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networks with uncertainty. The goal of this thesis is to develop new methods
for analyzing performance and stability of stochastic networks, helping to
better understand and control uncertainty in complex distributed systems.

The thesis considers three instances of stochastic networks, each repre-
senting a specific challenge for analytical modeling. The first case studies
the impact of incomplete information to a queueing network with distributed
admission control. Stability conditions for various admission policies are de-
rived, together with a numerical algorithm for performance evaluation. In
the second case, stochastic comparison is used to derive performance bounds
for multiclass loss networks with overflow routing. The third model is a spa-
tial random field generated by a large number of noninteracting sources, for
which scaling and renormalization are used to show how the level of random-
ness of the individual sources may critically affect the macroscopic statistical
properties of the field.

The results of the thesis illustrate the feasibility of stochastic comparison
and stochastic analysis in deriving approximations and performance bounds
for complex physical networks with uncertainty. Approximations and per-
formance bounds based on exact mathematical methods have the advantage
that they explicitly state the type of circumstances required for the accuracy
of the estimates. The resulting analytical formulas can sometimes reveal in-
teresting properties that are not easily detected using numerical simulation.
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1 Introduction

Stochastic networks are mathematical models for traffic flows in networks
with uncertainty, where uncertainty is modeled using random variables. The
advantage of using random variables is that they allow one to quantify the
amount of uncertainty, and to analyze how uncertainty cumulates in systems
composed of independent random components. Some practical problems that
can be studied in terms of stochastic networks include:

e How does adaptive packet dropping at the boundary routers of a packet-
switched communications network affect performance?

e In a telephone call center, what is the tradeoff between employing well-
trained call agents, capable of serving many customer types, versus
untrained agents?

e In a mobile radio network, is there a parsimonious way of describing
the spatial interference generated by the transmitting terminals?

Rather than developing a general analytical framework, this thesis finds
answers to the above type of questions by considering three concrete instances
of stochastic networks, each representing a specific challenge for analytical
modeling. The first is a queueing network with distributed admission control
for which stability conditions and a numerical algorithm for performance
evaluation are presented in Section 3. The second is a multiclass loss network
with overflow routing, for which analytical performance bounds are proved in
Section 4. The third case, treated in Section 5, considers approximations for
a spatial random field generated by a large number of noninteracting sources.

The above type of networks are hard to analyze because of the nonlinear
blocking and feedback effects in the network interactions; exact mathemati-
cal model descriptions are typically not available, and rarely useful in helping
to understand the model dynamics. To overcome these difficulties, two types
of methodologies are applied and developed in this thesis: stochastic com-
parison and stochastic scaling. The idea of stochastic comparison is to find
an analytically or computationally simpler reference model and prove that it
performs better or worse than the original model. Upper and lower bounds
for the performance of the original model can then be calculated using the ref-
erence model. The same idea is also used for deriving stability conditions, by
proving that the stability of a model implies the stability of another, analyti-
cally tractable model. Stochastic scaling here means looking at renormalized
limit distributions of models composed of independent random objects, as the
number of objects grows to infinity. This type of limits are used to smooth
out unnecessarily complex model details and derive simple approximations
for macroscopic statistical properties of the system.

The rest of the thesis is organized as follows. Section 2 outlines various
mathematical techniques of probability theory and functional analysis that
have been developed and applied in the study of the models. Sections 3-5



summarize the results that have been obtained in the original publications [I-
IV] with a short discussion on extensions, relevance, and originality of the
results appended at the end of each section. Section 6 concludes the thesis,
and the original research articles are attached to the end.



2 Analytical methods

This section gives a walk-through of the key results in probability theory and
functional analysis that are used and developed in the thesis. Some of the
results, with a Roman numeral referring to the publication that contains the
proof, have been independently formulated and proved by me.

2.1 Stability of Markov processes

The following continuous-time analogue of Foster’s classical theorem [5] pro-
vides a sufficient condition for a discrete-space Markov process to be er-
godic, that is, irreducible and positive recurrent. If ¢(x,y) is a set of tran-
sition rates of a Markov process, denote the net drift out of state x by

q(z) =3, . a(z,y).

