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Chapter 1

Markov chains and stochastic
models

1.1 Markov property
A finite-state Markov chain is a random process which moves from state x to
state y with probability P (x, y), independently of its past states. The state
space (tilajoukko) is denoted by S, and the collection of transition probabilities
P = {P (x, y) : x, y ∈ S} is called the transition matrix (siirtymämatriisi). The
transition matrix is a square matrix with rows and columns indexed by states
x, y ∈ S. Being probabilities, the entries of the transition matrix satisfy

0 ≤ P (x, y) ≤ 1, x, y ∈ S,

and because the chain certainly moves to some state, the row sums are equal to∑
y∈S

P (x, y) = 1, x ∈ S.

More precisely, an S-valued random sequence (X0, X1, X2, . . . ) defined on a
probability space (Ω,P) is a Markov chain (Markov-ketju) with state space S
and transition matrix P if

P
(
Xt+1 = y | Xt = x, Ht−

)
= P (x, y) (1.1)

for all x, y ∈ S, all t ≥ 0, and all events Ht− = {X0 = x0, . . . , Xt−1 = xt−1}
such that P(Xt = x,Ht−) > 0. The next state of a Markov chain depends
on its past history only via its current state, and previous states do not have
any statistical relevance when predicting the future. Equation (1.1) is named
Markov property (Markov-ominaisuus) after a Russian mathematician Andrey
Markov (1856–1922). The Markov property can be defined analogously also for
random processes with continuous time parameter and infinite state spaces. The
class of general Markov processes includes several important stochastic models
such as Poisson processes, Brownian motions, which will be discussed later.

The following fundamental result tells that the past history Ht− may be
ignored in formula (1.1). The proof can be skipped at a first reading.
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Theorem 1.1. For any finite-state Markov chain with transition probability
matrix P ,

P(Xt+1 = y |Xt = x) = P (x, y) (1.2)

for any t ≥ 0 and any x, y ∈ S such that P(Xt = x) > 0.

Proof. Let us denote the joint probability mass function of the random variables
X0, . . . , Xt as

ft(x0, . . . , xt−1, xt) = P(X0 = x0, . . . , Xt−1 = xt−1, Xt = xt).

Then the conditional probability of the event Xt+1 = y given Xt = x and
Ht− = {X0 = x0, . . . , Xt−1 = xt−1) can be written as

P(Xt+1 = y |Xt = x,Ht−) =
P(Xt+1 = y,Xt = x,Ht−)

P(Xt = x,Ht−)

=
ft+1(x0, . . . , xt−1, x, y)

ft(x0, . . . , xt−1, x)
,

and the Markov property (1.1) can be rephrased as

ft+1(x0, . . . , xt−1, x, y)

ft(x0, . . . , xt−1, x)
= P (x, y).

By multiplying both sides of the above equation by ft(x0, . . . , xt−1, x), and then
summing both sides over all possible past states, we find that∑

x0,...,xt−1∈S

ft+1(x0, . . . , xt−1, x, y) =
∑

x0,...,xt−1∈S

ft(x0, . . . , xt−1, x)P (x, y). (1.3)

By the law of total probability, the left side of (1.3) equals P(Xt = x,Xt+1 = y)
and the right side equals P(Xt = x)P (x, y). Hence we see that

P(Xt = x,Xt+1 = y) = P(Xt = x)P (x, y),

and the claim follows by dividing both sides above by P(Xt = x).

1.2 Transition matrix and transition diagram
The structure of a Markov chain is usually best illustrated by a transition di-
agram. The transition diagram (siirtymäkaavio) of a transition matrix P and a
corresponding Markov chain is a directed graph with node set being the state
space and link set consisting of ordered node pairs (x, y) such that P (x, y) > 0.
The transition diagram is usually viewed as a weighted graph by setting the
weight of a link to be the corresponding transition probability. Let us next
investigate three examples which can be modeled using a Markov chain.
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Example 1.2 (Weather model). The summer weather of day t = 0, 1, . . . in
Espoo can be modeled using a random sequence in state space S = {1, 2}, where
state 1 = ’cloudy’ and 2 = ’sunny’. It is assumed that a cloudy day is followed
by a sunny day with probability p = 0.2, and that a sunny day is followed by a
cloudy day with probability q = 0.5, independently of the past days. The state
of the weather model can be represented as a Markov chain (X0, X1, . . . ) with
transition matrix

P =

[
1− p p
q 1− q

]
=

[
0.8 0.2
0.5 0.5

]
and transition matrix described in Figure 1.1.

1 21− p

p

q

1− q

Figure 1.1: Transition diagram of the weather model.

Let us assume that Monday (day t = 0) is cloudy. Then the weather model
predicts Tuesday to be cloudy with probability 1−p and sunny with probability
p, so that

P(X1 = 1 |X0 = 1) = 1− p ja P(X1 = 2 |X0 = 1) = p.

The probability that it is cloudy also on Wednesday is obtained by conditioning
on the possible states of Tuesday’s weather according to

P(X2 = 1 |X0 = 1) = P(X1 = 1 |X0 = 1)P(X2 = 1 |X1 = 1, X0 = 1)

+ P(X1 = 2 |X0 = 1)P(X2 = 1 |X1 = 2, X0 = 1)

= (1− p)2 + pq.

Therefore, Wednesday is predicted to be a cloudy day with probability (1 −
p)2 + pq = 0.740. �

The following, more complicated example is typical in applications related
to industrial engineering and management. More examples of similar kind are
available for example in the book [Kul16].
Example 1.3 (Inventory model). Katiskakauppa.com Oyj sells laptops in a
store which is open Mon–Sat during 10–18. The inventory is managed using
the following policy. Every Saturday at 18:00 a sales clerk computes the number
of laptops in stock. If this number is less than two, sufficiently many new laptops
are ordered so that next Monday morning there will five laptops in stock. The
demand for new laptops during a week is predicted to be Poisson distributed
with mean λ = 3.5. Customers finding an empty stock at an instant of purchase
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go to buy their laptops elsewhere. Develop a Markov chain to model the state
of the inventory.

Let Xt be a random variable describing the number of laptops in stock
on Monday 10:00 during week t = 0, 1, . . . Denote by Dt a random variable
modeling the demand of laptops during the corresponding week. Then the
number of laptops in stock in the end of week t equals max(Xt − Dt, 0). If
Xt−Dt ≥ 2, then no laptops are ordered during the weekend and hence Xt+1 =
Xt −Dt. Otherwise a new order is placed and Xt+1 = 5. Therefore

Xt+1 =

{
Xt −Dt, if Xt −Dt ≥ 2,

5, else.

Hence the state space of the random process (X0, X1, . . . ) is S = {2, 3, 4, 5}. If
we assume that the demand for new laptops during a week is independent of the
demands of other weeks, then it follows that (X0, X1, . . . ) is a Markov chain.

Let us next determine the transition probabilities P (i, j). Consider first the
case i = 2 and j = 2 which corresponds to the event that the number of laptops
in stock is 2 in the beginning and in the end of a week t. This event takes
place if and only if the demand during week t equals Dt = 0. Because the
demand during week t is independent of past demands (and hence also on the
past inventory states), it follows that

P (2, 2) = P(Xt+1 = 2 |Xt = 2, Ht−)

= P(Dt = 0 |Xt = 2, Ht−)

= P(Dt = 0)

= e−λ

for all events Ht− = {X0 = x0, . . . , Xt−1 = xt−1}. Indeed, a transition from any
state i to a state j ∈ {2, 3, 4} corresponds to an event Dt = i− j, and hence

P (i, j) = P(Xt+1 = j |Xt = i,Xt−1, . . . , X0)

= P(Xt −Dt = j |Xt = i,Xt−1, . . . , X0)

= P(i−Dt = j |Xt = i,Xt−1, . . . , X0)

= P(Dt = i− j)

for all i ∈ {2, 3, 4, 5} and j ∈ {2, 3, 4}. Because Dt is Poi(λ)-distributed, we
know that

P(Dt = k) =

{
e−λ λ

k

k!
, k ≥ 0,

0, k < 0.
(1.4)

From these formulas we can compute the transition probabilities P (i, j) for
columns j = 2, 3, 4. Let us next determine the entries for j = 5. If i ∈ {2, 3, 4},
such a transition corresponds to replenishing the stock by ordering new laptops,
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that is, Xt −Dt ≤ 1. Hence

P (i, 5) = P(Xt+1 = 5 |Xt = i,Xt−1, . . . , X0)

= P(Xt −Dt ≤ 1 |Xt = i,Xt−1, . . . , X0)

= P(i−Dt ≤ 1 |Xt = i,Xt−1, . . . , X0)

= P(Dt ≥ i− 1)

for all i ∈ {2, 3, 4}. Finally we need the value P (5, 5). A transition from state
i = 5 to state j = 5 occurs in two cases: either there is no demand during
week t, or the demand is 4 or more. Therefore,

P (5, 5) = P(Xt+1 = 5 |Xt = 5, Xt−1, . . . , X0)

= P(Dt = 0) + P(Dt ≥ 4).

By computing the probabilities of Dt from the Poisson distribution (1.4), we
may write the transition probability matrix as

P =


0.03 0 0 0.97
0.11 0.03 0 0.86
0.18 0.11 0.03 0.68
0.22 0.18 0.11 0.49

 .
Note that the rows and columns of P are indexed using the set S = {2, 3, 4, 5}.
The corresponding transition diagram is plotted in Figure 1.2.

32

5

4

0.97

0.03

0.86

0.03

0.11 0.11
0.03

0.68

0.18

0.22
0.18

0.11

0.49

Figure 1.2: Transition diagram of the inventory model.

�
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# R-code for computing the transition matrix
la <- 3.5
P <- matrix(0,4,4)
rownames(P) <- 2:5
colnames(P) <- 2:5
P[ ,"2"] <- dpois(0:3,la)
P[ ,"3"] <- dpois(0:3-1,la)
P[ ,"4"] <- dpois(0:3-2,la)
P["2","5"] <- 1 - ppois(0,la)
P["3","5"] <- 1 - ppois(1,la)
P["4","5"] <- 1 - ppois(2,la)
P["5","5"] <- dpois(0,la) + 1-ppois(3,la)

Markov chains encountered in applications in technology and science can
have huge state spaces. The state space of the following example contains
billions of nodes and grows all the time.
Example 1.4 (Web page ranking). A web search for a given search string
usually matches thousands of web pages, so an important question is how to
select the most relevant matches to display for the user. The founders of Google
developed for this purpose an algorithm called the PageRank [BP98] which is
defined as follows.

Consider a directed graph where the nodes consists of all web pages in the
world, and links correspond to hyperlinks between the pages. Denote the set of
nodes by S, and define the adjacency matrix of the graph as a square matrix G
with entries

G(x, y) =

{
1, if there is a link from x to y,
0, else.

Then define a transition matrix on state space S by the formula1

P (x, y) = c
1

n
+ (1− c) G(x, y)∑

y′∈S G(x, y′)
,

where n is the number of nodes and constant c ∈ [0, 1] is called a damping
factor. The PageRank π(x) of node x is the probability that a Markov chain
with transition matrix P is found in state x after long time (t→∞). Whether
or not this definition makes sense is not at all trivial. Later we will learn to
recognize when such a limiting probability is well defined, and we also learn to
compute the probability.

The Markov chain of the PageRank algorithm can be interpreted as a surfer
browsing the web by randomly selecting hyperlinks. At times the surfer gets
bored and restarts the browsing by selecting a web pages uniformly at random.
The damping factor can be interpreted as the probability of the surfer getting
bored. �

1The formula is valid for graphs where the outdegree
∑

y′ G(x, y′) of every node x is
nonzero. When this condition is not met (for example the real web graph), the algorithm
needs to be modified, for example by first removing all nodes with zero outdegree.
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1.3 Transient distributions
The transient distributions of a Markov chain describe the behavior of the
chain in a bounded time horizon. The distribution (jakauma) of a Markov chain
(X0, X1, . . . ) at time t is the probability distribution of the random variable Xt

and is denoted by
µt(x) = P(Xt = x), x ∈ S.

The distribution µ0 is called the initial distribution (alkujakauma) of the chain.
The probability that the chain is in state y at time instant t + 1 can be

computed by conditioning on the state at time instant t according to

P(Xt+1 = y) =
∑
x∈S

P(Xt = x)P(Xt+1 = y |Xt = x).

By applying (1.2), the above equation can be written as

µt+1(y) =
∑
x∈S

µt(x)P (x, y).

When the distributions µt and µt+1 are interpreted as row vectors indexed by
the state space S, we may express the above equation briefly as

µt+1 = µtP. (1.5)

This observation leads to the following important result.

Theorem 1.5. The distribution of a Markov chain at an arbitrary time instant
t = 0, 1, 2, . . . can be computed from the initial distribution using the formula

µt = µ0P
t, (1.6)

where P t is the t-th power of the transition matrix P .

Proof. The claim is obviously true for t = 0 because P 0 is by definition the
identity matrix. If the claim is true for some time instant t ≥ 0, then by
equation (1.5) and the associativity of matrix multiplication, it follows that

µt+1 = µtP = (µ0P
t)P = µ0(P

tP ) = µ0P
t+1,

and hence the claim also holds for time instant t+1. According to the induction
principle, the claim is valid for all t ≥ 0.

Example 1.6 (Weather model). Let us predict the weather in Otaniemi using
the Markov chain in Example 1.2. Assume that it is cloudy on Monday (day
t = 0). What is the probability that Wednesday is cloudy in Otaniemi? What
about Saturday?

The initial distribution corresponding to the nonrandom initial state X0 = 1
equals the Dirac distribution at state 1 which can be written as a row vector
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µ0 = [1, 0]. According to (1.6), the weather distribution of Wednesday can be
computed using the formula µ2 = µ0P

2, so that

[µ2(1), µ2(2)] = [1, 0]

[
0.8 0.2
0.5 0.5

]2
= [0.740, 0.260].

Hence Wednesday is cloudy with probability 0.740, which is the same number
that was found by the manual computation in Example 1.2. Analogously, the
distribution of the weather on Saturday can be obtained as µ5 = µ0P

5, so that,

[µ5(1), µ5(2)] = [1, 0]

[
0.8 0.2
0.5 0.5

]5
= [0.715, 0.285].

The latter matrix product can be computed using R as
P = matrix(c(0.8,0.2,0.5,0.5), nrow=2, byrow=TRUE)
mu0 = c(1,0)
mu5 = mu0%*%(P%^%5)

�

1.4 Many-step transition probabilities
The entry P (x, y) of the transition matrix tells the probability of moving from
state x to state y during one time step. The following result tells that . . .

Theorem 1.7. The probability that a Markov chain moves from state x to
state y during t time steps can be computed using the transition matrix P by
the formula

P(Xt = y |X0 = x) = P t(x, y), (1.7)

where P t(x, y) is the entry of the t-th power of the transition matrix correspond-
ing to row x and column y.

Proof. The claim is true at time instant t = 0 because the identity matrix
I = P 0 satisfies P 0(x, y) = δx(y).

Assume next that the claim is true for some time instant t ≥ 0. Then by con-
ditioning on the possible states of Xt, and applying the Markov property (1.1)
we find that

P(Xt+1 = y |X0 = x) =
∑
x′

P(Xt = x′ |X0 = x)P(Xt+1 = y |Xt = x′, X0 = x)

=
∑
x′

P t(x, x′)P(Xt+1 = y |Xt = x′, X0 = x)

=
∑
x′

P t(x, x′)P (x′, y)

= P t+1(x, y).

Hence the claim is also true for time instant t+1, and by the induction principle
it holds for all time instants t ≥ 0.
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Example 1.8 (Weather model). Onninen family has booked a two-day holiday
package worth 1900 EUR to a Scottish paradise island. A travel agent offers an
insurance at a price of 300 EUR which gives your money back if both days are
cloudy. The weather at the destination today is sunny, and the first travel day
is after 14 days. Should the Onninen family buy the insurance, when we assume
that the weather at the destination follows the Markov chain in Example 1.2?

We use the weather model to compute the probability P(X14 = 1, X15 = 1)
that both days are cloudy. By conditioning on the state X14 and applying the
initial condition X0 = 2, we find using (1.7) that

P(X14 = 1, X15 = 1) = P(X14 = 1)P(X15 = 1 |X14 = 1)

= P(X14 = 1 |X0 = 2)P(X15 = 1 |X14 = 1)

= P 14(2, 1)P (1, 1)

= 0.571.

The expected net cost of the holiday using the travel insurance is hence 300+(1−
0.571)× 1900 = 1151 EUR, so that travel insurance is a good investment. �

1.5 Path probabilities
The initial distribution and the transition matrix of a Markov chain determine
the probabilities all possible finite trajectories. The following result tells how
these can be computed.

Theorem 1.9. For any finite-state Markov chain with transition probability
matrix P and any t ≥ 1,

P(X0 = x0, X1 = x1, . . . , Xt = xt) = µ0(x0)P (x0, x1) · · ·P (xt−1, xt), (1.8)

where µ0(x0) = P(X0 = x0) is the distribution of the initial state X0.

Proof. Equality (1.8) is true for t = 1 because

P(X0 = x0, X1 = x1) = P(X0 = x0)P(X1 = x1 |X0 = x0) = µ0(x0)P (x0, x1).

To proceed by induction, assume that (1.8) is true for some t ≥ 1, and denote
by Bt = {X0 = x0, . . . , Xt = xt} the event that the path of the chain up
to time t equals a particular list of states (x0, . . . , xt). Then by noting that
Bt+1 = Bt ∩ {Xt+1 = xt+1}, we find that

P(Bt+1) = P(Bt)P(Bt+1 |Bt) = P(Bt)P(Xt+1 = xt+1 |Bt).

Furthermore, the Markov property (1.1) implies that

P(Xt+1 = xt+1 |Bt) = P(Xt+1 = xt+1 |Xt = xt, Bt−1) = P (xt, xt+1).
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By combining these two equations and then applying the induction assumption,
it now follows that

P(Bt+1) = P(Bt)P(Xt+1 = xt+1 |Bt)

= P(Bt)P (xt, xt+1)

= µ0(x0)P (x0, x1) · · ·P (xt−1, xt)P (xt, xt+1),

and therefore (1.8) also holds for time instant t+ 1.

1.6 Occupancy of states
To analyze frequencies of states we employ the following notations. The indi-
cator (indikaattori) of event A is a binary random variable 1(A) such that2

1(A) =

{
1, if event A occurs,
0, else.

The frequency (esiintyvyys) of state y among the first t states of the chain is a
random integer

Nt(y) =
t−1∑
s=0

1(Xs = y), (1.9)

which tells how many times y occurs in a path (X0, . . . , Xt−1) realized by the
Markov chain. The expected frequency of state y for initial state x is defined
by

Mt(x, y) = E(Nt(y) |X0 = x).

The square matrix Mt with rows and columns indexed by the states x, y ∈ S is
called the occupancy matrix (esiintyvyysmatriisi) of the first t states of the chain.

Theorem 1.10. The occupancy matrix of a Markov chain can be computed
using the transition matrix P by

Mt =
t−1∑
s=0

P s. (1.10)

Proof. Observe first that the expectation of the indicator variable of an arbitrary
event A equals

E1(A) = 0× P(1(A) = 0) + 1× P(1(A) = 1)

= P(1(A) = 1)

= P(A).

2More precisely, 1(A) is a function from the underlying probability space Ω to the set
{0, 1} which maps ω to 1 if and only if ω ∈ A.
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Hence by formula (1.9) and linearity of the expectation, it follows that

ExNt(y) = Ex
t−1∑
s=0

1(Xs = y) =
t−1∑
s=0

Ex1(Xs = y) =
t−1∑
s=0

Px(Xs = y).

Because Px(Xs = y) = P s(x, y) due to (1.7), this implies that

Mt(x, y) = ExNt(y) =
t−1∑
s=0

P s(x, y),

which is an entry-by-entry representation of the matrix equation (1.10).

Example 1.11 (Weather model). Predict the expected number of cloudy days
during a week starting with a sunny day, using the model of Example 1.2.

The requested quantity is the entry M7(2, 1) of the occupancy matrix M7.
By applying (1.10) we find that

M7 =

[
1 0
0 1

]
+

[
0.8 0.2
0.5 0.5

]
+

[
0.8 0.2
0.5 0.5

]2
+ · · ·+

[
0.8 0.2
0.5 0.5

]6
=

[
5.408 1.592
3.980 3.020

]
.

According to the prediction, the expected number of cloudy days is hence 3.980.
The above sum of matrix powers can be computed using R as

# R-code for computing an occupancy
library(expm)
P = matrix(c(0.8,0.2,0.5,0.5), nrow=2, byrow=TRUE)
M <- Reduce(‘+‘, lapply(0:6, function(s) P%^%s))

�

1.7 Simulation of Markov chains
AMarkov chain with a given transition matrix can be simulated as follows. First
we need to find a random variable U with state space S ′ and a deterministic
function f : S × S ′ → S such that

P(f(x, U) = y) = P (x, y) for all x, y ∈ S. (1.11)

A pair (f, U) satisfying (1.11) is called a stochastic representation (stokastinen
esitys) of the transition matrix P . Then a Markov chain with transition matrix P
can be simulated recursively using formula

Xt+1 = f(Xt, Ut+1), t = 0, 1, . . . ,

where random variables U1, U2, . . . are mutually independent, independent of
X0, and have the same distribution as U . Verifying that the resulting random
sequence (X0, X1, . . . ) satisfies the Markov property (1.1) is left as an exercise
to the active reader.
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Example 1.12 (Random walk on a ring). Consider a cycle graph with node
set S = {0, . . . , 4}. Let (X0, X1, . . . ) be a symmetric random walk which moves
one step clockwise and one step counterclockwise on S with probabilities 1/2.
The transition matrix of the resulting Markov chain is

P =


0 1

2
0 0 1

2
1
2

0 1
2

0 0
0 1

2
0 1

2
0

0 0 1
2

0 1
2

1
2

0 0 1
2

0



0

4

3 2

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Define a function f : S × {−1,+1} → S by

f(x, u) = x+ u mod 5,

and let U be a uniformly distributed random variable in {−1,+1}. Then the pair
(f, U) constitutes a stochastic representation of P . The random walk on the ring
can hence be simulated using independent coin flips U1, U2, . . . where the result
of the t-th coin Ut ∈ {−1,+1} tells whether the chain moves counterclockwise
(Ut = −1) or clockwise (Ut = +1). �

Theorem 1.13. Every transition matrix P on a finite state space S admits
a stochastic representation (f, U) where U is a random number uniformly dis-
tributed on the continuous interval (0, 1).

Proof. Let us label the state space according to S = {x1, . . . , xn}, and let us
denote the partial row sums of the transition matrix by

qi,j =

j∑
r=1

P (xi, xr), i, j = 1, . . . , n.

We will also set qi,0 = 0 and define a function f : S × (0, 1)→ S by formula

f(xi, u) = xj, when qi,j−1 < u ≤ qi,j.

Then if U is a uniformly distributed random number on the continuous interval
(0, 1), it follows that

P(f(xi, U) = xj) = P(qi,j−1 < U ≤ qi,j) = qi,j − qi,j−1 = P (xi, xj).

Because the above equation holds for all states xi and xj we conclude that (f, U)
is a stochastic representation of P .
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Stochastic representations are not unique. To see why, it suffices to note that
the random variable 1−U is uniformly distributed on (0, 1) whenever U has the
same property. Therefore, if (f, U) is a stochastic representation of P of the form
in Theorem 1.13, then so is the pair (g, U) with g(x, u) = f(x, 1−u). Indeed, it
is not hard to verify that there are infinitely many stochastic representations for
any transition matrix. Moreover, Theorem 1.13 is valid for arbitrary measurable
state spaces. When the state space is countably infinite, the same proof as above
can easily be generalized. When the state space is uncountably infinite, deeper
results of measure theory are needed, see for example [Kal02].
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Chapter 2

Markov chains in the long run

2.1 Invariant and limiting distributions
In the previous chapter we learned to compute the transient distributions µt of
a Markov chain with initial distribution µ0 using the formula µt = µ0P

t. When
looking at a long time horizon, it is natural to ask the following questions:

1. Do the transient distributions admit a limiting distribution (rajajakauma)
limt→∞ µt as t grows larger and larger?

2. If a limiting distribution exists, does it depend on the initial distribution,
or is it unique?

3. If a limiting distribution exists, how can it be computed?

Answering the first two questions requires careful analysis and sufficient struc-
tural assumptions. The third question is easier, so we will treat it first.

A probability distribution π = (π(x) : x ∈ S) is called an invariant distri-
bution (tasapainojakauma) of a transition matrix P and a corresponding Markov
chain, if it satisfies the balance equations∑

x∈S

π(x)P (x, y) = π(y), y ∈ S, (2.1)

or in matrix form (with π interpreted as a row vector),

πP = π.

If a Markov chain is started with initial distribution µ0 = π, we find by using
Theorem 1.5 and the associativity of matrix multiplication that

µt = πP t = (πP )P t−1 = πP t−1 = · · · = πP = π.

Hence for a Markov chain with a random initial state distributed according to
an invariant distribution, the distribution of Xt remains invariant for all time
instants t = 0, 1, 2, . . .

The following result tells that if a Markov chain has a limiting distribution,
it can be determined as a solution of the linear system of equations (2.1).
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Theorem 2.1. If π is a limiting distribution of a finite-state Markov chain,
then it is also an invariant distribution.

Proof. By the associativity of matrix multiplication we see that

µt+1 = µ0P
t+1 = (µ0P

t)P = µtP,

which can be written entry-by-entry as

µt+1(y) =
∑
x∈S

µt(x)P (x, y).

If we assume that µt(x) → π(x) for every x ∈ S, we see by taking limits on
both sides of the above equation that

π(y) = lim
t→∞

µt+1(y) =
∑
x∈S

lim
t→∞

µt(x)P (x, y) =
∑
x∈S

π(x)P (x, y).

Hence the balance equation (2.1) is valid. Moreover, because µt is a probability
distribution, we know that ∑

x∈S

µt(x) = 1

for all t. By taking limits on both sides of the above equation as t→∞ we see
that

∑
x∈S π(x) = 1, so that π is a probability distribution on S.

Esimerkki 2.2 (Brand loyalty). A smartphone market is dominated by three
manufacturers. When buying a new phone, a customer chooses to buy a phone
from the same manufacturer i as the previous one with probability βi, and oth-
erwise the customer randomly chooses one of the other manufacturers. Assume
that β1 = 0.8, β2 = 0.6, and β3 = 0.4, and that all smartphones have the same
lifetime regardless of the manufacturer. Will the market shares of the different
manufacturers stabilize in the long run?

