
Finite groups,
Lie groups, Lie algebras,

and representation theory

Kalle Kytölä
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Part I

Representations of finite groups

1. Introduction

1.1. The mathematics of symmetries

On a general level, this course is about the mathematics of symmetries. So let us
start by discussing what is meant by symmetry, and describing how to mathemati-
cally study symmetries.

A symmetry always is a symmetry of something, of some specific (but possibly
abstract) object. Familiar, concrete types of objects which have symmetries include,
e.g., physical objects or geometric shapes. More abstract types of objects with
symmetries could include mathematical equations, physical theories, spaces (e.g.
topological spaces, vector spaces, . . . ), etc. In principle just about any object can
have symmetries! As a few examples that may be helpful to keep in mind during
this discussion, consider

(i) the regular dodecahedron (one of the Platonic solids),

,

Figure I.1. Dodecahedron.

(ii) Newton’s law of gravitation (for two bodies in three space)

r1

r2

r̈1r̈2

{
r̈1 = m2G

r2−r1
‖r2−r1‖3

r̈2 = m1G
r1−r2
‖r1−r2‖3 ,

(I.1)
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2 I. REPRESENTATIONS OF FINITE GROUPS

(iii) the upper half plane

H :=
{
z ∈ C

∣∣ =m(z) > 0
}

(I.2)

equipped with the Riemannian metric such that the length of a smooth
path γ : [0, 1]→ H is given by

`(γ) :=

∫ 1

0

|γ̇(t)|
=m(γ(t))

dt. (I.3)

Figure I.2. Upper half plane.

Each of these objects has interesting symmetries, some more apparent than others.

So what is a symmetry? You may notice that there are certain transformations
that you can do to the objects in the above examples without altering their essen-
tial features. Therefore it seems natural to say that a symmetry is a collection of
transformations of the object, which leaves some relevant property of the object un-
changed. Typically the collection of transformations forms a group, and a property
that is unchanged by the transformations is called an invariant (for the collection
of transformations in question). It is useful, though, to allow the transformations
to act not necessarily on the object itself, but possibly on something else related to
the original object. Let us describe a few examples:

• The symmetry group of a regular polyhedron acts by bijective maps of
the sets of vertices/edges/faces of the polyhedron. In the example of the
dodecahedron, Figure I.1, the symmetry group1 thus acts either on the
set of 12 faces, on the set of 30 edges, or on the set of 20 vertices of the
dodecahedron.
• If a pair of trajectories r1 : [0,∞) → R3, r2 : [0,∞) → R3 satisfy Newton’s

law of gravitation (I.1), and f : R3 → R3 is an Euclidean motion f(x) =
c+Rx with R a rotation matrix, then also the pair r̃1 := f ◦r1, r̃2 := f ◦r2

can be seen to satisfy (I.1). In other words, the group of Euclidean motions2

is a symmetry of (the space of solutions to) Newton’s law of gravitation.
• Any Möbius transformation z 7→ az+b

cz+d
with a, b, c, d ∈ R and ad−bc > 0 acts

on the upper half plane H, and can be checked to preserve the lengths (I.3) of
a path. The group of such Möbius transformations3 thus act as symmetries
of the upper half plane H, viewed as a Riemannian manifold.

1The symmetry group of the didecahedron is isomorphic to A5 o (Z/2Z).
2The group of Euclidean motions is (isomorphic to) a semidirect product R3 o SO(3).
3The group of Möbius transformations of the upper half plane is (isomorphic to) PSL(2,R).
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• On many resonable spaces of functions of n variables, the group of permu-
tations of the variables4 acts naturally. As a special case, for functions f of
two variables, we have the transformation f 7→ τ.f defined by transposition
of the variables

(τ.f)(x1, x2) := f(x2, x1).

If the functions take values in a vector space5 (e.g., familiar cases of real
valued or complex valued functions), then we could consider separately
functions which are symmetric,

f(x2, x1) = f(x1, x2),

and functions which are antisymmetric,

f(x2, x1) = −f(x1, x2).

One many note that any function decomposes as a sum of its symmetric
and antisymmetric part. Can you think of generalizations of this to more
than two variables?

Representation theory is concerned with the case when the symmetry transforma-
tions act linearly on a vector space. At first, this may appear as a restrictive special
case, so the question is — why is it worthwhile to study on its own right? Here are
a few possible answers:

• If we manage to make the symmetries act on vector spaces, then we obtain
concrete realizations of the symmetries as linear operators or matrices.
• It is often naturally the case that the transformations act on a vector space:

think of for example
– if transformations a priori act on the object itself, then it is easy to

see that they also act on the space of R-valued or C-valued functions
defined on the object,

– physical states of a quantum mechanical system are vectors in a Hilbert
space, so physical symmetries should act on these states,

– transition probabilities of a Markov process are encoded in a matrix
acting on a vector space,

– etc, etc. . .
• With the vector space structure we can develop a powerful mathematical

theory with many applications!

The discussion above is intentionally rather vague, and is primarily meant to provide
some perspective.

1.2. Recommended literature

As the two main textbooks for the course, we recommend [FH91] and [Sim96].

4The group of permutations is the symmetric group Sn.
5For simplicity, assume that the vector space is over a field of characteristic different from 2.



4 I. REPRESENTATIONS OF FINITE GROUPS

2. Review of groups and related concepts

Before getting started, we do a quick review of a few key concepts of group theory.

2.1. The definition of a group

Definition I.1 (Group).
A group is a pair (G, ∗), where G is a set and ∗ is a binary operation on G

∗ : G×G→ G (g, h) 7→ g ∗ h
such that the following hold

associativity:

g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 ∀g1, g2, g3 ∈ G
neutral element: ∃e ∈ G

g ∗ e = g, e ∗ g = g ∀g ∈ G
inverse elements : ∀g ∈ G ∃g−1 ∈ G

g ∗ g−1 = e, g−1 ∗ g = e.

A group (G, ∗) is said to be finite if its order |G| (that is the cardinality of G) is
finite.

We usually omit the notation for the binary operation ∗ and write simply gh := g∗h.
The additive symbol + is sometimes used instead for binary operations in abelian
(i.e. commutative) groups.6 We also usually abbreviate and talk about a group G
instead of (G, ∗), assuming that the binary operation in clear from context.

2.2. Examples of groups

Example I.2 (Some abelian groups).
The following are abelian groups:

• A vector space V with the binary operation + of vector addition.
• The set k\{0} of nonzero numbers in a field with the binary operation of multiplication.
• The infinite cyclic group Z of integers with the binary operation of addition.
• The group of all N th complex roots of unity{

e2πik/N
∣∣ k = 0, 1, 2, . . . , N − 1

}
,

with the binary operation of complex multiplication. This group is isomorphic to the
cyclic group Z/NZ of order N .

Example I.3 (Symmetric groups).
Let X be a set. Then

S(X) := {σ : X → X bijective}
with composition of functions is a group, called the symmetric group on X.

In the case X = {1, 2, . . . , n} we denote the symmetric group by Sn, often called the
symmetric group on n letters.

6A group (G, ∗) is said to be abelian (or commutative) if g ∗ h = h ∗ g for all g, h ∈ G.
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Example I.4 (General linear groups).
Let k be a field and n ∈ Z>0. The set

GLn(k) :=
{
M ∈ k

n×n
∣∣∣ det(M) 6= 0

}
(I.4)

of invertible n×n matrices with entries in k is a group under the binary operation of matrix
multiplication. It is called the general linear group (of dimension n over the field k).

Example I.5 (Automorphism groups of vector spaces).
Let V be a vector space over and let

Aut(V ) = {A : V → V linear bijection} (I.5)

with composition of functions as the binary operation. Then Aut(V ) is a group, called the
automorphism group of the vector space V .

When V is a finite dimensional vector space over k of dimension dimk(V ) = n, and a basis
of V has been chosen, then V can be identified with the vector space k

n, and Aut(V ) can
be identified with the group GLn(k) of invertible n × n matrices defined in Example I.4.
Therefore we also sometimes call Aut(V ) the general linear group of V , and occasionally
denote it by GL(V ).

Example I.6 (Dihedral groups).
Consider a regular polygon with n sides: a triangle, square, pentagon, hexagon, . . . —
generally called an n-gon.

Figure I.3. Regular polygons.

The group Dn of symmetries of the polygon, or the dihedral group of order 2n, is the group
with two generators

r : “rotation by 2π/n”, m : “reflection”

and relations

rn = e, m2 = e, rmrm = e.

The following group has the interpretation the group of rotations in R3.

Exercise I.7 (Orthogonal group in three-space).
Show that the set

SO3 =
{
M ∈ R3×3

∣∣M>M = I3, det(M) = 1
}

of orthogonal matrices with determinant one is a group, with matrix multiplication as the
group operation.

Regular polyhedra, in particular all the Platonic solids (such as the dodecahedron
of Figure I.1) have symmetry groups. The following describes the rotational sym-
metries of one of them — the cube. Indeed the set F in the following exercise can
be interpreted as the set of the six faces of a cube centered at the origin.

Exercise I.8 (Orientation preserving symmetries of the cube).
Let u1, u2, u3 denote the standard basis of R3. Show the subset G ⊂ SO3 consisting of those
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M ∈ SO3 which map the set F = {u1,−u1, u2,−u2, u3,−u3} to itself is a finite subgroup of
SO3 of order |G| = 24.

2.3. Group homomorphisms

Maps between groups which respect the structure given by the binary operations
are called group homomorphisms, or often just homomorphisms (when the context
is clear).

Definition I.9 (Group homomorphism).
Let (G1, ∗1) and (G2, ∗2) be groups. A mapping f : G1 → G2 is said to be a
homomorphism if for all g, h ∈ G1

f
(
g ∗1 h

)
= f(g) ∗2 f(h). (I.6)

Example I.10 (Determinant is a homomorphism).
The determinant function A 7→ det(A) from the group GLn(C) of invertible n× n complex
matrices to the multiplicative group of non-zero complex numbers, is a homomorphism since

det(AB) = det(A) det(B).

The reader should be familiar with the notions of subgroup, normal subgroup, quo-
tient group, canonical projection, kernel, isomorphism etc.

One of the most fundamental recurrent principles in mathematics is the isomorphism
theorem. We recall that in the case of groups it states the following.

Theorem I.11 (Isomorphism theorem for groups).
Let G and H be groups and f : G→ H a homomorphism. Then

1◦) Im (f) := f(G) ⊂ H is a subgroup.
2◦) Ker (f) := f−1({eH}) ⊂ G is a normal subgroup.
3◦) The quotient group G/Ker (f) is isomorphic to Im (f).

More precisely, there exists an injective homomorphism f̄ : G/Ker (f) →
Im (f) such that the following diagram commutes

G
f //

π $$JJ
JJ

JJ
JJ

JJ H

G/Ker (f)
f̄

:: .

where π : G→ G/Ker (f) is the canonical projection.

You have probably encountered isomorphism theorems for several algebraic struc-
tures already — the following table summarizes the corresponding concepts in a few
familiar cases
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Structure Morphism f Image Im (f) Kernel Ker (f)
group group homomorphism subgroup normal subgroup

vector space linear map vector subspace vector subspace
ring ring homomorphism subring ideal

...
...

...
...

We will encounter isomorphism theorems for yet other algebraic structures during
this course: representations (modules), Lie algebras, and Lie groups7 in particular.
The idea is always the same, and the proofs are mostly very similar.

2.4. Conjugacy and conjugacy classes

The notion of conjugacy will be important in representation theory.

Definition I.12 (Conjugacy).
Two elements g1, g2 ∈ G are said to be conjugates if there exists an element
h ∈ G such that g2 = h g1 h

−1. Being conjugate is an equivalence relation, and
the equivalence classes are called conjugacy classes .

Exercise I.13 (Conjugacy classes in the symmetric group on three letters).
Find the conjugacy classes in the symmetric group S3 on three letters.
Hint: Recall that if g1, g2 ∈ G are conjugate elements, then e.g. their orders are equal.

Exercise I.14 (Conjugacy classes in the group of symmetries of the cube).
Find the conjugacy classes in the group of orientation preserving symmetries of a cube (see
Exercise 1(b)).
Hint: Note that if M1,M2 ∈ Cn×n are conjugate matrices, then e.g. their eigenvalues coincide.

2.5. Group actions

Definition I.15 (Action of a group).
Let G be a group and X a set. An action of G on X is a group homomorphism

α : G→ S(X).

In other words, if α is an action of G on X, then any group element g ∈ G acts by
a bijection α(g) : X → X of X, and the compositions of these bijections respect the
product in the group (by the homomorphism requirement).

Example I.16 (The defining action of the symmetric group).
The symmetric group Sn consists of bijective maps of {1, . . . , n} to itself, so tautologically
(by setting α(σ) := σ for all σ ∈ Sn) it we get an action of Sn on {1, . . . , n}.

Example I.17 (Action of a group on itself by left multiplication).
Let G be any group. Then we can define an action α of G on itself, which we for clarity
denote by α(g) =: αg, by

αg(h) = gh

7Lie groups are groups, but with the extra structure allowing us to do calculus on them, so
homomorphisms must also preserve this additional structure.
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for all g ∈ G and h ∈ G.8 The homomorphism property of α is a consequence of associativity:

αg1g2(h) = g1g2h = αg1(g2h) = αg1
(
αg2(h)

)
= (αg1 ◦ αg2)(h).

Exercise I.18 (Action of a group on itself by right multiplication).
Let G be any group and for g ∈ G define α̃g : G→ G by the formula

α̃g(h) = hg−1.

Show that g 7→ α̃g is an action of the group G on itself.

Exercise I.19 (Action of a group on itself by conjugation).
Let G be any group and for g ∈ G define γg : G→ G by the formula

γg(h) = ghg−1.

Show that g 7→ γg is an action of the group G on itself.

It is also not difficult to envision the ways in which the (abstract) symmetry group
of a regular polyhedron (such as the dodecahedron of Figure I.1) acts on the set of
vertices, on the set of edges, or on the set of faces of the polyhedron. Indeed, in
Exercise I.8 you have basically seen the action of the group of orientation preserving
symmetries of the cube on the set of faces of the cube.

The following exercise pertains to another one of the examples in the introduction.

Exercise I.20 (Action of Möbius transformation on the upper half-plane).
Let H =

{
z ∈ C

∣∣ =m(z) > 0
}

be the upper half-plane, interpreted as a subset of the complex
plane C. Let SL2(R) be the group of 2× 2 matrices with real entries and determinant one.

(a) For any

M =

[
a b
c d

]
∈ SL2(R),

define a function αM on the complex plane by αM (z) = az+b
cz+d . Show that M 7→ αM

defines an action of the group SL2(R) on the set H. What is the kernel of the homomor-
phism α : SL2(R)→ S(H)?

(b) Show that the action α in part (a) is transitive, i.e., for all z, w ∈ H there exists an
M ∈ SL2(R) such that αM (z) = w.

(c) The stabilizer of a given point z0 ∈ H is the subgroup consisting of those M for which
αM (z0) = z0. Show that the stabilizer of z0 = i is the special orthogonal group SO2 ⊂
SL2(R) (i.e. the group of 2× 2 orthogonal matrices with determinant one).

The preceding exercise allows us to realize the upper half plane H as the “quotient”
SL2(R) / SO2 (the set of left cosets).

Group actions give a literal meaning to the idea of symmetry transformations, but
recall that we plan to focus on the case of linear actions on a vector space, i.e., group
representations!

8Note that g is an element of the group G which acts, whereas h is an element of the set G
upon which the group acts.
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3. Basic theory of representations of finite groups

Before taking on the subject of Lie groups and their representations, we first take a
look at the simpler case of finite groups. This lets us introduce key notions in easier
concrete examples, and without too much effort we obtain a clear theory which
serves as a model for representation theory in more involved contexts.

Our main objective for this part is to prove that there are only finitely many irre-
ducible (complex) representations of a given finite group G, and any finite dimen-
sional (complex) representation of G can be written as a direct sum of copies of
these irreducible representations.

The excellent textbooks [FH91] and [Sim96] both cover the same basics as we do
here, and much more.

3.1. Representations: Definition and first examples

Compare the following definition to group actions, Definition I.15.

Definition I.21 (Representation of a group).
Let G be a group and V a vector space. A representation of G in V is a group
homomorphism

% : G→ Aut(V ).

For any g ∈ G, the image %(g) is a linear map V → V . When the representation %
is clear from the context9, we denote the image of a vector v ∈ V under this linear
map simply by

g.v := %(g) v ∈ V.
With this notation the requirement that % is a homomorphism reads

(gh).v = g.(h.v).

It is convenient to interpret this as a left multiplication of vectors v ∈ V by elements
g of the group G. Thus interpreted, we sometimes say that V is a (left) G-module.

Example I.22 (Trivial representation).
Let V be a vector space and set %(g) = idV for all g ∈ G. In the module notation this
becomes g.v = v for all g ∈ G and v ∈ V . This is called the trivial representation of G
in V . If no other vector space V is specified, the trivial representation means the trivial
representation in the one dimensional vector space V = K.

Example I.23 (Alternating representations of symmetric groups).
The symmetric group Sn for n ≥ 2 has another one dimensional representation called the
alternating representation. This is the representation given by %(σ) = sgn(σ) idK, where
sgn(σ) is minus one when the permutation σ is the product of odd number of transpositions,
and plus one when σ is the product of even number of transpositions.

The previous example is a particular case of the general fact that any group ho-
momorphism to the multiplicative group of invertible scalars gives rise to a one-
dimensional representation, and vice versa. In the next exercise you will prove this.

9. . . or when we are just too lazy to specify it. . .
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Exercise I.24 (One-dimensional representations).
Let G be a group and K a field, and denote by K× = K \ {0} the multiplicative group of
non-zero elements in the field K. Show that there is a one-to-one correspondence between
group homomorphisms from G to K×, and representations of G in K.
Hint: A homomorphism f : G→ K× corresponds to the representation defined by %(g) = f(g) idK.

Of course one-dimensional representations are only a very particular type of repre-
sentations in general.

The following allows us to associate to any action of a group G (Definition I.15) a
representation of G (Definition I.21). It is one way to construct interesting repre-
sentations.

Exercise I.25 (Permutation representations).
Suppose that G is a group acting on a set X via a group homomorphism

α : G→ S(X),

denoted by g 7→ αg, so that each αg : X → X is a bijection and αg ◦ αh = αgh. Form
the vector space V with basis (ux)x∈X indexed by the set X. For each g ∈ G, define
%(g) : V → V by linear extension of

%(g)ux := uαg(x)

from the basis vectors ux, x ∈ X. Show that % is a representation of G on V .

The representation % constructed in Exercise I.25 is called the permutation repre-
sentation associated with the group action α. In the basis (ux)x∈X , the matrices
of %(g) are permutation matrices: each row and each column has exactly one entry
equal to 1, and all other entries are zeros. Below are some examples.

Example I.26 (Defining representation of a symmetric group).
The symmetric group Sn on n letters naturally acts on the set {1, . . . , n} (see Example I.16).
Consider the vector space V = Kn, with standard basis (ui)i∈{1,...,n}. Then by Exercise I.25
above, the space Kn becomes a representation of Sn by linear extension of %(σ)ui = uσ(i),
or in module notation

σ.ui = uσ(i) for all σ ∈ Sn, i ∈ {1, . . . , n} .

This n-dimensional representation of the symmetric group Sn on n letters is called the
defining representation of the symmetric group.

As specific examples in the case of n = 3, if we identify Aut(K3) ∼= GL3(K) through the
choice of basis (ui)i∈{1,2,3}, the matrices of the transposition (23) ∈ S3 and the three-
cycle (132) ∈ S3 become

%
(
(23)

)
=

 1 0 0
0 0 1
0 1 0

 , %
(
(132)

)
=

 0 1 0
0 0 1
1 0 0

 .
Example I.27 (Regular representation of a group).

Let G be a group. Recall that G acts on itself by left multiplications α : G → S(G),
αg(h) = gh (see Example I.17). Let us denote10 by K[G] the vector space with a basis
(ug)g∈G indexed by elements of G. Then by Exercise I.25 above, the space K[G] becomes a
representation of G by linear extension of %(g)uh = uαg(h), or in module notation

g.uh = ugh for all g, h ∈ G.

10The (strange) choice of notation will become more understandable, when we realize that
K[G] carries the structure of a K-algebra — it is called the group algebra of G.
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This is called the (left) regular representation of G. If G is a finite group, then K[G] is a
|G|-dimensional representation of G.

The following example of a representation should appear very natural.

Example I.28 (Defining representation of a dihedral group).
Let D3 be the dihedral group of order 6, with generators r,m and relations r3 = e, m2 = e,
rmrm = e (see Example I.6). This is the group of symmetries of an equilateral triangle. For
concreteness, we can think of the equilateral triangle in the plane R2 with vertices A = (1, 0),

B = (−1/2,
√

3/2), C = (−1/2,−
√

3/2).

0 A

B

C

Figure I.4. Equilateral triangle centered at the origin.

Both of the matrices

R =

[
−1/2 −

√
3/2√

3/2 −1/2

]
, M =

[
1 0
0 −1

]
correspond to linear isometries of the plane R2, which preserve the set {A,B,C} of vertices
of the triangle (and indeed the whole triangle). Since R3 = I, M2 = I, RMRM = I, there
exists a homomorphism

% : D3 → GL2(R) ∼= Aut(R2)

such that %(r) = R, %(m) = M . Such a homomorphism is unique since we have given the
values of it on generators r,m of D3. This way, it is very natural to represent the group D3

(and similarly any dihedral group Dn) in a two dimensional vector space!

A representation % is said to be faithful if it is injective, i.e., if Ker (%) = {e} ⊂ G. For
a faithful representation %, the image Im (%) ⊂ Aut(V ) is isomorphic to the group
itself (by Theorem I.11), so a faithful representation gives a concrete realization
of the group as a group of linear transformations (or as matrices, if V is finite-
dimensional and a basis is chosen). The representation of the symmetry group of
the equilateral triangle in the last example is faithful, it could be taken as a defining
representation of D3.

Similarly to the above example, it is natural to define representations of the sym-
metry groups of regular polyhedra (such as the dodecahedron in Figure I.1) in the
three-dimensional space R3. Indeed, in Exercise I.8 you have basically constructed a
three-dimensional representation of the group of orientation preserving symmetries
of the cube. There are, however, also other natural representations of such groups,
and we return to one just after the next definition.
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3.2. Invariant subspaces and subrepresentations

Definition I.29 (Invariant subspace).
Let G be a group and % : G → Aut(V ) a representation of it. An invariant
subspace of the representation is a vector subspace W ⊂ V such that for
all g ∈ G we have %(g)W ⊂ W .

Let us now consider a six-dimensional representation of the symmetry group of the
cube, and let you find some invariant subspaces yourself.

Exercise I.30 (Functions on the faces of a cube).
As in Exercise I.8, let F = {u1,−u1, u2,−u2, u3,−u3} (the positive and negative standard
basis vectors in R3), and let G be the group of orientation preserving symmetries of the
cube (a subgroup in the group of orthogonal 3×3 matrices). Let V be the space of complex
valued functions on F , i.e.

V = CF = {φ : F → C} .

(a) For a function φ : F → C and a group element g ∈ G, define %(g)φ : F → C by(
%(g)φ

)
(u) = φ(g−1u) for all u ∈ F

(here we consider u as a vector and g−1 as a matrix, and g−1u is the multiplication of a
vector by a matrix). Show that this defines a representation % of G in V = CF .

(b) Find at least two examples of nontrivial11 invariant subspaces W ⊂ V of the represen-
tation in part (a).
Hint: To find invariant subspaces, you may want to take some sufficiently symmetric looking

functions φ : F → C, and see what is the subspace spanned by all %(g).φ with g ∈ G.

Invariant subspaces naturally inherit representations from the whole space.

Definition I.31 (Subrepresentation).
Suppose that % : G → Aut(V ) is a representation of a group G on a vector
space V , and W ⊂ V is an invariant subspace. For each g ∈ G, the linear
map %(g) : V → V can be restricted to the subspace W , and by the invariance
of this subspace, the restriction %(g)

∣∣
W

=: %̃(g) defines a map %̃(g) : W → W .

This makes %̃ : G → Aut(W ) a representation12, and we correspondingly say
that W is a subrepresentation in V .

3.3. Intertwining maps between representations

If V1, V2 are two vector spaces, then we denote by

Hom(V1, V2) := {T : V1 → V2 linear} (I.7)

11The trivial cases are the zero subspace W = {0} and the entire space W = V .
12The property %̃(gh) = %̃(g) ◦ %̃(h) clearly follows from the corresponding property of %, upon

restriction to W . Also we observe

%̃(e) = %(e)
∣∣
W

= (idV )
∣∣
W

= idW .

Thus as a particular case of the property above, we get

%̃(g) ◦ %̃(g−1) = %̃(gg−1) = %̃(e) = idW

and similarly %̃(g−1) ◦ %̃(g) = idW . This shows that %̃(g) : W → W is invertible, so indeed %̃ takes
values in Aut(W ).
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the space of linear maps from V1 to V2. This is itself a vector space, since linear
combinations of linear maps are linear.

If V1 and V2 are moreover both representations of the same group G, then it makes
sense to ask whether a linear map respect this structure as well.

Definition I.32 (Intertwining map).
Let G be a group, and %1 : G → Aut(V1) and %2 : G → Aut(V2) two represen-
tations of G. A linear map T : V1 → V2 is said to be an intertwining map of
representations of G (or a G-module map) if for all g ∈ G we have

%2(g) ◦ T = T ◦ %1(g).

We denote the space of such intertwining maps by HomG(V1, V2).

Clearly HomG(V1, V2) ⊂ Hom(V1, V2) is a vector subspace.

In the module notation the requirement in Definition I.32 becomes simply13

T (g.v) = g.T (v) for all g ∈ G, v ∈ V .

Definition I.33 (Equivalence of representations).
If an intertwining map f ∈ HomG(V1, V2) is bijective, we call it an equivalence
of representations (or an isomorphism of representations), and we say that the
representations V1 and V2 are equivalent (or isomorphic).

The basic question of representation theory is:

Can we classify all representations of a given group G up to equiv-
alence?

When we restrict attention to finite-dimensional complex representations of a finite
group G, then we indeed achieve a very satisfactory classification later on in this first
part of the course. But before we get there, we need to examine some operations by
which we can build new representations out of given ones.

As for any other structures and maps that respect the structure, we have an iso-
morphism theorem for representations.

Exercise I.34 (Isomorphism theorem for representations).
State and prove the isomorphism theorem for representations of G.
Hint: If T : V1 → V2 is an intertwining map between representations V1 and V2 of G, then what can

be said about Ker(T ) ⊂ V1 and Im(T ) ⊂ V2?

3.4. Operations on representations

Suppose that %V : G→ Aut(V ) and %W : G→ Aut(W ) are two representations of G,
on vector spaces V and W over a field K. Our goal here is to make sense of the
following not only as vector spaces, but as representations of G:

• the direct sum V ⊕W of two representations

13Note, however, that the dot on the left hand side refers to the representation %1 on V1, while
the dot on the right hand side to %2 on V2.
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• the tensor product V ⊗W of two representations
• the space Hom(V,W ) of linear maps between two representations.

The simplest one is direct sums. Recall first that the direct sum of vector spaces V
and W over K is the set {

(v, w)
∣∣ v ∈ V, w ∈ W} (I.8)

of pairs of vectors in the two spaces14, and this set of pairs equipped with the
K-vector space structure where addition and scalar multiplication are performed
coordinatewise,

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), λ(v, w) = (λv, λw).

The vector space thus obtained is denoted V ⊕W .

Definition I.35 (Direct sum of representations).
Suppose that %V : G→ Aut(V ) and %W : G→ Aut(W ) are two representations
of G. For g ∈ G, define %(g) : V ⊕W → V ⊕W by

%(g)(v, w) :=
(
%V (g)v, %W (g)w

)
.

It is easy to see that % : G→ Aut(V ⊕W ) is a representation of G on V ⊕W ,
and we call it the direct sum of representations V and W .

In the module notation, Definition I.35 simply becomes15

g.(v, w) = (g.v, g.w).

Let us next consider tensor products. The notion of tensor product V ⊗W of vector
spaces V and W is reviewed in Appendix A.2, but let us recall that V ⊗W comes
equipped with a bilinear map V ×W → V ⊗W denoted by

(v, w) 7→ v ⊗ w

such that a basis of V ⊗W can be obtained in the form (vi ⊗wj)i∈I,j∈J , if (vi)i∈I is
a basis of V and (wj)j∈J is a basis of W .

Definition I.36 (Tensor product of representations).
Suppose that %V : G→ Aut(V ) and %W : G→ Aut(W ) are two representations
of G. For g ∈ G, define %(g) : V ⊗W → V ⊗W by linear extension of the
formula

%(g)(v ⊗ w) :=
(
%V (g)v

)
⊗
(
%W (g)w

)
.

It is easy to see that % : G→ Aut(V⊕W ) is well-defined, and is a representation
of G on V ⊗W . We call it the tensor product of representations V and W .

In the module notation, Definition I.36 simply becomes16

g.(v ⊗ w) = (g.v)⊗ (g.w).

14In other words the set is the Cartesian product V ×W , but we avoid this notation in the
present context (since it does not correctly generalize to infinite direct sums).

15Note that each of the three dots is actually a shorthand for a different representation!
16As before — each of the three dots hides a different underlying representation.
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The underlying vector space for the last case was already defined in (I.7), so we only
need to equip it with the structure of a representation.

Definition I.37 (The space of linear maps between representations).
Suppose that %V : G→ Aut(V ) and %W : G→ Aut(W ) are two representations
of G, and let Hom(V,W ) be the space of linear maps T : V → W . For g ∈ G,
define %(g) : Hom(V,W )→ Hom(V,W ) by

%(g)T := %W (g) ◦ T ◦ %V (g−1).

One can straightforwardly check that % : G → Aut(Hom(V,W )) is a repre-
sentation of G on Hom(V,W ). We call it the space of linear maps between
representations V and W (or Hom-space of V and W ).

In the module notation, Definition I.37 simply becomes17

(g.T )(v) = g.
(
T (g−1.v)

)
for any v ∈ V .

Duals are a special case of a space of linear maps: for a representation V , the dual V ∗

consists of all linear maps V → K. In this context, we always equip K with the
trivial representation (see Example I.22).

Example I.38 (Dual representation).
Let % : G → Aut(V ) be a representation of a group G on a vector space V . Consider the
dual vector space

V ∗ = Hom(V,K).

By assumption, V carries a representation of G. We also consider K as the trivial rep-
resentation of G: we just have %K(g) = idK for all g ∈ G (see Example I.22). Therefore
Definition I.37 makes also V ∗ = Hom(V,K) a representation by introducing a certain

%′ : G→ Aut(V ∗).

According to the definition, for g ∈ G and φ ∈ V ∗, the dual element %′(g)φ is

%′(g)φ = %K(g) ◦ φ ◦ %(g−1) = φ ◦ %(g−1),

where we took into account the triviality of %K.

To describe the dual representation by a concrete formula, let us denote the values of dual
elements φ ∈ V ∗ on vectors v ∈ V by 〈φ, v〉 ∈ K. Then the above becomes

〈%′(g)φ, v〉 = 〈φ, %(g−1)v〉, (I.9)

or in module notation

〈g.φ, v〉 = 〈φ, g−1.v〉.

There is also a way to understand spaces of linear maps via duals and tensor prod-
ucts: according to Exercise A.8, we can identify the vector spaces

W ⊗ V ∗ ∼= Hom(V,W )

if both V and W are finite-dimensional. But if V and W are representations of G,
then both sides of the above identification can be made representations of G as well.
A priori, these two representations are defined differently, but you can check that
they in fact coincide.

17And once more — three dots, three different representations.
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Exercise I.39 (The relation between representations Hom(V,W ) and W ⊗ V ∗).
Suppose that V and W are finite-dimensional representations of G. Show that the linear
isomorphism

W ⊗ V ∗ ∼= Hom(V,W )

is also an equivalence of representations.

3.5. The subspace of invariants

There is yet one more important operation by which we can construct new repre-
sentations out of old ones, but it is of a slightly different flavor compared to the
ones in Section 3.4. Given any representation V of G, we can form the subspace
of vectors which transform trivially — the subspace of invariants18 in the original
representation.

Definition I.40 (Subspace of invariants).
Let % : G → Aut(V ) be a representation of a group G in a vector space V .
Then the subspace V G ⊂ V defined by

V G :=
{
v ∈ V

∣∣∣ %(g)v = v ∀g ∈ G
}

(I.10)

is called the subspace of invariants in the representation V .

In the module notation, Definition I.40 reads

v ∈ V G ⇐⇒ g.v = v ∀g ∈ G (I.11)

Thus indeed a vector v ∈ V G in the subspace of invariants (an invariant vector)
is not changed in any way by the action of any group element. It follows that
the one-dimensional subspace Kv ⊂ V spanned by any non-zero invariant vector
v ∈ V G \ {0} is a subrepresentation in V , which is a trivial representation in the
sense of Example I.22. Also the subspace V G ⊂ V as a whole is a subrepresentation
which is a trivial representation, but its dimension could be anything from zero (if
no non-zero invariant vectors exist in V ) to something very large (depending on the
representation V ).

