \\
\alpha_{N 1}
\end{array}\right]+\mathbb{Z}\left[\begin{array}{c}
\alpha_{12} \\
\alpha_{22} \\
\alpha_{32} \\
\vdots \\
\alpha_{N 2}
\end{array}\right]+\ldots+\mathbb{Z}\left[\begin{array}{c}
\alpha_{1 N} \\
\alpha_{2 N} \\
\alpha_{3 N} \\
\vdots \\
\alpha_{N N}
\end{array}\right] . \tag{49}
\end{align*}
$$

Linear forms

Define sets \mathcal{B}, \mathcal{C} and \mathcal{T} by setting

$$
\begin{align*}
\mathcal{B} & :=\left\{\bar{x} \in \mathbb{R}^{N}| | L_{i} \bar{x} \mid \leq \tau_{i}, \quad i=1, \ldots, N\right\}, \\
\mathcal{C} & :=L \mathcal{B}=\{L \bar{x} \mid \bar{x} \in \mathcal{B}\}, \tag{50}\\
\mathcal{T} & :=\left\{\bar{z} \in \mathbb{R}^{N}| | z_{i} \mid \leq \tau_{i}, i=1, \ldots, N\right\} .
\end{align*}
$$

Let us prove that $\mathcal{C}=\mathcal{T}$. First we show that $\mathcal{C} \subseteq \mathcal{T}$. Take a $\bar{w} \in \mathcal{C}$. Then there exists an $\bar{x} \in \mathcal{B}$ such that $\bar{w}=\left(w_{1}, \ldots, w_{N}\right)=L \bar{x}=\left(L_{1} \bar{x}, \ldots, L_{N} \bar{x}\right)$ and $\left|w_{i}\right|=\left|L_{i} \bar{x}\right| \leq \tau_{i}, i=1, \ldots, N$. Thus $\bar{w} \in \mathcal{T}$. Next we show $\mathcal{T} \subseteq \mathcal{C}$. Take a $\bar{z} \in \mathcal{T}$. Because L is surjective there exists an $\bar{x} \in \mathbb{R}^{N}$ such that $\bar{z}=\left(z_{1}, \ldots, z_{N}\right)=L \bar{x}=\left(L_{1} \bar{x}, \ldots, L_{N} \bar{x}\right)$. Hereby $\left|L_{i} \bar{x}\right|=\left|z_{i}\right| \leq \tau_{i}$, which shows that $\bar{x} \in \mathcal{B}$. Consequently $\bar{z}=L \bar{x} \in L \mathcal{B}=\mathcal{C}$.

Linear forms

The volume of the orthotope \mathcal{T} is given by

$$
\begin{equation*}
\operatorname{vol} \mathcal{T}=2^{N} \tau_{1} \cdots \tau_{N} \tag{51}
\end{equation*}
$$

On the other hand $\operatorname{vol} \mathcal{C}=|\operatorname{det} L| \operatorname{vol} \mathcal{B}$. Thereby

$$
\begin{equation*}
\operatorname{vol} \mathcal{B}=\frac{\operatorname{vol} \mathcal{C}}{|\operatorname{det} L|}=\frac{\operatorname{vol} \mathcal{T}}{|\operatorname{det} L|} \geq \frac{2^{N} \tau_{1} \cdots \tau_{N}}{\tau_{1} \cdots \tau_{N}}=2^{N} \tag{52}
\end{equation*}
$$

In addition, because the set \mathcal{T} is a compact central symmetric convex body, so is $\mathcal{B}=L^{-1} \mathcal{T}$, too.

Linear forms

Thus $\mathcal{B} \cap \mathbb{Z}^{N}$ contains a non-zero point, say $\bar{q}=\left(q_{1}, \ldots, q_{N}\right)$, and therefore $\mathcal{C} \cap \Lambda=L \mathcal{B} \cap L\left(\mathbb{Z}^{N}\right)$ contains a non-zero point $L \bar{q}$. Hence there exists a $\bar{q} \in \mathbb{Z}^{N} \backslash\{\overline{0}\}$ such that

$$
\begin{equation*}
\left|L_{i} \bar{q}\right| \leq \tau_{i} \quad \forall i=1, \ldots, N \tag{53}
\end{equation*}
$$

