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Abstract

Geometry of numbers is a powerful tool in studying Diophantine

inequalities. In geometry of numbers a basic question is to find a non-zero

lattice vector from a convex subset in a n-dimensional space, say in Rn.

Hermann Minkowski answered this challenge with his convex body

theorems. In these lectures we shall discuss how to apply Minkowski’s

theorems to prove classical Diophantine inequalities.
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Volume

Jacobian

Let f : Rn → Rn be a function with f (x) = (f1(x), . . . , fn(x))t , where all

the partial derivatives

∂fi (x)

∂xj
, i , j = 1, . . . , n,

exist.

The Jacobian matrix of f is defined by

J(f (x)) :=


∂f1(x)
∂x1

... ∂f1(x)
∂xn

. .

. .
∂fn(x)
∂x1

... ∂fn(x)
∂xn

 (1)
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Volume

Jacobian

The determinant

det J(f (x)) =

∣∣∣∣∣∣∣∣∣∣∣

∂f1(x)
∂x1

... ∂f1(x)
∂xn

. .

. .
∂fn(x)
∂x1

... ∂fn(x)
∂xn

∣∣∣∣∣∣∣∣∣∣∣
(2)

of the Jacobian matrix will be called Jacobian.
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Volume

Integration by a change of variables

For f : Rn → Rn we write

y = (y1, . . . , yn)t = f (x) = (f1(x), . . . , fn(x))t , (3)

Suppose f : B → f (B) is injective and G : Rn → R an integrable

function. Then∫
y∈f (B)

G (y) dy1 . . . dyn =

∫
x∈B

G
(
f (x)

)
det J(f (x)) dx1 . . . dxn. (4)

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS B 5 / 35



Volume

Volume

By a volume vol C of a subset C ⊆ Rn we mean the absolute value of the

Riemann (or Lebesgue) integral

vol C :=

∣∣∣∣∣∣
∫

x∈C

dx1 . . . dxn

∣∣∣∣∣∣ , (5)

if it exists.
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Volume

Volume of n-dimensional p-ball

Let p ∈ R+. In Rn the n-dimensional p-ball of radius r ∈ R≥0 is defined by

Bnp(r) :=
{
x ∈ Rn

∣∣ ‖x‖p ≤ r
}

=
{

(x1, . . . , xn) ∈ Rn
∣∣∣ |x1|p + . . .+ |xn|p ≤ rp

}
.

Its volume is given by

volBnp(r) = 2nrn
Γ(1 + 1/p)n

Γ(1 + n/p)
, (6)
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Volume

Volume of n-dimensional p-ball

where Γ(z) is the gamma function defined by

Γ(x + 1) :=

∫ ∞
0

e−ssx ds

for x ∈ R+. It satisfies the functional equation Γ(x + 1) = xΓ(x) for

x ∈ R+. In particular, Γ(1/2) =
√
π. Some interesting cases:

p volBnp(r)

Octahedron 1 2nrn

n!

Ball 2 πn/2rn

Γ(1+n/2)

Cube ∞ 2nrn
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Convex body

Convex body

Definition 1

A non-empty subset C ⊆ Rn is convex, if for any pair of points a, b ∈ C

holds

{sa + (1− s)b| 0 ≤ s ≤ 1} ⊆ C.

A bounded convex subset C ⊆ Rn is called a convex body. A subset C is

central symmetric (symmetric wrt origin) if C = −C.

Remark 1

In these notes we don’t expect that a convex body is necessarily closed.
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Convex body

Convex body

In a convex set C arbitrary two points a, b can be joined with a line

segment belonging entirely in C.

Example 2

Let λ ∈ R≥0 and assume that C is a central symmetric convex body. Then

the dilation

λC := {λa| a ∈ C}

is also a central symmetric convex body.
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Convex body

Convex body

Example 3

Octahedron is an n-dimensional 1-ball of radius r ∈ R≥0 defined by

Bn1(r) :=
{
x ∈ Rn

∣∣ ‖x‖1 ≤ r
}

=
{

(x1, . . . , xn)t ∈ Rn
∣∣∣ |x1|+ . . .+ |xn| ≤ r

}
.

Show that Bn1(r) is a central symmetric convex body.

Example 4

If s ≥ 1, then it can be shown that Bns (r) is a central symmetric convex

body.
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Lattice

Lattice

In these lectures we consider lattices which are free Z-modules in Rn.

Definition 5

Let n ∈ Z+ and let l1, ..., l r ∈ Rn be linearly independent over R, then the

linear hull

Λ = 〈l1, ..., l r 〉Z = Zl1 + ...+ Zl r ⊆ Rn

over Z is called a lattice in Rn.

The set {l1, ..., l r} is called a base of Λ with rank Λ = r .

If rank Λ = n, then Λ is called a full lattice.
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Lattice

Lattice, Gram determinant

Remark 2

The lattice Λ = 〈l1, ..., l r 〉Z is a Z-module.

