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1 ABSTRACT

The theory of algebraic numbers is an important part of Number Theory.

2 INTRODUCTION

2.1  Course overview (Finnish)

Aluksi kerrataan renkaiden ja kuntien perusteita, joista edetdin kuntalaajennuk-
siin. Erityiseen tarkasteluun otetaan jaollisuus kokonaisalueessa, jonka sovelluk-
siin tormétiaan polynomialgebrassa ja kokonaisten algebrallisten lukujen teorias-

Sa.

Algebrallisten lukujen teoria lepdd vahvasti polynomialgebraan, josta kasitellddn

polynomien nollakohtia ja jaollisuutta.

Algebrallisen luvun mééritelmé yleistetadn kuntalaajennuksien algebrallisiin al-
kioihin, joista edetddn algebrallisiin kuntiin. Tarkeinpind algebrallisina kuntina
saadaan lukukunnat, jotka ovat dérellisesti generoituja kompleksisten algebrallis-

ten lukujen kunnan A alikuntia. Erityisesti tutkitaan nelickuntia.

Edelleen tarkastellaan kokonaisten algebrallisten lukujen jaollisuutta ja tekijoi-

hinjakoa, joita sovelletaan Diofantoksen yhtdloiden ratkaisemiseen.

2.2 Course overview

First we revise some basics of rings and fields which are needed to proceed ahead
field extensions. In particular, divisibility in an integral domain is carefully stu-
died yielding to applications in the theory of polynomial algebra and algebraic in-

tegers. The theory of algebraic numbers is strongly based on polynomial algebra,



where the properties of zeros and divisibility of polynomials are considered. The
definition of an algebraic number will be generalized to the algebraic elements
of field extensions going forward to algebraic fields.Considered as most impor-
tant algebraic fields we get number fields which are finitely generated subfields of
the field A of all complex algebraic numbers. In particular, we study quadratic

number fields.

Further, we shall consider the divisibility and factorization of algebraic integers

with some applications to Diophantine equations.
8026565 ALGEBRALLISET LUVUT/NOPPA LINK.

8026565 ALGEBRAIC NUMBERS/NOPPA LINK.

2.3 BASICS
Prerequisites:
Algebra, Linear Algebra and Basics in Number Theory courses.

The course uses the notation of Basics in Number Theory.

2.4 REFERENCES

[.N. Stewart and D.O. Tall: Algebraic number theory.
Daniel Marcus: Number fields.

J.B. Fraleigh: Abstract algebra.

Michael Artin: Algebra.
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2.5  Algebraic numbers

Definition 1. Algebraic numbers are zeros of non-constant polynomials with

rational coefficients.

Example 1.
Numbers
—1; (2.1)
& (2.2)
21/% 4 31/2 (2.3)
are algebraic numbers.
Example 2.
e™m  me Z\ {0}; (2.4)
sin(m/m), cos(w/m), tan(w/m), m € Z\ {0}; (2.5)
are algebraic numbers.
Example 3.
Also roots of the polynomial equation
23t 432 41 =0 (2.6)

are algebraic numbers.

Remark 1. et f: A — B and C' C B. Then the pre-image of C'is the set

fHC) ={z € A f(z) e C}. (2.7)
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For instance

F({0}) = {z € 4] f(x) = 0}. (2.8)

Gauss proved that the number of zero points of a non-constant polynomial with

complex coefficients is equal to the degree of this polynomial.

Theorem 1. FUNDAMENTAL THEOREM OF ALGEBRA.
Let d = degp(z) € Z* and

p(x) = po + prz + ... + pax? € Cla], (2.9)

then
#p~ ({0}) = degp(z) = d (2.10)
p(x) =pa(zr —aq) - (x —aq), ai,...,aq €C. (2.11)

This course focuses on complex algebraic numbers.

3 Basics

Let K be a field and d € Z". A polynomial
p(x) =po+pix+ ... +2% € Klz], d=degp(z)>1, (3.1)
is called a monic polynomial. We use the following notation

Klz)g = {p(x) =po + p1z + ... + 2% € K][]}. (3.2)

We define (complex) algebraic numbers using the field of rational numbers.



Definition 2. The elements of the set
Ay={a €C|pla) =0, p(x) € Q[z]a} (3.3)
are algebraic numbers of a degree at most d. The set
A=UT, A (3.4)

is a set of all algebraic numbers

Definition 3. Let K C C and p(z) € Klz]. Then

Z(p) ="' ({0}) = {a € C| pla) = 0} (3.5)

is a zero set of the polynomial p(z).

Theorem 2.

Remark 2. Let D € Z. Then
Q(VD) = {a+bVD| a,b € Q}. (3.7)
Theorem 3.
Az = U Q(VD). (3.8)

4 Rings and fields
4.1 Ring
First, this course examines commutative rings.

Let R be a set such that #R > 2. Suppose that we defined in R a binary operation
(or mapping) +
+:RxR— R, (a,b)—>a+b,



where a +b € Rif a € R and b € R. Moreover, we defined an operation x
x: RXR— R, (a,b)— axb,

where axbe€ Rifa€ Rand b € R.

4.1.1 Commutative ring with unity

Definition 4.

A triad (R, +, %) is a commutative ring with unity if the following conditions are
satisfied:

1) additive axioms:

1. a+ (b+c)=(a+0b)+cforall a,b,c € R (associativity).

2. a+b=>b+aforall a,b € R (commutativity).

3. There exists a zero element 0 € R for which 0 + a = a for all a € R.

4.

For all a € R there exists an inverse —a € R for which a 4+ (—a) = 0.

2) multiplicative axioms:

1. ax*(bxc)=(axb)xcforall a,b,c€ R (associativity).
2. a*xb="bxa for all a,b € R (commutativity).
3. There exists a unit element 1 € R for which 1 xa =a forall a € K.

3) distribution axiom:
1. ax(b+c)=axb+axcforall abceR.

The set R from Definition [4] is called a commutative ring with unity and the

conditions are called ring axioms.

Axioms 1) say that (R, +) is Abel group whose operation + is called an addition.

We can say that (R, +) is additive group of the ring R whose neutral element is

the zero element 0.
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But R = (R, %) is not necessarily a multiplicative group because the inverse

element is not guaranteed. The neutral element is the unit 1.

Remark 3. Usually, we omit the multiplication notation:

a*xb=ab.

Definition 5. Let R be a ring with a unit. The set
R ={uits} ={uc R|Iu'€eR: vu'=1}

is a unit group of R.

We often use the notation
Rf={ueR|3veR: uw =1},
when it holds that

uveER = 1=uwv, u,veR.

If R =K is a field, then K* = K\{0}.

4.2 Integral Domain

(4.2)

Definition 6. An element a # 0 of R is a zero divisor if 3 b € R\{0} such that

ab =0 or ba =0.

Definition 7. A commutative ring with unity D is an integral domain if D does

not have a zero divisor.

ie.ifab=0, a,b € D, then a=0or b= 0.

11



4.3 Field

Definition 8.

A triad (K, +, %) is a field if the following conditions are satisfied:

1. 1) additive axioms:

1 a+ (b+c¢)=(a+b)+cforall a,b,c € K (associativity).

2 a+b=>b+aforall a,b € K (commutativity).

3. There exists a zero element 0 € K for which 0 +a = a for all a € K.
4

For all a € K there exists an inverse —a € K for which a + (—a) = 0.
2) multiplicative axioms:

ax* (bxc)=(axb)xcforall a,b,ce K (associativity).
axb="bxa for all a,b € K (commutativity).

There exists a unit-element 1 € K for which 1 xa =a for all ¢ € K.

- W o=

For all a € K* = K \ {0} there exists an inverse element a=! € K* for

which a x ™t = 1.
3) distribution axiom:
1. ax(b+c)=axb+axcforallabceK.

The set K from the definition [§]is called a field and the conditions are called field
axioms.

Axioms 1) say that (K,+) is an Abel group whose operation + is called an
addition.

We can say that (K, +) is an additive group of the field K whose neutral element
is the zero element 0.

Axioms 2) tell us that (K*, =) is an Abel group whose operation = is called a
multiplication.

Therefore, it can be said that (K™, %) is a multiplicative group of the field K with

the unit-element 1 as the neutral element.

12



BRIEFLY: The triad (K,+,-), #K > 2 is a field if:

1. (K,+) is an Abel group (additive group),
2. (K*, %) is an Abel group (multiplicative group), K* = K\{0}.
3. a(b+c) = ab+ ac, Va,b,c € K.

Specially, a field is a commutative ring with unity (subset).

There are always at least two elements in a field, namely 0,1 € K, 0 # 1.
Example 4.

A field K is an integral domain.
Proof: Let
ab =0, (4.4)

where a,b € K. Antithesis: a # 0 and b # 0.
Because K is a field, then a=! € K. Multiplying (4.4) by a™! gives

b=a'lab=a'-0 = b=0. (4.5)

A contradiction. O
Example 5.

The fields Q, R, C and Z,, where p € P, are integral domains.

Example 6.

Any subring S of a field K is an integral domain.

Example 7.
7 is an integral domain.
Example 8.
The set
Z[i] = {a +1ib| a,b € Z} (4.6)

13



of Gaussian integers is an integral domain and its unit group is
2" ={1,1,—1, —i}.

Example 9.

The set
Z[V=5] = {a+b/=5| a,b € Z}

is an integral domain and its unit group is

Z[V-5]" = {1,-1}.

4.3.1 Characteristics

Definition 9. We define characteristics of a field K as

pedpelP: pl =0;
char K =

0 PneZt: nl=0.

5 Divisibility in integral domain

Let D be an integral domain.

Definition 10. Let a,b € D. Then
ba < dceD: a=bec.

If bla, we say that b divides a or b is a factor of a.
Notation: bt a if b does not divide a.

Example 10.
0/0, Ota##0.

