GEOMETRY OF NUMBERS

Slides A
 TOOL BOX

Tapani Matala-aho, Aalto University, 2022

Abstract/Tool box

These slides form a tool box for the course Geometry of Numbers.

References

目 J.J. Rotman, Advanced Modern Algebra. Pearson 2002.
J. Steuding, Diophantine analysis. Chapman \& Hall/CRC, Boca Baton, 2005.
雷 Matala-aho T., A geometric face of Diophantine analysis, Diophantine Analysis, Trends in Mathematics, Springer, 2016, 129-174. Lecture notes given at Summer School for Master and PhD students in DIOPHANTINE ANALYSIS, Würzburg 2014.

Number systems

$$
\begin{aligned}
& \mathbb{N}=\left\{0,1,2, \ldots, G O O G O L^{10}, \ldots\right\}=\{\text { non-negative integers }\} . \\
& \mathbb{P}=\{2,3,5,7,11, \ldots\}=\{\text { primes }\} . \\
& \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=\{\text { integers }\} . \\
& \mathbb{Z}^{+}=\{1,2,3, \ldots\}=\mathbb{N} \backslash\{0\}=\{\text { positive integers }\} . \\
& \mathbb{Z}^{-}=\{-1,-2,-3, \ldots\}=\mathbb{Z} \backslash \mathbb{N}=\{\text { negative integers }\} . \\
& \mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m \in \mathbb{Z}, n \in \mathbb{Z}^{+}\right\}=\{\text {rational numbers }\} .
\end{aligned}
$$

Number systems

$$
\mathbb{R}=\left\{x \mid x=\sum_{k=1}^{\infty} a_{k} 10^{-k}, I \in \mathbb{Z} ; a_{k} \in\{0, \ldots, 9\}\right\}=\{\text { real numbers }\}
$$

$$
\mathbb{C}=\mathbb{R}(i)=\left\{a+i b \mid a, b \in \mathbb{R}, i^{2}=-1\right\}=\{\text { complex numbers }\}
$$

$\mathbb{C} \backslash \mathbb{Q}=\{$ irrational numbers $\}, \mathbb{R} \backslash \mathbb{Q}=\{$ real irrational numbers $\}$.

$$
\begin{aligned}
& \mathbb{Z}_{\geq m}=\{k \in \mathbb{Z} \mid k \geq m\}, \quad \mathbb{R}_{<0}=\{r \in \mathbb{R} \mid r<0\}, \ldots \\
& \mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}, \quad \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}, \quad \mathbb{C}^{*}=\mathbb{C} \backslash\{0\},
\end{aligned}
$$

Miscellaneous notations

$\exists!\quad \Leftrightarrow \quad \exists$ exactly one.
$\# A=|A|=$ cardinality of the set A.
B^{t} denotes the transpose of the matrix B.
$\underline{y}=\left(y_{1}, \ldots, y_{n}\right)$ denotes a row vector. While

$$
\bar{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

denotes a column vector. Hence $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)^{t}$.

Binary relation

Let A be a nonempty set. A binary operation denoted by $*$ is a mapping

$$
*: A \times A \rightarrow A, \quad(a, b) \rightarrow a * b
$$

meaning that $a * b \in A$, whenever $a \in A$ ja $b \in A$.
Particular cases:
multiplication denoted by .
addition denoted by +

Identity axioms

(a) $\forall a: \quad a=a$.
(b) $\forall a_{1}, a_{2}, b_{1}, b_{2}: \quad a_{1}=b_{1}, a_{2}=b_{2} \quad \Rightarrow \quad\left(a_{1}=a_{2} \Leftrightarrow b_{1}=b_{2}\right)$.
(c) $\forall a_{1}, a_{2}, b_{1}, b_{2}: \quad a_{1}=b_{1}, a_{2}=b_{2} \quad \Rightarrow \quad a_{1} * a_{2}=b_{1} * b_{2}$.

Group

Let G be a nonempty set with a multiplication

$$
\cdot: G \times G \rightarrow G, \quad(a, b) \rightarrow a \cdot b
$$

Group

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:

Group

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:
(a) $a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad$ for all $a, b, c \in G$ (assosiativity).