Exercise I.41 (Invariants in the defining representation of a symmetric group).
Consider the symmetric group Sn on n letters and its defining n-dimensional representa-
tion Kn (see Example I.26). What is the subspace of invariants (Kn)Sn ⊂ Kn?

The subspace of invariants inside the space Hom(V,W ) of linear maps between rep-
resentations V and W (Definition I.37) is of particular interest due to the following
observation.

Proposition I.42 (Intertwining maps are the invariants in the space of linear maps).
Let %V : G → Aut(V ) and %W : G → Aut(W ) be two representations of G.
Then we have

HomG(V,W ) = Hom(V,W )G. (I.12)

18 To avoid any confusion from similarities in terminology, let us point out that the subspace
of invariants (Definition I.40) can be easily seen to be an invariant subspace (Definition I.29), but
not every invariant subspace is a subspace of invariants.
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Proof. Recall that the intertwining maps at least form a vector subspace HomG(V,W ) ⊂ Hom(V,W )
in the space of all linear maps. We prove the equality (I.12) by proving inclusions in both
directions.

Let us first show HomG(V,W ) ⊂ Hom(V,W )G. So assume that T ∈ HomG(V,W ) is an
intertwining map. Then calculate (in the module notation), for any g ∈ G and v ∈ V

(g.T )(v) = g.T (g−1.v)
?
= T

(
g.(g−1v)

)
= T (e.v) = T (v),

where at ? we used the intertwining property of T . This shows that g.T = T , that is
T ∈ Hom(V,W )G, so we have proven the first inclusion.

It remains to show that HomG(V,W ) ⊃ Hom(V,W )G. So assume that T ∈ Hom(V,W )G,
i.e, T : V → W is a linear map such that g.T = T for all g ∈ G. By definition, g.T is the
linear map V →W , whose value at v′ ∈ V is given by

(g.T )(v′) = g.T (g−1.v′).

Therefore the required equality g.T = T explicitly reads

g.T (g−1.v′) = T (v′)

for any v′ ∈ V . Now for any given v ∈ V we can consider v′ = g.v ∈ V , and from the above
we get

g.T (v) = T (g.v).

This shows that T is intertwining, and proves the other inclusion. �

3.6. Irreducibile representations

Recall that the subrepresentations (Definition I.31) of a given representation corre-
spond to invariant subspaces (Definition I.29).

Example I.43 (Two obvious subrepresentations).
Let % : G→ Aut(V ) be a representation of a group G on a vector space V . The subspaces

{0} ⊂ V and V ⊂ V

are obviously invariant. The corresponding subrepresentations are not particularly enlight-
ening.

If a representation has no other subrepresentations except these obvious ones, then
it can not be broken down to simpler pieces in any meaningful way. Therefore we
define:

Definition I.44 (Irreducible representation).
A representation % : G → Aut(V ) of a group G on a vector space V 6= {0} is
called irreducible if its only invariant subspaces are {0} ⊂ V and V ⊂ V .

There are, of course, situations in which a representation can be broken down to
simpler pieces.

Example I.45 (Subrepresentations in a direct sum).
Let %1 : G→ Aut(V1) and %2 : G→ Aut(V2) be two representations of a group G on vector
spaces V1 and V2. Consider the direct sum (Definition I.35)

V1 ⊕ V2 =
{

(v1, v2)
∣∣∣ v1 ∈ V1, v2 ∈ V2

}
.
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The subspaces {
(v1, 0)

∣∣ v1 ∈ V1

}
⊂ V1 ⊕ V2{

(0, v2)
∣∣ v2 ∈ V2

}
⊂ V1 ⊕ V2

are invariant. The corresponding subrepresentations of V1⊕V2 are isomorphic to V1 and V2,
respectively.

3.7. Complementary subrepresentations

The previous example turns out to be the general case19: any time we find a subrep-
resentation, there is also another complementary subrepresentation such that the
whole is the direct sum of the two parts.

To make this precise, recall first the corresponding idea for vector subspaces. If V
is a vector space and W ⊂ V is a subspace, then another subspace W ′ ⊂ V is said
to be complementary to W if any vector v ∈ V can be uniquely written as

v = w + w′ with w ∈ W, w′ ∈ W ′.

The existence of such decompositions says that W and W ′ together span V , while
the uniqueness amounts to W ∩W ′ = {0}. In such a situation, the map

W ⊕W ′ → V

(w,w′) 7→ w + w′

is a linear isomorphism, so we write

V = W ⊕W ′,

and say that the vector space V is the direct sum of the subspacesW andW ′. We can
then also define a projection π : V → W associated to the direct sum decomposition
V = W ⊕W ′, by defining π(w + w′) = w when w ∈ W and w′ ∈ W ′. Clearly this
projection satisfies π|W = idW , Im(π) = W , and Ker(π) = W ′. Note, however, that
given the original subspace W ⊂ V , the choice of a complementary subspace W ′

(and the corresponding projection) is far from being unique!

Now often the same thing can be done with representations, and the choice of the
complementary subrepresentation is in fact unique!

We assume that G is a finite group, and % : G→ Aut(V ) is a representation of G in
a vector space V over a field K such that:

The characteristic of K does not divide the order of G. (char(K) - |G|)

The assumption on the characteristic of the field is needed so that |G| ∈ K is a
non-zero element, and it has an inverse 1

|G| ∈ K. In particular fields of characteristic

zero such as K = Q,R,C always satisfy this assumption.

Proposition I.46 (Complementary subrepresentation).
Let G be a finite group, and % : G→ Aut(V ) a representation of G in a vector
space V over a field K such that (char(K) - |G|) holds.

Then for any given subrepresentation W ⊂ V , there exists another subrepre-
sentation U ⊂ V such that V ∼= W ⊕ U as representations of G.

19. . . for representations of finite groups in vector spaces over a field whose characteristic does
not divide the order of the group. . .
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Proof. First choose any complementary vector subspace W ′ for W , that is W ′ ⊂ V such that
V = W ⊕W ′ as a vector space. Let π′ : V →W be the canonical projection corresponding
to this direct sum, that is

π′(w + w′) = w when w ∈W , w′ ∈W ′.

Define

π(v) =
1

|G|
∑
g∈G

g.π′(g−1.v).

Observe that Im (π) ⊂ W , since Im (π′) ⊂ W and W is an invariant subspace. Observe
also that π|W = idW , since W is an invariant subspace and π′|W = idW . Together these
observations imply that π is a projection from V to W . If we set U = Ker (π), then at least
V = W ⊕ U as a vector space. To show that U is a subrepresentation, it suffices to show
that π is an intertwining map. This is checked by doing the change of summation variable
g̃ = hg in the following

h.π(v) =
1

|G|
∑
g∈G

hg.π′(g−1.v) =
1

|G|
∑
g∈G

hg.π′
(
g−1h−1h.v

)
=

1

|G|
∑
g̃∈G

g̃.π′
(
g̃−1h.v

)
= π(h.v).

We conclude that U = Ker (π) ⊂ V is a subrepresentation and thus V = W ⊕ U as a
representation. �

Exercise I.47 (Complement of invariants in the defining representation of a symmetric group).
Consider the symmetric group Sn on n letters and its defining n-dimensional representa-
tion Kn (see Example I.26) over a field K of characteristic zero. Recall that there is a
non-zero subspace of invariants (Kn)Sn ⊂ Kn (see Exercise I.41). Find a complementary
subrepresentation U ⊂ Kn to (Kn)Sn .

Exercise I.48 (Complementary subrepresentations on functions on the faces of a cube).
In Exercise I.30 you found some subrepresentations of the space CF of functions on the set F
of faces of a cube, seen as a representation of the group of orientation preserving symmetries
of the cube (Exercise I.8). Find complementary subrepresentations to each of these.

3.8. Complete reducibility

After decomposing a representation into a direct sum of two complementary sub-
representations, one can continue and try to decompose each piece further. By
induction on dimension one gets the following — still under the same assumption
about the characteristic of the ground field.

Corollary I.49 (Complete reducibility).
Let G be a finite group, and % : G→ Aut(V ) a representation of G in a finite-
dimensional vector space V over a field K such that (char(K) - |G|) holds.

Then, as representations, we have

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn,

where each subrepresentation Vj ⊂ V , j = 1, 2, . . . , n, is an irreducible repre-
sentation of G.
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3.9. Schur’s lemmas

We now state three related results which say that there is not much freedom in con-
structing intertwining maps between irreducible representations. These are known
as Schur’s lemmas, and they are a fundamentally important basic tool in represen-
tation theory. The general version is the following.

Lemma I.50 (Schur’s lemma).
If V and W are irreducible representations of a group G, and T : V → W is
an intertwining map, then either T = 0 or T is an isomorphism.

Proof. If we have a nontrivial kernel Ker (T ) 6= {0}, then by irreducibility of V , the subrepresen-
tation Ker (T ) ⊂ V has to be the whole space, Ker (T ) = V . In this case we have T = 0.

If, on the other hand, Ker (T ) = {0}, then T is injective and by irreducibility of W , the
non-zero subrepresentation Im (T ) ⊂W has to be the whole space, Im (T ) = W . Therefore
T is also surjective, and thus an isomorphism. �

From the general statement of Lemma I.50 we know that no non-zero intertwin-
ing maps exist between non-isomorphic irreducible representations. The remaining
question therefore is about the intertwining maps between isomorphic irreducibles —
or equivalently from one irreducible to itself.

For the remaining two formulations of Schur’s lemma, we make an assumption about
the ground field K — we assume that the field K is algebraically closed :

Every non-constant polynomial p(x) ∈ K[x] has a root. (AlgClos)

By far the most commonly used algebraically closed field is the field K = C of
complex numbers.20 The formulations moreover assume the representations to be
finite-dimensional. To undersdand the role of these assumptions, note the following
implication. For a square matrix A ∈ Kn×n over an algebraically closed field K, the
characteristic polynomial pA(x) := det(x I−A) of A has a root, and therefore A has
at least one eigenvalue λ ∈ K.

Lemma I.51 (Schur’s lemma over albegraically closed fields).
Let G be a group, and % : G→ Aut(V ) an irreducible representation of G in a
finite-dimensional vector space V over a field K such that (AlgClos) holds.

Then any intertwining map T : V → V is necessarily of the form T = λ idV
for some λ ∈ K.

Proof. Since K is algebraically closed, there exists an eigenvalue λ ∈ K of T . This implies that
Ker(T −λ idV ) 6= {0}, and by irreducibility of V , the subrepresentation Ker(T −λ idV ) ⊂ V
has to be the whole space, Ker(T −λ idV ) = V . In other words, we have T −λ idV = 0, and
the assertion follows. �

Corollary I.52 (Schur’s lemma for dimension of intertwining maps).
Let G be a group, and %V : G→ Aut(V ) and %W : G→ Aut(W ) two irreducible
representations of G in finite-dimensional vector spaces V and W over a field K
such that (AlgClos) holds.

20The Fundamental theorem of algebra states that every non-constant polynomial with com-
plex coefficients has a root in the complex plane. A proof of this fact is usually provided in courses
of complex analysis or algebra.
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Then the dimension of the space of intertwining maps between these irreducible
representations is given by

dim
(

HomG(V,W )
)

=

{
1 if V ∼= W

0 if V 6∼= W.

Proof. The case V 6∼= W is a direct consequence of Lemma I.50, and the case V ∼= W follows from
Lemma I.51. �

Exercise I.53 (Irreducible representations of abelian groups).
Let G be an abelian (=commutative) group. Show that any irreducible representation of G
is one dimensional. Conclude that (isomorphism classes of) irreducible representations can
be identified with group homomorphisms G→ C∗.

Exercise I.54 (Irreducible representations of finite cyclic groups).
Let Cn ∼= Z/nZ be the cyclic group of order n, i.e. the group with one generator c and
relation cn = e. Find all irreducible representations of Cn.
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4. Character theory for representations of finite groups

Throughout this Section 4, we make the following assumptions:

• The ground field is C.
• The group G is finite.
• We consider only finite-dimensional representations of G.

In particular the assumptions (char(K) - |G|) and (AlgClos) about the ground field
that were occasionally used, are valid. The above assumptions are also sufficient
for complete reduciblity (Corollary I.49), and all formulations of Schur’s lemmas
(Lemma I.50, Lemma I.51, and Corollary I.52).

A very practical and powerful tool for representation theory in this setup is charac-
ters of representations, which will be the topic of this section.

4.1. Characters: definition and first examples

Definition I.55 (Character).
The character of a representation % : G→ Aut(V ) is the function χV : G→ C
defined by

χV (g) = tr
(
%(g)

)
for g ∈ G.

Observe that for the neutral element e ∈ G one necessarily has %(e) = idV , and
since tr(idV ) = dim(V ), this implies

χV (e) = dim (V ) . (I.13)

Therefore the character contains the information about the dimension of the rep-
resentation, and can indeed be seen as a rather natural generalization of just the
dimension.

Observe also that if two group elements g1, g2 ∈ G are conjugates, g2 = hg1h
−1 for

some h ∈ G, then the cyclicity of trace21 gives

χV (g2) = tr
(
%(g2)

)
= tr

(
%(h) %(g1) %(h)−1

)
= tr

(
%(g1) %(h)−1 %(h)

)
= tr

(
%(g1)

)
= χV (g1).

Therefore the value of a character is constant on each conjugacy class of G. We call
any function G → C which is constant on each conjugacy class a class function,
and a major goal for this section is to prove that the characters of the irreducible
representations of G form an orthonormal basis of the space of class functions, when
this space is equipped with a suitable inner product.

Example I.56 (Character of the defining representation of D3).
Consider the dihedral group D3, and its two-dimensional representation introduced in Ex-
ample I.28. We can obviously view it also as a representation defined over C, so that the
vector space is V = C2, and the representation

% : D3 → Aut(V ) ∼= GL2(C)

21The cyclicity of trace is the property tr(AB) = tr(BA) for any A,B ∈ Cn×n.



4. CHARACTER THEORY FOR REPRESENTATIONS OF FINITE GROUPS 23

is determined by the values on the generators r,m ∈ D3.

%(r) =

[
−1/2 −

√
3/2√

3/2 −1/2

]
, %(m) =

[
1 0
0 −1

]
.

The group D3 consists of six elements,

D3 =
{
e, r, r2,m,mr,mr2

}
,

and it is straightforward to check that the conjugacy classes in D3 are

{e} ,
{
r, r2

}
,

{
m,mr,mr2

}
.

Since the character values are the same within each conjugacy class, it suffices to calculate
χV (g) for just one g in each of these. From the explicit matrices given above, we find

χV (e) = tr

([
1 0
0 1

])
= 2,

χV (r) = tr

([
−1/2 −

√
3/2√

3/2 −1/2

])
= −1,

χV (m) = tr

([
1 0
0 −1

])
= 0.

Let us furthermore observe the following.

Lemma I.57 (Diagonalizability of representation matrices).
Let G be a finite group of order n := |G|, and let % : G → Aut(V ) be a
representation of G. Then for any g ∈ G, the linear map %(g) : V → V is
diagonalizable, and all its eigenvalues λ are roots of unity of order n, i.e., they
satisfy λn = 1.

Proof. Fix g ∈ G. The order m of g divides the order n of the group G. From gm = e we get

%(g)m = %(gm) = %(e) = idV .

Therefore the minimal polynomial of %(g) divides the polynomial xm−1. The roots of xm−1
are simple, so %(g) is diagonalizable (it has no Jordan blocks of size greater than one).
Also all the eigenvalues λ of %(g) then satisfy λm = 1, and since m | n, this implies in
particular λn = 1. �

In view of Lemma I.57, we see that the character value χV (g) is also the sum of
eigenvalues of %(g) : V → V , counted with multiplicity.

Example I.58 (Character of the defining representation of D3 revisited).
In Example I.56 we calculated the character of the defining representation of D3. We can
also see that the rotation r is represented by the matrix

%(r) =

[
−1/2 −

√
3/2√

3/2 −1/2

]
,

whose (complex) eigenvalues are ei2π/3 and e−i2π/3. We thus recover

χV (r) = ei2π/3 + e−i2π/3 = 2 cos(2π/3) = −1.

Similarly the reflection m ∈ D3 is represented by a matrix with two eigenvalues, +1 and −1,
so %V (m) = +1− 1 = 0.

All of the eigenvalues here were, of course, sixth roots of unity, in accordance with |D3| = 6.

The characters of permutation representations are generally described in the follow-
ing.
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Example I.59 (Character of a permutation representation).
Let α : G → S(X) be an action of a group G on a set X, denoted by g 7→ αg. By
Exercise I.25, the vector space V with basis (ux)x∈X has a permutation representation such
that

%(g)ux = uαg(x) for all g ∈ G, x ∈ X.

The matrix of %(g) in this basis has only zeroes and ones as its entries, and in particular
the diagonal entry corresponding to the index x ∈ X equals one if αg(x) = x and zero
otherwise. The trace tr(%(g)) therefore becomes the number of those x ∈ X which are fixed
by the action of g ∈ G, i.e., we have

χV (g) = #
{
x ∈ X

∣∣ αg(x) = x
}
.

Example I.60 (Character of the regular representation).
The regular representation C[G] of a group G is a particular case of a permutation represen-
tation, see Example I.27. It is associated with the action αg(h) = gh of the group on itself
by left multiplication. For a group element g 6= e, there exists no h ∈ G such that gh = h
(right multiply by h−1 to see this), so the action of such g has no fixed points. For g = e,
we obviously have eh = h for all h ∈ G, so all elements are fixed by the action of e. The
formula of the previous example therefore gives in particular

χC[G](g) =

{
|G| if g = e

0 if g 6= e.
(I.14)

4.2. Characters of duals, tensor products, and direct sums

Given two representations V and W of G, we have seen how to make the dual V ∗

a representation, how to make direct sum V ⊕ W a representation, and how to
make the tensor product V ⊗ W a representation (Example I.38, Definition I.35,
and Definition I.36, respectively).

Let us now see how these operations affect characters.

Theorem I.61 (How characters are affected by operations).
Let V,W be representations of G. Then for any g ∈ G we have

(i) χV ∗(g) = χV (g)
(ii) χV⊕W (g) = χV (g) + χW (g)

(iii) χV⊗W (g) = χV (g)χW (g).

Proof of (i): Fix g ∈ G. By Lemma I.57, we can choose a basis (vi)
n
i=1 of eigenvectors of

%V (g) : V → V . Denote the corresponding eigenvalues by (λi)
n
i=1 so that

%V (g)vi = λi vi for i = 1, . . . , n.

These eigenvalues can be used to express the character value as

χV (g) =

n∑
i=1

λi.

We must relate this character value to a value of the character of the dual representation V ∗.
Let (φj)

n
j=1 be the dual basis to (vi)

n
i=1, i.e., the basis of V ∗ defined by

〈φj , vi〉 = δi,j =

{
1 if i = j

0 if i 6= j
for i, j = 1, . . . , n.
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By the definition of the dual representation, the dual element g.φj ∈ V ∗ satisfies

〈%V ∗(g)φj , vi〉 = 〈φj , %V (g−1)vi︸ ︷︷ ︸
=λ−1

i vi

〉 = λ−1
i 〈φj , vi〉 = λ−1

i δi,j = λ−1
j δi,j ,

so we see that %V ∗(g)φj = λ−1
j φj . But since |λj | = 1 (the eigenvalues are roots of unity),

we have λ−1
j = λj . These are therefore the eigenvalues of %V ∗(g) : V ∗ → V ∗, and we can

express the character value as

χV ∗(g) =

n∑
j=1

λj = χV (g).

Proof of (ii): We leave the details as an exercise to the reader.

Proof of (iii): Fix g ∈ G. Choose a basis (vi)
n
i=1 of eigenvectors of %V (g) : V → V , and a basis

(wj)
m
j=1 of eigenvectors of %W (g) : W → W . Denote the corresponding eigenvalues of the

former by (λi)
n
i=1 and the latter by (µj)

m
j=1, so that

%V (g)vi = λi vi for i = 1, . . . , n

%W (g)wj = µj wj for j = 1, . . . ,m.

Now the collection vi ⊗ wj indexed by pairs (i, j) is a basis of the tensor product V ⊗W .
Directly from the definition of tensor product representation, we find that

%(g)(vi ⊗ wj) =
(
%V (g)vi

)
⊗
(
%W (g)wj

)
=
(
λivi

)
⊗
(
µjwj

)
= λiµj (vi ⊗ wj).

Thus we have found the eigenvalues of %(g) : V ⊗W → V ⊗W , and we can use them to
write the character value as

χV⊗W (g) =

n∑
i=1

m∑
j=1

λiµj =
( n∑
i=1

λi

) ( m∑
j=1

µj

)
= χV (g)χW (g).

�

The following example application will be important soon.

Example I.62 (Character of the representation of linear maps).
Let V and W be two representations of G, and consider the representation Hom(V,W ) of
linear maps from V to W as in Definition I.37. In Exercise I.39 it was shown that this
representation is isomorphic to

Hom(V,W ) ∼= W ⊗ V ∗.

As an application of Theorem I.61, we therefore get that the character of this representation
is given by

χHom(V,W )(g) = χW (g)χV (g).

4.3. Dimension of the subspace of invariants

For V a representation of G, recall from Definition I.40 that

V G =
{
v ∈ V

∣∣ g.v = v ∀g ∈ G
}

is called the subspace of invariants in V . We next describe an easy way to find
this subpace by a projection. This simple idea turns out to have some profound
consequences in character theory.
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Proposition I.63 (Projection to the subspace of invariants).
Let % : G→ Aut(V ) be a representation of G. Define a linear map π on V by
the formula

π(v) =
1

|G|
∑
g∈G

%(g)v for v ∈ V. (I.15)

Then this map π is a projection V → V G.

Proof. If v ∈ V G, then g.v = v for all g, so clearly we have π(v) = v. This shows that π|V G = idV G .
On the other hand, for any h ∈ G and v ∈ V , use the change of variables g̃ = hg to calculate

h.π(v) =
1

|G|
∑
g∈G

hg.v =
1

|G|
∑
g̃∈G

g̃.v = π(v),

from which we conclude π(v) ∈ V G. This shows that Im (π) ⊂ V G. Together these two
observations show that π : V → V G is a projection. �

Thus we have an explicitly defined projection to the subspace of invariants. In
particular we can find the dimension of this subspace with the help of the projection.

Proposition I.64 (Dimension of the subspace of invariants).
Let % : G→ Aut(V ) be a representation of G. Then we have

dim(V G) =
1

|G|
∑
g∈G

χV (g).

Proof. Let π : V → V G be the map defined by (I.15). Since π is a projection onto the subspace of
invariants V G, its trace is the dimension of this subspace, tr(π) = dim(V G). On the other
hand, π is explicitly a linear combination of the maps %(g) : V → V , so its trace is a linear
combination of character values

tr(π) =
1

|G|
∑
g∈G

χV (g).

The equality of these two expressions for tr(π) proves the assertion. �

Example I.65 (Dimension of invariants in the space of linear maps).
Let V and W be two representations of G, and consider the representation Hom(V,W ) in
Definition I.37. The character of this representation was found in Example I.62 to be

χHom(V,W )(g) = χV (g)χW (g).

By application of Proposition I.64 to this case, we find

dim
(

Hom(V,W )G
)

=
1

|G|
∑
g∈G

χV (g)χW (g). (I.16)

Recall that functions G → C which are constant on each conjugacy class of G are
called class functions . It is natural22 to define and inner product on the space of all
functions G→ C by

(φ, ψ) :=
1

|G|
∑
g∈G

φ(g)ψ(g) for φ, ψ : G→ C. (I.17)

22For this inner product, the delta-functions at single elements of the group are orthogonal,
and the constant function 1 has unit norm. (Moreover, the inner product has a natural invariance
under “translations”.)
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Note that our convention is that the inner product is linear in the second argument
and conjugate-linear in the first argument.23

Corollary I.66 (Dimension of the space of intertwining maps).
Let V and W be two representations of G. Then the dimension of the space
HomG(V,W ) of intertwining maps is the inner product of characters

dim
(

HomG(V,W )
)

= (χV , χW ). (I.18)

Proof. Recall from Proposition I.42 that HomG(V,W ) = Hom(V,W )G. The dimension of the right
hand side was found in Example I.65. But the formula (I.16) for its dimension is just the
inner product (I.17) of χV and χW . �

4.4. Irreducible characters

Corollary I.66 says something very interesting about the characters of irreducible
representations.

Theorem I.67 (Orthonormality of characters of irreducible representations).

(i) If V and W are irreducible representations of G, then

(χV , χW ) =

{
1 if V ∼= W

0 otherwise.

In particular, the character χV of an irreducible representation V is suffi-
cient to determine V up to isomorphism.

(ii) The characters of (non-isomorphic) irreducible representations of G are
linearly independent.

(iii) The number of (isomorphism classes of) irreducible representations of G is
at most the number of conjugacy classes of G.

Remark I.68. In fact there is an equality in (iii), the number of irreducible representations of a
finite group is precisely the number of its conjugacy classes. This will be proven later.

Proof of Theorem I.67. By Schur’s lemma, for irreducible representations V and W , we have

dim
(

HomG(V,W )
)

=

{
1 if V ∼= W

0 otherwise.

Assertion (i) therefore follows from Corollary I.66. The linear independence assertion (ii)
also follows at once, since orthonormal elements are linearly independent. The dimension of
the space of all class functions G→ C (functions which are constant on each conjugacy class)
is the number of conjugacy classes of the group G, so this is an upper bound on the number
of linearly independent class functions. Since characters are class functions, assertion (iii)
follows from (ii). �

In view of Theorem I.67, the information about the characters of the finite list of
(mutually non-isomorphic) irreducible representations of a group G can be naturally
collected in a table, whose rows are indexed by these irreducible representations,
columns are indexed by the conjugacy classes, and the entries give the value of

23This is the convention used by virtually all physicists, and we also prefer that the functional
ψ 7→ (φ, ψ) defined by φ is linear (rather than conjugate-linear).
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the character of the representation on the conjugacy class. Such a summary of the
irreducible characters is known as the character table of the group G.

Example I.69 (Character table of S3).
Consider the symmetric group S3 on three letters. The conjugacy classes are

{e}︸︷︷︸
neutral elem.

, {(12), (13), (23)}︸ ︷︷ ︸
transpositions

, {(123), (132)}︸ ︷︷ ︸
three-cycles

.

We know two one-dimensional representations of S3 from Examples I.22 and I.23: the trivial
representation U = C with %U (σ) = idU and the alternating representation U ′ = C with
%U ′(σ) = sgn(σ) idU ′ . The characters χU and χU ′ are of course simply

χU (σ) = 1 and χU ′(σ) = sgn(σ) for σ ∈ S3.

By observing that S3 is in fact isomorphic to the dihedral group D3 (every permutation of
the vertices A,B,C of an equilateral triangle can be achieved by some symmetry g ∈ D3 of
the triangle), we get from Example I.28 a two-dimensional representation V = C2 of S3. The
isomorphism D3

∼= S3 maps the rotation r ∈ D3 to a three-cycle, and the reflection m ∈ D3

to a transposition, so the calculations in Example I.56 readily give the character χV of V as
well. One can also show24 that V is an irreducible representation of S3.

Above we have three irreducible representations U,U ′, V of S3. Since the number of con-
jugacy classes of S3 is also three, there can not be any other irreducible representations
besides these. The character values are listed in the following table for one representative
in each conjugacy class:

e (12) (123)

χU 1 1 1
χU ′ 1 −1 1
χV 2 0 −1

The assertions of Theorem I.67 can be seen in this example by direct inspection. The order of
the group is |S3| = 3! = 6. The conjugacy classes of e, (12), and (123) contain respectively
1, 3, and 2 elements, so for example the pairwise orthogonality of irreducible characters
amounts to

(χU , χU ′) =
1

6

(
1× 1× 1 + 3× 1× (−1) + 2× 1× 1

)
=

1− 3 + 2

6
= 0

(χU , χV ) =
1

6

(
1× 1× 2 + 3× 1× 0 + 2× 1× (−1)

)
=

2 + 0− 2

6
= 0

(χU ′ , χV ) =
1

6

(
1× 1× 2 + 3× (−1)× 0 + 2× 1× (−1)

)
=

2− 0− 2

6
= 0

and the unit norms property of these characters amounts to

(χU , χU ) =
1

6

(
1× 12 + 3× 12 + 2× 12

)
=

1 + 3 + 2

6
= 1

(χU ′ , χU ′) =
1

6

(
1× 12 + 3× (−1)2 + 2× 12

)
=

1 + 3 + 2

6
= 1

(χV , χV ) =
1

6

(
1× 22 + 3× 02 + 2× (−1)2

)
=

4 + 0 + 2

6
= 1.

Exercise I.70 (Character table of the dihedral group D4).
Let D4 be the dihedral group of order 8, generated by r,m subject to relations r4 = e,
m2 = e and mrm = r−1.

(a) Show that the conjugacy classes of D4 are

{e} ,
{
r, r3

}
,
{
r2
}
,
{
m,mr2

}
,
{
mr,mr3

}
.

24The irreducibility of V can either be checked directly, or follows from the calculation of the
norm (χV , χV ) = 1 combined with Theorem I.72(iv) below.
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(b) Compute the character of the 2-dimensional representation of D4 defined by

r 7→
[

0 1
−1 0

]
and m 7→

[
1 0
0 −1

]
,

and use the result to conclude that this representation is irreducible.
(c) Find four non-isomorphic one-dimensional complex representations of D4.
(d) Check that the characters of the five irreducible representations given in parts (b) and (c)

form an orthonormal basis of the set of class functions on D4. Write down the character
table of D4.

(e) Let V be the 2-dimensional representation as in part (b). Calculate the character of
the tensor product representation V ⊗ V , and use this to infer what kinds of irreducible
subrepresentations V ⊗ V has.

In the following exercise we use the fact that the number of irreducible representa-
tions equals the number of conjugacy classes.

Exercise I.71 (Another orthogonality relation for irreducible characters).
Let G be a finite group. Denote the set of its conjugacy classes by G], and the set of its

irreducible complex representations by Ĝ. Using the orthogonality relation for irreducible

characters χα, α ∈ Ĝ,

1

|G|
∑
C∈G]

|C| χα(C)χβ(C) = δα,β for α, β ∈ Ĝ,

prove the following: for any C,D ∈ G] we have∑
α

χα(C)χα(D) =

{
|G|/|C| if C = D

0 if C 6= D.

Hint: Use the irreducible characters to define linear maps between the vector spaces CG
]

and CĜ.

Interpret the orthogonality relation as telling how to invert such a map.

4.5. Multiplicities of irreducibles in a representation

Fix a finite group G. Let (Wα)sα=1 denote the (finite) collection of (isomorphism
classes of) its irreducible representations. We know that the number s of members
of this collection is at most the number of conjugacy classes (and later will see that
there is, in fact, an equality).

Let V be a representation of G. By completer reducibility, Corollary I.49, one can
write V as a direct sum of irreducible representations. If we order these direct
summands suitably, we get

V ∼= W1 ⊕ · · · ⊕W1︸ ︷︷ ︸
m1 copies

⊕W2 ⊕ · · · ⊕W2︸ ︷︷ ︸
m2 copies

⊕ · · · ⊕Ws ⊕ · · · ⊕Ws︸ ︷︷ ︸
ms copies

.

It is convenient to abbreviate this as

V ∼=
s⊕

α=1

mαWα.

The number mα of times that Wα appears as a direct summand here is called the
multiplicity of Wα in V .

Theorem I.72 (Multiplicities via characters).
In the setup above, we have the following:
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(i) The multiplicities are given by mα = (χWα , χV ). Explicitly, this reads

mα =
1

|G|
∑
g∈G

χWα(g)χV (g).

(ii) The character χV determines the representation V up to isomorphism.
(iii) We have (χV , χV ) =

∑s
α=1m

2
α. Explicitly, this can be written as

1

|G|
∑
g∈G

|χV (g)|2 =
s∑

α=1

m2
α.

(iv) The representation V is irreducible if and only if (χV , χV ) = 1. Explicitly,
this condition characterizing irreducibility amounts to

1

|G|
∑
g∈G

|χV (g)|2 = 1.

Proof. By Proposition I.61, the character of V is given by χV (g) =
∑
αmα χWα

(g). Now (i) is
obtained by taking in this equality the inner product with χWα

and using the orthonormality
of irreducible characters from Theorem I.67(i). In particular we obtain the (anticipated) fact
that in complete reducibility the direct sum decomposition is unique up to permutation of
the irreducible summands, and (ii) follows. Also (iii) is a consequence of χV =

∑
αmα χWα

and orthonormality. Finally, (iv) is obvious in view of (iii). �

Example I.73 (Multiplicities in the regular representation).
The regular representation C[G] of a group G was defined in Example I.27, and its character

χC[G](g) =

{
|G| if g = e

0 if g 6= e.

was found in Example I.60. Let (Wα)sα=1 denote the collection of irreducible representations
of G, and consider the multiplicities (mα)sα=1 of these irreducible representations in the
regular representation,

C[G] ∼=
s⊕

α=1

mαWα.