(4.7)

(4.8)

(4.9)

(5.1)

(5.2)

14



Remark 4. Let d,b € D and s € N, then

d*||b < d°|b and d* §b. (5.3)
Lemma 1. Let a,b,c € D,a # 0. Then

ab=ac = b=c (5.4)

Proof.
ab=ac = alb—c)=0,a#0, = b—c=0. O (5.5)
Definition 11. Elements a,b € D are associated if
a~b < I weD': b=ua. (5.6)

Lemma 2. The relation ~ is an equivalence, in other words

an~a; (5.7)
a~b & b~oa; (5.8)
a~b, b~ce = a~c (5.9)

Proof. 5.8t

a~b < b=wa ueD" <
4 veD": ww=1 b=ua < vb=vua=a

& a=vb,veD & b~a O (5.10)

Other points on one’s own.

Remark 5. The equivalence class for the element a € D it the set
l[a] ={b€ D| b~ a}, (5.11)
where a is the representative of [a].
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Lemma 3. Let D be an integral domain and 1,a,b € D. Then

a~b = alb;

[a] = aD*;

a~b < alb and bla.
Proof. 513t
a~1 = 1l=wi, ueD*CD = dal;

all = dceD:1=ca = ceD" = a~1

~ a~1 < all

all = dceD:1=ca = a,c€ D"

aeD" = l=wi,ueD = all

~ all & ae D"
b.14
bell]l & b~1 < beD'. O
0. 15k

r€fa)] & x~a & a~cx

& r=ua, ueD* & xe€aD".

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

O

16



5.16} First look at the case b = 0 which implies a = 0.

a~b < b~a, = alb and blag;
alp and bla = b=ca, a=db, ¢,d € D,
= b=cdb = ccd=1 = c¢deD"

= a~b and b~a O

Remark 1. Let b € D. Then
b=1-b=u(u"'b) Vuec D" (5.17)

Therefore a unit is always a factor of an element.
Example 11.

Remember that the unit group of Gaussian integers was

2" ={1,1,—1, —i}. (5.18)
Thus
2—i~1421~24+01~—-1—-2 (5.19)
and the equivalence class
2—id={2—1i,14+2i,—2+1i,—1—2i} (5.20)

of 2 — 7 consists of four elements.

Definition 12. Trivial factors ¢ of an element b € D are all units and associates.
In other words

qge[l] or qeb. (5.21)
An element j € D,j # 0,7 ¢ D* is irreducible if it has only trivial factors
gi = qel] or geljl (5.22)

17



An element p € D,p # 0,p ¢ D* is prime if
plab = pla or plb Va,be D.
An element a € D,a ¢ D* is reducible if

ddeD: dla = dé¢][l] and d¢|[a].
Remark 2. The zero-element is reducible.

Remark 6. Let us denote
Jp ={j € D] j is irreducible}

and

Pp = {p € D| p is prime}.

Lemma 4. Let a,b € D and j,h € Jp. Then

j=ab = a~1 or b~ 1.

j=0bh, = b~1
Proof (5.27). Antithesis: a % 1 and b # 1
= ab¢[l] = abelj
because j is irreducible. Thus

(I:dlj bzdgj7 dl,dQGD* =

j=ab=didyj? = l=didpj = j€D =]l

A contradiction.

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

18



Definition 13. Let a,b € D be given. Then an element d € D is the greatest

common divisor of a and b, denoted by d =syt(a,b) =gcd(a,b) = (a,b), if

dla and d|b; (5.32)

cla and ¢b = c|d. (5.33)
If (a,b) ~ 1, then we say that a and b are relatively prime and we write (a,b) = 1
ora L b.

Definition 14. Let a,b € D be given. Then an element f € D is the least

common multiple of a and b, denoted by f =pyjla,b] =lemla, b] = [a, V], if

alf and b|f; (5.34)
alg and blg = flg. (5.35)

Example 12.
(0,0)=0, [0,0] =0. (5.36)

Lemma 5. Let a € D and j € Jp. Then
jfa = (a,5)=1. (5.37)
Proof. Antithesis: (a,j) # 1. Therefore (a,j) =d # 1 and
dla and d|j, j € Jp. (5.38)
Because j is irreducible, then d ~ 1 or d ~ j, hence d ~ j. Consequently
d=vj,veD" and a=cd=cvj = jla (5.39)

A contradiction. O
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Definition 15. The representation of an element a € D by irreducible elements

is unique if from the condition
a=jrJr=hy-hs, Ji,hi € Jp (5.40)
follows

r=s and hpy~yj Vk=1,..,r forsomel=1,..,r. (5.41)

Definition 16. An integral domain D is a unique factorization domain (UFD)

if every element a € D,a # 0,a ¢ D* can be represented uniquely as

a=ji-Jr, Ji € Jp. (5.42)

Theorem 4. Let D be an ID. Then
Pp C Jp (5.43)

(primes are irreducible.)

Proof. (5.43): Let p € Pp. If q|p, then p = ¢d; for some d; € D. Then
plgdy = plg or pld; (5.44)

because p is a prime.

If p|q, then ¢ = dap, dy € D and q = dyqdy, where ¢ # 0 by p # 0. So 1 = dyds
meaning that d;,dy € D*. Therefore ¢ € [p].

If p|dy, then (homework...) ¢ € [1].

Thus p € Jp. O

Theorem 5. Let D be an integral domain. Then
D=UFD = JpCPp (5.45)

so UFD’s irreducibles are primes and consequently Jp = Pp.
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Proof: Let j € Jp and assume that j|ab where a,b € D. Since D =UFD, a and b

has the unique representation
a=aj---Qmny, b:blbn7 ai,biEJD. (546)
Hence

j|a1"'amb1"'bn:j'jQ"'jm+n, (5_47)
and from here j ~ a; for some a; or j ~ b; for b; because D =UDF. Therefore j|a
or j|b.

Overally j € Pp. ]

Remark 3. In UFD the representation ((5.42)) is called prime factorization.

Definition 17. Let D be an integral domain and a € D. If an irreducible element
j € Jp satisfies
ijCL, m € Zzo, (548)

then m is a multiplicity of the factor j of a.
If j fa, then m = 0.

Theorem 6. Let D be an integral domain. Then

Proof: Let
a=j1-jr="hi---hs, Ji,hx € Jp (5.50)

Now irreducibles j; and hy are primes. Thus
j1|h1"'h5 = jllhl or j1|h2h5 (551)

and eventually ji|hy, implying ji ~ hg,,....Jr ~ hy, and r = s. O
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5.1 Division and Euclidean algorithm in integral domain
5.1.1 Division algorithm/Euclidean domain

Let D be an integral domain with so called Euclidean function £ : D — NU
{—o0} and suppose that the following holds true:
Division algorithm: If a,b € D are given and ab # 0, 0 < E(b) < E(a), then

d¢q,r € D such that
(JA) a=qb+rand E(r) < E(D). (5.52)

This kind of domain is called Euclidean domain (ED). (Note that the definition
of the Euclidean function varies.)

Example 13. a)D =7, FE(k) = |k|.

b)D = Klz], E(p(z)) = degp(z).

Based on division algorithm:

Euclidean algorithm=E.A.:

ro=a, r1==>0 E(r1) < E(ro)
ro = @111 + 1o E(ry) < E(r1)

Tk = Qe1Tht1 + Thre  E(rig2) < E(risq)

Tno1 = QnTn dneN: r, #0, r,y1 =0

rn = syt(a,b).
The integer n = is called a length of euclidean algorithm.

Set now

R, = , Qp = , keN, (553)
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whereupon

detQp = —1, Qp '= . (5.54)
I —q
We see that
EA < Ry, = Qk-‘rle-i-l? Vk = 0,....,n—1, (555)
whereupon holds
Ry = Q1Q2- - Q. (5.56)
Denote
So & 1 0
So=[" 7] = (5.57)
S1 tl 0 1
and
Sg otk _ 1 —
Sy = =Qr Q' (5.58)
Skt1 tr1
SO
R, = SLRy. (5.59)
We have
Ski1 = Qi1 (5.60)
SO
Sk+1 tepr| [0 1 Sk e )
Sky2 trio I —qrq1 Sk41 Tryt
S t
k+1 k+1 (5.61)
Sk — Qk+1Sk+1  tk — Qr1tr1
That gives us recurrent formulas:
Sk+2 = Sk — Qe15k+1, K =0,1,...
(5.62)

thre =tk — Qeyrtry1, K=0,1,...

23



From formula (5.59) we get
Tn = Spa + tnb7 (563)

which provides us the following theorem.

Theorem 7. Let D be ED, then
syt(a,b) = spa + t,b, (5.64)

where n is the length of EA.
Usually the following formulation is enough

Theorem 8. Let D be an ED. Then there exist s,t € D such that

ged(a,b) = sa + tb. (5.65)

Theorem 9. Let D be an ED. Then
Jp C Pp (5.66)

— In ED, irreducibles are primes.

Therefore, Euclidean region is UFD.

Proof. Let j € Jp and let us assume, that j|ab, where a,d € D.

We should show that j|a or j|b.

Suppose that j /a, then j L a by Lemma . Then by Theorem [8| there exist
s,t € D such that

l=sa+tj] = b=sab+thj = jlb. O (5.67)

Corollary 1. .
A. Z is UFD where irreducibles are primes.

