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1 ABSTRACT

The theory of algebraic numbers is an important part of Number Theory.

2 INTRODUCTION

2.1 Course overview (Finnish)

Aluksi kerrataan renkaiden ja kuntien perusteita, joista edetään kuntalaajennuk-

siin. Erityiseen tarkasteluun otetaan jaollisuus kokonaisalueessa, jonka sovelluk-

siin törmätään polynomialgebrassa ja kokonaisten algebrallisten lukujen teorias-

sa.

Algebrallisten lukujen teoria lepää vahvasti polynomialgebraan, josta käsitellään

polynomien nollakohtia ja jaollisuutta.

Algebrallisen luvun määritelmä yleistetään kuntalaajennuksien algebrallisiin al-

kioihin, joista edetään algebrallisiin kuntiin. Tärkeinpinä algebrallisina kuntina

saadaan lukukunnat, jotka ovat äärellisesti generoituja kompleksisten algebrallis-

ten lukujen kunnan A alikuntia. Erityisesti tutkitaan neliökuntia.

Edelleen tarkastellaan kokonaisten algebrallisten lukujen jaollisuutta ja tekijöi-

hinjakoa, joita sovelletaan Diofantoksen yhtälöiden ratkaisemiseen.

2.2 Course overview

First we revise some basics of rings and �elds which are needed to proceed ahead

�eld extensions. In particular, divisibility in an integral domain is carefully stu-

died yielding to applications in the theory of polynomial algebra and algebraic in-

tegers. The theory of algebraic numbers is strongly based on polynomial algebra,
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where the properties of zeros and divisibility of polynomials are considered. The

de�nition of an algebraic number will be generalized to the algebraic elements

of �eld extensions going forward to algebraic �elds.Considered as most impor-

tant algebraic �elds we get number �elds which are �nitely generated sub�elds of

the �eld A of all complex algebraic numbers. In particular, we study quadratic

number �elds.

Further, we shall consider the divisibility and factorization of algebraic integers

with some applications to Diophantine equations.

802656S ALGEBRALLISET LUVUT/NOPPA LINK.

802656S ALGEBRAIC NUMBERS/NOPPA LINK.

2.3 BASICS

Prerequisites:

Algebra, Linear Algebra and Basics in Number Theory courses.

The course uses the notation of Basics in Number Theory.

2.4 REFERENCES

I.N. Stewart and D.O. Tall: Algebraic number theory.

Daniel Marcus: Number �elds.

J.B. Fraleigh: Abstract algebra.

Michael Artin: Algebra.

Number Theory Web/LINK

American Mathematical Monthly/LINK
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2.5 Algebraic numbers

De�nition 1. Algebraic numbers are zeros of non-constant polynomials with

rational coe�cients.

Example 1.

Numbers

−1; (2.1)

i; (2.2)

21/3 + 31/2 (2.3)

are algebraic numbers.

Example 2.

eiπ/m, m ∈ Z \ {0}; (2.4)

sin(π/m), cos(π/m), tan(π/m), m ∈ Z \ {0}; (2.5)

are algebraic numbers.

Example 3.

Also roots of the polynomial equation

21/3x4 + 31/2x+ 1 = 0 (2.6)

are algebraic numbers.

Remark 1. Let f : A→ B and C ⊆ B. Then the pre-image of C is the set

f−1(C) = {x ∈ A| f(x) ∈ C}. (2.7)
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For instance

f−1({0}) = {x ∈ A| f(x) = 0}. (2.8)

Gauss proved that the number of zero points of a non-constant polynomial with

complex coe�cients is equal to the degree of this polynomial.

Theorem 1. FUNDAMENTAL THEOREM OF ALGEBRA.

Let d = deg p(x) ∈ Z+ and

p(x) = p0 + p1x+ ...+ pdx
d ∈ C[x], (2.9)

then

#p−1({0}) = deg p(x) = d (2.10)

or

p(x) = pd(x− α1) · · · (x− αd), α1, ..., αd ∈ C. (2.11)

This course focuses on complex algebraic numbers.

3 Basics

Let K be a �eld and d ∈ Z+. A polynomial

p(x) = p0 + p1x+ ...+ xd ∈ K[x], d = deg p(x) ≥ 1, (3.1)

is called a monic polynomial. We use the following notation

K[x]d = {p(x) = p0 + p1x+ ...+ xd ∈ K[x]}. (3.2)

We de�ne (complex) algebraic numbers using the �eld of rational numbers.
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De�nition 2. The elements of the set

Ad = {α ∈ C| p(α) = 0, p(x) ∈ Q[x]d} (3.3)

are algebraic numbers of a degree at most d. The set

A = ∪∞d=1Ad (3.4)

is a set of all algebraic numbers

De�nition 3. Let K ⊆ C and p(x) ∈ K[x]. Then

Z(p) = p−1({0}) = {α ∈ C| p(α) = 0} (3.5)

is a zero set of the polynomial p(x).

Theorem 2.

A1 = Q. (3.6)

Remark 2. Let D ∈ Z. Then

Q(
√
D) = {a+ b

√
D| a, b ∈ Q}. (3.7)

Theorem 3.

A2 = ∪
D∈Z
Q(
√
D). (3.8)

4 Rings and �elds

4.1 Ring

First, this course examines commutative rings.

Let R be a set such that #R ≥ 2. Suppose that we de�ned in R a binary operation

(or mapping) +

+ : R×R→ R, (a, b)→ a+ b,
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where a+ b ∈ R if a ∈ R and b ∈ R. Moreover, we de�ned an operation ∗

∗ : R×R→ R, (a, b)→ a ∗ b,

where a ∗ b ∈ R if a ∈ R and b ∈ R.

4.1.1 Commutative ring with unity

De�nition 4.

A triad (R,+, ∗) is a commutative ring with unity if the following conditions are

satis�ed:

1) additive axioms:

1. a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R (associativity).

2. a+ b = b+ a for all a, b ∈ R (commutativity).

3. There exists a zero element 0 ∈ R for which 0 + a = a for all a ∈ R.

4. For all a ∈ R there exists an inverse −a ∈ R for which a+ (−a) = 0.

2) multiplicative axioms:

1. a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ R (associativity).

2. a ∗ b = b ∗ a for all a, b ∈ R (commutativity).

3. There exists a unit element 1 ∈ R for which 1 ∗ a = a for all a ∈ K.

3) distribution axiom:

1. a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ R.

The set R from De�nition 4 is called a commutative ring with unity and the

conditions are called ring axioms.

Axioms 1) say that (R,+) is Abel group whose operation + is called an addition.

We can say that (R,+) is additive group of the ring R whose neutral element is

the zero element 0.
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But R = (R, ∗) is not necessarily a multiplicative group because the inverse

element is not guaranteed. The neutral element is the unit 1.

Remark 3. Usually, we omit the multiplication notation:

a ∗ b = ab.

De�nition 5. Let R be a ring with a unit. The set

R∗ = {units} = {u ∈ R | ∃ u−1 ∈ R : uu−1 = 1} (4.1)

is a unit group of R.

We often use the notation

R∗ = {u ∈ R | ∃ v ∈ R : uv = 1}, (4.2)

when it holds that

u ∈ R∗ ⇒ 1 = uv, u, v ∈ R∗. (4.3)

If R = K is a �eld, then K∗ = K\{0}.

4.2 Integral Domain

De�nition 6. An element a 6= 0 of R is a zero divisor if ∃ b ∈ R\{0} such that

ab = 0 or ba = 0.

De�nition 7. A commutative ring with unity D is an integral domain if D does

not have a zero divisor.

i.e. if ab = 0, a, b ∈ D, then a = 0 or b = 0.

11



4.3 Field

De�nition 8.

A triad (K,+, ∗) is a �eld if the following conditions are satis�ed:

1. 1) additive axioms:

1. a+ (b+ c) = (a+ b) + c for all a, b, c ∈ K (associativity).

2. a+ b = b+ a for all a, b ∈ K (commutativity).

3. There exists a zero element 0 ∈ K for which 0 + a = a for all a ∈ K.

4. For all a ∈ K there exists an inverse −a ∈ K for which a+ (−a) = 0.

2) multiplicative axioms:

1. a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ K (associativity).

2. a ∗ b = b ∗ a for all a, b ∈ K (commutativity).

3. There exists a unit-element 1 ∈ K for which 1 ∗ a = a for all a ∈ K.

4. For all a ∈ K∗ = K \ {0} there exists an inverse element a−1 ∈ K∗ for

which a ∗ a−1 = 1.

3) distribution axiom:

1. a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ K.

The set K from the de�nition 8 is called a �eld and the conditions are called �eld

axioms.

Axioms 1) say that (K,+) is an Abel group whose operation + is called an

addition.

We can say that (K,+) is an additive group of the �eld K whose neutral element

is the zero element 0.

Axioms 2) tell us that (K∗, ∗) is an Abel group whose operation ∗ is called a

multiplication.

Therefore, it can be said that (K∗, ∗) is a multiplicative group of the �eld K with

the unit-element 1 as the neutral element.
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BRIEFLY: The triad (K,+, ·), #K ≥ 2 is a �eld if:

1. (K,+) is an Abel group (additive group),

2. (K∗, ∗) is an Abel group (multiplicative group), K∗ = K\{0}.

3. a(b+ c) = ab+ ac, ∀a, b, c ∈ K.

Specially, a �eld is a commutative ring with unity (subset).

There are always at least two elements in a �eld, namely 0, 1 ∈ K, 0 6= 1.

Example 4.

A �eld K is an integral domain.

Proof: Let

ab = 0, (4.4)

where a, b ∈ K. Antithesis: a 6= 0 and b 6= 0.

Because K is a �eld, then a−1 ∈ K. Multiplying (4.4) by a−1 gives

b = a−1ab = a−1 · 0 ⇒ b = 0. (4.5)

A contradiction.

Example 5.

The �elds Q, R, C and Zp, where p ∈ P, are integral domains.

Example 6.

Any subring S of a �eld K is an integral domain.

Example 7.

Z is an integral domain.

Example 8.

The set

Z[i] = {a+ ib| a, b ∈ Z} (4.6)
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of Gaussian integers is an integral domain and its unit group is

Z[i]∗ = {1, i,−1,−i}. (4.7)

Example 9.

The set

Z[
√
−5] = {a+ b

√
−5| a, b ∈ Z} (4.8)

is an integral domain and its unit group is

Z[
√
−5]∗ = {1,−1}. (4.9)

4.3.1 Characteristics

De�nition 9. We de�ne characteristics of a �eld K as

char K =

p⇔ ∃ p ∈ P : p1 = 0;

0⇔ @ n ∈ Z+ : n1 = 0.

5 Divisibility in integral domain

Let D be an integral domain.

De�nition 10. Let a, b ∈ D. Then

b|a ⇔ ∃c ∈ D : a = bc. (5.1)

If b|a, we say that b divides a or b is a factor of a.

Notation: b - a if b does not divide a.

Example 10.

0|0, 0 - a 6= 0. (5.2)
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Remark 4. Let d, b ∈ D and s ∈ N, then

ds||b ⇔ ds|b and ds+1 - b. (5.3)

Lemma 1. Let a, b, c ∈ D, a 6= 0. Then

ab = ac ⇒ b = c. (5.4)

Proof.

ab = ac ⇒ a(b− c) = 0, a 6= 0, ⇒ b− c = 0. (5.5)

De�nition 11. Elements a, b ∈ D are associated if

a ∼ b ⇔ ∃ u ∈ D∗ : b = ua. (5.6)

Lemma 2. The relation ∼ is an equivalence, in other words

a ∼ a; (5.7)

a ∼ b ⇔ b ∼ a; (5.8)

a ∼ b, b ∼ c ⇒ a ∼ c. (5.9)

Proof. 5.8:

a ∼ b ⇔ b = ua, u ∈ D∗ ⇔

∃ v ∈ D∗ : uv = 1, b = ua ⇔ vb = vua = a

⇔ a = vb, v ∈ D∗ ⇔ b ∼ a. (5.10)

Other points on one's own.