We can calculate these multiplicities by Theorem I.72(i) and the formula for the charac-
ter χC[G], and we get

mα =
1

|G|
∑
g∈G

χWα(g)χC[G](g) =
1

|G|
χWα(e) |G| = dim(Wα).

In other words, each irreducible representation of G appears in the regular representa-
tion C[G], and its multiplicity equals its dimension, mα = dim(Wα).

Corollary I.74 (Sum of squares of dimensions of irreducibles).
For a finite group G, we have∑

α

dim(Wα)2 = |G|, (I.19)

where the sum on the left hand side is over the (isomorphism classes of) irre-
ducible representations of G.

Proof. Consider the dimensions of both sides of the formula C[G] ∼=
⊕

αmαWα, and take into
account the conclusion mα = dim(Wα) of Example I.73. �
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Example I.75 (Dimensions of irreducible representations of S4).
Equation (I.19) can give useful and nontrivial information. Consider for example the
group S4, whose order is |S4| = 4! = 24. Since there are five conjugacy classes (iden-
tity, transposition, two disjoint transpositions, three-cycle, four-cycle), we know that the
number s of irreducible representations of S4 is at most five, s ≤ 5. We have seen the trivial
and alternating representations of S4. Let us denote these by W1 and W2, respectively, and
the rest of the irreducible representations by Wα, α = 3, . . . , s. Let us also denote the dimen-
sions briefly dα := dim(Wα), and observe that the trivial and alternating representations
are one-dimensional, d1 = 1, d2 = 1. The sum of squares formula (I.19) now says

12 + 12 +

s∑
α=3

d2
α = 24,

which of course implies
s∑

α=3

d2
α = 22.

One thing we learn immediately is that there must exist other irreducible representations
besides the trivial W1 and the alternating W2, since the sum above is at least non-zero. For
the number of irreducibles, this means s ≥ 3. But 22 is not a prefect square, so there must
in fact be more than one other irreducible, i.e., s ≥ 4. A little more thinking shows that 22
is not even the sum of two squares, so in fact s ≥ 5, and therefore we must have s = 5 and

d2
3 + d2

4 + d2
5 = 22.

A little examination shows that the only way to write 22 as a sum of three squares is
22 = 22 + 32 + 32, so we see that the three remaining irreducible representations have
dimensions 2, 3, 3. Up to relabeling the irreducibles, we have proven that the dimensions of
the irreducible representations of S4 are

dim(W1) = 1, dim(W2) = 1, dim(W3) = 2, dim(W4) = 3, dim(W5) = 3.

Exercise I.76 (Character table of S4).
The purpose of this exercise is to reconstruct the full character table of S4. We already
know the trivial and alternating representations, W1 and W2, and we know the dimensions
of the remaining irreducible representations W3, W4, W5 from Example I.75.

(a) Guided by Exercise I.47, find a three-dimensional subrepresentation inside the four-
dimensional defining representation of S4, calculate its character, and conclude that it
is irreducible. Denote this irreducible representation by W4.

(b) Calculate the character of W2 ⊗ W4 and conclude that it is irreducible. Denote this
irreducible representation by W5.

It remains to find only one more irreducible representation, W3 of dimension dim(W3) = 2.
Consider the following two alternative strategies:

(c) Use orthonormality of the irreducible characters to fill in the missing row χW3 of the char-
acter table (orthonormality only determines the missing row up to a complex scalar mul-
tiple of absolute value 1, but this factor is determined by the observation that χW3

(e) =
dim(W3) is real and positive).

(c’) Calculate the character of W4 ⊗W4. Find the multiplicities of W1, W2, W4, W5 in it.
Show that W4⊗W4 contains also a non-zero subrepresentation in the complement of the
direct sum of copies of W1, W2, W4, W5. Calculate the character of this non-zero sub-
representation and conclude that it is irreducible. Denote this irreducible representation
by W3.

Write down the full character table of S4.

Let G be a finite group. Its group algebra C[G] is the vector space with basis (ug)g∈G
equipped with the product ug uh = ugh (extended bilinearly).
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The following exercise characterizes the center of the group algebra C[G], and fin-
ishes the proof that the number of irreducible representations equals the number of
conjugacy classes.

Exercise I.77. Recall that the center of an algebra A is the set Z ⊂ A of elements that commute
with the whole algebra, i.e.

Z =
{
z ∈ A

∣∣ za = az ∀a ∈ A
}
.

In the following, consider A = C[G], the group algebra of a finite group G.

(a) Show that the element

a =
∑
g∈G

α(g)ug ∈ A

is in the center of the group algebra if and only if α(g) = α(hgh−1) for all g, h ∈ G.
(b) Suppose that α : G → C is a function which is constant on each conjugacy class, and

suppose furthermore that α is orthogonal (with respect to the inner product (ψ, φ) =

|G|−1
∑
g∈G ψ(g)φ(g)) to the characters of all irreducible representations of G. Show

that for any representation % : G → Aut(V ) the map
∑
g α(g)%(g) : V → V is the zero

map. Conclude that α has to be zero.
(c) Using (b) and the results from the lectures, show that the number of irreducible repre-

sentations of the group G is equal to the number of conjugacy classes of G
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1. Matrix Lie groups

1.1. Continuous symmetries

We now turn to continuous symmetries. Like any other symmetries, they should be
described by groups — but now by groups with a topology so that one can speak
of continuity. Moreover, the most useful types of continuous symmetries are such
that one can perform calculus with them. This requires not only a topology, but
also the structure of a smooth manifold. A set G which is simultaneously a group
and a smooth manifold, in such a way that the two structures are compatible with
each other1, is called a Lie group. One could approach the theory starting from this
abstract definition, but it requires some background in differential geometry, and it
takes some time to establish some of the basic properties. It turns out that most
Lie groups of interest2 are in fact groups of suitable matrices, so we choose to limit
our attention to these. In order to avoid conflict (albeit mild) with the general and
established mathematical terminology, we will use the term matrix Lie group for
these slightly less general objects.

In summary, besides their group structure, the key features of Lie groups are their
differentiable structure enabling calculus, and their topological structure. The most
essential topological features concern the Lie group globally. Especially the topolog-
ical notions of connectedness3, simply-connectedness4, and compactness turn out to
be extremely consequential for Lie groups. The differentiable structure, on the other
hand, concerns how the Lie groups appear locally, or in fact infinitesimally near the
neutral element. We will see how to neatly capture the infinitesimal structure of a
Lie group by its Lie algebra. This largely reduces the study of Lie groups to the
much more straightforward linear algebraic study of their Lie algebras.

Lie groups also have a (topological / differential geometric) notion of dimension.
In most cases this is quite intuitive: the dimension is the “number of independent
directions to which one can continuously move within the group”. As we avoid
referring to differential geometry of smooth manifolds explicitly, the easiest precise
definition of the dimension will be in terms of the Lie algebra (which is a vector
space and therefore has a familiar notion of dimension). We do, however, encourage
the reader to think about the dimension of Lie groups intuitively already before its
precise definition.

1.2. Matrix Lie groups: definition and examples

We now give some examples of continuous groups. We will revisit many of these
examples in more detail later.

The most fundamental of all such examples is the following.

1Compatibility of the group structure and smooth structure requires that the group multipli-
cation G×G→ G, (g, h) 7→ gh, and the inverse G→ G, g 7→ g−1, are smooth functions.

2For example, all compact Lie groups are literally matrix groups or obtained from matrix
groups by topological coverings.

3If a Lie group is not connected, the fruitful approach is to study the connected components.
4If a connected Lie group is not simply-connected, the fruitful approach is to study its universal

cover — a simply connected space of which the original Lie group is a quotient.
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Example II.1 (The general linear group GLn(R)).
The set of n× n invertible real matrices

GLn(R) =
{
g ∈ Rn×n

∣∣∣ det(g) 6= 0
}

forms a group, called the general linear group. This group is naturally viewed as an open
subset

GLn(R) ⊂ Rn×n ∼= Rn
2

of the n2-dimensional real vector space Rn×n: indeed it is the preimage

GLn(R) = det−1
(
R \ {0}

)
of the open subset R \ {0} ⊂ R under the continuous function

det : Rn×n → R

(the determinant is a polynomial in the matrix entries, therefore in particular continuous).
Consequently, GLn(R) should clearly be thought of as a “continuous group” on which “dif-
ferential calculus makes sense”.5 It is intuitively clear that the dimension of GLn(R) should
be n2: the general linear group being an open subset in Rn×n, there are n2 independent di-
rections to which we can vary any given matrix (by at least a small amount) while remaining
within the group. For a smooth function f : GLn(R)→ R defined on this group, the partial
derivatives in these directions are exactly the derivatives with respect to the matrix entries,

∂

∂gij
f(g), i, j = 1, . . . , n.

In general, one defines a Lie subgroup of a Lie group G to be a subgroup G′ ⊂ G
which is also a closed subset. It is possible to show that such a closed subgroup G′

inherits a manifold structure from the Lie group G, and thus itself becomes a Lie
group. We will not prove this fact, but the ideas of the proof are largely contained
in Von Neumann’s theorem about closed subgroups of GLn(R), which we will prove
later. This fact does, nevertheless, motivate the following definition.

Definition II.2 (Matrix Lie group).
A matrix Lie group is a subgroup

G ⊂ GLn(R) (for some n ∈ N)

which is also a closed subset.

We are immediately ready for a number of examples.

Example II.3 (The special linear group SLn(R)).
The set of n× n real matrices with determinant one

SLn(R) =
{
g ∈ Rn×n

∣∣∣ det(g) = 1
}

is a subgroup of GLn(R) called the special linear group. The subgroup property is easy to
check directly, but we will establish it below through a different observation.

5Note that the operations of multiplication and inverse in the general linear group are
smooth maps (i.e., infinitely differentiable, C∞). Indeed the product of two group elements
g = (gij)

n
i,j=1, h = (hij)

n
i,j=1 ∈ GLn(R) is the matrix gh whose entries (gh)ij =

∑n
k=1 gikhkj

are polynomials (hence smooth) in the entries of g and h. Likewise, the inverse g−1 of g has entries
which are rational functions (hence smooth) in the entries of g. Thus the group multiplication and
inverse can be studied by means of differential calculus.
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In order to see that the special linear group is a matrix Lie group, we should in addition verify
that it is SLn(R) ⊂ GLn(R) is a closed subset. For this, note again that the determinant
det : Rn×n → R is a continuous function, so SLn(R) is indeed closed as the preimage

SLn(R) = det−1({1})

of the closed subset {1} ⊂ R. We can also view the determinant as defined only on the
subset GLn(R) ⊂ Rn×n, where it becomes a group homomorphism det : GLn(R) → R×.
The above observation therefore also implies that SLn(R) = det−1({1}) = Ker(det) is a
(normal) subgroup of GLn(R).

The special linear group is a continuous group, although we must vary matrix entries care-
fully to ensure that the determinant doesn’t change: the condition of determinant equals
one reduces the dimension by one, and we will see that SLn(R) is (n2 − 1)-dimensional.

Example II.4 (The group Bn(R) of upper triangular matrices).
The set of n× n invertible upper triangular real matrices

Bn(R) =
{
g ∈ Rn×n

∣∣∣ ∀i > j : gij = 0, ∀i : gii 6= 0
}

is a subgroup of GLn(R). Indeed, the inverse of an invertible upper triangular matrix is
upper triangular, and the product of two upper triangular matrices is upper triangular.

In order to see it is a matrix Lie group, we should verify closedness. An easy way is to notice
that if a sequence (g(m))m∈N in Bn(R) ⊂ GLn(R) converges to a limit g in GLn(R), then

the limit g must be upper triangular (for i > j indeed gij = limm→∞ g
(m)
ij = 0) and have

non-zero diagonal entries (otherwise the determinant det(g) vanishes, so the limit g was not
in the general linear group to start with).

The dimension of Bn(R) turns out to be the number of upper triangular entries, n2+n
2 ,

unsurprisingly since the Bn(R) naturally forms an open subset in the space where these
entires are considered the coordinates.

Example II.5 (The group Nn(R) of unipotent upper triangular matrices).
The set of n × n invertible upper triangular unipotent real matrices (i.e., upper triangular
with ones on the diagonal)

Nn(R) =
{
g ∈ Rn×n

∣∣∣ ∀i > j : gij = 0, ∀i : gii = 1
}

is a subgroup of Bn(R) (and therefore also of GLn(R)), and a closed subset. The checks are
similar to the previous example.

The group Nn(R) is obviously parametrized by its strictly upper triangular entries, so its

dimension should clearly be n2−n
2 .

The following example is perhaps more interesting. We consider Lie groups to be
real manifolds, and have defined matrix Lie groups as closed subgroups of the real
general linear group, but the general linear group of complex matrices can also be
seen as a matrix Lie group!

Example II.6 (Complex general linear group).
The set of n× n invertible complex matrices

GLn(C) =
{
g ∈ Cn×n

∣∣∣ det(g) 6= 0
}

also forms a group, which we call the complex general linear group. A complex n×n matrix
g ∈ Cn×n can be viewed as a real 2n × 2n matrix, through replacing each complex entry
gij = x+ iy ∈ C by the real 2× 2 block[

x −y
y x

]
.
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Since the multiplication of such blocks behaves just as multiplication of complex numbers,[
x −y
y x

] [
x′ −y′
y′ x′

]
=

[
xx′ − yy′ −xy′ − yx′
xy′ + yx′ xx′ − yy′

]
in accordance with (x + iy)(x′ + iy′) = xx′ − yy′ + i(xy′ + yx′), this embedding of Cn×n
into R2n×n respects products of matrices, and in particular also invertibility. Thus we can
interpret GLn(C) ⊂ GL2n(R) as a subgroup. The subgroup is closed, because if we have a
convergent sequence of matrices which consists of 2 × 2 blocks of the above type, then the
limit also consists of such 2× 2 blocks.

In summary, also GLn(C) is a matrix Lie group. We should expect its dimension to be 2n2,
because GLn(C) ⊂ Cn×n is an open subset, and the real and imaginary parts of the n2

entries can be independently varied (by a small amount, at least).

We finish with four examples, which are extremely important in a number of different
applications.

Example II.7 (The orthogonal group On).
We denote by On the set of n× n orthogonal matrices,

On =
{
g ∈ Rn×n

∣∣∣ g>g = In
}
,

and we call it the orthogonal group. It is straightforward to check that it is a subgroup of
GLn(R). Indeed, for example if we have g, h ∈ On, then the matrix multiplication gh gives
an n × n matrix, whose transpose is (gh)> = h> g>, and therefore we have (gh)>g h =
h> g>g h = h>Ih = h>h = I. Also if g ∈ On, then g is invertible and g−1 = g>, so the
inverse satisfies (g−1)>g−1 = (g−1)>g> = (gg−1)> = I> = I and we see that also g−1 ∈ On.

In order to verify that this is a matrix Lie group, we need to show that it is closed. Observe
that the condition g>g = I can be written in the form

n∑
k=1

gkigkj = δij for all i, j = 1, . . . , n.

If we denote by fij : Rn×n → R the function fij(g) =
∑n
k=1 gkigkj which is clearly continu-

ous, then the orthogonal group is the intersection of preimages of closed subsets (singletons
{0} ⊂ R or {1} ⊂ R)

On =

n⋂
i,j=1

f−1
ij

(
{δij}

)
,

and as such is closed. Therefore the orthogonal group indeed is a matrix Lie group.

We encourage the reader to think about the dimension of the matrix Lie group On even
before we work it out explicitly later.

Example II.8 (The special orthogonal group SOn).
We denote by SOn the set of n× n orthogonal matrices with determinant one,

SOn =
{
g ∈ Rn×n

∣∣∣ g>g = g g> = In, det(g) = 1
}
,

and we call it the special orthogonal group. It is again easy to check that it is a subgroup
of GLn(R), and that it is a closed subset. Therefore also the special orthogonal group is a
matrix Lie group.

The orthogonal group On can be seen to consist of two parts: elements of determinant +1
form the subgroup SOn ⊂ On, and elements of determinant −1 form a subset which is
topologically the same (but not a group). In particular we should expect the dimensions of
the matrix Lie groups SOn and On to be the same, although one is a proper subset of the
other.
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Example II.9 (The unitary group Un).
We denote by Un the set of n× n unitary matrices,

Un =
{
g ∈ Cn×n

∣∣∣ g†g = In
}
,

where g† denotes the conjugate transpose of g ∈ Cn×n,

(g†)ij = gji.

We call Un the unitary group. It is straightforward to check6 that Un ⊂ GLn(C) is a
subgroup and that it is closed. Now recalling further that GLn(C) ⊂ GL2n(R), we see that
the unitary group is a matrix Lie group.

We again invite the reader to think about the dimension of the group Un already.

Example II.10 (The special unitary group SUn).
We denote by SUn the set of n× n unitary matrices with determinant one,

SUn =
{
g ∈ Cn×n

∣∣∣ g†g = In, det(g) = 1
}
,

and we call it the special unitary group. As before, we have SUn ⊂ GLn(C) ⊂ GL2n(R) are
closed subgroups, so the special unitary group is a matrix Lie group.

Once more, the reader is advised to think about the dimension of the group SUn.

We leave it as an exercise to work out similarly the symplectic group, i.e., the group
of linear transformations which preserves a symplectic form (just like the orthogonal
group is the group of linear transformations which preserve an inner product).

Exercise II.11 (Symplectic group).
Let J ∈ R2n×2n be an antisymmetric matrix such that J2 = −I. Define a bilinear form ω
on R2n by ω(v, w) = v>Jw. Let Sp2n be the set of those g ∈ R2n×2n which preserve the
form ω in the sense that for all v, w ∈ R2n we have ω(v, w) = ω(gv, gw).

Prove that the definition above is equivalent to

Sp2n =
{
g ∈ R2n×2n

∣∣ g>Jg = J
}
,

and show that Sp2n ⊂ GL2n(R) is a closed subgroup.

We call the matrix Lie group Sp2n the symplectic group.

We will also encounter further examples later.

1.3. Topological considerations

Let us first address the notions of compactness and connectedness in the context of
Lie groups, and especially matrix Lie groups.

Connectedness

There are two a priori different connectedness notions that we use. For a matrix Lie
group (more generally a Lie group), we in practice care mostly about the following.

Definition II.12 (Path-connectedness).
Let G ⊂ GLn(R) be a matrix Lie group. We say that G is path-connected ,

6Compare with the corresponding properties for the orthogonal group.
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if for any g, h ∈ G there exists a continuous function γ : [0, 1] → G (called a
path) such that γ(0) = g and γ(1) = h.

We furthermore say that G is smoothly path-connected , if the path γ : [0, 1]→
G above can be chosen so that it is piecewise smooth as a map from [0, 1]
to Rn×n (note that G ⊂ GLn(R) ⊂ Rn×n).

In general topology, on the other hand, the usual notion of connectedness is the
following — easiest defined through its negation: disconnectedness.

Definition II.13 (Connectedness).
A topological space X is disconnected , if there exist two open subsets U, V ⊂ X
which are non-empty U, V 6= ∅, disjoint U ∩V = ∅, and which cover the whole
space U ∪ V = X.

A topological space X is connected if it is not disconnected, i.e., if no two
disjoint open non-empty subsets cover the whole space.

Path-connectedness is a priori a stronger notion than connectedness.

Lemma II.14 (Path-connectedness implies connectedness).
If G is path-connected, then it is also connected.

Proof. Suppose, by contrapositive, that G is path-connected but not connected. By disconnect-
edness, we can find two disjoint non-empty open subsets U, V ⊂ G which cover G. Since
both are non-empty, we can pick points g ∈ U and h ∈ V , and by path-connectedness there
exists a continuous γ : [0, 1] → G such that γ(0) = g and γ(1) = h. Then the preimages
γ−1(U) ⊂ [0, 1] and γ−1(V ) ⊂ [0, 1] are open, and they are by construction also disjoint and
cover the interval [0, 1]. By our choice of end points of the path γ, we have 0 ∈ γ−1(U)
and 1 ∈ γ−1(V ).

Let now s0 := sup γ−1(U). From the above observations we see that 0 < s0 < 1. By
construction on the one hand γ(t) ∈ V for all t > s0, and on the other hand there exists a
sequence (tn)n∈N such that tn ↑ s0 as n → ∞ and γ(tn) ∈ U for all n. But since U and V
cover G, we must have either γ(s0) ∈ U or γ(s0) ∈ V . The former possibility contradicts
γ(t) ∈ V for all t > s0, since γ−1(U) is open. The latter possibility contradicts the existence
of the sequence (tn) above, since γ−1(V ) is open. We have derived a contradiction, which
proves that a disconnected G can not be path-connected. �

Although in view of Lemma II.14, path-connectedness a priori appears stronger than
connectedness, for manifolds the two notions are equivalent.

Fact II.15 (Equivalence of connectedness and path-connectedness for manifolds).
A smooth manifold is connected if and only if it is smoothly path-connected.

Idea of proof of Fact II.15. In view of Lemma II.14, it is sufficient to show that a connected man-
ifold is path-connected. Suppose, by contrapositive, that M is a connected manifold which
is not path-connected. Therefore there exists two points p, q ∈M , which can not be joined
by any continuous path γ in M . Consider the set U ⊂ M of those points p′, which can
be connected by a path to the point p. By working in local coordinate charts, it is easy to
see that U is open. Consider also the complement V = M \ U , consisting of those points
which can not be connected to p by a path. Again by working in local coordinate charts, it
is easy to see that V is open. Now U and V cover M and are disjoint by construction, they
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were shown to be open, and they are non-empty since p ∈ U and q ∈ V . This contradicts
connectedness of M , and proves the assertion. �

In view of this fact, in the context of Lie groups, we will henceforth usually use the
term connectedness to mean the logically equivalent but more practical notion of
smoothly path-connectedness.

Example II.16 (Some disconnected Lie groups: GLn(R), On, Bn(R)).
Recall from Example II.1 that the general linear group GLn(R) ⊂ Rn×n is the subset of
those matrices, whose determinant is non-vanishing,

GLn(R) = det−1
(
R \ {0}

)
.

We can write R \ {0} = (−∞, 0) ∪ (0,+∞), a disjoint union of two open subsets, and
correspondingly

GLn(R) = det−1
(
(0,+∞)

)
∪ det−1

(
(−∞, 0)

)
.

The subsets det−1((0,+∞)),det−1((−∞, 0)) ⊂ GLn(R) are non-empty, open, and disjoint.
Therefore GLn(R) is by definition disconnected. It then follows from Lemma II.14 that
GLn(R) is neither path-connected nor smoothly path-connected.

Exactly similarly one can show that, e.g, On is disconnected: the orthogonal matrices of
positive determinant and negative determinant are two disjoint non-empty open subsets that
cover all of On. Since the determinant of an orthogonal matrix is in fact ±1, the former
of these two is just the special orthogonal group, SOn ⊂ On. In Exercise II.17 below, you
show that SOn is connected, so we can conclude that SOn ⊂ On is the connected component
which contains the neutral element I ∈ On.

The group Bn(R) is also not connected: the i:th diagonal matrix entry defines a continuous
function g 7→ gii ∈ R, and the subsets where this (non-zero) entry is positive or negative are
two disjoint open subsets which cover the whole space. The signs of all n diagonal entries
combined in fact split Bn(R) to 2n different components.

Exercise II.17 (Connectedness of the special orthogonal group).
Show that the set SOn =

{
g ∈ Rn×n

∣∣ g>g = I, det(g) = 1
}

is path-connected, i.e., that for
any g ∈ SOn, there exists a continuous path γ : [0, 1]→ SOn such that γ(0) = g and γ(1) = I.

Hint: One concrete proof strategy is to implement the following idea. Recalling that elements of SOn

can be identified with ordered orthonormal bases v1, . . . , vn in Rn, it is sufficient to continuously

deform a given orthonormal basis to the standard basis. To do this, it is convenient to first show

that the first basis vector v1 can be continuously rotated to the first standard basis vector. Then

inductively in the dimension n, one can show that in the n− 1-dimensional orthogonal complement

to the first standard basis vector, one can deform the remaining basis vectors.

Example II.18 (Connectedness of Nn(R)).
Let us check that the group Nn(R) of upper triangular matrices with ones on the diagonal
is (smoothly) path-connected. So, let g, h ∈ Nn(R) be two elements of this group. Then for
t ∈ [0, 1], the matrix obtained as the convex combination

(1− t) g + t h ∈ Rn×n

is also upper triangular with ones on the diagonal. The formula γ(t) = (1 − t)g + th thus
defines a (smooth) path γ : [0, 1]→ Nn(R) with γ(0) = g and γ(1) = h.

Example II.19 (Complex general linear group is connected).
Unlike the real general linear group, the complex general linear group GLn(C) turns out
to be connected. Indeed, to show path-connectedness, let g, h ∈ GLn(C) be two elements.
Consider the complex linear combinations of these two matrices, specifically combinations
of the form (1 − z)g + zh ∈ Cn×n, with z ∈ C. For z = 0 we recover g ∈ GLn(C), and for
z = 1 we recover h ∈ GLn(C). For an arbitrary z, such a linear combinations need not be
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invertible, but the determinant

det
(

(1− z)g + zh
)

is a polynomial in z, and thus has only finitely many zeroes z1, . . . , zm ∈ C. Therefore it
is possible to choose a (smooth) path ζ : [0, 1] → C in the complex plane from ζ(0) = 0
to ζ(1) = 1, which avoids all these zeroes. Then γ(t) := (1 − ζ(t)) g + ζ(t)h defines a
(smooth) path γ : [0, 1] → GLn(C) such that γ(0) = g and γ(1) = h. This proves that
GLn(C) is (smoothly) path-connected.

Exercise II.20 (Connected Lie groups generated by any neighborhood of the neutral element).
Let G be a connected Lie group, and U ⊂ G an open neighborhood of the neutral el-
ement e ∈ G. Show that the elements in U generate the entire group G (i.e., that the
smallest subgroup of G containing U is the entire group).
Hint: Definition II.13 of connectedness is useful here.

Compactness

There are also in principle two compactness notions that we use.

Definition II.21 (Sequential compactness).
A topological space X is said to be sequentially compact if for any sequence
(xn)n∈N in X, there exists a subsequence (xnk)k∈N which converges, i.e., the
limit limk→∞ xnk ∈ X exists.

Definition II.22 (Compactness).
A topological space X is said to be compact if for every collection (Uα)α∈A of
open sets Uα ⊂ X which cover the whole space,

⋃
α∈A Uα = X, there exists a

finite subcollection (Uαj)
m
j=1 which also covers the whole space,

⋃m
j=1 Uαj = X.

For metric spaces and metrizable topological spaces, the above notions are equiva-
lent.

Lemma II.23 (The two notions of compactness are equivalent for metric spaces).
A metric space is compact if and only if it is sequentially compact.

Manifolds are metrizable topological spaces, so in the context of Lie groups we can
refer to either of these equivalent properties as compactness. Even more concretely,
matrix Lie groups

G ⊂ GLn(R) ⊂ Rn×n ∼= Rn2

are subsets of the Euclidean space Rd with d = n2, and compactness in this situation
has the following familiar characterization.

Proposition II.24 (Heine-Borel theorem).
For a subset S ⊂ Rd, the following are equivalent:

(i) S is compact.
(ii) S is sequentially compact.

(iii) S is closed and bounded.
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Example II.25 (Examples of non-compact Lie groups).
The general linear group GLn(R) is clearly not compact: it is neither closed nor bounded
as a subset of Rn×n.

If n ≥ 2, then the special linear group SLn(R) is not bounded, since it contains in particular
the diagonal matrices with diagonal entries k, k−1, 1, . . . , 1 for any k 6= 0. In particular the
special linear group SLn(R) is not compact if n ≥ 2.

Example II.26 (Examples of compact Lie groups).
The groups On, SOn, Un, SUn are compact. We have indeed already seen that they are

closed subsets of Rn×n ∼= Rn2

or Cn×n ∼= R2n2

. Their boundedness follows rather easily
from the defining conditions.
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2. Lie algebras of matrix Lie groups

2.1. Commutators

The notion of a commutator makes sense on any associative algebra. For our pur-
poses, the most important case is the algebra End(V ) of linear self-maps of a vector
space V , so we give the following definition.

Definition II.27 (Commutator).
For X, Y ∈ End(V ), we define the commutator of X and Y as7

[X, Y ] := X ◦ Y − Y ◦X ∈ End(V ) . (II.1)

We leave it as an exercise to prove the following two key properties of commutators.

Exercise II.28 (Antisymmetry and Jacobi identity for commutators).
Show that the commutators satisfy the antisymmetry

[X,Y ] = −[Y,X] (II.2)

and Jacobi identity [
[X,Y ], Z

]
+
[
[Y, Z], X

]
+
[
[Z,X], Y

]
= 0. (II.3)

for all X,Y, Z ∈ End(V ).

Lie algebras, to be defined in Section 2.4, are not associative algebras. Rather,
the two formulas (II.2) and (II.3) established above for commutators will be taken
as axioms for Lie brackets when we give the general abstract definition of a Lie
algebra. In other words, commutators are important examples of Lie brackets, but
an abstract Lie bracket is not necessarily a commutator.

2.2. Matrix exponentiald and Lie’s formulas

Let V be a finite-dimensional vector space over k = R or k = C. If d = dim (V ),
then by choosing a basis for V we can identify

V ∼= Rd or V ∼= Cd,

respectively. We let End(V ) denote the set of all linear maps of V to itself, which
can be identified with the set of all d× d square matrices

End(V ) ∼= Rd×d or End(V ) ∼= Cd×d.

Therefore End(V ) is itself a finite-dimensional vector space, dim(End(V )) = d2.
The set

Aut(V ) ⊂ End(V )

of linear bijections of V to itself forms a group, the automorphism group of V . We
can identify it with the group of invertible d× d matrices,

Aut(V ) ∼= GLd(R) or Aut(V ) ∼= GLd(C).

7On the right hand side the product is that of End(V ), i.e., the composition of linear maps.
The careful (but obviously too cumbersome) formula would therefore be [X,Y ] = X ◦ Y − Y ◦X.
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All norms on a given finite-dimensional vector space are equivalent (i.e., they deter-
mine the same topology). To verify statements about limits in V and in End(V ) we
can therefore in principle use any norm we like. Once a norm ‖ · ‖ on V has been
chosen, a convenient choice of norm on End(V ) is the operator norm

‖X‖op := sup
{
‖Xv‖

∣∣∣ v ∈ V, ‖v‖ = 1
}

for X ∈ End(V ),

because it has the submultiplicativity property

‖X ◦ Y ‖op ≤ ‖X‖op ‖Y ‖op for X, Y ∈ End(V ).

Below we assume that a basis choice has been made, so that an identification of lin-
ear maps with d×d-matrices is fixed. Since moreover real matrices can be viewed as
a special case of complex matrices, it suffices to present the following general state-
ments only for the algebra Cn×n of complex matrices, equipped with the operator
norm ‖ · ‖op inherited from the standard norm ‖ · ‖ on Cd.

The first important limit statement for us is the following familiar fact.

Lemma II.29 (Matrix exponential).
For any X ∈ Cd×d, the series

Exp(X) :=
∞∑
n=0

1

n!
Xn (II.4)

is absolutely convergent in the norm ‖ · ‖op.

We leave the following two important properties of the matrix exponential as exer-
cises.

Exercise II.30 (One parameter group property of matrix exponentials).
Let X ∈ Cn×n, and consider Exp(tX) for t ∈ R. Show that we have

d

dt
Exp(tX) = X Exp(tX) = Exp(tX) X. (II.5)

Conclude also that for any t, s ∈ R, we have

Exp((t+ s)X) = Exp(tX) Exp(sX) (II.6)

and in particular (
Exp(tX)

)−1
= Exp(−tX) . (II.7)

Exercise II.31 (Derivative of determinant).
The determinant of an n×n complex matrix M = (Mij)

n
i,j=1 defines a polynomial function

det : Cn×n → C

in the matrix entries. Show that the partial derivatives of this function evaluated at the
unit matrix I are

∂

∂Mij
det(M)

∣∣∣
M=I

= δi,j .

Use this to show that for any X ∈ Cn×n we have

d

dt
det
(
Exp(tX)

)∣∣∣
t=0

= tr(X). (II.8)
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Exercise II.32 (Determinant of matrix exponential).
Show that for any X ∈ Cn×n we have

det
(
Exp(X)

)
= etr(X). (II.9)

Hint: Let M(t) := Exp(tX) for all t ∈ R, and consider D(t) := det
(
M(t)

)
and T (t) := et tr(X).

