


























































































































































































NOTES ON DISCRETE TIME MARTINGALES

These notes cover some basic properties of discrete time martingales for a course on stochastic
calculus. We assume that the basic concept of a (sub/super)martingale is familiar, along with
some results related to optional stopping and the martingale convergence theorem are familiar.
We prove Doob’s martingale inequality, Doob’s maximum L2 inequality and discuss uniform
integrability in the setting of martingales. The discussion covers some of the material from [1,
Chapter 5.4 and Chapter 5.5]. We first review some basic definitions and results we shall make
use of, then discuss Doob’s inequalities, and finally uniform integrability.

1. Background

Let us consider a probability space pΩ,F ,Pq. Recall that a filtration on pΩ,F ,Pq is an
increasing sequence of sub σ-algebras Fk: Fk Ă Fk`1 Ă F for all k P N “ t0, 1, 2, ...u. A
sequence of random variables pXkqkPN on the probability space pΩ,F ,Pq is adapted to the
filtration pFkqkPN if Xk is measurable with respect to Fk for all k P N. We say that a sequence
of real-valued random variables pXkqkPN is a martingale (with respect to the filtration pFkqkPN)
if

(M1) E |Xk| ă 8 for all k P N,
(M2) pXkqkPN is adapted to pFkqkPN,
(M3) E pXk`1|Fkq “ Xk for all k P N (which implies that EXk “ EX0 for all k).

Similarly, we say that a sequence of real-valued random variables pXkqkPN is a submartingale
(with respect to the filtration pFkqkPN) if

(SUBM1) E |Xk| ă 8 for all k P N,
(SUBM2) pXkqkPN is adapted to pFkqkPN,
(SUBM3) E pXk`1|Fkq ě Xk for all k P N (which implies that EXk ď EXk`1 for all k).

and a supermartingale (with respect to the filtration pFkqkPN) if

(SUPM1) E |Xk| ă 8 for all k P N,
(SUPM2) pXkqkPN is adapted to pFkqkPN,
(SUPM3) E pXk`1|Fkq ď Xk for all k P N (which implies that EXk`1 ď EXk for all k).

Note that if pXkqkPN is a supermartingale, then p´XkqkPN is a submartingale, so statements
about one automatically imply a converse statement for the other. Moreover, martingales are
both submartingales and supermartingales, so results for sub/supermartingales automatically
extend to martingales.

A basic that is occasionally useful is that convex functions of martingales are submartingales
(if they are in L1) and increasing convex functions of submartingales are submartingales.

Proposition 1.1. Let pXkqkPN be a martingale with respect to the filtration pFkqkPN and f : RÑ
R a convex function such that E |fpXkq| ă 8 for all k P N. Then pfpXkqqkPN is a submartingale
with respect to the filtration pFkqkPN.

Moreover, if pXkqkPN is a submartingale with respect to the filtration pFkqkPN and f : RÑ R
an increasing convex function such that E |fpXkq| ă 8 for all k P N, then pfpXkqqkPN is a
submartingale.

Remark 1.2. Note that if pXkqkPN is a supermartingale and f is increasing and concave, then
an immediate corollary of this proposition is that pfpXkqqkPN is a supermartingale. Typical
applications of this proposition pand its corollary for supermartingalesq are the following:

‚ If pXkqkPN is a martingale, then p|Xk|
pqkPN is a submartingale for p ě 1 px ÞÑ |x|p is

convexq.
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‚ If pXkqkPN is a submartingale, then for each a P R, pmaxpXk´ a, 0qqkPN is a submartin-
gale px ÞÑ maxp0, x´ aq is increasing and convexq.

‚ If pXkqkPN is a supermartingale, then for each a P R, pminpXk, aqqkPN is a supermartin-
gale px ÞÑ minpx, aq is increasing and concaveq.

We will also need the notion predictability: we say that a sequence of random variables
pHkqkPZ` (where Z` “ t1, 2, ...u) is predictable with respect to a filtration pFkqkPN if for each
k P Z`, Hk is measurable with respect to the σ-algebra Fk´1. We also introduce the notion of
the martingale transform or discrete stochastic integral of pHkqkPZ` with respect to pXkqkPN by

pH ¨Xqk :“

#

řk
j“1HjpXj ´Xj´1q, k ě 1

0, k “ 0
.

