GEOMETRY OF NUMBERS Slides A TOOL BOX

Tapani Matala-aho, Aalto University, 2022

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

Abstract/Tool box

These slides form a tool box for the course Geometry of Numbers.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

э

<ロ> <同> <同> < 同> < 同>

References

- J.J. Rotman, Advanced Modern Algebra. Pearson 2002.
- J. Steuding, Diophantine analysis. Chapman & Hall/CRC, Boca Baton, 2005.
- Matala-aho T., A geometric face of Diophantine analysis, Diophantine Analysis, Trends in Mathematics, Springer, 2016, 129-174. Lecture notes given at Summer School for Master and PhD students in DIOPHANTINE ANALYSIS, Würzburg 2014.

Number systems

$$\mathbb{N} = \{0, 1, 2, \dots, GOOGOL^{10}, \dots\} = \{\text{non-negative integers}\}.$$

$$\mathbb{P} = \{2, 3, 5, 7, 11, \ldots\} = \{\mathsf{primes}\}.$$

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} = \{\text{integers}\}.$$

$$\mathbb{Z}^+ = \{1, 2, 3, \ldots\} = \mathbb{N} \setminus \{0\} = \{\text{positive integers}\}.$$

$$\mathbb{Z}^{-} = \{-1, -2, -3, \ldots\} = \mathbb{Z} \setminus \mathbb{N} = \{\text{negative integers}\}.$$

 $\mathbb{Q} = \{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{Z}^+ \} = \{ \text{rational numbers} \}.$

3

・ロト ・回ト ・ヨト ・ヨト

Number systems

$$\mathbb{R}=\{x\mid x=\sum_{k=I}^\infty a_k10^{-k},\ I\in\mathbb{Z};\ a_k\in\{0,\ldots,9\}\}=\{ ext{real numbers}\}.$$

$$\mathbb{C} = \mathbb{R}(i) = \{ a + ib | \; a, b \in \mathbb{R}, i^2 = -1 \} = \{ ext{complex numbers} \}$$

 $\mathbb{C}\setminus\mathbb{Q}=\{\text{irrational numbers}\}, \ \mathbb{R}\setminus\mathbb{Q}=\{\text{real irrational numbers}\}.$

$$\mathbb{Z}_{\geq m} = \{ k \in \mathbb{Z} | k \geq m \}, \ \mathbb{R}_{<0} = \{ r \in \mathbb{R} | r < 0 \}, \dots$$

$$\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \quad \mathbb{R}^* = \mathbb{R} \setminus \{0\}, \quad \mathbb{C}^* = \mathbb{C} \setminus \{0\},$$

э

Miscellaneous notations

 $\exists ! \Leftrightarrow \exists exactly one.$

#A = |A| =cardinality of the set A.

 B^t denotes the transpose of the matrix B.

 $y = (y_1, \ldots, y_n)$ denotes a row vector. While

$$\overline{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

denotes a column vector. Hence $\overline{x} = (x_1, \ldots, x_n)_{t}^t$

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

Binary relation

Let A be a nonempty set. A binary operation denoted by * is a mapping

$$*: \mathsf{A} imes \mathsf{A} o \mathsf{A}, \quad (\mathsf{a}, \mathsf{b}) o \mathsf{a} * \mathsf{b}$$

meaning that $a * b \in A$, whenever $a \in A$ ja $b \in A$.

Particular cases:

multiplication denoted by \cdot

addition denoted by +

(人間) ト く ヨ ト く ヨ ト

Identity axioms

(a)
$$\forall a$$
: $a = a$.

(b) $\forall a_1, a_2, b_1, b_2 : a_1 = b_1, a_2 = b_2 \Rightarrow (a_1 = a_2 \Leftrightarrow b_1 = b_2).$ (c) $\forall a_1, a_2, b_1, b_2 : a_1 = b_1, a_2 = b_2 \Rightarrow a_1 * a_2 = b_1 * b_2.$

Let G be a nonempty set with a multiplication

$$\cdot : G imes G o G, \quad (a,b) o a \cdot b.$$

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

э

<ロ> <同> <同> < 同> < 同>

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:

< 1 →

▶ < ∃ >

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:

(a)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in G$ (assosiativity).