B. K|[z] is UFD where irreducibles are primes.
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6 Polynomial algebra
6.1 Polynomial rings
6.1.1 Polynomial set

Let R be a ring with unity. Then a set of polynomials with coefficients from R is

denoted by

Rlz] = {P(z) | P(x) = ) _psa*; pr € R, n € N}.

k=0

The polynomial
0(z)=0+0-2+0-2°+... (6.1)

is called the zero polynomial and the polynomial
() =14+0-2+0-2*+... (6.2)
is called the unit polynomial. It is the special case of a constant polynomial

clr)=c+0-2+0-2°+..., c€R. (6.3)

6.1.2 Calculations
Definition 18. Let P(z) = >, pex®, Q(z) = > 1_,qxa" € R[z]. Then we
set

P(z) = Q(z) < VE(pr = qr);

P(z) + Q(z) = > (pk + q)2";

k>0
P(z) - Q(z) = Y rya®,
k>0
k
rh= Y Pidki= Y Pidj; (6.4)
i=0 itj=k

which is Cauchy’s rule of thumb.
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6.1.3 Polynomial ring/degree

Theorem 10. The triad (R[x],+,-) is a ring where 0(x) is the zero element of

the addition and 1(z) is the unit-element of the multiplication.

Definition 19. If p, # 0, then the degree of a polynomial P(x) = > ;_, pra® is

set as
deg P(z) = n, (6.5)
deg0(z) = —o0. (6.6)
6.1.4 Degree formula
Remark 4.
— 00+ (—0) = -0
(6.7)

—o0o+k=—-00, VkeZ.
Theorem 11. Degree formula.

Let D be an integral domain and P(x),Q(z) € D[z]. Then

deg P(z)Q(x) = deg P(x) 4 deg Q(x). (6.8)
Theorem 12. .
A. Let R = D be an integral domain. Then the ring of polynomials D[x] is the
integral domain.

B. Let R = K be a field. Then the ring of polynomials K [z] is the integral domain.

Proof: Let a(z)b(x) = 0(z). According to the degree formula, we have
dega(z)b(x) = dega(x) + degb(z) = deg 0(z) = —oo0. (6.9)
If a(x) # 0(x) and b(x) # 0(x) held true, we would have
0 < dega(x)+ degb(zr) = —o0. (6.10)
— contradiction O
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Theorem 13. Let K be a field.

A. The unit group of the ring of polynomials K{z] is
Klz]" = K*. (6.11)

B. A polynomial j(z) € K[z] \ K is irreducible if and only if its only factors are
constants k or polynomials k - j(x) where k € K \ {0}.

C. A polynomial a(z) € K[z]| \ {0(z)} is reducible if and only if it has a factor
d(x) € K|z] which obeys

1 <degd(x) < dega(zx)— 1. (6.12)

D. Specially, one-degree polynomials are not reducible.

Proof. A: a(z) € Klz|* = 3 b(z) € K[z] such that

a(x)b(x) =1 = dega(r) =degb(x) =0 = a(z),blzx) e K*. O

Proof. B:  j(z) = a(z)b(z) € Jk =

or

a(@) € [i(@) = j@)K* = (@)= kj(), keK*. O
Proof. C: Let a(z) € Klz] \ {0} be reducible. Then there exists d(x), b(z) €
K[z]\ {0} such that
a(r) = d(z)b(z), d(z)¢[1] and d(z) ¢ [a(z)] =
d(z) ¢ K* and d(z) ¢ a(z)K*.

If degd(x) = 0, then d(z) € K*; a contradiction.
If deg d(z) = dega(z), then by the degree formula degb(z) = 0 implying b(z) =
k € K*. Thus a(x) = kd(x) and then d(x) € [a(x)]; a contradiction.

Proof. D: Homework.
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6.2 The unit group of the ring R[z]

Let R be commutative ring with a unit. Let us study its unit group R[z|*. Pick
a(r) = ag+ayx+...+asz? € R[z]*, then there exists b(x) = by+bjx+...+bpa? €
R[z]* such that

1 = a(2)b(z) = (ap + a1 + ... + axx™)(bo + byz + ... + bpa?). (6.13)
If ay = ... = ax =0, then a(x) € R*. Otherwise there exists an A > 1 such that
as # 0. Then
aobg =1

agb1 + a1bg =0
apbs + ai1by + agby =0
(6.14)
aa—2bp +aa—1bp_1 +asbp_o =0
as—1bp + asbg_1 =0
arbg =0

Multiply the second last by a4 to get

aA_laAbB + CLQAbB_l =0 = aibB_l =0 (615)

aa—2bp +aa—1bp_1 +asbp_o =0

(6.16)
as—1bp + asbg_1 =0
aAbB =0

Multiply the third last by a% to get
aA_g(ZZle + CLA_16L2AbB_1 + aibB_g =0 = a‘sz_Q =0 (617)
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and so on to the situation

aobB + ale,1 + ...+ aAbo = 0, A < B (618)
aﬁbl =0
or
acb3+ale,1+...—i—aAbO:(), AIB+C,C> 07 (619)
aﬁbl =0.

Anyway, multiply now by a’4. Then you get
a’y by =0, (6.20)

where by € R* meaning that by # 0. Then multiplying by b, we are in the

situation aﬁ“ =0.

Thus if
T #£0 VreR\{0}, K>2, (6.21)
then a(z) = ay € R*.
Otherwise: if there exists an element » € R\ {0} such that
K

r® =0 for some K > 2, (6.22)

then you may find a non-constant unit polynomial a(z) i.e. a(x) € R[z|* \ R*.

6.2.1 Zyy[z]*

Example 14.
Zyolx|* = Z3,.
Example 15.
1410z € Zylx]".

29



6.3 Division algorithm

Theorem 14. Division algorithm. Let K be a field. Let a(z),b(z) € Klz],
a(z)b(z) # 0(x) and degb(x) < dega(x).
Then 3 ¢(x),r(xz) € K|z] such that

[JA] a(z) =q(x)b(z) +r(x), degr(x) < degb(z). (6.23)

Moreover, K[z] is the Euclidean domain!

Remark 5. If D is not a field, then the division algorithm does not work neces-
sarily in the polynomial ring D[z]!!

The greatest common divisor d(z) = s.y.t.(a(x),b(z)) of a(x) and b(x) can be

selected as a monic polynomial.

Based on Euclidean algorithm, there exist s(x),t(x) € K[z]| such that
d(x) = s(x)a(z) + t(x)b(x). (6.24)
Definition 20. A derivative Dp(z) of a polynomial

p(z) = Zpkxk € Klx]
k=0

is the polynomial
Dp(x) = Z kppr®! € K[z]. (6.25)
k=1

Lemma 6. Let K be a field, p(z) € K|x] and degp(z) > 1. Then

deg Dp(z) = degp(x) — 1, degp(z) > 1; (6.26)

p(z) fDp(z). (6.27)

Theorem 15. Let K be a field and a(z),b(x), c(z) € K[z]. Then
a="bc, btl < d=syt(a,Da)# 1. (6.28)
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Proof.

Suppose a = b%*c, b % 1. Since Da = b(2¢Db + bDc), we have b|syt(a, Da) and
therefore syt(a, Da) o 1.

Let d = syt(a, Da) o 1. Then there exists p € Pk, p|d. Hence a = ps and
Da = pr. Besides Da = (Dp)s + pDs, so pr = (Dp)s + pDs. Since p{ Dp and p
is prime, we have p|s. Hence s = ph and a = ps = p*h for some h and p £ 1. [

Claim (6.28) is equivalent to the following claim:
A polynomial is square-free if and only if it does not have common factors with

its derivative.

Example 16. Let p(x) = 2° + 22° + z € Q[z]. By

syt(p,Dp) # 1 = (6.29)

the polynomial p(x) has a multiple factor in Q[z].

6.4  Zero points of polynomials
Theorem 16. Let K be a field and p(z) € Klz], 1 < degp(z). Then

pla) =0, ae K& (x— a)K][ }p(x). (6.30)

Proof. "0 —": Let p(a) =0, o € K. With the division algorithm we have
p(z) =q(z)(x — a) + r(x), degr(zr) < deg(x —a) =1, (6.31)
so r(x) € K is constant. Moreover

0= pla) = g(@)(@ = a) +r(a) =r(a),

= r(z)=0z) = (rv- a)K][ ]p(:t). (6.32)
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H% AH:

(x — Oz)K][ ]p(x) = (x — a)h(x), = pla)=0, ac K. O (6.33)

Remark 6. Let K be a field and p(z) € KJz], degp(x) = 2 or degp(z) = 3.
If p(x) is reducible in Klz|, then it has a first degree factor and from Theorem
we know that p(a) = 0, a € K. If there is no zero point in K, then p(z) is
irreducible in K{z].

Extending of Definition 3]

Definition 21. Let K C L be a field and p(x) € K|[z]|. Then

Z1(p) ={a € L[ p(a) = 0} (6.34)

is a zero set of p(z) in L.

Definition 22. Let o € L, K C L a field and p(z) € K|[z]. If
(x —a)™ || p(z), meN, (6.35)
Llz]
then m = my(a,p(x)) is a multiplicity of zero point (order of zero) « of p(x).

The number

np(p(z)) = D myla,p(@)). (6.36)

p(e;)=0, a; €L

is the number of zeros in L.

Theorem 17. Let K be a field, char K=0, o € K and p(z) € K[z] and m € N.
Then
(z—a)” || p(z) < (6.37)

Dfp(a) =0 VYk=0,..,m—1 ,D"p(a)#0. (6.38)

Remark 7. Theorem does not hold for instance in the ring of polynomials
Lip|z).
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Example 17. Let p(z) = (z — 1)3(z 4+ 1/2)°. The zeros of p(z) are a; = 1 and
ay = —1/2. Their order is

mg(a1,p(z)) =3, mglas,p(z)) =5 (6.39)

and the number of zeros

ng=3+5=S8. (6.40)

Example 18. Let (22 + 1)(2? — 2) € R[z]. Now, the number of zero points is

ng =0 < 4 = degp(x). (6.41)
ng = m(—V2) +m(v2) = 2 < 4 = degp(x). (6.42)
nec =4 = degp(z). (6.43)

Theorem 18. Let K be a field, p(z) € K[z] and degp(z) > 1. Then the following
holds true

ni(p(z)) < degp(z). (6.44)

Proof:
1. If A a zero point, then mg(a,p(z)) = 0 for all @ € K and nk(p(z)) =0 <
1 < degp(x).