Group

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:
(a) $a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad$ for all $a, b, c \in G$ (assosiativity).
(b) There exists an identity element $1 \in G$, satisfying
$1 \cdot a=a \cdot 1=a \quad$ for all $a \in G$.

Group

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:
(a) $a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad$ for all $a, b, c \in G$ (assosiativity).
(b) There exists an identity element $1 \in G$, satisfying
$1 \cdot a=a \cdot 1=a \quad$ for all $a \in G$.
(c) For all $a \in G$ there exists an inverse $a^{-1} \in G$, satisfying $a \cdot a^{-1}=a^{-1} \cdot a=1$.

Basics of equation manipulation

Remark 1

Let $a, b \in G$. By the identity axiom c we may multiply the identity

$$
a=b
$$

with the same element $c \in G$, whereupon

$$
c a=c b .
$$

Abelian group

In the case of commutative group an addition notation is widespread.
Let A be a non-empty set with an addition

$$
+: A \times A \rightarrow A, \quad(a, b) \rightarrow a+b
$$

Abelian group

Definition 2

The couple $(A,+)$ is an Abelian group, if the addition satisfies the following axioms:
(a) $a+(b+c)=(a+b)+c \quad$ for all $a, b, c \in A$.
(b) $a+b=b+a \quad$ for all $a, b \in A$ (commutativity).
(c) There exists a zero-element $0 \in A$ satisfying
$0+a=a \quad$ for all $a \in A$.
(d) For all $a \in A$ there exists an additive inverse $-a \in A$ satisfying

$$
a+(-a)=0 .
$$

Basics of equation manipulation

Remark 2

Let A be an Abelian group and $a, b \in A$. By the indentity axiom c we may add the same element $c \in A$ to the both sides of the identity

$$
a=b
$$

whereupon

$$
a+c=b+c .
$$

Ring

Let R be a non-empty set with an addition

$$
+: R \times R \rightarrow R, \quad(a, b) \rightarrow a+b
$$

and with a multiplication

$$
\cdot: R \times R \rightarrow R, \quad(a, b) \rightarrow a \cdot b
$$

Ring

A triple $(R,+, \cdot), \# R \geq 1$, is a ring, if the addition and multiplication satisfy the following axioms:

1. Addition axioms:
(a) $a+(b+c)=(a+b)+c$ for all $a, b, c \in R$.
(b) $a+b=b+a$ for all $a, b \in R$.
(c) There exits a zero-element $0 \in R$, satisfying

$$
0+a=a \text { for all } a \in R
$$

(d) For all $a \in R$ there exists an additive inverse $-a \in R$ satisfying

$$
a+(-a)=0
$$

Ring

2. Multiplication axioms:
(a) $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in R$.
3. Distributive laws:
(a) $a \cdot(b+c)=a \cdot b+a \cdot c$ for all $a, b, c \in R$.
(b) $(a+b) \cdot c=a \cdot c+b \cdot c$ for all $a, b, c \in R$.

Shortly: A ring $(R,+, \cdot)$ is an Abelian group $(R,+)$ satisfying 2 . and 3.

Ring with unity

Definition 4

A triple $(R,+, \cdot), \# R \geq 1$, is a ring with unity, if:

1. $(R,+)$ is an Abelian group.
2.

(a) $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in R$.
(b) There exists an identity element (unity) $1 \in R$ satisfying $1 \cdot a=a \cdot 1=a$ for all $a \in R$.
3. Distributive laws hold.

Commutative ring with unity

Definition 5

A triple $(R,+, \cdot), \# R \geq 1$, is a commutative ring with unity, if:

1. $(R,+)$ is an Abelian group.
2.

(a) $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in R$.
(b) $a \cdot b=b \cdot a$ for all $a, b \in R$.
(c) There exists an identity $1 \in R$ satisfying $1 \cdot a=a$ for all $a \in R$.
3.
(a) $a \cdot(b+c)=a \cdot b+a \cdot c$ for all $a, b, c \in R$.

