GEOMETRY OF NUMBERS B

Tapani Matala-aho, Aalto University, 2022

Abstract

Geometry of numbers is a powerful tool in studying Diophantine inequalities. In geometry of numbers a basic question is to find a non-zero lattice vector from a convex subset in a n-dimensional space, say in \mathbb{R}^{n}. Hermann Minkowski answered this challenge with his convex body theorems. In these lectures we shall discuss how to apply Minkowski's theorems to prove classical Diophantine inequalities.

Jacobian

Let $\bar{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function with $\bar{f}(\bar{x})=\left(f_{1}(\bar{x}), \ldots, f_{n}(\bar{x})\right)^{t}$, where all the partial derivatives

$$
\frac{\partial f_{i}(\bar{x})}{\partial x_{j}}, \quad i, j=1, \ldots, n
$$

exist.
The Jacobian matrix of \bar{f} is defined by

$$
J(\bar{f}(\bar{x})):=\left[\begin{array}{ccc}
\frac{\partial f_{1}(\bar{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{1}(\bar{x})}{\partial x_{n}} \tag{1}\\
\cdot & \cdot & \\
\cdot & \cdot & \\
\frac{\partial f_{n}(\bar{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{n}(\bar{x})}{\partial x_{n}}
\end{array}\right]
$$

Jacobian

The determinant

$$
\operatorname{det} J(\bar{f}(\bar{x}))=\left|\begin{array}{ccc}
\frac{\partial f_{1}(\bar{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{1}(\bar{x})}{\partial x_{n}} \tag{2}\\
\cdot & \cdot & \\
\cdot & \cdot & \\
\frac{\partial f_{n}(\bar{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{n}(\bar{x})}{\partial x_{n}}
\end{array}\right|
$$

of the Jacobian matrix will be called Jacobian.

Integration by a change of variables

For $\bar{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we write

$$
\begin{equation*}
\bar{y}=\left(y_{1}, \ldots, y_{n}\right)^{t}=\bar{f}(\bar{x})=\left(f_{1}(\bar{x}), \ldots, f_{n}(\bar{x})\right)^{t} \tag{3}
\end{equation*}
$$

Suppose $\bar{f}: \mathcal{B} \rightarrow \bar{f}(\mathcal{B})$ is injective and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an integrable function. Then

$$
\begin{equation*}
\int_{\bar{y} \in \bar{f}(\mathcal{B})} G(\bar{y}) d y_{1} \ldots d y_{n}=\int_{\bar{x} \in \mathcal{B}} G(\bar{f}(\bar{x})) \operatorname{det} J(\bar{f}(\bar{x})) d x_{1} \ldots d x_{n} . \tag{4}
\end{equation*}
$$

Volume

By a volume vol \mathcal{C} of a subset $\mathcal{C} \subseteq \mathbb{R}^{n}$ we mean the absolute value of the Riemann (or Lebesgue) integral

$$
\begin{equation*}
\operatorname{vol} \mathcal{C}:=\left|\int_{\bar{x} \in \mathcal{C}} d x_{1} \ldots d x_{n}\right| \tag{5}
\end{equation*}
$$

if it exists.

Volume of n-dimensional p-ball

Let $p \in \mathbb{R}^{+}$. In \mathbb{R}^{n} the n-dimensional p-ball of radius $r \in \mathbb{R}_{\geq 0}$ is defined by

$$
\begin{aligned}
\mathcal{B}_{p}^{n}(r) & :=\left\{\bar{x} \in \mathbb{R}^{n} \mid\|\bar{x}\|_{p} \leq r\right\} \\
& =\left\{\left.\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}| | x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p} \leq r^{p}\right\} .
\end{aligned}
$$

Its volume is given by

$$
\begin{equation*}
\operatorname{vol} \mathcal{B}_{p}^{n}(r)=2^{n} r^{n} \frac{\Gamma(1+1 / p)^{n}}{\Gamma(1+n / p)} \tag{6}
\end{equation*}
$$

Volume of n-dimensional p-ball

where $\Gamma(z)$ is the gamma function defined by

$$
\Gamma(x+1):=\int_{0}^{\infty} e^{-s} s^{x} d s
$$

for $x \in \mathbb{R}^{+}$. It satisfies the functional equation $\Gamma(x+1)=x \Gamma(x)$ for $x \in \mathbb{R}^{+}$. In particular, $\Gamma(1 / 2)=\sqrt{\pi}$. Some interesting cases:

	p	$\operatorname{vol} \mathcal{B}_{p}^{n}(r)$	
Octahedron	1	$\frac{2^{n} r^{n}}{n!}$	
Ball	2	$\frac{\pi^{n / 2} r^{n}}{\Gamma(1+n / 2)}$	
Cube	∞	$2^{n} r^{n}$	

