2.1 Simulation of a discrete random variable.[LPW08, Ex. B.2] Let U be a uniformly distributed random variable on $[0,1]$, and let X be the random variable $\phi(U)$, where ϕ is defined as in [LPW08, Eq. B.10]. Show that X takes on the value a_{k} with probability p_{k}.
2.2 Ehrenfest urn.[LPW08, Ex. 2.5] Let P be the transition matrix for the Ehrenfest chain described in [LPW08, Eq. 2.8]. Show that the binomial distribution with parameters n and $1 / 2$ is a stationary distribution for this chain.
2.3 Partially observed Markov chain. Let $\left(X_{t}\right)$ be a finite Markov chain on Ω with initial distribution μ and transition matrix P. Define a random sequence $\left(Y_{0}, Y_{1}, \ldots\right)$ by $Y_{t}=X_{r t}$, where r is a positive integer.
(a) Compute $\mathbf{P}\left(Y_{1}=y \mid Y_{0}=x\right)$.
(b) Show that $\left(Y_{t}\right)$ is a Markov chain with initial distribution μ and transition matrix P^{r}.
2.4 Sojourn time in a state. Consider a finite Markov chain on Ω having a nonrandom initial state $x \in \Omega$. Assume that the transition matrix of the Markov chain satisfies $0<P(x, x)<1$. Denote the sojourn time at state x by $T=\min \left\{t \geq 1: X_{t} \neq x\right\}$.
(a) Compute the probability $\mathbf{P}\left(X_{1}=x, X_{2}=x\right)$.
(b) Compute the probability $\mathbf{P}\left(X_{1}=x, X_{2}=x, X_{3} \neq x\right)$.
(c) Compute the probability $\mathbf{P}(T=t)$ for all $t=0,1,2, \ldots$ Can you identify the distribution of T from this formula?
2.5 Random walk on a connected graph.[LPW08, Ex. 1.2] A graph G is connected when, for two vertices x and y of G, there exists a sequence of vertices $x_{0}, x_{1}, \ldots, x_{k}$ such that $x_{0}=x, x_{k}=y$, and $x_{i} \sim x_{i+1}$ for $0 \leq i \leq k-1$. Show that the simple random walk on G is irreducible if and only if G is connected.

References

[LPW08] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times. American Mathematical Society, 2008.

