
Matlab Basics
Lecture 2

Juha Kuortti
October 28, 2017

1

Lecture 2

Logical operators
Flow Control

2

Relational Operators

Relational operators are used to compare variables. There are 6
comparison available:

• “equal to”, using ==
• “not equal to”, using ∼=
• “less than”, using <

• “less than or equal to”, using <=
• “greater than”, using >

• “greater than or equal to”, using >=

The result of a comparison is either TRUE (1) or FALSE (0). Note
that MATLAB does difference between logical value and numerical
one, but allows the usual scalar operations to take place.

3

Array comparisons

Suppose A and B are double arrays of the same size. Let op be
any of the 6 relational operators (==,∼=, <, <=, >, >=).

Then the expression
A op B

is a logical array of the same size. The relational operator is
applied elementwise, comparing A(i , j) to B(i , j).

Example:

>> A = rand(2,4);

>> B = 0.5*ones(2,4);

>> A<B

4

Excercise

Using meshgrid create a 2d space of matrices X and Y that
covers the area [−4, 4]× [−4, 4].

Then find all the elements in X and Y for which it holds that
X (i , j)2 + Y (i , j)2 < 2. Call the resulting logical array Z .

Finally mesh(X,Y,Z).

5

Array comparisons

The result of a relational operation is a logical array.

• A logical array contains only 0’s and 1’s
• It cannot contain any other numerical values
• Internal representation in MATLAB is different than for

double arrays.

You can use a logical array in any numerical calculation as though
it is a double array; the 0’s and 1’s behave normally. MATLAB
automatically typecasts the logicals to doubles.

>> A = [1 0 1 1];

>> B = logical(A);

>> whos

>> A==B

>> isequal(A,B) 6

Logical indexing

In a typical row/column reference,

M(RowIndex, ColIndex)

both RowIndex and ColIndex are double arrays, whose positive,
integer values specify which rows and columns of the array M are
being referenced.

If RowIndex and ColIndex are logical arrays, the locations of the
1’s specify which rows and columns of the array M are being
referenced.

>> M = rand(4,5);

>> Ridx = logical([1 0 0 1]);

>> Cidx = logical([0 0 1 1 1]);

>> M(Ridx,Cidx) %same as M([2 4],[3 4 5])

7

Using find

The command find returns the indices of the nonzero entries of
logical statement.

>> m = rand(6,1);

>> m(find(m<0.5)) = 0;

Usually logical indexing will work just fine, so you can just do

>> m = rand(6,1);

>> m(m<0.5) = 0;

8

More on find

However, when you need the actual index, use find.

>> P = peaks;

>> maxInd = find(P==max(P(:)))

>> mesh(P); hold on;

>> [m,n] = ind2sub(size(P),maxInd);

>> plot3(n,m,P(maxInd),'r*')

Sidebar: find will always provide the linear indices (remember
those?). In order to transform them to subscript indices we use a
function called ind2sub.

9

All things are not equal

In finite precision arithmetic (MATLAB has about 17 digits of
precision), it is not true that

(a + b) + c is equal to a + (b + c)

In practice this means that when comparing doubles, equality is
not a good test for similarity; instead we usually use
abs(x-y)<tol to check for “equality”. There are also other
metrics — well learn them as we go.

10

Logical Operators

Logical operators are used to operate on logical variables. There
are 3 binary operations

• “logical AND”, using &
• “logical OR”, using |
• “logical exclusive OR”, using xor

There is also the unary operation

• “logical NOT”, using ∼

For arrays, the operators are applied elementwise, and the results
have logical values of TRUE (1) or FALSE (0)

In case of scalar values, there are also operators && and ||, that
perform more efficiently.

11

Logical Operators

If A and B are scalars (double or logical), then

• A&B is TRUE (1) if A and B are both nonzero, otherwise it is
FALSE (0)

• A|B is TRUE (1) if either A or B are nonzero, otherwise it is
FALSE (0)

• xor(A, B) is TRUE (1) if one argument is 0 and the other is
nonzero, otherwise it is FALSE (0)

• ∼ A is TRUE if A is 0, and FALSE if A is nonzero.

For arrays, the operations are applied elementwise, so A and B
must be the same size, or one must be a scalar.

If you wish to check if two arrays are same, use all, if you wish
see whether they have any similarities, use any.

12

One notable exception

Usually logical operators only function on arrays of equal
dimensions, for example testing [1,2,3]==[3,2], will result in an
error, rather than FALSE.

There is one situation where this will lead to problems: namely,
comparing strings. In string context, comparison ’Hello’ ==
’Oh, Hel’ should clearly be FALSE, but will result in an error.
For string comparisons, use MATLAB function strcmp.