Let us model the manufacturer of a typical customer’s phone after the t-
th purchase instant by a Markov chain (X0, X1, . . . ) with state space S =
{1, 2, 3} and transition matrix

P =

0.8 0.1 0.1
0.2 0.6 0.2
0.3 0.3 0.4

 .
We can compute powers of P using a computer:

P 2 =

0.69 0.17 0.14
0.34 0.44 0.22
0.42 0.33 0.25

 , . . . ,
P 10 =

0.5471287 0.2715017 0.1813696
0.5430034 0.2745217 01824748
0.5441087 0.2737123 0.1821790

 , . . . ,
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P 20 =

0.5454610 0.2727226 0.1818165
0.5454452 0.2727341 0.1818207
0.5454494 0.2727310 0.1818196

 .
The above computations indicate that after 20 phone purchases, an initial
customer of manufacturer i is a customer of manufacturer 1 with probabil-
ity P 20(i, 1) ≈ 0.545. Because the rows of P 20 are approximately equal, the
effect of initial state i = 1, 2, 3 becomes negligible over time. Hence it appears
that the market shares stabilize towards a limiting distribution

[0.5454545, 0.2727273, 0.1818182].

The balance equations πP = π and
∑3

x=1 π(x) = 1 for transition matrix P
can be written as

0.8π(1) + 0.2π(2) + 0.3π(3) = π(1)

0.1π(1) + 0.6π(2) + 0.3π(3) = π(2)

0.1π(1) + 0.2π(2) + 0.4π(3) = π(3)

π(1) + π(2) + π(3) = 1.

The unique solution of the above system of linear equations is

π =

[
6

11
,

3

11
,

2

11

]
≈ [0.5454545, 0.2727273, 0.1818182],

which is close to the numerically found limiting distribution, as it should ac-
cording to Theorem 2.1. �

Example 2.3 (Chain with no limiting distribution). Consider a Markov chain
on state space S = {1, 2, 3} with initial state X0 = 1, and transition matrix

P =

0.0 1 0.0
0.3 0 0.7
0 1 0

 . 21 3

1 1

0.3 0.7

By computing powers of P we see that

P 2 =

0.3 0 0.7
0 1 0

0.3 0 0.7

 , P 3 =

 0 1 0
0.3 0 0.7
0 1 0

 ,
P 4 =

0.3 0 0.7
0 1 0

0.3 0 0.7

 , P 5 =

 0 1 0
0.3 0 0.7
0 1 0

 ,
from which we observe that

P t =

{
P, t = 1, 3, 5, . . . ,

P 2 t = 2, 4, 6, . . .
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The distribution µt of the chain with nonrandom initial state X0 = 1 (corre-
sponding to initial distribution µ0 = [1, 0, 0]) hence satisfies

µt = µ0P
t =

{
[0, 1, 0] for t = 1, 3, 5, . . . ,

[0.3, 0, 0.7] for t = 2, 4, 6, . . .

Such a chain has no limiting distribution. However, a direct computation shows
that π = [0.15, 0.50, 0.35] is an invariant distribution for the chain. �

Example 2.4 (Chain with many limiting distributions). Consider a Markov
chain on state space S = {1, 2, 3, 4} with transition matrix

P =


0.5 0.5 0 0
0.5 0.5 0 0
0 0.1 0.8 0.1
0 0 0 1

 . 1 2 3 4

0.5

0.5
0.1 0.1

0.5 0.5 0.8

1

A direct computation reveals that

µ0P
t =

{
[0.5, 0.5, 0, 0] for all t ≥ 1 if µ0 = [1, 0, 0, 0],

[0, 0, 0, 1] for all t ≥ 1 if µ0 = [0, 0, 0, 1].

This Markov chain can hence have several limiting distributions, depending on
the initial state. As a consequence (Theorem 2.1), both π(12) = [0.5, 0.5, 0, 0]
and π(4) = [0, 0, 0, 1] are invariant distributions of P . By linearity, one can
verify that every probability distribution of the form

π = απ(12) + (1− α)π(4), 0 ≤ α ≤ 1,

is an invariant distribution of P . �

2.2 Connectivity
Given a transition matrix P , we denote x  y, if the corresponding transition
diagram of contains a path from x to y. Here we allow paths of length zero, so
that x x. A transition matrix P and a corresponding Markov chain is called
irreducible (yhtenäinen), if x  y for all x, y ∈ S. In graph theoretical terms,
a Markov chain is irreducible if and only if its transition diagram is a strongly
connected directed graph.
Example 2.5 (Irreducible Markov chains). The following Markov chains are
irreducible:

• Weather model (Example 1.2)

• Inventory model (Example 1.3)
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• Brand loyalty (Example 2.2)

�

The structure of Markov chains which are not irreducible can be analyzed
by defining a symmetric relation by denoting x! y if x y and y  x. This
equivalence relation partitions the state space into equivalence classes C(x) =
{y ∈ S : y ! x}, called the components (komponentti) of P . An irreducible
chain has only one component which contains all states of the state space. A
component is called called absorbing (absorboiva) if the chain cannot exit the
component, otherwise the component is called transient (väistyvä).
Example 2.6 (Reducible Markov chain). The chain in Example 2.4 is not irre-
ducible because the chain cannot move away from state 4. The transition dia-
gram of this chain can has three components C(1) = C(2) = {1, 2}, C(3) = {3},
and C(4) = {4}. The components {1, 2} and {4} are absorbing, and the com-
ponent {3} is transient. �

Theorem 2.7. A transition matrix P is irreducible if and only if for all x, y ∈ S
there exists an integer t ≥ 1 such that P t(x, y) > 0.

Proof. Assume first that P is irreducible and select some states x 6= y. Then
the transition diagram contains a path x = x0 → x1 → · · · → xt = y, so that

P (x0, x1)P (x1, x2) · · ·P (xt−1, xt) > 0.

As a consequence,

P t(x, y) = P(Xt = y |X0 = x)

= P(Xt = xt |X0 = x0)

≥ P(Xt = xt, Xt−1 = xt−1, . . . , X1 = x1 |X0 = x0)

= P (x0, x1)P (x1, x2) · · ·P (xt−1, xt)

> 0.

To prove the converse statement, assume that P t(x, y) > 0 for some integer
t ≥ 1. Then P(Xt = y |X0 = x) > 0, so that a Markov chain starting at x can
be located in state y after t time instants. This is only possible if the transition
diagram contains a path of length t from x to y, so that x y.

2.3 Invariant distribution of an irreducible chain
Theorem 2.8. Every irreducible transition matrix on a finite state space has a
unique invariant distribution.

A clear and detailed proof of Theorem 2.8 is presented in [LPW08, Sec 1.5],
and here we only describe the main ideas of the proof. The existence of an
invariant distribution can be shown by verifying that

π(x) =
1

E(τ+x |X0 = x)
(2.2)
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is a probability distribution which satisfies the balance equations (2.1), where
the random variable

τ+x = min{t ≥ 1 : Xt = x}
denotes the positive passage time (positiivinen kulkuaika) of the Markov chain to
state x. For an irreducible chain on a finite state space one can prove that the
chain surely visits all states of the state space, and hence τ+x is a well-defined
random integer.

Formula (2.2) can be interpreted as follows. The invariant probability π(x) cor-
responds to the relative proportion of time instants that the Markov chain is
observed in state x. This quantity is inversely proportional to the expected
length of the time intervals between consecutive visits in state x. In practice,
the invariant distribution usually cannot be computed from (2.2). Instead, the
invariant distribution is obtained by solving the balance equation π = πP .

The uniqueness of the invariant distribution can be justified by first verifying
that for an irreducible transition matrix, all column vectors solving Ph = h are
of the form h = [c, c, . . . , c]T , so that the null space of P − I is one-dimensional.
Using basic facts of linear algebra one can conclude from this that also the
linear space of (row vector) solutions to µ(P − I) = 0 has dimension one.
This space contains at most one solution satisfying the normalization constraint∑

x µ(x) = 1. Hence an irreducible transition matrix P may have at most one
invariant distribution.

2.4 Periodicity
The period (jakso) of state x for a Markov chain moving according to transition
matrix P is the greatest common denominator of the time instants at which
the chain started at x may return to its initial state. The set of possible return
times can be written as

Tx = {t ≥ 1 : P t(x, x) > 0},

so that the period of x is the largest positive integer which divides all elements
of Tx. The period is not defined for states for which the set of possible return
times is empty.

Usually the period of a state is easy to determine from the transition di-
agram. If the lengths of all cycles starting and ending at x are multiples of
some integer d, and if d is the largest such integer, then d is the period of x. A
transition matrix P and a corresponding Markov chain is aperiodic (jaksoton) if
every state has period 1.
Example 2.9 (Aperiodic Markov chains). The following Markov chains are
aperiodic (convince yourself that this really is the case):

• Weather model (Example 1.2)

• Inventory model (Example 1.3)
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• Brand loyalty model (Example 2.2)

The PageRank chain (Example 1.4) is aperiodic whenever the damping factor
c is nonzero. �

Example 2.10 (Periodic chain). The Markov chain in Example 2.3 is periodic
with every state having period 2. �

2.5 Invariant distribution of an irreducible ape-
riodic chain

The following important result summarizes the basic theory of Markov chains
and explains why nearly all Markov chains on finite state spaces settle into a
statistical equilibrium in the long run.

Theorem 2.11. Every irreducible and aperiodic Markov chain on a finite state
space admits a unique limiting distribution which also equals the unique in-
variant distribution of the chain, and can be determined by solving the balance
equations πP = π and

∑
x π(x) = 1.

If (X0, X1, X2, . . . ) is a Markov chain satisfying the conditions of Theorem
2.11 and X∞ is a random variable distributed according to the invariant distri-
bution π, then the result of the above theorem is usually expressed as

Xt
d−→ X∞,

which means that the random sequence (X0, X1, . . . ) converges in distribution
(suppenee jakaumaltaan) towards random variable X∞. This notion of conver-
gence can be defined for probability distributions on general topological spaces.
In case of a finite or countably infinite state space this means that the prob-
ability mass functions µt of the random variables Xt converge pointwise to π.
Let us emphasize that the realizations of the random sequence (X0, X1, . . . ) do
not in general converge to any fixed point in S. Instead, the limit describes a
statistical equilibrium where the chain will settle in the long run.

The existence of the limit in Theorem 2.11 can be proved using methods
of matrix analysis, or by applying stochastic couplings. Students majoring in
mathematics are recommended to have a look at [LPW08, Sec 4–5], where both
proof techniques are explained in detail. The fact that the limiting distribution
is also an invariant distribution follows from Theorem 2.1.
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Chapter 3

Markov additive processes

3.1 Definitions
In many applications we need to analyse sums of random numbers which depend
on the realised trajectory of a Markov chain. Examples include cumulative
rewards in reinforcement learning, revenues and costs in financial models and
technological systems, and frequencies related to statistical models. Markov
additive processes provide a rich modeling framework for such applications and
admit powerful numerical formulas based on linear algebra.

A random sequence (X0, V0), (X1, V1), . . . is called a Markov additive process
(Markov-additiivinen prosessi) if (X0, X1, . . . ) is a Markov chain and (V0, V1, . . . )
is a real-valued random process which can be represented as

Vt = φ(X0, U0) + · · ·+ φ(Xt−1, Ut−1) (3.1)

for some deterministic function φ and some independent and identically dis-
tributed random variables U0, U1, . . . such that Ut is independent of (X0, . . . , Xt)
for all t ≥ 0. For t = 0, the empty sum above is defined to be V0 = 0. Here
(Xt) is called the Markov component and (Vt) the additive component of the
Markov additive process.
Example 3.1 (November rain). A simple model of November weather in Espoo
consists of a Markov chain (X0, X1, . . . ) with state space {−30,−29 . . . , 30}mod-
eling the daily temperature, and a sequence of random variables U0, U1, . . . with
two possible values: 0 = “dry” and 1 = “rain”. The number Vt of snowy days
among the first t days of the month can be expressed using (3.1) with

φ(x, u) =

{
1, if x ≤ −1 and u = 1,

0, else.

If the rain indicators U0, U1, . . . are mutually independent, identically distributed,
and independent of the daily temperatures, then (X0, V0), (X1, V1), . . . is a
Markov additive process. �
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3.2 Behaviour in finite time horizon
The following result tells how the expectation

gt(x) = E(Vt |X0 = x)

related to a Markov additive process (Xt, Vt) defined by (3.1) can be computed
using the transition matrix of the underlying Markov chain and the function
v : S → R defined by

v(x) = Eφ(x, U0). (3.2)

We usually consider the above functions gt and v as column vectors indexed by
the states. In this case the result below can be written in matrix form as

gt =
t−1∑
s=0

P sv, (3.3)

which also equals Mtv where Mt is the occupancy matrix appearing in (1.10).

Theorem 3.2. For a Markov additive process in which the Markov component
(X0, X1, . . . ) has transition matrix P and finite state space S,

E(Vt |X0 = x) =
t−1∑
s=0

∑
y∈S

P s(x, y)v(y).

Proof. The Markov property of (Xt) implies (Ut can be treated below as if it
were deterministic because it is independent of the Markov chain) that

E(φ(Xt, Ut) |Xt = y,X0 = x) = E(φ(Xt, Ut) |Xt = y) = Eφ(y, Ut).

Because Ut has the same distribution as U0, we get Eφ(y, Ut) = Eφ(y, U0) =
v(y), and hence

E(φ(Xt, Ut) |Xt = y,X0 = x) = v(y).

As a consequence, by conditioning on the possible values of Xt, it follows that

E(φ(Xt, Ut) |X0 = x) =
∑
y∈S

P(Xt = y |X0 = x)E(φ(Xt, Ut) |Xt = y,X0 = x)

=
∑
y∈S

P t(x, y)v(y).

By linearity of the expectation, it hence follows by (3.1) that

E(Vt |X0 = x) =
t−1∑
s=0

E(φ(Xs, Us) |X0 = x) =
t−1∑
s=0

∑
y∈S

P s(x, y)v(y).
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Example 3.3 (Inventory model). Recall the inventory model of Example 1.3.
Assume that the store buys laptops for 590 EUR and sells them for 790 EUR.
The storage cost per week is 50 EUR for every laptop in stock at the beginning
of a week. Determine the expected net revenue from ten forthcoming weeks,
when in the beginning of the first week there are five laptops in stock.

Denote by Vt the net revenue (sales income minus storage costs) from the
first t weeks. The number of laptops in stock Xt in the beginning of week t
is a Markov chain with state space S = {2, 3, 4, 5} with initial state X0 = 5.
Now consider a week t starting with Xt laptops in stock. Then the storage
costs (EUR) for the week equal 50Xt, and the number of sold laptops equals
min(Xt, Dt) where Dt is the demand of week t. Because the weekly demands
are mutually independent and identically distributed, and Dt is independent of
(X0, . . . , Xt), it follows that (Xt, Vt) is a Markov additive process with repre-
sentation

Vt =
t−1∑
s=0

φ(Xs, Ds)

where
φ(x, u) = (790− 590) min(x, u)− 50x.

To compute the expectation of Vt using Theorem 3.2, we need to compute
the function v(x) = Eφ(x,D0). Because the demands are Poisson distributed
with mean λ = 3.5, we see that the expected number of laptops sold during a
week starting with x laptops in stock equals

Emin(x,D0) =
∞∑
k=0

e−λ
λk

k!
min(x, k)

=
x∑
k=0

e−λ
λk

k!
k +

(
1−

x∑
k=0

e−λ
λk

k!

)
x

= x−
x∑
k=0

e−λ
λk

k!
(x− k),

and hence

v(x) = (790− 590)

(
x−

x∑
k=0

e−λ
λk

k!
(x− k)

)
− 50x.

By evaluating formula (3.3) using a computer program we find that (recall that
column vectors are indexed by the states x = 2, 3, 4, 5)

v =


266.78
352.61
395.29
400.20

 and g10 =


3627.24
3704.00
3735.81
3735.00

 .
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Hence the expected net revenue from next ten weeks is 3735 EUR. Note that
the expected net revenue would be 0.81 EUR higher if there would initially be
4 instead of 5 laptops in stock. This is in contrast with one-week expected
revenues g1(x) = v(x) satisfying g1(4) < g1(5), and indicates that actions which
maximise one-week outcomes may not be optimal for longer time horizons. �

# R-code for computing the function v(x)
v <- numeric(4)
for (x in 2:5) {

k <- 0:x
v[x-1] <- (790-590)*(x - sum((x-k)*dpois(k,la))) - 50*x

}

# R-code for computing the function g(x)
library(expm)
M <- Reduce(‘+‘, lapply(0:9, function(s) P%^%s))
g <- M%*%v

3.3 Ergodicity
So far we have learned that the distribution of an irreducible and aperiodic
Markov chain converges to the unique invariant distribution π of the chain.
The following result provides an alternative interpretation for the invariant
distribution which tells that a long-term time average of a random sequence
φ(X0), φ(X1), . . . is close to the mathematical expectation of the invariant dis-
tribution. Such a phenomenon is called an ergodic (ergodinen) property. Note
that periodicity is not an issue in the statement below because the time averages
smoothen out periodic effects present in the model.

Theorem 3.4. For any irreducible Markov chain with a finite state space S
and for any function φ : S → R,

1

t

t−1∑
s=0

φ(Xs) →
∑
y∈S

π(y)φ(y) as t→∞

with probability one, regardless of the initial state of the chain.

The above result can be proved by fixing some initial state x and keeping
track of successive visits of the chain to x. By the Markov property, the paths
between successive visits are stochastically independent, and Theorem 3.4 can
be proved by applying a strong law of large numbers [LPW08, Sec 4.7].

As an important consequence, we obtain the following result regarding em-
pirical relative frequencies. The empirical relative frequency (empiirinen suh-
teellinen esiintyvyys) of state y among the first t states of a stochastic process
(X0, X1, . . . ) is defined by

π̂t(y) =
Nt(y)

t
,

where Nt(y) =
∑t−1

s=0 1(Xs = y) is the corresponding absolute frequency. Note
that π̂t(y) is a random number determined by the realised trajectory of (X0, . . . , Xt−1).

28



The following result confirms that the value of the invariant distribution π(y)
can be interpreted as the long-term relative limiting frequency of time instants
that the chain spends in state y.

Theorem 3.5. The relative frequencies of an irreducible Markov chain with a
finite state space S satisfy

lim
t→∞

π̂t(y) = π(y) (3.4)

with probability one, regardless of the initial state of the chain. Moreover, the
occupancy matrix of the chain satisfies

lim
t→∞

Mt(x, y)

t
→ π(y) for all x, y ∈ S. (3.5)

Proof. Fix a state y,and define a function φ : S → R by

φ(x) = 1(x = y) =

{
1, if x = y,

0, else.

Then the frequency Nt(y) of state y can be written as

Nt(y) =
t−1∑
s=0

φ(Xs).

By applying Theorem 3.4 we conclude that

lim
t→∞

π̂t(y) = lim
t→∞

Nt(y)

t
=
∑
x∈S

π(x)φ(x) = π(y)

with probability one, regardless of the initial state.
Moreover, the relative frequency of state y is bounded by

0 ≤ π̂t(y) ≤ 1

with probability one for all t. By taking the limit t→∞ inside an expectation1
and applying (3.4), it follows that

lim
t→∞

Mt(x, y)

t
= lim

t→∞
E
(
π̂t(y)

∣∣∣X0 = x
)

= E
(

lim
t→∞

π̂t(y)
∣∣∣X0 = x

)
= π(y).

1This is allowed for bounded random sequences due to Lebesgue’s dominated convergence
theorem, which is a topic of the course MS-E1600 Probability theory.
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3.4 Long-term behaviour
For a Markov additive process (Xt, Vt), the process Vt usually does not converge
to a statistical equilibrium even if the underlying Markov chain (Xt) does so.
Rather Vt might tend to infinity or minus infinity in the long run. Therefore,
it makes sense to analyse the long-term growth rates Vt/t. The following result
tells that under mild regularity conditions, the expected growth rate

gt(x)

t
= E

(
Vt
t

∣∣∣ X0 = x

)
has a limit as t→∞ which does not depend on the initial state X0 = x.

Theorem 3.6. For a Markov additive process (Xt, Vt) in which the Markov
componenet (Xt) is irreducible on a finite state space S,

lim
t→∞

gt(x)

t
=
∑
y∈S

π(y)v(y).

for all x ∈ S.

Proof. By Theorem 3.2 we see that

gt(x) =
∑
y∈S

Mt(x, y)v(y).

Therefore, by (3.5),

lim
t→∞

gt(x)

t
=
∑
y∈S

(
lim
t→∞

Mt(x, y)

t

)
v(y) =

∑
y∈S

π(y)v(y).

Example 3.7 (Inventory model). Let us continue the analysis of Example 3.3.
What is the long-term expected revenue rate?

Because the Markov chain (Xt) is irreducible, it has a unique invariant
distribution π which can be solved from the balance equations πP = π and∑

x π(x) = 1. By applying Theorem 3.6 we conclude that the long-term ex-
pected revenue rate equals

lim
t→∞

gt(x)

t
=
∑
y∈S

π(y)v(y)

which does not depend on the initial state x of the inventory. By computing
the numerical values, we find that the expected long-term revenue rate equals
371.29 EUR per week. This corresponds to approximately 3713 EUR revenue
rate per a 10-week period, and is quite close to the expected cumulative revenues
computed in Example 3.3 which depend on the initial state. �
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3.5 Remarks
The theory of Markov additive processes can be generalised into continuous time
and general uncountable state spaces. Also, Theorem 3.6 can be generalised to
a form where convergence takes place with probability one. Asmussen’s book
[Asm03] provides details.
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Chapter 4

Passage times and hitting
probabilities

4.1 Passage times
The passage time (kulkuaika) of a random process (X0, X1, . . . ) into set A is
defined by

TA = min{t ≥ 0 : Xt ∈ A},
with the notational convention that TA =∞ if the process never visits A. The
passage time is hence a random variable which takes on values in the extended
set of integers {0, 1, 2, . . . }∪{∞}. The expected passage time (odotettu kulkuaika)
into set A for a Markov chain starting at state x is denoted by

kA(x) = E(TA |X0 = x).

Theorem 4.1. The expected passage times (kA(x) : x ∈ S) form the smallest
nonnegative solution to the system of equations

f(x) = 1 +
∑
y/∈A

P (x, y)f(y), x /∈ A,

f(x) = 0, x ∈ A.
(4.1)

From the harmonic analysis point of view, the system of equations (4.1)
corresponds to a Poisson equation on B = Ac

Df(x) = −1, x ∈ B, (4.2)

with boundary condition
f(x) = 0, x ∈ ∂B,

where B = Ac, ∂B = A, and the linear map D : f 7→ Pf − f is called the drift
matrix (virtausmatriisi) of the Markov chain. The smallest nonnegative solution
can be found by first setting f0(x) = 0 for all x and the recursively computing

fn+1(x) =

{
1 +

∑
y/∈A P (x, y)fn(y), x /∈ A,

0, x ∈ A.

32



Then it is possible to prove that f0, f1, f2, . . . forms a nondecreasing sequence
of functions with pointwise limit f(x) = limn→∞ fn(x). The limit f takes
on values in the extended number set [0,∞] and is the smallest nonnegative
solution of (4.1). Verifying these statements is a good exercise for a mathemat-
ically oriented reader. A good exercise for a programming oriented reader is to
implement an algorithm which computes the above limit numerically.

Before proving Theorem 4.1 let us consider the following example where the
result can be applied.
Example 4.2 (Human resource management). Kalvonvääntäjät Oyj is man-
agement consulting company which has 100 employees divided into three salary
categories: 1 = ’junior’, 2 = ’senior’ ja 3 = ’partner’.

An employee holding a junior position in the beginning of a month gets
promoted to senior with probability 0.030, leaves the company with probability
0.020, and otherwise continues in the same position in the beginning of next
month. Similarly, a senior gets promoted to a partner with probability 0.010,
leaves the company with probability 0.008, and otherwise continues in the same
position. A partner leaves the company with probability 0.010. What is the
expected duration that a newly recruited employee remains in the company?
How long is a freshly promoted partner expected to serve in the company?

We will assume that all promotions and exits occur independently of the
states of the previous months. The career development of an employee can then
be modeled using a Markov chain on state space {0, 1, 2, 3} where state 0 means
that the employee has left the company, with transition matrix

P =


1 0 0 0

0.020 0.950 0.030 0
0.008 0 0.982 0.010
0.010 0 0 0.990

 . (4.3)

State 0 is absorbing and the other states are transient, as is clearly visible from
the transition diagram below:

21 3

0

0.030 0.010

0.020 0.008 0.010

0.950 0.982 0.990

1

The time (in months) in service for a newly recruited junior is the passage
time of the Markov chain from state 1 into state 0. The expectation of this
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random integer equals kA(1) with A = {0}. According to Theorem 4.1, the
expected passage times solve the equations

f(x) = 1 +
3∑
y=1

P (x, y)f(y), x = 1, 2, 3,

which now can be written as

f(1) = 1 + 0.950 f(1) + 0.030 f(2)

f(2) = 1 + 0.982 f(2) + 0.010 f(3)

f(3) = 1 + 0.990 f(3).

These can be solved by first setting

f(3) =
1

1− 0.990
= 100,

then
f(2) =

1 + 0.010 f(3)

1− 0.982
= 111.11,

and finally

f(1) =
1 + 0.030 f(2)

1− 0.950
= 86.67.

Because we found only one nonnegative solution f = [f(1), f(2), f(3)] to the
above equations, the above solution provides the expected passage time accord-
ing to Theorem 4.1, so that kA = f . Hence a freshly hired junior is expected
to serve in the company for 86.67 months ≈ 7.2 years, and a freshly promoted
partner is expected to serve in the company for 100 months ≈ 8.3 years.

�

Proof of Theorem 4.1. Let us first verify that the numbers kA(x) satisfy equa-
tions (4.1). We will do this by applying first-step analysis, that is, by condi-
tioning on the possible states of the first state. When the initial state x ∈ A,
we surely have TA = 0, so that kA(x) = 0. Assume next that x /∈ A. Then by
conditioning on X1 we find that

kA(x) =
∑
y∈S

P (x, y) E(TA |X1 = y,X0 = x). (4.4)

When x /∈ A,

TA = min{t ≥ 1 : Xt ∈ A} = 1 + min{t ≥ 0 : Xt+1 ∈ A},

so that by applying the Markov property we may conclude that

E(TA |X1 = y,X0 = x) = 1 + E(TA |X0 = y) = 1 + kA(y).
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By combining the above observation with formula (4.4) we see that

kA(x) =
∑
y∈S

P (x, y)(1 + kA(y))

=
∑
y∈S

P (x, y) +
∑
y∈S

P (x, y)kA(y).

The uppermost equality in (4.1) follows from this after recalling that the rows
sums of P equal one, and kA(y) = 0 for y ∈ A.