Lemma 3

Let L = [l1, ..., l r ], then

det(LtL) = det[l i · l j ]1≤i ,j≤r ≥ 0, (7)

where · is the standard inner product in Rn.

The determinant det[l i · l j ]1≤i ,j≤r is called Gram determinant.
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Lattice

Determinant of a lattice

Definition 6

The determinant of a lattice Λ is defined by

det(Λ) :=
√

det(LtL), L = [l1, ..., l r ]. (8)

where the columns l1, ..., l r of the matrix L are the basis vectors l1, ..., l r

of Λ.

Lemma 4

For a full lattice we have

det(Λ) = |det L| =
∣∣det[l1, ..., ln]

∣∣ . (9)
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Lattice

Determinant of a lattice

Let

e1 := (1, 0, . . . , 0, 0)t , . . . , en := (0, 0, . . . , 0, 1)t

denote the standard basis in Rn.

Example 7

The integer lattice

Zn = Ze1 + ...+ Zen (10)

has determinant det(Λ) = 1.
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Lattice

Fundamental domain

Fundamental domain is defined by

F := F(l1, . . . , l r ) := {x1l1 + . . .+ xnl r | 0 ≤ xi < 1}.

And its translates are given by

Fj := hj + F

with respect to an enumeration

Λ = {hj | j = 0, 1, . . .}

of the lattice Λ.
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Lattice

Fundamental domain: det = vol

Lemma 5

Every x ∈ Rn has unique representation

x = hj + f , hj ∈ Λ, f ∈ F . (11)

Theorem 6

Let Λ be a full lattice. Then

det(Λ) = volF (12)

or ∣∣det[`1, ..., `n]
∣∣ = vol {x1`1 + . . .+ xn`n | 0 ≤ xi < 1}. (13)
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Linear transformation

Linear transformation

Let L : Rn → Rn be a linear transformation and write

`i := Le i = α1ie1 + α2ie2 + . . .+ αnien, i = 1, . . . , n. (14)

Then 

α11 α12 α13 ... α1n

α21 α22 α23 ... α2n

α31 α32 α33 ... α3n

. . . ... .

αn1 αn2 αn3 ... αnn


= [`1, ..., `n] = L (15)

determines L’s matrix with respect to standard basis e1, . . . , en.
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Linear transformation

Linear transformation

Further,

Lx = x1Le1 + . . .+ xnLen = x1`1 + . . .+ xn`n, (16)

for x = (x1, . . . , xn)t = x1e1 + . . .+ xnen ∈ Zn, so that we get a lattice

Λ = LZn = Z`1 + Z`2 + . . .+ Z`n

= Z



α11

α21

α31

...

αn1


+ Z



α12

α22

α32

...

αn2


+ . . .+ Z



α1n

α2n

α3n

...

αnn


.

(17)
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Linear transformation

det = det = vol

Vice versa: The lattice in (17) determines the linear map in (14) via the

matrix L in (15).

Assume det L 6= 0. Then the linear map L is bijective and determines a full

lattice Λ := L(Zn), because

det Λ =
∣∣det[`1, ..., `n]

∣∣ = |det L| 6= 0. (18)

In addition, by (12) and (18) we have

Theorem 7

det Λ = |det L| = volF . (19)

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS B 20 / 35



Linear transformation

Linear transformation stretches volumes

From now on, we may use the same symbol L for the linear map L and its

matrix L. For example det L = det L.

Theorem 8

Linear transformation, say L : Rn → Rn, stretches volumes by a factor

| det L|, namely

vol LC = | det L| · vol C. (20)

Proof. Let L : Rn → Rn be a linear transformation and write

y = (y1, . . . , yn)t = Lx = (L1(x), . . . , Ln(x))t .
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Linear transformation

Linear transformation stretches volumes

We compute y = Lx by using their matrices

y = Lx =


α11 α12 α13 . . . α1n

α21 α22 α23 . . . α2n

...
...

... . . .
...

αn1 αn2 αn3 . . . αnn




x1

x2

...

xn

 . (21)

Hereby 
L1(x)

L2(x)
...

Ln(x)

 =


α11x1 + α12x2 + . . .+ α1nxn

α21x1 + α22x2 + . . .+ α2nxn
...

αn1x1 + αn2x2 + . . .+ αnnxn

 . (22)
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Linear transformation

Linear transformation stretches volumes

So we are ready to compute the Jacobian as follows

det J(L(x)) =

∣∣∣∣∣∣∣∣∣∣∣

∂L1(x)
∂x1

... ∂L1(x)
∂xn

. .

. .
∂Ln(x)
∂x1

... ∂Ln(x)
∂xn

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

α11 α12 α13 . . . α1n

α21 α22 α23 . . . α2n

...
...

... . . .
...

αn1 αn2 αn3 . . . αnn

∣∣∣∣∣∣∣∣∣∣∣∣
= det L.

(23)
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Linear transformation

Linear transformation stretches volumes

In computing the volume integrals the map L is restricted by L : C → LC.