Linear forms/Two alternative final conclusions

1. From the fact

$$
\begin{equation*}
\bar{q} \in \mathcal{B}=\left\{\bar{x} \in \mathbb{R}^{N}| | \alpha_{i 1} x_{1}+\ldots+\alpha_{i N} x_{N} \mid \leq \tau_{i}, i=1, \ldots, N\right\} \tag{54}
\end{equation*}
$$

we may deduce that

$$
\begin{equation*}
\left|\alpha_{i 1} q_{1}+\ldots+\alpha_{i N} q_{N}\right| \leq \tau_{i} \quad \forall i=1, \ldots, N . \quad \square \tag{55}
\end{equation*}
$$

2. From the fact

$$
\begin{equation*}
L \bar{q} \in \mathcal{C}=\left\{L \bar{x}| | L_{i} \bar{x} \mid \leq \tau_{i}, i=1, \ldots, N\right\} \tag{56}
\end{equation*}
$$

we may deduce again that

$$
\begin{equation*}
\left|L_{i} \bar{q}\right|=\left|\alpha_{i 1} q_{1}+\ldots+\alpha_{i N} q_{N}\right| \leq \tau_{i} \quad \forall i=1, \ldots, N . \tag{57}
\end{equation*}
$$

Linear forms/Non-compact version

Theorem 8

Let

$$
L_{i} \bar{x}:=\alpha_{i 1} x_{1}+\ldots+\alpha_{i N} x_{N}, \quad i=1, \ldots, N
$$

be homogeneous linearly independent linear forms with $\alpha_{i j} \in \mathbb{R}$. Assume

$$
\begin{equation*}
\tau_{1}, \ldots, \tau_{N} \in \mathbb{R}^{+}, \quad|\operatorname{det} L|<\tau_{1} \cdots \tau_{N} \tag{58}
\end{equation*}
$$

Then there exists a $\bar{q} \in \mathbb{Z}^{N} \backslash\{\overline{0}\}$ such that

$$
\begin{equation*}
\left|L_{i} \bar{q}\right|<\tau_{i} \quad \forall i=1, \ldots, N . \tag{59}
\end{equation*}
$$

Circular disk example (problem 18)

Example 1

Let α_{1} and α_{2} be real numbers and n a positive integer. Prove that there are integers p_{1}, p_{2}, q such that

$$
\begin{equation*}
1 \leq q \leq n \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\alpha_{1}-\frac{p_{1}}{q}\right)^{2}+\left(\alpha_{2}-\frac{p_{2}}{q}\right)^{2} \leq \frac{4}{\pi n q^{2}} \tag{61}
\end{equation*}
$$

First we note, that $q \neq 0$ in (61).

Circular disk example

Proof. If $q \neq 0$, then inequality (61) is equivalent to

$$
\begin{equation*}
\left(q \alpha_{1}-p_{1}\right)^{2}+\left(q \alpha_{2}-p_{2}\right)^{2} \leq \frac{4}{\pi n}=: R^{2} \tag{62}
\end{equation*}
$$

Next we replace q, p_{1}, p_{2} by real numbers x_{0}, x_{1}, x_{2} and define a set

$$
\begin{equation*}
\mathcal{B}:=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}| | x_{0} \mid \leq n,\left(x_{0} \alpha_{1}-x_{1}\right)^{2}+\left(x_{0} \alpha_{2}-x_{2}\right)^{2} \leq R^{2}\right\} \tag{63}
\end{equation*}
$$

where the bound $\left|x_{0}\right| \leq n$ is chosen instead of (60) to build a central symmetric body \mathcal{B}.

Circular disk example

Write $\bar{x}:=\left(x_{0}, x_{1}, x_{2}\right)^{t}$. Then

$$
\begin{equation*}
\mathcal{B}=\left\{\bar{x} \in \mathbb{R}^{3}| | L_{0} \bar{x} \mid \leq n,\left(L_{1} \bar{x}\right)^{2}+\left(L_{2} \bar{x}\right)^{2} \leq R^{2}\right\} \tag{64}
\end{equation*}
$$

where

$$
L \bar{x}:=\left[\begin{array}{c}
L_{0} \bar{x} \tag{65}\\
L_{1} \bar{x} \\
L_{2} \bar{x}
\end{array}\right]=\left[\begin{array}{c}
x_{0} \\
x_{0} \alpha_{1}-x_{1} \\
x_{0} \alpha_{2}-x_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\alpha_{1} & -1 & 0 \\
\alpha_{2} & 0 & -1
\end{array}\right] \bar{x} .
$$

Because $\operatorname{det} L=1$, then $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is bijective.

