GEOMETRY OF NUMBERS B

Tapani Matala-aho, Aalto University, 2022

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS B

Abstract

Geometry of numbers is a powerful tool in studying Diophantine inequalities. In geometry of numbers a basic question is to find a non-zero lattice vector from a convex subset in a *n*-dimensional space, say in \mathbb{R}^n . Hermann Minkowski answered this challenge with his convex body theorems. In these lectures we shall discuss how to apply Minkowski's theorems to prove classical Diophantine inequalities.

Jacobian

Let \overline{f} : $\mathbb{R}^n \to \mathbb{R}^n$ be a function with $\overline{f}(\overline{x}) = (f_1(\overline{x}), \dots, f_n(\overline{x}))^t$, where all the partial derivatives

$$\frac{\partial f_i(\overline{x})}{\partial x_j}, \quad i,j=1,\ldots,n,$$

exist.

The Jacobian matrix of \overline{f} is defined by

$$J(\overline{f}(\overline{x})) := \begin{bmatrix} \frac{\partial f_1(\overline{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\overline{x})}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n(\overline{x})}{\partial x_1} & \cdots & \frac{\partial f_n(\overline{x})}{\partial x_n} \end{bmatrix}$$
(1)

Jacobian

The determinant

$$\det J(\overline{f}(\overline{x})) = \begin{vmatrix} \frac{\partial f_1(\overline{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\overline{x})}{\partial x_n} \\ \cdot & \cdot \\ \cdot & \cdot \\ \frac{\partial f_n(\overline{x})}{\partial x_1} & \cdots & \frac{\partial f_n(\overline{x})}{\partial x_n} \end{vmatrix}$$

of the Jacobian matrix will be called Jacobian.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY

æ

イロン イロン イヨン イヨン

(2)

Integration by a change of variables

For \overline{f} : $\mathbb{R}^n \to \mathbb{R}^n$ we write

$$\overline{y} = (y_1, \dots, y_n)^t = \overline{f}(\overline{x}) = (f_1(\overline{x}), \dots, f_n(\overline{x}))^t,$$
(3)

Suppose $\overline{f} : \mathcal{B} \to \overline{f}(\mathcal{B})$ is injective and $G : \mathbb{R}^n \to \mathbb{R}$ an integrable function. Then

$$\int_{\overline{y}\in\overline{f}(\mathcal{B})} G(\overline{y}) \, dy_1 \dots dy_n = \int_{\overline{x}\in\mathcal{B}} G\left(\overline{f}(\overline{x})\right) \, \det J(\overline{f}(\overline{x})) \, dx_1 \dots dx_n.$$
(4)

3

・ロト ・回ト ・ヨト ・ヨト

Volume

By a volume vol C of a subset $C \subseteq \mathbb{R}^n$ we mean the absolute value of the Riemann (or Lebesgue) integral

$$\operatorname{vol} \mathcal{C} := \left| \int_{\overline{x} \in \mathcal{C}} dx_1 \dots dx_n \right|, \qquad (5)$$

イロト 不同 ト イヨト イヨト

if it exists.

э

Volume of *n*-dimensional *p*-ball

Let $p \in \mathbb{R}^+$. In \mathbb{R}^n the *n*-dimensional *p*-ball of radius $r \in \mathbb{R}_{>0}$ is defined by

$$\begin{aligned} \mathcal{B}_p^n(r) &:= \left\{ \overline{x} \in \mathbb{R}^n \mid \|\overline{x}\|_p \leq r \right\} \\ &= \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid |x_1|^p + \dots + |x_n|^p \leq r^p \right\}. \end{aligned}$$

Its volume is given by

vol
$$\mathcal{B}_{p}^{n}(r) = 2^{n} r^{n} \frac{\Gamma(1+1/p)^{n}}{\Gamma(1+n/p)},$$
 (6)