To prove the equality D(t) = T (t) for all t ∈ R, observe that the equality holds for t = 0, and

establish the differential equations T ′(t) = tr(X)T (t) and D′(t) = tr(X)D(t). The proof of the

latter differential equation becomes simpler if you use the previous exercise after noting that the one

parameter group property of exponentials, M(t+s) = M(t)M(s), implies also D(t+s) = D(t)D(s).

One can define also matrix logarithms for matrices sufficiently close to the unit
matrix I.

Lemma II.33 (Matrix Logarithm).
For any A ∈ Cd×d such that ‖A− I‖op < 1, the series

Log(A) := −
∞∑
m=1

(−1)m

m
(A− I)m (II.10)

is absolutely convergent in the norm ‖ · ‖op. For such A we have

Exp(Log(A)) = A.

The natural looking converse, the equality between Log(Exp(X)) and X, holds
for ‖X‖op sufficiently small, but does not hold in general. As an example of its
failure, note that for X = 2πi I we clearly have Exp(X) = I, which implies that the
logarithm of the exponential is Log(Exp(X)) = Log(I) = 0 6= X.

The following Lie’s formulas will soon become crucial.

Lemma II.34 (Lie’s formulas).
For any X,X ∈ Cd×d, we have(

Exp(X/n) Exp(Y/n)
)n −→

n→∞
Exp(X + Y ) (II.11)

and(
Exp(X/n) Exp(Y/n) Exp(−X/n) Exp(−Y/n)

)n2

−→
n→∞

Exp([X, Y ]) . (II.12)

2.3. The Lie algebra of a matrix Lie group

For simplicity of notation, we will from here on denote matrix exponentials also
simply by Exp(X) = eX .

We first define the Lie algebra of a matrix Lie group.

Definition II.35 (The Lie algebra of a matrix Lie group).
For any subgroup G ⊂ GLd(R) which is closed, we define the Lie algebra of G
to be

L(G) :=
{
X ∈ Rd×d

∣∣∣ etX ∈ G ∀t ∈ R
}
. (II.13)
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We will soon check that Lie algebras of matrix Lie groups are vector spaces, and that
they are stable under taking commutators. The commutators will be taken to define
the Lie bracket in the Lie algebra of a matrix Lie group. Besides establishing these
properties, the following important theorem also shows that the matrix exponential
lets us use a small neighborhood of the origin in the Lie algebra (which is a vector
space) as coordinates for a small neighborhood of the neutral element in the group
(which is a manifold).

Theorem II.36 (Von Neumann’s theorem).
Let G ⊂ GLd(R) be a closed subgroup. Then L(G) ⊂ Rd×d is a vector subspace,
which has the property

if X, Y ∈ L(G), then also [X, Y ] ∈ L(G). (II.14)

Moreover, Exp(L(G)) ⊂ G is a neighborhood of the neutral element I ∈ G,
and if U ⊂ L(G) is a sufficiently small open neighborhood of 0 in L(G), then
Exp(U) is an open neighborhood of I in G and

Exp: U → Exp(U)

is a homeomorphism.

Proof. Let us start by showing that L(G) ⊂ Rd×d is a vector subspace. Suppose that X ∈ L(G).
Then for any c ∈ R and any t ∈ R we have

et(cX) = e(tc)X ∈ G,

by virtue of X ∈ L(G) and tc ∈ R. Therefore we have cX ∈ L(G), so we have shown that
L(G) is at least stable under scalar multiplication. To show that it is stable under forming
sums of vectors, consider X,Y ∈ L(G). Then for any t ∈ R we have by Lie’s formula (II.11)

et(X+Y ) = etX+tY = lim
n→∞

(
e
tX
n e

tY
n

)n
.

By the assumptions X,Y ∈ L(G), we have etX/n ∈ G and etY/n ∈ G, and therefore also(
etX/netY/n

)n ∈ G. Since G is closed, also the limit of these as n→∞ remains in G, so we

conclude et(X+Y ) ∈ G. This shows that X + Y ∈ L(G), and finishes the proof that L(G) is
a vector subspace of Rd×d.

Let us then show that L(G) is stable under forming commutators. So assume again that
X,Y ∈ L(G). For any t ∈ R, we have by Lie’s formula (II.12)

et[X,Y ] = e[tX,Y ] = lim
n→∞

(
e
tX
n e

Y
n e−

tX
n e−

Y
n

)n2

.

By the assumptions X,Y ∈ L(G), we again have e±tX/n ∈ G and e±Y/n ∈ G, and therefore
the expression inside the limit above lies in G. Since G is closed, also the limit remains in
it, and we get that et[X,Y ] ∈ G. This shows that [X,Y ] ∈ L(G), and finishes the proof that
L(G) is stable under forming commutators.

For the rest of the statements, observe the following. We have shown that L(G) ⊂ Rd×d
is a vector subspace, so let us choose a complementary vector subspace L′ ⊂ Rd×d so that
Rd×d = L(G)⊕L′ (vector space direct sum). Consider the function Rd×d → GLd(R) defined

by X ⊕X ′ 7→ eXeX
′

for X ∈ L(G) and X ′ ∈ L′. From the power series defining the matrix
exponentials, is easy to see that the differential at 0 of this function is the identity, so by
the inverse function theorem this map gives a homeomorphism between a neighborhood
of 0 ∈ Rd×d and a neighborhood of e0 = I ∈ GLd(R).

We now show that Exp(L(G)) is a neighborhood of I ∈ G. If it were not, then we could find
a sequence (gn)n∈N in G with gn → I as n → ∞, but gn /∈ Exp(L(G)). For large enough n

we can write gn = eXneX
′
n uniquely with Xn ∈ L(G) and X ′n ∈ L′, and we have Xn → 0

and X ′n → 0 as n→∞. Since both gn and eXn are in G, we get that eX
′
n ∈ G as well. By
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assumption gn /∈ Exp(L(G)), we must have X ′n 6= 0. Then consider the elements
X′n
‖X′n‖

∈ L′

for n ∈ N. They lie on the unit sphere of L′ which is compact, so by passing to a subsequence

if necessary we can assume that
X′n
‖X′n‖

→ X ′ ∈ L′ as n → ∞. Let t > 0. Since ‖X ′n‖ → 0

as n → ∞, we can choose integers mn such that mn‖X ′n‖ → t as n → ∞. Now we have

emnX
′
n = (eX

′
n)mn ∈ G, and on the other hand emnX

′
n → etX

′
as n → ∞, so by closedness

of G we get that etX
′ ∈ G. We showed this for any t > 0, but we obtain it also for any t < 0

by taking inverses. By definition this means that X ′ ∈ L(G), which contradicts X ′ ∈ L′,
‖X ′‖ = 1. Therefore Exp(L(G)) is indeed a neighborhood of I ∈ G.

Finally, since X ⊕ X ′ 7→ eXeX
′

is a homeomorphism of a neighborhood of 0 ∈ Rd×d to a
neighborhood of I ∈ GL(V ), by restricting to L(G) we obtain a homeomorphism from a
neighborhood of 0 ∈ L(G) to a neighborhood of I ∈ G, which is given by X 7→ eX . This
finishes the proof. �

Since the Lie algebra is a vector space, it in particular has a dimension. This enables
the following definition.

Definition II.37 (Dimension of a matrix Lie group).
We define the dimension of a closed subgroup G ⊂ GLd(R) to be the dimen-
sion dim

(
L(G)

)
of the vector space L(G) ⊂ Rd×d,

We continue with some examples. In all of the following examples we find an explicit
description of the Lie algebra of a specific group, which makes it manifest that the
Lie algebra is indeed a vector space. To directly check from the explicit description
that the Lie algebra is stable under commutators is usually also very easy, although
not always totally immediate.

The first example is almost tautological, but it confirms in particular that the earlier
intuitive notion of dimension matches the one defined above.

Example II.38 (The Lie algebra gln(R) of the general linear group).
The set GLn(R) of all invertible n×n real matrices is a closed subgroup of itself! We denote
the Lie algebra of this general linear group by

gln(R) = L
(
GLn(R)

)
.

By definition, it consists of all matrices X ∈ Rn×n such that exp(X) is invertible, but it
follows from (II.7) that this is always the case, so

gln(R) = Rn×n. (II.15)

The vector space property and stability under commutators would of course be obvious for
gln(R) = Rn×n even before Von Neumann’s theorem. Now that we have the precise notion
of the dimension of a matrix Lie group in Definition II.37, and we have explicitly found the
Lie algebra of GLn(R), we get that the dimension of GLn(R) is

dim
(
gln(R)

)
= dim

(
Rn×n

)
= n2,

as anticipated in Example II.1.

The next example concerns already a proper subgroup.

Example II.39 (The Lie algebra sln(R) of the special linear group).
Recall from Example II.3 that the set SLn(R) of matrices of determinant one forms a closed
subgroup of GLn(R). We denote the Lie algebra of this special linear group by

sln(R) = L
(
SLn(R)

)
.
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To get an explicit description of this Lie algebra, observe the following. If X ∈ Rn×n is
traceless, tr(X) = 0, then by (II.9) we have det

(
etX
)

= 1 for all t ∈ R, and consequently

X ∈ sln(R). Conversely, suppose that X ∈ sln(R), i.e., that det
(
etX
)

= 1 for all t ∈ R.
Using (II.8), we can express the trace of X as the derivative at t = 0 of the determinant,
and we get

tr(X)
(II.8)
=

d

dt
det
(
etX
)∣∣∣
t=0

=
d

dt
1
∣∣
t=0

= 0.

We have thus shown that the Lie algebra of the special linear group is precisely the set of
traceless matrices

sln(R) =
{
X ∈ Rn×n

∣∣∣ tr(X) = 0
}
. (II.16)

The traceless matrices obviously form a vector space, and the trace of a commutator is
always zero, tr([X,Y ]) = tr(XY )− tr(Y X) = 0 (by cyclicity of trace), so the set of traceless
matrices is also stable under taking commutators. The trace is a surjective linear map
tr : Rn×n → R, so by rank-nullity theorem we find that the set of traceless matrices has
dimension

dim
(
sln(R)

)
= dim

(
Rn×n

)
− dim(R) = n2 − 1.

The dimension of the the matrix Lie group SLn(R) is thus exactly as anticipated in Exam-
ple II.3.

We leave the following two examples as exercises.

Exercise II.40 (The Lie algebra bn(R) of the group Bn(R)).
Recall from Example II.4 that the set Bn(R) of invertible upper triangular real matrices is
a closed subgroup of GLn(R). Show that its Lie algebra

bn(R) := L
(
Bn(R)

)
is the set of all upper triangular matrices, and conclude that the dimension of the the matrix
Lie group Bn(R) is given, as expected, by

dim
(
bn(R)

)
=
n2 + n

2
.

Show also directly that the commutator of two upper triangular matrices is upper triangular.

Exercise II.41 (The Lie algebra nn(R) of the group Nn(R)).
Recall from Example II.5 that the set Nn(R) of unipotent upper triangular real matrices is
a closed subgroup of GLn(R). Show that its Lie algebra

nn(R) := L
(
Nn(R)

)
is the set of all strictly upper triangular matrices, and conclude that the dimension of the
the matrix Lie group Nn(R) is given, as expected, by

dim
(
nn(R)

)
=
n2 − n

2
.

Show also directly that the commutator of two strictly upper triangular matrices is strictly
upper triangular.

The next example could be considered as the first really interesting one. For clarity,
we isolate the key calculations for the example in the following lemma. The matrix
Lie groups On and SOn appearing in the statement were defined in Examples II.7
and II.8, respectively.

Lemma II.42 (Characterizing the Lie algebra of the orthogonal group).
The following three conditions for a matrix X ∈ Rn×n are all equivalent:
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(a) etX ∈ SOn for all t ∈ R
(b) etX ∈ On for all t ∈ R
(c) X is antisymmetric, X> = −X.

Proof. The implication (a) ⇒ (b) is trivial since SOn ⊂ On, so it suffices to prove that (b) ⇒ (c)
and (c) ⇒ (a).

Suppose therefore that etX ∈ On for all t ∈ R. Recalling that M ∈ On amounts to the
condition M>M = I, and observing that(

etX
)>

= etX
>
,

we find that the assumption (b) can be written as

I = etX
>
etX for all t ∈ R.

If we take the derivative of this condition with respect to t (note that the left hand side is
constant matrix I, so its derivative is the zero matrix O), we find

O =
d

dt

(
etX

>
etX
)

=
( d

dt
etX

>)
etX + etX

> ( d

dt
etX
)

= X>etX
>
etX + etX

>
etXX

= X> +X.

This shows antisymmetry X> = −X, so we have proven (b) ⇒ (c).

Suppose now that X is antisymmetric, X> = −X. Then for any t ∈ R we have(
etX
)>

= etX
>

= e−tX ,

which shows that etX ∈ On. On the other hand all the diagonal entries of an antisymmetric
matrix vanish, and therefore the trace is zero as well, tr(X) = 0. This implies by (II.9) that
det(etX) = etr(X) = e0 = 1, so in fact we have etX ∈ SOn, and the last implication (b)⇒ (c)
is also proven. �

With this lemma proven, the next example is easily handled.

Example II.43 (The Lie algebra son of the orthogonal group).
Recall from Examples II.7 and II.8 that the set On of orthogonal matrices and the set SOn

of orthogonal matrices of determinant one form closed subgroups of GLn(R). We claim that
the Lie algebras of both are the same, and let us therefore define

son = L
(
SOn

)
.

Indeed by definition, property (a) of Lemma II.42 characterizes elements X of the Lie algebra
L
(
SOn

)
the special orthogonal group, and property (b) characterizes elements X of the Lie

algebra L
(
On

)
of the orthogonal group. Since both of them are equivalent to property (c), we

find that the Lie algebras are the same, and concretely described as the set of antisymmetric
matrices

son =
{
X ∈ Rn×n

∣∣∣ X> = −X
}
. (II.17)

The set of antisymmetric matrices is obviously a vector space of dimension

dim
(
son
)

=
n2 − n

2
,

which is the number of strictly upper triangular entries (these can be chosen independently
for an antisymmetric matrix, and they determine the whole matrix). By definition this is
then also the dimension of the matrix Lie groups On and SOn.
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It can also be checked directly that the commutator of two antisymmetric matrices is anti-
symmetric. Indeed if X and Y are antisymmetric, i.e., X> = −X and Y > = −Y , then we
see that the matrix product XY satisfies

(XY )> = Y >X> = (−Y )(−X) = Y X,

and therefore the antisymmetry of the commutator follows from

[X,Y ]> =
(
XY − Y X

)>
= (XY )> − (Y X)>

= Y X −XY
= − [X,Y ].

Exercise II.44 (Lie algebras of the unitary and special unitary groups).
Show that the Lie algebra un := L(Un) of the unitary group Un (see Example II.9) is given
by

un =
{
X ∈ Cn×n

∣∣∣ X† = −X
}

(II.18)

and that the Lie algebra sun := L(SUn) of the special unitary group SUn (see Example II.10)
is given by

sun =
{
X ∈ Cn×n

∣∣∣ X† = −X, tr(X) = 0
}
. (II.19)

Calculate also the dimensions dim(un) and dim(sun).

Exercise II.45 (Symplectic Lie algebra).
Let J ∈ R2n×2n be an antisymmetric matrix such that J2 = −I. Recall the definition of the
symplectic group

Sp2n =
{
g ∈ R2n×2n

∣∣ g>Jg = J
}

from Exercise II.11. Show that the Lie algebra sp2n := L(Sp2n) of this matrix Lie group is

sp2n =
{
X ∈ R2n×2n

∣∣∣ X>J + JX = 0
}
.

Calculate also the dimension dim(sp2n(R)).

2.4. The abstract notion of a Lie algebra

In Section 2.3 we defined the Lie algebras associated to matrix Lie groups. There is
a more general abstract definition of a Lie algebra.

Let k be a field.

Definition II.46 (Lie algebra).
A Lie algebra over k is a k-vector space g equipped with a bilinear operation
g× g→ g,

(X, Y ) 7→ [X, Y ] ∈ g for X, Y ∈ g,

which satisfies antisymmetry

[X, Y ] = −[Y,X] (II.20)

and Jacobi identity[
[X, Y ], Z

]
+
[
[Y, Z], X

]
+
[
[Z,X], Y

]
= 0. (II.21)

The operation g× g→ g, is called the Lie bracket .
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Example II.47 (Lie algebras of matrix Lie groups are Lie algebras).
According to Theorem II.36 and Exercise II.28, any Lie algebra L(G) of a matrix Lie group
G ⊂ GLn(R) is a special case of the above definition. For g = L(G) the field is k = R real
numbers, and the Lie bracket is given by the commutator in End

(
Rd
) ∼= Rd×d.

Similarly, if one were to study Lie groups which are complex manifolds rather than
(the much more common) real manifolds, one would correspondingly obtain Lie
algebras over k = C associated to such complex Lie groups. Also one can associate
Lie algebras to algebraic groups defined over other fields, and thus one arrives at
even more general choices of k. But these are not the only reasons for allowing
generality in the definition — it turns out also that the fruitful way to study a Lie
algebra g over R is often to form its compexification gC := g ⊗ C, which is a Lie
algebra over C. We will return to this later.

Let us give a few more examples.

Example II.48 (Abelian Lie algebras).
Let h be any vector space over k. If we equip it with the zero bilinear map [ ·, · ] : h×h→ h,

[X,Y ] = 0 for all X,Y ∈ h,

then antisymmetry and Jacobi identity obviously hold. Thus h is a Lie algebra! We call a
Lie algebra whose Lie bracket is zero either abelian or commutative.

Needless to say, abelian Lie algebras are not the most exciting examples of Lie al-
gebras in their own right. But — it will turn out to be very fruitful to analyze
maximally large abelian Lie subalgebras8 h ⊂ g within more interesting Lie alge-
bras g.

Example II.49 (The Lie algebra of all linear maps).
Let V be a vector space over k. The set g = Endk(V ) of k-linear maps V → V is a
vector space over k. The commutator [X,Y ] = X ◦ Y − Y ◦ X in Endk(V ) also satisfies
antisymmetry and Jacobi identity (as in Exercise II.28). Therefore g = Endk(V ) is a Lie
algebra over k.

Example II.50 (The Lie algebra of all derivations of an associative algebra).
Let A be an associative algebra over a field k.9 A map D : A → A is called a derivation if
it is k-linear and satisfies the Leibnitz rule

D(ab) = D(a) b+ aD(b) for all a, b ∈ A.

The set Der(A) ⊂ Endk(A) of all derivations on A is clearly a vector space. Note that if
D1, D2 ∈ Der(A), then a direct calculation with the commutator [D1, D2] := D1◦D2−D2◦D1

gives

[D1, D2](ab) = D1

(
D2(a) b+ aD2(b)

)
−D2

(
D1(a) b+ aD1(b)

)
= D1

(
D2(a)

)
b+D2(a)D1(b) +D1(a)D2(b) + aD1

(
D2(b)

)
−D2

(
D1(a)

)
b−D1(a)D2(b)−D2(a)D1(b)− aD2

(
D1(b)

)
= D1

(
D2(a)

)
b+ aD1

(
D2(b)

)
−D2

(
D1(a)

)
b− aD2

(
D1(b)

)
=
(
[D1, D2](a)

)
b + a

(
[D1, D2](b)

)
,

8The reader can probably already guess the meaning of a Lie subalgebra, although we have
postponed formally introducing this notion until Definition III.54 below.

9This means. . . [TODO: write def.]
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which shows that also [D1, D2] ∈ Der(A). Since the commutator in Endk(A) satisfies anti-
symmetry and Jacobi identity, we get that g = Der(A) is a Lie algebra over k.

Remark II.51 (Vector fields on a manifold).
An important particular case of the type covered in Example II.50 is the space of all vector
fields on a smooth manifold M . Vector fields act as derivations of the algebra C∞(M) of
smooth functions on M , and they form a Lie algebra. In fact according to the usual abstract
definition, the Lie algebra of a Lie group G is the set of all vector fields on the Lie group
which are invariant under left multiplication in the group. To show that these fall into the
general definition, one only has to verify that the commutator of the derivations by two
left-invariant vector fields is again the derivation by a left-invariant vector field.

Having defined the structure called Lie algebra, we next define — as usual — ho-
momorphisms of Lie algebras as maps which preserve this structure.

Definition II.52 (Lie algebra homomorphisms and isomorphisms).
Let g1 and g2 be two Lie algebras over k, with Lie brackets denoted by [·, ·]g1
and [·, ·]g2 , respectively. A map

φ : g1 → g2

is called a Lie algebra homomorphism if it is k-linear and satisfies

φ
(
[X, Y ]g1

)
=
[
φ(X), φ(Y )

]
g2

for all X, Y ∈ g1.

A Lie algebra isomorphism is a bijective Lie algebra homomorphism. If there
exists a Lie algebra isomorphism between two Lie algebras g1 and g2, then we
call the two Lie algebras isomorphic, and denote g1

∼= g2.

In terms of homomorphisms, we can already define what a representation of a Lie
algebra is.

Definition II.53 (Representation of a Lie algebra).
Let g be a Lie algebra over k, and let V be a vector space over k. A represen-
tation of g on V is a Lie algebra homomorphism

ϑ : g→ Endk(V ),

where the Lie algebra structure on Endk(V ) is as in Example II.49.

Remark II.54 (Representations defined over larger fields).
In fact the field k over which the Lie algebra g is defined does not have to be the same
as the field K over which the vector space V is defined, as long as K is an extension of k.
The most important such case arises when we consider complex representations of real Lie
algebras, i.e., k = R and K = C.

Namely, if k ⊂ K, then all K-linear maps are also k-linear

EndK(V ) ⊂ Endk(V ),

and the K-vector space EndK(V ) of K-linear maps V → V can be viewed in particular as
a vector space over the smaller field k.10 Commutators in EndK(V ) of course coincide with

10To view a vector space W over a larger field K as a vector space over a smaller field k ⊂ K,
one simply “forgets” that scalar multiplication is also permitted with scalars outside k. This
of course typically increases dimension: we have dimk(W ) ≥ dimK(W ), or more precisely in
fact dimk(W ) = dimK(W ) dimk(K). For the most concrete case of k = R ⊂ C = K we have the
familiar doubling of dimensions dimR(W ) = 2 dimC(W ).
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commutators in Endk(V ), so there is no ambiguity about the choice of the Lie bracket. Thus
EndK(V ) ⊂ Endk(V ) is a Lie subalgebra, when both are viewed as Lie algebras over k.

In summary, when k ⊂ K is a field extension, then a K-representation of a k-Lie algebra is
a K-vector space V equipped with a homomorphism of k-Lie algebras

ϑ : g→ EndK(V ) ⊂ Endk(V ).

We will come to examples later — we first turn to the relationship between homo-
morphisms of Lie groups and their Lie algebras.

2.5. Homomorphisms of Lie groups and Lie algebras

A homomorphism of Lie groups should respect both the group structure and the
structure of a smooth manifold. One therefore defines a Lie group homomorphism
as a group homomorphism which is a smooth function. Smoothness in fact follows
already by assuming merely continuity. As we are focusing on the particular case of
matrix Lie groups, the approproate precise definition is the following.

Definition II.55 (Lie group homomorphisms and isomorphisms).
Let G1 and G2 be two matrix Lie groups. A map

f : G1 → G2

is called a Lie group homomorphism if it is a group homomorphism and a
continuous function.

A Lie group isomorphism is a group homomorphism, which is also a homeo-
morphism.

The notion of a representation is a special case. We assume that the underlying
space V is a finite dimensional vector space over R or C. Then the automorphism
group Aut(V ) of V can be identified with GLd(R) or GLd(C), and in particular is
itself a matrix Lie group.

Definition II.56 (Representation of a Lie group).
Let G be a be a Lie group, and V be a finite-dimensional vector space over R
or C. A representation of G on V is a Lie group homomorphism

ρ : G→ Aut(V ) .

Example II.57 (Trivial representation of a Lie group).
As in the case of finite groups, the real one dimensional vector space K = R or the complex
one dimensional vector space K = C carries a representation of any (matrix) Lie group G
through setting each g ∈ G to correspond to the identity linear map

ρ(g) = idK ∈ Aut(K) ∼= GL1(K).

The homomorphism property and continuity are both obvious in this case.

Example II.58 (Defining representation of a matrix Lie group).
Since a matrix Lie group is by definition a closed subgroup G ⊂ GLn(R) for some n ∈ Z>0,
the inclusion

ι : G ↪→ GLn(R) ∼= Aut(Rn)
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is a continuous group homomorphism. This obvious homomorphism equips the vector
space Rn with the structure of a representation of the Lie group G, and the corresponding
representation is known as the defining representation of G.

As a word of warning, however, note that the above depends on the way we realize G as
a closed subgroup of a general linear group — we could for instance have interpreted an
isomorphic copy of G as a subgroup of GLn′(R) for any n′ > n, and the notion of a defining
representation would have changed.

Moreover, some matrix Lie groups such as GLn(C), SLn(C), Un, and SUn are more naturally
subgroups of the group of invertible complex matrices GLn(C) ⊂ GL2n(R). In this case the
defining representation (usually) refers to the complex vector space Cn equipped with the
structure of a representation coming from an inclusion of G into GLn(C).

Suppose that G1 and G2 are two matrix Lie groups, and g1 = L(G1) and g2 = L(G2)
their Lie algebras, respectively. The question we will address next is: To what extent
is there a relationship between Lie group homomorhisms

f : G1 → G2

and Lie algebra homomorhisms

φ : g1 → g2?

In particular, to which extent do representations of a (matrix) Lie group G corre-
spond to representations of its Lie algebra g?

Our answer to this question can be summarized in three statements.

0◦) Any Lie group homomorphism f : G1 → G2 gives rise to a Lie algebra
homomorphism φ : g1 → g2, by its differential at the neutral element.

1◦) If G1 is connected, then the Lie group homomorphism f : G1 → G2 is
uniquely determined by its differential at the neutral element, a Lie algebra
homomorphism φ : g1 → g2.

2◦) If G1 is connected and simply-connected, then for any Lie algebra ho-
momorphism φ : g1 → g2 there exists a unique Lie group homomorphism
f : G1 → G2 whose differential at the neutral element φ is.

In this context, assertions 1◦ and 2◦ are sometimes called the first and second prin-
ciples, respectively. Assertion 0◦ is more basic, so let us call it the zeroth principle.
The technicalities in the zeroth principle actually require a longer proof, since it is
in this part that we have to promote the continuity assumption to differentiability.

The zeroth principle

As we avoid explicitly using differential geometry, we define the necessary derivatives
below directly using the Lie algebra and the matrix exponential.11

Consider a continuous group homomorphism

f : G1 → G2.

We define the differential (df)|e1 of the function f at the neutral element e1 ∈ G1

as the following matrix valued function on the Lie algebra g1 of G1

(df)|e1(X1) :=
d

dt
f
(
etX1

)∣∣
t=0

for X1 ∈ g1, (II.22)

11Our definition of course coincides with the differential geometric one, only it is less general.
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provided the derivative here exists. Below we prove the existence, and show what
the group homomorphism explicitly does to the one-parameter subgroups defined
by exponentials.

Theorem II.59 (Differential of homomorphism between matrix Lie groups).
For a continuous group homomorphism

f : G1 → G2,

between matrix Lie groups G1 and G2 with respective Lie algebras g1 and g2, the
differential of f defined by (II.22) exists and is a Lie algebra homomorphism

φ := (df)|e1 : g1 → g2.

Moreover, for any X1 ∈ g1 and t ∈ R we have

f
(
Exp(tX1)

)
= Exp

(
t φ(X1)

)
. (II.23)

Remark II.60 (Continuous group homomorphisms between Lie groups are smooth).
In the general theory of Lie groups one can also show that if a group homomorphism between
two Lie groups is continuous then it is in fact smooth, and therefore a Lie group homomor-
phism (i.e. both a group homomorphism and an infinitely differentiable map). The proof
is essentially the same, if in the place of matrix exponentials one uses exponential maps
defined via flows of left-invariant vector fields. The idea is to first establish the unsurprising
equality (II.23), and then the rest follows easily.

Proof of Theorem II.59. By Theorem II.36 we can choose a small enough neighborhood U1 ⊂ g1

of the origin 0 ∈ g1 such that Exp: U1 → Exp(U1) ⊂ G1 is a homeomorphism. Likewise,
choose a small enough neighborhood U2 ⊂ g2 of the origin 0 ∈ g2 such that Exp: U2 →
Exp(U2) ⊂ G2 is a homeomorphism.

Given X1 ∈ g1 we can fix a small t′ > 0 such that whenever |t| ≤ t′, we have f
(
Exp(tX1)

)
∈

Exp(U2) and also tX1 ∈ U1. Let us write X ′1 = t′X1. Consider now Lie algebra elements
of the form m2−nX ′1 with n ∈ N and m ∈ Z such that |m| ≤ 2n. Since f

(
Exp(2−nX ′1)

)
∈

Exp(U2) for any n ∈ N, we can choose a unique X
(n)
2 ∈ U2 ⊂ g2 such that

f
(

Exp
(
2−nX ′1

) )
= Exp

(
X

(n)
2

)
.

Then also for any m, by the group homomorphism property and properties of the exponen-
tial, we get

f
(
Exp

(
m2−nX ′1

) )
= f

(
Exp

(
2−nX ′1

)m )
=
(
f
(
Exp

(
2−nX ′1

) ))m
=
(

Exp
(
X

(n)
2

))m
= Exp

(
mX

(n)
2

)
.

If we take a larger n′ ≥ n and consider m′ = m2n
′−n, then m′2−n

′
= m2−n so by uniqueness

of the choice of inverse exponentials we must have m′X
(n′)
2 = mX

(n)
2 . In other words, we

have obtained a well defined additive map from the set of dyadic numbers of the form m2−n

to g2. Since the closure of such dyadic numbers is the interval [−1, 1], by continuity of f and
the matrix exponentials and their inverses this map can be extended to a map [−1, 1]→ g2,
which has the form t 7→ tX ′2 for some X ′2 ∈ g2 and satisfies

f
(
Exp(tX ′1)

)
= Exp(tX ′2) .

By homomorphism property of f and properties of matrix exponentials, this continues to
hold true for all t ∈ R, and by simple redefinitions X1 = 1

t′X
′
1 and X2 = 1

t′X
′
2, it becomes

f
(
Exp(tX1)

)
= Exp(tX2) for all t ∈ R.

In particular the derivative in (II.22) exists and is given by

(df)|e1
(X1) :=

d

dt
f
(
etX1

)∣∣
t=0

=
d

dt
Exp(tX2)

∣∣
t=0

= X2 ∈ g2.
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We see that the values are in the Lie algebra g2 of G2, so at least the differential is a map

(df)|e1
: g1 → g2.

We have established that (df)|e1
(tX1) = t (df)|e1

(tX1) for all t ∈ R and X1 ∈ g1, but to
prove linearity we must still establish additivity. So let X1, Y1 ∈ g1. Consider the map

α : R2 → G2 α(s, t) = f
(

Exp(sX1) Exp(tY1)
)
.

We already know that α(s, 0) = Exp(sX2) and α(0, t) = Exp(tY2), where X2 = (df)|e1
(X1)

and Y2 = (df)|e1
(Y1) are obtained from the construction above. By the homomorphism

property of f , we obtain for any (s, t) ∈ R2

α(s, t) = f
(

Exp(sX1) Exp(tY1)
)

= f
(

Exp(sX1)
)
f
(

Exp(tY1)
)

= Exp(sX2) Exp(tY2) .

This map α : R2 → G2 ⊂ GL(V2) is infinitely differentiable, since matrix exponentials and
matrix products are, and its differential at the origin gives in particular

α
( t
n
,
t

n

)
= I +

t

n
X2 +

t

n
Y2 + o

( 1

n

)
= Exp

(
tX2 + tY2

n
+ o(n−1)

)
.

From here one can show as before that(
α
( t
n
,
t

n

))n
=
(

Exp

(
tX2 + tY2

n
+ o(n−1)

))n
=
(

Exp(tX2 + tY2 + o(1))
)
−→ Exp

(
t(X2 + Y2)

)
as n→∞.

On the other hand by homomorphism property, continuity, and Lie’s formula (II.11) we have(
α
( t
n
,
t

n

))n
= f

((
Exp

(
n−1tX1

)
Exp

(
n−1tY1

) )n)
−→ f

(
Exp(tX1 + tY1)

)
as n→∞.

The equality of the two expressions f
(

Exp
(
t(X1 + Y1)

))
= Exp

(
t(X2 + Y2)

)
shows that

(df)|e1(X1 + Y1) = X2 + Y2,

which finishes the proof of linearity of (df)|e1 : g1 → g2.

Finally, we must show that this map (df)|e1
respects Lie brackets. The proof is similar,

referring to Lie’s formula (II.12) this time, and we leave the details as an exercise. �

The first principle

The first principle says that a Lie group homomorphism is uniquely determined by
the associated Lie algebra homomorphism, under a connectedness assumption.