2. Let (y, ..., B be distinct zero points and let us denote

my = mi(B,p@) 21 and (z—B)™ | plx), =1,k (6.45)

Klz]
Then
plx) = (z— B1)™pa(x), pa(B1) #0 = pa(fa) =0, (6.46)
pa(w) = (v — B2)™ps(x), ps(B2) #0 = p3(Bs) =0 ... (6.47)
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Eventually

p(x) = (x — L))" - (v = Br) " pry1(z), degpryi(z) > 0. (6.48)
We get
degp(z) =my + ... + my + deg pry1(2)
>my+ ... +mp =ng(p(z)). O (6.49)

Theorem 19. Algebraic fundamental theorem.

Let p(z) € Clz|, deg p(z) > 1, then

ne(p(r)) = degp(w). (6.50)
Theorem 20. Let K C L be a field, p(r) € K[x] and p(x) € Jx[). Then

mr(a,p(x)) <1 Vae L. (6.51)

Proof. Since p € Jg[y, then degp(x) > 1 and therefore p f/Dp. Thus according
to Lemma [5|it holds that p L Dp and according to Theorem [§ we have

SVt (P, Dp) =1 =sp+tDp, s,t€ Klz| C Llx]. (6.52)
If
d|p and d | Dp (6.53)
Llz] L[z]
then according to Equation (6.52)) it holds that d | 1. Hence
L[z]

Then according to Theorem [15] there does not exist a square factor in L[z], so A
a € L such that

(x — a)QL[\ ]p(x). (6.55)

Hence:
If p(a) = 0, then mp (e, p(x)) =1 and
if p(a) # 0, then mp(«, p(x)) = 0. O
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Theorem 21. Let K be a field, p(z),q(z) € Klz], p(z) € Jgpz and p(a) =
¢(a) = 0. Then

p(x) | q(x). (6.56)

Proof. Since p is irreducible,

d=sytgp(p,g) =1 or p (6.57)

If d =1, then 1 = s(x)p(x) + t(z)g(z) and 1 = s(a)p(a) + t(a)g(a) = 0.
contradiction.

Hence d = p and consequently p|q. O

6.5 Polynomial division / division of factors

Note that if p € P, then Z, is a field.

Definition 23. Let n € Z, and a(z) = ag+a12+...+ag2¢ € Z[x]. The mapping

ro(ag + a1 + ... + agx?) = Gy + @y + ... + Gga® (6.58)
Tt Zlx] = Zyx], ro(a(z)) = a(x),
is a reduction (mod n).

Theorem 22. The reduction
ot Zlx] = Zyx], rh(a(z)) = a(x),

is a morphism in the ring.

Definition 24. A vector (ay, ...,as) € Z™"! and a polynomial a(z) = ap +ax +

... + asx? € Z]x] are primitive if

syt(ag, ...,as) = 1. (6.59)
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Sometimes, it is also required a4 > 1 for primitivism.

Lemma 7. Let a(x) € Z[z] and B,C € Z.
A. If a(z) is primitive, then

B | C-a(zx) = B|C.
Z|z] Z
B. If D =syt(ao, ..., a4), then

a(r) =D -b(z), b(x) € Z[z],

where the polynomial b(x) is primitive.

C. Polynomials in A. and B. may be replaced by corresponding vectors.

Lemma 8. Let b(z) be ¢(z) be primitive. Then b(x)c(z) is primitive

Proof. Let

a(x) = b(z)e(z) = ag + a1x + ... + a,z? € Z[x]

and

syt(ag,...,aq) =d>2 = I peP, pld

We apply a reduction (mod p)
a(z) = 0(x) = b(x)e(x) € Z,[].

Z,|x] is the integral domain, hence

b(z) =0(x) or ¢(z)=0(z).

Hence
plsyt(bo, ...,bg) or plsyt(co, ..., cc)

which is a contradiction.

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)
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Remark 7. A. Let B=2¢cQ,q€Z,re€Z", qLr. Then
den(B) :=r (6.67)

is a denominator of rational number B.

Let den(B;) =rj, j =1,...,m. Then

pyn(BlaaBm) = pyj(rla“'arm) (668)

is the least common denominator (=lcd) of By, ..., By,.

Lemma 9. Let

B(xz) = By + Bix + ... + B,2™ € Q[z] and
R :=pyn(By, By, ..., Bp), Q := syt(RBy, ..., RBy,). (6.69)

Then the polynomial

R
éB(x) =by+ bz + ... + bpa™ € Z[x] (6.70)

is primitive. Moreover R L Q).

Proof: Since

R
@B] :bj, ] :O,l,...,m, (671)
then
(RBg, ..., RB,,) = Q - (b, by, ..., byn), (6.72)

where QQ = syt(RDBy, ..., RB,,). According to [7| it follows that (bg, b1, ..., b,,) and
the polynomial by + byx + ... + b, ™ are primitive.

Now, it remains to show R L Q. Let d = syt(R,Q), so R = dr and @ = dg,
r,q € Z*. From (6.71)) it follows that

Rq; = Qrjb; = rg;=qrjb;, j=0,1,....,m. (6.73)

Since ¢; L rj, we have r;|r for j =0,1,...,m. Hence R = dr|r, so d = 1. O
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Example 19.

21 14
B@g:7+€w+§¢% R=15 Q=T. (6.74)

Theorem 23. Gauss Lemma. Let a(z) € Z[z] be primitive and dega(z) >
2. If a(x) is reducible in the polynomial ring Q[z|, then there exist primitive

polynomials

b(x),c(z) € Zlz], that a(x)=0b(z)c(z). (6.75)
Proof. Suppose that
a(x) = B(z)C(x), B(z),C(z) € Q[z]. (6.76)

According to Lemma [9] there exist R, Q, T, S € Z* such that

gB@y:m@ezm,

T
EC(m) = c(z) € Zx],

RLQ, TLS, (6.77)
where b(x) and ¢(z) are primitive. Moreover
RTa(z) = QSb(x)c(x). (6.78)

Since R L @ and a(z) is primitive, then Q|7 = Qt and analogously S|R = Qr.
Hence

rta(z) = b(x)c(x), (6.79)
where b(z)c(x) is primitive, so rt = 1 and finally a(z) = b(x)c(x). O

According to Gauss lemma, reducible a(x) € Z|x] can be factorized in Z[z]. Thus,
the polynomial is irreducible in Q] if it is prime in Z[z].

Theorem 24. Let a(z) € Z[x]. Then there exists the unique representation
a(x) = Aay(x) - ap(x), A€, (6.80)
where ay(z), ..., ax(x) € Z|x] are primitive irreducible polynomials.
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Theorem 25. Let p € P, a(x) € Z[x]

, a
If @(x) is irreducible in Z,[z], then a(x) is irreducible in Q[z].

Proof. Suppose contradiction

a(x) =b(z)c(r), B=degb(z)>1, C =degc(x)>1.

Since
degb(z) < B, degé(z) <C
and
degb(x) + deg?(z) = dega(z) = A,
then

degb(z) = B> 1, dege(xr)=C > 1.

Hence a(x) would not be irreducible in Z,[x].

contradiction.

Theorem 26. Eisenstein’s criteria. Let
a(r) =ap + a1z + ... + a,x® € Z[z], dega(z)=A>2.
If there exists p € P such that
pla; Vi=0,1,....,A—1, p* fag, p faa,

then a(z) is irreducible polynomial in Q[x].

Proof. Let

(x) € Zy|z] and A = dega(z) = dega(x).

(6.81)

(6.82)

(6.83)

(6.84)

(6.85)

(6.86)

(6.87)
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or

ag + a1z + ... + arz = (bg + byx + ... + bpx®)(co + ... + ccz©) (6.88)
and
B =degb(x) >1, C =degc(z) >1, B+C=A. (6.89)
We have
plag = boco, p* fag = either plby or p|cp. (6.90)

Let us suppose

plbo and p feo. (6.91)
Since
play = bocy + bico, = plb (6.92)
plag = bocg + ... + bgcy, = plbs. (6.93)
But
ar =bgce, = plaa. (6.94)
contradiction. O

Theorem 27. Let
a(r) = ag + a1z + ... + a2z’ € 7]

and

a(r/s)=0, r,s€Z, rLs, (6.95)

then
7ﬁ|a0’ S|GA, (696)

40



This can be used to find possible rational zero-points for a polynomial.
Proof. Equation (6.95) implies

shag + sV ray + ..+ sr au +rtas =0 (6.97)

The assumption r L s implies r|ag and s|a. O

Theorem 28. Let K be a field, p(z) € Klz], p(z) € Jk[, degp(x) = d and
k € K. Then

p*(z) = 2%p(1/z) € Jxp), i) =plz+Fk) € JKal- (6.98)
Example 20.