Definition 6

A triple $(K,+, \cdot), \# K \geq 2$, is a field, if the addition and multiplication satisfy the following axioms:

1. 2. Addition axioms:
(a) $a+(b+c)=(a+b)+c$ for all $a, b, c \in K$.
(b) $a+b=b+a$ for all $a, b \in K$.
(c) There exits a zero-element $0 \in K$, satisfying $0+a=a$ for all $a \in K$.
(d) For all $a \in K$ there exists an additive inverse $-a \in K$ satisfying

$$
a+(-a)=0
$$

2. Multiplication axioms:
(a) $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in K$.
(b) $a \cdot b=b \cdot a$ for all $a, b \in K$.
(c) There exists an identity $1 \in K$ satisfying $1 \cdot a=a$ for all $a \in K$.
(d) For all $a \in K^{*}$ there exists an inverse $a^{-1} \in K^{*}$, satisfying $a \cdot a^{-1}=1$.
3. Distributive law:
(a) $a \cdot(b+c)=a \cdot b+a \cdot c$ for all $a, b, c \in K$.

SHORTLY: The triple $(K,+, \cdot), \# K \geq 2$ is a field, if:
(1) $(K,+)$ is an Abelian group (additive group),
(2) $\left(K^{*}, \cdot\right)$ is an Abelian group (multiplicative group), $K^{*}=K \backslash\{0\}$.
(3) $a(b+c)=a b+a c, \forall a, b, c \in K$.

In particular, a field is a commutative ring with unity.
Further, $0,1 \in K, 0 \neq 1$.

Module

Definition 7

Let R be a commutative ring with an identity element $1 \in R$. Then

$$
(M,+, \cdot)
$$

is an R-module, if
(1) $(M,+)$ is an Abelian group
and

Module

the scalar product

$$
\cdot: R \times M \rightarrow M
$$

satisfies the following axioms
2.
(a) $1 \cdot m=m$.
(b) $(r s) \cdot m=r \cdot(s \cdot m)$.
(c) $(r+s) \cdot m=r \cdot m+s \cdot m$.
(d) $r \cdot(m+n)=r \cdot m+r \cdot n$.
for all $r, s \in R, m, n \in M$. The elements of R are called scalars.

Module, linear hull

Let M be an R-module. Linear hull generated by $m_{1}, \ldots, m_{k} \in M$ is defined by

$$
\begin{equation*}
\left\langle m_{1}, \ldots, m_{k}\right\rangle_{R}:=R m_{1}+\ldots+R m_{k}=\left\{r_{1} m_{1}+\ldots+r_{k} m_{k} \mid r_{1}, \ldots, r_{k} \in R\right\} . \tag{1}
\end{equation*}
$$

Let

$$
M=\left\langle m_{1}, \ldots, m_{n}\right\rangle_{R}
$$

where m_{1}, \ldots, m_{n} are linearly independent over R, then the rank of M is defined by

$$
\begin{equation*}
\operatorname{rank}_{R} M:=n \tag{2}
\end{equation*}
$$

In this case M is called finitely generated.

Module, Cartesian product

Example 8

Let R be a ring and $n \in \mathbb{Z}^{+}$. In the Cartesian product

$$
R^{n}:=R \times \ldots \times R=\left\{\bar{x}=\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in R\right\}
$$

we set standard identity relation, addition and scalar product by

$$
\begin{aligned}
& \bar{x}=\bar{y} \quad \Leftrightarrow \quad x_{i}=y_{i} \quad \forall i=1, \ldots, n ; \\
& \bar{x}+\bar{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) ; \\
& r \cdot \bar{x}=\left(r x_{1}, \ldots, r x_{n}\right)
\end{aligned}
$$

for $\bar{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{y}=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}$ and $r \in R$.

Cartesian product

Then

$$
\left(R^{n},+, \cdot\right)
$$

is an R-module and rank $_{R} R^{n}=n$.

Example 9

Let K be a field. From Example 8 we know ($K^{n},+, \cdot$) equipped with standard operations is an K-module and $\operatorname{rank}_{K} K^{n}=n$.