The basic use of the discrete stochastic integral in the setting of discrete time martingale theory
is the following result.

Theorem 1.3. Let pHkqkPZ` be predictable with respect to the filtration pFkqkPN, non-negative
and bounded in that there exists some non-random finite C ą 0 such that almost surely 0 ď
Hk ď C for all k P Z`, and let pXkqkPN be a supermartingale with respect to the filtration
pFkqkPN. Then ppH ¨XqkqkPN is a supermartingale with respect to the filtration pFkqkPN.

Next we recall the notion of a stopping time. A random variable N taking values in NYt8u
is called a stopping time with respect to the filtration pFkqkPN if for each k P N, the event
tN ď ku is an element of Fk. One of the main points of discussing stopping times in the setting
of martingale theory is the following result.

Theorem 1.4. If N is a stopping time pwith respect to the filtration pFkqkPNq and pXkqkPN is a
supermartingale pwith respect to the filtration pFkqkPNq, then pXminpN,kqqkPN is a supermartingale
pwith respect to the filtration pFkqkPNq.

We will also make use of the following result, known as the martingale convergence theorem,
which says that martingales behave very nicely under limiting procedures.

Theorem 1.5. If pXkqkPN is a submartingale pwith respect to the filtration pFkqkPNq with
supkPN E maxpXk, 0q ă 8, then as k Ñ 8, Xk converges almost surely to some limit X which
satisfies E |X| ă 8.

This has a particularly nice implication for supermartingales.

Corollary 1.6. If pXkqkPN is a non-negative supermartingale pwith respect to the filtration
pFkqkPNq, i.e., almost surely Xk ě 0 for all k P N, then as k Ñ 8, Xk converges almost surely
to some limit X which satisfies X ě 0 almost surely and EX ď EX0 ă 8.

Proof. Now p´XkqkPN is a non-positive submartingale. In particular, due to non-positivity,
maxp´Xk, 0q “ 0 for all k so we can apply Theorem 1.5 to deduce that as k Ñ 8, ´Xk

converges almost surely to some limit, let’s say ´X, which is of course almost surely non-
positive by almost sure convergence, and satisfies E | ´X| ă 8. This in turn implies that Xk

converges to X, and since being a supermartingale implies that EXk ď EX0, we find the final
claim by Fatou’s lemma. �

We now turn to Doob’s martingale inequality.

2. Doob’s martingale inequality and maximum L2 inequality

The basic idea of Doob’s inequalities is that if pXkqkPN is a non-negative submartingale, then
it’s unlikely that max0ďkďnXk is big if it’s unlikely for Xn to be big. The form this is typically
used in is moment bounds, which is the content of the L2-inequality, but the L2-inequality is
proven using the martingale inequality. We will formulate the statements more precisely shortly.
We begin with a simple result we’ll make use of in the proof of Doob’s martingale inequality.
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Lemma 2.1. Let pXkqkPN be a submartingale with respect to the filtration pFkqkPN. Let K P Z`
be fixed pi.e. non-randomq, and let N be a stopping time with respect to the filtration pFkqkPN
such that N ď K almost surely. Then

EX0 ď EXN ď EXK .

Note that if pXkqkPN is martingale, then EX0 “ EXk and we have identities here. Also the
boundedness assumption here is important: take pXkqkPN to be a simple random walk started
at 1 and N “ mintk P Z` : Xk “ 0u.

Proof. By Theorem 1.4, pXminpk,NqqkPN is a submartingale. Thus

EX0 “ EXminpN,0q ď EXminpN,Kq “ EXN ,

which proves the left inequality in the statement of the lemma. For the right inequality, let
us define the sequence of random variables pHkqkPZ` , where Hk “ 1tNďk´1u for each k P Z`.
Since N is a stopping time, we see that Hk is measurable with respect to Fk´1 – pHkqkPZ` is
predictable. Moreover, it is of course non-negative and bounded so Theorem 1.3 implies (note
that we use it here for p´XkqkPN and then translate it into a statement for submartingales) that
ppH ¨XqkqkPN is a submartingale. In particular, we have

(2.1) 0 “ E pH ¨Xq0 ď E pH ¨XqK .