Let us next verify that (kA(x) : x ∈ S) is the smallest nonnegative solution.
Assume that (f(x) : x ∈ S) some nonnegative solution of (4.1). Then we need
to verify that

f(x) ≥ kA(x) (4.5)

for all x. Obviously (4.5) holds for all x ∈ A, because then f(x) = kA(x) = 0.
Assume next that x /∈ A. Then

f(x) = 1 +
∑
y/∈A

P (x, y)f(y)

= 1 +
∑
y/∈A

P (x, y)

(
1 +

∑
z /∈A

P (y, z)f(z)

)
= 1 +

∑
y/∈A

P (x, y) +
∑
y/∈A

∑
z /∈A

P (x, y)P (y, z)f(z).

Because1 Px(TA ≥ 1) = 1 and∑
y/∈A

P (x, y) = Px(TA ≥ 2),

the above equation can be written as

f(x) = Px(TA ≥ 1) + Px(TA ≥ 2) +
∑
y/∈A

∑
z /∈A

P (x, y)P (y, z)f(z).

By repeating the same argument several times in a row we find that

f(x) = Px(TA ≥ 1) + · · ·+ Px(TA ≥ t)

+
∑
y1 /∈A

· · ·
∑
yt /∈A

P (x, y1)P (y1, y2) · · ·P (yt−1, yt)f(yt).

Because f ≥ 0, this implies that

f(x) ≥ Px(TA ≥ 1) + · · ·+ Px(TA ≥ t)

1For convenience we denote by Px and Ex conditional probabilities and expectation given
X0 = x.
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for all integers t ≥ 1. Hence by taking t→∞ and applying Lemma 4.3 below,
we find that

f(x) ≥
∞∑
t=1

Px(TA ≥ t) = ExTA = kA(x).

Lemma 4.3. Any random variable X taking on values in the set Z+ ∪ {∞} =
{0, 1, 2, . . . ,∞} satisfies

EX =
∞∑
x=1

P(X ≥ x). (4.6)

Proof. If P(X =∞) = 0, then by changing the summing order of the nonnega-
tive sums we see that
∞∑
x=1

P(X ≥ x) =
∞∑
x=1

∞∑
y=x

P(X = y) =
∞∑
y=1

y∑
x=1

P(X = y) =
∞∑
y=1

yP(X = y) = EX.

On the other hand, if P(X =∞) > 0, then

∞∑
x=1

P(X ≥ x) ≥
∞∑
x=1

P(X =∞) = ∞.

Because EX = ∞ whenever P(X = ∞) > 0, the claim is also true when
P(X =∞) > 0.

4.2 Hitting probabilities
Consider a Markov chain on a finite state space S with transition matrix P .
Select a nonempty set of states A ⊂ S. An irreducible chain will surely visit
every state, but a reducible chain might not. What is the probability that a
chain starting at x eventually visits A? Let us denote this probability by

hA(x) = P(Xt ∈ A for some t ≥ 0 |X0 = x). (4.7)

This is called the hitting probability (osumatodennäköisyys) of the set A from
initial state x.

Theorem 4.4. The vector of hitting probabilities hA = (hA(x) : x ∈ S) is the
smallest nonnegative solution to the system of equations

f(x) =
∑
y∈S

P (x, y)f(y), x /∈ A,

f(x) = 1, x ∈ A.
(4.8)
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Similarly as with expected passage times also the above system of equations
can be interpreted in harmonic analytic terms as a Poisson equation

Df(x) = 0, x ∈ B, (4.9)

with boundary condition
f(x) = 1, x ∈ ∂B,

when we denote D = P − I, B = Ac and ∂B = A. The Poisson equation (4.9)
with the right side being zero is in general called a Laplace equation. Before
proving the theorem, let us see how it can be applied.
Example 4.5 (Human resource management). Consider the company describe
in Example 4.2. What is the probability that a freshly recruited new employee
eventually becomes a partner in the company?

This answer is the hitting probability hA(1) of the set A = {3} from initial
state X0 = 1. The system of equations (4.8) is now of the form

f(x) =
3∑
y=0

P (x, y)f(y), x = 0, 1, 2,

f(3) = 1,

and for the transition matrix in (4.3) this corresponds to the equations

f(0) = f(0),

f(1) = 0.020 f(0) + 0.950 f(1) + 0.030 f(2),

f(2) = 0.008 f(0) + 0.982 f(2) + 0.010 f(3),

f(3) = 1.

Because there is no access from state 0 to state 3, we know that f(0) = 0. In
light of this we may solve the other equations to obtain f = [0, 0.333, 0.556, 1].
It is not hard to verify that this f is the smallest nonnegative solution to the
system of equations. By Theorem 4.4, this solution equals f = hA. Hence
the probability that a freshly recruited junior eventually becomes a partner
equals f(1) = kA(1) = 0.333. Note that the entries of f do not sum into one,
even though they are probabilities. (Not all vectors of probabilities represent
probability distributions.) �

Proof of Theorem 4.4. This proof follows the same line of thought as the proof
of Theorem 4.1. Let us first verify that the hitting probabilities satisfy the
equations (4.8). Again we denote conditional probabilities given X0 = x by
Px. Then hA(x) = Px(TA < ∞), where TA is the passage time of the chain
into set A. If the initial state x ∈ A, then the chain surely visits A, so that
hA(x) = 1. Assume next thatx /∈ A. Then by applying the Markov property
we may conclude that

Px(TA <∞|X1 = y) = P(TA <∞|X1 = y,X0 = x)

= P(TA <∞|X1 = y)

= hA(y),
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so that

hA(x) = Px(TA <∞)

=
∑
y∈S

Px(X1 = y)Px(TA <∞|X1 = y)

=
∑
y∈S

P (x, y)hA(y).

Hence (hA(x) : x ∈ S) is a nonnegative solution to (4.8).
Assume next that f = (f(x) : x ∈ S) is some nonnegative solution to (4.8)

and let us show that then f(x) ≥ hA(x) for all x. Now obviously f(x) =
hA(x) = 1 for all x ∈ A. If x /∈ A, then

f(x) =
∑
y∈S

P (x, y)f(y)

=
∑
y∈A

P (x, y) +
∑
y/∈A

P (x, y)f(y)

= Px(X1 ∈ A) +
∑
y/∈A

P (x, y)f(y).

By substituting the formula of f(y) to the right side above we see that

f(x) = Px(X1 ∈ A) +
∑
y/∈A

P (x, y)

(∑
z∈A

P (y, z) +
∑
z /∈A

P (y, z)f(z)

)
= Px(X1 ∈ A) + Px(X1 /∈ A,X2 ∈ A) +

∑
y/∈A

∑
z /∈A

P (x, y)P (y, z)f(z)

= Px(TA = 1) + Px(TA = 2) +
∑
y/∈A

∑
z /∈A

P (x, y)P (y, z)f(z).

By iterating this argument we find that

f(x) = Px(TA = 1) + · · ·+ Px(TA = t)

+
∑
y1 /∈A

· · ·
∑
yt /∈A

P (x, y1)P (y1, y2) · · ·P (yt−1, yt)f(yt).

Because f ≥ 0, this implies that

f(x) ≥ Px(TA = 1) + · · ·+ Px(TA = t)

for all integers t ≥ 1, so by taking t→∞ above we conclude that

f(x) ≥
∞∑
t=1

Px(TA = t) = Px(TA <∞) = hA(x).
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4.3 Gambler’s ruin
Consider a random walk on state space S = {0, 1, . . . ,M} which moves up
with probability q and down with probability 1 − q, and gets absorbed at the
boundary states 0 and M . This is a Markov chain with transition probabilities
P (x, x + 1) = q and P (x, x − 1) = 1 − q for 1 ≤ x ≤ M − 1, together with
P (0, 0) = 1 and P (M,M) = 1, and all other transition probabilities being zero,
see Figure 4.1.

0 1 2 3 4 5

q q q
q

1− q
1− q 1− q 1− q

1 1

Figure 4.1: Transition diagram of a random walk with M = 5.

In a gambling context, the associated Markov chain Xt represents the wealth
of a gambler after t rounds in a game where the gambler wins 1 EUR with
probability q and loses 1 EUR with probability 1 − q. The game stops if the
wealth hits the value M (gambler’s target) or the value 0 (gambler’s money is
all gone). A basic question here is to determine the probability of the gambler
hitting the target, given that the initial wealth equals x. That is, we wish to
compute the probability

h(x) = P(Xt = M for some t ≥ 0 | X0 = x).

Because the chain surely eventually hits either 0 or M , we see that the proba-
bility of the gambler’s eventual ruin equals 1− h(x).

The probability h(x) equals the hitting probability hA(x) defined in (4.7)
for the singleton set A = {M}. Hence by Theorem 4.4 the function h(x) is
the minimal nonnegative solution to the system of equations (4.8) which in this
take the form

h(0) = h(0),

h(x) = (1− q)h(x− 1) + qh(x+ 1), 0 < x < M,

h(M) = 1.

The first equation above tells us nothing, but the problem formulation makes
it clear that h(0) = 0. Hence we are left with finding the minimal nonnegative
solution to the equation

h(x) = (1− q)h(x− 1) + qh(x+ 1) (4.10)

for 0 < x < M , with boundary conditions h(0) = 0 and h(M) = 1.
Let us first solve h(x) in the asymmetric case where q ∈ (0, 1) is such that

q 6= 1
2
. Formula (4.10) is a second-order homogeneous linear difference equation
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for which make the ansatz h(x) = zx for some real number z > 0. Substituting
this leads to

zx = (1− q)zx−1 + qzx+1,

and dividing both sides by zx−1 yields the quadratic equation

qz2 − z + (1− q) = 0

which has two distinct roots α = 1−q
q

and β = 1. By the theory of linear
difference equations, we know that all solutions to (4.10) are of the form

h(x) = cαx + dβx

for some constants c and d. The boundary conditions h(0) = 0 and h(M) = 1
now become

c+ d = 0,

cαM + d = 1,

from which we solve d = −c and c = 1/(αM − 1), and obtain the solution

h(x) =
αx − 1

αM − 1
. (4.11)

To obtain the solution of (4.10) in the symmetric case with q = 1
2
, we may

inspect the how the solution of (4.11) behaves as a function of q as q → 1
2
. In

this case α = 1−q
q
→ 1, and by l’Hôpital’s rule, it follows that

αx − 1

αM − 1
→ x

M
, as α→ 1.

This solution can also be derived by making an ansatz of the form h(x) = c+dx
and solving c and d from the boundary conditions. We may now formulate our
findings as follows.

Theorem 4.6. The probability that a random walk on {0, 1, . . . ,M} described
in Figure 4.1 started at x eventually hits M equals

h(x) =


( 1−q

q )
x
−1

( 1−q
q )

M
−1
, q 6= 1

2
,

x
M
, q = 1

2
.

The main message of Theorem 4.6 is that when q ≤ 1
2
, the probability of

ever reaching a state M from an initial state x tends to zero as M → ∞. As
an application related to gambling, consider the following example.
Example 4.7 (Roulette). In a game of roulette where a bet of 1 EUR is placed
on the ball falling into one of 18 red pockets out of 37 pockets, the probability
of winning 1 EUR is q = 18

37
and the probability of losing 1 EUR is 1 − q. If

a gambler targets to double his initial wealth x, then the probability h(x) of
successfully ending the game is obtained by applying Theorem 4.6 withM = 2x,
see Table 4.1. �
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Initial wealth (EUR) 1 5 10 20 50

Success probability 0.4865 0.4328 0.3680 0.2533 0.0628

Table 4.1: Probability of successfully doubling the initial wealth in a game of
roulette by betting 1 EUR on red.
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Chapter 5

General Markov chains and
random walks

5.1 Infinite vectors and matrices
We will now study random processes with values in a general countable (fi-
nite or countably infinite) state space S. The assumption that S is countable
(numeroituva) means that its elements can be numbered using positive integers
according to S = {x1, x2, . . . }, or equivalently, there exists a surjection from
the set of natural numbers onto S.
Example 5.1. The following sets can be shown to be countably infinite:

• The set of integers Z and the set of rational numbers Q.

• The set Zd of vectors (x1, . . . , xd) with integer coordinates.

• The set of finite strings composed of letters from a finite alphabet.

The following sets can be shown to be uncountably infinite:

• The set of real numbers R and the set of complex numbers C.

• The interval [0, 1] of real numbers.

• The set of infinite binary sequences x = (x1, x2, . . . ) with xi ∈ {0, 1}.

�

The sum of a nonnegative function f on a countably infinite space S =
{x1, x2, . . . } is defined by

∑
x∈S

f(x) =
∞∑
i=1

f(xi) = lim
n→∞

n∑
i=1

f(xi).

The theory of nonnegative sums tells that the value of the sum does not depend
on how the elements of S are labelled. A probability distribution on S is a
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function µ : S → [0, 1] such that ∑
x∈S

µ(x) = 1. (5.1)

In the context of Markov chains, a standard way is to interpret a probability
distribution µ = (µ(x) : x ∈ S) as a row vector indexed by the states.

A transition matrix (siirtymämatriisi) is a function P : S × S → [0, 1] such
that ∑

y∈S

P (x, y) = 1 for all x ∈ S,

which means that the row sums of the (infinite) square matrix P are one. Matrix
multiplication with infinite matrices is defined in the same way as in the finite
case. If µ is a probability distribution on S we define µP by the formula

µP (y) =
∑
x∈S

µ(x)P (x, y), y ∈ S.

Then µP (y) ≥ 0 for all y ∈ S. Moreover, by changing the order of summation
(which is always allowed when the terms are nonnegative), we see that

∑
y∈S

µP (y) =
∑
y∈S

∑
x∈S

µ(x)P (x, y) =
∑
x∈S

µ(x)

(∑
y∈S

P (x, y)

)
= 1,

so that µP is a probability distribution on S.
The matrix product R = PQ of transition matrices P,Q : S × S → [0, 1] is

defined by
R(x, z) =

∑
y∈S

P (x, y)Q(y, z), x, z ∈ S.

Then R(x, z) ≥ 0 for all x, z. By changing the order of summation we find that∑
z∈S

R(x, z) =
∑
z∈S

∑
y∈S

P (x, y)Q(y, z) =
∑
y∈S

P (x, y)
∑
z∈S

Q(y, z) = 1.

Hence the product of two transition matrices is again a transition matrix. Ma-
trix powers are defined in the usual way as P 0 = I and recursively P t+1 = P tP
for t ≥ 0, where the identity matrix I : S × S → [0, 1] is given by

I(x, y) =

{
1, x = y,

0, x 6= y.

5.2 Markov chains
A Markov chain with transition matrix P on a countable state space S is an S-
valued random sequence (X0, X1, . . . ) defined on some probability space (Ω,P)
such that

P
(
Xt+1 = y | Xt = x, Ht−

)
= P (x, y)
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for all x, y ∈ S, all t ≥ 0, and all events Ht− = {X0 = x0, . . . , Xt−1 = xt−1}
such that P(Xt = x,Ht−) > 0. This is precisely the same definition as (1.1) in
Section 1. The only difference is that for countably infinite state spaces, the
transition matrix P has infinitely many rows and columns. We can view the
infinite transition matrix as a function which maps a pair of states (x, y) into
the probability P (x, y) = P(Xt+1 = y |Xt = x).

Theorem 5.2. The distribution µt(x) = P(Xt = x) of a Markov chain at time t
can be computed using the initial distribution µ0 and the transition matrix P as

µt = µ0P
t, (5.2)

where P t on is the t-th power of P . Moreover,

P(Xt = y |X0 = x) = P t(x, y).

Proof. The proofs of Theorems 1.5 and 1.7 work also for countably infinite state
spaces.

5.3 Long-term behaviour
The long-term analysis of Markov chains on infinite state spaces has one fun-
damental difference compared to chains on finite spaces: irreducibility does not
guarantee the existence of an invariant distribution. Every irreducible Markov
chain in a finite state space visits all states infinitely often with probability one.
In infinite spaces this may or may not be the case. To understand this, a key
quantity is the probability

ρ(x, y) = P(Xt = y for some t ≥ 1 |X0 = x),

that a Markov chain started at state x visits state y at some future time instant.
The quantity ρ(x, x) is called the return probability (paluutodennäköisyys) of x. A
state is called recurrent (palautuva) if it has return probability one, and transient
(väistyvä) otherwise.

Theorem 5.3. If an irreducible Markov chain on a countable state space S has
an invariant distribution π, then

π(y) > 0 for all y ∈ S, (5.3)

all states are recurrent, and with probability one, the chain visits every state
infinitely often, regardless of the initial state.

The proof of Theorem 5.3 utilizes the following auxiliary result.

Lemma 5.4. If x is recurrent, then ρ(y, x) = 1 for all states y which are
reachable from x.
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Proof. Let t ≥ 0 be the length of the shortest path from x to y in the transition
diagram of the chain. Then the transition diagram contains a t-hop path x =
x0 → x1 → · · · → xt = y which is such that x does not belong to {x1, . . . , xt}.
By the Markov property, the probability that a chain started at x never returns
to x is bounded by

1− ρ(x, x) ≥ P (x0, x1)P (x1, x2) · · ·P (xt−1, xt)(1− ρ(y, x)).

Because ρ(x, x) = 1 and P (x0, x1)P (x1, x2) · · ·P (xt−1, xt) > 0, the above in-
equality implies that ρ(y, x) = 1.

Proof of Theorem 5.3. Let us first verify (5.3). Because
∑

x π(x) = 1, we can
choose a state x0 such that π(x0) > 0. By irreducibility, the chain can move
from x0 to y via some path of length t ≥ 0, so that P t(x0, y) > 0. Because
πP = π, we also have πP t = π, so that

π(y) =
∑
x∈S

π(x)P t(x, y) ≥ π(x0)P
t(x0, y) > 0,

and hence (5.3) holds.
Let us study the event Ay that the chain visits state y, but only finitely

many times. This event can be written as a disjoint union Ay = ∪0≤t<∞Ay,t,
where

Ay,t = {Xt = y, Xt+1 6= y, Xt+2 6= y, . . . }

is the event that t is the last time instant at which the chain visits y. By Markov
property, it follows that

P(Ay,t) = P(Xt = y)P(Xt+1 6= y, Xt+2 6= y, . . . |Xt = y)

= P(Xt = y)P(X1 6= y, X2 6= y, . . . |X0 = y)

= P(Xt = y)(1− ρ(y, y)).

(5.4)

The above equation holds for any initial distribution of the chain. Especially,
if we denote by Pπ the distribution of the Markov chain corresponding to the
initial distribution µ0 = π, then it follows that

Pπ(Ay,t) = π(y)(1− ρ(y, y)),

and by summing both sides over t, we see that

Pπ(Ay) =
∞∑
t=0

Pπ(Ay,t) =
∞∑
t=0

π(y)(1− ρ(y, y)).

Because terms of the sum on the right do not depend on t, we must have
π(y)(1 − ρ(y, y)) = 0. Furthermore, by (5.3), π(y) > 0, so we conclude that
ρ(y, y) = 1. Hence all states are recurrent.

Now let Uy be the event that the chain visits state y infinitely many times.
The complement of this can be written as U c

y = Ay ∪By where By is the event
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that the chain never visits y. Because ρ(y, y) = 1, equation (5.4) implies that
P(Ay,t) = 0 for all t, and therefore

P(Ay) =
∞∑
t=0

P(Ay,t) = 0

regardless of the initial state of the chain. Now by Lemma 5.4, it follows that
ρ(x, y) = 1 for all x, y. Therefore,

P(By) =
∑
x 6=y

P(X0 = x)P(By |X0 = x)

=
∑
x 6=y

P(X0 = x)(1− ρ(x, y))

= 0.

Hence P(U c
y) ≤ P(Ay) + P(By) ≤ 0 implies P(U c

y) = 0. Finally, if U is the event
that the chain visits every state infinitely often, then by the general union
bound,

P(U c) = P(∪yU c
y) ≤

∑
y

P(U c
y) = 0,

and we conclude that P(U) = 1.

5.4 Convergence theorem
Theorem 5.5. Let (Xt) be an irreducible and aperiodic Markov chain, and
assume that it has an invariant distribution π. Then the invariant distribution
is unique and

lim
t→∞

P(Xt = y |X0 = x) = π(y)

for all x, y ∈ S.

The above result can be rewritten as

P t(x, y)→ π(y)

which in matrix terms means that each row of P t converges to the row vector
π entrywise. An equivalent statement is that µt → π pointwise, regardless of the
initial distribution µ0 of the chain. One more equivalent (though not completely
trivial) statement is that µt → π in the total variation distance.

Proof. Let (Xt) and (Yt) be independent Markov chains both having transition
matrix P , and such that (Xt) has initial distribution µ and (Yt) has initial
distribution ν. Let

τ = min{t ≥ 0 : Xt = Yt}
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be the first time instant (possibly ∞) at which the paths of the Markov chains
meet each other. Observe next by conditioning on the possible values Xs that
for any s ≤ t,

P(Xt = y, τ = s) =
∑
x

P(τ = s,Xs = x,Xt = y)

=
∑
x

P(τ = s,Xs = x)P(Xt = y | τ = s,Xs = x).

Observe next that whether or not τ = s occurs can be detected using a de-
terministic function of random vectors (X0, . . . , Xs) and (Y0, . . . , Ys), the latter
being independent of (Xt). Therefore, Markov property implies that

P(Xt = y | τ = s,Xs = x) = P(Xt = y |Xs = x).

Furthermore, by the definition of τ , we see that

P(τ = s,Xs = x) = P(τ = s, Ys = x).

Hence, by symmetry,

P(Xt = y, τ = s) =
∑
x

P(τ = s,Xs = x)P(Xt = y |Xs = x)

=
∑
x

P(τ = s, Ys = x)P(Yt = y |Ys = x)

= P(Yt = y, τ = s).

By summing the above equation over s ≤ t, it follows that

P(Xt = y, τ ≤ t) = P(Yt = y, τ ≤ t).

This implies that∑
y

|P(Xt = y)− P(Yt = y)| =
∑
y

|P(Xt = y, τ > t)− P(Yt = y, τ > t)|

≤
∑
y

P(Xt = y, τ > t) +
∑
y

P(Yt = y, τ > t)

= 2P(τ > t).

When (Xt) is started at x and (Yt) is started at a random initial state distributed
according to the invariant distribution π, this becomes∑

y

|P t(x, y)− π(y)| ≤ 2P(τ > t).

To finish the proof, it suffices to show that P(τ > t) → 0 as t → ∞,
which is equivalent to showing that P(τ < ∞) = 1. To do this, note that
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{(Xt, Yt) : t ≥ 0} is a Markov chain on the product space S×S, with transition
matrix P̃ defined by

P̃ ((x1, x2), (y1, y2)) = P (x1, y1)P (x2, y2).

Furthermore, it is easy to verify that π̃(x, y) = π(x)π(y) is an invariant distri-
bution of P̃ . It is also possible to show that P̃ is irreducible (here we need the
irreducibility and aperiodicity of P ). In terms of the product chain (Xt, Yt), we
see that τ is the first hitting time TD of the product chain into the diagonal
D = {(x, y) ∈ S × S : x = y}, which is bounded from above by TD ≤ T(x,x) for
any x ∈ S. By Theorem 5.3, T(x,x) is finite with probability one, and hence so
is τ = TD.

5.5 Reversibility
A transition matrix P and a corresponding Markov chain is called reversible
(kääntyvä) with respect to a probability distribution π if the following detailed
balance equations (pareittaiset tasapainoyhtälöt)

π(x)P (x, y) = π(y)P (y, x) (5.5)

are valid for all x, y ∈ S.

Theorem 5.6. If P is reversible with respect to π, then π is an invariant
distribution of P .

Proof. If (5.5) holds, then for all y ∈ S,∑
x∈S

π(x)P (x, y) =
∑
x∈S

π(y)P (y, x) = π(y)
∑
x∈S

P (y, x) = π(y).

Hence πP = π.

Reversibility can be interpreted as follows. Let (X0, X1, . . . ) be a Markov
chain with transition matrix P which is reversible with respect to π such that
X0 (and hence every Xt) is π-distributed. By applying the detailed balance
equations (5.5) we then find that

P(X0 = x0, X1 = x1, . . . , Xt = xt) = π(x0)P (x0, x1)P (x1, x2) · · ·P (xt−1, xt)

= P (x1, x0)π(x1)P (x1, x2) · · ·P (xt−1, xt)

= . . .

= P (x1, x0)P (x2, x1) · · ·P (xt, xt−1)π(xt)

= π(xt)P (xt, xt−1) · · ·P (x1, x0)

= P(Xt = x0, Xt−1 = x1, . . . , X0 = xt).

From this we may conclude that a π-reversible chain with initial distribution π
appears statistically the same if observed backwards in time.
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An important class of reversible Markov chains is discussed next. A birth–
death chain (syntymiskuolemisketju) is a Markov chain on a state space S ⊂
Z+ with a transition matrix such that P (x, y) = 0 for |x− y| > 1. Hence
a birth–death can only move to its nearby states. Examples of birth–death
chains include the gambler’s ruin (finite state space) and a random walk on Z+,
discussed soon.

Theorem 5.7. If a birth–death chain has an invariant distribution π, then the
chain is π-reversible.

Proof. We need to verify that the detailed balance equation (5.5) holds for all
x, y ∈ S. If x = y, then (5.5) is trivially true. The same conclusion is true also
when |x− y| > 1 because in this case both sides of (5.5) are zero. Hence the
only case that we need to investigate is the one where we assume that x, y ∈ S
are such that y = x+ 1. In this case the balance equation π = πP at v implies
that

π(v) =
∑
u

π(u)P (u, v)

and by summing over v ∈ S such that v ≤ x, we find that∑
v≤x

π(v) =
∑
u

π(u)
∑
v≤x

P (u, v). (5.6)

Now because the birth–death chain may only makes jumps of length zero or
one,

∑
v≤x

P (u, v) =


1, u ≤ x− 1,

1− P (x, x+ 1), u = x,

P (x+ 1, x), u = x+ 1,

0, u ≥ x+ 2.

Hence (5.6) can be written in the form∑
v≤x

π(v) =
∑
u≤x−1

π(u) + π(x)(1− P (x, x+ 1)) + π(x+ 1)P (x+ 1, x).

Now because
∑

v≤x π(v) = π(x) +
∑

u≤x−1 π(u), this implies

π(x)P (x, x+ 1) = π(x+ 1)P (x+ 1, x),

so that (5.5) holds for y = x+ 1.

5.6 Random walk on the nonnegative integers
An irreducible and aperiodic Markov chain on a finite state space always has
a unique invariant distribution π, and the distribution of Xt converges to π as
t→∞ regardless of the initial state. In the context of infinite state spaces this
does not hold in general.
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A particle moves in the infinite set Z+ = {0, 1, 2, . . . } so that at every time
step the particle moves from state x ≥ 1 to the right with probability p and to
the left with probability q = 1 − p, independently of the past steps. With the
boundary condition P (0, 0) = q, we get the transition diagram

0 1 2 3 4 · · ·

p p p p p

q q q q qq

and the infinite transition matrix

P =



1− p p 0 · · ·
q 0 p 0 · · ·
0 q 0 p 0 · · ·
0 0 q 0 p 0 · · ·
0 0 0 q 0 p 0 · · ·
...