From linear algebra we know $\left(K^{n},+, \cdot\right)$ is a K-vector space and $\operatorname{dim}_{K} K^{n}=n$.

R-map

Definition 10

Let M and N be R-modules. A mapping $f: M \rightarrow N$ satisfying

$$
\begin{align*}
f(a \cdot m) & =a \cdot f(m), \quad \forall a \in R, m \in M ; \tag{3}\\
f(m+n) & =f(m)+f(n), \quad \forall m, n \in M,
\end{align*}
$$

is called an R-map or an R-homomorphism.

Example 11

Let K be a field and M and N be linear spaces over K. Then a K-homomorphism $f: M \rightarrow N$ is called a linear map.

Isomorphism

Definition 12

Let M and N be R-modules. A bijective R-map $f: M \rightarrow N$ is called an isomorphism. If there exists an isomorphism $f: M \rightarrow N$, then M and N are isomorphic denoted by $M \cong N$.

Definition 13

Let M be a finitely generated R-module. If there exist a $k \in \mathbb{Z}_{\geq 1}$ such that

$$
\begin{equation*}
M \cong R^{k} \tag{4}
\end{equation*}
$$

then M is a free module.

Linear form

Let R be a ring. A linear form is a first degree homogeneous polynomial

$$
L \bar{x}=L\left(x_{1}, \ldots, x_{n}\right)=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}
$$

in n variables x_{1}, \ldots, x_{n}, where the coefficients $\alpha_{1}, \ldots, \alpha_{n} \in R$.
The linear forms

$$
L_{i} \bar{x}=\alpha_{i, 1} x_{1}+\ldots+\alpha_{i, n} x_{n}, \quad i=1, \ldots, k
$$

are called linearly independent over R, if the vectors $\left(\alpha_{1,1}, \ldots, \alpha_{1, n}\right)^{t}, \ldots,\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right)^{t}$ are linearly independent over R.

Vector p-norms

Let $p \in \mathbb{R}^{+}$. The p-norm or the ℓ_{p}-norm is defined by

$$
\|\bar{x}\|_{p}:=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)^{t} \in \mathbb{C}^{n}$.

Vector norms

For the different norms of the vector $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)^{t} \in \mathbb{C}^{n}$ we shall use the notations

$$
\begin{aligned}
\|\bar{x}\|_{\infty} & =\max _{k=1, \ldots, n}\left|x_{k}\right| \\
\|\bar{x}\|_{1} & =\sum_{k=1}^{n}\left|x_{k}\right| \\
\|\bar{x}\|_{2} & =\|\bar{x}\|=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

where the first is the maximum norm, the middle is the taxicap or sum norm and the last is the usual Euclidean norm.

Matrix norms

Let $A=\left(a_{i j}\right) \in M_{m \times h}(\mathbb{C})$. we shall use the notations

$$
\begin{aligned}
\|A\|_{\infty} & =\max _{i=1, \ldots, m ; j=1, \ldots, h}\left|a_{i j}\right| \\
\|A\|_{1} & =\sum_{i=1, \ldots, m ; j=1, \ldots, h}\left|a_{i j}\right|, \\
\|A\|_{2} & =\left(\sum_{i=1, \ldots, m ; j=1, \ldots, h}\left|a_{i j}\right|^{2}\right)^{1 / 2},
\end{aligned}
$$

where the first is maximum norm, the middle is the sum norm and the last is the Frobenius norm (or Euclidean norm).

Matrix norms

Let $A=\left(a_{i j}\right) \in M_{m \times h}(\mathbb{C})$ and $B=\left(b_{i j}\right) \in M_{h \times n}(\mathbb{C})$. Then the sum norm and the Frobenius norm are compatible with the usual matrix product, meaning

$$
\begin{align*}
& \|A \cdot B\|_{1} \leq\|A\|_{1} \cdot\|B\|_{1}, \tag{5}\\
& \|A \cdot B\|_{2} \leq\|A\|_{2} \cdot\|B\|_{2}
\end{align*}
$$