Remark 5. The equivalence class for the element a ∈ D it the set

[a] = {b ∈ D| b ∼ a}, (5.11)

where a is the representative of [a].
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Lemma 3. Let D be an integral domain and 1, a, b ∈ D. Then

a ∼ b ⇒ a|b; (5.12)

a ∼ 1 ⇔ a|1 ⇔ a ∈ D∗; (5.13)

[1] = D∗; (5.14)

[a] = aD∗; (5.15)

a ∼ b ⇔ a|b and b|a. (5.16)

Proof. 5.13:

a ∼ 1 ⇒ 1 = ua, u ∈ D∗ ⊆ D ⇒ a|1;

a|1 ⇒ ∃ c ∈ D : 1 = ca ⇒ c ∈ D∗ ⇒ a ∼ 1.

 a ∼ 1 ⇔ a|1.

a|1 ⇒ ∃ c ∈ D : 1 = ca ⇒ a, c ∈ D∗;

a ∈ D∗ ⇒ 1 = ua, u ∈ D ⇒ a|1.

 a|1 ⇔ a ∈ D∗.

5.14:

b ∈ [1] ⇔ b ∼ 1 ⇔ b ∈ D∗.

5.15:

x ∈ [a] ⇔ x ∼ a ⇔ a ∼ x

⇔ x = ua, u ∈ D∗ ⇔ x ∈ aD∗.
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5.16: First look at the case b = 0 which implies a = 0.

a ∼ b ⇔ b ∼ a, ⇒ a|b and b|a;

a|b and b|a ⇒ b = ca, a = db, c, d ∈ D,

⇒ b = cdb ⇒ cd = 1 ⇒ c, d ∈ D∗,

⇒ a ∼ b and b ∼ a.

Remark 1. Let b ∈ D. Then

b = 1 · b = u(u−1b) ∀ u ∈ D∗. (5.17)

Therefore a unit is always a factor of an element.

Example 11.

Remember that the unit group of Gaussian integers was

Z[i]∗ = {1, i,−1,−i}. (5.18)

Thus

2− i ∼ 1 + 2i ∼ −2 + i ∼ −1− 2i (5.19)

and the equivalence class

[2− i] = {2− i, 1 + 2i,−2 + i,−1− 2i} (5.20)

of 2− i consists of four elements.

De�nition 12. Trivial factors q of an element b ∈ D are all units and associates.

In other words

q ∈ [1] or q ∈ [b]. (5.21)

An element j ∈ D, j 6= 0, j /∈ D∗ is irreducible if it has only trivial factors

q|j ⇔ q ∈ [1] or q ∈ [j]. (5.22)
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An element p ∈ D, p 6= 0, p /∈ D∗ is prime if

p|ab ⇒ p|a or p|b ∀a, b ∈ D. (5.23)

An element a ∈ D, a /∈ D∗ is reducible if

∃ d ∈ D : d|a ⇒ d /∈ [1] and d /∈ [a]. (5.24)

Remark 2. The zero-element is reducible.

Remark 6. Let us denote

JD = {j ∈ D| j is irreducible} (5.25)

and

PD = {p ∈ D| p is prime}. (5.26)

Lemma 4. Let a, b ∈ D and j, h ∈ JD. Then

j = ab ⇒ a ∼ 1 or b ∼ 1. (5.27)

j = bh, ⇒ b ∼ 1. (5.28)

Proof (5.27). Antithesis: a 6∼ 1 and b 6∼ 1

⇒ a, b /∈ [1] ⇒ a, b ∈ [j] (5.29)

because j is irreducible. Thus

a = d1j b = d2j, d1, d2 ∈ D∗ ⇒ (5.30)

j = ab = d1d2j
2 ⇒ 1 = d1d2j ⇒ j ∈ D∗ = [1]. (5.31)

A contradiction.
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De�nition 13. Let a, b ∈ D be given. Then an element d ∈ D is the greatest

common divisor of a and b, denoted by d =syt(a, b) =gcd(a, b) = (a, b), if

d|a and d|b; (5.32)

c|a and c|b ⇒ c|d. (5.33)

If (a, b) ∼ 1, then we say that a and b are relatively prime and we write (a, b) = 1

or a ⊥ b.

De�nition 14. Let a, b ∈ D be given. Then an element f ∈ D is the least

common multiple of a and b, denoted by f =pyj[a, b] =lcm[a, b] = [a, b], if

a|f and b|f ; (5.34)

a|g and b|g ⇒ f |g. (5.35)

Example 12.

(0, 0) = 0, [0, 0] = 0. (5.36)

Lemma 5. Let a ∈ D and j ∈ JD. Then

j 6 |a ⇒ (a, j) = 1. (5.37)

Proof. Antithesis: (a, j) 6= 1. Therefore (a, j) = d 6∼ 1 and

d|a and d|j, j ∈ JD. (5.38)

Because j is irreducible, then d ∼ 1 or d ∼ j, hence d ∼ j. Consequently

d = vj, v ∈ D∗ and a = cd = cvj ⇒ j|a. (5.39)

A contradiction.
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De�nition 15. The representation of an element a ∈ D by irreducible elements

is unique if from the condition

a = j1 · · · jr = h1 · · ·hs, jl, hk ∈ JD (5.40)

follows

r = s and hk ∼ jl ∀k = 1, ..., r for some l = 1, ..., r. (5.41)

De�nition 16. An integral domain D is a unique factorization domain (UFD)

if every element a ∈ D, a 6= 0, a /∈ D∗ can be represented uniquely as

a = j1 · · · jr, ji ∈ JD. (5.42)

Theorem 4. Let D be an ID. Then

PD ⊆ JD (5.43)

(primes are irreducible.)

Proof. (5.43): Let p ∈ PD. If q|p, then p = qd1 for some d1 ∈ D. Then

p|qd1 ⇒ p|q or p|d1 (5.44)

because p is a prime.

If p|q, then q = d2p, d2 ∈ D and q = d2qd1, where q 6= 0 by p 6= 0. So 1 = d1d2

meaning that d1, d2 ∈ D∗. Therefore q ∈ [p].

If p|d1, then (homework...) q ∈ [1].

Thus p ∈ JD.

Theorem 5. Let D be an integral domain. Then

D = UFD ⇒ JD ⊆ PD (5.45)

so UFD's irreducibles are primes and consequently JD = PD.
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Proof: Let j ∈ JD and assume that j|ab where a, b ∈ D. Since D =UFD, a and b

has the unique representation

a = a1 · · · am, b = b1 · · · bn, ai, bi ∈ JD. (5.46)

Hence

j|a1 · · · amb1 · · · bn = j · j2 · · · jm+n, (5.47)

and from here j ∼ ai for some ai or j ∼ bi for bi because D =UDF. Therefore j|a

or j|b.

Overally j ∈ PD.

Remark 3. In UFD the representation (5.42) is called prime factorization.

De�nition 17. Let D be an integral domain and a ∈ D. If an irreducible element

j ∈ JD satis�es

jm‖a, m ∈ Z≥0, (5.48)

then m is a multiplicity of the factor j of a.

If j 6 |a, then m = 0.

Theorem 6. Let D be an integral domain. Then

JD ⊆ PD ⇒ D = UFD. (5.49)

Proof: Let

a = j1 · · · jr = h1 · · ·hs, jl, hk ∈ JD (5.50)

Now irreducibles jl and hk are primes. Thus

j1|h1 · · ·hs ⇒ j1|h1 or j1|h2 · · ·hs . . . (5.51)

and eventually j1|hk1 implying j1 ∼ hk1 ,...,jr ∼ hkr and r = s.
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5.1 Division and Euclidean algorithm in integral domain

5.1.1 Division algorithm/Euclidean domain

Let D be an integral domain with so called Euclidean function E : D → N ∪

{−∞} and suppose that the following holds true:

Division algorithm: If a, b ∈ D are given and ab 6= 0, 0 ≤ E(b) ≤ E(a), then

∃ q, r ∈ D such that

(J.A.) a = qb+ r and E(r) < E(b). (5.52)

This kind of domain is called Euclidean domain (ED). (Note that the de�nition

of the Euclidean function varies.)

Example 13. a)D = Z, E(k) = |k|.

b)D = K[x], E(p(x)) = deg p(x).

Based on division algorithm:

Euclidean algorithm=E.A.:

r0 = a, r1 = b E(r1) < E(r0)

r0 = q1r1 + r2 E(r2) < E(r1)
...

rk = qk+1rk+1 + rk+2 E(rk+2) < E(rk+1)
...

rn−1 = qnrn ∃ n ∈ N : rn 6= 0, rn+1 = 0

rn = syt(a, b).

The integer n = is called a length of euclidean algorithm.

Set now

Rk =

 rk

rk+1

 , Qk =

qk 1

1 0

 , k ∈ N, (5.53)
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whereupon

detQk = −1, Qk
−1 =

0 1

1 −qk

 . (5.54)

We see that

E.A.⇔ Rk = Qk+1Rk+1, ∀k = 0, . . . , n− 1, (5.55)

whereupon holds

R0 = Q1Q2 · · ·QkRk. (5.56)

Denote

S0 =

s0 t0

s1 t1

 =

1 0

0 1

 (5.57)

and

Sk =

 sk tk

sk+1 tk+1

 = Qk
−1 · · ·Q2

−1Q1
−1, (5.58)

so

Rk = SkR0. (5.59)

We have

Sk+1 = Q−1k+1Sk (5.60)

so sk+1 tk+1

sk+2 tk+2

 =

0 1

1 −qk+1

 sk tk

sk+1 tk+1

 =

 sk+1 tk+1

sk − qk+1sk+1 tk − qk+1tk+1

 (5.61)

That gives us recurrent formulas:sk+2 = sk − qk+1sk+1, k = 0, 1, . . .

tk+2 = tk − qk+1tk+1, k = 0, 1, . . .

(5.62)
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From formula (5.59) we get

rn = sna+ tnb, (5.63)

which provides us the following theorem.

Theorem 7. Let D be ED, then

syt(a, b) = sna+ tnb, (5.64)

where n is the length of EA.

Usually the following formulation is enough

Theorem 8. Let D be an ED. Then there exist s, t ∈ D such that

gcd(a, b) = sa+ tb. (5.65)

Theorem 9. Let D be an ED. Then

JD ⊆ PD (5.66)

→ In ED, irreducibles are primes.

Therefore, Euclidean region is UFD.

Proof. Let j ∈ JD and let us assume, that j|ab, where a, d ∈ D.

We should show that j|a or j|b.

Suppose that j 6 |a, then j ⊥ a by Lemma 5. Then by Theorem 8 there exist

s, t ∈ D such that

1 = sa+ tj ⇒ b = sab+ tbj ⇒ j|b. (5.67)

Corollary 1. .

A. Z is UFD where irreducibles are primes.

B. K[x] is UFD where irreducibles are primes.
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6 Polynomial algebra

6.1 Polynomial rings

6.1.1 Polynomial set

Let R be a ring with unity. Then a set of polynomials with coe�cients from R is

denoted by

R[x] = {P (x) | P (x) =
n∑
k=0

pkx
k; pk ∈ R, n ∈ N}.