... . . . . . . . . . . . .


. (5.7)

From the transition diagram we see that the chain is irreducible for all p ∈ (0, 1).
In addition, P (0, 0) > 0 implies that chain is aperiodic.

Let us next study whether or not this random walk has an invariant dis-
tribution. The random walk is an instance of a birth–death chain, so that by
Theorem 5.7, any possible invariant distribution π of P must satisfy the detailed
balance equations (5.5) which in this case can be written as

π(x)P (x, x+ 1) = π(x+ 1)P (x+ 1, x), x ≥ 0,

or equivalently,
pπ(x) = qπ(x+ 1).

From this we find that π(1) = π(0)p
q
and π(2) = π(0)(p

q
)2, and in general,

π(x) =

(
p

q

)x
π(0), x ≥ 0.

For this to be a probability distribution, we need to have
∑

x π(x) = 1. If p < q,
or equivalently p < 1

2
, this normalisation is possible by choosing π(0) = 1 − p

q
.

If p ≥ 1
2
this is not possible. We conclude that

• For p < 1
2
, the unique invariant distribution of the chain is the geometric

distribution π(x) = (1− p
q
)(p
q
)x on Z+ = {0, 1, 2, . . . }.

• For p ≥ 1
2
the chain does not have an invariant distribution.
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Case Irreducible Aperiodic Recurrent Invariant distribution

p ∈ (0, 12) Yes Yes Yes Yes (unique)
p = 1

2 Yes Yes Yes Does not exist
p ∈ (12 , 1) Yes Yes No Does not exist

Table 5.1: Properties of the random walk on Z+ defined by (5.7).

Let us now investigate how the random walk behaves when p ≥ 1
2
. We study

the question whether or not the chain ever returns to state 0 after leaving it.
The probability that the chain ever returns to 0 can be written as

P1(T0 <∞) = lim
M→∞

P1(T0 < TM)

where Tx denotes the first hitting time into state x, and P1 refers to the distri-
bution of the random walk started at state 1. Now P1(T0 < TM) also equals a
gambler’s ruin probability with initial wealth 1 and target wealth M , so that
by Theorem 4.6,

P1(T0 < TM) =

1− ( 1−p
p )

1
−1

( 1−p
p )

M
−1
, p 6= 1

2
,

1− x
M
, p = 1

2
.

Hence the probability that the chain returns to 0 after leaving it equals

P1(T0 <∞) =


1, p < 1

2
,

1, p = 1
2
,

1−p
p
, p > 1

2
.

This means that the states of the chain are recurrent for p ≤ 1
2
and transient for

p > 1
2
. The case p = 1

2
is special in that although the chain eventually returns

to every state, one can show that expected return time is infinite. Table 5.1
summarizes key properties of the random walk. Figure 5.1 describes paths of
the random walk simulated using the code below.

# R-code for simulating a path of a random walk
T <- 1000 # Number of time steps
p <- 0.4 # Probability of moving right
X0 <- 0 # Initial state
X <- integer(T+1)
X[1] <- X0
for (t in 1:T) {

X[i,t+1] <- max(X[i,t] + 2*rbinom(1,1,p)-1, 0)
}
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Figure 5.1: Simulated paths of the random walk on Z+ defined by (5.7) for
p = 0.4 (blue), p = 0.5 (black), p = 0.6 (red).
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Chapter 6

Branching processes

6.1 Transition matrix
A branching process (haarautumisprosessi) is a Markov chain (X0, X1, . . . ) on
state space Z+ = {0, 1, 2, . . . } which models a population where each individ-
ual in generation t independently produces a random number of children, and
these children form the next generation t + 1. The model is parametrised by
an offspring distribution (lisääntymisjakauma) p = (p(0), p(1), p(2), . . . ) where
the entry p(k) equals the probability that an individual produces k children.
The study of branching processes became popular after a question published
by Francis Galton in 1873 which was later solved by Thomas Watson a couple
of years later. This is why a branching process is often also called a Galton–
Watson process. Branching processes are applied to several type of spreading
phenomena. In epidemic modelling, the population refers to the infectious in-
dividuals, and producing children means transmitting a disease to others. In
social sciences, the population may refer to people advocating an opinion, and
producing children means communicating the opinion to others.

If there are Xt = x individuals in generation t, then the size of generation
t+ 1 can be written as a sum

Xt+1 = Y1 + · · ·Yx,

where Y1, Y2, . . . are independent p-distributed random integers. Hence the
transition probability from state x ≥ 1 to state y ≥ 0 equals

P (x, y) = P(Y1 + · · ·+ Yx = y). (6.1)

If there are no individuals in generation t, then no children are born and hence
also the next generation is empty. Therefore,

P (0, y) =

{
1, y = 0,

0, else.
(6.2)

State 0 is hence absorbing for the chain. When the chain enters 0, the population
becomes extinct. Galton’s question was:
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What is the probability that a population eventually becomes ex-
tinct?

In other words, what is the hitting probability P(T0 < ∞) of the chain into
state zero?

6.2 Generating functions
After the offspring distribution p has been given, formulas (6.1)–(6.2) uniquely
determine the entries of a infinite transition matrix P with rows and columns
indexed by Z+. The only problem is that computing numerical values of the
entries of P can be difficult from (6.1). For example, to determine the entry
P (3, 7) requires computing the sum

P (3, 7) =
∑
y1

∑
y2

∑
y3

1(y1 + y2 + y3 = 7) p(y1)p(y2)p(y3).

Generating functions provide a powerful tool for treating such formulas. The
probability generating function (todennäköisyydet generoiva funktio) of a random
integer Y ∈ Z+ distributed according P(Y = k) = p(k) is defined by

φY (s) = EsY =
∞∑
k=0

skp(k) (6.3)

for those value of s for which the sum on the right converges. The probability
generating function is always defined for s ∈ [−1, 1]. It is also defined for other
values of s if the probabilities p(k) vanish quickly enough for large values of k.
The values of φY on [−1, 1] determine the probability distribution of Y uniquely,
because the convergence radius of the power series on the right side of (6.3) is
always at least 1, and therefore the above series can be differentiated infinitely
many times term be term at every point in (−1, 1). By differentiating φY k
times at zero we find that

P(Y = k) = p(k) =
φ
(k)
Y (0)

k!
, k = 0, 1, 2, . . .

The key usefulness of generating functions is that they behave well for sums
of independent random variables. Namely, if X and Y are independent Z+-
valued random integers, then

φX+Y (s) = EsX+Y = EsXsY = = EsXEsY = φX(s)φY (s).

The above formula readily extends to multiple independent summands. Espe-
cially, for any independent and identically distributed random integers Y1, Y2, . . . , Yn ≥
0 we have

φY1+···+Yn(s) = φY1(s)
n. (6.4)
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Hence for example the element P (3, 7) of the transition matrix can by computed
by writing φY1(s)3 as a power series and finding out the term corresponding to
s7. This can also be done by differentiating φY1(s)3 seven times at zero and
dividing the outcome by the factorial of 7.

The following result generalizes (6.4) to the case where also the number of
summands is a random variable. (An empty sum

∑0
k=1 Yk is defined as zero in

the formula below.)

Theorem 6.1. If N, Y1, Y2, . . . are independent Z+-valued random numbers,
and Y1, Y2, . . . are identically distributed, then the probability generating function
of

Z =
N∑
k=1

Yk

is obtained by φZ(s) = φN(φY1(s)).

Proof. By conditioning on the possible values of N , and by applying indepen-
dence and (6.4) we find that

φZ(s) =
∞∑
n=0

P(N = n)E
(
s
∑n
k=1 Yk |N = n

)
=

∞∑
n=0

P(N = n)E
(
s
∑n
k=1 Yk

)
=

∞∑
n=0

P(N = n)φY1(s)
n

= φN(φY1(s)).

6.3 Expected population size
The following result helps to compute the expected population size as a function
of time for a branching process where

m = E(Y1)

is the expected number of children produced by an individual. As a conse-
quence, we see that the population size tends to zero when m < 1 and grows
exponentially fast to infinity when m > 1.

Theorem 6.2. The expected size of generation t in a branching process started
with x individuals is

E(Xt |X0 = x) = xmt, t = 0, 1, 2, . . .
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Proof. By conditioning on the event Xt = y, we find that

E(Xt+1 |Xt = y) = E

(
Xt∑
k=1

Yk

∣∣∣Xt = y

)
=

y∑
k=1

E (Yk |Xt = y) = my,

where m = EY1. By multiplying both sides by P(Xt = y) and then summing
over y this implies that

E(Xt+1) =
∞∑
y=0

E(Xt+1 |Xt = y)P(Xt = y) =
∞∑
y=0

myP(Xt = y) = mE(Xt).

The now claim follows by induction.

6.4 Extinction probability
Let us get back to Galton’s question: What is the probability of eventual extinc-
tion? Observe first that the evolution of descendants of any particular individ-
ual behaves as a branching process started with initial state one, and that the
branches of the initial individuals are mutually independent. Therefore, if the
initial generation contains x ≥ 1 individuals, then the probability of eventual
extinction is the probability of all individual family lines becoming extinct, and
this probability equals

P(extinction |X0 = x) = ηx,

where η = P1(T0 <∞) is the extinction probability of a branching process with
initial size X0 = 1. Furthermore, the extinction probability η can be obtained as
a fixed point of the probability generating function of the offspring distribution,
as the following result confirms.

Theorem 6.3. The extinction probability of a branching process starting with
one individual is the smallest nonnegative solution of

φY1(s) = s.

Example 6.4. During its lifetime, each individual produces two children with
probability a and no children otherwise. What is the probability that the family
line of a particular individual eventually becomes extinct?

The probability generating function of the offspring distribution is φ(s) =
(1− a) + as2, so the fixed points of φ are the solutions of as2 − s+ (1− a) = 0
given by

s =
1±

√
1− 4a(1− a)

2a
=

1±
√

(1− 2a)2

2a
=

{
(1− a)/a,

1.

56



By Theorem 6.3, the extinction probability is hence

η =

{
1, when a ≤ 1/2,
1−a
a
, when a > 1/2.

�

To prove Theorem 6.3 we need an auxiliary result which tells how the prob-
ability generating function of Xt can be computed using the probability gener-
ating function of the offspring distribution φ(s) = φY1(s).

Lemma 6.5. For a branching process started at X0 = 1, the probability gener-
ating function of Xt is given by

φXt(s) = φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸
t

(s).

Proof. By definition X0 = 1, so that

φX0(s) = s.

The individuals of generation t+ 1 are the children of individuals of generation
t, so that the size of generation t+ 1 can be represented as

Xt+1 =
Xt∑
x=1

Yt,x,

where Yt,1, Yt,2 are mutually independent and p-distributed, and independent of
Xt. By Theorem 6.1 we see that

φXt+1(s) = φXt(φ(s)), t = 0, 1, 2, . . .

By substituting t = 0 to the above formula we find that φX1(s) = φ(s). By
substituting t = 1 we see that

φX2(s) = φX1(φ(s)) = φ(φ(s)).

By continuing this way, that is, by applying induction, the claim follows.

Proof of Theorem 6.3. (i) Let us first verify that η is a fixed point of φ(s) =
φY1(s). We can write η as

η = P

(
∞⋃
t=1

{Xt = 0}

)
and note that by the continuity of probability measures,

P

(
∞⋃
t=1

{Xt = 0}

)
= lim

t→∞
P

(
t⋃

s=1

{Xs = 0}

)
.
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The above continuity property follows from general probability axioms and is
discussed on more detailed in probability theory courses. Next we observe that

t⋃
s=1

{Xs = 0} = {Xt = 0},

because state 0 is absorbing. Hence we may write

η = lim
t→∞

P

(
t⋃

s=1

{Xs = 0}

)
= lim

t→∞
ηt,

where ηt = P(Xt = 0) is the probability of extinctinction by time t.
By applying probability generating functions, we may write

P(Xt = 0) = φXt(0),

and with the help of Lemma 6.5,

φXt(0) = φ(φXt−1(0)).

Therefore,
ηt = φ(ηt−1) (6.5)

for all t ≥ 1. Because η and ηt are probabilities, they belong to the interval
[0, 1]. Being a convergent power series, the function φ is continuous on [0, 1],
and hence

η = lim
t→∞

ηt = lim
t→∞

φ(ηt−1) = φ( lim
t→∞

ηt−1) = φ(η).

Hence η is a fixed point of φ.
(ii) We will now show that η is the smallest fixed point of φ in [0, 1]. To

do this, let us assume that a ∈ [0, 1] as an arbitrary fixed point of φ. We will
show that η ≤ a. First, because φ is nondecreasing on [0, 1], and X1 distributed
according to Y1, we see that

η1 = P(X1 = 0) = φ(0) ≤ φ(a) = a.

Therefore η1 ≤ a. On the other hand, by applying (6.5) and the monotonicity
of φ,

η2 = φ(η1) ≤ φ(a) = a.

Hence also η2 ≤ a. By proceeding this way we may conclude that ηt ≤ a for all
t ≥ 1. Especially,

η = lim
t→∞

ηt ≤ a.

58



6.5 Sure extinction
Let us finally derive the following fundamental result. Here m = E(Y1) is the
expected number of children for an individual. The result tells that a branching
process cannot ever reach a statistical equilibrium with a sustainable nonzero
population size. Namely, the only case where the population does not become
eventually extinct is the one with m > 1, in which case the population grows to
infinity exponentially fast according to Theorem 6.2. This is sometimes called
a Malthusian property, after an English scholar Thomas Malthus (1766–1834).

Theorem 6.6. For every branching process such that X0 = 1 and p(0) > 0,

• η = 1, for m ≤ 1.

• η ∈ (0, 1), for m > 1.

Proof. Let us first note that φ(1) = 1. Furthermore, it can be shown that φ is
convex on the interval [0, 1]. In addition, the left derivative of φ at point 1
satisfies φ′(1−) = m. If m ≤ 1, then by sketching a plot of φ on the interval
[0, 1] we see that φ does not have any fixed points [0, 1). Hence the smallest
fixed point of φ on [0, 1] is η = 1.

If m > 1, then again by plotting φ on the interval [0, 1] we see that φ has
precisely one fixed point on (0, 1). This fixed point is the smallest on [0, 1], and
hence η ∈ (0, 1). Instead of sketching the plots, the proofs can be made rigorous
by carefully inspecting Taylor expansions of φ around zero and around one.
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Chapter 7

Random point patterns and
counting processes

7.1 Random point pattern
A random point pattern (satunnainen pistekuvio) on an interval S ⊂ R is a locally
finite1 random subset of S, defined on some probability space (Ω,P). A random
point pattern is hence a map ω 7→ X(ω) from Ω to the family of locally finite
subsets of S. For clarity, and following the usual convention in stochastics, the
symbol ω is omitted in what follows.
Example 7.1. Let U1, . . . , Un be independent and uniformly distributed ran-
dom numbers on the interval2 (0, 1). Then the setX = {U1, . . . , Un} is a random
point pattern on (0, 1). �

Example 7.2. Let Z be a random integer which follows a Poisson distribution
with mean λ > 0. Then the set X = {n ∈ Z+ : n ≤ Z} is a random point
pattern on R+. �

Precisely speaking, in the definition of a random point pattern we need to
require that the map X : Ω → N (S) is measurable with respect to the sigma-
algebra on N (S) generated by the maps B 7→ |X ∩ B|, B ⊂ S open, where
N (S) is the family of all locally finite sets subsets of S. Such technical details
are unimportant in the analysis here, and hence not treated further. For details,
see for example the books [Kal02, SW08].

7.2 Counting measure and counting process
The counting measure (laskurimitta) of a random point pattern X on S ⊂ R is
a random function

N(B) = |X ∩B|,
1A subset X of an interval S is locally finite (lokaalisti äärellinen) if X ∩ K is finite

whenever K ⊂ S is closed and bounded.
2(a, b) refers to the open interval a < x < b.
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which returns the point count of X restricted to set B ⊂ S.
Example 7.3. The counting measure of the random point pattern X in Exam-
ple 7.1 can be written as

N(B) =
n∑
i=1

1(Ui ∈ B), B ⊂ (0, 1),

where the indicator of event {Ui ∈ B} is defined by

1(Ui ∈ B) =

{
1, if Ui ∈ B,
0, else.

�

Time instants related to a random phenomenon under study can be modeled
as random point patterns of R+. In this case the point count on the interval
[0, t] is often briefly denote by

N(t) = N([0, t])

and the random function t 7→ N(t) is called the counting process (laskuriproses-
siksi) of the point pattern X. The definition implies that the point count of X
in an interval (s, t] can be expressed as

|X ∩ (s, t]| = N((s, t]) = N(t)−N(s).

7.3 Independent scattering
A random point pattern X is independently scattered (riippumattomasti sironnut)
if the random variables N(A1), . . . N(Am) are independent whenever the sets
A1, . . . , Am are disjoint. In this case information about the points of X within
a set A is irrelevant when predicting how the point pattern behaves outside A.
Independent scattering is indeed a very restrictive assumption, which only few
point patterns satisfy.
Example 7.4. Is the point pattern X = {U1, . . . , Un} of Example 7.1 indepen-
dently scattered? By dividing the open unit interval into A1 = (0, 1/2] and
A2 = (1/2, 1), we see that

P(N(A1) = 0) = P(U1 > 1/2, . . . , Un > 1/2) = (1/2)n.

On the other hand,

P(N(A1) = 0 |N(A2) = n) = 1,

because by definition, the equation N(A1) + N(A2) = n surely holds. This
shows that X is not independently scattered. �
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The following important result characterizes how independent scattering, an
intrinsically algebraic property, automatically yields a quantitative description
of the distribution of point counts of the random point pattern. The result also
underlines the central role of the Poisson distribution as a universal distribution
describing point counts of independently scattered point patterns. A random
point pattern X on R+ is homogeneous (tasakoosteinen) if its counting measure
satisfies3

N(A+ t) =st N(A)

for all A ⊂ R+ and all t ≥ 0, where A + t = {a + t : a ∈ A}. The intensity
(intensiteetti) of a homogeneous random point pattern is the expected point
count E(N(0, 1]) on the unit interval (0, 1].

Theorem 7.5. Let X be a homogeneous independently scattered random point
pattern on R+ with intensity 0 < λ < ∞. Then the point count of X in the
interval [0, t] is Poisson-distributed with mean λt, so that

P(N(t) = k) = e−λt
(λt)k

k!
, k = 0, 1, 2, . . .

Proof. Denote by
v(t) = P(N(0, t] = 0)

the probability that there are no points of X in the interval (0, t]. Because
N(0, s+ t] = 0 precisely when N(0, s] = 0 and N(s, s+ t] = 0, we see that

v(s+ t) = P(N(0, s+ t] = 0)

= P(N(0, s] = 0, N(s, s+ t] = 0)

= P(N(0, s] = 0)P(N(s, s+ t] = 0)

= P(N(0, s] = 0)P(N(0, t] = 0)

= v(s)v(t).

Because v is a nonincreasing function, this implies (Exercise) that

v(t) = e−αt (7.1)

for some α ≥ 0. Moreover, α > 0, because in case α = 0 the point pattern would
be empty with probability one, which would be in conflict with the assumption
λ = E(N(0, 1]) > 0. Analogously we may conclude that α <∞, because α =∞
would imply a conflict with the assumption λ = E(N(0, 1]) <∞.

Let us next inspect the probability of N(t) = k for some particular t > 0
and integer k ≥ 0. Choose a large number n ≥ k and divide the interval (0, t]
into equally sized subintervals In,j = ( j−1

n
t, j
n
t], j = 1, . . . , n. Denote

θj = 1(N(In,j) > 0) =

{
1, if N(In,j) > 0,

0, else.

3In these lecture notes X =st Y means that X and Y are equal in distribution, that is,
P(X ∈ B) = P(Y ∈ B) for all B.
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Then Zn = θ1 + · · ·+ θn is the number of subintervals which contains points of
X. Denote by Ωn the event that each subinterval contains at most one point.
When the event Ωn occurs, we have N(t) = Zn, which implies that

P(N(t) = k) = P(Zn = k) + εn, (7.2)

where
εn = P(N(t) = k, Ωc

n)− P(Zn = k, Ωc
n).

Because the indicator variables θ1, . . . , θn are independent (due to independent
scattering) and each takes on value one with probability

qn = 1− v(t/n),

we find that Zn follows the binomial Bin(n, qn) distribution.

P(Zn = k) =

(
n

k

)
qkn(1− qn)n−k, k = 0, . . . , n.

By equation (7.1) and l’Hôpital’s rule we see that

nqn = n(1− e−αt/n) =
1− e−αt/n

1/n
→ αt

as n→∞. By the law of small numbers (Theorem 7.6) this allows to conclude
that

P(Zn = k)→ e−αt
(αt)k

k!
, as n→∞. (7.3)

Because by Lemma 7.7, |εn| ≤ 2P(Ωc
n) → 0, and because the probability of

the event N(t) = k does not depend on n, we see from (7.2) and (7.3) that

P(N(t) = k) = e−αt
(αt)k

k!
.

Therefore N(t) is Poisson distributed with mean αt. Especially, E(N(t)) = αt
which shows that α = λ = E(N(0, 1]).

Lemma 7.6 (Law of small numbers). Let Zn be a Bin(n, qn)-distributed random
integer, and assume that nqn → α ∈ (0,∞) as n→∞. Then

lim
n→∞

P(Zn = k) = e−α
αk

k!
for all k ≥ 0.

Proof. By definition of the Bin(n, qn) distribution we find that

P(Zn = k) =
n!

k!(n− k)!
(1− qn)n−k qkn

=
n!

nk(n− k)!

1

(1− qn)k
(nqn)k

k!

(
1− nqn

n

)n
.

(7.4)
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Let us analyze the right side of above equation as n → ∞. The first term on
the right side of (7.4) satisfies

n!

nk(n− k)!
=

1

nk

k−1∏
j=0

(n− j) =
k−1∏
j=0

(1− j/n) → 1.

Because qn → 0, also the second term on the right side of (7.4) satisfies

1

(1− qn)k
→ 1.

Furthermore, the assumption nqn → α implies that the third term on the right
of (7.4) scales as

(nqn)k

k!
→ αk

k!
.

Hence the claim follows after verifying that

lim
n→∞

(
1− nqn

n

)n
= e−α. (7.5)

The limit (7.5) can be justified as follows. Choose a small ε > 0 and select
n0 so large that α− ε ≤ nqn ≤ α + ε for all n ≥ n0. Then for all n ≥ n0,(

1− α + ε

n

)n
≤
(

1− nqn
n

)n
≤
(

1− α− ε
n

)n
.

By applying the formula (1+x/n)n → ex (which is often taken as the definition
of the exponential function) we see that the lower bound above converges to
e−α−ε and the upper bound to e−α+ε. Because the limiting bounds are valid for
an arbitrarily small ε > 0, equation (7.5) follows.

Lemma 7.7. Let X be a random point pattern on an interval S ⊂ R with
counting measure N . Let us divide the real axis into intervals In,j = ( j−1

n
, j
n
]

of length 1/n, indexed by j ∈ Z. Then for any interval A ⊂ S such that
E(N(A)) <∞,

P
(
N(A ∩ In,j) ≤ 1 for all j ∈ Z

)
→ 1, as n→∞.

Proof. Define the random number

D = min{|x− y| : x, y ∈ X ∩ A, x 6= y}

as the smallest interpoint distance of the point pattern restricted to A. When
D > 1/n, then every pair of points in X ∩ A contains a gap of width 1/n, so
that every interval In,j can contain at most one point of X ∩ A. Therefore,

Zn := sup
j
N(A ∩ In,j) = sup

j
|X ∩ A ∩ In,j | ≤ 1
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on the event D > 1/n.
The assumption E(N(A)) < ∞ implies that the set X ∩ A is finite with

probability one. Hence D > 0 with probability one, and the above inequality
shows that limn→∞ 1(Zn ≤ 1) = 1 with probability one. Now by applying
Lebesgue’s dominated convergence theorem to justify interchanging the limit
and the expectation below, it follows that

lim
n→∞

P(Zn ≤ 1) = lim
n→∞

E
(

1(Zn ≤ 1)
)

= E
(

lim
n→∞

1(Zn ≤ 1)
)

= 1.

7.4 Poisson process
A random function N : R+ → Z+ is a Poisson process (Poisson-prosessi) with
intensity λ if

• N(t)−N(s) =st Poi(λ(t− s)) for all (s, t] ⊂ R+.

• N has independent increments in the sense that

N(t1)−N(s1), . . . , N(tn)−N(sn)

are independent whenever (s1, t1], . . . , (sn, tn] ⊂ R+ are disjoint.

The above random function t 7→ N(t) is hence a continuous-time stochastic
process with a countable state space Z+. Theorem 7.5 can now be rephrased as
follows.

Theorem 7.8. The counting process N(t) = N(0, t] of a homogeneous inde-
pendently scattered random point pattern is a Poisson process with intensity
λ = E(N(0, 1]).

7.5 Constructing independently scattered point
patterns

Do independently scattered point patterns exist? Let us construct one. Define
first the random numbers T1, T2, . . . by the formula

Tn = τ1 + · · ·+ τn, n ≥ 1,

where τ1, τ2, . . . are independent and identically distributed positive random
numbers. Figure 7.1 describes a so-constructed point patterns and a corre-
sponding counting process.
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Figure 7.1: A point pattern simulated using the method in Theorem 7.9 and
a corresponding Poisson process path on time interval (0, 10].
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Theorem 7.9. If the interpoint distances τ1, τ2, . . . are exponentially distributed
with rate parameter λ, then the point pattern X = {T1, T2, . . . } is homogeneous
and independently scattered, and the corresponding counting process

N(t) = |X ∩ (0, t]| = |{k ≥ 1 : Tk ≤ t}|

is a Poisson process with intensity λ.

Proof. See [Kal02, Proposition 12.15] for a detailed proof.
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Chapter 8

Poisson processes and renewal
processes

8.1 Poisson process defined as a stochastic pro-
cess

In the previous chapter we saw how a Poisson process naturally emerges as the
counting process of a homogeneous and independently scattered point pattern.
An alternative definition is the following. A random function N : R+ → Z+ is
a Poisson process with intensity λ > 0 if

(i) N(0) = 0,

(ii) N(t)−N(s) =st Poi(λ(t− s)) for all s < t,

(iii) N has independent increments in the sense that

(s1, t1], . . . , (sk, tk] disjoint
=⇒

N(t1)−N(s1), . . . , N(tk)−N(sk) independent.