Theorem (Tweedie [29]). Let X be an irreducible Markov process on a
countable state space S generated by transition rates q(x,y) so that ¢(z) < oo
for all x. Assume that there exists a function V : S — R such that

> .. V() —V(z)lq(z,y) <oo forall z,

e lim, ,,, V(z) = 00, and

® SUDses\S, Dy (V(¥) — V() ¢(z,y) <O for some finite set S.
Then X s ergodic.

The above theorem is used to derive sufficient stability conditions for the
queueing network studied in Section 3. One way to study the necessity of
the conditions is to show that the stability of the original system implies
the stability of a simpler system. In proving this type of implication, the
following lemma is used. If ¢(x,y) and ¢'(z,y) are generators of Markov
processes on a countable state space S, denote

D(q,q") = {z : q(z,y) # ¢'(z,y) for some y}

and

D(q,q") = D(q,q') U{y : q(z,y) > 0 or ¢'(z,y) > 0 for some z € D(q,q')}.

Lemma [I]. Let X and X' be irreducible Markov processes on a countable
state space S generated by q(x,y) and ¢'(x,y), respectively, with ¢(z), ¢'(r) <

oo for all x. Assume that D(q,q') is finite. Then X is ergodic if and only if
X' is ergodic.



2.2 Markov reward approach

Let X be an irreducible and positive recurrent continuous-time Markov pro-
cess on a countable state space S with generator matrix (). Assume that the
entries ¢(x,y) of @ satisfy Zy;éz q(z,y) < A for all z, where A is a positive
constant independent of x. Let Y,, be a Markov chain with transition matrix
Qr =1+ A'Q, and let N be a Poisson process with rate A, independent of
the chain Y,. Then the processes X (t) and Yy(; have the same distribution
(Kallenberg [13] Proposition 12.20). Moreover, it follows from the defini-
tion of Q5 that the processes X and Y share the same invariant probability
distribution. Let r be a positive function on S, and let

V(@) = 3 Qrla),

where Q,r(z) = E, r(Y;) is the expectation of r evaluated at the j-th step of
the chain Y started at z. Then the ergodicity of X implies that for all initial
states z,
VTL
lim (=)

n—oo 1

=Er(X).

Assume that X' is another continuous-time Markov process on S with
generator (' satisfying the same regularity assumptions as X. Let ' be a
positive function on S. The following theorem, a consequence of the above
limit property, is the key result of the Markov reward approach.

Theorem (van Dijk [3]). Suppose that for all x € S and all n,

' =r)@) + > (¢(@y) —a(z,y) (V") - V'(z)) > 0.

y#T

Then
Er'(X') > Er(X).

In large complex systems, the stationary distributions of X and X' are
often impossible to evaluate numerically. The above theorem is important,
because it allows one to compare Er(X) and Er'(X') without explicitly
knowing the stationary distributions. This theorem provides a method for
proving the results of Section 4, where a numerically computable upper bound
for Er(X) is derived by finding a structurally simpler Markov process X'
whose generator satisfies the condition of the theorem with ' = r.

Analogous results for comparing Markov processes with respect to stochas-
tic integral orderings are given by Massey [24] and Whitt [30]. However, these
stronger ordering results are not directly applicable to the model studied in
Section 4, due to multidimensional blocking.



2.3 Coupling

Let X = (X;)n>0 and Y = (Y;,)n>0 be two discrete-time stochastic processes
on a state space S. Assume that there exist two S-valued stochastic processes
X and Y defined on the same probability space (€2, F,P) such that X has
the same distribution as X, and ¥ has the same distribution as Y. Then the
pair (X , }7) is called a coupling of the processes X and Y.

Finding a coupling of two processes X and Y with special path properties
sometimes allows one to make interesting conclusions on how the distribu-
tions of X and Y are related. For example, assume that there exists a
coupling (X,Y) such that r(¥,) > r(X,) almost surely for all n, where r is
positive function on S. Then it immediately follows that Er(Y,) > Er(X,)
for all n.