< 1 →

▶ < ∃ >

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:

(a)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in G$ (assosiativity).

(b) There exists an identity element $1 \in G$, satisfying

$$1 \cdot a = a \cdot 1 = a$$
 for all $a \in G$.

Definition 1

A pair (G, \cdot) is a group, if the multiplication satisfies the following axioms:

(a)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in G$ (assosiativity).

(b) There exists an identity element $1 \in G$, satisfying

$$1 \cdot a = a \cdot 1 = a$$
 for all $a \in G$.

(c) For all $a \in G$ there exists an inverse $a^{-1} \in G$, satisfying $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Basics of equation manipulation

Remark 1

Let $a, b \in G$. By the identity axiom c we may multiply the identity

a = b

with the same element $c \in G$, whereupon

ca = cb.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

Abelian group

In the case of commutative group an addition notation is widespread. Let A be a non-empty set with an addition

$$+: A \times A \rightarrow A, \quad (a, b) \rightarrow a + b.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Abelian group

Definition 2

The couple (A, +) is an Abelian group, if the addition satisfies the following axioms:

(a)
$$a + (b + c) = (a + b) + c$$
 for all $a, b, c \in A$.

(b) a + b = b + a for all $a, b \in A$ (commutativity).

(c) There exists a zero-element $0 \in A$ satisfying

0 + a = a for all $a \in A$.

(d) For all $a \in A$ there exists an additive inverse $-a \in A$ satisfying a + (-a) = 0.

Basics of equation manipulation

Remark 2

Let A be an Abelian group and $a, b \in A$. By the indentity axiom c we may add the same element $c \in A$ to the both sides of the identity

$$a = b$$

whereupon

$$a+c=b+c.$$

Ring

Ring

Let R be a non-empty set with an addition

$$+: R \times R \rightarrow R, \quad (a, b) \rightarrow a + b,$$

and with a multiplication

$$\cdot: R \times R \to R, \quad (a,b) \to a \cdot b.$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ring

Definition 3

A triple $(R, +, \cdot)$, $\#R \ge 1$, is a ring, if the addition and multiplication satisfy the following axioms:

1. Addition axioms:

(a)
$$a+(b+c)=(a+b)+c$$
 for all $a,b,c\in R$.

- (b) a + b = b + a for all $a, b \in R$.
- (c) There exits a zero-element $0 \in R$, satisfying

$$0 + a = a$$
 for all $a \in R$.

(d) For all $a \in R$ there exists an additive inverse $-a \in R$ satisfying a + (-a) = 0.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

Ring

2. Multiplication axioms:

(a)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in R$.

3. Distributive laws:

(a)
$$a \cdot (b + c) = a \cdot b + a \cdot c$$
 for all $a, b, c \in R$.

(b) $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in R$.

Shortly: A ring $(R, +, \cdot)$ is an Abelian group (R, +) satisfying 2. and 3.

3

Ring with unity

Definition 4

A triple $(R, +, \cdot)$, $\#R \ge 1$, is a ring with unity, if:

1. (R, +) is an Abelian group.

(a)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in R$.

(b) There exists an identity element (unity) $1 \in R$ satisfying

$$1 \cdot a = a \cdot 1 = a$$
 for all $a \in R$.

3. Distributive laws hold.

Commutative ring with unity

Definition 5

A triple $(R, +, \cdot)$, $\#R \ge 1$, is a commutative ring with unity, if: 1. (R, +) is an Abelian group. 2. (a) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in R$. (b) $a \cdot b = b \cdot a$ for all $a, b \in R$. (c) There exists an identity $1 \in R$ satisfying $1 \cdot a = a$ for all $a \in R$. 3.

(a)
$$a \cdot (b + c) = a \cdot b + a \cdot c$$
 for all $a, b, c \in R$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Field

Definition 6

A triple $(K, +, \cdot)$, $\#K \ge 2$, is a field, if the addition and multiplication satisfy the following axioms:

1. 1. Addition axioms:

(a)
$$a + (b + c) = (a + b) + c$$
 for all $a, b, c \in K$.