Consider the decomposition of the polynomial
a(r) = 42 — 22° + 31 + 5 € Z[z] (6.99)

If a polynomial of the degree 3 is reducible, it has at least one factor of the degree
1, so

a(z) = b(z)c(x), degb(x)=1. (6.100)
Set p = 3 and apply the reduction (mod 3):
a(z) = b(x)e(x) € Zslw], degb(x) = 1. (6.101)

Then

b(z) | a(z) =2 +2°+2, degh(z) =1. (6.102)
Z3]z]

According to Theorem [16] a(x) has a zero point in Zs. But

a(0)=2, a(l)=1, a2)=2 (6.103)

contradiction. Therefore a(x) is irreducible in the ring Z[x] and moreover in the

ring Q[z].
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Example 21. FEisenstein’s criteria: p = 7 and
a(z) =7+ Tz — 142° + 22° € Jgp). (6.104)

Using Theorem 2§ we get

b(z) = 2°a(l/z) = 2 — 142® 4+ 72" + T2° € Jop; (6.105)
bz —1)=2—14(z— 1>+ 7(x — )"+ 7(x — 1)° € Jou;; (6.106)
Example 22.
Let p € P. Then
a(z)=1+z+2*+ .. +2"" € Jgpu. (6.107)
Proof. We have
(o) = 221 (6.108)
al\xr) = .
r—1"

and we substitute x = ¢ + 1. Then

t+1)P -1
a(x) =a(t+1) :&:
p—l p p—2 p p 1
L (p_l)t o+ (2)t+ (1> (6.109)
We should know that
p‘@) Vi<k<p-—Ll (6.110)

We can see that assumption from Eisenstein’s Theorem is satisfied, so a(t + 1) is

irreducible and hence a(z) is irreducible in the ring Q[z].
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6.5.1 Reducibility in C[z] and R|z]
Let
a(z) = ag + a1z + ... + apx® € Clz], dega(x) > 1,

then

a(x) =as(x —aq) - (x —aa), a,..,ax€C
by the Fundamental Theorem of Algebra. Consider now
a(z) = ap + a1z + ... + axz® € Rlz], dega(r) > 1.
Then we have
a(z) =0 < a(z) =

because

0=a(z) =ag+ a1z + ... + a,z".

Therefore, non-real complex roots exist in pairs:

B; # B, Bj € {au, ..., aa}. Consequently

a(z) = as(r — o) (v —an) - (x = Bi)(x = B1) -+ (& = Be)(x — By,
ay,..,ap €R, By, 0, € C\R, h+2k=A.

Write 8 = a + ib, where a,b € R and compute

(x—B1)(x—B1) = (v —a—ib)(x —a+ib) = (x —a)* + b* € R[z].

Hence

a(z) = aslz— o) (v —op) - (@ —a1)* +b1) -+ (v — ax)® + bp),

(6.111)

(6.112)

(6.113)

(6.114)

(6.115)

(6.116)

(6.117)

(x—a1),....,(x—ap), ((x—a))> +b]),...,((x — ap)* + b7) € R[z].

In other words: Any non-constant polynomial with real coefficients, factors in

R[] into first and second degree polynomials.
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7 Symmetric polynomials

Definition 25. Let R be a ring. A polynomial

P(ty, ... tm) = Z ittt Diyis € R (7.1)

Finite
is m variable R-coefficient polynomial, where ¢4, ...,%,, are polynomial variables.

A degree of a polynomial P is the number
deg P(t1,...,tm) = max{i; + ... + i, }. (7.2)
For all R-coefficient polynomials we use the notation

R[t1, .o tl- (7.3)

tit---tim_ Then, terms can be

ctm 71

Let < 41,...,%, > be exponents of a term p;, .
compared as in the case of a single variable polynomial. Thus, R[t1, ..., t;,] can be

defined in a natural way by the identity and the multiplication.
It can be proved that (R[ty, ..., tm], +, ) is a ring.
Let Sy be a set of permutations of {1,2,...,m}. If X € S,,,, then we write

p/\(tl, ceey tm) = p(t)\(l), ceey t)\(m)). (74)

Definition 26. A polynomial p is symmetric if

Pltays s tagm)) = P(t1, oy tm) VA€ Spn. (7.5)

7.1 Elementary Symmetric Polynomials

Definition 27. Polynomials
S = Sk<t1, 7tm) = (76)
Z tj1tj2'”tjk-7 k‘:L...,m,

1<j1<ja<.<j<m

are elementary symmetric polynomials.
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Lemma 10. Elementary symmetric polynomials sy, ..., s, are symmetric poly-

nomials, i.e.

Sk(t)\(l), ...,t)\(m)) = Sk(tl, ...,tm) VAXES, (77)
forall k=1,...,m.
They look like
S1 = tl + ...+ tm, (78)
S9 = tltg + t1t3 + ...+ tmfltm; (79)
S3 = tltgtg + t1t2t4 + ...+ tm_gtm_1tm; (710)
Sm — tltg s tm—ltm; (711)

Theorem 29. Fundamental theorem about symmetric polynomials.
A symmetric polynomial S(t1, ..., t,) from R[t, ..., t,,] can be represented by ele-
mentary symmetric polynomials s; = s1(t1, ..., tm)s ooy S = Sm(t1, .., t). In ot~

her words, there exists a polynomial P(sq, ..., $;,) € R[s1, ..., $;] such that
S(tl, ceey tm) = P(Sl(tl, ceey tm); ceey Sm(tl, ceey tm)) (712)

Let S C R be a ring. Suppose that a polynomial a(z) = ag+a1x + ... + 2™ € S|x]

is factorized in R[z| as follows

a(x) =(x —ay) (T — ap), ai,..,q, €R. (7.13)

Theorem 30. Let b(ty,...,t,) € S[ti, ..., t,n] be a symmetric polynomial. Then

b(ag, ..., ) €S. (7.14)
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Let K C L be a field. Suppose that a polynomial a(z) = ag + a1z + ... + apz™ €

K|z] is factorized in L[z] as follows

a(x) = am(r —ay) - (T — ), ai,..,y € L. (7.15)

Theorem 31. Let b(ty,...,t,,) € K[t1,...,t,] be a symmetric polynomial. Then

blar, ..., am) € K. (7.16)
Example 23. Let
2 +br+c=(xr—a)lr—p) Q] (7.17)
Then
o’ + B* e Q, (7.18)
o® 4208+ 3 € Q. (7.19)
8 Field extension

8.1 Field extension

Definition 28. A field K is a subfield of L or L is a field extension of K & K
and L are fields and K C L.

This course uses the notation:

L: K and K < L.
If L : K, then we can interpret L as a vector space over K by setting addition
LxL —L, («a,f8) —a+p; (8.1)
and scalar r € K multiplication
KxL =L, (ra) —ra (8.2)
using the field operations.
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Definition 29. A degree of a field extension or [L : K| = dimg L is finite if
[L: K] < oo

8.2 Field tower

If K <M < L, then the field M is called a field tower.

Ly Lo )
. / K <Ls< Iy
Ls < § and
| K<Ly< Lo
\
K
Theorem 32. Let K < M < L be a field tower. Then
[L:K|]=|[L:M|[M:K]. (8.3)
Proof. Let
M= {o,...,00)k = Koy + ... + Ka,,, dimg M =r; (5.4)
8.4
L:<517---7B3>M:Mﬂl+---+Mﬁ57 dlmML:S
Set v € L. Then
v = ijﬂj, m; € M;
j=1
m; = Zkijaiv k’i]’ ceK =
i=1 (8.5)

Y= ZZ k:ijaiﬁj < KOqu + ...+ KOérﬁs,

i=1 j=1

#{a;p;} =rs.
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It remains to show that {«;(;} is linearly independent.

i i hijaiﬁj = O, hi]’ e K =

i=1 j=1

ZS: <Z hiﬂi) By =0=

j=1 \i=1

i hijOéi =0=
i=1

hiy=0, V ij O

(8.6)

8.3 Quotient field

We will focus on the concept of rational numbers and rational functions.

Definition 30. Let D be an integral domain and a,b,c,d € D, bd # 0. Then we
define
(a,b) ~ (¢,d) < ad=bc. (8.7)

Theorem 33. The relation ~ is the equivalence for D x (D \ {0}) = D.

Definition 31. The class of equivalence
[a,b] = {(c,d) € D (¢,d) ~ (a,b)}
has addition defined as
lat, b1] + [ag, ba] = [a1by + asby, bibs] (8.8)

and multiplication as

[a1, bi][az, be] = [araz, bibs] (8.9)

for all (al, b1>, (CLQ, b2) e D.
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We use the notation

a/b = % —[a,b] and Q(D) = {a/b| (a,b) € D).

It can be proven that
Theorem 34. The triad (Q(D),+,-) is a field.

We say that Q(D) is a quotient field (field of fractions) of D. Then the isomorphic

result

{FlaeD}=D, (8.10)

holds true and hence we can write a = a/1. Moreover

—1
a_afby " _al _a
ab™t =< (1) =177 7 (8.11)

Example 24.

Let D = 7Z, which is an integral domain. Then we define the quotient field Q(Z)

which determines rational numbers
Definition 32. The set of rational numbers is the field Q = Q(Z).

Cancellation of rational numbers

ac a
= _Z 12
be b (8.12)
and convert
a da
>_ = 1
b db (8.13)

follows from Definition Bl
Example 25.
Let K be a field, then the ring of polynomials D = K{z| is the integral domain.

Definition 33. A field of rational function is the field K (z) = Q(K|x]).
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The rules which were mentioned above hold true:

(22 =1z x+1 1
= =14+ —. 8.14
(x —1)2? x * x (8.14)

Example 26.

Let K be a field. The set of series D = K][[T]] is an integral domain. Then its

quotient field is isomorphic to Laurent series, so in other words

Theorem 35.
K((T)) = Q(K][T]]). (8.15)

These structures have the following relationships:

K[T) ¢ K(T) C K((T)), (8.16)

K|T| Cc K[[T)] c K(T)). (8.17)
Definition 34. The derivation

D: K((T)) — K((T))
is a linear mapping and it satisfies

DT* = kT V kel (8.18)

9 Algebraic numbers
9.1 Algebraic elements of subfields

Definition 35. Let K C L be a field and « € L. If there exists p(z) € K[z] \ K
such that

pla) =0 (9.1)
then « is algebraic over the field K.

Otherwise « is transcendental over the field K.
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Example 27. A. It is known that 7 is transcendental over Q.
B. Since

p(m) =0, p(r)=x—m e Rz, (9.2)
it is obvious that 7 is algebraic over R.

Definition 36. Let K C L be a field and a € L. The minimum polynomial of
the algebraic number « is a monic polynomial M,(z) € K|z] \ K of the lowest

possible degree such that
M, (a) = 0. (9.3)

Let deg M, (z) = n, then the degree of the algebraic number a over K is

dega =deg oo =n > 1. (9.4)

Theorem 36. Let K C L be afield and o € L. The minimal polynomial M, (z) €

K|z], of ais unique and irreducible in the ring of polynomials K[z].