While making distributional conclusions using a coupling is trivial, find-
ing a coupling with desired path properties is often not, requiring a careful
analysis of the dynamics of the two processes. The key observation required
for proving the results of Section 4 is to couple two copies of the same Markov
process started at different initial states in such a way that the trajectories of
the processes remain close to each other [III, Lemma 1|. This coupling is later
combined with the Markov reward approach introduced in Section 2.3 to com-
pare the stationary performance of two stochastic networks [III, Lemma 2].

2.4 Regular variation

A probability distribution F' on R, is said to have a regularly varying tail of
exponent vy > 0, if
F(av)

vli_glo F o) =a 7 forall a>0,

where F'(v) = 1—F(v). The following results are consequences of Karamata’s
theorem [14] (see Bingham, Goldie, and Teugels [2] for a textbook exposition).

Lemma [IV]. Let F be a probability distribution on Ry with a reqularly
varying tail of exponent v > 0, and define the scaled distribution F, for
p>0by F,(v) =F(v/p). Assume that f(v) is a continuous function on Ry
such that for some 0 < p <y <g,

limsupv™?|f(v)] < oo and limsupv ?|f(v)| < occ.
v—00 v—0

Then o
f(v)E,(dv) ~ Fp(l)/ f)yw " tdy asp— 0.
0

Ry

Lemma [IV]. Let F and F, be defined as above and let f,(v) be a family of
measurable functions on R, . Assume that for some 0 < p <~ < q, either

limsup v ?F,(1)|f,(v)| =0 for all a >0,
=0 y>q

and F,(1)|f,(v)| < cw? for all p,v,



or _
limsupv™F,(1)|f,(v)| =0 for all a >0,

p—0 a<v

and F,(1)|f,(v)| < cv®  for all p,v,

Then
lim [ f,(v) F,(dv) = 0.

p—0 Ry

2.5 Maximal functions

Let C be a bounded measurable set in R? with unit volume. If ¢ is a locally
integrable function, define the averages my(z,v) by

e, v) = v / o(y) dy,
+vl/dC

and let ¢, be the maximal function of ¢ given by

6.(x) = sup v / o) d.
z+vl/d

v>0

The following result, a consequence of Hardy-Littlewood maximal function
theory [10] (see Rudin [27] for a textbook exposition), is used to find in-
tegrable upper bounds for the characteristic functional of the random field
studied in Section 5.

Lemma [IV]. Let C be a bounded measurable set in R? with unit volume.
(i) If ¢ € L', then lim, .o my(x,v) = () for almost all z.
(ii) If ¢ € L', then ¢.(z) < oo for almost all x.

(iii) If ¢ € LP for some p > 1, then ¢, € LP.



3 Queueing network with feedback admission
control

3.1 Model description

The input to the system is modeled as a Poisson process with rate A\, and
the service times of jobs in nodes 1 and 2 are assumed to be independent
exponentially distributed random variables with parameters p; and pus, re-
spectively. The state of the network is denoted by X (¢) = (Xi(t), Xa(t)),
where X;(t) is the amount of jobs in node 4 at time ¢. The admission control
scheme is based on X5, the number of jobs present in node 2. As long as X,
is smaller than or equal to a certain threshold level K, new jobs arriving to
the network are accepted; otherwise they are rejected (Figure 1).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: The admission control mechanism.

3.2 Stability analysis

The stability region of the queueing network of Figure 1 is given by the
following theorem.

Theorem [I|. The Markov process X is positive recurrent if and only if

AL = (u/p2) ) < .
Especially, when py > s, the system is stable for all A and K.

Observe that p; < po for unstable networks, so that the rate at which
work is fed into the second server is strictly less than its service capacity.
Thus, intuition suggests that only the first queue will grow to infinity. The
next theorem makes these heuristics rigorous.

Theorem [II]. In an unstable system, the process X started from an arbi-
trary initial state satisfies as t — oo,

Xi(t) = oo almost surely,
Xo(t) = Z  in distribution,

where Z is a geometrically distributed random variable with parameter py / ys.