The polynomial

0(x) = 0 + 0 · x+ 0 · x2 + . . . (6.1)

is called the zero polynomial and the polynomial

1(x) = 1 + 0 · x+ 0 · x2 + . . . (6.2)

is called the unit polynomial. It is the special case of a constant polynomial

c(x) = c+ 0 · x+ 0 · x2 + . . . , c ∈ R. (6.3)

6.1.2 Calculations

De�nition 18. Let P (x) =
∑n

k=0 pkx
k, Q(x) =

∑n
k=0 qkx

k ∈ R[x]. Then we

set

P (x) = Q(x)⇔ ∀k(pk = qk);

P (x) +Q(x) =
∑
k>0

(pk + qk)x
k;

P (x) ·Q(x) =
∑
k>0

rkx
k,

rk =
k∑
i=0

piqk−i =
∑
i+j=k

piqj, (6.4)

which is Cauchy's rule of thumb.
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6.1.3 Polynomial ring/degree

Theorem 10. The triad (R[x],+, ·) is a ring where 0(x) is the zero element of

the addition and 1(x) is the unit-element of the multiplication.

De�nition 19. If pn 6= 0, then the degree of a polynomial P (x) =
∑n

k=0 pkx
k is

set as

degP (x) = n, (6.5)

deg 0(x) = −∞. (6.6)

6.1.4 Degree formula

Remark 4.

−∞+ (−∞) = −∞

−∞+ k = −∞, ∀ k ∈ Z.
(6.7)

Theorem 11. Degree formula.

Let D be an integral domain and P (x), Q(x) ∈ D[x]. Then

degP (x)Q(x) = degP (x) + degQ(x). (6.8)

Theorem 12. .

A. Let R = D be an integral domain. Then the ring of polynomials D[x] is the

integral domain.

B. Let R = K be a �eld. Then the ring of polynomialsK[x] is the integral domain.

Proof: Let a(x)b(x) = 0(x). According to the degree formula, we have

deg a(x)b(x) = deg a(x) + deg b(x) = deg 0(x) = −∞. (6.9)

If a(x) 6= 0(x) and b(x) 6= 0(x) held true, we would have

0 ≤ deg a(x) + deg b(x) = −∞. (6.10)

= contradiction
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Theorem 13. Let K be a �eld.

A. The unit group of the ring of polynomials K[x] is

K[x]∗ = K∗. (6.11)

B. A polynomial j(x) ∈ K[x] \K is irreducible if and only if its only factors are

constants k or polynomials k · j(x) where k ∈ K \ {0}.

C. A polynomial a(x) ∈ K[x] \ {0(x)} is reducible if and only if it has a factor

d(x) ∈ K[x] which obeys

1 ≤ deg d(x) ≤ deg a(x)− 1. (6.12)

D. Specially, one-degree polynomials are not reducible.

Proof. A: a(x) ∈ K[x]∗ ⇒ ∃ b(x) ∈ K[x] such that

a(x)b(x) = 1 ⇒ deg a(x) = deg b(x) = 0 ⇒ a(x), b(x) ∈ K∗.

Proof. B: j(x) = a(x)b(x) ∈ JK[x] ⇒

a(x) ∈ [1] = K[x]∗ = K∗ ⇒ a(x) = k, k ∈ K∗

or

a(x) ∈ [j(x)] = j(x)K∗ ⇒ a(x) = kj(x), k ∈ K∗.

Proof. C: Let a(x) ∈ K[x] \ {0} be reducible. Then there exists d(x), b(x) ∈

K[x] \ {0} such that

a(x) = d(x)b(x), d(x) /∈ [1] and d(x) /∈ [a(x)] ⇒

d(x) /∈ K∗ and d(x) /∈ a(x)K∗.

If deg d(x) = 0, then d(x) ∈ K∗; a contradiction.

If deg d(x) = deg a(x), then by the degree formula deg b(x) = 0 implying b(x) =

k ∈ K∗. Thus a(x) = kd(x) and then d(x) ∈ [a(x)]; a contradiction.

Proof. D: Homework.
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6.2 The unit group of the ring R[x]

Let R be commutative ring with a unit. Let us study its unit group R[x]∗. Pick

a(x) = a0+a1x+...+aAx
A ∈ R[x]∗, then there exists b(x) = b0+b1x+...+bBx

B ∈

R[x]∗ such that

1 = a(x)b(x) = (a0 + a1x+ ...+ aAx
A)(b0 + b1x+ ...+ bBx

B). (6.13)

If a1 = ... = aA = 0, then a(x) ∈ R∗. Otherwise there exists an A ≥ 1 such that

aA 6= 0. Then

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

. . .

aA−2bB + aA−1bB−1 + aAbB−2 = 0

aA−1bB + aAbB−1 = 0

aAbB = 0

(6.14)

Multiply the second last by aA to get

aA−1aAbB + a2AbB−1 = 0 ⇒ a2AbB−1 = 0 (6.15)

. . .

aA−2bB + aA−1bB−1 + aAbB−2 = 0

aA−1bB + aAbB−1 = 0

aAbB = 0

(6.16)

Multiply the third last by a2A to get

aA−2a
2
AbB + aA−1a

2
AbB−1 + a3AbB−2 = 0 ⇒ a3AbB−2 = 0 (6.17)
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and so on to the situation

. . .

a0bB + a1bB−1 + ...+ aAb0 = 0, A ≤ B

aAAb1 = 0

(6.18)

or

. . .

acbB + a1bB−1 + ...+ aAb0 = 0, A = B + c, c > 0,

aAAb1 = 0.

(6.19)

Anyway, multiply now by aAA. Then you get

aA+1
A b0 = 0, (6.20)

where b0 ∈ R∗ meaning that b0 6= 0. Then multiplying by b−10 we are in the

situation aA+1
A = 0.

Thus if

rK 6= 0 ∀ r ∈ R \ {0}, K ≥ 2, (6.21)

then a(x) = a0 ∈ R∗.

Otherwise: if there exists an element r ∈ R \ {0} such that

rK = 0 for some K ≥ 2, (6.22)

then you may �nd a non-constant unit polynomial a(x) i.e. a(x) ∈ R[x]∗ \R∗.

6.2.1 Zm[x]∗

Example 14.

Z10[x]∗ = Z∗10.

Example 15.

1 + 10x ∈ Z20[x]∗.
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6.3 Division algorithm

Theorem 14. Division algorithm. Let K be a �eld. Let a(x), b(x) ∈ K[x],

a(x)b(x) 6= 0(x) and deg b(x) ≤ deg a(x).

Then ∃ q(x), r(x) ∈ K[x] such that

[J.A.] a(x) = q(x)b(x) + r(x), deg r(x) < deg b(x). (6.23)

Moreover, K[x] is the Euclidean domain!

Remark 5. If D is not a �eld, then the division algorithm does not work neces-

sarily in the polynomial ring D[x]!!

The greatest common divisor d(x) = s.y.t.(a(x), b(x)) of a(x) and b(x) can be

selected as a monic polynomial.

Based on Euclidean algorithm, there exist s(x), t(x) ∈ K[x] such that

d(x) = s(x)a(x) + t(x)b(x). (6.24)

De�nition 20. A derivative Dp(x) of a polynomial

p(x) =
n∑
k=0

pkx
k ∈ K[x]

is the polynomial

Dp(x) =
n∑
k=1

kpkx
k−1 ∈ K[x]. (6.25)

Lemma 6. Let K be a �eld, p(x) ∈ K[x] and deg p(x) ≥ 1. Then

degDp(x) = deg p(x)− 1, deg p(x) ≥ 1; (6.26)

p(x) 6 |Dp(x). (6.27)

Theorem 15. Let K be a �eld and a(x), b(x), c(x) ∈ K[x]. Then

a = b2c, b 6∼ 1 ⇔ d = syt(a,Da) 6∼ 1. (6.28)
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Proof.

Suppose a = b2c, b 6∼ 1. Since Da = b(2cDb + bDc), we have b|syt(a,Da) and

therefore syt(a,Da) 6∼ 1.

Let d = syt(a,Da) 6∼ 1. Then there exists p ∈ PK[x], p|d. Hence a = ps and

Da = pr. Besides Da = (Dp)s + pDs, so pr = (Dp)s + pDs. Since p - Dp and p

is prime, we have p|s. Hence s = ph and a = ps = p2h for some h and p 6∼ 1.

Claim (6.28) is equivalent to the following claim:

A polynomial is square-free if and only if it does not have common factors with

its derivative.

Example 16. Let p(x) = x5 + 2x3 + x ∈ Q[x]. By

syt(p,Dp) 6∼ 1 ⇒ (6.29)

the polynomial p(x) has a multiple factor in Q[x].

6.4 Zero points of polynomials

Theorem 16. Let K be a �eld and p(x) ∈ K[x], 1 ≤ deg p(x). Then

p(α) = 0, α ∈ K ⇔ (x− α) |
K[x]

p(x). (6.30)

Proof. "♦→": Let p(α) = 0, α ∈ K. With the division algorithm we have

p(x) = q(x)(x− α) + r(x), deg r(x) < deg(x− α) = 1, (6.31)

so r(x) ∈ K is constant. Moreover

0 = p(α) = q(α)(α− α) + r(α) = r(α),

⇒ r(x) = 0(x) ⇒ (x− α) |
K[x]

p(x). (6.32)
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"←4":

(x− α) |
K[x]

p(x) = (x− α)h(x), ⇒ p(α) = 0, α ∈ K. (6.33)

Remark 6. Let K be a �eld and p(x) ∈ K[x], deg p(x) = 2 or deg p(x) = 3.

If p(x) is reducible in K[x], then it has a �rst degree factor and from Theorem

16 we know that p(α) = 0, α ∈ K. If there is no zero point in K, then p(x) is

irreducible in K[x].

Extending of De�nition 3.

De�nition 21. Let K ⊆ L be a �eld and p(x) ∈ K[x]. Then

ZL(p) = {α ∈ L| p(α) = 0} (6.34)

is a zero set of p(x) in L.

De�nition 22. Let α ∈ L, K ⊆ L a �eld and p(x) ∈ K[x]. If

(x− α)m ‖
L[x]

p(x), m ∈ N, (6.35)

then m = mL(α, p(x)) is a multiplicity of zero point (order of zero) α of p(x).

The number

nL(p(x)) =
∑

p(αi)=0, αi∈L

mL(αi, p(x)). (6.36)

is the number of zeros in L.

Theorem 17. Let K be a �eld, charK=0, α ∈ K and p(x) ∈ K[x] and m ∈ N.

Then

(x− α)m ‖
K[x]

p(x) ⇔ (6.37)

Dkp(α) = 0 ∀ k = 0, ...,m− 1 , Dmp(α) 6= 0. (6.38)

Remark 7. Theorem 17 does not hold for instance in the ring of polynomials

Zp[x].
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Example 17. Let p(x) = (x − 1)3(x + 1/2)5. The zeros of p(x) are α1 = 1 and

α2 = −1/2. Their order is

mQ(α1, p(x)) = 3, mQ(α2, p(x)) = 5 (6.39)

and the number of zeros

nQ = 3 + 5 = 8. (6.40)

Example 18. Let (x2 + 1)(x2 − 2) ∈ R[x]. Now, the number of zero points is

nQ = 0 < 4 = deg p(x). (6.41)

nR = m(−
√

2) +m(
√

2) = 2 < 4 = deg p(x). (6.42)

nC = 4 = deg p(x). (6.43)

Theorem 18. LetK be a �eld, p(x) ∈ K[x] and deg p(x) ≥ 1. Then the following

holds true

nK(p(x)) ≤ deg p(x). (6.44)

Proof:

1. If 6 ∃ a zero point, then mK(α, p(x)) = 0 for all α ∈ K and nK(p(x)) = 0 <

1 ≤ deg p(x).

