
Functions for building vectors
colon(:),linspace,logspace

• v=a:b, w=a:h:b; default: h=1
• v=linspace(a,b,N); default: N=100
• v=logspace(a,b,N); 10a, . . . , 10b, N points

>> 0:10; 0:.1:1;

>> 10:-2:0

ans =

10 8 6 4 2 0

>> logspace(0,1,4)

ans =

1.0000 2.1544 4.6416 10.0000

>> 10.^linspace(0,1,4)

ans =

1.0000 2.1544 4.6416 10.0000

Note: Remember semicolon (;) for large N or small h. 31

Matrices: building, parts, decomposing

>> A=[1:3;4:6] % Basic

reshape

• Forms a matrix of given size for given data.
• Data will be placed in “frame” of given size in column order.

(Matlab is column oriented.)
• Nr. of datapoints (numel(data)) has to match product of

dimensions.

>> A=reshape(1:6,2,3) % 2x3 matrix from data 1:6 ...

in column order

>> B=reshape(1:6,3,2)' % Row-order

>> C=reshape(A,1,6) % Back to vector 1:6
32

Array, matrix,vector,scalar

• Basic data structurte: Matrix (array), elements: complex
numbers. Let’s limit ourselves at first to two-dimensional
arrays.

• Column vector: (m,1)-matrix
• Row vector: (1,n)-matrix
• Scalar: (1,1)-matrix
• Empty: (m,0) or (0,n)-matrix

• Matrix and its (size)

>> A=[1 2 3 4 ;5 6 7 8; 9 10 11 12]

>> [m,n]=size(A)

>> v=-[1 2 3 4]

>> length(v)

>> 1:10 % [1,2,3,...,10]

>> size(ans) % ans:previous non-assigned result

>> who, whos % workspace variables
33

Matrices, [MIT: open courseware]

34

Creating arrays

• Square brackets [...] to define arrays
• Spaces (and/or commas) to separate columns (elemnts of row

vector).
• Semi-colons (;) to separate rows (elements of column vector)
• >> [3 4 5 ; 6 7 8] is a 2-by-3 matrix
• If A and B are arrays with the same number of rows, then

>> C = [A B] is the array formed by stacking A and B
side by side

>> A=ones(2,2);B=2*ones(2,3);[A B]

ans =

1 1 2 2 2

1 1 2 2 2

35

Creating arrays, continued

• If A and B are arrays with the same number of columns, then
>> [A ; B] is the array formed by stacking A on top of B.

• So, [[3 ; 6] [4 5 ; 7 8]] is equal to
[3 4 5;6 7 8]

36

Some functions for building matrices

eye,vander,hilb,zeros,ones,diag,rand,reshape,magic

Complete list: help elmat

>> A = zeros(2,5)

>> B = ones(3) % or ones(3,3)

>> R = rand(3,2)

>> N = randn(3,2)

>> D = diag(-2:2)

Compare rand and randn Try repeatedly
>> R = rand(3,2) Use (↑) in command window

Repeat : >>rand('twister',0); R = rand(3,2)

37

Matrices: building, parts, decomposing

>> A=[1:3;4:6] % Basic

reshape

• Forms a matrix of given size for given data.
• Data will be placed in “frame” of given size in column order.

(Matlab is column oriented.)
• Nr. of datapoints (numel(data)) has to match product of

dimensions.

>> A=reshape(1:6,2,3) % 2x3 matrix from data 1:6 ...

in column order

>> B=reshape(1:6,3,2)' % Row-order

>> C=reshape(A,1,6) % Back to vector 1:6
38

Matrices, building blocks

>> A=reshape(1:6,2,3); B=ones(2,2),C=diag(1:3)

>> [A B] % Side by side.

ans =

1 3 5 1 1

2 4 6 1 1

>> [A;C] % On top of each other.

ans =

1 3 5

2 4 6

1 0 0

0 2 0

0 0 3

39

Matrix- and array algebra

A, B matrices, matching size, c scalar.
Matrix algebra

• A + B, A+c

• A*B matrix product
• A’ (conjugate) transpose
• A.’ transpose without

conjugation
• A^p (A*A*...A) Matrix

power (A square matrix.)
• A\b

Ax = b ⇐⇒ x = A\b (if
A is invertible)

Array algebra

• A + B, A+c

• A.*B Pointwise product
• A.^p, A.^B Pointwise

power, p scalar, A and B
of same size.