Proof. If M, (x) was reducible, then
My (x) = Ai(x)As(x), degAi(x),deg Ax(z) <n — 1. (9.5)

Since

0=M,(a) = Ai(a)As(c), (9.6)

then there would be a polynomial A;(x) € K[z] such that

Ai(a) =0, degA;(x) <n—1. contradiction. (9.7)

Uniqueness: Let M, (z), No(x) € K|[z], be two minimal polynomials of a. They

are irreducible and M, (a) = N,(a) = 0, so according to Theorem ?? we have

M,(x) | No(z) and Ny(z) | M,(z). (9.8)

K{z] K[z]

Therefore M, (z) = k- N,(x) and moreover M, (z) = N,(z). O
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Definition 37. Let o € C be an algebraic number over Q (in that case, we
shortly say an algebraic number) such that dega = n. If @ € C is not an algebraic

number, then « is transcendental.

Let o be an algebraic number such that deg o = n. Then the minimal polynomial
M, (x) € Q[z], is irreducible in the polynomial ring and deg M, (z) = n. Hence

it is of the form
My(z) = 2" + ap_12™ + ... Fa1x 4+ ag, a; € Q, (9.9)

which is an irreducible monic polynomial.

9.1.1 Algebraic integer

Definition 38. Let a € C be an algebraic number such that dega = n and its
minimal polynomial

M, (x) € Z[z],. (9.10)
Then « is an algebraic integer of the degree n.

Thus, the minimum polynomial of the degree n is
My(z) = 2" + ap 2™ '+ ...+ ax +ag, a; €7, (9.11)

which is an irreducible monic polynomial.

Example 28.

S

1+
2

(9.12)

is the algebraic integer of degree 2..

Example 29.
22— 2= (z—a)(r —)(r — a3) (9.13)
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According to Theorem [20| zero points of an irreducible polynomial are distinct.
Let oy = a,ag,...,a, € C be zero points of the minimal polynomial M,(x).
Therefore o; # o if 7 # j.

Definition 39. Conjugates of an algebraic number « are zero points of its mini-

mal polynomial M,(z), i.e.

A,y ..., Oy e C. (914)

Definition 40.

Monomorphisms associated with conjugates of algebraic number a are morphisms

01,y 00 K=Q(a) — C; (9.15)

which satisfy:
o; is an injection; (9.16)
oi(z+y) = oi(x) + 0:(y); (9.17)
oi(zy) = oi(x)oi(y); (9.18)
oilg =1d: Q — Q identity (9.19)
oila) =a;, i=1,...,n. (9.20)

Specially

o1 = Id|K, 0'1(04) = (. (921)

Definition 41. Let Q < K < C and [K: Q] < oo, then K is a number field.
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Theorem 37. Let K be a number field and ¢ : K — C a monomorphism. Then

ola)=a VaeQ. (9.22)
olaa+0p) = ac(a) + bo(5), Va,beQ,a,p € K. (9.23)
o(p(B)) =p(a(B)) VBeK, p(z)ecQlzl (9.24)

9.2 Extension by an element

Definition 42. Let S < R be a ring extension and «y, ..., a,,, € R. Then the set

Sl ey ] = N v, (9.25)
SU{al ..... am}gng

is the smallest subring of R containing S and ay, ..., Quy,.

We can see that S[ay, ..., ;] consists of polynomial values in points s, ..., .

Specially,
Sla) = {so + s+ s20° + ... + s,0"| 5; € S, n € N} (9.26)

is a single variable o polynomial ring.

Definition 43. Let K < L be a field extension and a4, ..., a,,, € L. then the set

(K 00, .y Q) = N M, (9.27)
KU{ai,....am }CM<L

is the smallest subfield of L containing K and ay, ..., ayy,.

Theorem 38.
(K 0, .y ) = K(aq, ..., ) = (9.28)

A
{§| A, B € Klay, ...,ay), B# 0}.

o4



Theorem 39.

(K,0) = K(a) = {%| A0). B(o)

Theorem 40. If « is transcendental over K, then

i.e. fields K(«) and K(z) are isomorphic.

10 Algebraic fields

€ Kla], B;«AO}.

(9.29)

(9.30)

(9.31)

Definition 44. An algebraic extension L : K is algebraic if all elements of L are

algebraic over K.

Remark 8.

Koy + ...+ Koy, := {k1og + ... + k| k1, oy b € K

KB, = KB+ KB' + ... + Kj3".

K[f], € K[f] = KB+ K" + ....

Theorem 41. Let L : K and S € L. Then

A. degx =5 <

and dimg K[f] = s;

(10.1)

(10.2)

(10.3)

(10.4)
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B. If 3 is algebraic over K, then K|[f] is a field;
C. [L:K]=r<oo = degypB=s|r;

D. A finite field extension L : K is algebraic.

(10.5)

Theorem 42. Let L: K, a € L be algebraic over K and degj; o = n. Then

A (K,a)=K[a)]=K+ Ka+ ..+ Ka"™;

B. [(K,a): K] = degp a =n;

C. fe(K,a) = degypf =kln;
D. The field extension (K, «) is algebraic.

Proof.
Theorem I} A. "=": Let degy [ = s. First, we show that

KB = K[Bls-1 = KB°+ KB' + ... + KB,
Consider the minimal polynomial of

Mps(z) = bpa° + ... + 2° € K|[x]
and a(f) € K[f], a(x) € Klz].

We apply the division algorithm:

a(z) = q(x)Mg(x) + r(x), degr(z)<s—1 =
a(B) = q(B)Ms(B) +r(B) =r(B) € K[fls =
K[B] C K[ﬁ]s—l = K[ﬁ] = K[B]s—l-

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)
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Next, we show that {3° 3!, ..., 357!} forms a base. So, let us suppose that

koB? + kifft 4 ..+ k187 =0,
ko,....ks 1 € K, k; #0, foralli=0,....s—1 =
degy 6 < s—1. contradiction. =
"<": Let K[f] = K[f]s-1 and dimg K[B] = s. Hence dimg K[f]s—1 = s and
K[Ble1 = KB+ K" + ...+ K, (10.13)
where {3° B!, ..., 371} are linearly independent over K. If
p(x) € Klz], 1<degp(z)<s—1, p(B)=0, =

{B% B, ...,35'}  would be linearly dependent. Contradiction

= degg B >s. (10.14)
On the other hand
p* e K[l = K[fls-1 =
B =koB' + kBt + . A+ ko1 = degr B < 5. (10.15)

~deg f=s5. O

Proof. Theorem (1] C:
We know from B. that K[f] is a subfield of L. Since [L : K| =r < oo, according

to the item A, we have
dimg K[f] :=s <dimg L=r = degpgf=s<r. (10.16)
K < K[f] < L forms a field tower. From Theorem [32| we have
LK) = [L:KIBKIB): K] = r—vs, v—[L:K[g).  (10.17)
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Hence

slr. O (10.18)
Remark 8.
Theorem [39] says
<K,a):K(a):{%] A(a), B(a) € Kla], B#O}. (10.19)

but [42| A. says that K («) is determined just by polynomial values.
Example 30.

Consider the field extension
L:=(Q,2"?,2'%) = ((Q,2"?),2'7%). (10.20)

Let us denote

M, = (Q,2'%), M;:= (Q,2'3). (10.21)
At first

M, =2>—2=(z—ay)(z—ay), a =22
Ma1 S J@M, degQ Ma1 =2,

= [My:Q]=2; (10.22)

M/BI = x3 —2= (CE - 51)(1. - 52)(:6 - ﬁ3)7 51 = 21/37
Mg, € Jopu degQ Mg, = degQ Mg, = degQ Mg, = 3,
= [M3:Q]=3. (10.23)

According to Theorem 2] C it holds that

b1, B2, B3 ¢ My, oy, a0 & M. (10.24)
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Thus, the polynomial 23 — 2 does not have zero points in the field My, so 23 — 2

is irreducible in the ring of polynomials Mj|x].

Therefore

L : M,] = [(My, 2Y/3) : (Q, 2Y/%)] = 3. (10.25)
According to Theorem [32] it holds that

IL:Q]=[L:M,][Ms: Q] =6. (10.26)

Similarly as in the proof of Theorem [32] we get
M, = (1,2 = Q-1+ Q22 dimg M, = 2;
L = (1,2Y/3,22/3), = My - 1 + M,2'/3 4+ M,2%3,  dimy, L = 3.

That implies

L= @ -1 + Q21/2 =+ Q21/3 4 Q21/221/3 + Q22/3 4 Q21/222/3
— <17 21/6’ 22/6’ 23/6’ 24/67 25/6>Q7
Hence
(Q, 212,213 = (Q, 2"/%) (10.27)

or written in a different way

Q(2Y2%,213) = Q(2Y°). (10.28)
Lemma 11. Let
(K,o) : K] =m;, 1=1,..r (10.29)
Then
(K, 01, .., K] <mj---n,. (10.30)

Theorem 43. A field extension L : K is finite if and only if L = (K, aq, ..., o)

and L is algebraic over K.
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11  Algebraic numbers A

A set A C C is the set of all algebraic numbers over Q. The following result shows

that A is a subfield of complex numbers.

Theorem 44.
A <C. (11.1)

Corollary 2. If o, 8 € A, then

atf, af, a/pf € A. (11.2)
According to Fundamental Theorem of Algebra the set C is algebraically
closed, i.e. if 7 is algebraic over C, then 7 € C.
The following result tells us that if w € C is algebraic over A, then w € A.

Theorem 45. The set of algebraic numbers A is algebraically closed, i.e.

a(x) € Alz]\ {0(x)}, a(w)=0 = weA. (11.3)

12 Number field

Theorem 46. Let K be a number field. Then there exists 7 € K such that
K =Q(r). (12.1)
Thus, number fields are simple extensions of Q, i.e. they are generated by a single

element.