But now, note that

pH ¨Xqk “
k
ÿ

j“1

HjpXj ´Xj´1q

“

k
ÿ

j“1

1tNďj´1upXj ´Xj´1q

“ 1tN`1ďku

k
ÿ

j“N`1

pXj ´Xj´1q

“ 1tN`1ďkupXk ´XN q

“ Xk ´Xminpk,Nq.

Since minpK,Nq “ N almost surely, we see that (2.1) becomes

0 ď E pXK ´XN q

which is the right inequality in the statement of the lemma. �

This allows us to prove Doob’s (sub)martingale inequality.

Theorem 2.2. Let pXkqkPN be a non-negative submartingale with respect to the filtration
pFkqkPN. For each λ ą 0 and k P N, let us define the event

Akpλq “

"

max
0ďjďk

Xj ě λ

*

.

Then

P pAkpλqq ď
E1AkpλqXk

λ
ď

EXk

λ
.
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Proof. Let us define the stopping time N “ minpk, inftm : Xm ě λuq (minimum of two stopping
times is a stopping time). Since on the event Akpλq, XN ě λ, we see that

λP pAkpλqq ď EXN1Akpλq.

Now applying Lemma 2.1 (N is bounded by k) and noting that on Akpλq
c, XN “ Xk, we see

that

EXN1Akpλq “ EXN ´ EXN1Akpλqc

ď EXk ´ EXk1Akpλqc

“ EXk1Akpλq

so combining our two inequalities yields

P pAkpλqq ď
EXk1Akpλq

λ
,

which is just the left inequality in the statement of the theorem. For the right inequality, we
note that EXk1Akpλq ď EXk by non-negativity. �

Remark 2.3. Note that in view of Remark 1.2, if one drops the assumption of non-negativity
of the submartingale from Theorem 2.2, one still can have results of the same flavour: e.g. by
replacing pXkqkPN with pmaxpXk, 0qqkPN which is a non-negative submartingale pby Remark 1.2q.

As an application of this, we prove Doob’s L2 maximal inequality which one perhaps uses
more often than Theorem 2.2.

Theorem 2.4. Let pXkqkPN be a non-negative submartingale pwith respect to the filtration
pFkqkPNq. Then

E

˜

sup
0ďjďk

X2
j

¸

ď 4EX2
k .

In particular, if pXkqkPN is a martingale pnot necessarily non-negativeq, then

E

«

sup
0ďjďk

|Xj |
2

ff

ď 4E |Xk|
2.

Proof. The second statement follows from the first one since if pXkqkPN is a martingale, then
p|Xk|qkPN is a non-negative submartingale – see Remark 1.2. Let us thus focus on the first
statement. Naturally if EX2

k “ 8, this is not a very interesting statement, so let us assume
that EX2

j ă 8 for all j ď k (if EX2
j “ 8 for some j ď k then EX2

k by the submartingale

property). As sup0ďjďkX
2
j ď

řk
j“0X

2
j , we see that also E rsup0ďjďkX

2
j s ă 8 in this case.

Using Doob’s martingale inequality (Theorem 2.2), Fubini, and Cauchy-Schwarz, we now have1

1The first identity here uses the fact that for any non-negative random variable Y and p ą 0, EY p “
ş8

0
pλp´1PpY ě λqdλ. This follows from Fubini:

ş8

0
pλp´1PpY ě λqdλ “ E

ş8

0
pλp´11tYěλudλ “ E

şY

0
pλp´1dλ “

EY p.
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E

˜

sup
0ďjďk

X2
j

¸

“ 2

ż 8

0
λP

˜

sup
0ďjďk

Xj ą λ

¸

dλ

ď 2

ż 8

0
λ
EXk1tsup0ďjďkXjąλu

λ
dλ

“ 2E
„

Xk

ż sup0ďjďkXj

0
dλ



“ 2EXk sup
0ďjďk

Xj

ď 2

g

f

f

eEX2
kE

˜

sup
0ďjďk

X2
j

¸

.