2. Let β1, ..., βk be distinct zero points and let us denote

mj := mK(βj, p(x)) ≥ 1 and (x− βj)mj ‖
K[x]

p(x), j = 1, ..., k. (6.45)

Then

p(x) = (x− β1)m1p2(x), p2(β1) 6= 0 ⇒ p2(β2) = 0, (6.46)

p2(x) = (x− β2)m2p3(x), p3(β2) 6= 0 ⇒ p3(β3) = 0 ... (6.47)
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Eventually

p(x) = (x− β1)m1 · · · (x− βk)mkpk+1(x), deg pk+1(x) ≥ 0. (6.48)

We get

deg p(x) = m1 + ...+mk + deg pk+1(x)

≥ m1 + ...+mk = nK(p(x)). (6.49)

Theorem 19. Algebraic fundamental theorem.

Let p(x) ∈ C[x], deg p(x) ≥ 1, then

nC(p(x)) = deg p(x). (6.50)

Theorem 20. Let K ⊆ L be a �eld, p(x) ∈ K[x] and p(x) ∈ JK[x]. Then

mL(α, p(x)) ≤ 1 ∀α ∈ L. (6.51)

Proof. Since p ∈ JK[x], then deg p(x) ≥ 1 and therefore p 6 |Dp. Thus according

to Lemma 5 it holds that p ⊥ Dp and according to Theorem 8 we have

sytK[x](p,Dp) = 1 = sp+ tDp, s, t ∈ K[x] ⊆ L[x]. (6.52)

If

d |
L[x]

p and d |
L[x]

Dp (6.53)

then according to Equation (6.52) it holds that d |
L[x]

1. Hence

sytL[x](p,Dp) = 1. (6.54)

Then according to Theorem 15 there does not exist a square factor in L[x], so 6 ∃

α ∈ L such that

(x− α)2 |
L[x]

p(x). (6.55)

Hence:

If p(α) = 0, then mL(α, p(x)) = 1 and

if p(α) 6= 0, then mL(α, p(x)) = 0.
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Theorem 21. Let K be a �eld, p(x), q(x) ∈ K[x], p(x) ∈ JK[x] and p(α) =

q(α) = 0. Then

p(x) |
K[x]

q(x). (6.56)

Proof. Since p is irreducible,

d = sytK[x](p, q) = 1 or p. (6.57)

If d = 1, then 1 = s(x)p(x) + t(x)q(x) and 1 = s(α)p(α) + t(α)q(α) = 0.

contradiction.

Hence d = p and consequently p|q.

6.5 Polynomial division / division of factors

Note that if p ∈ P, then Zp is a �eld.

De�nition 23. Let n ∈ Z≥2 and a(x) = a0+a1x+ ...+adx
d ∈ Z[x]. The mapping

rn(a0 + a1x+ ...+ adx
d) = a0 + a1x+ ...+ adx

d (6.58)

rn : Z[x]→ Zn[x], rn(a(x)) = a(x),

is a reduction (mod n).

Theorem 22. The reduction

rn : Z[x]→ Zn[x], rn(a(x)) = a(x),

is a morphism in the ring.

De�nition 24. A vector (a0, ..., aA) ∈ Zm+1 and a polynomial a(x) = a0 +a1x+

...+ aAx
A ∈ Z[x] are primitive if

syt(a0, ..., aA) = 1. (6.59)
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Sometimes, it is also required aA ≥ 1 for primitivism.

Lemma 7. Let a(x) ∈ Z[x] and B,C ∈ Z.

A. If a(x) is primitive, then

B |
Z[x]
C · a(x) ⇒ B |

Z
C. (6.60)

B. If D =syt(a0, ..., aA), then

a(x) = D · b(x), b(x) ∈ Z[x], (6.61)

where the polynomial b(x) is primitive.

C. Polynomials in A. and B. may be replaced by corresponding vectors.

Lemma 8. Let b(x) be c(x) be primitive. Then b(x)c(x) is primitive

Proof. Let

a(x) = b(x)c(x) = a0 + a1x+ ...+ aAx
A ∈ Z[x] (6.62)

and

syt(a0, ..., aA) = d ≥ 2 ⇒ ∃ p ∈ P, p|d. (6.63)

We apply a reduction (mod p)

a(x) = 0(x) = b(x)c(x) ∈ Zp[x]. (6.64)

Zp[x] is the integral domain, hence

b(x) = 0(x) or c(x) = 0(x). (6.65)

Hence

p|syt(b0, ..., bB) or p|syt(c0, ..., cC) (6.66)

which is a contradiction.

36



Remark 7. A. Let B = q
r
∈ Q, q ∈ Z, r ∈ Z+, q ⊥ r. Then

den(B) := r (6.67)

is a denominator of rational number B.

Let den(Bj) = rj, j = 1, ...,m. Then

pyn(B1, ..., Bm) := pyj(r1, ..., rm) (6.68)

is the least common denominator (=lcd) of B1, ..., Bm.

Lemma 9. Let

B(x) = B0 +B1x+ ...+Bmx
m ∈ Q[x] and

R := pyn(B0, B1, ..., Bm), Q := syt(RB0, ..., RBm). (6.69)

Then the polynomial

R

Q
B(x) := b0 + b1x+ ...+ bmx

m ∈ Z[x] (6.70)

is primitive. Moreover R ⊥ Q.

Proof: Since
R

Q
Bj = bj, j = 0, 1, ...,m, (6.71)

then

(RB0, ..., RBm) = Q · (b0, b1, ..., bm), (6.72)

where Q = syt(RB0, ..., RBm). According to 7 it follows that (b0, b1, ..., bm) and

the polynomial b0 + b1x+ ...+ bmx
m are primitive.

Now, it remains to show R ⊥ Q. Let d = syt(R,Q), so R = dr and Q = dq,

r, q ∈ Z+. From (6.71) it follows that

Rqj = Qrjbj ⇒ rqj = qrjbj, j = 0, 1, ...,m. (6.73)

Since qj ⊥ rj, we have rj|r for j = 0, 1, ...,m. Hence R = dr|r, so d = 1.
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Example 19.

B(x) = 7 +
21

5
x+

14

3
x2, R = 15, Q = 7. (6.74)

Theorem 23. Gauss Lemma. Let a(x) ∈ Z[x] be primitive and deg a(x) ≥

2. If a(x) is reducible in the polynomial ring Q[x], then there exist primitive

polynomials

b(x), c(x) ∈ Z[x], that a(x) = b(x)c(x). (6.75)

Proof. Suppose that

a(x) = B(x)C(x), B(x), C(x) ∈ Q[x]. (6.76)

According to Lemma 9 there exist R,Q, T, S ∈ Z+ such that

R

Q
B(x) := b(x) ∈ Z[x],

T

S
C(x) := c(x) ∈ Z[x],

R ⊥ Q, T ⊥ S, (6.77)

where b(x) and c(x) are primitive. Moreover

RTa(x) = QSb(x)c(x). (6.78)

Since R ⊥ Q and a(x) is primitive, then Q|T = Qt and analogously S|R = Qr.

Hence

rta(x) = b(x)c(x), (6.79)

where b(x)c(x) is primitive, so rt = 1 and �nally a(x) = b(x)c(x).

According to Gauss lemma, reducible a(x) ∈ Z[x] can be factorized in Z[x]. Thus,

the polynomial is irreducible in Q[x] if it is prime in Z[x].

Theorem 24. Let a(x) ∈ Z[x]. Then there exists the unique representation

a(x) = Aa1(x) · · · an(x), A ∈ Z, (6.80)

where a1(x), ..., ak(x) ∈ Z[x] are primitive irreducible polynomials.
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Theorem 25. Let p ∈ P, a(x) ∈ Z[x], a(x) ∈ Zp[x] and A = deg a(x) = deg a(x).

If a(x) is irreducible in Zp[x], then a(x) is irreducible in Q[x].

Proof. Suppose contradiction

a(x) = b(x)c(x), B = deg b(x) ≥ 1, C = deg c(x) ≥ 1. (6.81)

Let us apply (mod p):

a(x) = b(x)c(x) ∈ Zp[x]. (6.82)

Since

deg b(x) ≤ B, deg c(x) ≤ C (6.83)

and

deg b(x) + deg c(x) = deg a(x) = A, (6.84)

then

deg b(x) = B ≥ 1, deg c(x) = C ≥ 1. (6.85)

Hence a(x) would not be irreducible in Zp[x].

contradiction.

Theorem 26. Eisenstein's criteria. Let

a(x) = a0 + a1x+ ...+ aAx
A ∈ Z[x], deg a(x) = A ≥ 2.

If there exists p ∈ P such that

p|ai ∀ i = 0, 1, ..., A− 1, p2 6 |a0, p 6 |aA, (6.86)

then a(x) is irreducible polynomial in Q[x].

Proof. Let

a(x) = b(x)c(x) ∈ Z[x] (6.87)
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or

a0 + a1x+ ...+ aAx
A = (b0 + b1x+ ...+ bBx

B)(c0 + ...+ cCx
C) (6.88)

and

B = deg b(x) ≥ 1, C = deg c(x) ≥ 1, B + C = A. (6.89)

We have

p|a0 = b0c0, p2 6 |a0 ⇒ either p|b0 or p|c0. (6.90)

Let us suppose

p|b0 and p 6 |c0. (6.91)

Since

p|a1 = b0c1 + b1c0, ⇒ p|b1 (6.92)

...

p|aB = b0cB + ...+ bBc0, ⇒ p|bB. (6.93)

But

aA = bBcC , ⇒ p|aA. (6.94)

contradiction.

Theorem 27. Let

a(x) = a0 + a1x+ ...+ aAx
A ∈ Z[x]

and

a(r/s) = 0, r, s ∈ Z, r ⊥ s, (6.95)

then

r|a0, s|aA, (6.96)
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This can be used to �nd possible rational zero-points for a polynomial.

Proof. Equation (6.95) implies

sAa0 + sA−1ra1 + ...+ srA−1aA−1 + rAaA = 0 (6.97)

The assumption r ⊥ s implies r|a0 and s|aA.

Theorem 28. Let K be a �eld, p(x) ∈ K[x], p(x) ∈ JK[x], deg p(x) = d and

k ∈ K. Then

p∗(x) = xdp(1/x) ∈ JK[x],
→
pk(x) = p(x+ k) ∈ JK[x]. (6.98)

Example 20.

Consider the decomposition of the polynomial

a(x) = 4x3 − 2x2 + 3x+ 5 ∈ Z[x] (6.99)

If a polynomial of the degree 3 is reducible, it has at least one factor of the degree

1, so

a(x) = b(x)c(x), deg b(x) = 1. (6.100)

Set p = 3 and apply the reduction (mod 3):

a(x) = b(x)c(x) ∈ Z3[x], deg b(x) = 1. (6.101)

Then

b(x) |
Z3[x]

a(x) = x3 + x2 + 2, deg b(x) = 1. (6.102)

According to Theorem 16, a(x) has a zero point in Z3. But

a(0) = 2, a(1) = 1, a(2) = 2. (6.103)

contradiction. Therefore a(x) is irreducible in the ring Z[x] and moreover in the

ring Q[x].
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Example 21. Eisenstein's criteria: p = 7 and

a(x) = 7 + 7x− 14x3 + 2x5 ∈ JQ[x]. (6.104)

Using Theorem 28 we get

b(x) = x5a(1/x) = 2− 14x2 + 7x4 + 7x5 ∈ JQ[x]; (6.105)

b(x− 1) = 2− 14(x− 1)2 + 7(x− 1)4 + 7(x− 1)5 ∈ JQ[x]; (6.106)

Example 22.