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Volume of *n*-dimensional *p*-ball

where $\Gamma(z)$ is the gamma function defined by

$$\Gamma(x+1) := \int_0^\infty e^{-s} s^x \, ds$$

for $x \in \mathbb{R}^+$. It satisfies the functional equation $\Gamma(x+1) = x\Gamma(x)$ for $x \in \mathbb{R}^+$. In particular, $\Gamma(1/2) = \sqrt{\pi}$. Some interesting cases:

	р	vol $\mathcal{B}_p^n(r)$	
Octahedron	1	$\frac{2^n r^n}{n!}$	
Ball	2	$\frac{\pi^{n/2}r^n}{\Gamma(1+n/2)}$	
Cube	∞	2 ⁿ r ⁿ	

Convex body

Definition 1

A non-empty subset $C \subseteq \mathbb{R}^n$ is *convex*, if for any pair of points $\overline{a}, \overline{b} \in C$ holds

$$\{s\overline{a}+(1-s)\overline{b}|\ 0\leq s\leq 1\}\subseteq \mathcal{C}.$$

A bounded convex subset $C \subseteq \mathbb{R}^n$ is called a *convex body*. A subset C is *central symmetric* (symmetric wrt origin) if C = -C.

Remark 1

In these notes we don't expect that a convex body is necessarily closed.

Convex body

In a convex set C arbitrary two points $\overline{a}, \overline{b}$ can be joined with a line segment belonging entirely in C.

Example 2

Let $\lambda \in \mathbb{R}_{\geq 0}$ and assume that $\mathcal C$ is a central symmetric convex body. Then the dilation

$$\lambda \mathcal{C} := \{ \lambda \overline{a} | \ \overline{a} \in \mathcal{C} \}$$

is also a central symmetric convex body.

Convex body

Example 3

Octahedron is an *n*-dimensional 1-ball of radius $r \in \mathbb{R}_{\geq 0}$ defined by

$$\mathcal{B}_1^n(r) := \left\{ \overline{x} \in \mathbb{R}^n \mid \|\overline{x}\|_1 \le r \right\}$$
$$= \left\{ (x_1, \dots, x_n)^t \in \mathbb{R}^n \mid |x_1| + \dots + |x_n| \le r \right\}.$$

Show that $\mathcal{B}_1^n(r)$ is a central symmetric convex body.

Example 4

If $s \geq 1$, then it can be shown that $\mathcal{B}^n_s(r)$ is a central symmetric convex body.

Lattice

In these lectures we consider lattices which are free \mathbb{Z} -modules in \mathbb{R}^n . Definition 5

Let $n \in \mathbb{Z}^+$ and let $\overline{l}_1, ..., \overline{l}_r \in \mathbb{R}^n$ be linearly independent over \mathbb{R} , then the linear hull

$$\Lambda = \langle \bar{I}_1, ..., \bar{I}_r \rangle_{\mathbb{Z}} = \mathbb{Z} \bar{I}_1 + ... + \mathbb{Z} \bar{I}_r \subseteq \mathbb{R}^n$$

over \mathbb{Z} is called a lattice in \mathbb{R}^n . The set $\{\overline{l}_1, ..., \overline{l}_r\}$ is called a base of Λ with rank $\Lambda = r$. If rank $\Lambda = n$, then Λ is called a full lattice.

< ロ > < 同 > < 回 > < 回 > < □ > <

Lattice, Gram determinant

Remark 2

The lattice $\Lambda = \langle \overline{l}_1, ..., \overline{l}_r \rangle_{\mathbb{Z}}$ is a \mathbb{Z} -module.

Lemma 3

Let $L = [\overline{I}_1,...,\overline{I}_r]$, then

$$\det(L^t L) = \det[\overline{I}_i \cdot \overline{I}_j]_{1 \le i, j \le r} \ge 0,$$

where \cdot is the standard inner product in \mathbb{R}^n .

The determinant det $[\overline{l}_i \cdot \overline{l}_j]_{1 \le i,j \le r}$ is called Gram determinant.