• A./B, c./A Pointwise
divide. Subtle 1.0/A,
1.0./A,1./A

• Note: c/A usually leads
to an error. 40

Visualization of matrices

Have fun with some commands of type:

>> mesh(ones(30));hold on;mesh(zeros(30));

>> mesh(eye(30));shg; hold off

>> imagesc(diag(-5:5)),colorbar;shg

>> surf(magic(10));colorbar;shg

>> surfc(vander(0:.1:1));colorbar;shg

>> imagesc(reshape(0:24,5,5)),colorbar

Modify some parameters, and try to see what kind of matrices the
visualizations reveal to you.
In the figure-window you can click the "rotate-arrow" and rotate
your figure with the mouse.

41

Accessing single element of a vector

If A is a vector, then
• A(1) is its first element
• A(2) is its second element
• . . .

• A(end) is its last element

For matrices either columnwise linear indexing,
or

• A(1,1) is the element on the first row of
the first column

• A(2,1) is the element on the second row
of the first column

• A(3,4) is the element on the third row and
fourth column

• A(4,end) is the last element of the fourth
row

42

Example

>> A = [3 4.2 -7 10.1 0.4 -3.5];

>> A(3)

>> Index = 5;

>> A(Index)

>> A(4) = log(8);

>> A

>> A(end)

43

Accessing multiple elements of an array

Index need not be a single number – you can index with a vector.

>> A = [3 4.2 -7 10.1 0.4 -3.5];

>> A([1 4 6]) % 1-by-3, 1st, 4th, 6th entry

>> Index = [3 2 3 5];

>> A(Index) % 1-by-4

Index should contain integers. Shape of the index will define the
shape of the output array.

44

Exercise

Using MATLAB indexing, compute the perimeter sum of the
matrix “magic(8)”.

Perimeter sum adds together the elements that are in the first and
last rows and columns of the matrix. Try to make your code
independent of the matrix dimensions using end.

45

46

Linear Systems

47

Linear systems of equations

Given the system of equations:




6x + 12y + 4z = 70
7x − 2y + 3z = 5
2x + 8y − 9z = 64

Solve it!

>> A=[6 12 4;7 -2 3;2 8 -9]

>> b=[70;5;64];

>> x=A\b; x'

ans =

3 5 -2

48

Linear systems of equations, continued

>> [A*x b] % Check by multiplication:

ans =

70 70

5 5

64 64

>> b=[70;5;64];

>> x=A\b; x'

ans =

3 5 -2

>> x=inv(A)*b % Alternatively multiply by inverse

• Backslash \ is recommended for efficiency and accuracy.
• Linear systems don’t always have a unique solution.
• det(A)==0 is not a numerically reliable way of testing

“almost singularity”. See help cond, rcond. 49

Excercise

Solve the system of equations




2x + y = 3
x − 2y = −1

using the “backslash” operator, and check the result.

Using the same technique, solve below system, and check result.




35x1 + 0x2 + 14x3 + 16x4 + 2x5 = 67
27x1 + 7x2 + 14x3 + 4x4 + −7x5 = 45
−13x1 − 2x2 + 6x3 + 10x4 + 8x5 = 9
30x1 − 1x2 − 12x3 + 7x4 − 11x5 = 13
7x1 + 14x2 + 7x3 − 3x4 − 10x5 = 15

50

Functions

51

User-defined functions

• Function handles, anonymous functions
• One-liners, defined in the command window or in a script

>> f=@(x)x.^2 to be read: f is the function which
“at x” returns the value x 2. (In math: f = x → x 2)
Several inputs allowed:
>> g=@(x,y,z)sqrt(x.^2+y.^2+z.^2).