Convex body

Definition 1

A non-empty subset $\mathcal{C} \subseteq \mathbb{R}^{n}$ is convex, if for any pair of points $\bar{a}, \bar{b} \in \mathcal{C}$ holds

$$
\{s \bar{a}+(1-s) \bar{b} \mid 0 \leq s \leq 1\} \subseteq \mathcal{C}
$$

A bounded convex subset $\mathcal{C} \subseteq \mathbb{R}^{n}$ is called a convex body. A subset \mathcal{C} is central symmetric (symmetric wrt origin) if $\mathcal{C}=-\mathcal{C}$.

Remark 1

In these notes we don't expect that a convex body is necessarily closed.

Convex body

In a convex set \mathcal{C} arbitrary two points \bar{a}, \bar{b} can be joined with a line segment belonging entirely in \mathcal{C}.

Example 2
Let $\lambda \in \mathbb{R}_{\geq 0}$ and assume that \mathcal{C} is a central symmetric convex body. Then the dilation

$$
\lambda \mathcal{C}:=\{\lambda \bar{a} \mid \bar{a} \in \mathcal{C}\}
$$

is also a central symmetric convex body.

Convex body

Example 3

Octahedron is an n-dimensional 1-ball of radius $r \in \mathbb{R}_{\geq 0}$ defined by

$$
\begin{aligned}
\mathcal{B}_{1}^{n}(r) & :=\left\{\bar{x} \in \mathbb{R}^{n} \mid\|\bar{x}\|_{1} \leq r\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}\right)^{t} \in \mathbb{R}^{n}| | x_{1}\left|+\ldots+\left|x_{n}\right| \leq r\right\} .\right.
\end{aligned}
$$

Show that $\mathcal{B}_{1}^{n}(r)$ is a central symmetric convex body.

Example 4

If $s \geq 1$, then it can be shown that $\mathcal{B}_{s}^{n}(r)$ is a central symmetric convex body.

Lattice

In these lectures we consider lattices which are free \mathbb{Z}-modules in \mathbb{R}^{n}. Definition 5

Let $n \in \mathbb{Z}^{+}$and let $\bar{I}_{1}, \ldots, \bar{l}_{r} \in \mathbb{R}^{n}$ be linearly independent over \mathbb{R}, then the linear hull

$$
\Lambda=\left\langle\bar{I}_{1}, \ldots, \bar{I}_{r}\right\rangle_{\mathbb{Z}}=\mathbb{Z} \bar{I}_{1}+\ldots+\mathbb{Z} \bar{I}_{r} \subseteq \mathbb{R}^{n}
$$

over \mathbb{Z} is called a lattice in \mathbb{R}^{n}.
The set $\left\{\bar{I}_{1}, \ldots, \bar{I}_{r}\right\}$ is called a base of Λ with rank $\Lambda=r$.
If rank $\Lambda=n$, then Λ is called a full lattice.

Lattice, Gram determinant

Remark 2
The lattice $\Lambda=\left\langle\bar{I}_{1}, \ldots, \bar{I}_{r}\right\rangle_{\mathbb{Z}}$ is a \mathbb{Z}-module.

Lemma 3
Let $L=\left[\bar{I}_{1}, \ldots, \bar{I}_{r}\right]$, then

$$
\begin{equation*}
\operatorname{det}\left(L^{t} L\right)=\operatorname{det}\left[\bar{l}_{i} \cdot \bar{l}_{j}\right]_{1 \leq i, j \leq r} \geq 0 \tag{7}
\end{equation*}
$$

where \cdot is the standard inner product in \mathbb{R}^{n}.

The determinant $\operatorname{det}\left[\bar{I}_{i} \cdot \bar{I}_{j}\right]_{1 \leq i, j \leq r}$ is called Gram determinant.

Determinant of a lattice

Definition 6

The determinant of a lattice Λ is defined by

$$
\begin{equation*}
\operatorname{det}(\Lambda):=\sqrt{\operatorname{det}\left(L^{t} L\right)}, \quad L=\left[\bar{I}_{1}, \ldots, \bar{I}_{r}\right] \tag{8}
\end{equation*}
$$

where the columns $\bar{I}_{1}, \ldots, \bar{I}_{r}$ of the matrix L are the basis vectors $\bar{I}_{1}, \ldots, \bar{I}_{r}$ of Λ.