Proof. By induction.
We look at the case

K =Q(a, 8) (12.2)
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and show that
K=Q(a+cf) where ceQ.

Let

My(z)=(r—aq) - (z — o) € Q[z];

Mg(z) = (x — 1) -+ (x — Bm) € Qx].

Then there exists ¢ € Q such that

yi=a+cfF#a;+cB, Vi, j) #(1,1).

a). Obviously

yi—a+cBeQaB) = Q»)CQ

b). We show (not so easily) that

Q(e, 8) € Q7).
Consider polynomials
r(z) = Ma(y —cx) € Q(y)[z], degr(z) =mn,

r(8) = Mu(y — cB) = Ma(ar) = 0;
Mps(B) =0,

where zero points (; of Ma(x) are simple.

Let us set

r(1) =Mp(1) =0 = 7=

, B)-

Mj(x) € Q[z],

O0=r(1)=My(y—cr) = ~vy—cT=uop

= y=a,+cr =+ ch

= y=a+cB=> T=p.

(12.3)

(12.4)

(12.5)

(12.6)

(12.7)

(12.8)

(12.9)
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Hence, a simple zero point £ is the only common zero point of r(z) and Mgz(z).

Let us denote
d(x) = s.y(r(z), My()) € Q(y)[a]. (12.10)

If

M) = My() =0 = k= =

(z — 5)2C|[\ }Mﬁw) (12.11)

Contradiction. Therefore degd(xz) =1 and
d(z) = (x - ) € QM)[z] =

BeQ) = a=y-cBeQ() =
Qe 5) € Q). O (12.12)

Example 31.
Q(i,V2) = Q(i — V2). (12.13)

12.1 Conjugates, field polynomial

Theorem 47. Let K = Q(7) be a number field and [K : Q] = m. Then, there

are exactly m different monomorphisms

o, K—=C, i=1,..,m. (12.14)
Remark 9. Even if a € K| it may happen that 0;(a) € K for some i.

Example 32. Let K = Q(2'/3), then
02(213), 05(2/3) & K. (12.15)
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Definition 45. Let K = Q(7) be a number field and K : Q] = m. A field

polynomial of an element S € K is

Ky(w) = ][ = o:(8)). (12.16)
where numbers
0i(B) € C (12.17)

are conjugates of 3 over K.

Theorem 48.
Kgs(z) € Q[z]. (12.18)

Proof: Based on Fundamental Theorem About Symmetric Polynomials.

Let us recall that according to Definition conjugates of 5 € A are zero points

of the minimum polynomialM3(z) € Q|x],

b1, Ba € C. (12.19)

We have
deg K3(z) =m, degMs(z) = d. (12.20)

Theorem 49. Let € K= Q(7) and [K: Q] = m. Then

Ms(z) | Ks(x); (12.21)
Qle]
Ka(z) = Mg(z)™?, m/de Z". (12.22)
Corollary 3.
{01(5)7"‘70-771(6)} = {Bla---,ﬁd}; (12-23)
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eQ < o1(f)=..=0c.P); (12.24)

Q) =K & oi(f)#0;(8) Vi#j (12.25)

12.2 Discriminant/not required

Definition 46.

Let K = Q(7) be a number field and [K : Q] = m. A discriminant of numbers
M-y Ym € Kis defined as

A1y ooy Ym) = (det(0:(5) )izt mjet,m)’ = (12.26)

oi(m) oa(n) o om(m)

Ul(%ﬂ) 02(7m) Um(%ﬂ)

A discriminant of an element § € K is

3(B8) = A(L, B, .., pm 1) = (12.27)
1 1 [
oi(B)  o2AB) .. ow(B)

o (B)" " o(B) L aw(B)
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Theorem 50.

Theorem 51. The set {71, ...,7n} is a base of K if and only if the discriminant

is not zero, i.e.

dimg Q(v1, ..y Ym) =m < AV, .oy Ym) # 0. (12.29)
Theorem 52.
6(8) = [ [(e:(8) = 0,(8))* (12.30)
5(8)£0 & degg(B) =m; (12.31)
5(B)#£0 & QB =K (12.32)

12.3 Norm and trace

Definition 47. Let K = Q(7) be a number field and [K : Q] = m. A norm of an

element § € K is the number

N(B) = Nk(8) = Hm(ﬂ) (12.33)
and a trace is the number
T(8) = Te(8) = 3_i(B). (12.34)
Theorem 53. )
Nk(B), Tx(B) € Q. (12.35)
Nk(B)#0 < (B #N0. (12.36)
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Proof. (12.35)):

Theorem 54.
N(ap) = N(a)N(B)

T(ra+ sp) =rT(a)+ sT(5);

for all o, B € K, 1,5 € Q.
Example 33.
Let us show by using the trace function that
31/2 ¢ K = Q(zl/Q) _ @[21/2].
Notice that
[Q(2'%): Q] = [Q(3"*) : Q] =2.

Suppose the opposite
31/2 e Q[Ql/?] — @ _|_ 21/2@

SO

32 =a+ 022 abeqQ.
We compute the trace

TK(31/2) = TK(a) + TK<b21/2) = 2a + bTK(Ql/Q)

(12.37)

(12.38)

(12.39)

(12.40)

(12.41)

(12.42)

(12.43)

(12.44)

(12.45)

(12.46)
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On the other hand, according to ((12.22)) the field polynomials

2
Kypp(z) = [[(x = 0,(2"/%)) = 2® — Ti(2"%)x + Nk(2'?);
=1

Kyp(x) = [[(x = 0:(3Y%)) = 2” = T (3")2 + N (3"/?)

i=1

are powers of corresponding minimal polynomials
Myip2(x) = 2% — 2, Ma2(v) = 2° — 3
Since
2? — 2 = 2 — Tx(2Y%)z + Nx(2'?);
2? — 3 = 2% — Tx(3Y%)z + Nk (3Y?), (12.47)
we have
Tk (2'%) = Tk (3"%) = 0. (12.48)

Now, from ([12.46|) we get

a=0 = 32=pY2 pecQ
= 3/2Y?°=b =

Ti((3/2)'/?) = 2b. (12.49)
But if we look at the field polynomial of (3/2)'/2:
Kayaypa(n) = 2 = Te((3/2)' )+ Nie((3/2)"2);
Mya(a) =22 —3/2 =
Tx((3/2)*)=0 = b=0
= 3/2=0. (12.50)
contradiction. -
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Theorem 55. Not required. Let K = Q(7) be a number field, [K : Q] = m, let
M. (z) be the minimal polynomial of 7 and DM, (x) its derivative. Then

AL, 7, ., 7™ = (=1)™m=V2N (DM, (71)). (12.51)

Theorem 56. Not required. Let K = Q(7) be a number field, [K : Q] = m and
Y1y - Ym € K. Then

A, e Ym) = det(T(7i75))- (12.52)

13 Algebraic integers - B

The set B C C consists of all algebraic integers over Q.
The following result shows that the set of all algebraic integers B is a subring of

the set of all algebraic numbers A

Theorem 57.
B <A. (13.1)

Corollary 4. If o, 8 € B, then

a+f, af €B. (13.2)

The set B is algebraically closed:

Theorem 58. Let

b(x) =2" 4+ ...+ by € B[z] \ {0(x)},

bw)=0 = weB. (13.3)
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Example 34.
A =a+1, B +af*+5=0 (13.4)

w'—B=0 = weB. (13.5)

Theorem 59. If o € A, then 3 the smallest d € Z* such that

do € B. (13.6)

Definition 48. The number d € ZT from Theorem is called the denominator

of the algebraic number av. We write den o = d.

Example 35. Let

5 +a+1=0, = (5a)+5a+5=0 = (13.7)

Sa €B, den a=>5. (13.8)

Definition 49. Let K = Q(7) be a number field. Then

Zg =KNB (13.9)
is a ring of integers of K.
Example 36.
Lo = 7. (13.10)
Example 37.
2V ¢ Q. (13.11)

Proof by contradiction:

2MTeQ. But 2"eB = 2Y7 ¢z

Obviously 1< 2Y7 < 2. contradiction. [ (13.12)
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Example 38. Let n € Z>,. Then

ol/n 1 3l/n ¢ Q. (13.13)

The ring of integers is a subring of the set of algebraic integers

Theorem 60.
7 < Zg <B. (13.14)

Moreover

Theorem 61. Let § € Zg, then

Z|8] < Zx. (13.15)

Remark 10. However, it often happens that

Ly # Z[B). (13.16)

Example 39. K = Q(\/5) is the number field where

1 5 1 5
+2\/_ € Zx, +2\/_ ¢ Z[V5]. (13.17)
Theorem 62. Not required. Let K be a number field. Then
K=QW), Xe€Z. (13.18)

Theorem 63. Not required. Let K = Q(7) be a number field and [K : Q] = m.
If {\1, ..., A\m} € Zg is a base of K, then

A, Am) € Z\ {0} (13.19)

Theorem 64. Not required. Let K = Q(7) be a number field and [K : Q] = m.
Then there exists a base {1, ..., \,} € Zx of K over Q.

Theorem 65. Not required. Let K = Q(7) be a number field and [K : Q] = m.
Then there exists a base {1, ..., A} C Zg of Zg over Z.
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Definition 50. According to Theorem [65 a base of Zg over Z is formed by an

algebraic integer base of K.

Theorem 66. Not required. Let {\q, ...

,Am} C Zg be a base of a field K. If

A(M, ..., Ap) is square-free, then {\q, ..., \,,} is an algebraic integer base of K.
Example 40.
1 1
A (1, + ﬁ) =5 {1, + ﬁ} (13.20)
2 2
is the algebraic integer base of Q(v/5).
14 Divisibility in Zg
Theorem 67. Let § € Zg, then
Ne(8), Tx(B) € Z; (14.1)
Ng(B)#0 <« B#0. (14.2)
Let Zi be the unit group of the integer ring Zy.
Theorem 68. Let a,b € Zg, then
alb = N(a)|N(); (14.3)
Zx Z
a€Zy < N(a)==l; (14.4)
a~b = N(a)==xN(); (14.5)
IN(a)| e P = a€ Jg. (14.6)
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Proof.