The paths of a Poisson process are piecewise constant, and grow with unit
jumps at random time instants. Following the usual convention we impose the
additional assumption that the paths of a Poisson process are right-continuous.
Then the n-th jump instant of a Poisson process can be written as

Tn = min{t ≥ 0 : N(t) = n}, n = 1, 2, . . . ,

and the collection of jump instants {T1, T2, . . . } forms a homogeneous and inde-
pendently scattered random point pattern on R+:n with counting process N(t),
so that

N(t) =
∞∑
i=1

1(Ti ≤ t).
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The random variables T1, T2, . . . are often viewed as the events of Poisson
process, and then the difference N(t) −N(s) tells the number of events in the
time interval (s, t]. With probability one, this number is the same for time inter-
vals [s, t] or (s, t), because the probability of a Poisson process jumping at fixed
nonrandom time instant is zero. This follows from the fact that distribution of
Tn is continuous (Tn follows a gamma distribution with shape parameter n and
rate parameter λ).

8.2 Superposed Poisson processes
The following theorem confirms the intuitively natural fact that by superposing
several mutually independent Poisson processes we obtain a Poisson process. In
the sum below the index set can be finite or countably infinite. In the latter
case we need to assume that

∑
j λj <∞.

Theorem 8.1. If N1, N2, . . . are independent Poisson processes with intensities
λj, then N(t) =

∑
j Nj(t) is a Poisson process with intensity λ =

∑
j λj.

The following auxiliary result is used to prove the theorem.

Lemma 8.2. If Nj =st Poi(λj) are independent, then
∑

j Nj =st Poi(
∑

j λj).

Proof. We will compute the probability generating function ofNj. This function
at z ∈ [0, 1] is obtained by

GNj(z) = E(zNj) =
∞∑
n=0

zn
(
e−λj

λnj
n!

)
= e−λj eλjz = eλj(z−1).

By independence, it follows that

G∑
j Nj

(z) = E(z
∑
j Nj) =

∏
j

E(zNj) =
∏
j

eλj(z−1) = e
∑
j λj(z−1).

Because a probability generating function uniquely determines the distribution,∑
j Nj =st Poi(

∑
j λj).

Proof of Theorem 8.1. Let us verify the three conditions in the definition (Sec-
tion 8.1).

(i) Clearly N(0) =
∑

j Nj(0) = 0.
(ii) With the help of Lemma 8.2 we observe that N(t)−N(s) =

∑
j (Nj(t)−

Nj(s)) =st Poi(λ(t− s), where λ =
∑

j λj.
(iii) Does N have independent increments? If time intervals (s1, t1] an

(s2, t2] are disjoint, then

Nj(s1, t1] ⊥⊥ Nj(s2, t2] for all j.
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Because Nj are mutually independent, this allows to conclude that∑
j

Nj(s1, t1] ⊥⊥
∑
j

Nj(s2, t2]

Hence the random integers N(s1, t1] and N(s2, t2] are independent. The above
argument works in the same way also for multiple disjoint time intervals. Hence
N has independent increments.

8.3 Compound Poisson process
A Poisson process N(t) models the number of independently and uniformly
scattered time instants during [0, t]. If the time instants are generated as a
superposition of a several sparse event sequences, then the net counting process
can be quite accurately modeled using a Poisson process. For example, this is
the case for the traffic flow of cars on a large highway if the correlation effects
due to traffic lights on inbound roads, the daily rhythm of the society (school
start times, workday end times) are not too big.

In many random phenomena the time instants are often associated with
other random variables that also need to be modeled. The following example
describes one situation.
Example 8.3 (Traffic flow). The average flow of cars crossing the Helsinki–
Espoo border on Länsiväylä during weekdays equals λ = 40 cars/min, and
the average number of people per car is m = 1.9 with an estimated standard
deviation of σ = 1.2. Model the flow of people traveling in cars across the city
border as a stochastic process and derive a formula for the expectation and
standard deviation for the flow of people crossing the border per hour. �

We can add randomness to a random point pattern X = {T1, T2, . . . } on R+

by defining
X̃ = {(T1, Z1), (T2, Z2), . . . },

where Z1, Z2, . . . are random variables with values in some state space S. The
resulting random point pattern X̃ on R+ × S is called a marked point pattern
(merkitty pistekuvio), and the random variables Z1, Z2, . . . are called the marks
of the point pattern {T1, T2, . . . }. When the marks are real-valued, we may
view Zi as a reward (or cost) at time instant Ti. Then the net reward up to
time t can be written as

S(t) =
∞∑
i=1

Zi 1(Ti ≤ t),

or as

S(t) =

N(t)∑
i=1

Zi, (8.1)
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where

N(t) =
∞∑
i=1

1(Ti ≤ t),

denotes the counting process of the time instants {T1, T2, . . . }. When N is
a Poisson process with intensity λ and the marks Z1, Z2, . . . are independent
and identically distributed, and independent of N , then the stochastic process
S defined by (8.1) is called a compound Poisson process (yhdistetty Poisson-
prosessi).

Theorem 8.4. A compound Poisson process has independent increments, and
the mean and variance of a compound Poisson process at time t can be computed
using the formulas

E(S(t)) = λmt,

Var(S(t)) = λ(m2 + σ2)t,

where m = E(Zi) and σ2 = Var(Zi).

Proof. The independence of increments is intuitively clear. Proving this rigor-
ously can be done by carefully conditioning on event of the form Ak = {Nk(sk) =
mk, Nk(tk) = mk + rk}. The claims follow from Lemma 8.5 when we note that
N(t) is Poisson distributed with mean λt and hence E(N(t)) = Var(N(t)) =
λt.

Lemma 8.5. Let S =
∑N

i=1 Zi, where Z1, Z2, . . . are identically distributed, and
independent of each other and N .

(i) If N and Zi have first moments, then E(S) = E(N)E(Zi).

(ii) If N and Zi have second moments1, then

Var(S) = E(N) Var(Zi) + Var(N)(E(Zi))
2.

Proof. (i) Because the random variables Z1, Z2, . . . are independent of N , and
E(Zi) does depend on i, we find that

E(S |N = n) = E

(
n∑
i=1

Zi |N = n

)
= E

(
n∑
i=1

Zi

)
=

n∑
i=1

E(Zi) = nE(Zi).

Therefore, by conditioning on the possible values of N we find that

E(S) =
∑
n≥0

P(N = n)E(S |N = n) =
∑
n≥0

P(N = n)nE(Zi) = E(N)E(Zi).

(ii) The second equality can be proved by carefully manipulating the expres-
sion E

(
(S − E(S))2 |N = n

)
, and recalling that Var(

∑n
i=1 Zi) =

∑n
i=1 Var(Zi)

for mutually independent Zi. Working through the details is a good exercise.
1A random number Z has a finite second moment if E(Z2) < ∞. In this case it also has

a finite first moment, because it can be proved that E(|Z|) ≤ (E(Z2))1/2.
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Example 8.6 (Traffic flow). The flow of cars in Example 8.3 can be modeled
using a Poisson process with intensity λ = 40, when set the time unit as 1 min.
To a car crossing the border at time instant Ti we attach a random variable Zi
which tells the number of people in the car. It is natural to assume that the
random variables Z1, Z2, . . . are independent of each other and of the instants
T1, T2, . . . . By doing so, the number of people who have crossed the border
during [0, t] can be represented as a compound Poisson process

S(t) =

N(t)∑
i=1

Zi.

In this case we known that Zi take values in S = {1, 2, . . . , 7}, and E(Zi) =
m and Var(Zi) = σ2 with m = 1.9 ja σ = 1.2.

By Theorem 8.4, at the time instant t = 60,

E(S(t)) = λmt = 40× 1.9× 60 = 4560

and

Var(S(t)) = λ(m2 + σ2)t = 40× (1.92 + 1.22)× 60 = 12120.

The number of people S(60) crossing the Helsinki–Espoo border hence has mean
4560 and standard deviation

√
12120 = 110.09. Because the model is statis-

tically shift invariant, the same conclusion holds for any time interval of 60
minutes. �

8.4 Thinned Poisson process
In Section 8.2 we found that by superposing independent Poisson processes
we obtain a new Poisson process. In this section we consider a corresponding
reverse operation, splitting a Poisson process into several independent Poisson
processes.
Example 8.7 (Thinned traffic flow). The average flow of cars crossing the
Helsinki–Espoo border on Länsiväylä highway during weekdays equals λ = 40
cars/min. Of these cars, p1 = 30% take the exit to Kehä I ring road, and
rest continue west along Länsiväylä. Model statistically the flow of cars which
continue west on Länsiväylä. What is the probability that during a particular
minute, at most 20 cars continue on Länsiväylä, given that at least 30 cars exit
to Kehä I? �

Let us denote, for a time interval [0, t],

• the total number of cars N(t) =
∑∞

i=1 1(Ti ≤ t),

• the number of cars exiting to Kehä I by N1(t) =
∑∞

i=1 θi 1(Ti ≤ t),

• the number of cars continuing west by N2(t) =
∑∞

i=1(1− θi) 1(Ti ≤ t),
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where θi ∈ {0, 1} is the indicator variable for the event that the i-th car cross-
ing the border takes the Kehä I exit. If we assume that θ1, θ2, . . . are inde-
pendent, the so-obtained counting process N1(t) is called a thinned Poisson
process (harvennettu Poisson-prosessi) which is obtained by removing 70% of the
events of the original Poisson process by independent sampling. Analogously,
also N2(t) is a thinned Poisson process. The following result confirms that inde-
pendently thinned Poisson processes are Poisson processes; and more strikingly,
the thinned processes are mutually independent.

Theorem 8.8. The thinnings N1(t) =
∑∞

i=1 θi1(Ti ≤ t) and N2(t) =
∑∞

i=1(1−
θi)1(Ti ≤ t) of the Poisson process N are Poisson processes and mutually inde-
pendent.

Proof. Let us first verify that N1 is a Poisson process. Obviously N1(0) = 0.
Let us next verify that N1(t) is Poisson distributed. The probability generating
function of a Ber(p1)-distributed indicator variable θi is

Gθi(z) = E(zθi) = (1− p1) + p1z.

Because N1(t) =
∑N(t)

i=1 θi, we may apply Theorem 6.1, familiar from branching
processes, according to which

GN1(t)(z) = GN(t)(Gθi(z)).

By applying this we see that

GN1(t)(z) = GN(t)(Gθi(z)) = eλt(Gθi (z)−1) = eλtp1(z−1),

which implies that N1(t) =st Poi(λp1t). In precisely the same way we can verify
that N1(t)−N1(s) =st Poi(λp1(t− s)). Moreover, because N1(t) is a compound
Poisson process, it follows by Theorem 8.4 that N1 has independent increments.
Hence N1 is a Poisson process with intensity λp1. In an analogous way we find
that N2 is a Poisson process with intensity λ(1− p1).

Let us still verify why N1 and N2 are independent. The event {N1(s, t] =
j, N2(s, t] = k} occurs precisely when the interval (s, t] contains N(s, t] = j + k
events, out of which to N1 we select j events and to N2 we select k events.
Because the selections are done independently, we see by applying the binomial
distribution, and noting p2 = 1− p1, that

P(N1(t) = j,N2(t) = k) = P(N(t) = j + k)

(
j + k

j

)
pj1(1− p1)k

= e−λt
(λt)j+k

(j + k)!

(
j + k

j

)
pj1p

k
2

= e−λp1t
(λp1t)

j

j!
e−λp2t

(λp2t)
k

k!

= P(N1(t) = j)P(N2(t) = k).
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Hence the random variables N1(t) and N2(t) are independent for every t. This
argument can be generalised to show that the random vectors (N1(t1), . . . , N1(tn))
and (N2(t1), . . . , N2(tn)) are independent for arbitrary t1, . . . , tn, which corre-
sponds to the independence of the processes N1 and N2.

Example 8.9 (Thinned traffic flow). For the model of Example 8.7, it follows by
Theorem 8.8 that the traffic flows corresponding cars continuing on Länsiväylä
and exiting to Kehä I are mutually independent. Therefore the probability that
during a particular minute, at most 20 cars continue on Länsiväylä, given that
at least 30 cars exit to Kehä I equals

P(N2(1) ≤ 20 |N1(1) ≥ 30) = P(N2(1) ≤ 20).

Information about cars exiting to Kehä I in this setting has no relevance in
predicting how many cars continue west on Länsiväylä. �

The above independence is intuitively counterintuitive because by definition,
N1(t) + N2(t) = N(t) with probability one. The independence property is one
of the magical properties of Poisson processes which are not valid in general
for other counting processes. The result of Theorem 8.8 can be generalized to
thinnings with more general random variables compared to coin flips.

Theorem 8.10. If N is a Poisson process with intensity λ, and Z1, Z2, . . . are
identically distributed, and independent of N and each other, then the thinned
processes

Nx(t) =
∞∑
i=1

1(Zi = x)1(Ti ≤ t), x ∈ S,

are independent Poisson processes with intensities λx = λP(Zi = x).

8.5 Renewal processes
A fundamental and classical question related to random time events is the fol-
lowing.
Example 8.11 (Bus stop). Buses arrive at independent and identically dis-
tributed time intervals τ1, τ2, . . . What is the expected waiting time for the
next bus for a passenger who arrives randomly to the bus stop? �

The above question appears natural but when we look at at carefully, it not
completely well specified because the meaning of “arrives randomly” is somewhat
ambiguous. What is usually meant is that the passenger is assume to arrive to
the bus stop at a random time instant which independent of the bus arrival
times, and uniform somehow. But uniform distributions are only defined for
bounded time intervals, and in the above question no such bound is given. We
will study how this problem can be sensibly formulated in the context of renewal
processes.
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A renewal process (uusiutumisprosessi) is the counting process

N(t) =
∞∑
i=1

1(Ti ≤ t)

of a random point pattern {T1, T2, . . . } on R+ defined by Tn =
∑n

k=1 τk where
the interpoint distances τ1, τ2, . . . ≥ 0 are independent and identically dis-
tributed2. The probability distribution of the interpoint distances is called the
interevent distribution (väliaikajakauma) of the renewal process.
Example 8.12 (Poisson process). A renewal process with a memoryless in-
terevent distribution Exp(λ) is a Poisson process with intensity λ > 0. �

Example 8.13 (Periodic event sequence). The counting process of the deter-
ministic point pattern {h, 2h, 3h, . . . } is a renewal process with interevent dis-
tribution being the Dirac distribution at h, so that P(τk = h) = 1 for all
k ≥ 1. �

0 tT1 T2 T3 T4

τ−(t) τ+(t)

Figure 8.1: Backward and forward recurrence times.

Given a point pattern of time instants {T1, T2, . . . } the distances from a
reference time instant t > 0 to previous time instant τ−(t) = t− TN(t) is called
the backward recurrence time, and the distance to the next time instant τ+(t) =
TN(t)+1 − t is called the forward recurrence time, see Figure 8.1. On the event
N(t) = 0 we define τ−(t) =∞. Then the interevent time seen from the reference
point t equals

τ∗(t) = τ−(t) + τ+(t).

On an infinite time interval R+ = [0,∞) we cannot choose a uniformly
random point because no constant function satisfies the condition

∫∞
0
f(u) du =

1. However, we may still choose a uniformly random time point Us from a
long interval [0, s] and then inspect what happens when s → ∞. In this case
the forward recurrence time τ+(Us) represents the waiting time until the next
time instant for reference point selected uniformly at random from [0, s]. The
corresponding cumulative density function equals

P(τ+(Us) ≤ t) =
1

s

∫ s

0

P(τ+(u) ≤ t) du.

The cumulative density functions of τ−(Us) and τ∗(Us) can be written in a
similar way. The following is a version of a general set of result known as a
renewal theorem.

2A delayed renewal process can be defined as the counting process of Tn = τ0 +
∑n

k=1 τk
where the initial delay τ0 may have different distribution from the other interpoint distances.
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Theorem 8.14. For a renewal process where the interpoint distances satisfy
P(τi > 0) = 1 and E(τi) ∈ (0,∞),

lim
s→∞

P(τ+(Us) ≤ t) = lim
s→∞

P(τ−(Us) ≤ t) = F+(t),

and
lim
s→∞

P(τ∗(Us) ≤ t) = F∗(t),

where the limiting cumulative distribution functions are defined by

F+(t) =
E(τi ∧ t)
E(τi)

and F∗(t) =
E(τi1(τi ≤ t))

E(τi)
. (8.2)

The probability distribution F+ in (8.2) is called the stationary distribution
(tasapainojakauma) of the renewal process. By applying the equation τi ∧ t =∫ t
0

1(s < τi) ds we may write

F+(t) =
E
∫ t
0

1(s < τi) ds

E(τi)
=

∫ t

0

P(τi > s)

E(τi)
ds,

from which we see that the stationary distribution admits a density function

f+(t) =
P(τi > t)

E(τi)
, t ≥ 0. (8.3)

The probability distribution F∗ in (8.2) is called a size-biased (kokovinoutettu)
interevent distribution. If the interevent distribution of the renewal process has
a density function f , then the size-biased interevent distribution has a density

f∗(t) =
tf(t)∫∞

0
sf(s) ds

, t ≥ 0. (8.4)

The expectations of random variables τ+ and τ∗ distributed according to F+ and
F∗ can be computed using the formulas

E(τ+) =
E(τ 2i )

2E(τi)
and E(τ∗) =

E(τ 2i )

E(τi)
.

By applying the general inequality E(τi) ≤ (E(τ 2i ))1/2 we find that

E(τ∗) ≥ E(τi). (8.5)

This inequality is known as the inspection paradox (tutkintaparadoksi), and it tells
that from the viewpoint of a randomly chosen reference point, the interevent
times appear larger than what E(τi) suggests. This is due to the fact that a
randomly chosen reference point is likely to be located within a time interval
which is larger than a typical time interval.
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Heuristic proof of Theorem 8.14. We present an intuitive derivation of the sta-
tionary density (8.3) when the interevent distribution has density f . Here we
view the forward recurrence time τ+(t) (see Figure 8.1) as a random function of
t. Then t 7→ τ+(t) is a continuous-time stochastic process with state space R+,
see Figure 8.2. Indeed, it can be shown that this is a Markov process with a
well-defined limiting distribution. Let us assume that the limiting distribution
has a density function f+, and consider how the process behaves in statistical
equilibrium.

x

B(t)

tT1 T2 T3 T4 T5

Figure 8.2: Forward recurrence time process B(t).

Fix a level x > 0, consider the long-term expected rate of upcrossings of the
level x. Such an upcrossing occurs during a short time interval (t, t+ h) if and
only if B(t) ∈ (0, h) and the next interevent time is larger than x. Therefore
the upcrossing rate for large t is approximately

P(0 < B(t) < h)P(τi > x) ≈ f+(0)hP(τi > x).

On the other hand, a downcrossing of level x occurs during a time interval
(t, t + h) if and only if B(t) ∈ (x, x + h), and hence the downcrossing rate for
large t is approximately

P(x < B(t) < x+ h) ≈ f+(x)h.

In a statistical equilibrium these rates should be equal, so we conclude that
f+(x) = f+(0)P(τi > x). By integrating over x we find that

1 =

∫ ∞
0

f+(x) dx = f+(0)

∫ ∞
0

P(τi > x) dx = f+(0)E(τi),

so that f+(0) = 1/E(τi), and we obtain (8.3).
A rigorous proof of the full statement of Theorem 8.14 is based on general

renewal theory arguments, see for example [Asm03, Luku V.4].

Example 8.15 (Bus stop with exponential interarrivals). Assume the bus in-
terarrival times in Example 8.11 are independent and Exp(λ)-distributed with
mean 1

λ
= 10 min. Then by (8.3) the stationary distribution of the renewal

process has density

f+(t) =
P(τi > t)

E(τi)
=

e−λt

1/λ
= λe−λt,
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so that also the stationary distribution is Exp(λ). Moreover, by (8.4) the size-
biased interevent distribution has density

f∗(t) =
tf(t)∫∞

0
sf(s) ds

=
λte−λt

1/λ
= λ2e−λt,

which can be recognized as Gam(2, λ)-distribution. By Theorem 8.14, a ran-
domly arriving passenger experiences an expected waiting time of E(τ+) = 1

λ
=

10 min. Moreover, the randomly arriving passenger observes that the expected
time between the previous bus and the next bus is E(τ∗) = 2/λ = 20 min. �

A Gam(2, λ)-distributed random number τ∗ discovered in Example 8.15 can
also be represented as

τ∗ = τ− + τ+,

where τ− ja τ+ are independent and Exp(λ)-distributed. This is natural because
due to the memoryless property of exponential distributions, the distances from
any reference point to the previous and next time instants of a Poisson process
are mutually independent and Exp(λ)-distributed. However, in general the
backward and forward recurrence times are not independent.
Example 8.16 (Bus stop with periodic arrivals). Assume now that the bus
interarrival times in Example 8.11 deterministic and all equal to h = 10 min.
The counting process of the bus arrivals is then a renewal process with interevent
distribution being the Dirac distribution at h. Then by (8.3) the stationary
distribution of the renewal process has density

f+(t) =
P(h > t)

E(h)
=

1

h
, 0 < t < h,

which corresponding to the uniform distribution on (0, h). The size-biased in-
terevent distribution F∗ does not have a density, but using (8.2) one can verify
that F∗(t) = 1(t < h) corresponds to the Dirac distribution at h. �
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Chapter 9

Continuous-time Markov chains in
finite time horizon

9.1 Markov property
In general, a stochastic process (stokastinen prosessi) is a random function X :
T → S with state space S and time range T ⊂ R, defined on some measur-
able space with probability measure P. A stochastic process (Xt)t∈R+ with a
countable state space S and time range T = R+ is called a continuous-time
Markov chain (jatkuva-aikainen Markov-ketju) if it satisfies the Markov property
(Markov-ominaisuus)

P
(
Xu = y | Xt = x, (Xs)s≤t ∈ A

)
= P

(
Xu = y | Xt = x

)
(9.1)

for all states x, y ∈ S, all time indices s ≤ t ≤ u, and all measurable1 sets of
paths A ⊂ S[0,t] such that the conditioning events above have nonzero probabil-
ity. The above definition means that information about past states (Xs)s≤t of
the chain is irrelevant for predicting a future state Xu, if we know the current
state Xt. This Markov property extends [Kal02, Lemma 8.1] to joint distribu-
tions of several future states instead of just one. The extended Markov property
(laajennettu Markov-ominaisuus) can be stated as

P
(

(Xu)u≥t ∈ B | Xt = x, (Xs)s≤t ∈ A
)

= P
(

(Xu)u≥t ∈ B | Xt = x
)

(9.2)

for all states x, y ∈ S, all time indices s ≤ t ≤ u, and all measurable sets of
paths A ⊂ S[0,t] and B ⊂ S[t,∞) such that the conditioning events above have
nonzero probability.

A continuous-time Markov chain is called time-homogeneous (aikahomogeeni-
nen) if

P
(
Xu = y | Xt = x

)
= P

(
Xu−t = y | X0 = x

)
.

1Here measurable refers to the product sigma-algebra on the space SI of functions from I
to S.
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As for discrete-time chains earlier, all Markov chains are implicitly assumed to
be time-homogeneous unless otherwise specified.

9.2 Transition matrices
The definition of a continuous-time Markov chain is close in spirit to the cor-
responding definition for discrete-time Markov chains, with one essential differ-
ence. Namely, now it no more suffices to keep track of transitions of unit-length
time steps, but we also need to study transition probabilities for arbitrarily
small (and large) time steps. As a consequence, instead of just one transi-
tion matrix, now need an infinite collection of transition matrices. The t-step
transition matrix of a continuous-time Markov chain (Xt) is denoted by

Pt(x, y) = P(Xt = y |X0 = x).

The entries of the square matrix Pt are nonnegative, and the rows sums are one
because ∑

y∈S

Pt(x, y) =
∑
y∈S

P(Xt = y |X0 = x) = 1 for all x ∈ S.

As in discrete time, the distribution of a continuous-time Markov chain is easily
determined by the initial distribution and a suitable transition matrix.

Theorem 9.1. The probability distribution µt(x) = P(Xt = x) of a continuous-
time Markov chain at time t is obtained from the initial distribution µ0 and the
t-step transition matrix Pt via µt = µ0Pt.

Proof. By conditioning on the possible values of X0, we find that

P(Xt = y) =
∑
x∈S

P(X0 = x)P(Xt = y |X0 = x) =
∑
x∈S

µ0(x)Pt(x, y)

The following result confirms a fundamental algebraic property of the tran-
sition matrices, stating that the collection (Pt)t≥0 forms a transition semigroup.

Theorem 9.2. The transition matrices of a continuous-time Markov chain sat-
isfy Ps+t = PsPt for all s, t ≥ 0.

Proof. By applying the definition of conditional probability, and the Markov
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property at time instant s,

Ps+t(x, z) = P(Xs+t = z |X0 = x)

=
∑
y∈S

P(Xs+t = z, Xs = y |X0 = x)

=
∑
y∈S

P(Xs = y |X0 = x)P(Xs+t = z |Xs = y,X0 = x)

=
∑
y∈S

P(Xs = y |X0 = x)P(Xs+t = z |Xs = y)

=
∑
y∈S

Ps(x, y)Pt(y, z).

Example 9.3 (Satellite). A satellite that has been launched in space has a
random operational time T which assumed to be Exp(µ)-distributed with mean
1/µ = 10 years. When the satellite breaks, it will not be repaired. Then the
state of the satellite can be described as a stochastic process

Xt =

{
1, if satellite is operational at time t,
0, else.

We will now verify that (Xt) is a Markov chain. Given that Xt = 1 occurs,
we know that the satellite is still operational at time t, and nothing has so far
happened to the system. Therefore, by applying the memoryless property of
exponential distributions, we see that for any event Ht determined by the past
values (Xs : s ≤ t),

P(Xt+h = 1 |Xt = 1, Ht) = P(Xt+h = 1 |Xt = 1)

= P(T > t+ h) |T > t)

= P(T > h)

= e−µh.

By the law of total probability, the probability of the complementary event
equals

P(Xt+h = 0 |Xt = 1, Ht) = 1− e−µh.
Furthermore, because a broken satellite remains broken, we see that

P(Xt+h = 0 |Xt = 0, Ht) = 1,

P(Xt+h = 1 |Xt = 0, Ht) = 0.

Together the above four equations show that (Xt) is a continuous-time Markov
chain on state space {0, 1}, and its h-step transition matrix is

Ph =

[
Ph(0, 0) Ph(0, 1)
Ph(1, 0) Ph(1, 1)

]
=

[
1 0

1− e−µh e−µh

]
, h ≥ 0.

�
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Example 9.4 (Poisson process). Let (Nt)t∈R+ be a Poisson process with inten-
sity α > 0. Because the random point pattern consisting of the jump instants of
(Nt) is homogeneous and independently scattered, it follows that for any event
Ht determined by the values of the Poisson process up to time [0, t],

P(Nt+h = j |Nt = i,Ht) = P(Nt+h −Nt = j − i |Nt = i,Ht)

= P(Nt+h −Nt = j − i)
= P(Nh −N0 = j − i)
= P(Nh = j − i).