Let p ∈ P. Then

a(x) = 1 + x+ x2 + ...+ xp−1 ∈ JQ[x]. (6.107)

Proof. We have

a(x) =
xp − 1

x− 1
, (6.108)

and we substitute x = t+ 1. Then

a(x) = a(t+ 1) =
(t+ 1)p − 1

t
=

tp−1 +

(
p

p− 1

)
tp−2 + ...+

(
p

2

)
t+

(
p

1

)
. (6.109)

We should know that

p

∣∣∣∣(pk
)
∀ 1 ≤ k ≤ p− 1. (6.110)

We can see that assumption from Eisenstein's Theorem is satis�ed, so a(t+ 1) is

irreducible and hence a(x) is irreducible in the ring Q[x].
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6.5.1 Reducibility in C[x] and R[x]

Let

a(x) = a0 + a1x+ ...+ aAx
A ∈ C[x], deg a(x) ≥ 1, (6.111)

then

a(x) = aA(x− α1) · · · (x− αA), α1, ..., αA ∈ C (6.112)

by the Fundamental Theorem of Algebra. Consider now

a(x) = a0 + a1x+ ...+ aAx
A ∈ R[x], deg a(x) ≥ 1. (6.113)

Then we have

a(z) = 0 ⇔ a(z) = 0 (6.114)

because

0 = a(z) = a0 + a1z + ...+ aAz
A. (6.115)

Therefore, non-real complex roots exist in pairs:

βj 6= βj, βj ∈ {α1, ..., αA}. Consequently

a(x) = aA(x− α1) · · · (x− αh) · (x− β1)(x− β1) · · · (x− βk)(x− βk),

α1, ..., αh ∈ R, β1, ..., βk ∈ C \ R, h+ 2k = A. (6.116)

Write β = a+ ib, where a, b ∈ R and compute

(x− β1)(x− β1) = (x− a− ib)(x− a+ ib) = (x− a)2 + b2 ∈ R[x]. (6.117)

Hence

a(x) = aA(x− α1) · · · (x− αh) · ((x− a1)2 + b21) · · · ((x− ak)2 + b2k),

(x− α1), ..., (x− αh), ((x− a1)2 + b21), . . . , ((x− ak)2 + b2k) ∈ R[x].

In other words: Any non-constant polynomial with real coe�cients, factors in

R[x] into �rst and second degree polynomials.
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7 Symmetric polynomials

De�nition 25. Let R be a ring. A polynomial

P (t1, ..., tm) =
∑
Finite

pi1,...,imt
i1
1 · · · timm , pi1,...,im ∈ R (7.1)

is m variable R-coe�cient polynomial, where t1, ..., tm are polynomial variables.

A degree of a polynomial P is the number

degP (t1, ..., tm) = max{i1 + ...+ im}. (7.2)

For all R-coe�cient polynomials we use the notation

R[t1, ..., tm]. (7.3)

Let < i1, ..., im > be exponents of a term pi1,...,imt
i1
i · · · timm . Then, terms can be

compared as in the case of a single variable polynomial. Thus, R[t1, ..., tm] can be

de�ned in a natural way by the identity and the multiplication.

It can be proved that (R[t1, ..., tm],+, ·) is a ring.

Let SM be a set of permutations of {1, 2, ...,m}. If λ ∈ Sm, then we write

pλ(t1, ..., tm) = p(tλ(1), ..., tλ(m)). (7.4)

De�nition 26. A polynomial p is symmetric if

p(tλ(1), ..., tλ(m)) = p(t1, ..., tm) ∀ λ ∈ Sm. (7.5)

7.1 Elementary Symmetric Polynomials

De�nition 27. Polynomials

sk = sk(t1, ..., tm) = (7.6)∑
1≤j1<j2<...<jk≤m

tj1tj2 · · · tjk , k = 1, ...,m,

are elementary symmetric polynomials.
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Lemma 10. Elementary symmetric polynomials s1, ..., sm are symmetric poly-

nomials, i.e.

sk(tλ(1), ..., tλ(m)) = sk(t1, ..., tm) ∀ λ ∈ Sm (7.7)

for all k = 1, ...,m.

They look like

s1 = t1 + ...+ tm; (7.8)

s2 = t1t2 + t1t3 + ...+ tm−1tm; (7.9)

s3 = t1t2t3 + t1t2t4 + ...+ tm−2tm−1tm; (7.10)

...

sm = t1t2 · · · tm−1tm; (7.11)

Theorem 29. Fundamental theorem about symmetric polynomials.

A symmetric polynomial S(t1, ..., tm) from R[t1, ..., tm] can be represented by ele-

mentary symmetric polynomials s1 = s1(t1, ..., tm), ..., sm = sm(t1, ..., tm). In ot-

her words, there exists a polynomial P (s1, ..., sm) ∈ R[s1, ..., sm] such that

S(t1, ..., tm) = P (s1(t1, ..., tm), ..., sm(t1, ..., tm)). (7.12)

Let S ⊆ R be a ring. Suppose that a polynomial a(x) = a0 +a1x+ ...+xm ∈ S[x]

is factorized in R[x] as follows

a(x) = (x− α1) · · · (x− αm), α1, ..., αm ∈ R. (7.13)

Theorem 30. Let b(t1, ..., tm) ∈ S[t1, ..., tm] be a symmetric polynomial. Then

b(α1, ..., αm) ∈ S. (7.14)
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Let K ⊆ L be a �eld. Suppose that a polynomial a(x) = a0 + a1x+ ...+ amx
m ∈

K[x] is factorized in L[x] as follows

a(x) = am(x− α1) · · · (x− αm), α1, ..., αm ∈ L. (7.15)

Theorem 31. Let b(t1, ..., tm) ∈ K[t1, ..., tm] be a symmetric polynomial. Then

b(α1, ..., αm) ∈ K. (7.16)

Example 23. Let

x2 + bx+ c = (x− α)(x− β) ∈ Q[x]. (7.17)

Then

α2 + β2 ∈ Q, (7.18)

α3 + 2αβ + β3 ∈ Q. (7.19)

8 Field extension

8.1 Field extension

De�nition 28. A �eld K is a sub�eld of L or L is a �eld extension of K ⇔ K

and L are �elds and K ⊆ L.

This course uses the notation:

L : K and K 6 L.

If L : K, then we can interpret L as a vector space over K by setting addition

L× L → L, (α, β) → α + β; (8.1)

and scalar r ∈ K multiplication

K × L → L, (r, α) → rα (8.2)

using the �eld operations.
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De�nition 29. A degree of a �eld extension or [L : K] = dimK L is �nite if

[L : K] <∞

8.2 Field tower

If K 6M 6 L, then the �eld M is called a �eld tower.

L1 L2

� �

L3

|

K

⇔


K 6 L3 6 L1

and

K 6 L3 6 L2

Theorem 32. Let K 6M 6 L be a �eld tower. Then

[L : K] = [L : M ][M : K]. (8.3)

Proof. Let

M = 〈α1, ..., αr〉K = Kα1 + ...+Kαr, dimK M = r;

L = 〈β1, ..., βs〉M = Mβ1 + ...+Mβs, dimM L = s.
(8.4)

Set γ ∈ L. Then

γ =
s∑
j=1

mjβj, mj ∈M ;

mj =
r∑
i=1

kijαi, kij ∈ K ⇒

γ =
r∑
i=1

s∑
j=1

kijαiβj ∈ Kα1β1 + ...+Kαrβs,

#{αiβj} = rs.

(8.5)
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It remains to show that {αiβj} is linearly independent.

r∑
i=1

s∑
j=1

hijαiβj = 0, hij ∈ K ⇒

s∑
j=1

(
r∑
i=1

hijαi

)
βj = 0⇒

r∑
i=1

hijαi = 0⇒

hij = 0, ∀ i, j.

(8.6)

8.3 Quotient �eld

We will focus on the concept of rational numbers and rational functions.

De�nition 30. Let D be an integral domain and a, b, c, d ∈ D, bd 6= 0. Then we

de�ne

(a, b) ∼ (c, d) ⇔ ad = bc. (8.7)

Theorem 33. The relation ∼ is the equivalence for D × (D \ {0}) = D.

De�nition 31. The class of equivalence

[a, b] = {(c, d) ∈ D| (c, d) ∼ (a, b)}

has addition de�ned as

[a1, b1] + [a2, b2] = [a1b2 + a2b1, b1b2] (8.8)

and multiplication as

[a1, b1][a2, b2] = [a1a2, b1b2] (8.9)

for all (a1, b1), (a2, b2) ∈ D.
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We use the notation

a/b =
a

b
= [a, b] and Q(D) = {a/b| (a, b) ∈ D}.

It can be proven that

Theorem 34. The triad (Q(D),+, ·) is a �eld.

We say that Q(D) is a quotient �eld (�eld of fractions) of D. Then the isomorphic

result

{a
1
| a ∈ D} ∼= D, (8.10)

holds true and hence we can write a = a/1. Moreover

ab−1 =
a

1

(
b

1

)−1
=
a

1

1

b
=
a

b
(8.11)

Example 24.

Let D = Z, which is an integral domain. Then we de�ne the quotient �eld Q(Z)

which determines rational numbers

De�nition 32. The set of rational numbers is the �eld Q = Q(Z).

Cancellation of rational numbers

ac

bc
=
a

b
(8.12)

and convert
a

b
=
da

db
(8.13)

follows from De�nition 31.

Example 25.

Let K be a �eld, then the ring of polynomials D = K[x] is the integral domain.

De�nition 33. A �eld of rational function is the �eld K(x) = Q(K[x]).
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The rules which were mentioned above hold true:

(x2 − 1)x

(x− 1)x2
=
x+ 1

x
= 1 +

1

x
. (8.14)

Example 26.

Let K be a �eld. The set of series D = K[[T ]] is an integral domain. Then its

quotient �eld is isomorphic to Laurent series, so in other words

Theorem 35.

K((T )) ∼= Q(K[[T ]]). (8.15)

These structures have the following relationships:

K[T ] ⊂ K(T ) ⊂ K((T )), (8.16)

K[T ] ⊂ K[[T ]] ⊂ K((T )). (8.17)

De�nition 34. The derivation

D : K((T ))→ K((T ))

is a linear mapping and it satis�es

DT k = kT k−1 ∀ k ∈ Z. (8.18)

9 Algebraic numbers

9.1 Algebraic elements of sub�elds

De�nition 35. Let K ⊆ L be a �eld and α ∈ L. If there exists p(x) ∈ K[x] \K

such that

p(α) = 0 (9.1)

then α is algebraic over the �eld K.

Otherwise α is transcendental over the �eld K.
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Example 27. A. It is known that π is transcendental over Q.

B. Since

p(π) = 0, p(x) = x− π ∈ R[x], (9.2)

it is obvious that π is algebraic over R.