114.3} Suppose
b=ca, a,bc€Zg (14.7)

since o; is the homomorphism, we have

oi(b) =oi(c)oi(a) Vi=1,..,m = (14.8)
N(b) = H i (b) = H oi(c) H oi(a) = N(c)N(a), (14.9)

where
N(b),N(c),N(a) €Z = N(a)|N(b). O (14.10)

14.4} First, let us suppose

ac€ly = all (14.11)
Zx

The relationship (14.3)) implies

N(a)éN(l) =1 = N(a)==l1. (14.12)
Now, suppose
N(a) = +1. (14.13)
Therefore
aoy(a)---opm(a) =1, = c=o09(a) - -on(a) € K (14.14)
Moreover, since
a€Zx CB = o3(a),....,ona)eB = ceB. (14.15)
Hence
ceKNB=%Zg, Z£c-a=1 = (14.16)
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all = a€Zg.
Zg

The relationship (14.4)) is proven.

(14.17)

]

Note that even if a € Zg, it may happen that o;(a) € Zx, look at Example

However, o;(a) € B always holds.

14.5¢

N(b) = N(u)N(a) =+N(a). O
14.6; Obviously a # 0. Proof by contradiction: a is reducible

a="be, bcgZyg, byjc#0, =

INO)IN()| 22 = [N(a)| = [NO)[[N(c)| & P.

contradiction.

Theorem 69. Let D be a UFD, a,b,c € D and
ab=¢c* aLb.

Then

a~d’ beer,

for some d,e € D.

15 A Diophantine equation

(14.18)

(14.19)

(14.20)

(14.21)

(14.22)

(14.23)

The main motive for studying algebraic numbers was originally solving Diophan-

tine equations.
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Example 41.
Yy +2=a° 2 fy,

is a Diophantine equation. We are seeking integer solutions.

I. Equation splits in K = Q(y/—2) as follows:

(y+V=2)(y — vV=2) = 2°.

II. The ring of integers is
Ty =7+ 7~ —2.

[TI. Tts unit group is
Ly = {£1}.

IV. The integral domain
Ty =7+ 7N —2.

(15.1)

(15.2)

(15.3)

(15.4)

(15.5)

is Euclidean domain and thus UFD. Hence, we can operate with it as in the ring

of rational integers (see Solving the Pythagorean Equation).

V. Let

D = syt(y — vV=2,y + vV-2),

D=a+b/-2¢€Zg

D|2y, D|2vV-2 =
Zx

Zx

N(D)|N(2y), N(D)|N(2v~-2),

N(D) = (a +bv=2)(a — bv/—2) = a® + 2b*

= (15.6)

(15.7)

= (15.8)
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a’ +20*|4y?, @ +20*| -8 = (15.9)
Z YA

D =41,£2 +v/-2. (15.10)
For instance
V=2]y-v-2 =
Zyg
Yy—v-— :V_2(e+f\/_2)7 67f€Z =
2f = —y, cannot happen. (15.11)

Similarly, we can eventually conclude that

D=x+1|y—vV-2,y+V-2, = (15.12)
Zxg

y—v—2 L y+v=2, = (15.13)

y+v-2=(c+dv/-2)? c+d/-2€Zg, c,dEZL
= 1=d(B3c*—-2d) = d==1, d=1c==+l;
y=c—6cd> = y=45

= x=3,y==+5 0O (15.14)

16 Square root fields
Square root field is of the form

K =Q(Vd), deZ, (16.1)
where d is square-free from now on.
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Theorem 70.

Let K = Q(v/d), then

Zy = 7+ T\, (16.2)
where
A=Vd, d=2, 3 (mod4); (16.3)
1++/d
A= +2‘/_, d=1 (mod 4); (16.4)
A=4d, d=2,3 (mod 4); (16.5)
A=d, d=1 (mod4). (16.6)

Proof. Counsider

ﬁ:r—l—S\/ZlEZK, rseQ =
1
T()=2r €l = resZ = r:g,aez;
NB)=r*—ds*€Z = d(2s)*=(2r)> —4N(B) € Z,

where 25:%7 kLll, =

dk?
d(2s)* = - € Z, where d is square-free = [=1,

b
= 2s€Z = s=§,beZ. (16.7)

Hence

a+b/d

B = 5 a,b € Z. (16.8)

Let us look at a form of a and b more closely.

Case sod=2, 3 (mod 4):
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We have

a>—dh*=0 (mod4) =

a=b=0 (mod2) =

5:“2[’\/3:A+B\/8, A BeZ. (16.9)

Case sod=1 (mod 4):

We have
2 _ de
N) =1 €L
a®>=b> (mod4) =
a=b=0 (mod2) or a=b=1 (mod2) = (16.10)
bvd
8= a+2\/_, a=b (mod?2), a,beZ
= (= A+Bl +2\/E, A, BeZ. O (16.11)
16.1 Imaginary square root fields
16.1.1 Unit group
Let us denote
w=e3’. (16.12)
Theorem 71. Let K = Q(v/d), then
Ty = {+1,+i}, d=—1; (16.13)
7y = {+1}, d=-2; (16.14)
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Z = {1, +w, +w?}, d= —3; (16.15)

Ty = {+1}, deZ_s. (16.16)
For instance the case: d = —5 =3 (mod 4), so integers are of the form
B=A+BV=h, ABecZ =

N@B)=A*+5B>=1 = A=+41,B=0 =

Ty ) = {£1}. (16.17)

16.1.2 UFD/Euclidean domain

Theorem 72. Let K = Q(V/d), then Zg is UFD if
d=-1,-2,-3,-7,—11, (16.18)
which are imaginary Euclidean domains and moreover if
d=—19,—-43,—-67,—163. (16.19)

These are all cases if d < —1.

Proof of the case d = —1 where Zg /=) = Z[i]. We will show that Z[i] is Euclidean
domain.
Let a,b € Z[i] where

% —z+iy, z,y€eqQ. (16.20)

We choose s,t € Z such that

’x | < ‘ t| < (16 21)
—_— S — pa— —. .
2’ 4 2

78



Let
q=s+it, a=qb+r, reZLll. (16.22)

We compare the norms of b and 7:

N(r)= NNz —s+i(y—t)) = NO)((z — 5)* + (y — t)?) (16.23)

<N@®)> = N(r)<N®b) (16.24)

and we have

N: Z[i] - N, (16.25)

so N is Euclidean function. Moreover, we know from Theorem [J that Euclidean

domain is UFD. O

16.1.3 Gaussian integers/prime numbers
Definition 51. Let K = Q(i). Elements of the integer ring
Zx = Z[i] (16.26)

are called Gaussian integers. Moreover irreducible Gaussian integers are called

(Gaussian primes.

Since Z[i] is UFD, its irreducible elements are prime, so

Pz[i] = JZ[i]- (16.27)

Theorem 73.
T=a+1b€ Pz[i] = (16.28)
T~ 1474 (16.29)
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T~a+ib, a2+ =pcP, p=1 (mod 4); (16.30)

Tr~p€eP, p=3 (mod4). (16.31)

16.2 Real square root fields
16.2.1 Unit group

Unit groups of real square root fields are infinite and in general case quite difficult

to define. They are needed for solving Pell’s equation.

Theorem 74. Let K = Q(V/d), d € Zs,. Then
Zie = {xp + yVd| 2 + yeVd = (21 + V), k € Z}, (16.32)
where (z1,y1) € Z? is the smallest positive solution of Pell’s equation
2? —dy® = 1. (16.33)

The smallest solution can be studied by using continued fractions. Sign up for

the course Continued Fractions!

16.2.2 UFD/Euclidean domain

Theorem 75. Let K = Q(v/d), then Zg is UFD if
d=2,3,56,7,13,17,21,29,33,37,41,57,73, (16.34)

which are real Euclidean domains and moreover if

d=11,14,19,22,23, 31, 38,43, 46, 47, 53,59, 61, 62, 67,

69, 71,77,83, 86,89, 93,94, 97. (16.35)
That is all only if we consider 2 < d < 100.

80



	 ABSTRACT
	 INTRODUCTION
	 Course overview (Finnish)
	 Course overview
	 BASICS
	 REFERENCES
	 Algebraic numbers

	 Basics
	 Rings and fields
	 Ring
	 Commutative ring with unity

	 Integral Domain
	 Field
	 Characteristics


	 Divisibility in integral domain
	 Division and Euclidean algorithm in integral domain
	 Division algorithm/Euclidean domain


	 Polynomial algebra
	 Polynomial rings
	 Polynomial set
	 Calculations
	 Polynomial ring/degree 
	 Degree formula

	 The unit group of the ring R[x]
	 Zm[x]*

	 Division algorithm
	 Zero points of polynomials
	 Polynomial division / division of factors
	 Reducibility in C[x] and R[x]


	 Symmetric polynomials
	 Elementary Symmetric Polynomials

	 Field extension
	 Field extension
	 Field tower
	 Quotient field

	 Algebraic numbers
	 Algebraic elements of subfields
	 Algebraic integer

	 Extension by an element

	 Algebraic fields
	 Algebraic numbers A
	 Number field
	 Conjugates, field polynomial
	 Discriminant/not required
	 Norm and trace

	 Algebraic integers - B
	 Divisibility in ZK
	 A Diophantine equation
	 Square root fields
	 Imaginary square root fields
	 Unit group
	 UFD/Euclidean domain
	 Gaussian integers/prime numbers

	 Real square root fields
	 Unit group
	 UFD/Euclidean domain