イロト 不得 トイヨト イヨト 二日

(7)

Determinant of a lattice

Definition 6

The determinant of a lattice Λ is defined by

$$\det(\Lambda) := \sqrt{\det(L^t L)}, \quad L = [\overline{l}_1, ..., \overline{l}_r].$$
(8)

where the columns $\bar{l}_1, ..., \bar{l}_r$ of the matrix L are the basis vectors $\bar{l}_1, ..., \bar{l}_r$ of Λ .

Lemma 4

For a full lattice we have

$$\det(\Lambda) = |\det L| = \left|\det[\overline{l}_1,...,\overline{l}_n]\right|.$$

Tapani Matala-aho, Aalto University, 2022

GEOMETRY OF NUMBERS B

(9)

Determinant of a lattice

Let

$$\overline{e}_1 := (1,0,\ldots,0,0)^t,\ldots,\overline{e}_n := (0,0,\ldots,0,1)^t$$

denote the standard basis in \mathbb{R}^n .

Example 7

The integer lattice

$$\mathbb{Z}^n = \mathbb{Z}\overline{e}_1 + \ldots + \mathbb{Z}\overline{e}_n$$

(10)

has determinant $det(\Lambda) = 1$.

э

< A > <

▶ < ∃ ▶

Fundamental domain

Fundamental domain is defined by

$$\mathcal{F} := \mathcal{F}(\bar{l}_1, \ldots, \bar{l}_r) := \{x_1\bar{l}_1 + \ldots + x_n\bar{l}_r \mid 0 \le x_i < 1\}.$$

And its translates are given by

$$\mathcal{F}_j := \overline{h}_j + \mathcal{F}$$

with respect to an enumeration

$$\Lambda = \{\overline{h}_j \mid j = 0, 1, \ldots\}$$

of the lattice Λ .

Tapani Matala-aho, Aalto University, 2022

э

(日) (同) (三) (三)

Fundamental domain: det = vol

Lemma 5

Every $\overline{x} \in \mathbb{R}^n$ has unique representation

$$\overline{x} = \overline{h}_j + \overline{f}, \quad \overline{h}_j \in \Lambda, \ \overline{f} \in \mathcal{F}.$$
(11)

Theorem 6

Let Λ be a full lattice. Then

$$\det(\Lambda) = \operatorname{vol} \mathcal{F} \tag{12}$$

or

$$\left|\det[\overline{\ell}_1,...,\overline{\ell}_n]\right| = \operatorname{vol}\left\{x_1\overline{\ell}_1 + \ldots + x_n\overline{\ell}_n \mid 0 \le x_i < 1\right\}.$$
(13)

Tapani Matala-aho, Aalto University, 2022

GEOMETRY OF NUMBERS B

17 / 35

Let $\overline{L}: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and write

$$\overline{\ell}_{i} := \overline{L}\overline{e}_{i} = \alpha_{1i}\overline{e}_{1} + \alpha_{2i}\overline{e}_{2} + \ldots + \alpha_{ni}\overline{e}_{n}, \quad i = 1, \ldots, n.$$
(14)

Then

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \dots & \alpha_{2n} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \dots & \alpha_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \alpha_{n3} & \dots & \alpha_{nn} \end{bmatrix} = [\bar{\ell}_1, \dots, \bar{\ell}_n] = L$$
(15)

determines \overline{L} 's matrix with respect to standard basis $\overline{e}_1, \ldots, \overline{e}_n$.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Further,

$$\overline{L}\overline{x} = x_1\overline{L}\overline{e}_1 + \ldots + x_n\overline{L}\overline{e}_n = x_1\overline{\ell}_1 + \ldots + x_n\overline{\ell}_n,$$
(16)

for $\overline{x} = (x_1, \ldots, x_n)^t = x_1 \overline{e}_1 + \ldots + x_n \overline{e}_n \in \mathbb{Z}^n$, so that we get a lattice