• Functions in m-files
If more lines are needed, local variables, control structures
(for, while, if - else, etc.), then write an m-file

• Inline-function is older, more restrictive version of function
handle. We will not use them actively, the only reason to
know about them, is old Matlab-codes. (help inline)

52

User-defined functions, m.file

function [out1,out2,out3]=funname(in1,in2)
file: funname.m on matlabpath.

• Keyword function
• Each outk -argument must be assigned a value, the last

assignement is the value returned.
• Variable scope: All variables defined in the function body are

local, i.e. they are cleared when function stops running. (Note
the difference with a script).

• Function needn’t have output-arguments it can display text or
graphics, write to files etc. In such cases it may often be more
natural to use a script, though.

53

Examples of writing functions

To start editing a function, open the
editor on the top left “New”-button.
Instead of script, this time click
Function. Or on the command line:
>> edit myfunction

As our first example, let’s write a function that computes the mean
of the components of the input vector.
Let’s first give some thought of the expression.

54

Examples of writing functions

To start editing a function, open the
editor on the top left “New”-button.
Instead of script, this time click
Function. Or on the command line:
>> edit myfunction

As our first example, let’s write a function that computes the mean
of the components of the input vector.
Let’s first give some thought of the expression.

x=1:10;

avg=sum(x)/length(x)

54

Example 1, mean of a vector

function y=mymean(x)

% Compute the mean (average) ox x-values.

% Input: vector x

% Result : mean of x

% Exampe call: r=mymean(1:10)

%

y=sum(x)/length(x);

>> help mymean

Compute the mean (average) ox x-values.

...

>> r=mymean(1:10)

r =

5.5000

55

Example 2.: function stats

Standard deviation is given by:

σ =

���� 1
N

n�

k=1
(xk − µ)2.

Write the code for the following function file:

function [avg,sd,range] = stats(x)

% Returns the average (mean), standard deviation

% and range of input vector x

N=length(x);

...

...

56

Calling example function stats

Test your function using a script like the following:

%% Test script for function stats

x=linspace(0,pi);

y=sin(x);

[a,s,r]=stats(y) % Function call

plot(x,y,'b') % 'b' for blue

hold on

plot([0 pi],[a a],'k') % 'k' for blacK

shg % show graphics

57

Solution: Listing of function stats

function [avg,sd,range] = stats(x)

% Returns the average (mean), standard deviation

% and range of input vector x

N=length(x);

avg=sum(x)/N;

sd = sqrt(sum(x - avg).^2)/N);

range=[min(x),max(x)];

58

Basics of Graphics

59

Basic 2d-graphics, plot

• "Matlab has excellent support for data visualization and
graphics with over 70 types of plots currently available. We
won’t be able to go into all of them here, nor will we need to,
as they all operate in very similar ways. In fact, by
understanding how Matlab plotting works in general, we’ll be
able to see most plot types as simple variations of each other.
Fundamentally, they all use the same basic constructs."

• Links:
- https://se.mathworks.com/help/matlab/ref/plot.html
- http://ubcmatlabguide.github.io/html/plotting.html

60

Basic 2d-graphics

• If x is a 1-by-N (or N-by-1) vector, and y is a 1-by-N (or
N-by-1) vector, then
>> plot(x,y)

creates a figure window, and plots the data points with joining
line segments in the axes. The points are:
(x(1),y(1)), (x(2),y(2)),..., (x(N),y(N))

• The axes are automatically chosen so that all data just fits
into the figure window. This can be changed by the
axis, xlim, ylim-commands.

61

Basic 2d-graphics, plot

Function plot can be used for simple "join-the-dots" xy-plots.

>> x=[1.5 2.2 3.1 4.6 5.7 6.3 9.4];

>> y=[2.3 3.9 4.3 7.2 4.5 6.1 1.1];

>> plot(x,y);grid on

62

Basic 2d-graphics, general form

Continue keeping the previous plot:

>> hold on % Keep the previous lines.