Lemma 4
For a full lattice we have

$$
\begin{equation*}
\operatorname{det}(\Lambda)=|\operatorname{det} L|=\left|\operatorname{det}\left[\bar{I}_{1}, \ldots, \bar{I}_{n}\right]\right| . \tag{9}
\end{equation*}
$$

Determinant of a lattice

Let

$$
\bar{e}_{1}:=(1,0, \ldots, 0,0)^{t}, \ldots, \bar{e}_{n}:=(0,0, \ldots, 0,1)^{t}
$$

denote the standard basis in \mathbb{R}^{n}.
Example 7
The integer lattice

$$
\begin{equation*}
\mathbb{Z}^{n}=\mathbb{Z} \bar{e}_{1}+\ldots+\mathbb{Z} \bar{e}_{n} \tag{10}
\end{equation*}
$$

has determinant $\operatorname{det}(\Lambda)=1$.

Fundamental domain

Fundamental domain is defined by

$$
\mathcal{F}:=\mathcal{F}\left(\bar{I}_{1}, \ldots, \bar{I}_{r}\right):=\left\{x_{1} \bar{I}_{1}+\ldots+x_{n} \bar{I}_{r} \mid 0 \leq x_{i}<1\right\} .
$$

And its translates are given by

$$
\mathcal{F}_{j}:=\bar{h}_{j}+\mathcal{F}
$$

with respect to an enumeration

$$
\Lambda=\left\{\bar{h}_{j} \mid j=0,1, \ldots\right\}
$$

of the lattice Λ.

Fundamental domain: det $=$ vol

Lemma 5

Every $\bar{x} \in \mathbb{R}^{n}$ has unique representation

$$
\begin{equation*}
\bar{x}=\bar{h}_{j}+\bar{f}, \quad \bar{h}_{j} \in \Lambda, \bar{f} \in \mathcal{F} . \tag{11}
\end{equation*}
$$

Theorem 6

Let Λ be a full lattice. Then

$$
\begin{equation*}
\operatorname{det}(\Lambda)=\operatorname{vol} \mathcal{F} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\operatorname{det}\left[\bar{\ell}_{1}, \ldots, \bar{\ell}_{n}\right]\right|=\operatorname{vol}\left\{x_{1} \bar{\ell}_{1}+\ldots+x_{n} \bar{\ell}_{n} \mid 0 \leq x_{i}<1\right\} \tag{13}
\end{equation*}
$$

Linear transformation

Let $\bar{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and write

$$
\begin{equation*}
\bar{\ell}_{i}:=\bar{L} \bar{e}_{i}=\alpha_{1 i} \bar{e}_{1}+\alpha_{2 i} \bar{e}_{2}+\ldots+\alpha_{n i} \bar{e}_{n}, \quad i=1, \ldots, n . \tag{14}
\end{equation*}
$$

Then

$$
\left[\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \ldots & \alpha_{1 n} \tag{15}\\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \ldots & \alpha_{2 n} \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \ldots & \alpha_{3 n} \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
\alpha_{n 1} & \alpha_{n 2} & \alpha_{n 3} & \ldots & \alpha_{n n}
\end{array}\right]=\left[\bar{\ell}_{1}, \ldots, \bar{\ell}_{n}\right]=L
$$

determines \bar{L} 's matrix with respect to standard basis $\bar{e}_{1}, \ldots, \bar{e}_{n}$.

Linear transformation

Further,

$$
\begin{equation*}
\bar{L} \bar{x}=x_{1} \bar{L} \bar{e}_{1}+\ldots+x_{n} \bar{L} \bar{e}_{n}=x_{1} \bar{\ell}_{1}+\ldots+x_{n} \bar{\ell}_{n}, \tag{16}
\end{equation*}
$$

for $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)^{t}=x_{1} \bar{e}_{1}+\ldots+x_{n} \bar{e}_{n} \in \mathbb{Z}^{n}$, so that we get a lattice

$$
\begin{align*}
\Lambda & =\overline{\mathbb{Z}} \mathbb{Z}^{n}=\mathbb{Z} \bar{\ell}_{1}+\mathbb{Z} \bar{\ell}_{2}+\ldots+\mathbb{Z} \bar{\ell}_{n} \\
& =\mathbb{Z}\left[\begin{array}{c}
\alpha_{11} \\
\alpha_{21} \\
\alpha_{31} \\
\vdots \\
\alpha_{n 1}
\end{array}\right]+\mathbb{Z}\left[\begin{array}{c}
\alpha_{12} \\
\alpha_{22} \\
\alpha_{32} \\
\vdots \\
\alpha_{n 2}
\end{array}\right]+\ldots+\mathbb{Z}\left[\begin{array}{c}
\alpha_{1 n} \\
\alpha_{2 n} \\
\alpha_{3 n} \\
\vdots \\
\alpha_{n n}
\end{array}\right] . \tag{17}
\end{align*}
$$