3.3 Performance analysis

Assume from now on that the process X = (X, X5) describing the amount
of customers in the system is ergodic, and consider the censored process Y =
(Y1, Y5) constructed by sampling X at periods of time during which X, < K.
It follows that also Y is a Markov process. Denote by I the identity matrix,
and let T, and Tx be the left and right shift matrices, and let Uy and Uk
be the projection matrices onto the 0-th and the K-th coordinate in RE+!
respectively. The generator of Y can then be written in the form

By A, 0 0
Bl Al A() 0
Q: By Az Al Ao
By Az Ay A

where the matrices A,, and B, are given by
A() = )\I,
Ay = pTy — (A + pa + po) I + paU,
Ay = 1 (Tr + 1 Uk),
Apy1 = Uk, n>2,
and
By = poTr, — (A + p2) I + p2Us,
B1 = ,ul(TR —+ UK),
Boyy=m(l—q—--—¢)Uk, n>1,

and where the constants ¢, are given by

() G Gln)
Qn+1—n+1 n M1+ e U1+ o ’

Denote by e; the k-th unit (row) vector of RE*1 and let e = Y b, ex.
Then according to Neuts [26], the steady-state probabilities of the censored
process can be expressed in the matrix-geometric form

P(Y = (n,k)) = zoR" ], (n,k)€ S, (1)
where the matrix R is the unique minimal non-negative solution of
> R"A, =0, 2)
and z, is the unique positive row vector satisfying

xOZR”Bn =0 and z(/—R) ' =1. (3)

n=0



The matrix R can be numerically solved from equation (2) using the method
of successive substitutions, as described by Neuts [26]. When R is calculated,
the vector z, will be obtained from (3). The following theorem shows how
the throughput # and the mean sojourn time E(D) in the original system can

be calculated using the steady-state distribution (1) of the censored process
Y.

Theorem [II|. The steady-state throughput 8 and the steady-state mean so-
journ time E(D) of jobs accepted to the network are given in terms of the
equilibrium distribution of Y by

and

1 1
E(D) = L B(Yi¥2 = 0) + - B(Yi + Y2 + 1)

3.4 Discussion

The stability analysis presented in this section can be extended to more
general admission control policies, where the input rate to the first node is
allowed to be an arbitrary function of the number of customers in the sec-
ond node [I, Theorems 2-4]. This type of generalization allows modeling
of networks where during congestion, the input traffic is gradually thinned
by randomly rejecting a certain proportion of the incoming traffic. Assum-
ing that the generalized admission policy strictly blocks all incoming traffic
when the amount of jobs in the second node exceeds a certain maximum
threshold, then the stability region of the system can be characterized ex-
actly [I, Theorem 5]. The performance analysis presented in Section 3.3 also
extends without difficulties to this type of generalized admission policies [I1,
Remark 2.1].

Other types of queueing networks with feedback signaling have been stud-
ied earlier. In the papers of van Foreest, Mandjes, van Ommeren, and Schein-
hardt [4], Grassman and Drekic [9], Konheim and Reiser [17], and Latouche
and Neuts [21], the first server stops processing when the number of jobs at
the second station becomes too high. Kroese, Scheinhardt, and Taylor [19]
have studied a network where new jobs are rejected whenever the number of
jobs at the first station reaches a certain threshold. The queueing network
studied in this section differs from the above models in that both queues
can grow arbitrarily large, which makes stability analysis more difficult. For
networks with unlimited buffers and state-dependent service times, Bambos
and Walrand [1] have derived stability results extending to non-Markovian
systems, however ruling out the type of feedback signaling loops presented
here.






4 Loss network with overflow routing

4.1 Model description

Consider a loss network serving K classes of jobs. The network consists of
M}, monoskill servers assigned to serving jobs of class k£, and N multiskill
servers capable of serving all classes of jobs. Customers of class k arrive
according to a Poisson process of intensity A\; and require exponential service
times with mean 1/u;. Assume that the arrival processes and the service
times are independent. Arriving service requests are routed according to
an overflow policy, where a class-k job is always routed to a corresponding
monoskill server, if there is one available. If all monoskill servers for class
k are busy, the job is routed to a multiskill server. If all multiskill servers
are also busy, then the service request is rejected (Figure 2). The rejected
requests are assumed to leave the system without retrials.

class-1jobs —» —4

class-k jobs ——» —4

class-K jobps ——» —4@

Figure 2: Overflow system and repacking.