De�nition 36. Let K ⊆ L be a �eld and α ∈ L. The minimum polynomial of

the algebraic number α is a monic polynomial Mα(x) ∈ K[x] \ K of the lowest

possible degree such that

Mα(α) = 0. (9.3)

Let degMα(x) = n, then the degree of the algebraic number α over K is

degα = degK α = n ≥ 1. (9.4)

Theorem 36. LetK ⊆ L be a �eld and α ∈ L. The minimal polynomialMα(x) ∈

K[x]n of α is unique and irreducible in the ring of polynomials K[x].

Proof. If Mα(x) was reducible, then

Mα(x) = A1(x)A2(x), degA1(x), degA2(x) ≤ n− 1. (9.5)

Since

0 = Mα(α) = A1(α)A2(α), (9.6)

then there would be a polynomial Ai(x) ∈ K[x] such that

Ai(α) = 0, degAi(x) ≤ n− 1. contradiction. (9.7)

Uniqueness: Let Mα(x), Nα(x) ∈ K[x]n be two minimal polynomials of α. They

are irreducible and Mα(α) = Nα(α) = 0, so according to Theorem ?? we have

Mα(x) |
K[x]

Nα(x) and Nα(x) |
K[x]

Mα(x). (9.8)

Therefore Mα(x) = k ·Nα(x) and moreover Mα(x) = Nα(x).
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De�nition 37. Let α ∈ C be an algebraic number over Q (in that case, we

shortly say an algebraic number) such that degα = n. If α ∈ C is not an algebraic

number, then α is transcendental.

Let α be an algebraic number such that degα = n. Then the minimal polynomial

Mα(x) ∈ Q[x]n is irreducible in the polynomial ring and degMα(x) = n. Hence

it is of the form

Mα(x) = xn + an−1x
n−1 + ...+ a1x+ a0, ai ∈ Q, (9.9)

which is an irreducible monic polynomial.

9.1.1 Algebraic integer

De�nition 38. Let α ∈ C be an algebraic number such that degα = n and its

minimal polynomial

Mα(x) ∈ Z[x]n. (9.10)

Then α is an algebraic integer of the degree n.

Thus, the minimum polynomial of the degree n is

Mα(x) = xn + an−1x
n−1 + ...+ a1x+ a0, ai ∈ Z, (9.11)

which is an irreducible monic polynomial.

Example 28.
1 +
√

5

2
(9.12)

is the algebraic integer of degree 2..

Example 29.

x3 − 2 = (x− α1)(x− α2)(x− α3) (9.13)
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According to Theorem 20 zero points of an irreducible polynomial are distinct.

Let α1 = α, α2, ..., αn ∈ C be zero points of the minimal polynomial Mα(x).

Therefore αi 6= αj if i 6= j.

De�nition 39. Conjugates of an algebraic number α are zero points of its mini-

mal polynomial Mα(x), i.e.

α1, ..., αn ∈ C. (9.14)

De�nition 40.

Monomorphisms associated with conjugates of algebraic number α are morphisms

σ1, ..., σn : K = Q(α)→ C; (9.15)

which satisfy:

σi is an injection; (9.16)

σi(x+ y) = σi(x) + σi(y); (9.17)

σi(xy) = σi(x)σi(y); (9.18)

σi|Q = Id : Q→ Q identity (9.19)

σi(α) = αi, i = 1, ..., n. (9.20)

Specially

σ1 = Id|K, σ1(α) = α. (9.21)

De�nition 41. Let Q 6 K 6 C and [K : Q] <∞, then K is a number �eld.
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Theorem 37. Let K be a number �eld and σ : K→ C a monomorphism. Then

σ(a) = a ∀a ∈ Q. (9.22)

σ(aα + bβ) = aσ(α) + bσ(β), ∀a, b ∈ Q, α, β ∈ K. (9.23)

σ(p(β)) = p(σ(β)) ∀β ∈ K, p(x) ∈ Q[x]. (9.24)

9.2 Extension by an element

De�nition 42. Let S 6 R be a ring extension and α1, ..., αm ∈ R. Then the set

S[α1, ..., αm] = ∩
S∪{α1,...,αm}⊆V 6R

V, (9.25)

is the smallest subring of R containing S and α1, ..., αm.

We can see that S[α1, ..., αm] consists of polynomial values in points α1, ..., αm.

Specially,

S[α] = {s0 + s1α + s2α
2 + ...+ snα

n| si ∈ S, n ∈ N} (9.26)

is a single variable α polynomial ring.

De�nition 43. Let K 6 L be a �eld extension and α1, ..., αm ∈ L. then the set

〈K,α1, ..., αm〉 = ∩
K∪{α1,...,αm}⊆M6L

M, (9.27)

is the smallest sub�eld of L containing K and α1, ..., αm.

Theorem 38.

〈K,α1, ..., αm〉 = K(α1, ..., αm) := (9.28){
A

B
| A,B ∈ K[α1, ..., αm], B 6= 0

}
.
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Theorem 39.

〈K,α〉 = K(α) :=

{
A(α)

B(α)
| A(α), B(α) ∈ K[α], B 6= 0

}
. (9.29)

Theorem 40. If α is transcendental over K, then

K[α] ∼= K[x], (9.30)

i.e. rings K[α] and K[x] are isomorphic. Moreover

K(α) ∼= K(x), (9.31)

i.e. �elds K(α) and K(x) are isomorphic.

10 Algebraic �elds

De�nition 44. An algebraic extension L : K is algebraic if all elements of L are

algebraic over K.

Remark 8.

Kα1 + ...+Kαm := {k1α1 + ...+ kmαm| k1, ..., km ∈ K}; (10.1)

K[β]n := Kβ0 +Kβ1 + ...+Kβn. (10.2)

K[β]n ⊆ K[β] = Kβ0 +Kβ1 + .... (10.3)

Theorem 41. Let L : K and β ∈ L. Then

A. degK β = s ⇔

K[β] = K[β]s−1 and dimK K[β] = s; (10.4)
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B. If β is algebraic over K, then K[β] is a �eld;

C. [L : K] = r <∞ ⇒ degK β = s|r; (10.5)

D. A �nite �eld extension L : K is algebraic.

Theorem 42. Let L : K, α ∈ L be algebraic over K and degK α = n. Then

A. 〈K,α〉 = K[α] = K +Kα + ...+Kαn−1; (10.6)

B. [〈K,α〉 : K] = degK α = n; (10.7)

C. β ∈ 〈K,α〉 ⇒ degK β = k|n; (10.8)

D. The �eld extension 〈K,α〉 is algebraic.

Proof.

Theorem 41 A. "⇒": Let degK β = s. First, we show that

K[β] = K[β]s−1 = Kβ0 +Kβ1 + ...+Kβs−1. (10.9)

Consider the minimal polynomial of β

Mβ(x) = b0x
0 + ...+ xs ∈ K[x]

and a(β) ∈ K[β], a(x) ∈ K[x]. (10.10)

We apply the division algorithm:

a(x) = q(x)Mβ(x) + r(x), deg r(x) ≤ s− 1 ⇒

a(β) = q(β)Mβ(β) + r(β) = r(β) ∈ K[β]s−1 ⇒

K[β] ⊆ K[β]s−1 ⇒ K[β] = K[β]s−1. (10.11)
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Next, we show that {β0, β1, ..., βs−1} forms a base. So, let us suppose that

k0β
0 + k1β

1 + ...+ ks−1β
s−1 = 0,

k0, ..., ks−1 ∈ K, ki 6= 0, for all i = 0, ..., s− 1 ⇒

degK β ≤ s− 1. contradiction. ⇒

dimK K[β] = dimK K[β]s−1 = s. (10.12)

"⇐": Let K[β] = K[β]s−1 and dimK K[β] = s. Hence dimK K[β]s−1 = s and

K[β]s−1 = Kβ0 +Kβ1 + ...+Kβs−1, (10.13)

where {β0, β1, ..., βs−1} are linearly independent over K. If

p(x) ∈ K[x], 1 ≤ deg p(x) ≤ s− 1, p(β) = 0, ⇒

{β0, β1, ..., βs−1} would be linearly dependent. Contradiction

⇒ degK β ≥ s. (10.14)

On the other hand

βs ∈ K[β] = K[β]s−1 ⇒

βs = k0β
0 + k1β

1 + ...+ ks−1β
s−1 ⇒ degK β ≤ s. (10.15)

 degK β = s.

Proof. Theorem 41 C:

We know from B. that K[β] is a sub�eld of L. Since [L : K] = r <∞, according

to the item A, we have

dimK K[β] := s ≤ dimK L = r ⇒ degK β = s ≤ r. (10.16)

K 6 K[β] 6 L forms a �eld tower. From Theorem 32 we have

[L : K] = [L : K[β]][K[β] : K] ⇒ r = vs, v = [L : K[β]]. (10.17)
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Hence

s|r. (10.18)

Remark 8.

Theorem 39 says

〈K,α〉 = K(α) =

{
A(α)

B(α)
| A(α), B(α) ∈ K[α], B 6= 0

}
. (10.19)

but 42 A. says that K(α) is determined just by polynomial values.

Example 30.

Consider the �eld extension

L := 〈Q, 21/2, 21/3〉 = 〈〈Q, 21/2〉, 21/3〉. (10.20)

Let us denote

M2 := 〈Q, 21/2〉, M3 := 〈Q, 21/3〉. (10.21)

At �rst

Mα1 = x2 − 2 = (x− α1)(x− α2), α1 = 21/2,

Mα1 ∈ JQ[x], degQMα1 = 2,

⇒ [M2 : Q] = 2; (10.22)

Mβ1 = x3 − 2 = (x− β1)(x− β2)(x− β3), β1 = 21/3,

Mβ1 ∈ JQ[x], degQMβ1 = degQMβ2 = degQMβ3 = 3,

⇒ [M3 : Q] = 3. (10.23)

According to Theorem 42 C it holds that

β1, β2, β3 /∈M2, α1, α2 /∈M3. (10.24)
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Thus, the polynomial x3 − 2 does not have zero points in the �eld M2, so x
3 − 2

is irreducible in the ring of polynomials M2[x].

Therefore

[L : M2] = [〈M2, 2
1/3〉 : 〈Q, 21/2〉] = 3. (10.25)

According to Theorem 32 it holds that

[L : Q] = [L : M2][M2 : Q] = 6. (10.26)

Similarly as in the proof of Theorem 32, we get

M2 = 〈1, 21/2〉Q = Q · 1 +Q21/2, dimQ M2 = 2;

L = 〈1, 21/3, 22/3〉M2 = M2 · 1 +M22
1/3 +M22

2/3, dimM2 L = 3.

That implies

L = Q · 1 +Q21/2 +Q21/3 +Q21/221/3 +Q22/3 +Q21/222/3

= 〈1, 21/6, 22/6, 23/6, 24/6, 25/6〉Q,

dimQ L = 6.

Hence

〈Q, 21/2, 21/3〉 = 〈Q, 21/6〉 (10.27)

or written in a di�erent way

Q(21/2, 21/3) = Q(21/6). (10.28)

Lemma 11. Let

[〈K,αi〉 : K] = ni, i = 1, ..., r. (10.29)

Then

[〈K,α1, ..., αr〉 : K] ≤ n1 · · ·nr. (10.30)

Theorem 43. A �eld extension L : K is �nite if and only if L = 〈K,α1, ..., αr〉

and L is algebraic over K.
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11 Algebraic numbers A

A set A ⊆ C is the set of all algebraic numbers over Q. The following result shows

that A is a sub�eld of complex numbers.

Theorem 44.