Because the random variable Nh is Poisson distributed with mean αh, it follows
that (Nt) is a continuous-time Markov process on state space Z+ with h-step
transition matrix

Ph(i, j) =

{
e−αh (αh)j−i

(j−i)! , j ≥ i,

0, else.

�

Example 9.5 (Poisson modulated chain). A Poisson modulated chain is a ran-
dom process (Xt)t∈R+ of the form

Xt = YN(t),

where (Yn)n∈Z+ is a discrete-time Markov chain on state space S with transition
matrix P and (N(t))t∈R+ is a Poisson process with intensity λ which is inde-
pendent of (Yn)n∈Z+ . If we denote the jump instants of the Poisson process by
T1, T2, . . . , then we see that

Xt =


Y0, 0 ≤ t < T1,

Y1, T1 ≤ t < T2,

Y2, T2 ≤ t < T3,

and so on, see Figure 9.1. Because the interevent times Tn − Tn−1 are in-
dependent, and Exp(λ)-distributed, it possible to show using the memoryless
property of exponential distributions that (Xt) is a continuous-time Markov
chain on state space S.

T1 T2 T3

1

2

3

Y0

Y1

Y2

Y3

Figure 9.1: Path of a Poisson modulated chain.
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The t-step transition matrices of (Xt) can be computed using powers of
the underlying discrete-time transition matrix P , because conditioning on the
number N(t) shows that

P(Xt = y |X0 = x) =
∞∑
n=0

P(N(t) = n)P(Yn = y |Y0 = x)

=
∞∑
n=0

e−λt
(λt)n

n!
P n(x, y)

and hence

Pt(x, y) =
∞∑
n=0

e−λt
(λt)n

n!
P n(x, y). (9.3)

�

Poisson modulated chains in Example 9.5 provide a rich and versatile class
of continuous-time Markov chains. For example, the process of Example 9.3 is
a Poisson modulated chain with (N(t)) being a Poisson process with intensity
µ, and (Yn) being a discrete-time Markov chain on {0, 1} with transition matrix

P =

[
1 0
1 0

]
.

Similarly, any Poisson process (recall Example 9.4) can be seen as a special
instance of a Poisson modulated chain where Yn = n is a Markov chain on Z+

which deterministically moves one step up at every discrete time step. We will
later see that indeed all continuous-time Markov chains with bounded total
jump rates can be represented as Poisson modulated chains (Section 10.2).

9.3 Generator matrix
For discrete-time Markov chains, the multi-step transition matrices are given
as matrix powers Pt = P t for t = 0, 1, 2, . . . where P = P1 is the one-step
transition matrix. In this sense the one-step transition matrix P1 generates the
full transition semigroup (Pt)t∈Z+ of the discrete-time Markov chain, and makes
analysing discrete-time chain computationally convenient using numerical linear
algebra. This leads ourselves to ask the following fundamental question:

Is it possible to generate the transition semigroup (Pt)t∈R+ of a
continuous-time Markov chain using just one matrix?

To see why this might be possible, observe that the semigroup property
(Theorem 9.2) implies that Pnt = P n

t for any t ≥ 0 and any integer n ≥ 0.
Hence if we knew the transition matrices for a small time interval t ∈ (0, ε),
then we would be able to compute the transition matrix Pt for every t ≥ 0 via
the formula

Pt = Pn·(t/n) = P n
t/n

83



after choosing an integer n to be large enough so that t/n ∈ (0, ε). This means
that we only need to know the transition matrices for t arbitrarily close to zero.
However, this reasoning does not yet reveal whether or not there exists a single
matrix which generates the full semigroup. A natural candidate would be the
entrywise limit limt→0 Pt. This does not work because the limit P0 equals the
identity matrix and hence contains no information about the behaviour of the
Markov chain.

To see what might work, let us investigate what formula (9.3) in Exam-
ple (9.5) suggests. Note first that the matrix exponential of a square matrix A
is defined as a square matrix

eA =
∞∑
n=0

An

n!

so that the (x, y) of eA equals

eA(x, y) = lim
N→∞

N∑
n=0

An

n!
(x, y).

The limit on the right converges for every finite matrix A, and also for all
suitably bounbded countably infinite transition matrices. Now (9.3) tells that
the t-step transition matrix of a Poisson modulated chain (Xt) with underlying
discrete-time transition matrix P and clock rate λ can be written as

Pt =
∞∑
n=0

e−λt
(λt)n

n!
P n = e−λt

∞∑
n=0

(λtP )n

n!
= e−λteλtP ,

with the understanding that each entry of the square matrix on left equals the
entry of the square matrix on the right. By noting that e−λtI = e−λtI and
applying the formula eAeB = eA+B which is valid when AB = BA, we find that

Pt = e−λteλtP = e−λtIeλtP = eλt(P−I) = etQ

where
Q = λ(P − I). (9.4)

We conclude that the transition semigroup (Pt)t∈R+ is completely determined
in terms of single matrixQ via the formula Pt = etQ. A consequence of the above
is that if we differentiate the square matrix Pt (entry-by-entry) with respect to
t, then (assuming that we can bring the derivative inside the infinite sum)

d

dt
Pt =

∞∑
n=0

d

dt

(tQ)n

n!
=

∞∑
n=0

d

dt

tnQn

n!
=

∞∑
n=1

tn−1

(n− 1)!
Qn =

∞∑
n=0

1

n!
tnQn+1.

This implies Kolmogorov’s backward equation

d

dt
Pt = QPt,
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and by taking t = 0 and noting that P0 = I, it follows that

Q =

[
d

dt
Pt

]
t=0

.

The above derivation motivates the following definition. The generator ma-
trix of a transition semigroup (Pt)t∈R+ and a corresponding continuous-time
Markov chain is defined as the square matrix

Q =

[
d

dt
Pt

]
t=0

,

provided that the entries of the right side are well defined as

lim
h→0+

Ph(x, y)− I(x, y)

h
.

When the state space is finite, the steps in the above derivation can be
justified rigorously, and the following theorem can be proved. The statement of
the theorem holds also for sufficiently regular continuous-time Markov chains
on countably infinite spaces, but not for all.

Theorem 9.6. For any transition semigroup (Pt)t∈R+ of a continuous-time
Markov chain on a finite state space, the generator matrix Q exists, satisfies
Kolmogorov’s backward and forward differential equations

d

dt
Pt = QPt,

d

dt
Pt = PtQ,

and determines the transition matrices of the chain via

Pt =
∞∑
n=0

tnQn

n!
.

Example 9.7 (Poisson modulated chain). Let Xt = YN(t) be a Poisson modu-
lated chain as in Example 9.5 where (Yn)n∈Z+ is a discrete-time Markov chain
on state space S with transition matrix P and (N(t))t∈R+ is a Poisson process
with intensity λ which is independent of (Yn)n∈Z+ . Then the generator matrix
of (Xt)t∈R+ is given by formula (9.4) as

Q = λ(P − I).

�

Example 9.8 (Satellite). Consider the {0, 1}-valued continuous-time Markov
chain describing the state of a satellite in Example 9.3. By noting that this a
Poisson modulated chain with (N(t)) being a Poisson process with intensity µ,
and (Yn) being a discrete-time Markov chain on {0, 1} with transition matrix

P =

[
1 0
1 0

]
,
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we see by (9.4) that the generator matrix equals

Q =

[
0 0
µ −µ

]
.

�

Example 9.9 (Poisson process). Similarly, any Poisson process (recall Exam-
ple 9.4) of rate λ can be seen as a special instance of a Poisson modulated
chain where Yn = n is a Markov chain on Z+ which deterministically moves one
step up at every discrete time step. Hence by (9.4) the generator matrix of the
Poisson process equals

Q =


−λ λ 0 0 0 · · ·
0 −λ λ 0 0 · · ·
0 0 −λ λ 0 · · ·
... . . . . . . . . .


�

In the above examples, each generator matrix has zero row sums and non-
negative offdiagonal entries. This is a general fact. Indeed it follows from

Q(x, y) = lim
h→0+

Ph(x, y)− I(x, y)

h
,

that the row sums of Q must be zero, because Ph and I have unit rows sums.
The above formula also implies that the offdiagonal entries with x 6= y satisfy

Q(x, y) = lim
h→0+

Ph(x, y)

h
,

and are hence nonnegative. Hence it also follows that the diagonal entries of
Q are given by

Q(x, x) = −
∑
y 6=x

Q(x, y).

9.4 Transition semigroup generators
We discuss square matrices A : S × S → R with rows and columns index by a
countable (finite or countably infinite) state space S. Such a matrix is called
bounded if there exists a finite constant c such that∑

y∈S

|A(x, y)| ≤ c for all x ∈ S,

and the smallest such upper bound is denoted2 by

‖A‖ = sup
x∈S

∑
y∈S

|A(x, y)|.

2The supremum of a nonempty set of real numbers A is defined as the smallest (possibly
∞) upper bound of A. The supremum of A is denoted supA, and the supremum of a set of
numbers a(x) indexed by x ∈ S by supx∈S a(x). For finite sets supA = maxA.
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In matrix terms this means that the row sums of the absolute values of A are
bounded from above. All square matrices on a finite state space are bounded.
On the other hand, on an infinite state space there exist unbounded matrices
with bounded entries (for example, the matrix with all entries equal to one).
By definition, every transition matrix P on S is bounded because

‖P‖ = max
x∈S

∑
y∈S

|P (x, y)| = max
x∈S

∑
y∈S

P (x, y) = 1.

Theorem 9.10. The map A 7→ ‖A‖ is a norm in the sense that for all matrices
A,B and all constants c,

(i) ‖A‖ ≥ 0, where equality holds if and only if A = 0,

(ii) ‖A+B‖ ≤ ‖A‖+ ‖B‖,

(iii) ‖cA‖ = |c|‖A‖.

The map also satisfies

(iv) |A(x, y)| ≤ ‖A‖ for all x, y,

(v) ‖AB‖ ≤ ‖A‖‖B‖.

Proof. (i) is clear. (ii) and (iii) can be verified (details as an exercise) by noting
that supx(a(x) + b(x)) ≤ supx a(x) + supx b(x), and supx ca(x) ≤ |c| supx |a(x)|.
(iv) is clear. To verify (v), note that for all x,∑

z

|AB(x, z)| =
∑
z

|
∑
y

A(x, y)B(y, z)|

≤
∑
z

∑
y

|A(x, y)||B(y, z)|

=
∑
y

|A(x, y)|
∑
z

|B(y, z)|

≤
∑
y

|A(x, y)|‖B‖

≤ ‖A‖‖B‖

so that ‖AB‖ = supx
∑

z |AB(x, z)| ≤ ‖A‖‖B‖.

A generator matrix on a countable state space S is a function Q : S × S →
R such that Q(x, y) ≥ 0 for all x 6= y,

∑
y 6=xQ(x, y) < ∞ for all x, and∑

yQ(x, y) = 0 for all x. As usual, such as matrix is considered a finite or
infinite square matrix.

Theorem 9.11. For any bounded generator matrix Q, the matrix exponential
Pt = etQ is well defined for all t ≥ 0, and the collection (Pt)t∈R+ is a transition
semigroup on S, which solves the differential equations

d

dt
Pt = QPt and

d

dt
Pt = PtQ.
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Proof. For s, t ≥ 0, note that because the matrices sQ and tQ commute, it
follows that

PsPt = esQetQ = esQ+tQ = e(s+t)Q = Ps+t

Observe next that

Pt+h − Pt
h

=
1

h

(
∞∑
n=0

(t+ h)n

n!
Qn −

∞∑
n=0

tn

n!
Qn

)
=

∞∑
n=1

(
(t+ h)n − tn

h

)
Qn

n!
.

By applying the binomial theorem it is possible to verify that for |h| ≤ 1,∥∥∥∥((t+ h)n − tn

h

)
Qn

n!

∥∥∥∥ =

∣∣∣∣(t+ h)n − tn

h

∣∣∣∣ ∥∥∥∥Qn

n!

∥∥∥∥ ≤ (t+ 1)n
‖Q‖n

n!
.

Because the right side above is summable with respect to n, we may take
the limit with respect to h → 0 inside the sum to conclude with the help
of l’Hôpital’s rule that

lim
h→0

Pt+h − Pt
h

=
∞∑
n=1

lim
h→0

(
(t+ h)n − tn

h

)
Qn

n!
=

∞∑
n=1

ntn−1
Qn

n!
=

∞∑
n=0

tn
Qn+1

n!
.

Hence the entrywise matrix derivative

d

dt
Pt =

∞∑
n=0

tn
Qn+1

n!
(9.5)

exists at every t ≥ 0 (as a right-sided derivative for t = 0).
Next, it appears clear that

∞∑
n=0

tn
Qn+1

n!
= Q

∞∑
n=0

tn
Qn

n!
, (9.6)

but for infinite matrices some care must be taken to justify the interchange of
two infinite sums, the one with respect to n displayed above, and the other
hidden inside the matrix product. We compute the matrix entry of the left side
for row x and column y as

∞∑
n=0

tn

n!
Qn+1(x, y) =

∞∑
n=0

tn

n!

∑
z∈S

Q(x, z)Qn(z, y)

=
∑
z∈S

Q(x, z)
∞∑
n=0

tn

n!
Qn(z, y)

=
∑
z∈S

Q(x, z)etQ(z, y)

= (QetQ)(x, y),
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where the change of the summation order is justified because

∞∑
n=0

∑
z∈S

tn

n!
|Q(x, z)Qn(z, y)| ≤

∞∑
n=0

∑
z∈S

tn

n!
|Q(x, z)|‖Q‖n ≤ ‖Q‖

∞∑
n=0

tn

n!
‖Q‖n

Because the above equation holds for all x and y, we see that the entrywise
matrix equation (9.6) is indeed true. By combining (9.5) and (9.6), we obtain
d
dt
Pt = QPt. A similar reasoning can be used to verify d

dt
Pt = PtQ.
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Chapter 10

Analysis of Markov jump processes

10.1 Jump rates and jump probabilities
The first jump instant (ensimmäinen hyppyhetki) of a continuous-time Markov
chain is denoted by

T = min{t ≥ 0 : Xt 6= X0}, (10.1)

where we set T =∞ if (Xt) never leaves its initial state.1 The extended random
number T ∈ [0,∞] tells when the Markov chain first exits its initial state. The
jump rate (hyppyvauhti) of the chain in state x is

λ(x) =
1

E(T |X0 = x)
,

and we set λ(x) = 0 when the denominator is infinite.
The following result tells that a continuous-time Markov chains spends an

exponentially distributed random time in every state it visits. Here we interpret
an exponential distribution Exp(0) with rate zero as the distribution of a random
variable which is infinite with probability one.

Theorem 10.1. The first jump instant T of a continuous-time Markov chain
(Xt) started at state x is exponentially distributed with rate parameter λ(x).

Proof. By applying an extended Markov property (9.2) we can verify that

P(T > t+ h |T > t) = P(Xu = x ∀u ∈ [t, t+ h] | Xs = x ∀s ∈ [0, t])

= P(Xu = x ∀u ∈ [t, t+ h] | Xt = x)

= P(Xu = x ∀u ∈ [0, h] | X0 = x)

= P(T > h).

This means that the distribution of T is memoryless, so that the tail distribution
function φ(t) = P(T > t) satisfies φ(t+h) = φ(t)φ(h) for all t, h ≥ 0. Because φ

1We follow the usual convention that the paths of all continuous-time processes are right-
continuous. This means that the state of a process at a jump instant is the state where the
process jumps at the time.
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is nonincreasing, it follows by the theory of Cauchy’s functional equations that
φ must be of the form

φ(t) = e−λt

for some λ ∈ [0,∞). In case λ > 0, this shows that the random variable T is
Exp(λ)-distributed. In case λ = 0, it follows that

P(T =∞) = lim
n→∞

P(T > n) = 1,

which corresponds to an exponential distribution with rate parameter zero.

Using Theorem 10.1 we may characterise the behaviour of a continuous-time
Markov chain over time. A chain starting at state x:

• spends a random Exp(λ(x))-distributed time in state x,

• jumps from x to state y with probability P∗(x, y),

• spends a random Exp(λ(y))-distributed time in state y,

• jumps from y to state z with probability P∗(y, z),

• . . .

The chain evolves as above as long as it visits states with a nonzero jump rate.
If the chain hits a state with jump rate zero, it remains stuck there.

The number P∗(x, y) tells the probability at which the chain enters y when
it leaves x. By the Markov property, the new state is selected independently of
its past trajectory. The square matrix P∗ with rows and columns indexed by the
states x, y ∈ S is called the jump probability matrix (hyppytodennäköisyysmatriisi).
Because P∗(x, y) ≥ 0 for all x, y ∈ S, and∑

y∈S

P∗(x, y) = 1 for all x ∈ S,

we see that P∗ is a transition matrix on S. In addition, the diagonal entries of
P∗ are zero, because the chain changes state on a jump instant. For states with
jump rate λ(x) = 0, it is usual to define the jump rates as P∗(x, y) = 1(x = y),
although these entries have no effect on the behaviour of the chain.

10.2 Determining the generator matrix
Continuous-time Markov chains were described in Section 10.1 using jump rates
λ(x) and jump probabilities P∗(x, y). This description appears quite different
from the definition in the previous chapter which discusses t-step transition
probabilities Pt(x, y) and generator matrices. In this section we see how the
transition semigroup and the generator matrix can be determined from jump
rates and jump probabilities.
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Overclocking (ylikellottaminen) is a technique where we first generate a back-
ground Poisson process of intensity α such that α ≥ λ(x) for all x. The jump
instants of this Poisson process are used to trigger all possible transitions of the
Markov chain. However, the background Poisson process generates too many
jump instants. The effect of this can be compensated by allowing the Markov
chain to stay put at some of the triggering events. Let us define a matrix P̂ by

P̂ (x, y) =
λ(x)

α
P∗(x, y) +

(
1− λ(x)

α

)
I(x, y), (10.2)

where I is the identity matrix on the state space S. The entries of P̂ are
nonnegative and the row sums are one, so that P̂ is a transition matrix. This
matrix represents a discrete-time Markov chain where at every time step we flip
a coin, and with probability λ(x)

α
we move according to transition matrix P∗,

and with probability 1− λ(x)
α

we move according to transition matrix I (which
means that we do not move anywhere). Now let us define

Xt = YN(t), t ∈ R+,

where (Y0, Y1, . . . ) is a discrete-time Markov chain with transition matrix P̂ ,
which is independent of the underlying Poisson process N(t). Then we saw in
Example 9.5 that (Xt) is a continuous-time Markov chain (a Poisson modulated
chain) with t-step transition matrices

Pt =
∞∑
n=0

e−αt
(αt)nP̂ n

n!
, t ∈ R+. (10.3)

The above formula determines the transition matrices of the chain. However,
it is slightly inconvenient because it involves the auxiliary parameter α with no
physical meaning. The following result provides a more convenient description.

Theorem 10.2. For any continuous-time Markov chain with bounded jump
rates λ(x) and arbitrary jump probabilities P∗(x, y), the generator matrix Q
equals

Q(x, y) =

{
λ(x)P∗(x, y), x 6= y,

−λ(x), x = y,
(10.4)

and the t-step transition matrices are given by Pt = etQ.

Proof. By (10.3), and applying the formula e−αtIeαtP̂ = e−αtI+αtP̂ (which is valid
because the matrices −αtI and αtP̂ commute), the t-step transition matrix Pt
can be written as

Pt = e−αteαtP̂ = e−αtIeαtP̂ = e−αtIeαtP̂ = eαtP̂−αtI = etQ,

where
Q = α(P̂ − I).
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The matrix Q is the generator matrix of the chain (as seen earlier). By using
the definition of P̂ in (10.2) we see that

Q(x, y) = α(P̂ (x, y)− I(x, y))

= α

(
λ(x)

α
P∗(x, y) +

(
1− λ(x)

α

)
I(x, y)− I(x, y)

)
= λ(x)P∗(x, y)− λ(x)I(x, y).

Formula (10.4) also implies a simple way to determine the jump rates λ(x)
and jump probabilities P∗(x, y) from the generator matrix Q. Namely, because
P∗ has zero diagonal and unit rows sums, it follows that

λ(x) =
∑
y 6=x

Q(x, y) and P∗(x, y) =
Q(x, y)∑
y 6=xQ(x, y)

.

For a state x where the total jump rate λ(x) = 0, the above formula for P∗ is
not well defined, but this is naturally the case because such x is an absorbing
state. For such x, one can define P∗ to be an arbitrary transition matrix, for
example I, without affecting the statistical behaviour of the chain.

10.3 Memoryless races
To prepare ourselves to construct continuous-time Markov chains for more com-
plicated models, in this section we will analyse some features of independent
exponential distributions.

A set of competitors labeled i ∈ I participate in a race. The time of com-
petitor i equals Ti and is exponentially distributed with rate parameter λi. We
assume that the times of the competitors are independent. The winning time
of the race equals

Tmin = min
i∈I

Ti

and the label of the winner is

Imin = arg min
i∈I

Ti.

Being independent random numbers with a continuous distribution, the times
are distinct from each other with probability one, so that the winner of the
race is uniquely defined. The following, slightly counterintuitive, result tells
that information about who wins the race tells nothing about the winning time.
This magical property does not hold in general for other distributions beside
the exponential.
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Theorem 10.3. If λ =
∑

i∈I λi < ∞ (e.g. when I is finite), then Tmin is
Exp(λ)-distributed with rate parameter λ, and Imin is distributed according to

P(Imin = i) =
λi
λ
, i ∈ I.

Moreover, Tmin and Imin are independent.

Proof. Let us first determine the distribution of the winning time. Because

P(Tmin > t) = P(Ti > t for all i ∈ I) =
∏
i∈I

e−λit = e−λt,

we may conclude that Tmin =st Exp(λ).
Competitor i wins the race precisely when Ti < T ′, where random number

T ′ = minj 6=i Tj tells the best time among the rivals of i. By the previous part, we
see that T ′ =st Exp(λ′) with λ′ =

∑
j 6=i λj. Because Ti and T

′ are independent
from each other, we see that

P(Tmin > t, Imin = i) = P(Ti > t, Ti < T ′).

By writing the probability on the right as

P(Ti > t, Ti < T ′) = Eh(Ti, T
′),

where h(ti, t
′) = 1(ti > t)1(ti < t′), we find that by applying the independence

of Ti and T ′ that

P(Ti > t, Ti < T ′) =

∫ ∞
0

∫ ∞
0

h(ti, t
′)λie

−λiti λ′e−λ
′t′dtidt

′

=

∫ ∞
0

∫ ∞
0

1(ti > t)1(ti < t′)λie
−λiti λ′e−λ

′t′dtidt
′

=

∫ ∞
0

1(ti > t)λie
−λiti

(∫ ∞
ti

λ′e−λ
′t′dt′

)
dti

=

∫ ∞
0

1(ti > t)λie
−λiti e−λ

′tidti

=

∫ ∞
t

λie
−λtidti

=
λi
λ
e−λt.

From this we conclude that

P(Tmin > t, Imin = i) = P(Tmin > t)
λi
λ
.

By substituting t = 0 to the above formula, we see that P(Imin = i) = λi
λ
. We

can rewrite the above formula as

P(Tmin > t, Imin = i) = P(Tmin > t)P(Imin = i),

from which we obtain the independence of Tmin and Imin.
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10.4 Constructing Markov chain models
To illustrate how continuous-time Markov chain models are constructed in prac-
tice, we will carefully study the following example. This illustrates basic prin-
ciples which also work for much more complicated situations.
Example 10.4 (Two machines). A factory has two machines, and each of them
remains operational for an expected time of 1/λ = 40 weeks, independently of
each other. When a machine breaks down, its repair takes on average 1/µ =
2 weeks. All operation times and repair times are assumed to be mutually
independent and exponentially distributed. We denote

Xt = Number of broken machines at time t.

We will analyse the process by inspecting how the first jump takes place. Let
us denote the first jump time by T = min{t ≥ 0 : Xt 6= X0}, and the state after
the first jump by XT .

In state 0, both machines are operational. Denote by Li the remaining op-
erational time of machine i = 1, 2. Then the waiting time until the next jump
equals T = min(L1, L2), and by Theorem 10.3 we see that T =st Exp(2λ). At
the time of jump, one of the machines gets repaired, and the remaining opera-
tional time of the other machine, by the memoryless property of the exponential
distribution, still follows the Exp(λ)-distribution as if had just been repaired.
Hence from time T onwards, the process (Xt) behaves just as if it were started
afresh in state 1.

In state 1, one machine is operational and the other one broken. Let us
label the machines so that the operational machine has label 1 and the bro-
ken machine label 2. Then the remaining operational time L1 of machine 1
is Exp(λ)-distributed, and the remaining repair time of the broken machine
is Exp(µ)-distributed. What happens next depends on whether L1 < M2 or
L1 > M2 (the probability of equality is zero).

• If L1 < M2, the machine 1 breaks down before machine 2 gets repaired,
so that the system moves to state 2. When this happens, then after the
breakdown event the remaining repair time of machine 2 is still Exp(µ)-
distributed, by the memoryless property. Hence after the breakdown, the
system behaves as if it were just started in state 2.

• If L1 > M2, then machine 2 gets repaired before machine 1 breaks down.
Then the system moves to state 0, and afterwards the system behaves just
as if it were freshly started in state 0.

Which of the above alternatives realises corresponds to a race of two memoryless
runners. By Theorem 10.3, the winning time of the race T = min(L1,M2) is
Exp(λ + µ)-distributed, and independently of T , the process moves to state 0
with probability µ/(λ+ µ) and into state 2 with probability λ/(λ+ µ).

In state 2, both machines are broken. The repair times are independent and
Exp(µ)-distributed, so that the first jump instant is Exp(2µ)-distributed, and
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at this time instant the process jumps into state 1. As above, after the jump
instant, the process evolves just as if it were freshly started in state 1.

By gathering together the above observations we may conclude that (Xt) is
a continuous-time Markov chain on state space S = {0, 1, 2} with jump rates
λ(0) = 2λ, λ(1) = λ+ µ, λ(2) = 2µ, and jump probabilities given by

P∗ =

P∗(0, 0) P∗(0, 1) P∗(0, 2)
P∗(1, 0) P∗(1, 1) P∗(1, 2)
P∗(2, 0) P∗(2, 1) P∗(2, 2)

 =

 0 1 0
µ

λ+µ
0 λ

λ+µ

0 1 0

 .
Hence by Theorem 10.2, the generator matrix equals

Q =

−2λ 2λ 0
µ −(λ+ µ) λ
0 2µ −2µ

 =

−0.050 0.050 0
0.500 −0.525 0.025

0 1.000 −1.000

 .
The transition diagram of the chain is in Figure 10.1.