(b)
$$a + b = b + a$$
 for all $a, b \in K$.

(c) There exits a zero-element $0 \in K$, satisfying

0 + a = a for all $a \in K$.

(d) For all $a \in K$ there exists an additive inverse $-a \in K$ satisfying a + (-a) = 0.

Field

2. Multiplication axioms:

(a)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in K$.

(b)
$$a \cdot b = b \cdot a$$
 for all $a, b \in K$.

(c) There exists an identity $1 \in K$ satisfying

$$1 \cdot a = a$$
 for all $a \in K$.

(d) For all $a \in K^*$ there exists an inverse $a^{-1} \in K^*$, satisfying $a \cdot a^{-1} = 1$

3. Distributive law:

(a)
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 for all $a, b, c \in K$.

・ 同 ト ・ ヨ ト ・ ヨ ト

SHORTLY: The triple $(K, +, \cdot)$, $\#K \ge 2$ is a field, if:

- **(**K,+) is an Abelian group (additive group),
- **2** (K^*, \cdot) is an Abelian group (multiplicative group), $K^* = K \setminus \{0\}$.

$$3 \ \, a(b+c) = ab+ac, \ \, \forall a,b,c \in K.$$

In particular, a field is a commutative ring with unity. Further, $0, 1 \in K$, $0 \neq 1$.

Definition 7

Let R be a commutative ring with an identity element $1 \in R$. Then

 $(M, +, \cdot)$

is an *R*-module, if

• (M, +) is an Abelian group

and

э

- 4 回 2 - 4 □ 2 - 4 □

the scalar product

$$\cdot: R \times M \to M$$

satisfies the following axioms

2. (a) $1 \cdot m = m$. (b) $(rs) \cdot m = r \cdot (s \cdot m)$. (c) $(r + s) \cdot m = r \cdot m + s \cdot m$. (d) $r \cdot (m + n) = r \cdot m + r \cdot n$.

for all $r, s \in R, m, n \in M$. The elements of R are called scalars.

3

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Module, linear hull

Let M be an R-module. Linear hull generated by $m_1, ..., m_k \in M$ is defined by

$$\langle m_1, ..., m_k \rangle_R := Rm_1 + ... + Rm_k = \{ r_1m_1 + ... + r_km_k | r_1, ..., r_k \in R \}.$$

(1)

Let

$$M=\langle m_1,...,m_n\rangle_R,$$

where m_1, \ldots, m_n are linearly independent over R, then the rank of M is defined by

$$\operatorname{rank}_{R} M := n. \tag{2}$$

In this case M is called finitely generated. < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

25 / 34

Module, Cartesian product

Example 8

Let *R* be a ring and $n \in \mathbb{Z}^+$. In the Cartesian product

$$R^n := R \times \ldots \times R = \{ \overline{x} = (x_1, \ldots, x_n) | x_1, \ldots, x_n \in R \}$$

we set standard identity relation, addition and scalar product by

$$\overline{x} = \overline{y} \quad \Leftrightarrow \quad x_i = y_i \quad \forall \ i = 1, ..., n;$$
$$\overline{x} + \overline{y} = (x_1 + y_1, ..., x_n + y_n);$$
$$r \cdot \overline{x} = (rx_1, ..., rx_n)$$

for
$$\overline{x} = (x_1, \ldots, x_n), \overline{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$$
 and $r \in \mathbb{R}$.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

Cartesian product

Then

$$(R^n,+,\cdot)$$

is an *R*-module and rank_{*R*} $R^n = n$.

Example 9

Let K be a field. From Example 8 we know $(K^n, +, \cdot)$ equipped with standard operations is an K-module and rank_K $K^n = n$. From linear algebra we know $(K^n, +, \cdot)$ is a K-vector space and $\dim_{\mathcal{K}} K^n = n.$

- 4 同 6 4 日 6 4 日 6

R-map

Definition 10

Let M and N be R-modules. A mapping $f: M \to N$ satisfying

$$f(a \cdot m) = a \cdot f(m), \quad \forall \ a \in R, m \in M;$$

 $f(m+n) = f(m) + f(n), \quad \forall \ m, n \in M,$

is called an *R*-map or an *R*-homomorphism.