13

Control:if, end

To conditionally control the execution of statements, you can use

if expression

statements

end

If the real part of all of the entries of expression are nonzero,
then the statements between the if and end will be executed.
Otherwise they will not be. If the expression is an array, then the
check is implicitly all(expression).

Execution continues with any statements after the end.

14

Control:if, else, end

if exp1

statements1

else

statements2

end

One of the sets of statements will be executed

• If exp1 is TRUE, then statements1 are executed
• If exp1 is FALSE, then statements2 are executed

15

Control:if, elseif, end

If you need to check for multiple cases, use elseif:

if exp_1

statements1

elseif exp_2

statements2

elseif exp_3

statements3

end

Similar to switch:case:break structure in many other
languages: execute statement involved with first true expression,
then jump to end.

16

Excercise

Create a m-file function for the mathematical function y = f (x)
shown below.

17

Lecture 2

Iterations
More control.

18

Control: for, end

Execute collection of statements a fixed number of times.

for x=expression

statements

end

The expression is evaluated once before the loop starts. The value
is called the controlvalue. The statements are executed one time
for each column in the controlvalue. In the code above, x is the
loopvariable.

Before each “execution pass,” the loopvariable (x) is assigned to
the corresponding column of controlvalue: 1st column on the first
pass, 2nd on second and so on.

19

Control: for, end

The most common value for expression is a row vector of integers,
starting at 1, and increasing to a limit n.

for x=1:n

statements

end

The controlvalue is simply the row vector [1, 2, 3 . . . , n], hence the
statements are executed n times.

Since

• The first time through, the value of x is set equal to 1
• the k’th time through, the value of x is set equal to k.

this is an extremely useful way to index an array.
20

Control: for, end

The expression can be created before the loop itself, so the loop
doubles as foreach type loop.

for x=1:n

statementxs

end

is same as

xValues = 1:n;

for x=xValues

statements

end

21

Example

Write a function to compute the of amount owed for a loan
amount L, given interest rate R, loan duration T and fixed
payments of amount P.

22

Example

function P = loancalc(L,R,N,MP)

% P = loancalc(L,R,N,MP) computes the

% history of amount owed on a loan of amount

% L, interest rate R, duration N, and fixed

% monthly payment MP.

P = zeros(N+1,1);

P(1) = L; % amount owed at Month=0

% interest rate R is annual, but applied

% monthly, yielding a 1+R/12 factor.

G = 1+R/12;

for i=2:N+1

P(i) = P(i-1)*G - MP;

end

23

Control: while, end

If you need to execute commands for an undetermined number of
times, use while loop

while expression

statements

end

while evaluates expression, and if it is TRUE, then executes the
statements, and repeats, otherwise it jumps to end.

Notice, that expression need not become FALSE ever, leading to
an infinite loop.

24

Example

Banach fixed point theorem states (paraphrasing heavily) that if a
function f is a contraction, then iteration xn+1 = f (xn) will
converge to a unique fixed point of the function regardless of the
starting value x0, i.e. a point x∗ for which f (x∗) = x∗.

Let’s use a while and fixed point iteration to find the fixed point
of f (x) = cos(x).

25

Application time

Tiny bit of numerics
Few MATLAB built-ins

26

Basic building blocks

Famously, the Bolzano Theorem (later to be refined to
intermediate value theorem) states that:

If a continuous function, f , with an interval, [a, b], as its domain,
takes values f (a) and f (b) at each end of the interval, then it also

takes any value between f(a) and f(b) at some point within the
interval.

More precisely, if we have a continous function that has values of
opposite sign inside an interval, then it has a root in that interval.

27

Example: Bisection method

Let’s apply the following, and write our own solver: this one will be
very similar to binary search.

Method: given endpoints a and b

1 find the midpoint p in the middle of [a, b].
2 if f (p) is zero (or close enough) - stop, you’ve solved the
problem.

3 if f (p) > 0 move the “positive end” to it, and go to step 1.
4 if f (p) < 0 move the “negative end” to it, and go to step 1.

Since the search interval is halved at each step, the convergence is
fairly fast.

28

Example: Bisection method

function p = bisection(f,a,b)

if f(a)*f(b)>0

disp('iteration is impossible')

else

tol = 1e-7;

p = (a + b)/2;

while abs(f(p)) > tol

if f(a)*f(p)<0

b = p;

else

a = p;

end

p = (a + b)/2;

end

end

29

Your turn: Newton’s method

Suppose we have
f (x) = x − e−x2

and
f ′(x) = 1 + 2xe−x2

Write a function that implements the Newton’s method (teachers
and Google will help if you’ve forgotten what it is), and use it to
find the root of f (x).

Note: it is technically possible to select a starting location so that
the method does not converge — implement an iteration counter
that stops the method after a large number of iteration has passed
and solution has not been found to avoid an infinite loop.

30