$\operatorname{det}=\operatorname{det}=\mathrm{vol}$

Vice versa: The lattice in (17) determines the linear map in (14) via the matrix L in (15).
Assume $\operatorname{det} L \neq 0$. Then the linear map \bar{L} is bijective and determines a full lattice $\Lambda:=\bar{L}\left(\mathbb{Z}^{n}\right)$, because

$$
\begin{equation*}
\operatorname{det} \Lambda=\left|\operatorname{det}\left[\bar{\ell}_{1}, \ldots, \bar{\ell}_{n}\right]\right|=|\operatorname{det} L| \neq 0 \tag{18}
\end{equation*}
$$

In addition, by (12) and (18) we have
Theorem 7

$$
\begin{equation*}
\operatorname{det} \Lambda=|\operatorname{det} L|=\operatorname{vol} \mathcal{F} \tag{19}
\end{equation*}
$$

Linear transformation stretches volumes

From now on, we may use the same symbol L for the linear map \bar{L} and its matrix L. For example $\operatorname{det} \bar{L}=\operatorname{det} L$.

Theorem 8

Linear transformation, say $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, stretches volumes by a factor | $\operatorname{det} L$, namely

$$
\begin{equation*}
\operatorname{vol} L \mathcal{C}=|\operatorname{det} L| \cdot \operatorname{vol} \mathcal{C} \tag{20}
\end{equation*}
$$

Proof. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and write

$$
\bar{y}=\left(y_{1}, \ldots, y_{n}\right)^{t}=L \bar{x}=\left(L_{1}(\bar{x}), \ldots, L_{n}(\bar{x})\right)^{t} .
$$

Linear transformation stretches volumes

We compute $\bar{y}=L \bar{x}$ by using their matrices

$$
\bar{y}=L \bar{x}=\left[\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \ldots & \alpha_{1 n} \tag{21}\\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \ldots & \alpha_{2 n} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\alpha_{n 1} & \alpha_{n 2} & \alpha_{n 3} & \ldots & \alpha_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Hereby

$$
\left[\begin{array}{c}
L_{1}(\bar{x}) \tag{22}\\
L_{2}(\bar{x}) \\
\vdots \\
L_{n}(\bar{x})
\end{array}\right]=\left[\begin{array}{c}
\alpha_{11} x_{1}+\alpha_{12} x_{2}+\ldots+\alpha_{1 n} x_{n} \\
\alpha_{21} x_{1}+\alpha_{22} x_{2}+\ldots+\alpha_{2 n} x_{n} \\
\vdots \\
\alpha_{n 1} x_{1}+\alpha_{n 2} x_{2}+\ldots+\alpha_{n n} x_{n}
\end{array}\right] .
$$

Linear transformation stretches volumes

So we are ready to compute the Jacobian as follows

$$
\begin{align*}
\operatorname{det} J(L(\bar{x})) & =\left|\begin{array}{cccc}
\frac{\partial L_{1}(\bar{x})}{\partial x_{1}} & \ldots & \frac{\partial L_{1}(\bar{x})}{\partial x_{n}} \\
\cdot & \cdot & \\
\cdot & . & \\
\frac{\partial L_{n}(\bar{x})}{\partial x_{1}} & \ldots & \frac{\partial L_{n}(\bar{x})}{\partial x_{n}}
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \ldots & \alpha_{1 n} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \ldots & \alpha_{2 n} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\alpha_{n 1} & \alpha_{n 2} & \alpha_{n 3} & \ldots & \alpha_{n n}
\end{array}\right|=\operatorname{det} L . \tag{23}
\end{align*}
$$