Theorem II.61 (First principle of infinitesimals).
If G1 is connected, then a continuous group homomorphism f : G1 → G2 is
uniquely determined by the Lie algebra homomorphism φ = (df)|e1 : g1 → g2

given by its differential at the neutral element.

Proof. Choose again a small enough neighborhood U1 ⊂ g1 of 0 ∈ g1 such that Exp: U1 → Exp(U1)
is a homeomorphism. Any group element in the neighborhood Exp(U1) ⊂ G1 of the neutral
element can thus be written as eX1 for some X1 ∈ U1. By Exercise II.20, the connected Lie
group G1 is generated by elements in the neighborhood Exp(U1), i.e., any g ∈ G1 can be
written as a finite product

g = eX
(1)
1 · · · eX

(m)
1
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with some X
(1)
1 , . . . , X

(m)
1 ∈ U1. On the other hand the zeroth principle implies that we

have

f
(
eX

(j)
1
)

= eφ(X
(j)
1 ) for j = 1, . . . ,m.

The homomorphism property of f then yields the expression

f(g) = f
(
eX

(1)
1 · · · eX

(m)
1
)

= f
(
eX

(1)
1
)
· · · f

(
eX

(m)
1
)

= eφ(X
(1)
1 ) · · · eφ(X

(m)
1 ).

This expression uniquely recovers the values of f referring only to φ. �

The second principle

The zeroth principle says that a Lie group homomorphism always gives rise to a Lie
algebra homomorphism. The other two principles concern topological obstructions
to having a converse statement. The first principle says that disconnectedness is
the only possible obstruction to a Lie algebra homomorphism uniquely determining
the Lie group homomorphism. The second principle says that lack of simply con-
nectedness (i.e., non-trivial fundamental group) is the only possible obstruction to
lifting a Lie algebra homomorphism to a Lie group homomorphism. More precisely,
it states the following.

Theorem II.62 (Second principle of infinitesimals).
If G1 is connected and simply connected, then for any Lie algebra homomor-
phism φ : g1 → g2 there exists a Lie group homomorphism f : G1 → G2 such
that φ = (df)|e1.

We postpone the proof for now.

We next move to our first examples of Lie group homomorphisms and associated Lie
algebra homomorphisms. The notion of adjoint representations provides examples
of such homomorphisms for a general Lie group.

2.6. Adjoint representations

Suppose now again that G is a matrix Lie group and let g be its Lie algebra. Given
any g ∈ G, the conjugation by g

Cg : G→ G Cg(h) = ghg−1 (II.24)

is clearly a group homomorphism, and moreover continuous.

Definition II.63 (Adjoint action of a Lie group on its Lie algebra).
For any g ∈ G, we denote Adg := (dCg)|e and call it the adjoint action of the
element g ∈ G on g. By the zeroth principle, the differential (dCg)|e exists
and defines a Lie algebra homomorphism

Adg : g→ g.

Lemma II.64 (Explicit adjoint action for a matrix Lie group).
For a matrix Lie group G and an element g ∈ G, the adjoint action is explicitly

Adg(X) = gXg−1 for X ∈ g. (II.25)
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Proof. By definition the adjoint action Adg := (dCg)|e is the differential of conjugation Cg : G→ G
at the neutral element, which is

Adg(X) =
d

dt

∣∣∣
t=0

Cg(e
tX) =

d

dt

∣∣∣
t=0

(
g etX g−1

)
= gXg−1,

where the derivative was calculated using the series defining the exponential. �

Remark II.65 (Adjoint action is not conjugation).
Although Cg and Adg in (II.24) and (II.25) look formally identical, they must not be con-
fused! In (II.24), h ∈ G is a Lie group element, whereas in (II.25), X ∈ g is a Lie algebra
element. The same difference goes for Cg(h) ∈ G and Adg(X) ∈ g. To reiterate, conjugation
is an operation on the group, whereas adjoint action is an operation on the Lie algebra.

Remark II.66 (Adjoint action is indeed a Lie algebra homomorphism).
As argued above, it follows from the zeroth principle that Adg : g → g is a Lie algebra
homomorphism. In view of the explicit formula (II.25), this is also easy to see directly: for
any X,Y ∈ g the bracket of Adg(X) and Adg(Y ) (defined as the commutator in g = L(G) ⊂
Rn×n) reads

[Adg(X),Adg(Y )] = Adg(X)Adg(Y )−Adg(Y )Adg(X)

= gXg−1gY g−1 − gY g−1gXg−1

= g(XY − Y X)g−1

= Adg([X,Y ]).

Note that for g1, g2 ∈ G, we have12

Adg1g2 = Adg1 ◦ Adg2 ,

and that Ade = idg. By thinking of g as the variable, the function g 7→ Adg becomes
a group homomorphism from G to the group Aut(g) of invertible linear maps of g
to itself (the inverse of Adg is Adg−1), This homomorphism is also continuous, and
therefore Ad• : G → Aut(g) is a Lie group homomorphism, and equips the vector
space g with the structure of a representation of the Lie group G.

Definition II.67 (Adjoint representation of a Lie group).
The adjoint representation of a Lie group G is the representation

Ad• : G→ Aut(g) g 7→ Adg = (dCg)|e ∈ Aut(g)

on the vector space g = L(G), the Lie algebra of G.

Furthermore, since Ad• : G → Aut(g) is a Lie group homomorphism, we can again
look at the homomorphism of Lie algebras that it induces by the zeroth principle.
The Lie algebra of G is of course g, and the Lie algebra of the Lie group

Aut(g) ∼= GLdim(g)(R)

12For matrix Lie groups the homomorphism property Adg1g2 = Adg1 ◦ Adg2 can be directly
seen from Adg(X) = gXg−1. For general Lie groups, it is obtained by noticing that conjugation
is a group action, Cg1g2 = Cg1 ◦Cg2 , so the chain rule of differentiation (keeping also in mind that
Cg2(e) = e) implies

(dCg1g2)|e = (dCg1)|e ◦ (dCg2)|e.
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is (as in Example II.38) the space of all linear maps from g to itself,

End(g) ∼= gldim(g)(R).

Therefore by the zeroth principle, the differential of g 7→ Adg at the neutral ele-
ment e ∈ G is a Lie algebra homomorphism from g to End(g). Since the homomor-
phism takes value in a Lie algebra of linear maps, this is a Lie algebra representation.

Definition II.68 (Adjoint representation of a Lie algebra of a Lie group).
The adjoint representation of the Lie algebra g of a Lie group G is the Lie
algebra homomorphism ad := (d Ad•)|e,

ad : g→ End(g) .

We denote the value at X ∈ g of the above homomorphism by adX ∈ End(g). This
is itself a linear map adX : g→ g. Then as usual, when this linear map is evaluated
at Z ∈ g, the value is denoted by adX(Z) ∈ g. For Lie algebras of matrix Lie groups,
we easily obtain the following concrete formula.

Lemma II.69 (Explicit adjoint action for a matrix Lie algebra).
The adjoint representation of its Lie algebra g of a matrix Lie group G is
explicitly given by

adX(Z) = [X,Z] for X,Z ∈ g. (II.26)

Proof. By definition, ad := (d Ad•)|e is the differential of the adjoint reprensetation g 7→ Adg at
the neutral element, which is

adX(Z) =
d

dt

∣∣∣
t=0

AdetX (Z) =
d

dt

∣∣∣
t=0

(
etXZe−tX

)
= XZ − ZX = [X,Z],

where the derivative was again calculated using the series defining the exponential. �

Remark II.70 (Adjoint representation is indeed a Lie algebra homomorphism).
As argued above, it follows from the zeroth principle that ad: g → g is a Lie algebra
homomorphism. In view of the explicit formula (II.26) relating the adjoint action to the Lie
bracket, this is also easy to see directly. Indeed, for any X,Y ∈ g the bracket of adX and adY
(defined as the commutator in End(g)) is the linear map g→ g, whose value at Z ∈ g is[

adX , adY
]
End(g)

(Z) = adX
(
adY (Z)

)
− adY

(
adX(Z)

)
=
[
X, [Y,Z]

]
−
[
Y, [X,Z]

]
.

If we use antisymmetry of brackets once, then Jacobi identity, and then antisymmetry once
more, the above becomes[

adX , adY
]
End(g)

(Z) =
[
X, [Y, Z]

]
−
[
Y, [X,Z]

]
=
[
X, [Y, Z]

]
+
[
Y, [Z,X]

]
= −

[
Z, [X,Y ]

]
=
[
[X,Y ], Z

]
= ad[X,Y ](Z).

This explicitly shows the Lie algebra homomorphism property of ad.
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3. The Lie groups SU2 and SO3 and their Lie algebras

3.1. The topology of the Lie group SU2

3.2. Isomorphism of the Lie algebras su2 and so3

We claim that the Lie algebras of the Lie groups SU2 and SO3 are isomorphic. To
this end, let us describe both by giving explicit choices of basis for them, and by
calculating the Lie brackets in these chosen bases. We start with the Lie algebra so3

of SO3.

Example II.71 (Basis of the Lie algebra so3).
Example II.43 explicitly characterizes the Lie algebra son = L(SOn) of the special orthogonal
group SOn in n dimensions as the set of real antisymmetric n × n-matrices. In the special
case n = 3, this becomes

so3 =
{
X ∈ R3×3

∣∣∣ X> = −X
}
. (II.27)

The dimension of this Lie algebra is dim(so3) = n(n−1)
2 = 3 — one can freely choose the

strictly upper triangular entries, and the rest of the matrix is then fully determined. One
explicit basis thus consists of the three matrices13

Rx =

 0 0 0
0 0 −1
0 +1 0

 , Ry =

 0 0 +1
0 0 0
−1 0 0

 , Rz =

 0 −1 0
+1 0 0
0 0 0

 .
To completely describe the Lie algebra, we will write down the Lie brackets among the above
basis elements. By antisymmetry we of course have

[Rx, Rx] = 0, [Ry, Ry] = 0, [Rz, Rz] = 0,

and it suffices to find [Rx, Ry] = −[Ry, Rx], [Ry, Rz] = −[Rz, Ry], and [Rz, Rx] = −[Rx, Rz].
By explicit calculation we find, e.g.,

[Rx, Ry] = RxRy −RyRx

=

 0 0 0
0 0 −1
0 +1 0

 0 0 +1
0 0 0
−1 0 0

−
 0 0 +1

0 0 0
−1 0 0

 0 0 0
0 0 −1
0 +1 0


=

 0 0 0
+1 0 0
0 0 0

−
 0 +1 0

0 0 0
0 0 0


=

 0 −1 0
+1 0 0
0 0 0

 = Rz.

Similar calculations yield [Ry, Rz] = Rx, and [Rz, Rx] = Ry. In summary, the information
about the Lie brackets of so3 in the basis Rx, Ry, Rz is contained in the formulas

[Rx, Ry] = Rz, [Ry, Rz] = Rx, [Rz, Rx] = Ry. (II.28)

13The explanation for the choices of labels and signs is that Rx, Ry, and Rz are the infinitesimal
generators of positively oriented rotations along the x, y, and z-axes.
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3.3. Adjoint representation of SU2

3.4. The topology of the Lie group SO3

3.5. Some applications of SO3 and so3

Exercise II.72 (Infinitesimal rotations).
Let C∞(R3) denote the space of smooth complex valued functions on R3, and on this space,
consider the differential operators Jx,Jy,Jz given by Jx = z ∂

∂y − y
∂
∂z , Jy = x ∂

∂z − z
∂
∂x ,

and Jz = y ∂
∂x − x

∂
∂y .

(a) By direct calculation, show that the commutators of the above differential operators are
[Jx,Jy] = Jz, [Jy,Jz] = Jx, [Jz,Jx] = Jy.

(b) For M ∈ SO3 and f ∈ C∞(R3), define M.f ∈ C∞(R3) by (M.f)(~x) = f(M−1~x). Show
that C∞(R3) thus becomes a representation of the group SO3.

(c) Let

M (θ)
x =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

,
be the rotation by angle θ around the x axis in the positive direction, and let M

(θ)
y

and M
(θ)
z be the rotations by θ around y and z-axes, respectively. Show that for any

f ∈ C∞(R3) we have

d

dθ

∣∣∣
θ=0

(
M (θ)
x .f

)
= Jxf,

and perform similar calculations for the actions of M
(θ)
y and M

(θ)
z .
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1. Preliminaries on Lie algebra representations

Let us quickly review a few basic notions, before starting to concretely study repre-
sentations of Lie algebras and Lie groups.

1.1. Representations of Lie algebras and intertwining maps

Recall from Definition II.53 and Remark II.54 that a representation of a Lie algebra g
over a field k on a K-vector space V (with k ⊂ K) is a homomorphism of k-Lie
algebras

ϑ : g→ EndK(V ).

Thus for each X ∈ g, the map ϑ(X) : V → V is K-linear

ϑ(X)(v1 + v2) = ϑ(X)v1 + ϑ(X)v2 for all v1, v2 ∈ V , and

ϑ(X)(cv) = c ϑ(X)v for all v ∈ V , c ∈ K.
The requirement that X 7→ ϑ(X) is a Lie algebra homomorhism amounts to k-
linearity

ϑ(aX + bY ) = a ϑ(X) + b ϑ(Y ) for all a, b ∈ k and X, Y ∈ g

and respecting brackets

ϑ([X, Y ]) = ϑ(X) ◦ ϑ(Y )− ϑ(Y ) ◦ ϑ(X) for all X, Y ∈ g.

We will mostly be concerned with complex representations, i.e. K = C, of both real
and complex Lie algebras, i.e. k = R or k = C.

Definition III.1 (Intertwining map between Lie algebra representations).
Let g be a Lie algebra, and ϑ1 : g → End(V1) and ϑ2 : g → End(V2) two
representations of g, on K-vector spaces V1 and V2, respectively. A K-linear
map T : V1 → V2 is said to be an intertwining map of representations of g if
for all X ∈ g we have

ϑ2(X) ◦ T = T ◦ ϑ1(X).

We denote1 the space of such intertwining maps by Homg(V1, V2).

Subrepresentations are defined in an unsurprising way, starting from the notion of
an invariant subspace.

Definition III.2 (Invariant subspace).
Let g be a Lie algebra and ϑ : g→ End(V ) a representation of it. An invariant
subspace of the representation is a vector subspace W ⊂ V such that for
all X ∈ g we have ϑ(X)W ⊂ W .

Definition III.3 (Subrepresentation).
Suppose that ϑ : g→ End(V ) is a representation of a Lie algebra g on a vector
space V , and W ⊂ V is an invariant subspace. For each X ∈ g, the linear map
ϑ(X) : V → V can be restricted to the subspace W , and by the invariance of

1Implicit in the notation is the understanding of the field K over which the representations V1

and V2 are defined.



1. PRELIMINARIES ON LIE ALGEBRA REPRESENTATIONS 65

this subspace, the restriction ϑ(X)
∣∣
W

=: ϑ̃(X) defines a map ϑ̃(X) : W → W .

This makes ϑ̃ : g→ End(W ) a representation and we correspondingly say that
W is a subrepresentation in V .

1.2. Complexifications of real Lie algebras

Let g be a Lie algebra over R. We will often study the complexification of g,

gC := g ⊕ i g (a direct sum of R-vector spaces)

=
{
X + iY

∣∣∣ X, Y ∈ g
}

(equivalently, g is the tensor product of the R-vector spaces g and C = R⊕iR ∼= R2).
The complexification gC becomes a C-vector space with the obvious vector addition

(X1 + iY1) + (X2 + iY2) = (X1 +X2) + i (Y1 + Y2)

for all X1, Y1, X2, Y2 ∈ g

and complex scalar multiplication

(a+ i b)(X + iY ) = (aX − bY ) + i (aY + bX)

for all a, b ∈ R and X, Y ∈ g.

It moreover becomes a Lie algebra over C by defining the brackets as

[X1 + iY1, X2 + iY2] = ([X1, X2]− [Y1, Y2]) + i ([X1, Y2] + [Y1, X2])

for all X1, Y1, X2, Y2 ∈ g.

If the dimension of the real Lie algebra g is d = dimR(g), then the dimension of the
complexification gC as a real vector space is 2d. However, we are more interested in
its dimension as a complex vector space, which is just dimC(gC) = d = dimR(g).

Example III.4 (Complexification of the Lie algebra so3).
Recall from Example II.71 that a basis of the real Lie algebra g = so3 consists of Rx, Ry,
Rz, with nontrivial Lie brackets (II.28)

[Rx, Ry] = Rz, [Ry, Rz] = Rx, [Rz, Rx] = Ry.

The complexification gC = so3 ⊕ i so3 consists of all complex linear combinations of these
basis elements. It contains for example the elements

E = −Ry + iRx ∈ gC, F = Ry + iRx ∈ gC, H = 2iRz ∈ gC.

It is easy to see that E,F,H above are linearly independent (over C) in gC, and thus form a
basis (over C) of gC. The nontrivial Lie brackets in this basis of the complexification gC =
so3 ⊕ i so3 of g = so3 are

[H,E] = [2iRz , −Ry + iRx] = −2i [Rz, Ry]− 2[Rz, Rx] = 2iRx − 2Ry = 2E

[H,F ] = [2iRz , Ry + iRx] = 2i [Rz, Ry]− 2[Rz, Rx] = −2iRx − 2Ry = −2F

[E,F ] = [−Ry + iRx , Ry + iRx] = −i [Ry, Rx] + i [Rx, Ry] = 2iRz = H.

In view of these relations, we will soon see that the complexification of so3 is isomorphic to
the complex Lie algebra sl2(C).

The primary justification for studying representations of the complex Lie algebra gC
instead of the real Lie algebra g is that the complex representations of both are
basically the same. Working with complex numbers just makes certain things easier
for gC.



66 III. REPRESENTATIONS OF LIE ALGEBRAS AND LIE GROUPS

Lemma III.5 (Complex representations of a real Lie algebra).
Let g be a real Lie algebra, and gC = g⊕ i g its complexification. Then any com-
plex representation of g has a unique structure of representation of gC (which
restricts back to g to the original one), and Homg(V,W ) = HomgC(V,W ). In
other words, the categories of complex representations of g and gC are equiva-
lent.

Proof. Let ϑ : g→ End(V ) be a representation of g on a complex vector space V . The only C-linear
way to extend it to gC is to define ϑC : gC → End(V ) by setting ϑC(X+iY ) = ϑ(X)+iϑ(Y ).
We leave it to the reader to check that this extension maps brackets in gC to commutators
in End(V ), and thus defines a representation of gC. Note that the converse direction is
clear — any representation of gC restricts to a representation of g ⊂ gC.

As for intertwining maps, if TC : V → W is an intertwining map gC-representations, then
a fortiori it is a an intertwining map of g-representations. We only need to show the other
direction, that if T : V → W is an intertwining map of g-representations, then it is also an
intertwining map of gC-representations. This is easy to see by C-linearity of T and the way
the representations ϑVC and ϑWC extend ϑV and ϑW . �

1.3. Direct sums of representations

If ϑ1 : g→ End(V1) and ϑ2 : g→ End(V2) are two representations of a Lie algebra g,
then there is an obvious way to make the direct sum V1⊕V2 a representation of g —
just set

ϑ(X)(v1 + v2) = ϑ1(X)v1 + ϑ2(X)v2 for all X ∈ g and v1 ∈ V1, v2 ∈ V2.

The question of when a subrepresentation has a complementary subrepresentation
is more involved than in the case of finite groups.

One sufficient condition is the existence of an invariant inner product.

Definition III.6 (Invariant inner product).
Suppose that ϑ : g → End(V ) is a representation of a real Lie algebra g on a
real or complex inner product space V . The inner product 〈·, ·〉 on V is said
to be g-invariant if we have

〈ϑ(X)v1, v2〉 = −〈v1, ϑ(X)v2〉 for all X ∈ g and v1, v2 ∈ V . (III.1)

Lemma III.7 (Invariant inner product gives complementary subrepresentations).
Suppose that ϑ : g → End(V ) is a representation of a real Lie algebra g on
a real or complex vector space V which has a g-invariant inner product. If
W ⊂ V is a subrepresentation, then also the orthogonal complement

W⊥ :=
{
u ∈ V

∣∣∣ 〈u,w〉 = 0 ∀w ∈ W
}

is a subrepresentation.

Proof. Suppose that u ∈ W⊥, i.e., that we have 〈u,w〉 = 0 for all w ∈ W . Consider ϑ(X)u for
some X ∈ g. Observe that by g-invariance of the inner product, for any w ∈W we get

〈ϑ(X)u,w〉 = −〈u, ϑ(X)w〉 = 0,

since also ϑ(X)w ∈W by the subrepresentation property. �
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1.4. Irreducible representations

The definition of irreducible representations of Lie algebras is similar to the one for
groups.

Definition III.8 (Irreducible representation).
A representation ϑ : g→ End(V ) of a Lie algebra g on a vector space V 6= {0}
is called irreducible if its only invariant subspaces are {0} ⊂ V and V ⊂ V .

When we have a criterion guaranteeing existence of complementary subrepresen-
tations, we obtain complete reducibility for finite-dimensional representations by
induction on dimension. As an example, we have the following consequence of
Lemma III.7.

Corollary III.9 (Invariant inner product gives complete reducibility).
Suppose that ϑ : g → End(V ) is a representation of a real Lie algebra g on
a finite-dimensional real or complex vector space V which has a g-invariant
inner product. Then V is the direct sum of subrepresentations,

V = W1 ⊕ · · · ⊕W`,

where each Wj ⊂ V , j = 1, . . . , `, is irreducible.

Schur’s lemmas

Schur’s lemmas apply just as well to representations of Lie algebras as they do to
representations of groups. The proofs remain identical, since the arguments only use
the properties that the kernel and image of an intertwining map are subrepresenta-
tions, and that a bijective intertwining map is an isomorphism of representations.

Lemma III.10 (Schur’s lemma).
If V and W are irreducible representations of a Lie algebra g, and T : V → W
is an intertwining map, then either T = 0 or T is an isomorphism.

Under the assumption that the representations are defined over an algebraically
closed field and that they are finite dimensional, we have the two further formula-
tions.

Lemma III.11 (Schur’s lemma over albegraically closed fields).
Let g be a Lie algebra, and ϑ : g→ EndK(V ) an irreducible representation of g
in a finite-dimensional vector space V over a field K such that (AlgClos) holds.

Then any intertwining map T : V → V is necessarily of the form T = λ idV
for some λ ∈ K.

Corollary III.12 (Schur’s lemma for dimension of intertwining maps).
Let g be a Lie algebra, and ϑV : g → EndK(V ) and ϑW : g → EndK(W ) two
irreducible representations of g in finite-dimensional vector spaces V and W
over a field K such that (AlgClos) holds.
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Then the dimension of the space of intertwining maps between these irreducible
representations is given by

dim
(

Homg(V,W )
)

=

{
1 if V ∼= W

0 if V 6∼= W.
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2. Representations of sl2(C)

We start by analyzing Lie algebra representations in an easy but fundamental case,
namely the Lie algebra sl2(C). It is a three-dimensional complex Lie algebra.

The importance of focusing on this particular case stems for example from the
following:

• The complex Lie algebra sl2(C) is isomorphic to the complexification of
the real Lie algebras so3 and su2 — see Example III.4. As such, the com-
plex representations of so3 and su2 are exactly the same as those of sl2(C),
according to Lemma III.5. In particular, by understanding the represen-
tations of sl2(C), we will ultimately understand the representations of the
very important Lie groups SO3 and SU2, whose Lie algebras are so3 and su2,
respectively.
• The analysis of all (complex) semisimple Lie algebras g and their represen-

tations will be achieved by finding subalgebras in g isomorphic to sl2(C),
and applying the representation theory of sl2(C). Despite the importance
of sl2(C) for its own sake (witnessed, e.g., by the previous example), this is
really the fundamental reason for studying it!

2.1. The Lie algebra sl2(C)

By definition, sl2(C) is the set

sl2(C) =
{
X ∈ C2×2

∣∣ tr(X) = 0
}

of traceless complex two-by-two matrices, equipped with the Lie bracket [X, Y ] =
XY − Y X. As a complex vector space, it is three dimensional, and we will use the
basis

H =

[
1 0
0 −1

]
, E =

[
0 1
0 0

]
, F =

[
0 0
1 0

]
(III.2)

for it. The brackets of these basis elements are easily calculated, with the result

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (III.3)

The chosen basis elements are quite simple matrices, but more importantly this
basis choice is a fundamental instance of a canonical basis that can be chosen for
any semisimple Lie algebra. This should become clear gradually, and at least by the
time we treat the general structure of semisimple Lie algebras.

We can immediately give two examples of representations of sl2(C).

Example III.13 (Defining representation of sl2(C)).
The space V = C2 is naturally a representation of sl2(C): any element X ∈ sl2(C) is a
2× 2-matrix, which we let act on any vector v ∈ V = C2 by matrix multiplication

ϑ(X) v = Xv,

i.e., we set ϑ(X) = X ∈ C2×2 ∼= End(V ). This two-dimensional representation is called the
defining representation of sl2(C).

Example III.14 (Adjoint representation of sl2(C)).
The adjoint representation of sl2(C) is the vector space V = sl2(C) equipped with the adjoint
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action: for X ∈ sl2(C) and Y ∈ V = sl2(C), we set

ϑ(X)Y = adX(Y ) = [X,Y ].

This is a three-dimensional representation of sl2(C).

Concretely, in the basis E,H,F of sl2(C), the adjoint representation

ϑ : sl2(C)→ End(sl2(C))

becomes, in view of (III.3),

ϑ(E) =

 0 −2 0
0 0 1
0 0 0

 , ϑ(H) =

 2 0 0
0 0 0
0 0 −2

 , ϑ(E) =

 0 0 0
−1 0 0
0 2 0

 .

2.2. Weight spaces in representations of sl2(C)

Let V be a finite dimensional (complex) vector space, which carries a representation
of sl2(C). The representation ϑ : sl2(C) → End(V ) gives us linear maps V → V
associated to each Lie algebra element X ∈ sl2(C). Let us denote the linear maps
associated with basis elements H,E, F in (III.2) by

H = ϑ(H), E = ϑ(E), F = ϑ(F ).

These are linear maps

H : V → V, E : V → V, F : V → V,

which by virtue of the Lie brackets in (III.3) and homomorphism property of ϑ
satisfy the commutation relations

HE − EH = 2 E , HF −FH = −2F , EF − FE = H. (III.4)

Remark III.15 (Remarks on notation).
One obvious reason for preferring H, E ,F to ϑ(H), ϑ(E), ϑ(F ) is to have a less cumber-
some notation, while still distinguishing the matrices H,E, F ∈ C2×2 from the linear
maps H, E ,F ∈ End(V ) ∼= Cd×d, where d = dim(V ).

Moreover, an advantage of linear maps is that they can be composed, so that for example
EF makes sense as a linear map V → V , while the product EF is something we should
not really ever write — the matrix product EF ∈ C2×2 is not traceless, and so does not lie
in sl2(C).2

In the long run when studying Lie algebra representations, convenience dictates that we
should start using “module notation”, i.e., abuse notation and write just Xv for ϑ(X)v when
v ∈ V and X ∈ g — but due to a non-negligible risk of confusion (think of Examples III.13
and III.14) let us for the moment avoid doing so.

Although we will not logically need the following fact, it is convenient to be aware
of it already at this point.

Fact III.16. The linear map H : V → V is diagonalizable.

2Products of elements in a Lie algebra do not make sense, since Lie algebras are not associative
algebras! It would, however, be possible to consider the universal enveloping algebra U(g) of a
Lie algebra g, which is an associative algebra constructed in such a way that it has the “same”
representations as g. We avoid introducing the universal enveloping algebra, as it would have
relatively few real benefits in the limited scope of the present course.
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We will obtain a proof of this fact in Section 2.5 together with the proof of complete
reducibility.

For µ ∈ C, let us denote the eigenspace of H corresponding to the eigenvalue µ by

Vµ :=
{
v ∈ V

∣∣ Hv = µv
}
. (III.5)

To anticipate some general terminology, we call the eigenvalues µ of H weights (in
the representation V ), and the corresponding eigenspaces Vµ ⊂ V weight spaces (in
the representation V ). Note that if µ ∈ C is not a weight (i.e., not an eigenvalue
of H), then Vµ = {0} ⊂ V .

Admitting Fact III.16, one has the eigenspace decomposition

V =
⊕
µ

Vµ. (III.6)

The decomposition (III.6) completely describes the action of H on V , and the re-
maining task is to describe the action of E and F .

The following lemma describes what E and F do to the H-eigenspaces Vµ.

Lemma III.17 (Raising and lowering of weights).
For any µ ∈ C, we have

E(Vµ) ⊂ Vµ+2 and F(Vµ) ⊂ Vµ−2.

Proof. Suppose that v ∈ Vµ, i.e., Hv = µv. Consider the vector Ev ∈ V . We can figure out the
action of H on it by an easy but important calculation which uses the commutator (III.4)
of H and E corresponding to the Lie bracket [H,E] in (III.3).

Fundamental calculation (first time):

H(Ev) = E(Hv) + [H, E ]v

= E(µv) + 2Ev
= (µ+ 2) Ev.

This calculation shows that if v is an eigenvector of H with eigenvalue µ, then Ev is either
zero, or an eigenvector of H with eigenvalue µ+ 2. This proves that E(Vµ) ⊂ Vµ+2.

By an entirely similar calculation we see that F(Vµ) ⊂ Vµ−2. �

The above lemma has a consequential corollary for finite-dimensional representa-
tions V of sl2(C).

Corollary III.18 (Existence of highest weight vectors for sl2(C)).
In any finite-dimensional representation V 6= {0} of sl2(C), there exists a
non-zero vector v0 ∈ V such that Ev0 = 0 and Hv0 = λv0 for some λ ∈ C.

Proof. Let λ ∈ C be an eigenvalue of H with maximal real part.3 Then the eigenspace Vλ ⊂ V
is non-zero, so we can pick a non-zero vector v0 ∈ Vλ in it. By definition this vector
satisfies Hv0 = λv0. Consider Ev0 ∈ V . By Lemma III.17 we have Ev0 ∈ Vλ+2, but since the
real part satisfies <e(λ+ 2) > <e(λ), we must have Vλ+2 = {0}. Therefore we have Ev0 = 0,
and the proof is complete. �

3Note thatH has at least one eigenvalue, since it is a linear map of a non-zero finite-dimensional
vector space over the algebraically closed field C.
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Definition III.19 (Highest weigth vector for sl2(C)).
A vector v0 6= 0 in a representation V of sl2(C), which satisfies Ev0 = 0
and Hv0 = λv0, is called a highest weight vector of highest weight λ.

2.3. The irreducible representations of sl2(C)

We next start considering finite-dimensional representations which are irreducible.
The first observation, however, is to note the following rather explicit description of
the subrepresentation generated by a highest weight vector.

Lemma III.20 (Subrepresentation generated by a highest weight vector).
Let V 6= {0} be a finite-dimensional representation of sl2(C), and let v0 ∈ V
be a highest weight vector with highest weight λ ∈ C. For all j ∈ Z≥0, define

vj := F jv0.

Then the linear span of v0, v1, v2, . . . in V is a subrepresentation, and the action
of the generators on the vectors vj, j ∈ Z≥0, is explicitly given by

Hvj = (λ− 2j) vj

Fvj = vj+1 (III.7)

Evj = j(λ+ 1− j) vj−1.

Proof. Once we prove formulas (III.7), it follows that the linear span of v0, v1, v2, . . . in V is a
subrepresentation, because it is stable under applying all of the generators of sl2(C).

Let us prove (III.7) by induction on j ∈ Z≥0. The case j = 0 is clear by the assumption
that v0 is a highest weight vector, and since Fv0 = v1 by construction. Consider then
a general j > 0 and assume that the result has been proven for j − 1 already. By the
induction assumption we have in particular Hvj−1 = (λ− 2j + 2)vj−1, i.e., vj−1 ∈ Vλ−2j+2.
It follows from Lemma III.17 that vj = Fvj−1 ∈ Vλ−2j , which proves the desired formula
Hvj = (λ− 2j)vj . The formula Fvj = vj+1 follows directly by the construction of vj+1. It
remains to prove the formula for Evj , and by induction assumption we have

Evj−1 = (j − 1)(λ+ 2− j) vj−2.

Now using the last of the commutation relations in (III.4) and the induction assumptions,
calculate

Evj = EFvj−1 = (FE +H) vj−1

= F(Evj−1) +Hvj−1

= F
(
(j − 1)(λ+ 2− j) vj−2

)
+ (λ− 2j + 2) vj−1

=
(

(j − 1)(λ+ 2− j) + (λ− 2j + 2)
)
vj−1

=
(
j(λ+ 1− j)

)
vj−1,

which establishes the last remaining formula, and finishes the proof. �

Corollary III.21 (Highest weights in finite-dimensional sl2(C)-representations).
Let V 6= {0} be a finite-dimensional representation of sl2(C), and let v0 ∈ V
be a highest weight vector with highest weight λ. Then we have λ ∈ Z≥0.