Let X, Xo be the number of class-£ jobs being served by the monoskill
and multiskill servers, respectively. Then the network state can be described
by the random vector X = (X, ) indexed by i = 1,2 and k =1,..., K. By
construction, X is a Markov process with a finite state space.

Consider the same network with slightly modified routing, where jobs
are redirected from multiskill to monoskill servers as soon as places become
vacant, and denote the corresponding Markov process by X' = (X;,). The
repacking policy guarantees that all states  with z; , < M} and 9, > 0 are
transient for X’ and thus have zero stationary probability. As a consequence
of this special feature, the stationary distribution of the process X’ = (X 1et

5 1)1, describing the net amount of class-k jobs can be expressed in product
form (see for example Kaufman [15])

P(X'=$) :H()\k/,uk)xk. (4)

P(X'=0) p !

4.2 Performance analysis

Performance is measured in terms of carried load, defined as the station-
ary mean rate of work served by the network, and owverall blocking prob-

11



ability, which is the probability that an arbitrary arriving job is rejected.
Because neither X nor its aggregated version are reversible, there are no
simple closed form expressions for the performance quantities of the original
system. Moreover, the size of the state space makes brute force numerical so-
lution of the stationary distribution of X unfeasible (for example with K = 2,
M; = My = N =9, the generator of X has over 30 million entries). On the
other hand, the above performance quantities for the system with repack-
ing are readily computed using (4). The following theorem together with its
corollaries shows how the system with repacking provides upper bounds for
the performance of the original system.

Theorem [III]. In the stationary regime, the mean net amount of jobs in the
system with repacking is greater than or equal to the corresponding quantity
i the original system.

Corollary [III]. The carried load in the system with repacking is greater
than or equal to the carried load in the original system.

Corollary [III]. When puy = p for all k, then the overall blocking probability
for the system with repacking is less than or equal to the overall blocking
probability in the original system.

4.3 Discussion

Increasing the system utilization by repacking may lead to worse performance
in terms of overall blocking probability, if the mean service times of job
classes differ significantly [III, Example 1]. However, there are numerical
simulations illustrating that the performance of the system with repacking is
close to the original system for a wide range of parameters [I1I, Sections 4.1~
4.2]. Practical relevance of the performance bounds can be criticized, because
they tell nothing about the worst-case behavior of the original system. The
derivation of computable lower bounds for the system performance remains
an interesting open problem.

Performance of loss networks is a well-studied topic in applied probability
(Kelly [16]). The computational complexity of loss networks has been dis-
cussed by Louth, Mitzenmacher, and Kelly [22]. Some numerical methods for
calculating the blocking probability in multiclass loss networks include the
Hayward-Fredericks method [7] and the hyperexponential decomposition in-
troduced by Franx, Koole, and Pot [6]; the latter provides accurate estimates
but is computationally demanding. The repacking system discussed in this
thesis is computationally efficient; its accuracy as an approximation for the
multiclass loss network deserves to be studied in more detail.

12



5 Spatial random field generated by nonin-
teracting sources

5.1 Model description

Let C be a bounded measurable set in R? such that |C| = 1 and |0C| = 0,
where OC denotes the boundary of C and |- | is the Lebesgue measure.
Let X; + (ij)l/ 4C be a family of random sets, called grains, with random
locations X; and random volumes pV;. Assume that X; are uniformly dis-
tributed in the space according to a Poisson random measure with mean
density A > 0, and that V; are independent copies of a positive random vari-
able V with EV = 1, also independent of the locations X;. Hence the scalar
p > 0 equals the mean grain volume. Our goal is to study the cumulative
mass field J , generated by the grains, defined by

Ino(4) =Y AN (X, + (pV))V4C)

J

bl

where A ranges over bounded measurable sets in R?. Figure 3 illustrates
a pseudorandom sample of the grain field Jy , simulated over a rectangular
grid on the unit rectangle with 512x512 resolution, where the volume has
Pareto distribution with parameter v = 1.5. On the left, the grain shape C
is a circle, and on the right, ellipse. When E V2 = oo, the functional J , has

