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Abstract. This paper considers multiclass loss networks with monoskill and multiskill
servers and overflow routing. Accordingly, an arriving job is assigned to a corresponding
vacant monoskill server, if possible. Otherwise the job is routed to a multiskill server,
or rejected. We derive an efficiently computable upper bound for the system utilization
by studying a modified routing where jobs can be redirected from multiskill to monoskill
servers. This repacking policy improves performance also in terms of blocking probability
when the service requirements of different job classes are statistically identical. Numerical
simulations illustrate that our bounds provide good approximations for the performance
of the original system.
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1 INTRODUCTION

In many communication systems, different services can be provided by a combination of
monoskill servers, assigned to serving a certain class of jobs, and multiskill servers capable
of dealing with all type of jobs. The routing of jobs is usually based on an overflow policy
where an arriving job is preferentially routed to a corresponding monoskill server. If all
monoskill servers corresponding to the class of the arriving job are busy, the job is routed
to a multiskill server, if available, or rejected otherwise. This model fits several telecommu-
nications applications such as call centers, streaming media, grid computing and wireless
networks. Dimensioning has become an important economical issue in large call centers
with specialized agents dedicated to diverse services [1–3]. As video-on-demand becomes
more popular, new optimization methods are needed for streaming media servers that can
be specialized in terms of clip size or delay constraints [4, 5]. In the field of grid computing,
sharing and specialization of computational tasks between a set of distant workstations
and supercomputers may produce considerable capacity gains. In wireless networks, a call
can be served by different carriers; network operators may share a chunk of bandwidth for
dealing with traffic surges. Dimensioning this type of systems is challenging because the
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analysis of the overflow processes is very complex, and exact numerical solution becomes
intractable as soon as the number of servers in the system is greater than a few units [6].

Numerous papers study blocking in loss networks (see [7] for an overview). The sim-
plest way to estimate the blocking probability is the exponential approximation where
the overflow process is modeled by a Poisson process. Some other methods include the
Hayward–Fredericks method [8] and the hyperexponential decomposition [9]; the latter
provides accurate estimates but is computationally demanding. Our approach is to con-
sider a slightly modified system, where jobs from the multiskill servers are instantaneously
redirected to monoskill servers as soon as places become vacant. Applying the Markov
reward approach [10], we analytically prove that repacking increases the mean number
of jobs in the system. As a consequence, a computationally efficient upper bound for
the carried load of the original system is derived. Moreover, repacking improves system
performance also in terms of blocking probability when the service times are statistically
identical. Numerical simulations illustrate that the blocking probability of the modified
system is a good approximation for the blocking probability of the original system

The rest of the paper is structured as follows. In Section 2, we introduce the model
and notation. In Section 3, we prove a dynamical stability property, which is later used to
prove the main theorem. In Section 4, we illustrate by numerical simulations the tightness
of our bounds. Section 5 concludes the paper.

2 OVERFLOW ROUTING AND REPACKING

2.1 Overflow routing

Consider a loss network serving K classes of jobs. The network consists of Mk monoskill
servers (or resources) assigned to serving jobs of class k, and N multiskill servers capable
of serving all classes of jobs. Customers of class k arrive according to a Poisson process
of intensity λk and require exponential service times with mean 1/µk. We assume that
the arrival processes and the service times are independent. Arriving service requests
are routed according to an overflow policy, where a job of class k is always routed to a
corresponding monoskill server, if there is one available. If all monoskill servers for class
k are busy, the job is routed to a multiskill server. If all multiskill servers are also busy,
then the service request is rejected, see Figure 1. We assume that the rejected requests
leave the system without retrials.