A 6 C. (11.1)

Corollary 2. If α, β ∈ A, then

α± β, αβ, α/β ∈ A. (11.2)

According to Fundamental Theorem of Algebra 19, the set C is algebraically

closed, i.e. if τ is algebraic over C, then τ ∈ C.

The following result tells us that if ω ∈ C is algebraic over A, then ω ∈ A.

Theorem 45. The set of algebraic numbers A is algebraically closed, i.e.

a(x) ∈ A[x] \ {0(x)}, a(ω) = 0 ⇒ ω ∈ A. (11.3)

12 Number �eld

Theorem 46. Let K be a number �eld. Then there exists τ ∈ K such that

K = Q(τ). (12.1)

Thus, number �elds are simple extensions of Q, i.e. they are generated by a single

element.

Proof. By induction.

We look at the case

K = Q(α, β) (12.2)
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and show that

K = Q(α + cβ) where c ∈ Q. (12.3)

Let

Mα(x) = (x− α1) · · · (x− αn) ∈ Q[x];

Mβ(x) = (x− β1) · · · (x− βm) ∈ Q[x]. (12.4)

Then there exists c ∈ Q such that

γ := α + cβ 6= αi + cβj, ∀(i, j) 6= (1, 1). (12.5)

a). Obviously

γ := α + cβ ∈ Q(α, β) ⇒ Q(γ) ⊆ Q(α, β). (12.6)

b). We show (not so easily) that

Q(α, β) ⊆ Q(γ). (12.7)

Consider polynomials

r(x) = Mα(γ − cx) ∈ Q(γ)[x], deg r(x) = n,

r(β) = Mα(γ − cβ) = Mα(α) = 0;

Mβ(β) = 0, Mβ(x) ∈ Q[x], (12.8)

where zero points βj of Mβ(x) are simple.

Let us set

r(τ) = Mβ(τ) = 0 ⇒ τ = βk;

0 = r(τ) = Mα(γ − cτ) ⇒ γ − cτ = αh

⇒ γ = αh + cτ = αh + cβk

⇒ γ = α + cβ ⇒ τ = β. (12.9)
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Hence, a simple zero point β is the only common zero point of r(x) and Mβ(x).

Let us denote

d(x) = s.y.t(r(x),Mβ(x)) ∈ Q(γ)[x]. (12.10)

If

deg d(x) ≥ 2 ⇒

d(x) = (x− β)(x− κ)q(x), β, κ ∈ C ⇒

r(κ) = Mβ(κ) = 0 ⇒ κ = β ⇒

(x− β)2 ‖
C[x]

Mβ(x) (12.11)

Contradiction. Therefore deg d(x) = 1 and

d(x) = (x− β) ∈ Q(γ)[x] ⇒

β ∈ Q(γ) ⇒ α = γ − cβ ∈ Q(γ) ⇒

Q(α, β) ⊆ Q(γ). (12.12)

Example 31.

Q(i,
√

2) = Q(i−
√

2). (12.13)

12.1 Conjugates, �eld polynomial

Theorem 47. Let K = Q(τ) be a number �eld and [K : Q] = m. Then, there

are exactly m di�erent monomorphisms

σi : K→ C, i = 1, ...,m. (12.14)

Remark 9. Even if a ∈ K, it may happen that σi(a) 6∈ K for some i.

Example 32. Let K = Q(21/3), then

σ2(2
1/3), σ3(2

1/3) 6∈ K. (12.15)
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De�nition 45. Let K = Q(τ) be a number �eld and [K : Q] = m. A �eld

polynomial of an element β ∈ K is

Kβ(x) =
m∏
i=1

(x− σi(β)), (12.16)

where numbers

σi(β) ∈ C (12.17)

are conjugates of β over K.

Theorem 48.

Kβ(x) ∈ Q[x]. (12.18)

Proof: Based on Fundamental Theorem About Symmetric Polynomials.

Let us recall that according to De�nition 39, conjugates of β ∈ A are zero points

of the minimum polynomialMβ(x) ∈ Q[x],

β1, ..., βd ∈ C. (12.19)

We have

degKβ(x) = m, degMβ(x) = d. (12.20)

Theorem 49. Let β ∈ K = Q(τ) and [K : Q] = m. Then

Mβ(x) |
Q[x]

Kβ(x); (12.21)

Kβ(x) = Mβ(x)m/d, m/d ∈ Z+. (12.22)

Corollary 3.

{σ1(β), ..., σm(β)} = {β1, ..., βd}; (12.23)
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β ∈ Q ⇔ σ1(β) = ... = σm(β); (12.24)

Q(β) = K ⇔ σi(β) 6= σj(β) ∀ i 6= j. (12.25)

12.2 Discriminant/not required

De�nition 46.

Let K = Q(τ) be a number �eld and [K : Q] = m. A discriminant of numbers

γ1, ..., γm ∈ K is de�ned as

∆(γ1, ..., γm) = (det(σi(γj))i=1,...,m,j=1,...,m)2 = (12.26)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1(γ1) σ2(γ1) ... σm(γ1)

. ... .

. ... .

. ... .

σ1(γm) σ2(γm) ... σm(γm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

A discriminant of an element β ∈ K is

δ(β) = ∆(1, β, ..., βm−1) = (12.27)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

σ1(β) σ2(β) ... σm(β)

. ... .

. ... .

. ... .

σ1(β)m−1 σ2(β)m−1 ... σm(β)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.
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Theorem 50.

∆(γ1, ..., γm) ∈ Q. (12.28)

Theorem 51. The set {γ1, ..., γm} is a base of K if and only if the discriminant

is not zero, i.e.

dimQQ(γ1, ..., γm) = m ⇔ ∆(γ1, ..., γm) 6= 0. (12.29)

Theorem 52.

δ(β) =
∏
i<j

(σi(β)− σj(β))2; (12.30)

δ(β) 6= 0 ⇔ degQ(β) = m; (12.31)

δ(β) 6= 0 ⇔ Q(β) = K. (12.32)

12.3 Norm and trace

De�nition 47. Let K = Q(τ) be a number �eld and [K : Q] = m. A norm of an

element β ∈ K is the number

N(β) = NK(β) =
m∏
i=1

σi(β) (12.33)

and a trace is the number

T (β) = TK(β) =
m∑
i=1

σi(β). (12.34)

Theorem 53.

NK(β), TK(β) ∈ Q. (12.35)

NK(β) 6= 0 ⇔ β 6= 0. (12.36)
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Proof. (12.35):

Kβ(x) = xm − T (β)xm−1 + ...+ (−1)mN(β) ∈ Q[x]. (12.37)

(12.36): Since σi is the injection, we have

σi(x) = 0 ⇔ x = 0. (12.38)

Theorem 54.

N(αβ) = N(α)N(β) (12.39)

T (rα + sβ) = rT (α) + sT (β); (12.40)

N(r) = rm, T (r) = mr; (12.41)

for all α, β ∈ K, r, s ∈ Q.

Example 33.

Let us show by using the trace function that

31/2 /∈ K = Q(21/2) = Q[21/2]. (12.42)

Notice that

[Q(21/2) : Q] = [Q(31/2) : Q] = 2. (12.43)

Suppose the opposite

31/2 ∈ Q[21/2] = Q+ 21/2Q (12.44)

so

31/2 = a+ b21/2, a, b ∈ Q. (12.45)

We compute the trace

TK(31/2) = TK(a) + TK(b21/2) = 2a+ bTK(21/2). (12.46)
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On the other hand, according to (12.22) the �eld polynomials

K21/2(x) =
2∏
i=1

(x− σi(21/2)) = x2 − TK(21/2)x+NK(21/2);

K31/2(x) =
2∏
i=1

(x− σi(31/2)) = x2 − TK(31/2)x+NK(31/2)

are powers of corresponding minimal polynomials

M21/2(x) = x2 − 2; M31/2(x) = x2 − 3

Since

x2 − 2 = x2 − TK(21/2)x+NK(21/2);

x2 − 3 = x2 − TK(31/2)x+NK(31/2), (12.47)

we have

TK(21/2) = TK(31/2) = 0. (12.48)

Now, from (12.46) we get

a = 0 ⇒ 31/2 = b21/2, b ∈ Q

⇒ (3/2)1/2 = b ⇒

TK((3/2)1/2) = 2b. (12.49)

But if we look at the �eld polynomial of (3/2)1/2:

K(3/2)1/2(x) = x2 − TK((3/2)1/2)x+NK((3/2)1/2);

M(3/2)1/2(x) = x2 − 3/2 ⇒

TK((3/2)1/2) = 0 ⇒ b = 0

⇒ 31/2 = 0. (12.50)

contradiction.
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Theorem 55. Not required. Let K = Q(τ) be a number �eld, [K : Q] = m, let

Mτ (x) be the minimal polynomial of τ and DMτ (x) its derivative. Then

∆(1, τ, ..., τm−1) = (−1)m(m−1)/2N(DMτ (τ)). (12.51)

Theorem 56. Not required. Let K = Q(τ) be a number �eld, [K : Q] = m and

γ1, ..., γm ∈ K. Then

∆(γ1, ..., γm) = det(T (γiγj)). (12.52)

13 Algebraic integers - B

The set B ⊆ C consists of all algebraic integers over Q.

The following result shows that the set of all algebraic integers B is a subring of

the set of all algebraic numbers A

Theorem 57.

B 6 A. (13.1)

Corollary 4. If α, β ∈ B, then

α± β, αβ ∈ B. (13.2)

The set B is algebraically closed:

Theorem 58. Let

b(x) = xn + ...+ b0 ∈ B[x] \ {0(x)},

b(ω) = 0 ⇒ ω ∈ B. (13.3)
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Example 34.

α2 = α + 1, β5 + αβ2 + 5 = 0 (13.4)

ω2 − β = 0 ⇒ ω ∈ B. (13.5)

Theorem 59. If α ∈ A, then ∃ the smallest d ∈ Z+ such that

dα ∈ B. (13.6)

De�nition 48. The number d ∈ Z+ from Theorem 59 is called the denominator

of the algebraic number α. We write den α = d.

Example 35. Let

5α2 + α + 1 = 0, ⇒ (5α)2 + 5α + 5 = 0 ⇒ (13.7)

5α ∈ B, den α = 5. (13.8)

De�nition 49. Let K = Q(τ) be a number �eld. Then

ZK = K ∩ B (13.9)

is a ring of integers of K.

Example 36.

ZQ = Z. (13.10)

Example 37.

21/7 /∈ Q. (13.11)

Proof by contradiction:

21/7 ∈ Q. But 21/7 ∈ B ⇒ 21/7 ∈ Z.

Obviously 1 < 21/7 < 2. contradiction. (13.12)
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Example 38. Let n ∈ Z≥2. Then

21/n + 31/n /∈ Q. (13.13)

The ring of integers is a subring of the set of algebraic integers

Theorem 60.

Z 6 ZK 6 B. (13.14)

Moreover

Theorem 61. Let β ∈ ZK, then

Z[β] 6 ZK. (13.15)

Remark 10. However, it often happens that

ZK 6= Z[β]. (13.16)

Example 39. K = Q(
√

5) is the number �eld where

1 +
√

5

2
∈ ZK,

1 +
√

5

2
/∈ Z[
√

5]. (13.17)

Theorem 62. Not required. Let K be a number �eld. Then

K = Q(λ), λ ∈ ZK. (13.18)

Theorem 63. Not required. Let K = Q(τ) be a number �eld and [K : Q] = m.

If {λ1, ..., λm} ⊆ ZK is a base of K, then

∆(λ1, ..., λm) ∈ Z \ {0}. (13.19)

Theorem 64. Not required. Let K = Q(τ) be a number �eld and [K : Q] = m.