Figure 3: Simulated grain field generated by symmetric (left) and asymmetric
(right) grains, with A = 1000, p = 0.1.

long-range spatial dependence [IV] in the sense that
lim [Cov (J3,(B1), Jap(B:\B1))| = oo,

where B, denotes the open ball centered at the origin with radius 7.
For analytical convenience, extend Jy , to a random linear functional, by
defining for an arbitrary test function ¢ € L!,

B =3[ ey

J

13



5.2 Scaling approximations

Let us now consider the limiting behavior of J , as the mean grain density A
grows to infinity and the mean grain volume p shrinks to zero. When the grain
volume distribution has finite variance, the following theorem shows that the
centered and renormalized version of J, , converges to white Gaussian noise.
All limits in this section are to be understood in the sense of finite-
dimensional distributions of random linear functionals on L' N L2.

Theorem [IV]. Let C' be a bounded set with |C| = 1 and |0C| = 0, and
assume EV? < oo. Then as X\ — oo and p — 0,

Irp(@) — EJy,(8)
PNEV?)/

where W is the centered Gaussian random linear functional on L? with

EW (¢ = [[ ¢(x)¥(y) dz dy.

The situation is different if the grain volumes are heavy-tailed with regu-
larly varying tail of index v € (1,2), which implies EV? = co. As p — 0, the
expected number of grains with volume larger than one that cover the origin
is asymptotically equivalent to a constant times )\Fp(l). Consequently, let
us distinguish the following three scaling regimes (the constant 7' has been
chosen for notational convenience):

Large-grain scaling AF,(1) = o0
Intermediate scaling ~ AF,(1) — v~}
Small-grain scaling AF,(1) = 0

The following theorem describes the nontrivial stochastic limits that can be
derived for different scaling regimes using suitable renormalization.

Theorem [IV]. Let C be a bounded set with |C| = 1 and |0C| = 0, and
assume that V' has a regularly varying tail with exponent v € (1,2). Then
the following three limits hold as A — oo and p — 0:

(i) (Large-grain scaling) If If \F,(1) — oo, then
Irp(@) — E Jrp(9)

- — Wy c(0)
1/2 % ’
(VAE,(1) "
where W, ¢ is the centered Gaussian mndom linear functional on L'NL?
with EW7 c()W. = [[ ¢(z) K, c(z — y)Y(y) dz dy, and

K,c(z) = /0 |(v™2 + C) N C|vdv.

(i4) (Intermediate scaling) If A\F,(1) — !, then
Iap(@) — EJyp(8) — T} o(9),

14



where J3 - s a random linear functional with the same second order
)
statistics as W, ¢, and characteristic functional

Eerc(® = exp/ / U (/ o(y) dy) drz v~ " d,
Rd JO z+wl/dC

with ¥(u) = e® — 1 — ju.
(i%) (Small-grain scaling) If AF,(1) — 0, then
Jold) = B (0)

¢y (1/F,)(7A)

where A is the independently scattered ~y-stable random measure on
R? with Lebesgue control measure and unit skewness, (1/F,))* (u) =
inf{v : 1/F,(v) > u} is the quantile function of F,, and

— A’Y(d))v

_ To study the role of symmetry, let us define a slightly modified model
Jy,, where the grains are randomly oriented. Let 6; be independent random
rotations in R?, each uniformly distributed according to the Haar measure,
and assume that 6; are independent of the locations X, and the volumes V.

Then
() = / #(y) dy.
\o(©) gj&ﬂmw%c(>

defines the analogue of J , with randomly rotated grains 6;C. Renormalizing
Jx, in the same way as J,, it is shown [IV] that the small-grain limit
coincides with A,, and the intermediate limit has similar structure as JJ ,
with the characteristic functional

exp/ / / 1\ (/ o(y) dy) dzv " 'dv db,
R JO SO(d) z+vl/dgC

where ¥(u) = ™ —1—1u and df is the Haar measure in the group of rotations
SO(d) in R¢. Moreover, in the large-grain scaling, the renormalized limit of
:]v,\,,, corresponds to a constant multiple of fractional Gaussian noise with
Hurst parameter H = (3—1y)/2, as defined by Mandelbrot and van Ness [23].