Linear transformation stretches volumes

In computing the volume integrals the map L is restricted by $L: \mathcal{C} \rightarrow L \mathcal{C}$.
By the change of variables

$$
\begin{align*}
& \int_{\bar{y} \in L \mathcal{C}} d y_{1} \ldots d y_{n}=\int_{\bar{x} \in \mathcal{C}} \operatorname{det} J(L(\bar{x})) d x_{1} \ldots d x_{n} \tag{24}\\
& \stackrel{(23)}{=} \int_{\bar{x} \in \mathcal{C}} \operatorname{det} L d x_{1} \ldots d x_{n}=\operatorname{det} L \int_{\bar{x} \in \mathcal{C}} d x_{1} \ldots d x_{n} .
\end{align*}
$$

Hence, by taking absolute values we get

$$
\begin{equation*}
\operatorname{vol} L \mathcal{C}=|\operatorname{det} L| \cdot \operatorname{vol} \mathcal{C} \tag{25}
\end{equation*}
$$

Volume of the fundamental domain/Proof of Theorem 6

Proof of Theorem 6. We need to show that

$$
\begin{equation*}
\left|\operatorname{det}\left[\bar{\ell}_{1}, \ldots, \bar{\ell}_{n}\right]\right|=\operatorname{vol}\left\{x_{1} \bar{\ell}_{1}+\ldots+x_{n} \bar{\ell}_{n} \mid 0 \leq x_{i}<1\right\} \tag{26}
\end{equation*}
$$

Define an n-cube

$$
\begin{equation*}
\square:=\left\{\left(x_{1}, \ldots, x_{n}\right)^{t} \mid 0 \leq x_{i}<1\right\} . \tag{27}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathcal{F}=L \square:=\left\{x_{1} \bar{\ell}_{1}+\ldots+x_{n} \bar{\ell}_{n} \mid 0 \leq x_{i}<1\right\} . \tag{28}
\end{equation*}
$$

Therefore we can use the same linear map and notations as in Theorem 8.

Volume of the fundamental domain/Proof of Theorem 6

Now $\mathcal{C}=\square$ and

$$
\begin{equation*}
\operatorname{vol} \square=\int_{\bar{x} \in \square} d x_{1} \ldots d x_{n}=\int_{0}^{1} \ldots \int_{0}^{1} d x_{1} \ldots d x_{n}=1 \tag{29}
\end{equation*}
$$

By (20) and (9) it follows

$$
\begin{equation*}
\operatorname{vol} \mathcal{F}=\operatorname{vol} L \square=|\operatorname{det} L| \cdot \operatorname{vol} \square=\operatorname{det} \Lambda . \quad \square \tag{30}
\end{equation*}
$$

Linear transformation

Define further $\Omega:=T \Lambda$, where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation.
Then

$$
\begin{equation*}
\operatorname{det} \Omega=|\operatorname{det} T| \cdot \operatorname{det} \Lambda . \tag{31}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\operatorname{det} \Lambda=|\operatorname{det} L| \cdot \operatorname{det} \mathbb{Z}^{n} . \tag{32}
\end{equation*}
$$

Linear transformation

Lemma 9
Linear transformation, say $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, preserves
A. compactness,
B. symmetry and
C. convexity.

Proof of A. Let A be the matrix of L defined in (15). Then

$$
\begin{equation*}
\|L \bar{x}\|_{2} \leq\|A\|_{2}\|\bar{x}\|_{2}=\sqrt{\sum \alpha_{i j}^{2}}\|\bar{x}\|_{2}:=f\|\bar{x}\|_{2} \tag{33}
\end{equation*}
$$

Linear transformation

Let $\mathcal{B} \subseteq \mathbb{R}^{n}$ be a compact set. By (33) the linear map L is continuous, therefore it maps the closed set \mathcal{B} onto a closed set $L \mathcal{B}$. The set \mathcal{B} is bounded, say $\|\bar{x}\|_{2} \leq M$, for all $\bar{x} \in \mathcal{B}$. Thus

$$
\begin{equation*}
\|L \bar{x}\|_{2} \leq f\|\bar{x}\|_{2} \leq f M \quad \forall \bar{x} \in \mathcal{B} . \tag{34}
\end{equation*}
$$

In all, $L \mathcal{B}$ is compact.

Linear transformation

Lemma 10
Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a one to one linear transformation.
Then $L^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one to one linear transformation.
Let $\mathcal{C} \subseteq \mathbb{R}^{n}$ be a central symmetric convex body, then
$\mathcal{B}:=L^{-1} \mathcal{C} \subseteq \mathbb{R}^{n}$ is a central symmetric convex body, too.
Further $\Lambda:=L\left(\mathbb{Z}^{n}\right)$ is a full lattice.