10 2

2λ

2µµ

λ

Figure 10.1: Two machines.

The 3-step transition matrix which tells the probabilities of states after three
weeks can be computed (with the help of a computer) as

P3 = e3Q =

0.9259028 0.07267122 0.001425934
0.7267122 0.26404492 0.009242859
0.5703737 0.36971437 0.059911911

 .
Recalling that the states are indexed by S = {0, 1, 2}, we get the 3-week tran-
sition probabilities corresponding to initial state 0 (both machines operating)
from the first row of P3. Alternatively, we use the initial distribution δ0 = [1, 0, 0]
being the Dirac measure at state 0, to compute

δ0P3 =
[
1 0 0

] 0.9259028 0.07267122 0.001425934
0.7267122 0.26404492 0.009242859
0.5703737 0.36971437 0.059911911


=
[
0.9259028 0.07267122 0.001425934

]
.

Hence both machines are operating 3 weeks after today with probability P3(0, 0) =
0.926. The matrix exponential can be computed in R or Python as follows:
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# R code
library(expm)
la <- 1/40
mu <- 1/2
t <- 3
Q <- matrix(0,3,3)
Q[1,] <- c(-2*la,2*la,0)
Q[2,] <- c(mu,-(la+mu),la)
Q[3,] <- c(0,2*mu,-2*mu)
P3 <- expm(t*Q)

# Python code
import numpy as np
from scipy.linalg import expm
la = 1.0/40
mu = 1.0/2
t = 3.0
Q = np.array([
[-2*la, 2*la, 0],
[mu, -la-mu, la],
[0,2*mu,-2*mu]])

P3 = expm(t*Q)

�

10.5 Invariant distributions
A probability distribution π is an invariant distribution (tasapainojakauma) of
a transition semigroup (Pt)t∈R+ and a corresponding continuous-time Markov
chain if πPt = π for all t ≥ 0. In this case the distribution of Xt for a Markov
chain started with a π-distributed initial state does not change over time. This
means that the chain remains in statistical equilibrium.

Theorem 10.5. The following are equivalent for a continuous-time Markov
chain with bounded jump rates, and for any probability distribution π:

(i) π is an invariant distribution of the chain.

(ii) πQ = 0, where Q is the generator matrix of the chain.

(iii) πP̂ = π, where P̂ is a transition matrix defined by overclocking.

Because the row sums of Q are zero, the balance equation πQ = 0 can be
written as ∑

x:x 6=y

π(x)Q(x, y) = π(y)
∑
z:z 6=y

Q(y, z),

where the left side describes the long-term average rate of jumps into state y,
and the right side the corresponding rate of out from y.

Proof. (i) =⇒ (ii). By differentiating the formula πPt(y) =
∑

x π(x)Pt(x, y)
term by term with respect to t, we see by Kolmogorov’s backward equation
d
dt
Pt = QPt that

d

dt
(πPt) = π

d

dt
Pt = π(QPt) = (πQ)Pt. (10.5)

If π is invariant, this implies that 0 = (πQ)Pt. By substituting t = 0, we see
that 0 = πQP0 = πQI = πQ.

(ii) =⇒ (i). If πQ = 0, formula (10.5) shows that d
dt

(πPt) = 0, so that
t 7→ πPt is constant over tie. Therefore πPt = πP0 = π for all t ≥ 0, that is, π
is invariant.
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(ii) =⇒ (iii). The overclocked transition matrix P̂ is defined by (10.2),
where α > 0 satisfies α ≥ λ(x) for all x. The definition directly shows that

α(P̂ − I) = Q.

When πQ = 0, this implies that π(P̂ − I) = 0 so that πP̂ = π. By applying the
above formula we can also verify the converse implication (iii) =⇒ (ii).

Example 10.6 (Two machines). The balance equations πQ = 0 for the gener-
ator matrix in Example 10.4 can be written as

−π(0)2λ+ π(1)µ+ π(2) · 0 = 0,

π(0)2λ− π(1)(λ+ µ) + π(2)2µ = 0

π(0) · 0 + π(1)λ− π(2)2µ = 0

Together with the normalising equation π(0) + π(1) + π(2) = 1, we can solve
the equilibrium distribution as

π =
[
p2 2p(1− p) (1− p)2

]
where p = µ

λ+µ
. By substituting p = 0.952381, we get the solution

π =
[
0.907029478 0.090702948 0.002267574

]
.

�

10.6 Convergence
Irreducibility for continuous-time Markov chains is defined in the same way as
in discrete time. Recall that the transition diagram of a generator matrix Q and
a corresponding continuous-time Markov chain is a directed graph with nodes
being the states, and links being the ordered node (x, y) for which Q(x, y) > 0.
A generator matrix Q and a corresponding Markov chain is irreducible if is
transition diagram is strongly connected in the sense that or any distinct nodes
x and y there exists a path from x to y in the transition diagram. For continuous-
time Markov chains we never need to worry about periodicity issues, because
all continuous-time chains are automatically aperiodic.

Theorem 10.7. Any irreducible continuous-time Markov chain on a finite state
space has a unique invariant distribution.

Proof. When the state space if finite, the jump rates are always bounded. Hence
we can choose α > 0 so that α ≥ λ(x) for all x, and define the overclocked
transition matrix P̂ by (10.2). Indeed we can choose α is large that α > λ(x) for
all x. In this case P̂ (x, x) > 0 for all x so that P̂ is aperiodic. Moreover, because
the original continuous-time chain is irreducible, then one can verify that so is
P̂ . Then an earlier theorem concerning discrete-time chains tells that P̂ has a
unique invariant distribution π. Then Theorem 10.5 tells that this π is also the
unique invariant distribution of the continuous-time chain.
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Theorem 10.8. Any irreducible continuous-time Markov chain has at most one
invariant distribution. If π is an invariant distribution of such a chain, then

lim
t→∞

Pt(x, y) = π(y) for every x ∈ S.

Proof. See for example [Dur12, Theorem 4.4].

Theorem 10.9. For any irreducible continuous-time Markov chain (Xt)t∈R+

and any function f : S → R, as t→∞,

1

t

∫ t

0

f(Xs) ds →
∑
x∈S

f(x)π(x)

with probability one, regardless of the initial state of the chain.

Proof. The result can be proved using overclocking to reduce the analysis to
the discrete-time case.
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Chapter 11

Martingales and information
processes

Martingales (martingaalit) are random processes for which the best prediction of
a future value given past information is the present value. Martingales are cen-
tral in economics because in efficient markets the prices of publicly exchange-
able assets naturally satisfy the martingale property. Martingale theory also
provides a powerful theoretical tool for studying the pathwise convergence of
random sequences, stochastic integrals, and randomised algorithms.

11.1 Conditional expectation with respect to in-
formation

11.1.1 Definition for finite-state random variables

Conditional expectations can be treated from different points of view. We will
first assume that X and Y are random numbers with values in a finite set. Then

E(Y ) =
∑
y

y P(Y = y)

is by definition the expected value of Y from an external observer’s point of
view, and

E(Y |X = x) =
∑
y

y P(Y = y |X = x)

is the expected value of Y from the point of view of an insider who knows that
the outcome of X equals x. In advanced prediction models it is useful to define
a conditional expectation

E(Y |X),

which corresponds to the value of Y expected by an insider who knows X, from
the viewpoint of an external observer who does not know what the insider knows.
The value of E(Y |X) depends on the realisation of X, so that E(Y |X) is a
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random variable. On the other hand, all randomness related to E(Y |X) is due
to the randomness of X, so that

E(Y |X) = h(X)

for some deterministic function h. The value of this function at x equals the
insider’s expected value for Y on the event {X = x}, that is,

h(x) = E(Y |X = x) =
∑
y

y P(Y = y |X = x). (11.1)

Care must be taken with notations when working with conditional expecta-
tions. For example, we cannot substitute a random variable X to both sides of
(11.1) because in general

h(X) 6= E(Y ) = E(Y |X = X).

A correct way to interpret h(X) is to first define a deterministic function h
using formula (11.1) and then define a random variable h(X) as a mapping
ω 7→ h(X(ω)) from the underlying probability space (Ω,P) to the real numbers.
The apparent conflict due to replacing x by random variable X in (11.1) is
caused by the shorthand notation for the event {X = x}. When we recall that
the event {X = x} is a subset {ω′ ∈ Ω : X(ω′) = x} of the reference space Ω,
then the realisation of h(X) at point ω can be written as

h(X(ω)) = E(Y | {ω′ : X(ω′) = X(ω)}).

This concept becomes clearer when investigating the following concrete example.
Example 11.1 (Poker hands). Two players both receive two cards from a stan-
dard deck of 52 cards. Denote by Xi the number aces in hand i = 1, 2. Elemen-
tary combinatorial reasoning (a good exercise) shows that

E(X2 |X1 = k) = 2 · 4− k
50

, k = 0, 1, 2.

Then from an external observer’s viewpoint, the value of X2 expected by

• player 1 (who knows X1) equals E(X2 |X1) = 2 · 4−X1

50
,

• player 2 (who knows X2) equals E(X2 |X2) = X2,

• the dealer (who knows nothing) equals E(X2) = 2 · 4
52
.

�

Conditional expectations can also be defined with respect to vector-valued
information. Let X1, . . . , Xn ja Y be some random numbers which take on
finitely many values. Then E(Y |X1, . . . , Xn) is the value of Y expected by an
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insider who knows the random vectorX = (X1, . . . , Xn), seen from an outsider’s
point of view. This is mathematically defined as

E(Y |X1, . . . , Xn) = h(X1, . . . , Xn),

where the deterministic function h is defined by

h(x) = E(Y |X = x)

for those x = (x1, . . . , xn) ∈ Rn such that P(X = x) > 0.

11.1.2 Rules

We get introduced to the most important rules for computing with conditional
expectations. First we assume that all random variables take on only finitely
many values. We will use the shorthand Z ∈ σ(X1, . . . , Xn) to indicate that
Z = h(X1, . . . , Xn) for some deterministic function h.
Example 11.2. Let us throw two dice and denote by Xi be the outcome of
die i = 1, 2. Denote Z1 = X1 + X2 and Z2 = X1 − X2. Then obviously
Z1, Z2 ∈ σ(X1, X2). Moreover, f(Z1, Z2) ∈ σ(X1, X2) for every deterministic
function f : Z2 → R. On the other hand, X2 ∈ σ(X1, Z1) but X2 6∈ σ(X1). �

Theorem 11.3. The following rules are valid for all random variables with
finitely many possible values.

(i) Unbiasedness:
E(E(Y |X1, . . . , Xn)) = E(Y ). (11.2)

(ii) Pulling out known factors:

E(ZY |X1, . . . , Xn) = Z E(Y |X1, . . . , Xn) (11.3)

for all Z ∈ σ(X1, . . . , Xn).

(iii) Removing independent information:

E(Y |X1, . . . , Xn) = E(Y ) (11.4)

whenever Y and (X1, . . . , Xn) are independent.

(iv) Removing redundant information:

E(Y |X1, . . . , Xn, X
′
1, . . . , X

′
n) = E(Y |X1, . . . , Xn) (11.5)

whenever X ′1, . . . , X ′n ∈ σ(X1, . . . , Xn).
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Proof. Denote by S = {x ∈ Rn : P(X = x) > 0} the set of possible values of
X = (X1, . . . , Xn) and define

h(x) = E(Y |X = x), x ∈ S.

(i) For all x ∈ S,

h(x) =
∑
y

y
P(X = x, Y = y)

P(X = x)
.

Hence

E(E(Y |X)) = Eh(X) =
∑
x∈S

h(x)P(X = x)

=
∑
x∈S

∑
y

y P(X = x, Y = y)

=
∑
y

y P(Y = y) = E(Y ).

(ii) If Z ∈ σ(X1, . . . , Xn), then Z = φ(X) for some deterministic function
φ(x). Then for all x ∈ S,

h̃(x) = E(ZY |X = x) = φ(x)E(Y |X = x) = φ(x)h(x),

so that
E(ZY |X) = h̃(X) = φ(X)h(X) = Z E(Y |X).

(iii) If X and Y are independent, then for all x ∈ S,

h(x) =
∑
y

yP(Y = y |X = x) =
∑
y

yP(Y = y) = E(Y ).

Therefore E(Y |X) = h(X) = E(Y ).
(iv) Denote X ′ = (X ′1, . . . , X

′
n). Then X ′ = φ(X) for some determinis-

tic function φ and the set of possible values of random vector (X,X ′) can be
expressed as S̃ = {(x, φ(x)) : P(X = x) > 0}. Moreover, for all (x, x′) ∈ S̃

h̃(x, x′) = E(Y |X = x,X ′ = x′) = E(Y |X = x) = h(x).

Hence
E(Y |X,X ′) = h(X,X ′) = h(X) = E(Y |X).
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11.1.3 General definition

Defining the conditional expectation with respect to a random variable taking
values in an uncountable state space is not straightforward because the function
h(x) = E(Y |X = x) cannot be defined using formula (11.1). To arrive at a
general definition, let us first write down a generalization of (11.2).

Lemma 11.4 (Conditional unbiasedness). For any random vector X and ran-
dom number Y with finitely many possible values, the random number Ŷ =
E(Y |X) satisfies

E(Ŷ |X ∈ A) = E(Y |X ∈ A)

for all A such that P(X ∈ A) > 0.

Proof. By applying (11.2) and (11.3), we see that the indicator random variable
Z = 1(X ∈ A) ∈ σ(X) satisfies

E(Ŷ Z) = E(E(Y |X)Z) = E(E(Y Z |X)) = E(Y Z),

so that

E( Ŷ |X ∈ A) =
E(Ŷ 1(X ∈ A))

P(X ∈ A)
=

E(Ŷ Z)

P(X ∈ A)
=

E(Y Z)

P(X ∈ A)
= E(Y |X ∈ A).

A Russian mathematician Andrey Kolmogorov (1903–1987) introduced in
1933 a general definition of conditional expectation based on the conditional
unbiasedness property. This definition is valid for any Rn-valued random vec-
tors, and is based on the following theorem.

Theorem 11.5. If E|Y | <∞, then there exists a unique (with probability one)
random number Ŷ ∈ σ(X1, . . . , Xn) such that E|Ŷ | <∞ and

E(Ŷ |X ∈ A) = E(Y |X ∈ A)

for all A ⊂ Rn such that P(X ∈ A) > 0.

The proof of the above theorem [Wil91, Theorem 9.2] requires technical
preliminaries which are treated in advanced courses of probability theory and
analysis. The conditional expectation of a random number Y with respect to
information (X1 . . . , Xn) is then defined by

E(Y |X1, . . . , Xn) = Ŷ

where Ŷ is the random number appearing in Theorem 11.5. The theorem does
not provide an explicit formula for Ŷ . However, this is usually not a problem
because in practice the functional form can be determined from the context.
From a theoretical point of view, it usually suffices to know rules of computation
with conditional expectations. These are presented next [Wil91, Theorem 9.7].
A random number Y is called integrable (integroituva) when E|Y | <∞.
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Theorem 11.6. For integrable random numbers Y, Yn, Z, Y Z the rules of The-
orem 11.3 are valid and moreover,

• Conditional unbiasedness: E(E(Y |X1, X2)|X1) = E(Y |X1).

• Conditional pulling out known factors E(Y |X1, X2) = E(Y |X1) for all
X2 ⊥⊥ (X1, Y )

• Linearity: E(a1Y1 + a2Y2 |X) = a1E(Y1|X) + a2E(Y2|X).

• Monotonicity: Y1 ≤ Y2 =⇒ E(Y1|X) ≤ E(Y2|X).

• Monotone continuity: Every nondecreasing random sequence 0 ≤ Y1 ≤
Y2 ≤ Y3 ≤ · · · satisfies

Yn → Y =⇒ E(Yn|X)→ E(Y |X).

• Dominated continuity: Every random sequence dominated by |Yn| ≤ Z
with EZ <∞ satisfies

Yn → Y =⇒ E(Yn|X)→ E(Y |X).

11.2 Martingales
A random sequence (M0,M1, . . . ) is a martingale (martingaali) with respect to
random sequence (X0, X1, . . . ) if

(i) E|Mt| <∞,

(ii) Mt ∈ σ(X0, . . . , Xt), and

(iii) E(Mt+1 |X0, . . . , Xt) = Mt.

A random sequence (Mt) satisfying (i) and (ii) is a submartingale (alimartingaali)
if

(iii)’ E(Mt+1 |X0, . . . , Xt) ≥Mt.

and a supermartingale (ylimartingaali) if

(iii)” E(Mt+1 |X0, . . . , Xt) ≤Mt.

Property (i) is a technical condition which guarantees that the relevant ex-
pectations and conditional expectations are well defined. Property (ii) means
that the state of a martingale at time t can be determined by the information
(X0, X1, . . . , Xt) up to time t. Property (iii) is the essential martingale property,
and says that the best predictor ofMt+1 for an observer who knows information
(X0, X1, . . . , Xt) equals Mt. In this sense the martingale property is natural for
publicly traded assets in efficient markets: the expected tomorrow’s value of
an asset Mt+1 based on available market data (X0, . . . , Xt) up to time t is the
present value Mt.
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Figure 11.1: Three paths of a symmetric random walk.

Example 11.7 (Random walk). Let St = S0 +X1 + · · ·+Xt, where E|S0| <∞
and X1, X2, . . . are identically distributed, and independent of each other and
the initial state S0, with mean m. Then

E|St| ≤ E|S0|+ tE|X1| < ∞

and St ∈ σ(S0, X1, . . . , Xt) for all t ≥ 0. Moreover,

E(St+1 |S0, X1, . . . , Xt) = E(St +Xt+1 |S0, X1, . . . , Xt)

= E(St |S0, X1, . . . , Xt) + E(Xt+1 |S0, X1, . . . , Xt)

= St + E(Xt+1)

= St +m.

From this we see that the random walk (St) with respect to (S0, X1, X2, . . . ) is
supermartingale, when m < 0,

martingale, when m = 0,

submartingale, when m > 0.

In all cases, the centered random walk t 7→ St − mt a martingale (exercise).
Three simulated paths of a symmetric random walk started at S0 = 5 with
Xt being uniformly distributed in {−1,+1} are plotted in Figure 11.1 using the
R code below.

# Simulate three paths of a symmetric random walk
s0 <- 5
T <- 1000
t <- 0:T
S <- matrix(0, 3, T+1)
for (omega in 1:3) {

X <- sample(c(-1,+1), T, replace=TRUE)
S[omega,] <- s0 + c(0,cumsum(X))
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}

# Plot the paths
cols <- c("blue", "red", "green")
plot(NULL, xlim=c(0,T), ylim=c(-50,50), xaxt="n", yaxt="n", xlab="", ylab="")
axis(side=1,at=seq(0,T,by=100)); axis(side=2,at=seq(-50,50,by=10));
for (omega in 1:3) {

lines(t, S[omega,], col=cols[omega])
}

�

Example 11.8 (Prediction martingale). If Z is an integrable random number
and (X0, X1, . . . ) some random sequence, then the best predictor of Z based on
information up to time t equals

Mt = E(Z |X0, . . . , Xt).

The unbiasedness of conditional expectation implies E|Mt| ≤ E|Z| < ∞. The
definition of conditional expectation implies that Mt ∈ σ(X0, . . . , Xt). Condi-
tional unbiasedness (Theorem 11.6) in turn implies that

E(Mt+1 |X0:t) = E(E(Z |X0:t+1) |X0:t) = E(Z |X0:t) = Mt.

Therefore (M0,M1, . . . ) is a martingale. This process is called the prediction
martingale (ennustusmartingaali) of Z.

As a concrete example, consider the prediction martingale of a random num-
ber Z =st Unif(0, 1) with respect to information sequence Xt = b2tZc, so that

X1 =

{
0, 0 < Z < 1

2
,

1, 1
2
< Z < 1,

X2 =


0, 0 < Z < 1

4
,

1, 1
4
< Z < 1

2
,

2, 1
2
< Z < 3

4
,

3, 3
4
< Z < 1,

and so on. Then by applying the fact that a uniformly distribution conditioned
on some interval (a, b) is uniform on (a, b), one can verify that the prediction
martingale at time t equals

Mt =
1

2

(
Xt

2t
+
Xt + 1

2t

)
.

Three simulated trajectories of (Mt) are plotted in the figure below, using the
R code below.

# Simulate three paths of a prediction martingale
t <- 0:10
M <- matrix(0, 3, 11)
for (omega in 1:3) {

Z <- runif(1)
X <- floor(2^t*Z)
M[omega,] <- (X+1/2)/2^t

}
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Figure 11.2: Three paths of a prediction martingale.

# Plot the paths
cols <- c("blue", "red", "green")
plot(NULL, xlim=c(0,10), ylim=c(0,1), xaxt="n", yaxt="n", xlab="", ylab="")
axis(side=1,at=t); axis(side=2,at=seq(0,1,by=1/4));
for (omega in 1:3) {

lines(t, M[omega,], col=cols[omega])
points(t,M[omega,], col=cols[omega])

}

�

11.3 Properties of martingales
It is common to call (Mt) a martingale without mentioning the information
process in the background. In this case it is meant that (Mt) is a martingale
with respect to itself. The following result describes the role of the information
process in the definition of a martingale.

Theorem 11.9. If (M0,M1, . . . ) is a martingale with respect to (X0, X1, . . . ),
then it is a martingale also with respect to itself.

Proof. Under the assumption of the theorem, it is clear that E|Mt| < ∞
for all t. Moreover, trivially Mt ∈ σ(M0, . . . ,Mt). Now by denoting M0:t =
(M0, . . . ,Mt) and X0:t = (X0, . . . , Xt), we see by applying conditional unbi-
asedness (Theorem 11.6) that

E(Mt+1 |M0:t) = E(E(Mt+1 |X0:t,M0:t) |M0:t).

Because M0:t ∈ σ(X0:t), it follows by removing redundant information (Theo-
rem 11.6) and applying the martingale property that

E(Mt+1 |X0:t,M0:t) = E(Mt+1 |X0:t) = Mt.
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By combining the above two formulas we find that

E(Mt+1 |M0:t) = E(Mt |M0:t) = Mt.

The following result characterizes how the expectation of a martingales
evolve over time.

Theorem 11.10. The map t 7→ E(Mt) is1
increasing, when (Mt) is a submartingale,
constant, when (Mt) is a martingale,
decreasing, when (Mt) is a supermartingale.

Proof. If (Mt) is a submartingale with respect to (Xt), then

E(Mt+1|X0, . . . , Xt) ≥ Mt.

By the unbiasedness and monotonicity of conditional expectations we see that

E(Mt+1) = E(E(Mt+1 |X0, . . . , Xt)) ≥ E(Mt).

The cases for martingales and supermartingales are obtained analogously.

Although martingales remain constant in expectation by Theorem 11.10, the
statistical behavior of a martingale may nevertheless change significantly.
Example 11.11 (Random walk). In Example 11.7, the random walk

St = S0 +X1 + · · ·Xt

is a martingale when m = E(X1) = 0. The variance of this random walk equals

Var(St) = Var(S0) + σ2t,

where σ2 = Var(X1). When σ2 > 0, it follows that the random variability of
St grows to infinity as t → ∞. This increasing variability is also visible in the
simulated paths in Figure 11.1. �

11.4 Long-term behavior of martingales
The long-term behavior of martingales is summarized by the following two im-
portant results. Their proofs [Wil91, 11.7,14.1] require deeper probability the-
oretic background, and are here omitted.

1In these lecture notes a function is called increasing, when s ≤ t =⇒ f(s) ≤ f(t) and
strictly increasing, when s < t =⇒ f(s) < f(t).
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Theorem 11.12. Every nonnegative martingale (Mt) converges according to

lim
t→∞

Mt = M∞

with probability one, where the limitM∞ is a finite nonnegative random number.

Martingales which may take on positive and negative values may not con-
verge in the long run. The random walk in Example 11.11 cannot converge
because its variance grows to infinity. Bounded martingales will nevertheless
converge. A random number X is called bounded if there exists a constant c
such that P(|X| ≤ c) = 1. A stochastic process (Xt) is called bounded if there
exists a constant c such that P(|Xt| ≤ c for all t) = 1.

Theorem 11.13. Every bounded martingale (Mt) converges according to

lim
t→∞

Mt = M∞

with probability one, where the limit M∞ is a bounded random number.

The nature of convergence in the above theorems is stronger than the dis-
tributional convergence which have seen in the context of Markov chains. Here
every path of the martingale converges to a limit (as in Figure 11.2), whereas
the paths of irreducible Markov chains keep on visiting all states infinitely of-
ten and thus never converge. The pathwise convergence with probability one
implies that Mt →M∞ in distribution, but not vice versa in general.

Theorem 11.13 can also be generalized to martingales which are bounded in
a weaker sense, namely to martingales which are uniformly integrable according
to supt E(|Mt|1(|Mt| > K)) → 0 as K → ∞. It can also be shown that every
uniformly integrable martingale can be represented as a prediction martingale
of the limiting random variable M∞ (recall Example 11.8).

11.4.1 Martingales and Markov chains

Let (X0, X1, . . . ) be a discrete-time Markov chain with transition matrix P on
a countable state space S. Let f : S → R be some function, modeling our
observation of the Markov chain. Then it is natural to ask when Mt = f(Xt) is
a martingale.

The above question is natural to set in a slightly general context where the
evaluation function ft : S → R is allowed to also depend on the time parameter.
Hence we will study a random process Mt = ft(Xt). When we condition on the
event Xt = x, the expected value of of Mt+1 = ft+1(Xt+1) is obtained from the
formula

E(Mt+1 |Xt = x) =
∑
y

P(Xt+1 = y|Xt = x)ft+1(y) =
∑
y

P (x, y)ft+1(y).
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When the map x 7→
∑

y P (x, y)ft+1(y) is interpreted as a matrix product of a
square matrix P and column vector Pft+1, the above result can be written as

E(Mt+1 |Xt = x) = Pft+1(x).

By the Markov property, the above expectation does not depend on the past
states of the chain, so that

E(Mt+1 |X0, . . . , Xt) = E(Mt+1 |Xt) = Pft+1(Xt).

The computations lead us to the following theorem. Note that the equalities and
inequalities in the theorem concerning column vectors are considered entrywise,
so that for example Pft+1 = ft means that

Pft+1(x) = ft(x) for all x ∈ S.

Theorem 11.14. Assume that
∑

y P (x, y)|ft(y)| < ∞ for all x ∈ S and all t.
Then the random process Mt = ft(Xt) with respect to (Xt) is a

supermartingale, if Pft+1 ≤ ft,

martingale, if Pft+1 = ft,

submartingale, if Pft+1 ≥ ft.

