Moment-based parameter estimation in binomial
random intersection graph models

Joona Karjalainen and Lasse Leskela
Department of Mathematics and Systems Analysis, Aalto University

Abstract Induced subgraph sampling and consistency
Random intersection graphs (RIG) can be used as parsimonious models of Counting the triangles in the graph with a naive method requires O(n>)
large and sparse networks. We derive moment-based parameter estimators for operations. One may reduce the computation time by only using an induced
a class of RIG models and prove their consistency when only a subset of the subgraph G0 of the data, i.e., a subset of ny < n nodes and the links
data is used for estimation. between them.

4 N

Random intersection graphs

RIGs are models of undirected and unweighted graphs, where a link is present
between two nodes exactly when they share a common attribute (e.g., a
nobby or an interest). The model G(n,m,, p,) is specified as follows:
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Figure 2: A data set G with n = 8 and an induced subgraph G (™) with n, = 5.

* n, the number of nodes
* m,, the number of attributes
* p, € (0,1), the probability that node i has attribute k

V; €{1,2,.., m,}, the (random) set of attributes assigned to node i Using the asymptotic subgraph counts we obtain the following estimators for

A and pu.
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Figure 1: A realization of a random intersection graph with n = 4. Question: Given a sufficiently large n and ng, are these estimators close to
_ o _ the true parameter values?
We consider a sequence of graphs G(n,m,,p,,) and its limiting behavior as
n — oo. In the limit, we wish to have The following theorems confirm that this is the case, in a suitable sense:
* a nontrivial average degree of the nodes, and . P
. . » . S Theorem 1 Estimator A is consistent, i.e., A — A, when ny » n'/?.
* a nontrivial clustering coefficient P(j < k|i & j,i < k).
Moreover,
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where Theorem 2 Estimators fi; and fi, are consistent when ny > n?/3.
» 1 is the limiting expected degree of a node, and The proofs are based on the second moment method, Lemma 1 and the

* u is the limiting expected number of attributes of a node. continuous mapping theorem.

Question: How can we estimate A and u from a single observed network?

Simulations

Asymptotic subgraph counts

* Parameters are estimated once for each n = 50, 70, ..., 1000.

* Two sets of parameters, (A =9,u = 3) and (A = 2,u = 0.5).
Parameter estimates can be based on counting the numbers of certain .
subgraphs in the observed network. Consider the following subgraphs:

"he biases decrease rapidly as the size of the graph grows.

* [I; seems to be better than fi,, but counting the triangles takes time.

Q O OO » The data can be much larger (n = 10° with a simple implementation).
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Let Ni,, N;, and Ny, be the empirical counts of links, 2-stars and triangles. N\g\d‘vq\/\/\_/v A
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Parameter estimators are found by solving for A and u and replacing E|N,] n n

with N,. The variances of N, can be bounded by using the following lemma. Figure 3: Estimated values for parameters (1, &) with ny, = n for simulated

hs of si = 50, ...,1000.
Lemma 1 The probability that a random intersection graph G (|G|, m,, p.,) graphs of sizes n

contains a connected subgraph S with |S| nodes satisfies References:
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