5.3 Discussion

The results in this section illustrate the difficulty of deriving robust statisti-
cal approximations for cumulative random fields generated as superpositions
of independent random objects, if the objects have long-range spatial depen-
dence. Fractional Gaussian noise and stable random measures, both obtained
as renormalized limits of the same model, represent opposite extremes in the
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range of commonly used stochastic models; and it is impossible to distin-
guish from a finite number of statistical tests which of the two (or in the
intermediate case, neither) should be used for approximating a given model.
Although the results presented here do not seem very useful from the mod-
eling point of view, they might be valuable in explaining how macroscopic
physical structures with long-range dependent statistical features are formed.
Some of the limit results discussed in this section can also be extended to
random functionals over spaces of signed measures [IV]. This type of gener-
alized viewpoint might be helpful in revealing connections with other parts
of mathematics, such as potential theory and geometric measure theory.
The type of dichotomy discussed above has earlier been observed by Taqqu
and Levy [28], who showed that both fractional Brownian motion and stable
Lévy motion can appear as renormalized limits of a renewal-reward process,
depending on the order of taking a double limit. Analogous limit results
have been derived by Konstantopoulos and Lin [18], Kurtz [20], and Mikosch,
Resnick, Rootzén, and Stegeman [25], who studied simultaneuous double lim-
its are for a data traffic model known as the infinite source Poisson model.
The critical boundary between the two scaling regimes leading to fractional
Brownian motion and stable Lévy motion has been studied by Gaigalas and
Kaj [8], Kaj and Martin—-Lof [11], and Kaj and Taqqu [12]. The results re-
ported in this thesis extend the analysis of the above type of double limits to
spatial random fields, and show how results analogous to those of Kaj and
Taqqu [12] and Mikosch et al. [25] can be obtained for spatial models with
long-range dependence. Another new contribution is the use of test functions
for characterizing the limits. In contrast with dimension one, where station-
ary random processes can be analyzed in terms of their integrated versions
(for example fractional Brownian motion), in multidimensional spaces it is
necessary to consider the stationary objects themselves as generalized ran-
dom functions. The results characterizing test function spaces suitable for
analyzing fractional Gaussian noise and related anisotropic self-similar ran-
dom fields [IV] can be helpful in applications of spatial stochastic models.

16



6 Conclusion

In this thesis I have studied how stochastic comparison and scaling methods
can be applied to derive simple approximative descriptions for performance
and stability of complex network models involving feedback, blocking, and
long-range dependence. Stochastic comparison methods can be useful in
stability analysis, as illustrated by the results of Section 2.1 applied to the
queueing network in Section 3, and in performance analysis, as discussed in
Section 4. For systems composed of a large number of independently acting
random sources, the results of Section 5 show how stochastic scaling methods
can be used to approximate cumulative macroscopic effects of the sources.

The results of the thesis illustrate the feasibility of stochastic comparison
and stochastic analysis in deriving approximations and performance bounds
for complex physical networks with uncertainty. Approximations and per-
formance bounds based on exact mathematical methods have the advantage
that they explicitly state the type of circumstances required for the accuracy
of the estimates. The resulting analytical formulas can reveal interesting
properties that are not easily detected using numerical simulation, such as
the stability region of the queueing network in Section 3, the monotonicity
properties of the loss network in Section 4, or the critical scaling regime for
the spatial field of Section 5.

Two probabilistic assumptions, independence and lack of memory (the ex-
ponential probability distribution), have been actively used throughout the
thesis. These assumptions may be criticized to be unrealistic in many appli-
cations. For example, if the queueing network of Section 3 is used to model
the transfer of random-sized files in a computer network with determinis-
tic servers, then the service times in different nodes of the network are not
independent. Extending the results of the thesis to models where the inde-
pendence and lack of memory assumptions are relaxed remains an important
direction for future research.
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