Then there exists a base {λ1, ..., λm} ⊆ ZK of K over Q.

Theorem 65. Not required. Let K = Q(τ) be a number �eld and [K : Q] = m.

Then there exists a base {λ1, ..., λm} ⊆ ZK of ZK over Z.
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De�nition 50. According to Theorem 65, a base of ZK over Z is formed by an

algebraic integer base of K.

Theorem 66. Not required. Let {λ1, ..., λm} ⊆ ZK be a base of a �eld K. If

∆(λ1, ..., λm) is square-free, then {λ1, ..., λm} is an algebraic integer base of K.

Example 40.

∆

(
1,

1 +
√

5

2

)
= 5 ⇒

{
1,

1 +
√

5

2

}
(13.20)

is the algebraic integer base of Q(
√

5).

14 Divisibility in ZK

Theorem 67. Let β ∈ ZK, then

NK(β), TK(β) ∈ Z; (14.1)

NK(β) 6= 0 ⇔ β 6= 0. (14.2)

Let Z∗K be the unit group of the integer ring ZK.

Theorem 68. Let a, b ∈ ZK, then

a |
ZK

b ⇒ N(a) |
Z
N(b); (14.3)

a ∈ Z∗K ⇔ N(a) = ±1; (14.4)

a ∼ b ⇒ N(a) = ±N(b); (14.5)

|N(a)| ∈ P ⇒ a ∈ JZK . (14.6)
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Proof.

14.3: Suppose

b = ca, a, b, c ∈ ZK (14.7)

since σi is the homomorphism, we have

σi(b) = σi(c)σi(a) ∀ i = 1, ...,m ⇒ (14.8)

N(b) =
m∏
i=1

σi(b) =
m∏
i=1

σi(c)
m∏
i=1

σi(a) = N(c)N(a), (14.9)

where

N(b), N(c), N(a) ∈ Z ⇒ N(a)|
Z
N(b). (14.10)

14.4: First, let us suppose

a ∈ Z∗K ⇒ a |
ZK

1. (14.11)

The relationship (14.3) implies

N(a) |
Z
N(1) = 1 ⇒ N(a) = ±1. (14.12)

Now, suppose

N(a) = ±1. (14.13)

Therefore

aσ2(a) · · ·σm(a) = ±1, ⇒ c = σ2(a) · · · σm(a) ∈ K. (14.14)

Moreover, since

a ∈ ZK ⊆ B ⇒ σ2(a), ..., σm(a) ∈ B ⇒ c ∈ B. (14.15)

Hence

c ∈ K ∩ B = ZK, ±c · a = 1 ⇒ (14.16)
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a |
ZK

1 ⇒ a ∈ Z∗K. (14.17)

The relationship (14.4) is proven.

Note that even if a ∈ ZK, it may happen that σi(a) 6∈ ZK, look at Example 32.

However, σi(a) ∈ B always holds.

14.5:

b = ua, u ∈ Z∗K ⇒ N(u) = ±1 ⇒ (14.18)

N(b) = N(u)N(a) = ±N(a). (14.19)

14.6: Obviously a 6= 0. Proof by contradiction: a is reducible

a = bc, b, c 6∈ Z∗K, b, c 6= 0, ⇒ (14.20)

|N(b)|, |N(c)| ≥ 2 ⇒ |N(a)| = |N(b)||N(c)| 6∈ P. (14.21)

contradiction.

Theorem 69. Let D be a UFD, a, b, c ∈ D and

ab = ck, a ⊥ b. (14.22)

Then

a ∼ dk, b ∼ ek, (14.23)

for some d, e ∈ D.

15 A Diophantine equation

The main motive for studying algebraic numbers was originally solving Diophan-

tine equations.
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Example 41.

y2 + 2 = x3, 2 6 |y, (15.1)

is a Diophantine equation. We are seeking integer solutions.

I. Equation splits in K = Q(
√
−2) as follows:

(y +
√
−2)(y −

√
−2) = x3. (15.2)

II. The ring of integers is

ZK = Z+ Z
√
−2. (15.3)

III. Its unit group is

Z∗K = {±1}. (15.4)

IV. The integral domain

ZK = Z+ Z
√
−2. (15.5)

is Euclidean domain and thus UFD. Hence, we can operate with it as in the ring

of rational integers (see Solving the Pythagorean Equation).

V. Let

D = syt(y −
√
−2, y +

√
−2),

D = a+ b
√
−2 ∈ ZK ⇒ (15.6)

D
∣∣
ZK

2y, D
∣∣
ZK

2
√
−2 ⇒ (15.7)

N(D)
∣∣
Z
N(2y), N(D)

∣∣
Z
N(2
√
−2),

N(D) = (a+ b
√
−2)(a− b

√
−2) = a2 + 2b2 ⇒ (15.8)
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a2 + 2b2
∣∣
Z
4y2, a2 + 2b2

∣∣
Z
− 8 ⇒ (15.9)

D = ±1,±2,±
√
−2. (15.10)

For instance

√
−2
∣∣
ZK

y −
√
−2 ⇒

y −
√
−2 =

√
−2(e+ f

√
−2), e, f ∈ Z ⇒

2f = −y, cannot happen. (15.11)

Similarly, we can eventually conclude that

D = ±1
∣∣
ZK

y −
√
−2, y +

√
−2, ⇒ (15.12)

y −
√
−2 ⊥ y +

√
−2, ⇒ (15.13)

y +
√
−2 = (c+ d

√
−2)3, c+ d

√
−2 ∈ ZK, c, d ∈ Z

⇒ 1 = d(3c2 − 2d) ⇒ d = ±1, d = 1, c = ±1;

y = c3 − 6cd2 ⇒ y = ±5

⇒ x = 3, y = ±5. (15.14)

16 Square root �elds

Square root �eld is of the form

K = Q(
√
d), d ∈ Z, (16.1)

where d is square-free from now on.
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Theorem 70.

Let K = Q(
√
d), then

ZK = Z+ Zλ, (16.2)

where

λ =
√
d, d ≡ 2, 3 (mod 4); (16.3)

λ =
1 +
√
d

2
, d ≡ 1 (mod 4); (16.4)

∆ = 4d, d ≡ 2, 3 (mod 4); (16.5)

∆ = d, d ≡ 1 (mod 4). (16.6)

Proof. Consider

β = r + s
√
d ∈ ZK, r, s ∈ Q ⇒

T (β) = 2r ∈ Z ⇒ r ∈ 1

2
Z ⇒ r =

a

2
, a ∈ Z;

N(β) = r2 − ds2 ∈ Z ⇒ d(2s)2 = (2r)2 − 4N(β) ∈ Z,

where 2s =
k

l
, k ⊥ l, ⇒

d(2s)2 =
dk2

l2
∈ Z, where d is square-free ⇒ l = 1,

⇒ 2s ∈ Z ⇒ s =
b

2
, b ∈ Z. (16.7)

Hence

β =
a+ b

√
d

2
, a, b ∈ Z. (16.8)

Let us look at a form of a and b more closely.

Case 16.3, so d ≡ 2, 3 (mod 4):
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We have

N(β) =
a2 − db2

4
∈ Z ⇒

a2 − db2 ≡ 0 (mod 4) ⇒

a ≡ b ≡ 0 (mod 2) ⇒

β =
a+ b

√
d

2
= A+B

√
d, A,B ∈ Z. (16.9)

Case 16.4, so d ≡ 1 (mod 4):

We have

N(β) =
a2 − db2

4
∈ Z ⇒

a2 ≡ b2 (mod 4) ⇒

a ≡ b ≡ 0 (mod 2) or a ≡ b ≡ 1 (mod 2) ⇒ (16.10)

β =
a+ b

√
d

2
, a ≡ b (mod 2), a, b ∈ Z

⇒ β = A+B
1 +
√
d

2
, A,B ∈ Z. (16.11)

16.1 Imaginary square root �elds

16.1.1 Unit group

Let us denote

ω = e
2π
3
i. (16.12)

Theorem 71. Let K = Q(
√
d), then

Z∗K = {±1,±i}, d = −1; (16.13)

Z∗K = {±1}, d = −2; (16.14)
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Z∗K = {±1,±ω,±ω2}, d = −3; (16.15)

Z∗K = {±1}, d ∈ Z≤−5. (16.16)

For instance the case: d = −5 ≡ 3 (mod 4), so integers are of the form

β = A+B
√
−5, A,B ∈ Z ⇒

N(β) = A2 + 5B2 = 1 ⇒ A = ±1, B = 0 ⇒

Z∗Q(√−5) = {±1}. (16.17)

16.1.2 UFD/Euclidean domain

Theorem 72. Let K = Q(
√
d), then ZK is UFD if

d = −1,−2,−3,−7,−11, (16.18)

which are imaginary Euclidean domains and moreover if

d = −19,−43,−67,−163. (16.19)

These are all cases if d ≤ −1.

Proof of the case d = −1 where ZQ(√−1) = Z[i]. We will show that Z[i] is Euclidean

domain.

Let a, b ∈ Z[i] where
a

b
= x+ iy, x, y ∈ Q. (16.20)

We choose s, t ∈ Z such that

|x− s| ≤ 1

2
, |y − t| ≤ 1

2
. (16.21)
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Let

q = s+ it, a = qb+ r, r ∈ Z[i]. (16.22)

We compare the norms of b and r:

N(r) = N(b)N(x− s+ i(y − t)) = N(b)((x− s)2 + (y − t)2) (16.23)

≤ N(b)
1

2
⇒ N(r) < N(b) (16.24)

and we have

N : Z[i]→ N, (16.25)

so N is Euclidean function. Moreover, we know from Theorem 9 that Euclidean

domain is UFD.

16.1.3 Gaussian integers/prime numbers

De�nition 51. Let K = Q(i). Elements of the integer ring

ZK = Z[i] (16.26)

are called Gaussian integers. Moreover irreducible Gaussian integers are called

Gaussian primes.

Since Z[i] is UFD, its irreducible elements are prime, so

PZ[i] = JZ[i]. (16.27)

Theorem 73.

π = a+ ib ∈ PZ[i] ⇔ (16.28)

π ∼ 1 + i; (16.29)
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π ∼ a+ ib, a2 + b2 = p ∈ P, p ≡ 1 (mod 4); (16.30)

π ∼ p ∈ P, p ≡ 3 (mod 4). (16.31)

16.2 Real square root �elds

16.2.1 Unit group

Unit groups of real square root �elds are in�nite and in general case quite di�cult

to de�ne. They are needed for solving Pell's equation.

Theorem 74. Let K = Q(
√
d), d ∈ Z≥2. Then

Z∗K = {xk + yk
√
d| xk + yk

√
d = (x1 + y1

√
d)k, k ∈ Z}, (16.32)

where (x1, y1) ∈ Z2 is the smallest positive solution of Pell's equation

x2 − dy2 = 1. (16.33)

The smallest solution can be studied by using continued fractions. Sign up for

the course Continued Fractions!

16.2.2 UFD/Euclidean domain

Theorem 75. Let K = Q(
√
d), then ZK is UFD if

d = 2, 3, 5, 6, 7, 13, 17, 21, 29, 33, 37, 41, 57, 73, (16.34)

which are real Euclidean domains and moreover if

d = 11, 14, 19, 22, 23, 31, 38, 43, 46, 47, 53, 59, 61, 62, 67,

69, 71, 77, 83, 86, 89, 93, 94, 97. (16.35)

That is all only if we consider 2 ≤ d ≤ 100.
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