>> plot(x,y,'or') % Mark datapoints with ...

'o'-marker, r='red'

>> shg % show graphics

• General form:
plot(x1,y1,'string1',x2,y2,'string2', ...)

The 'string'-parts may be missing.
• plot(x,y,’r*--’)

Use red *-markers, join with red dashed line segments.

63

help plot -> table of markers

Various line types, plot symbols and colors: plot(X,Y,S)
S is a character string made from one element from any or all of
the following 3 columns:

b blue . point - solid

g green o circle : dotted

r red x x-mark -. dashdot

c cyan + plus -- dashed

m magenta * star (none)no line

y yellow s square

k black d diamond

w white v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p,h pentagram, hexagram
64

Plotting graphs of functions

Just take enough points to get smoothness.

>> x=linspace(0,3*pi); % Default: 100 points

>> y=sqrt(x).*sin(x); % Note again: (.*)

>> plot(x,y)

>> figure % Open a new graphics window.

>> x1=linspace(0,pi,1000); % More points.

>> y1=cos(4*x1).*sin(x1);

>> m=mean(y1);

>> plot(x1,y1,[0 pi],[m m],'r--') % "red" dashed

>> legend('Function','mean'); grid on

Refrences in Finnish:
http://math.aalto.fi/∼apiola/matlab/opas/mini/vektgraf.html

http://math.aalto.fi/∼apiola/matlab/opas/lyhyt/grafiikka.html
65

Excercise

Let’s do some plotting. Do the following:

a) Graph the function f (x) = sin(x) on the interval x ∈ [0, 1]. Try
changing the plot colour, and observe your discretization by
using different plotting styles.

b) Graph the function f (x) = 1
4x sin(x) on the interval x ∈ [0, 40]

in the same plot with y1 = 1
4x and y2 = −1

4x . Plot the lines
with red dashes, and change the line width of f to 3.

c) Plot a curve with x coordinate of cos(t) and y coordinate of
sin(t) when t ∈ [0, 2π].

d) Plot a parametric curve




x = sin(t)
�
ecos(t) − 2 cos(4t) − sin

� t
12

��

y = cos(t)
�
ecos(t) − 2 cos(4t) − sin

� t
12

��

Some plots will propably not look like you expect: try using axis
equal or axis square.

66

Polynomials

67

Polynomials, roots, value

Let p = x4 − 15x2 + 45x − 36. Matlab represents the polynomial
as the vector of coefficients starting at the highest power:

>> c=[1 0 -15 45 -36]; %Note: 0 for a missing power

>> pzeros=roots(c)

pzeros =

-5.0355 + 0.0000 % Real root

1.8680 + 1.4184i % complex conjugate roots

1.8680 - 1.4184i % (always with real polynomial)

1.2996 + 0.0000i % Real root

Note: One is tempted to use variable names such as roots or
zeros. Both are names of Matlab’s built-in functions (we just
used roots). Check: >> which roots >> which zeros.
Using such names may lead to “nonsense” error messages.

68

Polynomials, roots, value (continued)

To check how close to zero the values of the polynomial are at the
computed zeros, we need the function polyval.
Data for plotting will also be created at once.

>> polyval(c,pzeros) % Values of p at pzeros

ans =

1.0e-11 * % Small enough

0.1300 + 0.0000i

-0.0043 - 0.0046i

-0.0043 + 0.0046i

0.0000 + 0.0000i

>> x=linspace(-6,6); % 100 equally spaced points on ...

the interval [-6,6].

>> y=polyval(c,x);

>> plot(x,y)

69

Exercise

• Plot the values of the polynomial p(x) = x 4 − 3x3 + 8x + 2
on the interval x = [−3, 3].

• Find the roots of p(x).
• Find the roots of z12 − 1 (Yes, there is more than one), and

plot them on the complex plane.
• Construct a polynomial of degree 6, with roots rk = k. (i.e.,

first root is 1, second 2 and so on). How high can you increase
the degree, before the root-finding becomes inaccurate?

70