If Xk “ 0 almost surely (implying that Xj “ 0 almost surely by non-negativity and the sub-
martingale property), we have nothing to prove, so let us assume that EX2

k ą 0 which implies

also that E psup0ďjďkX
2
j q ą 0. We can thus divide by

c

E
´

sup0ďjďkX
2
j

¯

yielding

g

f

f

eE

˜

sup
0ďjďk

X2
j

¸

ď 2
b

EX2
k

from which the result follow by squaring. �

We conclude this section with the following addition to the martingale convergence theorem.

Theorem 2.5. Let pXkqkPN be a martingale and supkPN EX2
k ă 8. Then Xk converges to a

limit X almost surely and in L2.

Proof. We now have (by the trivial inequality maxpXk, 0q ď |Xk| and Cauchy-Schwarz)

sup
kPN

E maxpXk, 0q ď sup
kPN

E |Xk| ď

c

sup
kPN

EX2
k ă 8.

Thus by the martingale convergence theorem (Theorem 1.5), Xk converges almost surely to
some limit X. Let us now prove convergence in L2 – namely that limkÑ8 E |Xk ´ X|2 “ 0.
The idea is that we want to show this by dominated convergence, which is justified e.g. if we
prove that E rsupkPN |Xk´X|

2s ă 8. Noting that |Xk´X|
2 ď 4 supkPN |Xk|

2 by the triangular
inequality (and the fact that supk |Xk| ě |X|), we see that it is actually sufficient to prove that
E rsupkPN |Xk|

2s ă 8. Now from Theorem 2.4, we have for n P N

E
ˆ

sup
0ďkďn

|Xk|
2

˙

ď 4E |Xn|
2 ď 4 sup

kPN
EX2

k ă 8

so letting nÑ8 we find (by the monotone convergence theorem)

E
ˆ

sup
kPN

|Xk|
2

˙

ď 4 sup
kPN

EX2
k ă 8.

As mentioned, L2-convergence now follows from the dominated convergence theorem. �

Remark 2.6. All of the results and proofs of this section extend easily to Lp-versions of the
statements pso replace X2

k by |Xk|
pq for arbitrary p P p1,8q. Though not to p “ 1!

We now turn to uniform integrability.
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3. Uniform integrability and martingales

The martingale convergence theorem is an important part of the theory of martingales in that
it shows that martingales have a rich limit theory: one needs rather weak assumptions on the
martingale to ensure that a limit exists. Nothing in the martingale convergence theorem though
ensures that the limit is non-trivial. Uniform integrability is a condition that can sometimes be
used to prove that a limit provided by the martingale convergence theorem is non-trivial. Also
it will lead to a particularly nice representation of a martingale in terms of its limit. In this
section we briefly review the main results.

A family of real-valued random variables pXiqiPI (note that I need not be countable) is called
uniformly integrable if

lim
MÑ8

„

sup
iPI

E
`

|Xi|1t|Xi|ąMu
˘



“ 0.

We record here a basic exercise related to the definition of uniform integrability. We will
need its result shortly.

Exercise 3.1. Let pXiqiPI be a family of uniformly integrable random variables. Show that
supiPI E |Xi| ă 8.

Let us now see how knowing uniform integrability can strengthen the martingale convergence
theorem.

Theorem 3.2. Let pXkqkPN be a uniformly integrable submartingale pwith respect to some
filtrationq on some probability space pΩ,F ,Pq. Then the there exists a random variable X
on the probability space pΩ,F ,Pq such that Xk Ñ X almost surely and limkÑ8 E |Xk ´X| “ 0
pin particular, for a martingale EX “ EX0q.

Proof. Let us begin by noting that from Exercise 3.1, supk E |Xk| ă 8, so (since maxp0, xq ď |x|)
we see from the martingale convergence theorem (Theorem 1.5) that there exists a random
variable X such that Xk Ñ X almost surely and E |X| ă 8. Let us turn to the second claim.
The proof of it will make use of uniform integrability, and for this, we introduce a parameter
M ą 0 and the bounded continuous function

ϕM pxq “

$

’

&

’

%

´M, x ď ´M

x, |x| ăM

M, x ąM

.