By the change of variables∫
y∈LC

dy1 . . . dyn =

∫
x∈C

det J(L(x)) dx1 . . . dxn

(23)
=

∫
x∈C

det L dx1 . . . dxn = det L

∫
x∈C

dx1 . . . dxn.

(24)

Hence, by taking absolute values we get

vol LC = | det L| · vol C. (25)
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Linear transformation

Volume of the fundamental domain/Proof of Theorem 6

Proof of Theorem 6. We need to show that

∣∣det[`1, ..., `n]
∣∣ = vol {x1`1 + . . .+ xn`n | 0 ≤ xi < 1}. (26)

Define an n-cube

� := {(x1, . . . , xn)t | 0 ≤ xi < 1}. (27)

We have

F = L� := {x1`1 + . . .+ xn`n | 0 ≤ xi < 1}. (28)

Therefore we can use the same linear map and notations as in Theorem 8.
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Linear transformation

Volume of the fundamental domain/Proof of Theorem 6

Now C = � and

vol� =

∫
x∈�

dx1 . . . dxn =

1∫
0

. . .

1∫
0

dx1 . . . dxn = 1. (29)

By (20) and (9) it follows

volF = vol L� = | det L| · vol� = det Λ. (30)
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Linear transformation

Linear transformation

Define further Ω := TΛ, where T : Rn → Rn is a linear transformation.

Then

det Ω = |detT | · det Λ. (31)

In particular,

det Λ = |det L| · detZn. (32)
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Linear transformation

Linear transformation

Lemma 9

Linear transformation, say L : Rn → Rn, preserves

A. compactness,

B. symmetry and

C. convexity.

Proof of A. Let A be the matrix of L defined in (15). Then

‖Lx‖2 ≤ ‖A‖2 ‖x‖2 =
√∑

α2
ij ‖x‖2 := f ‖x‖2. (33)
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Linear transformation

Linear transformation

Let B ⊆ Rn be a compact set. By (33) the linear map L is continuous,

therefore it maps the closed set B onto a closed set LB. The set B is

bounded, say ‖x‖2 ≤ M, for all x ∈ B. Thus

‖Lx‖2 ≤ f ‖x‖2 ≤ fM ∀ x ∈ B. (34)

In all, LB is compact.
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Linear transformation

Linear transformation

Lemma 10

Let L : Rn → Rn be a one to one linear transformation.

Then L−1 : Rn → Rn is one to one linear transformation.

Let C ⊆ Rn be a central symmetric convex body, then

B := L−1C ⊆ Rn is a central symmetric convex body, too.

Further Λ := L(Zn) is a full lattice.
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Applications

Area of ellipse

Let a, b ∈ R+. Notations x = (x , y),X = (X ,Y ) ∈ R2. Consider the area

of the disk

E :=

{
x
∣∣∣ x2

a2
+

y2

b2
≤ 1

}
. (35)

First we define a linear map L by setting

L(x , y) :=
(x
a
,
y

b

)
, (36)

which satisfies

L =

1
a 0

0 1
b

 , det L =
1

ab
. (37)

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS B 31 / 35



Applications

Area of ellipse

Write now

D := {X
∣∣∣ X 2 + Y 2 ≤ 1}. (38)

By surjectivity, L maps E onto D or

LE = {(α, β) = Lx , x ∈ E
∣∣ α2 + β2 ≤ 1} = D. (39)

Because

π = volD = det L · vol E =
1

ab
vol E (40)

we get

vol E = abπ. (41)
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Applications

Area of the ellipse Ax2 + Bxy + Cy 2 ≤ D

Let A,B.C ,D ∈ R. Notations x = (x , y),X = (X ,Y ) ∈ R2. Determine

vol E , where

E :=
{
x
∣∣∣ Ax2 + Bxy + Cy2 ≤ D

}
. (42)

Immediately

E =

{
x
∣∣∣ (Ax +

By

2

)2

+

(
AC −

(
B

2

)2
)
y2 ≤ AD

}

=

x
∣∣∣ ( A√

AD
x +

B

2
√
AD

y

)2

+


√

AC −
(
B
2

)2

√
AD

y

2

≤ 1


(43)
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Applications

Area of the ellipse Ax2 + Bxy + Cy 2 ≤ D

Define a linear map L by setting

L(x , y) :=

 A√
AD

x +
B

2
√
AD

y ,

√
AC −

(
B
2

)2

√
AD

y

 , (44)

which satisfies

L =

 A√
AD

B
2
√
AD

0

√
AC−(B

2 )
2

√
AD

 , det L =

√
AC −

(
B
2

)2

D
. (45)
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Applications

Area of the ellipse Ax2 + Bxy + Cy 2 ≤ D

. . . Hence by

π = volD = det L · vol E =

√
AC −

(
B
2

)2

D
vol E (46)

we get

vol E =
Dπ√

AC −
(
B
2

)2
=

2Dπ√
4AC − B2

. (47)
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