Circular disk example

We define a corresponding lattice by $\Lambda:=L\left(\mathbb{Z}^{3}\right)$. Consequently $\operatorname{det} \Lambda=|\operatorname{det} L|=1$. Therefore Λ is a full lattice. Further,

$$
\begin{aligned}
\Lambda & =L\left(\mathbb{Z}^{3}\right)=\mathbb{Z} \bar{\ell}_{1}+\mathbb{Z} \bar{\ell}_{2}+\mathbb{Z} \bar{\ell}_{3} \\
& =\mathbb{Z}\left[\begin{array}{c}
1 \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]+\mathbb{Z}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\ldots+\mathbb{Z}\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right] .
\end{aligned}
$$

Circular disk example

Define sets \mathcal{B}, \mathcal{C} and \mathcal{T} by setting

$$
\begin{align*}
\mathcal{B} & =\left\{\bar{x} \in \mathbb{R}^{3}| | L_{0} \bar{x} \mid \leq n,\left(L_{1} \bar{x}\right)^{2}+\left(L_{2} \bar{x}\right)^{2} \leq R^{2}\right\} \\
\mathcal{C} & :=L \mathcal{B}=\{L \bar{x} \mid \bar{x} \in \mathcal{B}\} \tag{67}\\
& =\left\{\left(L_{0} \bar{x}, L_{1} \bar{x}, L_{2} \bar{x}\right) \in \mathbb{R}^{3}| | L_{0} \bar{x} \mid \leq n,\left(L_{1} \bar{x}\right)^{2}+\left(L_{2} \bar{x}\right)^{2} \leq R^{2}\right\} \\
\mathcal{T} & :=\left\{\left(z_{0}, z_{1}, z_{2}\right) \in \mathbb{R}^{3}| | z_{0} \mid \leq n,\left(z_{1}\right)^{2}+\left(z_{2}\right)^{2} \leq R^{2}\right\} .
\end{align*}
$$

It can be proved that $\mathcal{C}=\mathcal{T}$ in a similar manner like in the proof of Theorem 7, see the deduction after (50).

Circular disk example

The volume of the circular cylinder \mathcal{T} is given by

$$
\begin{equation*}
\operatorname{vol} \mathcal{T}=2 n \pi R^{2}=8 \tag{68}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\operatorname{vol} \mathcal{T}=\operatorname{vol} \mathcal{C}=|\operatorname{det} L| \operatorname{vol} \mathcal{B}=\operatorname{vol} \mathcal{B} \tag{69}
\end{equation*}
$$

Thereby

$$
\begin{equation*}
\operatorname{vol} \mathcal{B}=8=2^{3} \operatorname{det} \Lambda . \tag{70}
\end{equation*}
$$

In addition, because the set \mathcal{T} is a compact central symmetric convex body, so is $\mathcal{B}=L^{-1} \mathcal{T}$, too.

Circular disk example

Thus, by Theorem 4 the intersection $\mathcal{B} \cap \mathbb{Z}^{3}$ contains a non-zero integer point, say $\left(q, p_{1}, p_{2}\right) \in \mathbb{Z}^{3} \backslash\{\overline{0}\}$. We also have $q \neq 0$. Hence there exists a $\left(q, p_{1}, p_{2}\right) \in \mathbb{Z}^{3} \backslash\{\overline{0}\}$ such that

$$
\begin{align*}
& 1 \leq|q| \leq n \\
& \left(q \alpha_{1}-p_{1}\right)^{2}+\left(q \alpha_{2}-p_{2}\right)^{2} \leq \frac{4}{\pi n} \tag{71}
\end{align*}
$$

If $q<0$, then $-q,-p_{1},-p_{2}$ would be a solution. Therefore we may take $q \geq 1$.