Example 11

Let K be a field and M and N be linear spaces over K. Then a K-homomorphism $f: M \rightarrow N$ is called a linear map.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

28 / 34

(3)

Isomorphism

Definition 12

Let M and N be R-modules. A bijective R-map $f: M \to N$ is called an isomorphism. If there exists an isomorphism $f: M \to N$, then M and N are isomorphic denoted by $M \cong N$.

Definition 13

Let *M* be a finitely generated *R*-module. If there exist a $k \in \mathbb{Z}_{\geq 1}$ such that

$$M \cong R^k, \tag{4}$$

then M is a free module.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

29 / 34

Linear form

Let R be a ring. A linear form is a first degree homogeneous polynomial

$$L\overline{x} = L(x_1,\ldots,x_n) = \alpha_1 x_1 + \ldots + \alpha_n x_n$$

in *n* variables x_1, \ldots, x_n , where the coefficients $\alpha_1, \ldots, \alpha_n \in R$. The linear forms

$$L_i \overline{\mathbf{x}} = \alpha_{i,1} \mathbf{x}_1 + \ldots + \alpha_{i,n} \mathbf{x}_n, \quad i = 1, \ldots, k,$$

are called linearly independent over R, if the vectors

 $(\alpha_{1,1},\ldots,\alpha_{1,n})^t,\ldots,(\alpha_{k,1},\ldots,\alpha_{k,n})^t$ are linearly independent over R.

Vector *p*-norms

Let $p \in \mathbb{R}^+$. The *p*-norm or the ℓ_p -norm is defined by

$$\|\overline{\mathbf{x}}\|_{p} := \left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{1/p},$$

where $\overline{x} = (x_1, ..., x_n)^t \in \mathbb{C}^n$.

Tapani Matala-aho, Aalto University, 2022 GEOMETRY OF NUMBERS Slides A TOO

э

イロン 不同 とくほう イロン

Vector norms

For the different norms of the vector $\overline{x} = (x_1, ..., x_n)^t \in \mathbb{C}^n$ we shall use the notations

$$\begin{split} \|\overline{x}\|_{\infty} &= \max_{k=1,\dots,n} |x_k|, \\ \|\overline{x}\|_1 &= \sum_{k=1}^n |x_k|, \\ \|\overline{x}\|_2 &= \|\overline{x}\| = \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}, \end{split}$$

where the first is the maximum norm, the middle is the taxicap or sum norm and the last is the usual Euclidean norm.

・ロット (雪) (き) (き) (き)

Norms

Matrix norms

Let $A = (a_{ij}) \in M_{m \times h}(\mathbb{C})$. we shall use the notations

$$egin{aligned} \|A\|_{\infty} &= \max_{i=1,...,m; j=1,...,h} |a_{ij}|, \ \|A\|_1 &= \sum_{i=1,...,m; j=1,...,h} |a_{ij}|, \ \|A\|_2 &= \left(\sum_{i=1,...,m; j=1,...,h} |a_{ij}|^2
ight)^{1/2}, \end{aligned}$$

where the first is maximum norm, the middle is the sum norm and the last is the Frobenius norm (or Euclidean norm).

イロト 不得 トイヨト イヨト 二日

Matrix norms

Let $A = (a_{ij}) \in M_{m \times h}(\mathbb{C})$ and $B = (b_{ij}) \in M_{h \times n}(\mathbb{C})$. Then the sum norm and the Frobenius norm are compatible with the usual matrix product, meaning

$$\|A \cdot B\|_{1} \le \|A\|_{1} \cdot \|B\|_{1},$$

$$\|A \cdot B\|_{2} \le \|A\|_{2} \cdot \|B\|_{2}.$$

(5)

イロン 不同 とくほう イロン