Let X1,k, X2,k be the number of jobs of class k being served by the monoskill and
multiskill servers, respectively. Then the system state can be described by the random
vector X = (Xi,k) ∈ Z2K indexed by i = 1, 2 and k = 1, . . . , K. For x ∈ Z2K , denote
|x| =

∑

i

∑

k |xi,k|, and define the seminorms |x|i =
∑

k |xi,k|, i = 1, 2. The state space of
the system is denoted by S = {(xi,k) ∈ Z2K : 0 ≤ x1,k ≤ Mk ∀k, |x|2 ≤ N}, with unit
vectors ei,k, i = 1, 2, k = 1, . . . , K. By construction, X is a multi-dimensional birth–death
process on S, and the generator of X has the nontrivial entries

q(x, y) =











λk1(x1,k < Mk), y = x + e1,k,

λk1(x1,k = Mk, |x|2 < N), y = x + e2,k,

µkxi,k, y = x − ei,k, i = 1, 2.

(1)
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Fig. 1. Overflow system and repacking.

2.2 Repacking

Consider the same network with slightly modified routing, where jobs are redirected from
multiskill to monoskill servers as soon as places become vacant. Denoting the correspond-
ing state vector by X ′ = (X ′

i,k), it follows that X ′ is also a birth–death process on S. The
generator of X ′ has the nontrivial entries

q′(x, y) =



















λk1(x1,k < Mk), y = x + e1,k,

λk1(x1,k = Mk, |x|2 < N), y = x + e2,k,

µkx1,k1(x2,k = 0), y = x − e1,k,

µkx1,k1(x2,k > 0) + µkx2,k y = x − e2,k.

(2)

The repacking policy guarantees that all states x with x1,k < Mk and x2,k > 0 are transient
for X ′ and thus have zero stationary probability. As a consequence of this special feature,
the aggregate process X̃ ′ = (X ′

1,k + X ′
2,k)

K
k=1

describing the net amount of jobs of class k
is a birth–death process on

S̃ = {x ∈ ZK : 0 ≤ xk ≤ Mk + N ∀k, |x| ≤
∑

k Mk + N}.

The process X̃ ′ has the transitions x 7→ x + ek ∈ S̃ and x 7→ x − ek ∈ S̃, occurring at
rates λk and µkxk, respectively. It is well-known (see for example [11]) that X̃ ′ has the
product form stationary distribution given by

P(X̃ ′ = x)

P(X̃ ′ = 0)
=

∏

k

(λk/µk)
xk

xk!
, x ∈ S̃. (3)

3 PERFORMANCE ANALYSIS

3.1 Performance measures

In this section we will compare the performance of the multiclass network with and without
repacking. Performance is measured in terms of carried load a, defined as the mean rate
of work (in erlangs) served by the network, and overall blocking probability b, which is the
probability that an arbitrary arriving job is rejected. Denote the set of blocking states for
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class k by Bk = {x ∈ S : x1,k = Mk, |x|2 = N}. Then by the Little law, the stationary
blocking probabilities bk = P(X ∈ Bk) for class k satisfy

(1 − bk)
λk

µk

= E(X1,k + X2,k).

Since a =
∑

k(1 − bk)λk/µk, and b = (
∑

k λkbk)/(
∑

k λk), this implies

a = E |X|, b = 1 −

∑

k µk E(X1,k + X2,k)
∑

k λk

. (4)

Analogous reasoning for X ′ shows that

a′ = E |X ′|, b′ = 1 −

∑

k µk E(X ′
1,k + X ′

2,k)
∑

k λk

. (5)

Observe that for the system with repacking,

E |X ′| = E |X̃ ′| and P(X ′ ∈ Bk) = P(X̃ ′ ∈ B̃k),

where X̃ ′ is the aggregate process defined in Section 2.2, and B̃k = {x ∈ S̃ : xk =
Mk or |x| =

∑

j Mj + N}. Thus, numerical evaluation of a′ and b′ = (
∑

k λkb
′
k)/(

∑

k λk)
can be efficiently carried out using the product form structure (3) for the stationary
distribution of X̃ ′.

On the other hand, there are no simple closed form expressions for a or b, since neither
X nor its aggregated version are reversible. Moreover, brute force numerical solution of
the stationary distribution of X is not feasible, because the size of the state space is of
the order NKM1 · · ·MK . For example, with K = 2, M1 = M2 = N = 9, the rate matrix
q(x, y) has over 30 million entries. However, in Section 3.3 we will show how a′ and b′ can
provide bounds for a and b.