$\Lambda = \overline{L}\mathbb{Z}$	$Z^n = \mathbb{Z}\overline{\ell}_1 +$	$\mathbb{Z}\overline{\ell}_2 + \ldots + \mathbb{Z}\overline{\ell}_n$		
	$\left[\alpha_{11} \right]$	α_{12}	$\left[\alpha_{1n} \right]$	
	α ₂₁	$\begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{32} \\ \vdots \\ \alpha_{n2} \end{bmatrix} + \ldots + \mathbb{Z}$	α_{2n}	(17)
$=\mathbb{Z}$	$\left \alpha_{31} \right + \mathbb{Z}$	$\left \alpha_{32} \right + \ldots + \mathbb{Z}$	α_{3n} .	
	$\left\lfloor \alpha_{n1} \right\rfloor$	$\left[\alpha_{n2}\right]$	$\left[\alpha_{nn}\right]$	

det = det = vol

Vice versa: The lattice in (17) determines the linear map in (14) via the matrix L in (15).

Assume det $L \neq 0$. Then the linear map \overline{L} is bijective and determines a full lattice $\Lambda := \overline{L}(\mathbb{Z}^n)$, because

$$\det \Lambda = \left| \det[\overline{\ell}_1, ..., \overline{\ell}_n] \right| = \left| \det L \right| \neq 0.$$
(18)

In addition, by (12) and (18) we have

Theorem 7

$$\det \Lambda = |\det L| = \operatorname{vol} \mathcal{F}. \tag{19}$$

20 / 35

Tapani Matala-aho, Aalto University, 2022

GEOMETRY OF NUMBERS B

From now on, we may use the same symbol L for the linear map \overline{L} and its matrix L. For example det $\overline{L} = \det L$.

Theorem 8

Linear transformation, say $L: \mathbb{R}^n \to \mathbb{R}^n$, stretches volumes by a factor $|\det L|$, namely

$$\operatorname{vol} L\mathcal{C} = |\det L| \cdot \operatorname{vol} \mathcal{C}. \tag{20}$$

Proof. Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and write

$$\overline{y} = (y_1, \ldots, y_n)^t = L\overline{x} = (L_1(\overline{x}), \ldots, L_n(\overline{x}))^t.$$

We compute $\overline{y} = L\overline{x}$ by using their matrices

$$\overline{y} = L\overline{x} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \dots & \alpha_{2n} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \alpha_{n3} & \dots & \alpha_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Hereby

$$\begin{bmatrix} L_1(\overline{x}) \\ L_2(\overline{x}) \\ \vdots \\ L_n(\overline{x}) \end{bmatrix} = \begin{bmatrix} \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{1n}x_n \\ \alpha_{21}x_1 + \alpha_{22}x_2 + \dots + \alpha_{2n}x_n \\ \vdots \\ \alpha_{n1}x_1 + \alpha_{n2}x_2 + \dots + \alpha_{nn}x_n \end{bmatrix}.$$
(22)

Tapani Matala-aho, Aalto University, 2022

GEOMETRY OF NUMBERS B

(21)

So we are ready to compute the Jacobian as follows

$$\det J(L(\overline{x})) = \begin{vmatrix} \frac{\partial L_1(\overline{x})}{\partial x_1} & \cdots & \frac{\partial L_1(\overline{x})}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial L_n(\overline{x})}{\partial x_1} & \cdots & \frac{\partial L_n(\overline{x})}{\partial x_n} \end{vmatrix}$$

$$= \begin{vmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \alpha_{n3} & \cdots & \alpha_{nn} \end{vmatrix} = \det L.$$
(23)

э

イロト イポト イヨト イヨト

In computing the volume integrals the map L is restricted by $L: C \to LC$. By the change of variables

$$\int_{\overline{y} \in LC} dy_1 \dots dy_n = \int_{\overline{x} \in C} \det J(L(\overline{x})) dx_1 \dots dx_n$$

$$\stackrel{(23)}{=} \int_{\overline{x} \in C} \det L dx_1 \dots dx_n = \det L \int_{\overline{x} \in C} dx_1 \dots dx_n.$$
(24)

Hence, by taking absolute values we get

$$\operatorname{vol} \mathcal{LC} = |\det \mathcal{L}| \cdot \operatorname{vol} \mathcal{C}. \quad \Box \tag{25}$$

< ロ > < 同 > < 回 > < 回 > .