Proof. For j ∈ Z≥0, define vj = F jv0 as in Lemma III.20. Since vj ∈ Vλ−2j , each non-zero vj lies
in a different eigenspace of H, so only finitely many of the vj can be non-zero, due to the
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finite-dimensionality of V . Let d ∈ Z>0 be the smallest sumber such that vd = 0. Then we
have vd−1 6= 0. By using the formulas from Lemma III.20, we now observe that

0 = Evd = d(λ+ 1− d) vd−1,

which implies that λ+ 1− d = 0, since d 6= 0 and vd−1 6= 0. In other words, we have

λ = d− 1 ∈ Z≥0,

which proves the assertion. �

The idea above results in a full classification of all irreducible finite-dimensional
representations of sl2(C).

Theorem III.22 (Irreducible representations of sl2(C)).
For each λ ∈ Z≥0 there exists an irreducible λ+ 1-dimensional representation
of sl2(C) with basis v0, v1, . . . , vλ and the actions of H = ϑλ(H), E = ϑλ(E),
and F = ϑλ(F ) on this basis given by

Fvm =

{
vm+1 for 0 ≤ m < λ

0 for m = λ

Evm =

{
0 for m = 0

(λ−m+ 1)mvm−1 for 0 < m ≤ λ

Hvm = (λ− 2m) vm for all m.

Denote this representations by L(λ), Any irreducible finite-dimensional repre-
sentation of sl2(C) is isomorphic to L(λ), for some λ ∈ Z≥0.

Proof. If V is a finite-dimensional irreducible representation of sl2(C), then by Corollary III.18,
there exists a highest weight vector v0 of some highest weight λ ∈ C in V . By Corollary III.21
we must have λ ∈ Z≥0. Denote vj = F jv0 for j ∈ Z≥0 as before. By the same corollary
together with Lemma III.20 we get that the vectors v0, v1, . . . , vλ span a subrepresentation
in V , which by irreducibility has to be all of V . Since the H-eigenvalues of v0, v1, . . . , vλ are
different, these vectors are linearly independent, and therefore form a basis of V . It follows
from the same lemma that the action of H, E , and F on this basis are as in the assertion.
Thus indeed any irreducible representation has to be isomorphic to L(λ) for some λ ∈ Z≥0.

To prove that such a representation  L(λ) exists for each λ ∈ Z≥0, it suffices to verify that the
linear maps H, E , and F defined by these formulas satisfy the commutation relations (III.4),
and thus indeed can be used to define a representation ϑλ : sl2(C)→ End(V ), where V is a
vector space with basis v0, v1, . . . , vλ. This verification is straightforward.4 �

We finish our discussion about the irreducible representations of sl2(C) by a few
observations which follow immediately from the above, but which are often practical.

Corollary III.23 (Observations about sl2(C) representations).
In an irreducible sl2(C) representation V of dimension dim(V ) = d <∞, the
(unique) highest weight is λ = d− 1. The eigenvalues of H are

λ, λ− 2, λ− 4, . . . ,−λ+ 4,−λ+ 2,−λ,
4Alternatively, an indirect argument for the existence of such a representation L(λ) can be

given by finding some finite-dimensional representation, which contains a highest weight vector of
the given highest weight λ ∈ Z≥0. One easy and concrete possibility is to consider the represen-
tation C2 ⊗ · · · ⊗ C2 (λ times) where each factor is the defining representation C2 (with standard
basis x = [1 0]>, y = [0 1]>), and note that the vector v0 := x⊗ · · · ⊗ x indeed satisfies Hv0 = λv0

and Ev0 = 0.
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and the multiplicity of each eigenvalue is one. In particular, the H-eigenvalues
are all integers, they all have the same parity, and they are symmetric about
the origin (i.e. if µ is an eigenvalue, then so is −µ).

2.4. Examples of representations of sl2(C)

To illustrate the classification of irreducible representations of sl2(C), Theorem III.22,
in concrete cases, let us look at a few examples.

The trivial representation

The trivial representation5

V = C
is one-dimensional, and therefore necessarily irreducible. By Theorem III.22 (or
Corollary III.23) the only 1-dimensional irreducible of sl2(C) corresponds to λ = 0,
so we have

V ∼= L(0).

The defining representation

In Example III.13, we noted that the space

V = C2

is a representation of sl2(C), when the elements of sl2(C) are understood as 2 × 2-
matrices as, e.g., in (III.2), and the action of such a matrix on a vector in C2 is
by the usual matrix-vector multiplication. This representation is called the defining
representation of sl2(C). If x = [1 0]> and y = [0 1]> are the standard basis, then
we have Hx = x and Hy = −y, so that the H-eigenvalues are +1 and −1, and the
corresponding weight spaces are V+1 = Cx and V−1 = Cy. Also we have Ex = 0, so
x ∈ V is a highest weight vector of highest weight λ = 1, and it therefore generates
an irreducible subrepresentation of dimension d = λ + 1 = 2 = dim(V ), which
by dimensionality therefore is all of V . Therefore the defining representation is
irreducible,

V ∼= L(1).

The adjoint representation

In Example III.14, we noted that The vector space

V = sl2(C)

is a representation of the Lie algebra sl2(C) by the adjoint action. The action of the
generators is E = adE, F = adF , and H = adH . Note that

HE = adH(E) = [H,E] = 2E,

HH = adH(H) = [H,H] = 0,

HF = adH(F ) = [H,F ] = −2F,

5The trivial representation of a Lie algebra g on the vector space C is defined by ϑ(X) = 0 ∈
End(C) for all X ∈ g.
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so that the H-eigenvalues are +2, 0, and −2, each with multiplicity one. The
corresponding weight spaces are V+2 = CE, V0 = CH, and V−2 = CF . Note that
we also have EE = adE(E) = [E,E] = 0, so E is a highest weight vector wiht
highest weight λ = 2, and it therefore generates an irreducible subrepresentation of
dimension d = λ + 1 = 3 = dim(V ), which by dimensionality therefore is all of V .
Therefore the adjoint representation is irreducible,

V ∼= L(2).

Further examples

Exercise III.24 (Homogeneous polynomial representations of sl2(C)).
Let V = C[x, y] be the polynomial algebra in two indeterminates, x and y.

(a) Define a linear map sl2(C)→ End(V ) by setting

E 7→ x
∂

∂y
, F 7→ y

∂

∂x
, H 7→ x

∂

∂x
− y ∂

∂y
.

Show that V thus becomes a representation of sl2(C) (albeit ∞-dimensional).
(b) Let Vm ⊂ V be the subspace of homogeneous polynomials of degree m ∈ Z≥0, i.e., the

linear span of monomials xiyj with i+ j = m. Show that Vm ⊂ V is a finite-dimensional
subrepresentation of the representation in part (a).

(c) Show that the finite dimensional subrepresentation Vm ⊂ V in part (b) is irreducible.
Show in particular that Vm is isomorphic to an irreducible finite-dimensional highest
weight representation L(λ) with highest weight λ, for a certain λ ∈ Z≥0.

2.5. Complete reducibility for representations of sl2(C)

We now turn to the proof of complete reducibility of finite-dimensional represen-
tations of sl2(C). We will need two auxiliary results, which are obtained by fairly
direct calculations in Exercise III.25(a) and Exercise III.26 below.

Exercise III.25 (A lemma for diagonalizability of the action of H).
Suppose that V is a complex vector space, and E ,F ,H are linear operators V → V which
satisfy the commutation relations (III.4).

(a) Show that for any k ∈ Z>0, we have

EFk = FkE + kFk−1(H− k + 1),

FEk = EkF + k(H− k + 1)Ek−1.

(b) Show that for any k ∈ Z>0, we have

EkFk = k!H
(
H− 1

)
· · ·
(
H− (k − 1)

)
+ P E ,

where P is some operator V → V (depending on k) that can be written as a polynomial
in the operators E ,F ,H.

Exercise III.26 (Quadratic Casimir in sl2(C) representations).
Suppose that V is a complex vector space, and E ,F ,H ∈ End(V ) satisfy HE − EH = 2 E ,
HF −FH = −2F , EF − FE = H.

(a) Show that the operator

Q = EF + FE +
1

2
H2

commutes with E , F , and H.
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(b) Let ϑ : sl2(C) → End(V ) be a finite-dimensional irreducible representation of sl2(C).
Show that Q = ϑ(E)ϑ(F ) + ϑ(F )ϑ(E) + 1

2ϑ(H)2 is a scalar multiple of the identity
operator on V , that is Q = q × idV for some q ∈ C.

(c) For each finite-dimensional irreducible representation L(λ) of sl2(C), find the value of
the scalar q = qλ in part (b). Observe in particular that for λ1 6= λ2 we have qλ1 6= qλ2 .

We are now ready to prove the complete reducibility statement.

Theorem III.27 (Complete reducibility for representations of sl2(C)).
Any finite-dimensional representation V of sl2(C) is a direct sum of its irre-
ducible subrepresentations, in particular

V ∼= L(λ1)⊕ · · · ⊕ L(λs)

for some s and λ1, . . . , λs ∈ Z≥0.

Proof. As in Exercise III.26, consider the operator

Q = ϑ(E)ϑ(F ) + ϑ(F )ϑ(E) +
1

2
ϑ(H)2 (III.8)

on V , and think in particular of the Jordan blocks of Q on V . By Exercise III.26(a), Q
commutes with the generators of sl2(C) action on V , so each block Ker

(
(Q− q idV )p

)
⊂ V

(with p ≥ dim(V ), say) is a subrepresentation. The blocks with different (generalized)
eigenvalues q are complementary to each other (in direct sum), so it suffices to prove complete
reducibility for each block separately.

Assume therefore without loss of generality that Q has only one (generalized) eigenvalue q
on V . A non-zero finite-dimensional representation V has to contain some irreducible subrep-
resentations, so choose one with maximal dimension d, which is correspondingly isomorphic
to L(λ) with λ = d− 1. Note also that Q has eigenvalue qλ on this irreducible, so we must
have q = qλ.

Let V0 ⊂ V be the direct sum of all irreducible subrepresentations of V which are isomorphic
to the above L(λ). If V0 = V , then V is completely reducible and we are done, so let us
assume that V0 6= V , i.e., we have a non-trivial quotient V/V0 6= {0}. In the quotient V/V0,

choose some irreducible subrepresentation W̃ ⊂ V/V0, and let W ⊂ V be the corresponding

subrepresentation so that V0 ⊂ W and W̃ = W/V0 ⊂ V/V0. Note that the only possi-

ble generalized eigenvalue of Q on W and W̃ is still q = qλ, so by Exercise III.26(c) the

irreducible W̃ must also be isomorphic to the same one, W̃ ∼= L(λ).

Now note that for d = λ + 1 we have that Ed is zero on V0 (because it is zero on L(λ)),

and similarly for W̃ . Therefore at least E2d is zero on W . Let k be the largest integer such
that Ek|W 6= 0, so in particular Ek+1|W = 0. Clearly we have k ≥ λ, since W contains copies
of L(λ). On the other hand we have the formula

FEk+1 − Ek+1F = (k + 1)(H− k)Ek

of Exercise III.25(a), whose left hand side vanishes on W . Since Ek does not vanish, the
formula implies the existence of an eigenvector of H of W with eigenvalue k. This is only
possible if k ≤ λ, so we conclude that k = λ.

We have thus established that Eλ|W 6= 0 and Eλ+1|W = 0. Let now w̃ ∈ W̃ = W/V0 be a

highest weight vector of W̃ ∼= L(λ), and let w ∈ W be a representative for its equivalence
class, i.e., w + V0 = w̃. Consider w′ = EλFλw ∈ W , and note that it is non-zero, w′ 6= 0
(indeed EλFλw̃ 6= 0 by the explicit formulas for L(λ) given in Theorem III.22). We also
have Ew′ = Eλ+1Fλw = 0 and (H − λ)w′ = (H − λ)EλFλw = 0 by the earlier calculation.
These properties show that w′ ∈ W is a highest weight vector of highest weight λ, but
since w′ /∈ V0, it generates a copy of the irreducible L(λ) in V which was not included in V0.
This is a contradiction which finishes the proof. �
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One corollary of complete reducibility is Fact III.16, which we stated earlier. We in
fact get a strengthened version.

Proposition III.28 (Diagonalizability of the action of H).
The actionH = ϑ(H) of H in any finite-dimensional representation V of sl2(C)
is diagonalizable. The eigenvalues of H are integers.

Proof. In any irreducible representation L(λ) we have explicitly seen in Theorem III.22 that H is
diagonalizable, with integer eigenvalues. By Theorem III.27, any finite dimensional repre-
sentation V is a direct sum of such irreducible representatios, so H is diagonalizable also
on V and has integer eigenvalues. �

Clebsch-Gordan coefficients

A frequently important example of complete reducibility is the decomposition of
tensor products of representations to direct sums of irreducible representations. The
coefficients in such decompositions are known as Clebsch-Gordan coefficients . This
is the topic of the following exercise.

Exercise III.29 (Tensor products of irreducible representations of sl2(C)).
Consider the tensor product L(λ1)⊗ L(λ2) of two irreducible representations of sl2(C).

(a) Find the multiplicities of all H-eigenvalues in L(λ1)⊗ L(λ2).
(b) Given the complete reducibility of finite-dimensional representations of sl2(C), deduce

from part (a) the multiplicities of all irreducible representations in the decomposition of
L(λ1)⊗ L(λ2) into a direct sum of irreducible subrepresentations.

(c) Find explicitly all vectors v ∈ L(λ1) ⊗ L(λ2) which satisfy Ev = 0 and Hv = λ v for
some λ.

Quadratic Casimir and Laplacian in radial coordinates

In applications to rotationally invariant quantum mechanical systems (such as the
hydrogen atom) as well as in other questions about many familiar partial differential
equations, one often wants to use radial coordinates for the Laplacian operator ∆ =
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. This is closely related to the quadratic Casimir of sl2(C) (and of so3).

Exercise III.30 (Laplacian in radial coordinates).
Let C∞(R3 \ {0}) denote the space of smooth infinitely differentiable complex valued func-
tions on R3 \ {0}, and on this space, consider the differential operators Jx,Jy,Jz as in
Exercise II.72.

(a) Show that one can define a representation ϑ : sl2(C) → End
(
C∞(R3 \ {0})

)
of the Lie

algebra sl2(C) by setting

ϑ(E) = iJx − Jy, ϑ(F ) = iJx + Jy, H 7→ 2iJz,
and in this representation the operator Q = ϑ(E)ϑ(F ) + ϑ(F )ϑ(E) + 1

2ϑ(H)2 studied in

Exercise III.26 reads Q = −2× (J 2
x + J 2

y + J 2
z ).

(b) Define also the radial derivative operator R = x
r
∂
∂x + y

r
∂
∂y + z

r
∂
∂z , where r(x, y, z) =√

x2 + y2 + z2. Show that the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 admits the expression

∆ =
−1

2r2
Q+R2 +

2

r
R.
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3. Representations of sl3(C)

In the previous section we showed how to find and construct all irreducible repre-
sentations of sl2(C), and how to apply the results to representations of Lie groups,
whose Lie algebras have sl2(C) as their complexification, e.g., SU2 and SO3.

We will proceed to treat more complicated (semisimple) Lie algebras. We start in
this section by considering sl3(C). Because sl3(C) is the complexification of the
(real) Lie algebra su3 of the Lie group SU3, the representations of sl3(C) are needed
for example in quantum chromodynamics (QCD) — the theory of strong interactions
relevant for nuclear physics. Besides the direct relevance in such applications, the
analysis of the structure and representations of sl3(C) will serve as a wonderful
example of what happens with semisimple Lie algebras in full generality.

We will follow a roughly similar strategy as in the case of sl2(C) to analyze the
structure of sl3(C) and its representations. We only require some new ideas, or
rather reinterpretations of a few concepts and arguments. These ideas turn out to
be powerful — with them, we will be able to handle any semisimple Lie algebra.

3.1. The Lie algebra sl3(C)

Recall that sl3(C) is the set

sl3(C) =
{
X ∈ C3×3

∣∣ tr(X) = 0
}

of traceless (complex) three-by-three matrices, equipped with the Lie bracket [X, Y ] =
XY − Y X. As a (complex) vector space, it is eight dimensional

dim
(
sl3(C)

)
= 8.

Indeed, the nine entries Xi,j, 1 ≤ i, j ≤ 3, of a matrix X ∈ sl3(C) can be chosen
arbitrarily subject to just one linear condition, tr(X) = X1,1 +X2,2 +X3,3 = 0.

We are also already familiar with a few representations of sl3(C).

Example III.31 (Trivial representation of sl3(C)).
As for any Lie algebra, the one-dimensional vector space V = C carries the trivial represen-
tation

ϑ : sl3(C)→ End(C) ϑ(X) = 0 ∀X ∈ sl3(C).

Example III.32 (Adjoint representation of sl3(C)).
Also, according to a generality about Lie algebras, the vector space V = sl3(C) carries the
adjoint representation

ad: sl3(C)→ End(sl3(C))

adX(Y ) = [X,Y ] ∀X ∈ sl3(C), Y ∈ V = sl3(C).

This representation is eight-dimensional, dim(V ) = dim
(
sl3(C)

)
= 8.

Example III.33 (Defining representation of sl3(C)).
The space V = C3 is naturally a representation of sl3(C): any element X ∈ sl3(C) is a
3× 3-matrix, which we let act on any vector v ∈ V = C3 by matrix multiplication

ϑ(X) v = Xv,

i.e., we set ϑ(X) = X ∈ C3×3 ∼= End(V ). This three-dimensional representation is called
the defining representation of sl3(C).
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It turns out that the dual V ∗ of the defining representation V = C3 provides another
interesting example, but we return to this later.

3.2. Auxiliary calculations with elementary matrices

For calculations below, we recall the definition and properties of the elementary
matrices Ekl. For a general dimension n ∈ N and for 1 ≤ k, l ≤ n, the elementary
matrix

Ekl ∈ k
n×n

is the matrix whose (k, l)-entry is one, and all other entries are zeroes,

Ekl
ij := δk,i δl,j =

{
1 if (i, j) = (k, l)

0 if (i, j) 6= (k, l).
(III.9)

The products of such matrices are

EklEk′l′ = δl,k′ E
kl′ ,

as is verified by the following direct calculation(
EklEk′l′

)
ij

=
∑
m

Ekl
imE

k′l′

mj =
∑
m

δk,i δl,m δk′,m δl′,j = δl,k′ δk,i δl′,j

= δl,k′ E
kl′

ij .

The n2 elementary matrices Ekl form a basis of gln(k), and the brakets in gln(k)
(and thus also in any Lie subalgebra g ⊂ gln(k)) read

[Ekl, Ek′l′ ] = EklEk′l′ − Ek′l′Ekl

= δl,k′ E
kl′ − δl′,k Ek′l. (III.10)

3.3. Weights and weight spaces in representations of sl3(C)

In our analysis of sl3(C), we will follow steps modelled on those that we took in the
analysis of sl2(C) in the previous lecture. For sl2(C), our analysis relied first of all on
a good choice of basis H,E, F — we split any representation ϑ : sl2(C) → End(V )
(including, crucially, the adjoint representation on V = sl2(C) itself) to eigenspaces
of H := ϑ(H), and figured out how E := ϑ(E) and F := ϑ(F ) acted on the
eigenspaces. Our task now is to find the appropriate generalizations.

The good idea turns out to be not to pick just one element to diagonalize, but rather
to take an entire subspace h ⊂ sl3(C) to be diagonalized simultaneously. Such a
simultaneous diagonalization in any representation could succeed if all the needed
operators commute with each other, which is guaranteed if h is an abelian subalgebra
of sl3(C). We choose h to consist of all diagonal matrices in sl3(C), i.e.,

h =


 a1 0 0

0 a2 0
0 0 a3

 ∣∣∣∣∣ a1, a2, a3 ∈ C, a1 + a2 + a3 = 0

 . (III.11)

All diagonal matrices indeed commute with each other, so [h, h] = 0, and the simul-
taneous diagonalization of the action of ϑ(H) for all H ∈ h turns out to be possible
(see Fact III.36 below).
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Since we are not considering the diagonalization of a single linear operator, but
an entire space of operators, the concept of eigenvalue needs to be appropriately
generalized. If a vector space V varries a representation ϑ : sl3(C) → End(V ), and
v ∈ V is a simultaneous eigenvector for the action of all H ∈ h, then we have

ϑ(H)v = µ(H)v for all H ∈ h, (III.12)

where µ(H) ∈ C denotes the eigenvalue of the linear map ϑ(H) : V → V corre-
sponding to the element H ∈ h. Obviously µ(H) then has to depend linearly on H,
and so defines a linear functional µ : h→ C, i.e., an element µ ∈ h∗ of the dual of h.
This is the appropriate generalization of eigenvalues and eigenvectors. If a non-zero
vector 0 6= v ∈ V satisfying (III.12) exists in the representation V , we call v a weight
vector , and we call µ ∈ h∗ its weight . For any µ ∈ h∗ we define the weight space

Vµ :=
{
v ∈ V

∣∣∣ ϑ(H)v = µ(H)v ∀H ∈ h
}
, (III.13)

as the space of all weight vectors of weight µ, and weights of V as those µ ∈ h∗ for
which Vµ 6= {0}.

Example III.34 (Weights in the defining representation of sl3(C)).
The three-dimensional space V = C3 carries the defining representation ϑ : X 7→ X of sl3(C),
see Example III.33. Consider the standard basis vectors

u1 =

 1
0
0

 , u2 =

 0
1
0

 , u3 =

 0
0
1


of C3. It is clear that for any diagonal matrix

H =

 a1 0 0
0 a2 0
0 0 a3

 = a1E
11 + a2E

11 + a3E
33

and any j ∈ {1, 2, 3}, we have

Huj = ajuj .

Comparing with (III.12), this says that uj is a weight vector — of weight ηj ∈ h∗ given by

ηj
(
a1E

11 + a2E
11 + a3E

33
)

:= aj . (III.14)

The weights in the defining representation V = C3 of sl3(C) are thus η1, η2, η3 ∈ h∗, with
respective weight spaces are Vη1 = Cu1, Vη2 = Cu2, and Vη3 = Cu3. The defining represen-
tation has the weight space decomposition

V = C3 = Cu1 ⊕ Cu2 ⊕ Cu3 = Vη1 ⊕ Vη2 ⊕ Vη3 .

Note that the three weights η1, η2, η3 ∈ h∗ defined above by (III.14) lie in the two-
dimensional space h∗, and so can not be linearly independent. The one linear relation
among them is η1 +η2 +η3 = 0, coming from tracelessness, 0 = tr(H) = a1 +a2 +a3,
of diagonal matrices H ∈ h ⊂ sl3(C).

Example III.35 (Weights in the dual of defining representation of sl3(C)).
Recall that if ϑ : g→ End(V ) is a representation of a Lie algebra g on a vector space V , then
the dual V ∗ carries a representation ϑ∗ : g→ End(V ∗) such that for any X ∈ g and ϕ ∈ V ∗,
the dual element ϑ∗(X)ϕ is the functional v 7→ −ϕ

(
ϑ(X)v

)
on V .

The dual V ∗ of the defining representation V = C3 of sl3(C) is thus a three-dimensional
representation. Let ϕ1, ϕ2, ϕ3 ∈ V ∗ be the dual basis to the standard basis u1, u2, u3 ∈ V ,
i.e., ϕj(ui) = δi,j for all i, j ∈ {1, 2, 3}. If H ∈ h, then

〈ϑ∗(H)ϕj , ui〉 = −〈ϕj , Hui〉 = −〈ϕj , ηi(H)ui〉 = −ηi(H) δi,j = −ηj(H) 〈ϕj , ui〉,
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which implies that ϑ∗(H)ϕj = −ηj(H)ϕj . The basis vectors ϕ1, ϕ2, ϕ3 are thus weight
vectors, with respective weights −η1,−η2,−η3, and the weight space decomposition of the
dual V ∗ of the defining representation V = C3 of sl3(C) is

V ∗ = Cϕ1 ⊕ Cϕ2 ⊕ Cϕ3 = (V ∗)−η1 ⊕ (V ∗)−η2 ⊕ (V ∗)−η3 .

In particular (unlike for sl2(C)), a representation of sl3(C) and its dual are generally not
isomorphic to each other (even the weights in V and V ∗ are different).

Any finite-dimensional representation has a weight space decomposition like in the
examples above, i.e., the desired simultaneous diagonalization is always possible.
For now, let us state this as a fact (analogous to Fact III.16 for sl2(C)).

Fact III.36. Any finite-dimensional representations V of sl3(C) decomposes to a
(vector space) direct sum of the weight spaces6,

V =
⊕
µ∈h∗

Vµ.

The proof of this fact is not difficult given what we know of representations of sl2(C).
We will see this a little later.

We will next address the weight space decomposition on the adjoint representation,
which turns out to be particularly consequential.

3.4. Roots and root spaces of sl3(C)

Let us consider the adjoint representation on V = sl3(C) of sl3(C). According to
Fact III.36, the adjoint representation also admits a decomposition to weight spaces

sl3(C) =
⊕
µ

(
sl3(C)

)
µ
,

and we will verify this explicitly now.

Recall that we took h ⊂ sl3(C) to consist of the diagonal matrices in sl3(C). Diagonal
matrices commute with each other, i.e., we have

adH(H ′) = [H,H ′] = 0 for all H,H ′ ∈ h.

This means that all diagonal matrices H ′ ∈ h are weight vectors of zero weight
0 ∈ h∗,

h ⊂
(
sl3(C)

)
0
.

We have dim(h) = 2, and to be concrete we can take a basis H1,2 = E1,1 − E2,2,
H2,3 = E2,2 − E3,3 for h.

As a basis for the rest of sl3(C), we can use off-diagonal elementary matrices Eij,
i 6= j. These are also weight vectors, since for any diagonal matrix H =

∑
k akE

kk,

6There are, of course, only finitely many non-zero direct summands in this decomposition
to weight spaces — corresponding exactly the finitely many weights µ of the finite-dimensional
representation V .
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we have

[H,Eij] =
∑
k

ak [Ekk, Eij] =
∑
k

ak (δkiE
kj − δjkEik)

= (ai − aj)Eij, (III.15)

which shows that the one-dimensional subspace CEij, for i 6= j, is a simultaneous
eigenspace for all H ∈ h, with eigenvalues given by the weight ηi − ηj ∈ h∗. This in
fact concludes the weight space decomposition: the eight-dimensional space sl3(C)
has six one-dimensional weight spaces of different non-zero weights, and the two-
dimensional subspace h of zero weight:

sl3(C) = h⊕
⊕
i 6=j

CEij. (III.16)

The non-zero weights appearing in the adjoint representation are called roots , and
the weight spaces in the adjoint representation other than h are correspondingly
called root spaces . The set of roots is denoted by Φ ⊂ h∗: for sl3(C) we have

Φ =
{
η1 − η2, η1 − η3, η2 − η3, η2 − η1, η3 − η1, η3 − η2

}
. (III.17)

Roots are traditionally denoted by α, so let us introduce the notation

αij := ηi − ηj ∈ Φ for i 6= j. (III.18)

In this notation, (III.15) says that for any H ∈ h and i 6= j

[H,Eij] = αij(H)Eij. (III.19)

Shifting weights by roots

Consider a representation ϑ : sl3(C) → End(V ) of sl3(C) on a finite-dimensional
vector space V . According to Fact III.36, the space V decomposes to a direct sum
of weight spaces

V =
⊕
µ∈h∗

Vµ,

and this exactly describes the actions H = ϑ(H) of all elements H ∈ h in the abelian
subalgebra of diagonal matrices. To understand how the remaining basis elements
act, denote by E ij := ϑ(Eij), for i 6= j.

The following lemma describes what E ij does to the weight spaces Vµ.

Lemma III.37 (Shifting weights by roots).
For any µ ∈ h∗ and any i, j with i 6= j, we have

E ij(Vµ) ⊂ Vµ+αij .

Proof. Suppose that v ∈ Vµ. Let H ∈ h, and denote by H = ϑ(H) the its action on V . By
definition of weight spaces, we have Hv = µ(H) v. Then consider the vector E ijv ∈ V . We
can find the action of H on v using the commutator of H and E ij

HE ij − E ijH = αij(H) E ij ,

corresponding to the Lie bracket [H,Eij ] in (III.19).
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Fundamental calculation (second time):

H(E ijv) = E ij(Hv) + [H, E ij ]v
= E ij(µ(H)v) + αij(H) E ijv
= (µ+ αij)(H) E ijv.

This calculation shows that if v is a weight vector of weight µ ∈ h∗, then E ijv is either zero
or a weight vector of weight µ+ αij . This proves that E ij(Vµ) ⊂ Vµ+αij . �

Root lattice

It follows from Lemma III.37 that in an irreducible representation V of sl3(C), the
weights differ from each other by integer multiples of the roots αij, i 6= j. This can
be reformulated as saying that the weights in an irreducible lie in some translate of
the root lattice

ΛR =
∑
α∈Φ

Zα. (III.20)

Observing that αji = −αij and α13 = α12 + α23, one sees that integer linear combi-
nations of α12 and α23 suffice, and the root lattice can be written as

ΛR = Zα12 ⊕ Zα23.

We call α12 and α23 simple roots (a choice has been made here). The set ∆ =
{α12, α23} of simple roots forms a Z-basis of the root lattice ΛR. Roots which are
non-negative (resp. non-positive) integer linear combinations of simple roots are
called positive roots (resp. negative roots), and their set is denoted by

Φ+ = Φ ∩
⊕
α∈∆

Z≥0 α (resp. Φ− = −Φ+).

Concretely, here we have Φ+ = {α12, α23, α13} = {αij | i < j}.

Weight lattice

Let us now find necessary conditions on the weights, based on what we know from
Section 2 about representations of sl2(C).

Denote H12 = E11 − E22 ∈ h, and recall calculations (III.10) and (III.15), which
give

[H12, E12] = 2E12, [H12, E21] = −2E21, [E12, E21] = H12.

In other words, the span of the above three elements

s12 := span
{
H12, E12, E21

}
⊂ sl3(C) (III.21)

is a Lie subalgebra, which is isomorphic to sl2(C) through H 7→ H12, E 7→ E12,
F 7→ E21.

Let V be a finite-dimensional representation of sl3(C), and consider its weight
spaces Vµ ⊂ V . Note that we can consider V as a representation of the Lie subalge-
bra s12 ⊂ sl3(C). From in the previous section, we know that the eigenvalues of the
action of H, now H12 := ϑ(H12), are integers. In particular, if µ ∈ h∗ is a weigth
of V , then for a non-zero vector v ∈ Vµ we have

H12v = µ(H12)v,

and Proposition III.28 therefore implies µ(H12) ∈ Z.
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Similarly, E23, E32, and H23 = E22 − E33 ∈ h satisfy

[H23, E23] = 2E23, [H23, E32] = −2E32, [E23, E32] = H23,

so also the span of the three elements

s23 := span
{
H23, E23, E32

}
⊂ sl3(C) (III.22)

is a Lie subalgebra isomorphic to sl2(C). One correspondingly argues that any
weight µ ∈ h∗ has to satisfy µ(H23) ∈ Z.

Let us therefore define the weight lattice ΛW ⊂ h∗ of sl3(C) by

ΛW =
{
µ ∈ h∗

∣∣∣ µ(H12), µ(H23) ∈ Z
}
. (III.23)

One possible basis of h∗ consists of η1 and −η3. Let us write µ = aη1 − bη3 with
coefficients a, b ∈ C. Note that η1(H12) = 1, η2(H12) = −1, η3(H12) = 0, and
similarly η1(H23) = 0, η2(H23) = 1, η3(H23) = −1. With these, we calculate
µ(H12) = a and µ(H23) = b. This calculation gives a concrete expression for the
weight lattice

ΛW =
{
aη1 − bη3

∣∣ a, b ∈ Z
}
.

Since roots are weights in the adjoint representation, the root lattice generated by
roots is a subset of the weight lattice,

ΛR ⊂ ΛW ⊂ h∗.

It is easy to see that the inclusion is strict: for example the weights η1, η2, η3 in the
defining representation V = C3 are not integer linear combinations of roots α ∈ Φ.

Exercise III.38 (Proof of Fact III.36).
Prove Fact III.36 using the Lie subalgebras s12 and s23, and representation theory of sl2(C).

3.5. Highest weight vectors for sl3(C)

Let again V be a finite-dimensional representation of sl3(C). The decomposition
V =

⊕
µ∈h∗ Vµ to weight spaces Vµ tells exactly how any H ∈ h acts on V , and

Lemma III.37 tells what the actions E ij of the remaining basis elements Eij, i 6= j,
do to the weight spaces.

To continue with comparisons to the case of sl2(C), recall that at this stage we
showed that in an irreducible representation, any non-zero vector from the H-
eigenspace with maximal eigenvalue λ generated the entire representation, which
was in fact determined by λ. Such a vector v was annihilated by the action of E,
and then successive action by F on v was enough to span the representation. What
is the correct generalization to the present situation?