Example 11.15 (Gambling with unit bets). A casino offers a game where every
round produces one euro win (Xt = +1) with probability p, and one euro loss
(Xt = −1) with probability q = 1 − p, independently of other rounds. The
wealth of a gambler after t rounds equals

St = S0 +X1 + · · ·+Xt,

where S0 = 100 is the gambler’s initial wealth. A discounted value of the
gambler’s wealth can be expressed as Mt = rSt for some discount factor r > 0.
Is (Mt) a martingale?

The wealth process (S0, S1, . . . ) is a discrete-time Markov chain on Z, with
transition matrix P such that P (x, x+ 1) = p and P (x, x−1) = q for all x ∈ Z.
For the function f(x) = rx considered as a column vector, we have

Pf(x) =
∞∑

y=−∞

P (x, y)ry = prx+1 + qrx−1.

When r = q/p, it hence follows that Pf(x) = f(x) for all x, and Theorem 11.14
implies that (q/p)St is a martingale. This is called de Moivre’s martingale2.
(Note: Also the centered random walk St − (p− q)t is a martingale, by Exam-
ple 11.7). �

2Named after French mathematician Abraham de Moivre (1667–1754) who applied this
process to solve a gambler’s ruin problem in his classic book The Doctrine of Chances (1718).
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Example 11.16 (Normalised branching process). Let (X0, X1, . . . ) be a branch-
ing process with offspring distribution p = (p(0), p(1), . . . ) having mean m =∑∞

x=0 xp(x) <∞. Is the normalised process Mt = r−tXt a martingale for some
constant r > 0?

The normalised process can be represented as Mt = ft(Xt), where ft(x) =
r−tx. According to Theorem 6.2, the conditional expectation satisfies

Ex(X1) = E(X1 |X0 = x) = mx,

so that

Pft+1(x) = Ex(ft+1(X1)) = Ex(r−t−1X1) = r−t−1mx = (m/r)ft(x).

By choosing r = m we therefore have Pft+1(x) = ft(x) for all x ∈ S and t ≥ 0,
so that by Theorem 11.14 the process Mt = m−tXt is a martingale with respect
to (X0, X1, . . . ). Because (Mt) is a nonnegative martingale, Theorem 11.12
implies that for some finite random number M∞,

M∞ = lim
t→∞

m−tXt.

Hence we may express the population size at generation t approximately as

Xt ≈ M∞m
t.

This represents exponential growth with a random constant factor M∞. The
event that M∞ = 0 corresponds to the case where the population becomes
extinct, whereas on the event M∞ > 0 (which occurs with positive probability
when m > 1) the population approaches infinity at an exponential rate. �

112



Chapter 12

Stopped martingales and optional
times

In the context of gambling, a martingale (martingaali) is a betting strategy where
the bet is doubled after every losing round. In this section we learn to analyze
various betting strategies using martingales and random optional times.

12.1 Gambling with unit bets
The cumulative net profit from t rounds can be written as

Mt =
t∑

s=1

Xs (M0 = 0),

whereXs is the profit from round s with meanm = E(Xs). When the profits per
rounds are independent and identically distributed random integers, it follows
that (Mt) is a random walk on Z. According to Example 11.7, the process (Mt)
is with respect to (M0, X1, X2, . . . )

supermartingale, when m ≤ 0,

martingale, when m = 0,

submartingale, when m ≥ 0.

Example 12.1. In a typical casino the game of roulette with a unit bet on red
produces

Xs =

{
+1 with probability 18/37,

−1 with probability 19/37,
m = −1/37,

and a unit bet on a selected number produces

Xs =

{
+31 with probability 1/37,

−1 with probability 36/37,
m = −5/37.
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In both games the expected return per unit bet is negative, so the corresponding
unit return processes are supermartingales. �

According to Theorem 11.10, the expected net profit t 7→ Mt in an unfa-
vorable game (supermartingale) is decreasing, and in a fair game (martingale)
constant. Hence an unfavorable game does not produce profits with unit bets.
The it is natural to ask whether a positive profit can be made by a suitable
adaptive betting strategy.

12.2 Doubling strategy
In a doubling strategy the bet is doubled after every losing round. This is
continued until either the player hits a selected target value or the player runs
out of money. Consider a game where you win or lose one euro at every round.
Table 12.1 describes the evolution of net profit for a player using the doubling
strategy in a simulated scenario where the the first four rounds are losing rounds
and the fifth round is a winning round. The initial bet is one euro.

t 1 2 3 4 5

Bet in round t 1 2 4 8 16
Outcome of round t Loss Loss Loss Loss Win
Profit of round t -1 -2 -4 -8 +16
Net profit from t rounds -1 -3 -7 -15 +1

Table 12.1: Evolution of net profit in a doubling strategy.

In the above scenario, the net profit becomes +1 after the first winning
round. This observation holds indeed in general. Namely, in a scenario with
t losing rounds before a winning round, the cumulative losses from the first t
rounds are 1 + 2 + · · ·+ 2t−1 euros, and the amount won round t+ 1 equals 2t

euros. Hence the wealth of a player, starting with W0 euros, after t+ 1 rounds
equals

Wt+1 = W0 − (1 + 2 + · · ·+ 2t−1) + 2t = W0 −
2t − 1

2− 1
+ 2t = W0 + 1.

Hence a player following the doubling strategy surely ends up with net profit
of one euro after the first winning round. In this analysis no assumptions were
made about probabilities of winning. The only essential requirements is that a
winning round will eventually happen. According to Theorem 12.2 below, it is
sufficient to assume that the outcomes of the rounds are independent, and the
probability of winning is bounded away from zero.

Theorem 12.2. Let X0, X1, . . . be independent {0, 1}-valued random variables
such that P(Xt = 1) ≥ ε > 0 for all t ≥ 0. Then

P(Xt = 1 for some t ≥ 0) = 1.
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Proof. Let T = min{t ≥ 0 : Xt = 1} ∈ [0,∞] first hitting time of (Xt) into
state 1. Then

P(T > t) = P(X0 = 0, . . . , Xt = 0)

= P(X0 = 0) · · ·P(Xt = 0)

≤ (1− ε)t+1.

When ε > 0, it follows by the monotone continuity of probability measures that

P(T =∞) = P(∩∞t=0{T > t}) = lim
t→∞

P(T > t) ≤ lim
t→∞

(1− ε)t+1 = 0.

Hence
P(Xt = 1 for some t ≥ 0) = P(T <∞) = 1.

If we denote the time index of the first winning round by a random variable
T , then under the above assumptions, T <∞ with probability one. Moreover,
on this random instant we haveWT = W0+1 with probability one. This is what
happens regardless of how small the probability of winning is. Hence it appears
the doubling strategy provides a sure way to make profit in an arbitrary game.
Is this really the case? We will consider this in more detailed in what follows.

12.3 Adaptive betting
If we bet Hs euros on round s and the profit per unit bet is Xs euros, the the
wealth of a player after round t equals

Wt = W0 +
t∑

s=1

HsXs.

In analyzing general betting strategies we need to keep in mind that the when
choosing the bet amount for round t, the player only knows the realizations of
random variables W0, X1, . . . , Xt−1. Hence the player chooses the bet amount
for round t as a deterministic function of (W0, X1, . . . , Xt−1), and it follows

Ht ∈ σ(W0, X1, . . . , Xt−1), t ≥ 1.

In this case the sequence (H1, H2, . . . ) is called previsible (ennakoitava) with
respect to the information sequence (W0, X1, X2, . . . ). The unit yield process
(yksikkötuottoprosessi) of the game is defined by

Mt =
t∑

s=1

Xs, t = 0, 1, . . .
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Because Xs = Ms −Ms−1, we can represent the wealth process corresponding
to a general betting strategy (H1, H2, . . . ) as

Wt = W0 + (H ·M)t,

where

(H ·M)t =
t∑

s=1

Hs(Ms −Ms−1), t = 0, 1, 2, . . . , (12.1)

is the integral process (integraaliprosessi) of the sequence (H1, H2, . . . ) against the
unit yield process (M0,M1, . . . ). A stock market interpretation of the above
formula is obtained by considering Mt as the price of a stock in the end of
trading day t, and Ht as the amount of stock in the portfolio during day t.1

Theorem 12.3. Let (H1, H2, . . . ) be a previsible sequence of integrable random
numbers with respect to (X0, X1, . . . ) such that (H ·M)t is integrable for all t.

(i) If (Mt) is a martingale, then (H ·M)t is a martingale.

(ii) If (Mt) is a submartingale and Ht ≥ 0 for all t, then (H ·M)t is a sub-
martingale.

(iii) If (Mt) is a supermartingale and Ht ≥ 0 for all t, then (H · M)t is a
supermartingale.

Before proving Theorem 12.3 we note that for the integrability condition
(H ·M)t it suffices to assume that the random numbers of either (M0,M1, . . . )
or (H1, H2, . . . ) are bounded2. If for example |Hs| ≤ cs for s, the by applying
the triangle inequality and (12.1) we see that

E|(H ·M)t| ≤
t∑

s=1

cs(E|Ms|+ E|Ms−1|) <∞,

because the random numbers of every martingale are integrable by definition.
A corresponding reasoning also guarantees the integrability E|(H ·M)t| <∞ in
the case where the random numbers M0,M1, . . . are bounded and H1, H2, . . .
integrable.

Proof of Theorem 12.3. (i) Denote the integral process by Wt = (H ·M)t and
let us also use the shorthand notation Xs:t = (Xs, . . . , Xt). By the integrability
assumption E|Wt| < ∞ for all t ≥ 0. Because H1:t is determined by X0:(t−1)
and M0:t is determined by X0:t, we may conclude using (12.1) that

Wt ∈ σ(X0, . . . , Xt). (12.2)
1In continuous-time investment models the integral process is defined as a stochastic Itō-

integral (H ·M)t =
∫ t

0
HsdMs. This setting is discussed for example on the course MS-E1601

Brownian motion and stochastic analysis.
2A random number Z is bounded (rajoitettu) if P(|Z| ≤ c) = 1 for some constant c.
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Because (M0,M1, . . . ) is a martingale,

E(Mt+1 |X0:t) = Mt = E(Mt |X0:t),

so that the by the linearity of conditional expectations,

E(Mt+1 −Mt |X0:t) = 0. (12.3)

The definition of the integral process in turn implies that

Wt+1 −Wt = Ht+1(Mt+1 −Mt).

Previsibility implies that Ht+1 ∈ σ(X0:t), so by pulling out a known factor
(Theorem 11.3) and applying (12.3),

E(Wt+1 −Wt |X0:t) = E(Ht+1(Mt+1 −Mt) |X0:t)

= Ht+1 E(Mt+1 −Mt |X0:t)

= 0.

(12.4)

By linearity of conditional expectations and (12.2), this implies that

E(Wt+1 |X0:t) = E(Wt |X0:t) + E(Wt+1 −Wt |X0:t)

= E(Wt |X0:t)

= Wt.

Hence (W0,W1, . . . ) is a martingale with respect to (X0, X1, . . . ).
(ii) When (M0,M1, . . . ) is a submartingale, we may verify in a similar way

that E|Wt| <∞ and Wt ∈ σ(X0, . . . , Xt). Analogously we may also prove that
E(Wt+1 |X0:t) ≤ Wt. In this case ’=’ gets replaced with ’≥’ in (12.3) and in
the last equality of (12.4). Note that in justifying

E(Mt+1 −Mt |X0:t) ≥ 0 =⇒ Ht E(Mt+1 −Mt |X0:t) ≥ 0

we need to apply the extra assumption Ht ≥ 0.
(iii) When (M0,M1, . . . ) is a supermartingale, the proof is analogous to the

proof (ii).

Consider a game where the unit yield process (Mt) is a supermartingale with
respect to the available information (Xt). Assume also that the terms of the
unit yield process are bounded random variables. The by Theorem 12.3 we see
that the gambler’s wealth process

Wt = W0 + (H ·M)t, t ≥ 0,

is a supermartingale for every previsible betting strategy with Ht ≥ 0 and
E(Ht) < ∞. Therefore the gambler’s wealth t 7→ Wt is nonincreasing by ex-
pectation (Theorem 11.10). We may hence conclude that in such unfavorable
games there is no way to make profit using previsible betting strategies. In this
context the condition Ht ≥ 0 forbids the gambler to act as a casino.
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Example 12.4 (Doubling strategy). Let us continue analyzing the doubling
strategy in Example 12.2. Denote the unit yield of round t by Xt ∈ {−1,+1},
and denote the index of the first winning round by

T = min{t ≥ 1 : Xt = +1}.

Assume that X1, X2, . . . are mutually independent with P(Xt = +1) = p and
P(Xt = −1) = q, where 0 < p < q. Then the unit yield process Mt =

∑t
s=1Xs

is a supermartingale with respect to information sequence (0, X1, X2, . . . ) and
saw earlier (Theorem 12.2) that T is finite with probability one.

The betting strategy (H1, H2, . . . ) corresponding to the doubling strategy
can be recursively expressed as H1 = 1 and Ht+1 = 2Ht1(t < T ) for all t ≥ 0.
This implies that

Ht = 2t−1 1(t ≤ T ), t = 0, 1, . . .

Because T is random, also the numbers Ht are random variables. By writing
the bet of round t as

Ht =

{
2t−1, if Xs = −1 for all s = 0, . . . , t− 1,

0, else,

we see that Ht ∈ σ(0, X1, . . . , Xt−1) for all t ≥ 1, so that the betting process
is previsible with respect to information sequence (0, X1, X2, . . . ). Further, be-
cause Ht is bounded by 0 ≤ Ht ≤ 2t−1, we may conclude using Theorem 12.3
that the gambler’s wealth process

Wt = W0 + (H ·M)t, t ≥ 0,

is a supermartingale, and hence decreasing by expectation (Theorem 11.10).
Hence expected net profit is negative by expectation at any deterministic time
instant t ≥ 1. �

The result of Example 12.4 is in apparent conflict with the analysis in Sec-
tion 12.2, where we saw that using doubling strategy can be used to make sure
profit. The conflict can be explained by noting that the expected net profit
for gambling with the doubling strategy is negative at every deterministic time
instant t. The huge losses made in those games where the first winning round
occurs after t cause the expected net profit at time t to be negative.

12.4 Optional times
In stock markets a natural investment strategy is to buy a stock and sell it at
some random time instant T when certain conditions are met, for example when
the stock price reaches a certain target level. A betting process (H1, H2, . . . )
corresponding to this strategy is given by

Ht =

{
1, t ≤ T,

0, else.

118



Assuming that the investor does have crystal ball helping to see the future,
the decision whether or not to sell the stock at time t should be based on the
observed values of available information X0, . . . , Xt up to time t. Mathemati-
cally this requirement can be formulated using optional times. A random time
instant T ∈ Z+ ∪ {∞} is called an optional time (valintahetki) with respect to
information sequence (X0, X1, . . . ) if

1(T = t) ∈ σ(X0, . . . , Xt) for all t ≥ 0.

This means that we can decide whether or not T = t based on some deterministic
function of (X0, . . . , Xt). The following result underlines the connection between
optional times and previsible betting strategies.

Theorem 12.5. A random process Ht = 1(t ≤ T ) is previsible if and only if T
is an optional time.

Proof. Assume first that the sequence (H1, H2, . . . ) defined by Ht = 1(t ≤ T ) is
previsible with respect to (X0, X1, . . . ). Then both Ht and Ht+1 are determined
by (X0, . . . , Xt), so that by the equation

1(T = t) = 1(t ≤ T )− 1(t ≤ T − 1) = Ht −Ht+1

it follows that also 1(T = t) is determined by (X0, . . . , Xt). Hence T is an
optional time with respect to (X0, X1, . . . ).

Assume next that T is an optional time with respect to (X0, X1, . . . ). Then
the event {T = s} is determined by (X0, . . . , Xs) for all s ≥ 0, and the equality

Ht = 1− 1(T ≤ t− 1) = 1−
t−1∑
s=0

1(T = s)

shows that the value of Ht can be determined as a deterministic function of
X0, . . . , Xt−1. Hence (H1, H2, . . . ) is previsible with respect to (X0, X1, . . . ).

Example 12.6 (Optional and nonoptional times). Optional times with respect
to sequence (X0, X1, . . . ) are for example

• the time when (Xt) first hits a set A,

• the time when (Xt) hits A for the fourth time,

with the usual convention that the above random times are infinite if the event
under consideration never occurs. The following random times are in general
not optional:

• the time when (Xt) reaches its all-time maximum value,

• the time when (Xt) visits A for the last time.

�
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12.5 Stopped martingales
A random process (Mt)t≥0 stopped at time instant T ∈ [0,∞] is a random
process (Mt∧T )t≥0, where we use the shorthand notation t ∧ T = min{t, T}.
Figure 12.1 displays a path of a stochastic process (blue) and corresponding
stopped process (red).

0 20 40 60 80 100

−
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0
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15

●

Figure 12.1: A simulated trajectory of a stochastic process stopped (red) at
a random time instant T = min{t ≥ 0 : Mt = 5}, and the original stochastic
process (blue).

Theorem 12.7. Any (sub/super)martingale stopped at an optional time is a
(sub/super)martingale.

Proof. Let (Mt) be a submartingale and T an optional time with respect to
(Xt). The stopped process Mt∧T can be written as

Mt∧T = M0 +
t∧T∑
s=1

(Ms −Ms−1)

= M0 +
t∑

s=1

Hs(Ms −Ms−1) = M0 + (H ·M)t,

where Ht = 1(t ≤ T ). According to Theorem 12.5 the sequence (H1, H2, . . . ) is
previsible. Moreover, because 0 ≤ Ht ≤ 1 it follows that (H ·M)t is an inte-
grable random number for all t. Theorem 12.3 then implies that (H ·M)t is
a submartingale. Clearly, the constant process t 7→ M0 is also a submartin-
gale. Then the linearity of conditional expectations implies that the sum of
any submartingales is a submartingale. Hence the process t 7→M0 +Mt∧T is a
submartingale.

Precisely the same argument works for proving the claims for martingales
and supermartingales.
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12.6 Optional stopping theorem
We will next analyze the value of a martingale MT at a random time instant
T . To be able to speak of this value, we must assume that T is finite with
probability one. The following result is commonly known as (Doob’s optional
stopping theorem) after American mathematician Joseph Doob (1910–2004).

Theorem 12.8. Let T be a finite optional time and let (M0,M1, . . . ) be a
martingale. Assume further that there exists an integrable random number Z
such that

|Mt∧T | ≤ Z for all t ≥ 0. (12.5)

Then E(MT ) = E(M0).

The technical integrability condition of Theorem (12.5) is valid for example
in the case where the optional time T or the stopped process t 7→ |Mt∧T | is
bounded from above with a deterministic constant.

Proof. When (Mt) is a martingale, then by Theorem 12.7 we know that Mt∧T
is a martingale, so that by Theorem 11.10 it follows that t 7→Mt∧T is constant
by expectation. Hence

E(Mt∧T ) = E(M0∧T ) = E(M0)

for all t ≥ 0. On the other hand, the fact that T is finite with probability one
guarantees that limt→∞Mt∧T = MT with probability one. By the dominated
continuity of expectations it follows that

E(MT ) = E
(

lim
t→∞

Mt∧T

)
= lim

t→∞
E(Mt∧T ) = E(M0).

The following example shows how Doob’s optional stopping theorem can be
applied to analyze hitting probabilities of random processes.
Example 12.9 (Random walk). Let (S0, S1, . . . ) be a symmetric random walk
on Z, which moves one step left and one step right with equal probabilities 1/2.
Assume that the process is started at x such that a < x < b for some integers
a, b. What is the probability that the random walk hits b before a?

According to Example 11.7 we know that (St) is a martingale. Let

T = min{t ≥ 0 : St ∈ {a, b}}

be the passage time of the process into {a, b}. Then T is an optional time with
respect to (S0, S1, . . . ) and it is known that T is finite with probability one.
Because a ≤ St∧T ≤ b, it follows by Theorem 12.8 that

E(ST ) = E(S0) = x.
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On the other hand, at the random time instant T the random walk surely takes
on value a or b, so that

E(ST ) = a(1− P(ST = b)) + bP(ST = b).

By combining these observations we conclude that

x = a(1− P(ST = b)) + bP(ST = b),

from which we can solve

P(ST = b) =
x− a
b− a

.

We have derived this formula earlier using analysis of Markov chains. The anal-
ysis presented here is valid also for stochastic processes with more complicated
dependence structures, as long as the martingale property holds. �

Example 12.10 (Doubling strategy). Let us continue the analysis in Exam-
ple 12.4. Here the time index of the first winning round

T = min{t ≥ 1 : Xt = +1}

is an optional time with respect to (0, X1, X2, . . . ). We also saw that the net
profit process Wt − W0 = (H · M)t corresponding to the doubling strategy
Ht = 2t−11(t ≤ T ) is a supermartingale whenever the probability of winning is
at most 1/2, and hence decreasing in expectation. Nevertheless we have seen
that WT −W0 = 1 with probability one. In this setting the statement of Doob’s
optional stopping theorem does not hold because E(WT ) = E(W0)+1 > E(W0).
The reason why the theorem is not applicable is that although T is finite, it
is not bounded by any deterministic constant, and more seriously, the stopped
process |Wt∧T | is not bounded by any integrable random number.

To understand what this nonintegrability means in practice, let us investi-
gate the expected net loss just before the winning round. The wealth just before
winning equals

WT−1 = W0 −
T−1∑
s=1

2s−1 = W0 + 1− 2T−1,

and the probability of {T = t} for t ≥ 1 equals

P(T = t) = P(X1 = −1, . . . , Xt−1 = −1, Xt = +1)

= P(X1 = −1) · · ·P(Xt−1 = −1)P(Xt = +1)

= (1− p)t−1p.

In an unfavorable (0 < p ≤ 1/2) game we hence see that

E(WT−1) = W0 + 1− E(2T−1) = W0 + 1−
∞∑
t=1

2t−1(1− p)t−1p

= W0 + 1− p
∞∑
t=0

(2(1− p))t = −∞.
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In an unfavorable game (supermartingale), a player following the doubling strat-
egy is hence expected to make infinitely large loss before the winning round. �
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Appendix A

Suomi–English dictionary

suomi englanti

alimartingaali submartingale
alkio element
alkujakauma initial distribuition
Bernoulli-jakauma Bernoulli distribution
binomijakauma binomial distribution
binomikerroin binomial coefficient
diskreettiaikainen discrete-time
diskreetti jakauma discrete distribution
diskreetti satunnaismuuttuja discrete random variable
ehdollinen jakauma conditional distribution
ehdollinen odotusarvo conditional expectation
ehdollinen tiheysfunktio conditional density function
ehdollinen todennäköisyys conditional probability
eksponenttijakauma exponential distribution
elinaika lifetime
ergodinen ergodic
ergodisuus ergodicity
esiintyvyys occupancy, frequency
esiintyvyysmatriisi occupancy matrix
haarautumisprosessi branching process
harha bias
harhaton unbiased
harvennettu thinned
hetkittäinen jakauma transient/time-dependent distribution
hyppytodennäköisyys jump probability
hyppyvauhti jump rate
indikaattori indicator
indikaattorifunktio indicator function
jakauma distribution
jakso period
jaksollinen periodic
jaksoton aperiodic
jatkuva-aikainen continuous-time
jatkuva jakauma continuous distribution
joukko set, space
järjestetty lista ordered list
järjestystunnusluku order statistic
järjestämätön joukko unordered set
kertoma factorial
kertymäfunktio cumulative distribution function
keskeinen raja-arvolause central limit theorem
keskiarvo average, mean
keskihajonta standard deviation
keskineliövirhe mean squared error
keskivirtaus mean drift
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kokonaisvaihteluetäisyys total variation distance
kokovinoutettu size-biased
komplementti complement
konvoluutio convolution
korrelaatio correlation
korreloimaton uncorrelated
korreloitu correlated
kovarianssi covariance
kulkuaika passage time, first passage time, transition time
kustannuskertymä cumulative cost
kustannusvauhti cost rate
kvartiili quartile
kääntyvä reversible
laskurimitta counting measure
laskuriprosessi counting process
leikkaus intersection
lineaarinen riippuvuus linear dependence
lisääntymisjakauma offspring distribution
Markov-ketju Markov chain
Markov-ominaisuus Markov property
Markov-prosessi Markov process
martingaali martingale
mediaani median
mitallinen measurable
momentti moment
moniulotteinen multidimensional, multivariate
muuttuja variable
normaaliapproksimaatio normal approximation
normaalijakauma normal distribution, Gaussian distribution
normitettu normalized
normitettu normaalijakauma standard normal distribution
odotettu expected
odotusarvo expectation, mean
osajoukko subset
ositus partition
osumatodennäköisyys hitting probability
palautuva recurrent
polku (satunnaisprosessin) path (of a random process)
perusjoukko sample space
rajajakauma limiting distribution
reunajakauma marginal distribution
reunatiheysfunktio marginal density function
riippumattomuus independence
riippumattomasti sironnut independently scattered
riippuvuus dependence
satunnainen random
satunnainen pistekuvio random point pattern
satunnaisilmiö random phenomenon
satunnaisjono random sequence
satunnaiskenttä random field
satunnaiskulku random walk
satunnaisluku random number
satunnaismatriisi random matrix
satunnaismuuttuja random variable
satunnaismuuttujan muunnos transformation of a random variable
satunnaisvektori random vector
satunnaisverkko random graph
siirtymäkaavio transition diagram
siirtymämatriisi transition matrix
stokastiikka stochastics
stokastinen stochastic
stokastinen esitys stochastic representation
stokastinen prosessi stochastic process
stokastinen riippuvuus stochastic dependence
suhteellinen esiintyvyys relative frequency, relative occupancy
suhteellinen osuus relative proportion
sukupuutto extinction
supeta jakaumalta converge in distribution
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supeta stokastisesti converge in probability
suurten lukujen laki law of large numbers
syntymiskuolemisketju birth–death chain
tapahtuma event
tasaintegroituva uniformly integrable
tasajakauma uniform distribution
tasakoosteinen homogeneous
tasapainojakauma invariant/equilibrium/stationary distribution
tasapainoyhtälö balance equation
tiheysfunktio (diskreetin jakauman) density function, probability mass function
tiheysfunktio (jatkuvan jakauman) density function, probability density function
tila (prosessin) state (of a process)
tilajoukko (prosessin) state space (of a process)
todennäköinen probable, likely
todennäköisyys probability
todennäköisyydet generoiva funktio probability generating function
todennäköisyysjakauma probability distribution
todennäköisyysmitta probability measure
todennäköisyysteoria probability theory
toteuma realization, outcome
tulojoukko product set, product space
uusiutumisprosessi renewal process
valinnaisen pysäyttämisen lause optional stopping theorem
valintahetki optional time, stopping time
varianssi variance
vauhti rate
väistyvä transient
väliaika (uusiutumisprosessin) interevent time
yhdiste union
yhteisjakauma joint distribution
yhtenäinen ketju irreducible chain
yhteysluokka communicating class
yksiulotteinen one-dimensional, univariate
ylimartingaali supermartingale
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