Volume of the fundamental domain/Proof of Theorem 6

Proof of Theorem 6. We need to show that

$$\left|\det[\overline{\ell}_1,...,\overline{\ell}_n]\right| = \operatorname{vol}\left\{x_1\overline{\ell}_1 + \ldots + x_n\overline{\ell}_n \mid 0 \le x_i < 1\right\}.$$
(26)

Define an *n*-cube

$$\Box := \{ (x_1, \ldots, x_n)^t \mid 0 \le x_i < 1 \}.$$
(27)

We have

$$\mathcal{F} = L\Box := \{x_1\overline{\ell}_1 + \ldots + x_n\overline{\ell}_n \mid 0 \le x_i < 1\}.$$
(28)

Therefore we can use the same linear map and notations as in Theorem 8.

Volume of the fundamental domain/Proof of Theorem 6

Now $\mathcal{C} = \Box$ and

$$\operatorname{vol} \Box = \int_{\overline{x} \in \Box} dx_1 \dots dx_n = \int_0^1 \dots \int_0^1 dx_1 \dots dx_n = 1.$$
 (29)

By (20) and (9) it follows

$$\operatorname{vol} \mathcal{F} = \operatorname{vol} \mathcal{L} \Box = |\det \mathcal{L}| \cdot \operatorname{vol} \Box = \det \Lambda. \quad \Box \quad (30)$$

< 日 > < 同 > < 三 > < 三 >

э

Define further $\Omega := T\Lambda$, where $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation. Then

$$\det \Omega = |\det T| \cdot \det \Lambda. \tag{31}$$

In particular,

$$\det \Lambda = |\det L| \cdot \det \mathbb{Z}^n. \tag{32}$$

イロト 不同 ト イヨト イヨト

Lemma 9

Linear transformation, say $L : \mathbb{R}^n \to \mathbb{R}^n$, preserves

- A. compactness,
- B. symmetry and
- C. convexity.

Proof of A. Let A be the matrix of L defined in (15). Then

$$\|L\overline{x}\|_{2} \leq \|A\|_{2} \|\overline{x}\|_{2} = \sqrt{\sum \alpha_{ij}^{2}} \|\overline{x}\|_{2} := f \|\overline{x}\|_{2}.$$
 (33)

Let $\mathcal{B} \subseteq \mathbb{R}^n$ be a compact set. By (33) the linear map L is continuous, therefore it maps the closed set \mathcal{B} onto a closed set $L\mathcal{B}$. The set \mathcal{B} is bounded, say $\|\overline{x}\|_2 \leq M$, for all $\overline{x} \in \mathcal{B}$. Thus

$$\|L\overline{x}\|_{2} \leq f \|\overline{x}\|_{2} \leq fM \quad \forall \ \overline{x} \in \mathcal{B}.$$
(34)

In all, $L\mathcal{B}$ is compact.

Lemma 10

Let $L : \mathbb{R}^n \to \mathbb{R}^n$ be a one to one linear transformation. Then $L^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is one to one linear transformation. Let $C \subseteq \mathbb{R}^n$ be a central symmetric convex body, then $\mathcal{B} := L^{-1}C \subseteq \mathbb{R}^n$ is a central symmetric convex body, too. Further $\Lambda := L(\mathbb{Z}^n)$ is a full lattice.