The eigenvalues have been replaced by weights µ ∈ h∗, and it is not a priori clear
which should be though of as maximal. Let us make an arbitrary looking choice,
based on our choice of simple roots α12, α23: we consider a weight µ ∈ h∗ of the
representation V maximal if neither µ+ α12 nor µ+ α23 are weights.

Corollary III.39 (Existence of highest weight vectors for sl3(C)).
In any finite-dimensional representation V 6= {0} of sl3(C), there exists a
non-zero vector v0 ∈ V such that E ijv0 = 0 whenever i < j, and v0 ∈ Vλ for
some λ ∈ h∗.
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Proof. Since the finite-dimensional representation V has finitely many different weights, we can
find a weight λ ∈ h∗ such that neither λ+ α12 nor λ+ α23 are weights. Choose a non-zero
vector v0 ∈ Vλ. By Lemma III.37 we then have

E12v0 ∈ Vλ+α12 = {0} and E23v0 ∈ Vλ+α23 = {0} ,

which gives

E12v0 = 0 and E23v0 = 0.

The commutation relation [E12, E23] = E13 then yields also

E13v0 =
(
E12E23 − E23E12

)
v0 = 0.

The vector v0 therefore satisfies all the asserted properties. �

Definition III.40 (Highest weight vector in representation of sl3(C)).
Let V is any representation of sl3(C). A highest weight vector of highest
weight λ ∈ h∗ is a non-zero vector v0 ∈ Vλ ⊂ V , which satisfies E ijv0 = 0
for all i < j.

Example III.41 (Highest weight vector in the defining representation of sl3(C)).
In the defining representation V = C3 of sl3(C), the vector u1 is a highest weight vector of
highest weight λ = η1. Indeed, neither η1 + α12 = 2η1 − η2 nor η1 + α23 = η1 + η2 − η3 are
weights in the defining representation V = C3 according to Example III.34. Alternatively,
one could directly observe that E12u1 = 0 and E23u1 = 0.

Example III.42 (Highest weight vector in the dual of defining representation of sl3(C)).
In the dual V ∗ of the defining representation V = C3 of sl3(C), the vector ϕ3 is a highest
weight vector of highest weight λ = −η3. Indeed, neither −η3 + α12 = η1 − η2 − η3 nor
−η3 + α23 = η2 − 2η3 are weights in the dual V ∗ of the defining representation, according
to Example III.35.

Example III.43 (Highest weight vector in the adjoint representation of sl3(C)).
In the adjoint representation sl3(C), by Equations (III.10) and (III.15), the vector E13 is a
highest weight vector of highest weight λ = α13 = η1 − η3.

Necessary conditions for highest weights

Again using the two Lie subalgebras s12 ⊂ sl3(C) and s23 ⊂ sl3(C) we find necessary
conditions for a weight to qualify as a highest weight.

Lemma III.44 (Necessary conditions for highest weights).
The highest weight λ ∈ h∗ of a highest weight vector v0 in a finite-dimensional
representation of sl3(C) takes non-negative integer values on the basis H12, H23

of h ⊂ sl3(C):

λ(H12) = a ∈ Z≥0, λ(H23) = b ∈ Z≥0.

Proof. Viewing V as a representation of the Lie subalgebra s12 ⊂ sl3(C), the vector v0 ∈ V becomes
a highest weight vector for the representation of sl2(C), with highest weight λ(H12). By
Corollary III.21 we must have λ(H12) ∈ Z≥0. Similarly using the Lie subalgebra s23 ⊂ sl3(C)
one argues that λ(H23) ∈ Z≥0. �

If we write λ = aη1 − bη3, then the conditions above read a, b ∈ Z≥0. The highest
weights in Examples III.41, III.42, and III.43 were explicitly of this form.
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Subrepresentation generated by highest weight vector

A highest weight vector v0 is annihilated by elements in half of the root spaces,
the “raising operators” E ij, i < j, which shift the weights to the directions of the
positive roots αij ∈ Φ+. Like for sl2(C), applying repeatedly on it the elements in
the other half of the root spaces, the “lowering operators” E ji, i < j, we generate a
subrepresentation.

Proposition III.45 (Subrepresentation generated by highest weight vector).
Suppose that v0 is a highest weight vector in a representation V of sl3(C).
Let W denote the subspace spanned by the the vectors obtained by successively
applying E21, E32, and E31 on v0. Then W ⊂ V is a subrepresentation.

Proof. Note that we have E31 = [E32, E21], and consequently E31 = E32E21 − E21E32. Thus W
could have been alternatively defined as the linear span of vectors obtained by successively
applying only E21 and E32 on v0. For an inductive argument, let W` denote the linear
span of vectors obtained by successively applying on v0 a word of at most ` letters, each
equal to E21 or E32. Then W is the sum of W`, as ` ranges over natural numbers. By
construction we have E21W` ⊂ W`+1 and E32W` ⊂ W`+1, and then using the fact that
E31 = E32E21 − E21E32, we get that E31W` ⊂W`+2. We moreover claim that for any H ∈ h
the operator H = ϑ(H) preserves these subspaces in the sense that HW` ⊂W`. Indeed, the
vector obtained by applying a word on the highest weight vector is itself a weight vector of
weight λ plus the sum of the negative roots corresponding to the letters of the word, and
such vectors span W`. It follows that W =

∑
`W` is an invariant subspace for the action of

all H ∈ h and E21, E32, and E31. It remains to see what the elements E12, E23, and E13

do to W`. Moreover, since E13 = [E12, E23], it in fact suffices to consider E12 and E23.

We claim that E12W` ⊂ W`−1 and E23W` ⊂ W`−1. The proofs are entirely similar, so
let us consider only the first of these. The case ` = 0 is clear, since W0 = Cv0 is the
one-dimensional space spanned by the highest weight vector, which is annihilated by E12

(and E23). Proceed by induction on `. Suppose that w is a vector obtained by applying
on v0 a word of ` letters, each equal to E21 or E32. Depending on the last letter, we have
either w = E21w′ or w = E32w′, with w′ ∈W`−1. In the first case we have

E12w = E12E21w′ =
(
E21E12 + [E12, E21]

)
w′ =

(
E21E12 +H12

)
w′

= E21E12w′ +H12w′ ∈ E21W`−2 +W`−1 ⊂W`−1,

where we used the induction assumption E12W`−1 ⊂ W`−2 and the fact that elements of h
preserve W`−1. In the second case we have

E12w = E12E32w′ =
(
E32E12 + [E12, E32]

)
w′ =

(
E32E12 + 0

)
w′

= E32E12w′ ∈ E32W`−2 ⊂W`−1,

where we again used the induction assumption E12W`−1 ⊂ W`−2. By induction, we thus
establish that E12W` ⊂ W`−1 and E23W` ⊂ W`−1. By considering a commutator, it follows
that also E13W` ⊂W`−2.

We have thus seen that the subspace W =
∑
`W` is invariant also for the action of the

elements E12, E23, and E13. It is therefore a subrepresentation. �

The case when a highest weight vector generates the entire representation is of
particular interest. Note that this is the case for irreducible representations, in
particular. We use the term highest weight representation to refer to such a situation.

Definition III.46 (Highest weight representations of sl3(C)).
If a representation V of sl3(C) contains a highest weight vector v0 of highest
weight λ ∈ h∗, and is generated by this highest weight vector in the sense



3. REPRESENTATIONS OF sl3(C) 87

that the subrepresentation W descibed in Proposition III.45 is the whole rep-
resentation, W = V , then we call V a highest weight representation of highest
weight λ.

It is not difficult to check that the representations in Examples III.41, III.42, and III.43
are highest weight representations.

Proposition III.45 has particularly nice corollaries for irreducible representations.

Corollary III.47 (Weights in an irreducible representation lie in a cone).
Let V be a finite-dimensional irreducible representation of sl3(C). Then the
weights µ of V lie in a cone

λ− (R≥0α
12 + R≥0α

23)

seen from the highest weight λ of any highest weight vector v0 ∈ V . Moreover,
the weight space Vλ is one-dimensional.

Proof. Let v0 ∈ Vλ be a highest weight vector in V . The subspace W ⊂ V spanned by applications
of E21, E31, and E32 on v0 is a subrepresentation by Proposition III.45. By irreducibility we
must have W = V . By Lemma III.37, on the other hand, the weights µ of such spanning
vectors of W are of the form µ = λ + n21α

21 + n31α
31 + n32α

32 with n21, n31, n32 ∈ Z≥0.
But we have α31 = α21 + α32 as well as α21 = −α12 and α32 = −α23, so this implies
µ ∈ λ− (Z≥0α

12 +Z≥0α
23). In view of W = V , this implies the assertion about the weights

in V .

Note also that all of the spanning vectors of W except from v0 itself have a weights µ 6= λ.
This implies one-dimensionality of the weight space dim(Vλ) = 1 corresponding to the
highest weight. �

Corollary III.48 (Uniqueness of highest weight of an irreducible representation).
An irreducible finite-dimensional representation V of sl3(C) there exists a
unique λ ∈ h∗ which is a highest weight of a highest weight vector in V .

Proof. Suppose that λ, λ′ ∈ h∗ are both highest weights of some highest weight vectors in V . By
Corollary III.47 we have λ′ ∈ λ − (R≥0α

12 + R≥0α
23) and λ ∈ λ′ − (R≥0α

12 + R≥0α
23).

Since α12, α23 ∈ h∗ are linearly independent, this is only possible if in fact λ = λ′.

�

3.6. Irreducible representations of sl3(C)

Consider an irreducible finite-dimensional representation V of sl3(C). By Corol-
lary III.39, there exists a highest weight vector in V , by Corollary III.48 the highest
weight λ ∈ h∗ of such a highest weight vector is unique, and by Corollary III.47 the
corresponding weight space Vλ is one-dimensional, so that the highest weight vector
is unique up to (non-zero) scalar multiples. Next we show that the highest weight λ
determines the irreducible representation up to isomorphism.

Lemma III.49 (Highest weights uniquely determine irreducible representations).

Suppose that V and Ṽ are two irreducible finite-dimensional representations

of sl3(C) with the same highest weight λ ∈ h∗. Then V and Ṽ are isomorphic,

V ∼= Ṽ .
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Proof. Let v0 ∈ Vλ and ṽ0 ∈ Ṽλ be highest weight vectors in the two irreducible representations V

and Ṽ , respectively. Consider the direct sum V ⊕ Ṽ . The vector v0 + ṽ0 ∈ V ⊕ Ṽ is
annihilated by the action of Eij , i < j, and is a weight vector of weight λ, i.e., it is a highest

weight vector of highest weight λ in V ⊕ Ṽ . Let W ⊂ V ⊕ Ṽ denote the subrepresentation
generated by v0 + ṽ0. Note that its weight space Wλ corresponding to the highest weight is
one-dimensional (by the same argument as in Corollary III.47).

Consider the projection $ : W → V defined by $(v + ṽ) = v whenever v ∈ V and ṽ ∈ Ṽ .
This projection is clearly an intertwining map, and non-zero since $(v0 + ṽ0) = v0 6= 0.
By irreducibility of V it must therefore be surjective, Im($) = V . The kernel of $ is

clearly Ker($) = W ∩ Ṽ . Note that W ∩ Ṽ is a subrepresentation of Ṽ , so by irreducibility

of Ṽ it is either {0} or Ṽ . The case W ∩ Ṽ = Ṽ is impossible, for it would imply that ṽ0 ∈
Ker($) ⊂ W , and then the one-dimensional weight space Wλ would contain the linearly

independent vectors v0 + ṽ0 and ṽ0. Thus we have Ker($) = W ∩ Ṽ = {0}, so $ : W → V
is injective. We have shown that $ is an isomorphism of W and V , so V ∼= W .

Exactly similarly one shows that Ṽ ∼= W . Combining the two isomorphisms, we conclude

that V ∼= Ṽ . �

We now know that irreducible finite-dimensional representations of sl3(C) are uniquely
determined by their highest weights, and we know that these highest weights λ ∈ h∗

must satisfy λ(H12) ∈ Z≥0 and λ(H23) ∈ Z≥0, i.e., we must have

λ = λa,b := aη1 − bη3 for a, b ∈ Z≥0.

The remaining task in our classification of irreducible representations is to show
that irreducible highest weight representations of all such highest weights exist.
The following example is helpful for that purpose.

Example III.50 (Highest weight vectors of highest weights λa,b).
Consider the defining representation V = C3 of sl3(C) and its dual V ∗. Recall from Exam-
ple III.41 that u1 ∈ V is a highest weight vector of highest weight η1 = λ1,0, and recall from
Example III.42 that ϕ3 ∈ V ∗ is a highest weight vector of highest weight −η3 = λ0,1.

Now let a, b ∈ Z≥0, and consider the tensor product

V ⊗ · · · ⊗ V︸ ︷︷ ︸
a times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
b times

of a copies of V and b copies of V ∗. In it, the vector

v0 = u1 ⊗ · · · ⊗ u1 ⊗ ϕ3 ⊗ · · · ⊗ ϕ3

is annihilated by the action of E12, E23, and E13, and it is an eigenvector of the action of
any H ∈ h, with eigenvalue a η1(H) − b η3(H). Therefore, v0 is a highest weight vector of
highest weight λa,b, and the subrepresentation generated by v0 in V ⊗a⊗ (V ∗)⊗b is a highest
weight representation of highest weight λa,b. Note also that dimension of this highest weight
representation is at most 3a+b, the dimension of the tensor product.

Theorem III.51 (Irreducible representations of sl3(C)).
For any a, b ∈ Z≥0, let λa,b = a η1 − b η3 ∈ h∗, i.e., λ(H12) = a, λ(H23) =
b. Then there exists an irreducible finite-dimensional representation L(λa,b)
of sl3(C) with highest weight λa,b, and such a representation is unique up
to isomorphism. Moreover, any irreducible finite-dimensional representation
of sl3(C) is isomorphic to L(λa,b) for some a, b ∈ Z≥0.

Proof. Corollaries III.39 and III.48 imply that an irreducible finite-dimensional representation is a
highest weight representation of a uniquely determined highest weight λ ∈ h∗. Lemma III.44
shows that λ = λa,b for some a, b ∈ Z≥0. Uniqueness of an irreducible highest weight repre-
sentation of highest weight λa,b was shown in Lemma III.49. It remains to show existence.
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In Example III.50 we showed that there exist finite-dimensional highest weight representa-
tions of highest weights λa,b, a, b ∈ Z≥0. A standard argument then implies the existence of
corresponding irreducible highest weight representations: the quotient of a highest weight
representation by its maximal proper subrepresentation must be both irreducible and a high-
est weight representation of the same highest weight. The quotient of a finite-dimensional
represenation is moreover finite-dimensional. This finishes the proof. �

We finally state the complete reducibility for representations of sl3(C). The proof
is best done through general theory, and we omit it for the moment.

Fact III.52 (Complete reducibility for representations of sl3(C)).
Any finite-dimensional representation V of sl3(C) is a direct sum of its irre-
ducible subrepresentations, in particular

V ∼= L(λa1,b1)⊕ · · · ⊕ L(λas,bs)

for some s and a1, . . . , as, b1, . . . , bs ∈ Z≥0.

Given complete reducibility we can in fact easily show that any finite-dimensional
highest weight representation is automatically irreducible. In particular, the sub-
representation W ⊂ V described in Proposition III.45 is irreducible if V is finite-
dimensional.

Lemma III.53 (Irreducibility of highest weight representations).
Any finite-dimensional highest weight representation V of sl3(C) is irreducible.

Proof. Suppose, by contrapositive, that a finite-dimensional highest weight representation V of
highest weight λ is not irreducible. By complete reducibility, it is therefore the direct sum

of two non-zero subrepresentations {0} 6= W ⊂ V and {0} 6= W̃ ⊂ V ,

V = W ⊕ W̃ .

The weight space Vλ is one-dimensional by Corollary III.47: in concrete terms Vλ = Cv0

for a highest weight vector v0. The weight spaces of W and W̃ are given by Wµ = Vµ ∩W
and W̃µ = Vµ ∩ W̃ , and we have Vµ = Wµ ⊕ W̃µ. One-dimensionality of Vλ thus implies

that either Wλ or W̃λ is zero. Then the highest weight vector v0 must lie in the other one,
say v0 ∈ Wλ ⊂ W . But the highest weight vector v0 generates the whole representation V ,
so we get W = V , a contradiction. �
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4. Lie algebras of compact type

We now proceed to more general structure theory and representation theory of
(semisimple) Lie algebras. The analysis of sl3(C) in Section 3 serves as the model
case — almost everything generalizes quite directly.

The most standard way would be to define semisimple Lie algebras, and study them
purely algebraically. We choose a different route: we add one assumption, which
is valid the Lie algebra of any compact Lie group. With this assumption, some
proofs become shorter. Moreover, it could be seen a posteriori that all complex
semisimple Lie algebras are obtained as complexifications of the ones that satisfy
this assumption, so in a way the simplifications come without loss of generality (recall
that we anyway study representations of Lie algebras via their complexifications).

4.1. Algebraic notions

Definition III.54 (Lie subalgebra).
A Lie subalgebra of a Lie algebra g is a vector subspace s ⊂ g such that
[s, s] ⊂ s.

Definition III.55 (Ideal in a Lie algebra).
An ideal of a Lie algebra g is a vector subspace j ⊂ g such that [j, g] ⊂ j.

Definition III.56 (Simple Lie algebra).
A Lie algebra g is simple if it is not abelian and it has no other ideals ex-
cept {0} ⊂ g and g ⊂ g.

Lemma III.57 (Bracket is surjective in simple Lie algebra).
If g is a simple Lie algebra, then [g, g] = g.

Proof. The vector subspace j := [g, g] is clearly an ideal, since all Lie brackets take values in it.
Since a simple Lie algebra is not abelian, this subspace is non-zero, j 6= {0}. As a non-zero
ideal in a simple Lie algebra, it then has to be equal to the whole Lie algebra, j = g. �

Definition III.58 (Killing form).
Let g be a finite-dimensional Lie algebra over k. The bilinear form K : g×g→ k

defined by

K(X, Y ) := tr(adX ◦ adY ) (III.24)

is called the Killing form on g.

Lemma III.59 (Symmetry and ad-invariance of the Killing form).
The Killing form is symmetric,

K(X, Y ) = K(Y,X) for all X, Y ∈ g

and ad-invariant

K([Z,X], Y ) + K(X, [Z, Y ]) = 0 for all X, Y, Z ∈ g.
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Proof. Symmetry follows directly from cyclicity of trace,

K(X,Y ) = tr(adX ◦ adY ) = tr(adY ◦ adX) = K(Y,X).

To prove ad-invariance, observe first that the Jacobi-identity implies ad[Z,X] = adZ ◦ adX −
adX ◦ adZ and similarly for ad[Z,Y ]. With this, calculate

K([Z,X], Y ) + K(X, [Z, Y ]) = tr
(
ad[Z,X] ◦ adY

)
+ tr

(
adX ◦ ad[Z,Y ]

)
= tr

(
adZ ◦ adX ◦ adY

)
− tr

(
adX ◦ adZ ◦ adY

)
+ tr

(
adX ◦ adZ ◦ adY

)
− tr

(
adX ◦ adY ◦ adZ

)
.

The second and third term cancel immediately, and the first and the last term cancel by
cyclicity of trace. This proves the ad-invariance of K. �

4.2. Definition and examples of Lie algebras of compact type

The assumption that we make about the Lie algebra is encapsulated in the following
definition.

Definition III.60 (Lie algebra of compact type).
A finite-dimensional real Lie algebra g is said to be a Lie algebra of compact
type if there exists an ad-invariant inner product on the vector space g, i.e., a
symmetric bilinear positive definite form

B : g× g→ R, (X, Y ) 7→ B(X, Y )

such that

B([Z,X], Y ) + B(X, [Z, Y ]) = 0 for all X, Y, Z ∈ g.

We have two familiar examples.

Example III.61 (The Lie algebra son is of compact type).
Consider the Lie algebra

son =
{
X ∈ Rn×n

∣∣∣ X> = −X
}

of the special orthogonal group SOn, see Examples II.8 and II.43.

Define the bilinear form on son by

B(X,Y ) := −tr(XY ) for X,Y ∈ son.

By cyclicity of trace, we have

B(X,Y ) := −tr(XY ) = −tr(Y X) = B(Y,X),

so the form B is symmetric. To see that it is also positive definite, calculate for X ∈ son,
using the defining property X> = −X,

B(X,X) = −tr(XX) = +tr(X>X) =

n∑
i=1

(X>X)ii

=

n∑
i,j=1

(X>)ij Xji

=

n∑
i,j=1

Xji Xji =

n∑
i,j=1

X2
ji ≥ 0,

and observe that equality only arises if all entries of X are zero. We have thus shown that B
is a symmetric positive definite bilinear form, i.e., an inner product on son.
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To see that this inner product B is ad-invariant, let X,Y, Z ∈ son and calculate

B(adZ(X), Y ) + B(X, adZ(Y )) = − tr([Z,X]Y )− tr(X[Z, Y ])

= − tr
(
ZXY −XZY

)
− tr

(
XZY −XY Z

)
= − tr(ZXY ) + tr(XY Z)

= 0,

where the last equality holds again by cyclicity of trace.

Therefore B is an ad-invariant inner product on son, so son is a Lie algebra of compact type.

Example III.62 (The Lie algebra un is of compact type).
Consider the Lie algebra

un =
{
X ∈ Cn×n

∣∣∣ X† = −X
}

of the unitary group Un, see Example II.9 and Exercise II.44. Define the bilinear form on un
by

B(X,Y ) := −tr(XY ) for X,Y ∈ un.

Although the matrices X,Y ∈ un are complex, this form is actually real valued: the defining
property requires X† = −X, and Y † = −Y , and traces satisfy tr(XY ) = tr((XY )>) =
tr(Y >X>), so we get

B(X,Y ) = −tr(XY ) = −tr(Y >X>) = −tr(Y †X†) = −tr(Y X).

It then follows from cyclicity of trace that this expression equals B(X,Y ) again, so we see
that B(X,Y ) ∈ R.

The form B is symmetric (by cyclicity of trace), and ad-invariant (by a calculation similar
to the previous example). For positive definiteness, using the defining property X† = −X
of X ∈ un, calculate

B(X,X) = −tr(XX) = +tr(X†X) =

n∑
i,j=1

(X†)ij Xji

=

n∑
i,j=1

Xji Xji =

n∑
i,j=1

|Xji|2 ≥ 0,

and observe that equality only arises if all entries of X are zero. Therefore B is an ad-
invariant inner product on un, so un is a Lie algebra of compact type.

Note also that for any c ∈ R, the imaginary multiple of the unit matrix ic I is satisfies
(ic I)† = −ic I, and therefore belongs to un. Multiples of unit matrix commute with any
other matrix, so the Lie bracket of ic I with any other element vanishes. This shows that
the centre z ⊂ un of un is non-trivial, z 6= {0}. One can show that the centre is in fact
one-dimensional, z = iR I, and that correspondingly sun ⊂ un has trivial centre.

More generally the Lie algebra of any closed subgroup of Un or SOn is a Lie algebra
of compact type.

Lemma III.63 (Ideals are subrepresentations of the adjoint representation).
A subspace j ⊂ g is an ideal if and only if it is a subrepresentation j ⊂ g of the
adjoint representation of g.

Proposition III.64 (Simple pieces of a Lie algebra of compact type).
A Lie algebra of compact type is the direct sum of an abelian Lie algebra (its
centre) and simple Lie algebras of compact type.
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Proof. Since the space g carries an invariant inner product B, it follows from Lemma III.7 that the
orthogonal complement j⊥ of a subrepresentation j ⊂ g of the adjoint representation g is a
complementary subrepresentation, i.e., we have g = j ⊕ j⊥. By induction this implies that
we have a direct sum decomposition

g = g0 ⊕ g1 ⊕ · · · ⊕ gn,

where g0 is the direct sum of all trivial subrepresentations (i.e., the centre g0 = z of g), and
g1, . . . , gn are irreducible subrepresentations of the adjoint representation, which are not
trivial (in particular contain no non-zero central elements). Since gj is a subrepresentation
of the adjoint representation for each j, we have [g, gj ] ⊂ gj . In particular we get [gi, gj ] =
gj ∩ gi = {0} for i 6= j. It follows that if jj ⊂ gj is an ideal (i.e., adgj -invariant subspace),
then it is an adg-invariant subspace. For j > 0, by irreducibility we must therefore have
jj = 0 or jj = gj . Since there are no non-zero central elements in gj , and gj is irreducible,
we must have jj = gj . This shows that g1, . . . , gn are simple Lie algebras. Lie subalgebras
of a Lie algebra of compact type are themselves automatically of compact type — one can
just restrict the invariant inner product to the subspace. �

From the proof above we get also the following corollaries.

Corollary III.65. For a Lie algebra g of compact type, we have [g, g] = z⊥.

In view of the above corollary, the following case is particularly important.

Definition III.66 (Lie algebra of compact semisimple type).
We say that a real Lie algebra g is a Lie algebra of compact semisimple type if
it is a Lie algebra of compact type and its centre z ⊂ g is trivial, z = {0}.

Corollary III.67. For a Lie algebra of compact semisimple type we have [g, g] = g.

A property that we will soon use, is that the existence of invariant inner prod-
uct implies that the adjoint actions are given by skew-symmetric operators in an
orthonormal basis.

Lemma III.68 (Skew-symmetry of adjoint actions for compact type).
Suppose that g is a Lie algebra of compact type. Let Z1, . . . , Zd be an or-
thonormal basis of g with respect to the ad-invariant inner product B. For
any Z ∈ g, the matrix A ∈ Rd×d of the linear map adZ : g→ g in this basis is
antisymmetric, Aij = −Aji for all i, j = 1, . . . , d.

Proof. The matrix elements Akj of adX are by definition the coefficients in adX(Zj) =
∑
k AkjZk.

Taking inner products with Zi and using orthonormality of the basis, we find the expression

Aij = B(Zi, adX(Zj))

for them. By ad-invariance and symmetry of B, we then get

Aij = B(Zi, adX(Zj)) = −B(adX(Zi), Zj) = −B(Zj , adX(Zi)) = −Aji,
which proves antisymmetry. �

This has implications about the Killing form.

Proposition III.69 (Killing form and semisimplicity).
A Lie algebra g of compact type has trivial center z = {0} if and only if its
Killing form K is strictly negative definite.
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Proof. Since g is of compact type, there exists an invariant inner product, and the matrices of the
adjoint actions of all elements are antisymmetric in an orthonormal basis Z1, . . . , Zd of g.
Let X ∈ g, and denote the matrix of adX in this basis by A = (Aij)

d
i,j=1. Antisymmetry

means A> = −A. To evaluate the Killing form, we can calculate traces in this basis. We
find, e.g.,

K(X,X) := tr(adX ◦ adX) = tr(AA) = tr
(
(−A>)A

)
= −

d∑
i,j=1

(A>)ijAji = −
d∑

i,j=1

A2
ji ≤ 0,

and equality can only occur if A ≡ 0. But note that A ≡ 0 means adX = 0, which occurs
if and only if X is in the centre X ∈ z. Thus trivial centre z = {0} implies that the Killing
form is strictly negative definite, whereas non-trivial centre z 6= {0} implies that the Killing
form has no strict definiteness. �

Therefore in a Lie algebra of compact semisimple type, we can use−K as an invariant
inner product, and it will be convenient to do so.

4.3. Complexification of Lie algebras of compact semisimple type

Let us now assume that g is of compact semisimple type, i.e., has an invariant inner
product and trivial centre. We saw above that in this case g is a direct sum of simple
Lie algebras, and we can use the negative of the Killing form as an invariant inner
product.

The complexification of the real Lie algebra g is the complex Lie algebra

gC := g⊕ ig.

Let us define a real-linear (anti-)involution Z 7→ Z∗ on the complexification gC by

(X + iY )∗ := −X + iY for X, Y ∈ g.

Note that we have (iZ)∗ = −iZ∗ for any Z ∈ gC, so the map Z 7→ Z∗ is in fact
conjugate linear.7 This map reverses brackets (the term anti-involution rather than
involution is used for this reason), as we prove next.

Lemma III.70 (Anti-involution).
For any Z,W ∈ gC we have

[Z,W ]∗ = −[Z∗,W ∗].

Proof. Write Z = X1 + iY1 and W = X2 + iY2 for X1, Y1, X2, Y2 ∈ g. Calculate first

[Z∗,W ∗] = [−X1 + iY1, −X2 + iY2]

=
(
[X1, X2]− [Y1, Y2]

)
− i
(
[X1, Y2] + [Y1, X2]

)
.

Then calculate for comparison

[Z,W ]∗ =
(
[X1 + iY1, X2 + iY2]

)∗
=
((

[X1, X2]− [Y1, Y2]
)

+ i
(
[X1, Y2] + [Y1, X2]

))∗
= −

(
[X1, X2]− [Y1, Y2]

)
+ i
(
[X1, Y2] + [Y1, X2]

)
.

The two expressions are the opposites of each other, which proves the claim. �

7Indeed, for Z = X + iY , we have (iZ)∗ = (−Y + iX)∗ = Y + iX = i(X − iY ) = −iZ∗.
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We also define the real Lie subalgebra gR ⊂ gC by

gR :=
{
Z ∈ gC

∣∣ Z∗ = Z
}
. (III.25)

Note that gR = ig — this real Lie subalgebra is not g!

Proposition III.71 (Killing form for compact semisimple type).
Let g be a Lie algebra of compact semisimple type and gC its complexification.
Then the Killing form K defined by K(Z,W ) = tr(adZ ◦ adY ) has the following
properties.

(i) K is strictly positive definite on gR.
(ii) K is non-degenerate on gC.

Proof. Recall from Lemma III.69 that K is strictly negative definite on g. If Z ∈ gR = i g, then
Z = iY with Y ∈ g, and therefore

K(Z,Z) = K(iY, iY ) = −K(Y, Y ) ≥ 0,

and equality only arises if Y = 0 ∈ g, i.e., if Z = 0 ∈ gR. This proves part (i).

For non-degeneracy on the complexification gC, assume that Z ∈ gC. Write Z = X + iY
with X,Y ∈ g and recall that Z∗ = −X + iY . Calculate

K(Z∗, Z) = K(−X + iY,X + iY ) = −K(X,X)− K(Y, Y ) ≥ 0, (III.26)

where the inequality is again by negative definiteness of K on g. Equality only holds here
if X = Y = 0 ∈ g (strict negative-definiteness), i.e., if Z = 0 ∈ gC. This proves non-
degeneracy, part (ii). �

On the complex vector space gC, define

〈Z,W 〉 := K(Z∗,W ) for Z,W ∈ gC. (III.27)

Lemma III.72 (Inner product on the complexification).
If g is a Lie algebra of compact semisimple type, then the formula (III.27)
defines an inner product on its complexification gC.

Proof. Clearly (III.27) is C-linear in W , and conjugate linear in Z (since Z 7→ Z∗ is). Positive
definiteness follows from the calculation (III.26), which showed that 〈Z,Z〉 ≥ 0 with equality
only if Z = 0. To prove the conjugate symmetry property, write first Z = X + iY and
W = X ′ + iY ′ with X,Y,X ′, Y ′ ∈ g and calculate

〈Z,W 〉 = K(Z∗,W ) = K(−X + iY,X ′ + iY ′)

= − K(X,X ′)− K(Y, Y ′)− iK(X,Y ′) + iK(Y,X ′)

The Killing form is real on g, so the complex conjugate of the above is

〈Z,W 〉 = − K(X,X ′)− K(Y, Y ′) + iK(X,Y ′)− iK(Y,X ′)

= K(X + iY,−X ′ + iY ′)

= K(Z,W ∗)

= 〈W,Z〉,

where we used symmetricity of the Killing form in the last step. This finishes the proof. �

We next show that with respect to this complex Hilbert space structure on gC, the
Hilbert space adjoints of the operators adZ : gC → gC are obtained by applying the
anti-involution Z 7→ Z∗. This explains our a priori strange looking definition of the
anti-involution.
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Proposition III.73 (Hilbert space adjoints of adjoint actions).
For any Z ∈ gC and W1,W2 ∈ gC, we have

〈adZ(W1),W2〉 = 〈W1, adZ∗(W2)〉,
i.e., the Hilbert space adjoint of adZ is adZ∗. In particular for all Z ∈ gR, the
operators adX are self-adjoint.

Proof. Recall the anti-involution property of Lemma III.70, and the ad-invariance of the Killing
form from Lemma III.59. Then the first assertion is proven by the calculation

〈adZ(W1),W2〉 = K([Z,W1]∗,W2)

= − K([Z∗,W ∗1 ],W2)

= + K(W ∗1 , adZ∗(W2)) = 〈W1, adZ∗(W2)〉.