3.2 Stability of overflow routing with respect to initial states

We will next prove a key continuity property of the original system: small perturbations
of the initial state do not significantly change the future behavior of the system. Smallness
will here be characterized in terms of

∆ = {0, ±e2,k, e2,j − e2,k, j, k = 1, . . . , K} ⊂ Z2K .

Let us first focus on the discrete-event dynamics of the system. Let Ak, D
m
1,k, D

n
2,k be inde-

pendent Poisson processes on the positive real line with intensities λk, µk, µk, respectively,
where m = 1, . . . , Mk, n = 1, . . . , N , and k = 1, . . . , K. Further, fix τ0 = 0, and denote
by τn the n-th point of the aggregate point process

∑

k(Ak +
∑Mk

m=1
Dm

1,k +
∑N

n=1
Dn

2,k).
Without loss of generality we may assume that all τn are distinct.

Given an initial state x0 ∈ S, define the sequence xn by

xn+1 − xn =























e1,k, if τn+1 ∈ Ak, xn
1,k < Mk,

e2,k, if τn+1 ∈ Ak, xn
1,k = Mk, |xn|2 < N,

−ei,k, if τn+1 ∈
∑xn

i,k

m=1 Dm
i,k, i = 1, 2,

0, otherwise.

(6)
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Then a realization x(t) of the process X is given by setting

x(t) = xn, for t ∈ [τn, τn+1). (7)

Lemma 1. Let x(t) and y(t) be two solutions of the evolution equations (6) and (7)
driven by the point processes Ak, D

m
1,k, D

n
2,k. Then

y(0) − x(0) ∈ ∆ =⇒ y(t) − x(t) ∈ ∆ for all t ≥ 0.

Proof. By (7), it is enough to show that yn − xn ∈ ∆ for all n. To proceed by induction,
assume yn −xn ∈ ∆. We will consider separately the different cases according to the type
of the next event τn+1.

First, assume τn+1 ∈ Ak. If xn
1,k = yn

1,k < Mk, then yn+1 − xn+1 ∈ ∆, so assume that
xn

1,k = yn
1,k = Mk. If |xn|2 and |yn|2 are both equal to N or both strictly less that N , then

also yn+1 − xn+1 ∈ ∆. On the other hand, if |xn|2 < N and |yn|2 = N , then yn − xn ∈ ∆
implies yn = xn + e2,j for some j. Thus, yn+1 − xn+1 = yn − xn − e2,k = e2,j − e2,k ∈ ∆.
By symmetry, the same conclusion holds when |xn|2 = N and |yn|2 < N .

Next, let us consider the case where τn+1 ∈ Dm
1,k for some m. Because xn

1,k = yn
1,k, it

follows that yn+1 − xn+1 = yn − xn ∈ ∆.
Finally, assume τn+1 ∈ Dm

2,k for some m. Now, if xn
2,k and yn

2,k are both strictly less than
m or both at least m, then yn+1 − xn+1 = yn − xn ∈ ∆. Alternatively, if xn

2,k < m ≤ yn
2,k,

then yn+1 − xn+1 = yn − xn − e2,k. Moreover, yn − xn ∈ ∆ now implies that either
yn = xn + e2,k or yn = xn − e2,j + e2,k for some j. Thus, yn+1 − xn+1 ∈ ∆ also in this case.
The remaining case with yn

2,k < m ≤ xn
2,k is analogous.

3.3 Stochastic comparison of the system performance

In Section 3.1 we saw that the carried load and the overall blocking probability are hard
to compute for the original system, while for the system with repacking these quantities
have nice analytical formulas. In this section we show how the system with repacking can
provide bounds for the original system. We will first give the results, then the proofs.

Theorem 1. In the stationary regime, the mean net amount of jobs in the system with
repacking is always greater than or equal to the corresponding quantity in the original
system, that is, E |X ′| ≥ E |X|.

Combining Theorem 1 with the balance formulas (4) and (5) gives the following results
as corollaries.