Note that if x ě M , then |x ´ ϕM pxq| “ |x ´ M | ď |x| and similarly if x ă ´M , then
|x ´ ϕM pxq| “ |x `M | ď |x|. Combining these remarks with the fact that ϕM pxq “ x for
|x| ďM , we see that |x´ ϕM pxq| ď |x|1t|x|ěMu. Thus by the triangular inequality

|Xk ´X| ď |Xk ´ ϕM pXkq| ` |ϕM pXkq ´ ϕM pXq| ` |ϕM pXq ´X|

ď 1t|Xk|ąMu |Xk| ` |ϕM pXkq ´ ϕM pXq| ` 1t|X|ąMu |X|

“ ∆k,1pMq `∆k,2pMq `∆3pMq.

First by uniform integrability of pXkqkPN, we have for each k P N

(3.1) 0 ď E∆k,1pMq “ E
`

1t|Xk|ąMu |Xk|
˘

ď sup
kPN

E
`

1t|Xk|ąMu |Xk|
˘ MÑ8
ÝÑ 0.

Then by the dominated convergence theorem (using the fact that by continuity of ϕM , almost
sure convergence of Xk to X implies almost sure convergence of ϕM pXkq to ϕM pXq for each
fixed M ą 0), we have for each fixed M ą 0

(3.2) lim
kÑ8

E∆k,2pMq “ 0.
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For the last term, we use the fact that the martingale convergence theorem ensures that E |X| ă
8 so by the dominated convergence theorem

(3.3) 0 ď lim
MÑ8

E∆3pMq “ E
ˆ

lim
MÑ8

1t|X|ąMu|X|

˙

“ 0.

Combining (3.1), (3.2), and (3.3), we find that

lim
kÑ8

E |Xk ´X| ď lim
MÑ8

lim sup
kÑ8

rE∆k,1pMq ` E∆k,2pMq ` E∆3pMqs “ 0,

which was the claim.
The final remark for martingales follows from noting that for a martingale, 0 ď |EX0´EX| “

|EXk ´ EX| ď E |Xk ´X| Ñ 0. �

If pXkqkPN is a martingale, this theorem implies a particularly nice representation for the
martingale in terms of its limit.

Corollary 3.3. Let pXkqkPN be a uniformly integrable martingale with respect to the filtration
pFkqkPN on the probability space pΩ,F ,Pq. Then there exists a random variable X on the
probability space pΩ,F ,Pq such that Xk Ñ X almost surely, limkÑ8 E |Xk ´ X| “ 0, and
Xk “ E pX|Fkq for all k P Fk.

Proof. The convergence statements are identical to the ones in Theorem 3.2, so we only need
to focus on the representation Xk “ E pX|Fkq. First of all note that as E |X| ă 8, the
conditional expectation is well defined and the statement is meaningful. According to the
definition of conditional expectation, what we actually want to prove is that for each A P Fk,
E1AXk “ E1AX. To do this, note that by the martingale property, we have for each n ą k,
E pXn|Fkq “ Xk, or in other words that for each n ą k, E1AXn “ E1AXk. We will thus be
done if we can prove that limnÑ8 E1AXn “ E1AX. To prove this, note that for any A P F ,

|E1AXn ´ E1AX| ď E |Xn ´X|
nÑ8
ÝÑ 0

as we knew already that limkÑ8 E |Xk ´ X| “ 0. We are thus done since as we already said,
we have for all n ą k and A P Fk

E1AXk “ E1AXn
nÑ8
ÝÑ E1AX

which was equivalent to Xk “ E pX|Fkq. �

Remark 3.4. In fact, in Theorem 3.2 and Corollary 3.3, all of these facts are equivalent: a
submartingale is uniformly integrable if and only if it converges in L1, which is equivalent to it
converging almost surely and in L1. For a martingale, uniform integrability is also equivalent
to the representation Xk “ E pX|Fkq for some X for which E |X| ă 8. Proving these facts is
not particularly hard, but typically one uses these results in the direction we have proved them
in. For more details, see e.g. [1, Chapter 5.5].
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