Area of ellipse

Let $a, b \in \mathbb{R}^+$. Notations $\overline{x} = (x, y), \overline{X} = (X, Y) \in \mathbb{R}^2$. Consider the area of the disk

$$\mathcal{E} := \left\{ \overline{x} \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}.$$
(35)

First we define a linear map L by setting

$$L(x,y) := \left(\frac{x}{a}, \frac{y}{b}\right),\tag{36}$$

which satisfies

$$L = \begin{bmatrix} \frac{1}{a} & 0\\ 0 & \frac{1}{b} \end{bmatrix}, \quad \det L = \frac{1}{ab}.$$
 (37)

イロト 不同 ト イヨト イヨト

Area of ellipse

Write now

$$\mathcal{D} := \{ \overline{X} \mid X^2 + Y^2 \le 1 \}.$$
(38)

By surjectivity, L maps $\mathcal E$ onto $\mathcal D$ or

$$\mathcal{LE} = \{ (\alpha, \beta) = \mathcal{L}\overline{x}, \overline{x} \in \mathcal{E} \mid \alpha^2 + \beta^2 \le 1 \} = \mathcal{D}.$$
(39)

Because

$$\pi = \operatorname{vol} \mathcal{D} = \det L \cdot \operatorname{vol} \mathcal{E} = \frac{1}{ab} \operatorname{vol} \mathcal{E}$$
(40)

we get

$$\operatorname{vol} \mathcal{E} = ab\pi. \tag{41}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tapani Matala-aho, Aalto University, 2022

GEOMETRY OF NUMBERS B

32 / 35

э

Area of the ellipse $Ax^2 + Bxy + Cy^2 \le D$

Let $A, B.C, D \in \mathbb{R}$. Notations $\overline{x} = (x, y), \overline{X} = (X, Y) \in \mathbb{R}^2$. Determine vol \mathcal{E} , where

$$\mathcal{E} := \left\{ \overline{x} \mid Ax^2 + Bxy + Cy^2 \le D \right\}.$$
(42)

Immediately

$$\mathcal{E} = \left\{ \overline{x} \left| \left(Ax + \frac{By}{2} \right)^2 + \left(AC - \left(\frac{B}{2} \right)^2 \right) y^2 \le AD \right\} \\ = \left\{ \overline{x} \left| \left(\frac{A}{\sqrt{AD}} x + \frac{B}{2\sqrt{AD}} y \right)^2 + \left(\frac{\sqrt{AC - \left(\frac{B}{2} \right)^2}}{\sqrt{AD}} y \right)^2 \le 1 \right\}$$
(43)

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Area of the ellipse $Ax^2 + Bxy + Cy^2 \le D$

Define a linear map L by setting

$$L(x,y) := \left(\frac{A}{\sqrt{AD}}x + \frac{B}{2\sqrt{AD}}y, \frac{\sqrt{AC - \left(\frac{B}{2}\right)^2}}{\sqrt{AD}}y\right), \quad (44)$$

which satisfies

$$L = \begin{bmatrix} \frac{A}{\sqrt{AD}} & \frac{B}{2\sqrt{AD}} \\ 0 & \frac{\sqrt{AC - \left(\frac{B}{2}\right)^2}}{\sqrt{AD}} \end{bmatrix}, \quad \det L = \frac{\sqrt{AC - \left(\frac{B}{2}\right)^2}}{D}.$$
 (45)

э

< 日 > < 同 > < 三 > < 三 > .

Area of the ellipse $Ax^2 + Bxy + Cy^2 \le D$

... Hence by

$$\pi = \operatorname{vol} \mathcal{D} = \det L \cdot \operatorname{vol} \mathcal{E} = \frac{\sqrt{AC - \left(\frac{B}{2}\right)^2}}{D} \operatorname{vol} \mathcal{E}$$
(46)

we get

$$\operatorname{vol} \mathcal{E} = \frac{D\pi}{\sqrt{AC - \left(\frac{B}{2}\right)^2}} = \frac{2D\pi}{\sqrt{4AC - B^2}}.$$
(47)

< 日 > < 同 > < 三 > < 三 > .

Tapani Matala-aho, Aalto University, 2022 GEO

GEOMETRY OF NUMBERS B

35 / 35

э