Corollary 1. The carried load in the system with repacking is always greater than or
equal to the carried load in the original system.

Corollary 2. When µk = µ for all k, then the overall blocking probability for the system
with repacking is less than or equal to the overall blocking probability in the original system.

The next example shows that the requirement for statistically identical service times
is necessary in Corollary 2.
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Example 1. Consider the system with two job classes and (M1, M2, N) = (1, 0, 1). Assume
(λ1, µ1) = (1, 1) and (λ2, µ2) = (1, µ). Then by solving the equilibrium distribution one
can check that

(b1, b2) =

(

10 + 9µ + 2µ2

20 + 36µ + 10µ2
,

20 + 16µ + 3µ2

20 + 36µ + 10µ2

)

,

while

(b′1, b
′
2) =

(

2 + µ

4 + 5µ
,

4 + µ

4 + 5µ

)

.

Comparison of the above expressions shows that b′1 ≥ b1 and b′2 ≤ b2 for all µ. Further,
b′ ≤ b for µ ≥ 2

5
, while b′ > b for µ < 2

5
. This shows that repacking improves the

performance experienced by the jobs of class 2 at the cost of bigger loss for class 1.

The proof of Theorem 1 is based? on the Markov reward approach [10]. Consider the
uniformized Markov chain with the transition matrix QΛ(x, y) = δx,y + Λ−1q(x, y), where
δx,y is the Kronecker delta, and the scalar Λ is large enough to guarantee that QΛ is
a stochastic matrix. Let r(x) = |x|, and define V n =

∑n−1

j=0
Qj

Λr, where V n and r are

regarded as vectors indexed by x ∈ S. Then as n grows to infinity, 1

n
V n(x) converges to

the stationary mean E |X| for all x ∈ S, allowing us to study E |X| using induction for
V n. Let us first prove a monotonicity property of the original system.

Lemma 2. For all x ∈ S with x − e2,j ∈ S, we have

V n(x − e2,j) ≤ V n(x) for all n.

Proof. Because V 0 = 0, the inequality holds for n = 0. To proceed by induction, assume
that the claim is true for index n, and let x ∈ S such that x2,j > 0. Then

ΛV n+1(x) − ΛV n+1(x − e2,j)

= Λ + (Λ −
∑

k (λk + µk(x1,k + x2,k))) [V n(x) − V n(x − e2,j)]

+
∑

k λk1(x1,k < Mk)[V
n(x + e1,k) − V n(x + e1,k − e2,j)]

+
∑

k λk1(x1,k = Mk, |x|2 < N)[V n(x + e2,k) − V n(x + e2,k − e2,j)]

+
∑

k µkx1,k[V
n(x − e1,k) − V n(x − e1,k − e2,j)]

+
∑

k µk(x2,k − δj,k)[V
n(x − e2,k) − V n(x − e2,k − e2,j)]

+
∑

k λk1(x ∈ Bk)[V
n(x) − V n(x − e2,j + e2,k)].

As a consequence of Lemma 1, V n(x) − V n(x − e2,j + e2,k) ≥ −1 for all k, so the last
term in the sum above is greater than or equal to −Λ. This proves the lemma, because
the other terms involving V n are nonnegative by the induction assumption.

Proof (Proof of Theorem 1). In order to prove that E |X ′| ≥ E |X| applying [10, Theorem
2.1], it is enough to show that for all x ∈ S and all n,

∑

y 6=x

(q′(x, y) − q(x, y))(V n(y) − V n(x)) ≥ 0. (8)

? Due to multidimensional blocking, the comparison techniques based on integral stochastic orderings [12, 13]
are not directly applicable here.
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Because the left-hand side of (8) equals

∑

k

µkx1,k1(x2,k > 0)(V n(x − e2,k) − V n(x − e1,k)),

it suffices to show that for all n,

V n(x − e2,j) − V n(x − e1,j) ≥ 0 for all x ∈ S such that x1,j , x2,j > 0. (9)

Assume that (9) holds for index n (it is trivial for n = 0). Let x ∈ S with x1,j , x2,j > 0.
Then a direct calculation shows that