Area of ellipse

Let $a, b \in \mathbb{R}^{+}$. Notations $\bar{x}=(x, y), \bar{X}=(X, Y) \in \mathbb{R}^{2}$. Consider the area of the disk

$$
\begin{equation*}
\mathcal{E}:=\left\{\bar{x} \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right.\right\} . \tag{35}
\end{equation*}
$$

First we define a linear map L by setting

$$
\begin{equation*}
L(x, y):=\left(\frac{x}{a}, \frac{y}{b}\right), \tag{36}
\end{equation*}
$$

which satisfies

$$
L=\left[\begin{array}{cc}
\frac{1}{a} & 0 \tag{37}\\
0 & \frac{1}{b}
\end{array}\right], \quad \operatorname{det} L=\frac{1}{a b} .
$$

Area of ellipse

Write now

$$
\begin{equation*}
\mathcal{D}:=\left\{\bar{X} \mid X^{2}+Y^{2} \leq 1\right\} \tag{38}
\end{equation*}
$$

By surjectivity, L maps \mathcal{E} onto \mathcal{D} or

$$
\begin{equation*}
L \mathcal{E}=\left\{(\alpha, \beta)=L \bar{x}, \bar{x} \in \mathcal{E} \mid \alpha^{2}+\beta^{2} \leq 1\right\}=\mathcal{D} \tag{39}
\end{equation*}
$$

Because

$$
\begin{equation*}
\pi=\operatorname{vol} \mathcal{D}=\operatorname{det} L \cdot \operatorname{vol} \mathcal{E}=\frac{1}{a b} \operatorname{vol} \mathcal{E} \tag{40}
\end{equation*}
$$

we get

$$
\begin{equation*}
\operatorname{vol} \mathcal{E}=a b \pi \tag{41}
\end{equation*}
$$

Area of the ellipse $A x^{2}+B x y+C y^{2} \leq D$

Let $A, B . C, D \in \mathbb{R}$. Notations $\bar{x}=(x, y), \bar{X}=(X, Y) \in \mathbb{R}^{2}$. Determine vol \mathcal{E}, where

$$
\begin{equation*}
\mathcal{E}:=\left\{\bar{x} \mid A x^{2}+B x y+C y^{2} \leq D\right\} . \tag{42}
\end{equation*}
$$

Immediately

$$
\begin{align*}
\mathcal{E} & =\left\{\bar{x} \left\lvert\,\left(A x+\frac{B y}{2}\right)^{2}+\left(A C-\left(\frac{B}{2}\right)^{2}\right) y^{2} \leq A D\right.\right\} \\
& =\left\{\bar{x} \left\lvert\,\left(\frac{A}{\sqrt{A D}} x+\frac{B}{2 \sqrt{A D}} y\right)^{2}+\left(\frac{\sqrt{A C-\left(\frac{B}{2}\right)^{2}}}{\sqrt{A D}} y\right)^{2} \leq 1\right.\right\} \tag{43}
\end{align*}
$$

Area of the ellipse $A x^{2}+B x y+C y^{2} \leq D$

Define a linear map L by setting

$$
\begin{equation*}
L(x, y):=\left(\frac{A}{\sqrt{A D}} x+\frac{B}{2 \sqrt{A D}} y, \frac{\sqrt{A C-\left(\frac{B}{2}\right)^{2}}}{\sqrt{A D}} y\right) \tag{44}
\end{equation*}
$$

which satisfies

$$
L=\left[\begin{array}{cc}
\frac{A}{\sqrt{A D}} & \frac{B}{2 \sqrt{A D}} \tag{45}\\
0 & \frac{\sqrt{A C-\left(\frac{B}{2}\right)^{2}}}{\sqrt{A D}}
\end{array}\right], \quad \operatorname{det} L=\frac{\sqrt{A C-\left(\frac{B}{2}\right)^{2}}}{D} .
$$

Area of the ellipse $A x^{2}+B x y+C y^{2} \leq D$

... Hence by

$$
\begin{equation*}
\pi=\operatorname{vol} \mathcal{D}=\operatorname{det} L \cdot \operatorname{vol} \mathcal{E}=\frac{\sqrt{A C-\left(\frac{B}{2}\right)^{2}}}{D} \operatorname{vol} \mathcal{E} \tag{46}
\end{equation*}
$$

we get

$$
\begin{equation*}
\operatorname{vol} \mathcal{E}=\frac{D \pi}{\sqrt{A C-\left(\frac{B}{2}\right)^{2}}}=\frac{2 D \pi}{\sqrt{4 A C-B^{2}}} \tag{47}
\end{equation*}
$$