ΛV n+1(x − e2,j) − ΛV n+1(x − e1,j)

= (Λ − q(x − e1,j))[V
n(x − e2,j) − V n(x − e1,j)]

+
∑

k λk1(x1,k < Mk)[V
n(x + e1,k − e2,j) − V n(x + e1,k − e1,j)]

+
∑

k 6=j λk1(x1,k = Mk, |x|2 < N)[V n(x + e2,k − e2,j) − V n(x + e2,k − e1,j)]

+
∑

k µk(x1,k − δj,k)[V
n(x − e1,k − e2,j) − V n(x − e1,k − e1,j)]

+
∑

k µk(x2,k − δj,k)[V
n(x − e2,k − e2,j) − V n(x − e2,k − e1,j)]

+
∑

k 6=j λk1(x ∈ Bk)[V
n(x − e2,j + e2,k) − V n(x − e2,j)],

where q(x) =
∑

y 6=x q(x, y), as usual. The last term in the above sum is nonnegative by
Lemma 2, and so are also the other terms by the induction assumption.

4 NUMERICAL EXAMPLES

4.1 Carried load and blocking probability

Increasing the system utilization by repacking may lead to worse performance in terms of
overall blocking probability, if the mean service times of job classes differ significantly. This
is illustrated in Figure 2 where the carried load and the overall blocking probability for
the original system (using simulation) and for the system with repacking are plotted for a
network with two customer classes and (M1, M2, N) = (5, 0, 5). The traffic characteristics
are (i) (λ1, µ1) = (λ2, µ2) = (5

2
ρ, 1); and (ii) (λ1, µ1) = (50ρ, 20), (λ2, µ2) = (5

2
ρ, 1). Here

ρ is the offered load normalized by the number of servers. In case (i), Corollaries 1 and 2
imply that repacking improves both performance quantities. On the other hand, in case
(ii) the overall blocking probability can be larger for the system with repacking. Note that
by (3), the stationary distribution of X̃ ′ and the carried load in the system with repacking
remain unchanged when altering the service times so that the per-class loads ak = λk/µk

remain constant??. This insensitivity property suggests that the results of Section 3 could
be extended to nonexponential service times.

4.2 Efficient approximation of the blocking probability

The plots in Figure 2 show that the performance differences of the original and the
modified system remain quite small for a wide range of loads. Hence the system with

?? The overall blocking probability depends explicitly on λk and hence does not remain unchanged.
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Fig. 2. Comparison of the carried load (left) and the overall blocking probability (right) in the system with and
without repacking.

repacking constitutes a good approximation for the carried load and the overall blocking
probability of the original system. In Figure 3 we compare this approximation with the
simple exponential approximation where the arrivals to the multiskill server group are
modeled as Poisson processes, so that bexp = Erl(

∑

k Erl(ak, Mk)ak, N) where Erl(ρ, n)
is the Erlang blocking formula for an M/M/n/n queue of intensity ρ. In the left plot of
Figure 3, the network consists of two job classes with (M1, M2, N) = (5, 0, 5) and traffic
characteristics (λ1, µ1) = (λ2, µ2) = (5ρ, 1). In the right-hand side we have (M1, M2, N) =
(5, 5, 4) and (λ1, µ1) = (λ2, µ2) = (7ρ, 1). It is clear that the approximation given by the
system with repacking behaves much better than the exponential one.
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Fig. 3. Approximation of the blocking probability using repacking and the exponential approximation for
(M1, M2, N) = (5, 0, 5) (left) and (M1, M2, N) = (5, 5, 4) (right).
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5 CONCLUSION

We presented an efficiently computable upper bound for the carried load and an ap-
proximation of the overall blocking probability for multiclass loss networks with overflow
routing. The insensitivity properties of the bounding process suggest that some of the re-
sults might be generalized to systems with nonexponential service times. Finding bounds
for the per-class blocking probabilities remains an open problem. Other interesting di-
rections for future work are extensions to more complex network topologies and service
policies, especially processor sharing.
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