Self-adjointness of adZ for Z ∈ gR then follows directly from the defining property Z∗ = Z
in this real subalgebra. �

4.4. Structure of Lie algebras of compact semisimple type

Assume still that g is of compact semisimple type. Let us choose a maximal abelian
subalgebra h ⊂ g, called a Cartan subalgebra. Then its complexification hC is an
abelian Lie subalgebra of the complex Lie algebra gC, and hR = ih is an abelian Lie
subalgebra of gR = ig.

By virtue of Proposition III.73, the collection{
adH : gC → gC

∣∣∣ H ∈ hR

}
consists of commuting self-adjoint operators. Therefore these operators can be si-
multaneously diagonalized, i.e., the space gC can be written as a direct sum of joint
eigenspaces of the form

gα :=
{
Z ∈ gC

∣∣∣ adH(Z) = α(H)Z ∀H ∈ hR,
}

(III.28)

where α(H) ∈ R are the real eigenvalues of the self-adjoint operators adH . Obviously
α(H) depends linearly on H ∈ hR, so defines a functional α ∈ h∗R.

The eigenvalues on hC are zeroes by abelianity, i.e, the corresponding functional
is 0 ∈ h∗R and we have hC ⊂ g0. Since the Cartan subalgebra h ⊂ g was chosen to
be a maximal abelian Lie subalgebra, there are no other elements which have zero
as the joint eigenvalue, i.e., we have hC = g0. The rest of the joint eigenvalues will
be of great interest to us.

Definition III.74 (Roots).
Those non-zero α ∈ h∗R for which the joint eigenspace (III.28) is non-trivial,
gα 6= {0}, are called roots of g. The finite set of roots of g is denoted by Φ ⊂ h∗R.
The corresponding vector subspaces gα ⊂ gC are called root spaces .

The resulting decomposition (direct sum of vector spaces)

gC = hC ⊕
⊕
α∈Φ

gα (III.29)

is called the root space decomposition.
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Lemma III.75 (Opposite root).
If α is a root, then also −α is a root, i.e., we have −Φ = Φ ⊂ h∗R.

Proof. If α ∈ Φ, then we can choose an elements Xα ∈ gα such that 〈Xα, Xα〉 = 1. Consider the
non-zero element X∗α ∈ gC. For any H ∈ hR we have, using H∗ = H and Lemma III.70,

adH(X∗α) = [H,X∗α] = [H∗, X∗α] = −[H,Xα]∗ = −α(H)X∗α.

This shows that X∗α ∈ g−α. We conclude that g−α 6= {0} and −α ∈ Φ. �

Non-degeneracy of the inner product on hR permits us to make the following defini-
tion.

Definition III.76 (Root vectors).
For any root α ∈ Φ, there exists a unique Hα ∈ hR such that

α(H) = 〈Hα, H〉 for all H ∈ hR.

We call Hα the root vector corresponding to the root α.

Lemma III.77 (Root vectors span Cartan subalgebra).
The roots and root vectors span h∗R and hR, respectively, i.e.,

hR = spanR
{
Hα

∣∣ α ∈ Φ
}

h∗R = spanR
{
α
∣∣ α ∈ Φ

}
.

Proof. Let us start by proving the second formula. Let H ∈ hR, and observe that since adH acts
as multiplication by scalar α(H) ∈ R on the root space gα, calculating traces using the root
space decomposition (III.29) is easy, and we find

K(H,H) = tr(adH ◦ adH) = 0 +
∑
α∈Φ

dim(gα) α(H)2.

The Killing form K is positive definite on hR ⊂ gR by Lemma III.71, i.e., for any non-
zero H 6= 0 we must have K(H,H) > 0. Therefore the above calculation implies that there
must exist some α ∈ Φ for which α(H) 6= 0. It follows that the span of all α ∈ Φ is the
dual h∗R entirely. Since the root vectors Hα ∈ hR were obtained from the roots α ∈ h∗R via
the identification based on the non-degenerate inner product, the root vectors also must
span hR. This finishes the proof. �

Lemma III.78 (Brackets of root spaces).
For any α, β ∈ h∗R, we have

[gα, gβ] ⊂ gα+β.

In particular we have [gα, g−α] ⊂ hC, and if α+β /∈ Φ∪{0}, then [gα, gβ] = {0}.

Proof. Assume that Xα ∈ gα and Xβ ∈ gβ . For H ∈ hR, calculate using Jacobi identity

adH([Xα, Xβ ]) =
[
H, [Xα, Xβ ]

]
= −

[
Xα, [Xβ , H]

]
−
[
Xβ , [H,Xα]

]
= + β(H) [Xα, Xβ ]− α(H) [Xβ , Xα]

=
(
α(H) + β(H)

)
[Xα, Xβ ].

In view of g0 = hC and gγ = {0} for γ /∈ Φ ∪ {0}, the rest of the assertions are obvious
consequences. given �
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Lemma III.79 (Brackets from opposite root spaces).
Let α ∈ Φ be a root, and let Hα be the corresponding root vector (see Defini-
tion III.76). Choose Xα ∈ gα such that 〈Xα, Xα〉 = 1. Then we have

[Xα, X
∗
α] = Hα.

Proof. In the proof of Lemma III.75 we saw that Xα ∈ gα implies X∗α ∈ g−α. By Lemma III.78,
we thus have [Xα, X

∗
α] ∈ [gα, g−α] ⊂ g0 = hC. Moreover by the anti-involution property we

have

[Xα, X
∗
α]∗ = −[X∗α, X

∗∗
α ] = −[X∗α, Xα] = [Xα, X

∗
α],

so this bracket in fact lies in the real Lie subalgebra, [Xα, X
∗
α] ∈ hR.

Now for H ∈ hR calculate the following inner product using ad-invariance of the Killing form〈
[Xα, X

∗
α], H

〉
= K([Xα, X

∗
α]∗, H) = K([Xα, X

∗
α], H)

= − K(X∗α, [Xα, H])

= α(H) K(X∗α, Xα)

= α(H) 〈Xα, Xα〉
= α(H).

This is the defining property of the root vector Hα, se we indeed have [Xα, X
∗
α] = Hα. �

Lemma III.80 (One-dimensionality of root spaces).
For any root α ∈ Φ we have

dim(gα) = 1.

Moreover, the only integers j ∈ Z for which jα ∈ Φ is also a root are j = ±1.

Proof. Choose again Xα ∈ gα such that 〈Xα, Xα〉 = 1. Denote X−α := X∗α and recall that
then X−α ∈ g−α. Consider the vector subspace of gC defined by

CX−α ⊕ hC ⊕ gα ⊕ g2α ⊕ · · · ⊕ gkα, (III.30)

where k ∈ N is the largest integer for which kα is a root. From Lemma III.78 it follows that
adXα preserves the subspace (III.30). To see that also adX−α preserves the subspace (III.30),
we make three observations:

adX−α(X−α) = [X−α, X−α] = 0,

adX−α(H) = [X−α, H] = +α(H)X−α for all H ∈ hC,

and finally adX−α maps the space gα⊕· · ·⊕gkα into hC⊕gα⊕· · ·⊕g(k−1)α by Lemma III.78
again.

Therefore both adXα and adX−α can be restricted to linear maps of the subspace (III.30) to
itself, and then so can their commutator [adXα , adX−α ] = ad[Xα,X−α] = adHα , where the last
equality follows from Lemma III.79. Calculate the trace of adHα on the subspace (III.30),
which must vanish (the trace of a commutator is zero by cyclicity of trace):

0 = − α(Hα) + 0 + α(Hα) dim(gα) + 2α(Hα) dim(g2α) + · · ·+ kα(Hα) dim(gkα)

= α(Hα)
(
− 1 + dim(gα) + 2 dim(g2α) + · · ·+ k dim(gkα)

)
.

Since α(Hα) = 〈Hα, Hα〉 > 0, the other factor must vanish, which is only possible if
dim(gα) = 1 and dim(gjα) = 0 for all j > 1. Replacing α by −α similarly shows that
dim(g−α) = 1 and dim(g−jα) = 0 for all j > 1, completing the proof. �

By calculating traces as in the proof of Lemma III.77 using the root space decom-
position, one obtains in particular the following expression for the Killing form on
the Cartan subalgebra.
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Corollary III.81 (Killing form on Cartan subalgebra).
For any H1, H2 ∈ hR we have

K(H1, H2) =
∑
α∈Φ

α(H1)α(H2).

Convenient normalizations and sl2(C) subalgebras

Let us finally change to a very convenient normalization. For a root α ∈ Φ, choose
again Xα ∈ gα such that 〈Xα, Xα〉 = 1, and denote X−α := X∗α ∈ g−α. Let also

Hα ∈ hR be the corresponding root vector and denote ‖Hα‖ =
√
〈Hα, Hα〉.

Define

H ′α :=
2

‖Hα‖2
Hα, X ′±α :=

√
2

‖Hα‖
X±α. (III.31)

Note that the normalization of H ′α implies in particular

α(H ′α) = 〈Hα, H
′
α〉 =

2

‖Hα‖2
〈Hα, Hα〉 = 2.

Lemma III.82 (The sl2(C) subalgebras associated to roots).
The elements (III.31) satisfy

[H ′α, X
′
±α] = ± 2X ′±α

[X ′+α, X
′
−α] = H ′α.

In particular the span of H ′α, X
′
+α, X

′
−α in gC is a Lie subalgebra isomorphic

to sl2(C).

Proof. Recall that α(Hα) = 〈Hα, Hα〉 = ‖Hα‖2. Noting that we have X ′±α ∈ g±α, calculate

[H ′α, X
′
±α] =

2

‖Hα‖2
[Hα, X

′
±α] =

±2α(Hα)

‖Hα‖2
X ′±α = ±2X ′±α,

which proves the first formula. The other formula is straightforward in view of Lemma III.79,

[X ′−α, X
′
−α] =

( √2

‖Hα‖

)2

[X−α, X−α] =
2

‖Hα‖2
Hα = H ′α.

The Lie brackets of H ′α, X
′
+α, X

′
−α thus have exactly the same form as those of H,E, F ∈

sl2(C) given in (III.3), and the proof is complete. �

Proposition III.83 (Cartan integers).
For any two roots α, β ∈ Φ, we have

β(H ′α) ∈ {0,±1,±2,±3,±4} ,

and in case β(H ′α) = ±4 we have β = ±α.

Proof. Let us first prove that β(H ′α) ∈ Z. For this, consider the Lie subalgebra spanned by
H ′α, X

′
+α, X

′
−α, which is isomorphic to sl2(C). The adjoint representation gC can in par-

ticular be seen as a representation of this Lie subalgebra. It is finite-dimensional, so we
know that the eigenvalues of the H-generator in sl2(C) are integers by Proposition III.28.
For Z ∈ gβ we have adH′α(Z) = β(H ′α)Z, so β(H ′α) is such an eigenvalue in the adjoint
representation gC. This proves integrality β(H ′α) ∈ Z.
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Let us now point out that

β(H ′α) =
2〈Hβ , Hα〉
‖Hα‖2

and similarly α(H ′β) =
2〈Hα, Hβ〉
‖Hβ‖2

.

From these expressions it is clear that either both are simultaneously non-zero, β(H ′α) 6=
0 6= α(H ′β), or both vanish simultaneously β(H ′α) = 0 = α(H ′β). The case of β(H ′α) = 0 is
allowed as a possibility in the statement, so let us focus on the case when both are non-zero.

From the above expressions we can form the product, which satisfies

β(H ′α)α(H ′β) = 4
〈Hα, Hβ〉2

‖Hα‖2 ‖Hβ‖2
≤ 4

by Cauchy-Schwarz inequality, and equality only occurs if Hβ = cHα for some c ∈ R.
Combined with integrality of the two factors, in the case that both are non-vanishing we
already find that β(H ′α), α(H ′β) ∈ {±1,±2,±3,±4}.

Let us consider the case of equality in Cauchy-Schwarz above, β(H ′α)α(H ′β) = 4. Then we

must have proportionality Hβ = cHα, and correspondingly β = cα and H ′β = 1
cH
′
α. The two

integer factors β(H ′α), α(H ′β) must either both be ±2, or one of them has to be ±4 and the

other ±1. Consider the latter possibility and assume without loss of generality β(H ′α) = ±4
and α(H ′β) = ±1. But then we find ±4 = β(H ′α) = cα(H ′α) = 2c, which implies c = ±2, and
we get β = ±2α, which contradicts Lemma III.80. Therefore the only remaining possibility
in this case is β(H ′α) = ±2 = α(H ′β). In this case we find ±2 = β(H ′α) = cα(H ′α) = 2c, which
implies c = ±1, and we get β = ±α, which is a possibility allowed in the statement. �

Lemma III.84 (Proportional roots are equal or opposite).
If α ∈ Φ is a root, then the only real multiples of it which are also roots are ±α.

Proof. The proof is basically the same as above: if β = cα is also a root, then both 2c = β(H ′α) ∈ Z
and 2

c = α(H ′β) ∈ Z are integers. This already implies c ∈
{
± 1

2 ,±1,±2
}

. The case c = ±2

was ruled out by invoking Lemma III.80 in the previous proof, and the case c = ± 1
2 is ruled

out by interchanging the roles of α and β. This only leaves the possibility c = ±1. �

4.5. Weyl group

Assume still that g is of compact semisimple type.

The inner product 〈·, ·〉 on hR allowed us to identify the dual h∗R with hR, through
writing µ ∈ h∗R as µ(·) = 〈H, ·〉 with a certain unique H ∈ hR. We used this in
particular to associate to a root α ∈ Φ ⊂ h∗R the root vector Hα ∈ hR. One can
translate the inner product from hR to h∗R by setting 〈µ1, µ2〉 := 〈H1, H2〉 for any
µ1, µ2 ∈ h∗R and the corresponding H1, H2 ∈ hR.

For α ∈ Φ a root of a Lie algebra g, define the linear map

ςα : h∗R → h∗R by ςα(µ) = µ− 2
〈µ, α〉
‖α‖2

α. (III.32)

Lemma III.85 (Reflection in a hyperplane).
The map ςα reflects the line Rα ⊂ h∗R across the origin, and restricts to the
identity transformation on the hyperplane

{
µ ∈ h∗R

∣∣ 〈µ, α〉 = 0
}

orthogonal to
this line.
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Proof. From definition (III.32) we get in particular

ςα(α) = α− 2
〈α, α〉
‖α‖2

α = α− 2α = −α,

proving the first part. To get the second, note that if 〈µ, α〉 = 0, then we obviously have
ςα(µ) = µ− 0α = µ. �

Proposition III.86 (Invariance of the set of roots under reflections).
If α, β ∈ Φ are roots, then also ςα(β) is a root.

Proof. Consider the vector subspace ⊕
k∈Z

gβ+kα ⊂ gC.

It follows from Lemma III.78 that this space is invariant for the Lie subalgebra spanned by
H ′α, X

′
+α, X

′
−α, and thus forms a representation of this Lie subalgebra. By Lemma III.82,

this Lie subalgebra is isomorphic to sl2(C), so from Proposition III.28 it follows that the
eigenvalues of adH′α are integers, and symmetric under reflection across zero. The eigenvalue
of adH′α on the root space gβ 6= {0} is β(H ′α), so there has to exist some k ∈ Z so that
gβ+kα 6= {0}, and on this space adH′α has eigenvalue −β(H ′α). By definition, however, the
eigenvalue of adH′α on gβ+kα equals

(β + kα)(H ′α) = β(H ′α) + kα(H ′α) = β(H ′α) + 2k.

Equating the two expressions −β(H ′α) = β(H ′α) + 2k for the eigenvalue and solving, one
gets k = −β(H ′α). Since we have shown that gβ+kα 6= {0}, we have that β + kα ∈ Φ is a
root. But with what we observed above, we can rewrite this root as

β + kα = β − β(H ′α)α = β − 2〈Hβ , Hα〉
‖Hα‖2

α = β − 2
〈β, α〉
‖α‖2

α = ςα(β).

This proves the assertion. �

4.6. Classification of Lie algebras of compact semisimple type

We saw in Proposition III.83 that for any two roots α, β ∈ Φ, the numbers

nβα :=
2〈Hβ, Hα〉
‖Hα‖2

=
2〈β, α〉
‖α‖2

(III.33)

must be integers from a small list of possibilities. Combined with the invariance
of the set of roots under all of the reflections

{
ςα
∣∣ α ∈ Φ

}
(and in fact the finite

group generated by them), which we saw in Proposition III.86, this is the starting
point of a full combinatorial classification of all Lie algebras of compact semisimple
type (and in fact of all semisimple Lie algebras) based on only Euclidian geometry
of the finite-dimensional inner product space h∗R. In fact we know already know
from Lemma III.64 that Lie algebras of compact semisimple type are direct sums of
simple Lie algebras of compact type, so it suffices to classify these.

The result of the classification — done in detail in, e.g., [FH91] — contains a list
of four infinite series of simple Lie algebras, of which we have seen many (but not
all) already:

type simple Lie algebra of compact type complex simple Lie algebra
Ar (r ≥ 1) sur+1 slr+1(C)
Br (r ≥ 2) so2r+1 so2r+1(C)
Cr (r ≥ 3) uspr sp2r(C)
Dr (r ≥ 4) so2r so2r(C)

.
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Here r ∈ N signifies the rank of the Lie algebra g in question, defined as the dimen-
sion r = dim(h) of its Cartan subalgebra h ⊂ g. The restrictions on r ∈ N indicated
are there only to avoid listing isomorphic Lie algebras twice. In addition to the four
infinite series of simple Lie algebras above, there are five exceptional types, of which
we provide the labels, ranks, and dimensions in the following

type simple Lie algebra rank: dim(h) dimension: dim(g)
G2 g2 2 14
F4 f4 4 52
E6 e6 6 78
E7 e7 7 133
E8 e8 8 248

.

For each of the above simple Lie algebras (more generally semisimple Lie algebras),
finite-dimensional representations are completely reducible, i.e., direct sums of ir-
reducibles. Moreover, the finite-dimensional irreducible representations are highest
weight representations denoted by L(λ), and the possible highest weights λ ∈ h∗R are
determined by non-negativity and integrality conditions — in very close parallel to
our analysis of representations of sl3(C) (i.e., the type A2).



Appendix A

Background

1. Background on linear algebra

During most parts of this course, vector spaces are over the field C of complex
numbers. Often any other algebraically closed field of characteristic zero could be
used instead. Sometimes, however, none of these assumptions are needed, and k

could be any field. This ground field should always be clear from the context, and
we usually omit explicitly mentioning it.

Definition A.1 (Space of linear maps between vector spaces).
Let V,W be k-vector spaces. The space of linear maps (i.e. the space of
homomorphisms of k-vector spaces) from V to W is denoted by

Hom(V,W ) =
{
T : V → W

∣∣ T is a k-linear map
}
.

By pointwise addition and scalar multiplication, Hom(V,W ) itself becomes a
k-vector space.

Definition A.2 (Dual of a vector space).
The (algebraic) dual of a vector space V is the space of linear maps from V to
the ground field,

V ∗ = Hom(V,k).

We denote the duality pairing by brackets 〈·, ·〉. A dual vector ϕ ∈ V ∗ is thus a
linear function V → k, whose value at a vector v ∈ V is (usually) denoted by 〈ϕ, v〉.

Definition A.3 (Transpose).
For T : V → W a linear map, the transpose is the linear map T ∗ : W ∗ → V ∗

defined by

〈T ∗(ϕ), v〉 = 〈ϕ, T (v)〉 for all ϕ ∈ W ∗, v ∈ V.

2. On tensor products of vector spaces

A crucial concept in this course is that of a tensor product of vector spaces. Here,
vector spaces can be over any field k, but it should be noted that the concept of
tensor product depends of the field. In this course we primarily use tensor products
of complex vector spaces.

Definition A.4 (Bilinear maps).
Let V1, V2,W be vector spaces. A map β : V1 × V2 → W is called bilinear if

103
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for all v1 ∈ V1 the map v2 7→ β(v1, v2) is linear V2 → W and for all v2 ∈ V2 the
map v1 7→ β(v1, v2) is linear V1 → W .

Multilinear maps V1 × V2 × · · · × Vn → W are defined similarly.

The tensor product is a space which allows us to replace some bilinear (more gen-
erally multilinear) maps by linear maps.

Definition A.5 (Tensor product of vector spaces).
Let V1 and V2 be two vector spaces. A tensor product of V1 and V2 is a vector
space U together with a bilinear map φ : V1 × V2 → U such that the following
universal property holds: for any bilinear map β : V1 × V2 → W , there exists
a unique linear map β̄ : U → W such that the diagram

V1 × V2
β //

φ ##G
GG

GG
GG

GG
W

U
β̄

>>

commutes, that is β = β̄ ◦ φ.

Proving the uniqueness (up to canonical isomorphism) of an object defined by a
universal property is a standard exercise in abstract nonsense.1

And since the tensor product is unique (up to canonical isomorphism), we can and
will use the following notations (without danger of confusion)

U = V1 ⊗ V2 and

V1 × V2 3 (v1, v2)
φ7→ v1 ⊗ v2 ∈ V1 ⊗ V2.

An explicit construction, which shows that tensor products indeed exist, is done
in Exercise A.6. The same exercise establishes two fundamental properties of the
tensor product:

• If (v
(1)
i )i∈I is a linearly independent collection in V1 and (v

(2)
j )j∈J is a lin-

early independent collection in V2, then the collection
(
v

(1)
i ⊗ v

(2)
j

)
(i,j)∈I×J

is linearly independent in V1 ⊗ V2.

• If the collection (v
(1)
i )i∈I spans V1 and the collection (v

(2)
j )j∈J spans V2, then

the collection
(
v

(1)
i ⊗ v

(2)
j

)
(i,j)∈I×J spans the tensor product V1 ⊗ V2.

It follows that if (v
(1)
i )i∈I and (v

(2)
j )j∈J are bases of V1 and V2, respectively, then(
v

(1)
i ⊗ v

(2)
j

)
(i,j)∈I×J

1Indeed, if we suppose U ′ with a bilinear map φ′ : V1 × V2 → U ′ is another tensor product,
then the universal property of U gives a linear map φ̄′ : U → U ′ such that φ′ = φ̄′ ◦ φ. Likewise,
the universal property of U ′ gives a linear map φ̄ : U ′ → U such that φ = φ̄ ◦ φ′. Combining these
we get

idU ◦ φ = φ = φ̄ ◦ φ′ = φ̄ ◦ φ̄′ ◦ φ.
But here are two ways of factorizing the map φ itself, so by the uniqueness requirement in the
universal property we must have equality idU = φ̄◦ φ̄′. By a similar argument we get idU ′ = φ̄′ ◦ φ̄.
We conclude that φ̄ and φ̄′ are isomorphisms (and inverses of each other).
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is a basis of the tensor product V1 ⊗ V2. In particular if V1 and V2 are finite dimen-
sional, then

dim (V1 ⊗ V2) = dim (V1) dim (V2) . (A.1)

Exercise A.6 (A construction of the tensor product).
We saw that the tensor product of vector spaces, defined by the universal property, is unique
(up to isomorphism) if it exists. The purpose of this exercise is to show existence by an
explicit construction, under the simplifying assumption that V and W are function spaces
(it is easy to see that this can be assumed without loss of generality).

For any set X, denote by k
X the vector space of k-valued functions on X, with addition

and scalar multiplication defined pointwise. Assume that V ⊂ k
X and W ⊂ k

Y for some
sets X and Y . For f ∈ k

X and g ∈ k
Y , define f ⊗ g ∈ k

X×Y by(
f ⊗ g

)
(x, y) = f(x) g(y).

Also set

V ⊗W = span
(
f ⊗ g

∣∣ f ∈ V, g ∈W ) ,
so that the map (f, g) 7→ f ⊗ g is a bilinear map V ×W → V ⊗W ⊂ k

X×Y .

(a) Show that if (fi)i∈I is a linearly independent collection in V and (gj)j∈J is a linearly
independent collection in W , then the collection (fi ⊗ gj)(i,j)∈I×J is linearly independent

in V ⊗W .
(b) Show that if (fi)i∈I is a collection that spans V and (gj)j∈J is collection that spans W ,

then the collection (fi ⊗ gj)(i,j)∈I×J spans V ⊗W .

(c) Conclude that if (fi)i∈I is a basis of V and (gj)j∈J is a basis of W , then (fi ⊗ gj)(i,j)∈I×J
is a basis of V ⊗W . Conclude furthermore that V ⊗W , equipped with the bilinear map
φ(f, g) = f⊗g from V ×W to V ⊗W , satisfies the universal property defining the tensor
product.

A tensor of the form v(1) ⊗ v(2) is called a simple tensor . By part (b) of the above
exercise, any t ∈ V1 ⊗ V2 can be written as a linear combination of simple tensors

t =
n∑

α=1

v(1)
α ⊗ v(2)

α ,

for some v
(1)
α ∈ V1 and v

(2)
α ∈ V2, α = 1, 2, . . . , n. Note, however, that such an

expression is by no means unique! The smallest n for which it is possible to write t
as a sum of simple tensors is called the rank of the tensor, denoted by n = rank(t).
An obvious upper bound is rank(t) ≤ dim (V1) dim (V2). One can do much better in
general, as follows from the following useful observation.

Lemma A.7 (Linear independence in minimal expressions of tensors).
Suppose that

t =
n∑

α=1

v(1)
α ⊗ v(2)

α ,

where n = rank(t). Then both (v
(1)
α )nα=1 and (v

(2)
α )nα=1 are linearly independent

collections.

Proof. Suppose, by contraposition, that there is a linear relation

n∑
α=1

cαv
(1)
α = 0,
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where not all the coefficients are zero. We may assume that cn = 1. Thus we have

v
(1)
n = −

∑n−1
α=1 cαv

(1)
α , and using bilinearity we simplify t as

t =

n−1∑
α=1

v(1)
α ⊗ v(2)

α + v(1)
n ⊗ v(2)

n =

n−1∑
α=1

v(1)
α ⊗ v(2)

α −
n−1∑
α=1

cα v
(1)
α ⊗ v(2)

n

=

n−1∑
α=1

v(1)
α ⊗

(
v(1)
α − cαv(2)

n

)
which contradicts minimality of n = rank(t). The linear independence of (v

(2)
α ) is proven

similarly. �

As a consequence we get a better upper bound

rank(t) ≤ min {dim (V1) , dim (V2)} .

Taking tensor products with the one-dimensional vector space k does basically noth-
ing: for any vector space V we can canonically identify

V ⊗ k ∼= V and k⊗ V ∼= V

v ⊗ λ 7→ λv λ⊗ v 7→ λv.

By the obvious correspondence of bilinear maps V1 × V2 → W and V2 × V1 → W ,
one also always gets a canonical identification

V1 ⊗ V2
∼= V2 ⊗ V1.

Almost equally obvious correspondences give the canonical identifications

(V1 ⊗ V2)⊗ V3
∼= V1 ⊗ (V2 ⊗ V3)

etc., which allow us to omit parentheses in multiple tensor products.

A slightly more interesting property than the above obvious identifications, is the
existence of an embedding

V2 ⊗ V ∗1 ↪→ Hom(V1, V2)

which is obtained by associating to v2 ⊗ ϕ the linear map

v1 7→ 〈ϕ, v1〉 v2

(and extending linearly from the simple tensors to all tensors). The following exercise
verifies among other things that this is indeed an embedding and that in the finite
dimensional case the embedding becomes an isomorphism.

Exercise A.8 (The relation between Hom(V,W ) and W ⊗ V ∗).
(a) For w ∈W and ϕ ∈ V ∗, we associate to w ⊗ ϕ the following map V →W

v 7→ 〈ϕ, v〉w.

Show that the linear extension of this defines an injective linear map

W ⊗ V ∗ −→ Hom(V,W ).

(b) Show that if both V and W are finite dimensional, then the injective map in (a) is an
isomorphism

W ⊗ V ∗ ∼= Hom(V,W ).

Show that under this identification, the rank of a tensor t ∈W ⊗ V ∗ is the same as the
rank of a matrix of the corresponding linear map T ∈ Hom(V,W ).
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Definition A.9 (Tensor product of linear maps).
When

f : V1 → W1 and g : V2 → W2

are linear maps, then there is a linear map

f ⊗ g : V1 ⊗ V2 → W1 ⊗W2

defined by the condition

(f ⊗ g)(v1 ⊗ v2) = f(v1)⊗ g(v2) for all v1 ∈ V1, v2 ∈ V2.

The above map clearly depends bilinearly on (f, g), so we get a canonical map

Hom(V1,W1)⊗ Hom(V2,W2) ↪→ Hom(V1 ⊗ V2,W1 ⊗W2),

which is easily seen to be injective. When all the vector spaces V1,W1, V2,W2 are
finite dimensional, then the dimensions of both sides are given by

dim (V1) dim (V2) dim (W1) dim (W2) ,

so in this case the canonical map is an isomorphism

Hom(V1,W1)⊗ Hom(V2,W2) ∼= Hom(V1 ⊗ V2,W1 ⊗W2).

As a particular case of the above, interpreting the dual of a vector space V as V ∗ =
Hom(V,k) and using k⊗ k ∼= k, we see that the tensor product of duals sits inside
the dual of the tensor product. Explicitly, if V1 and V2 are vector spaces and ϕ1 ∈ V ∗1 ,
ϕ2 ∈ V ∗2 , then

v1 ⊗ v2 7→ 〈ϕ1, v1〉 〈ϕ2, v2〉
defines an element of the dual of V1 ⊗ V2. To summarize, we have an embedding

V ∗1 ⊗ V ∗2 ↪→ (V1 ⊗ V2)∗.

If V1 and V2 are finite dimensional this becomes an isomorphism

V ∗1 ⊗ V ∗2 ∼= (V1 ⊗ V2)∗.

The transpose behaves well under the tensor product of linear maps.

Lemma A.10. When f : V1 → W1 and g : V2 → W2 are linear maps, then the map

f ⊗ g : V1 ⊗ V2 → W1 ⊗W2

has a transpose (f ⊗ g)∗ which makes the following diagram commute

(W1 ⊗W2)∗
(f⊗g)∗

// (V1 ⊗ V2)∗

W ∗
1 ⊗W ∗

2

f∗⊗g∗ //
?�

OO

V ∗1 ⊗ V ∗2
?�

OO

Proof. Indeed, for ϕ ∈W ∗1 , ψ ∈W ∗2 and any simple tensor v1 ⊗ v2 ∈ V1 ⊗ V2 we compute

〈(f∗ ⊗ g∗)(ϕ⊗ ψ), v1 ⊗ v2〉 = 〈f∗(ϕ)⊗ g∗(ψ), v1 ⊗ v2〉
= 〈f∗(ϕ), v1〉 〈g∗(ψ), v2〉
= 〈ϕ, f(v1)〉 〈ψ, g(v2)〉
= 〈ϕ⊗ ψ, f(v1)⊗ g(v2)〉
= 〈ϕ⊗ ψ, (f ⊗ g)(v1 ⊗ v2)〉
= 〈(f ⊗ g)∗(ϕ⊗ ψ), v1 ⊗ v2〉.



108 A. BACKGROUND

�

3. On diagonalization of matrices

In this section, vector spaces are over the field C of complex numbers.

Recall first the following definitions.

Definition A.11 (Characteristic polynomial and minimal polynomial).
The characteristic polynomial of a matrix A ∈ Cn×n is

pA(x) = det
(
xI− A

)
.

The minimal polynomial of a matrix A is the polynomial qA of smallest positive
degree such that2 qA(A) = 0, with the coefficient of highest degree term equal
to 1.

The Cayley-Hamilton theorem states that the characteristic polynomial evaluated
at the matrix itself is the zero matrix, that is pA(A) = 0 for any square matrix A.
An equivalent statement is that the minimal polynomial qA(x) divides the charac-
teristic polynomial pA(x). These facts follow explicitly from the Jordan normal form
discussed later in this section.

Motivation and definition of generalized eigenvectors

Given a square matrix A, it is often convenient to diagonalize A. This means
finding an invertible matrix P (“a change of basis”), such that the conjugated matrix
P AP−1 is diagonal. If, instead of matrices, we think of a linear operator A from
vector space V to itself, the equivalent question is finding a basis for V consisting
of eigenvectors of A.

Recall from basic linear algebra that (for example) any real symmetric matrix can
be diagonalized. Unfortunately, this is not the case with all matrices.

Example A.12 (A non-diagonalizable matrix).
Let λ ∈ C and

A =

 λ 1 0
0 λ 1
0 0 λ

 ∈ C3×3.

The characteristic polynomial of A is

pA(x) = det(xI−A) = (x− λ)3,

so we know that A has no other eigenvalues but λ. It follows from det(A− λI) = 0 that the
eigenspace pertaining to the eigenvalue λ is nontrivial, dim (Ker (A− λI)) > 0. Note that

A− λI =

 0 1 0
0 0 1
0 0 0

 ,
2Square matrices can be multiplied together, and multiplied by scalars. In particular it is

meaningful to evaluate a polynomial at a square matrix: the polynomial c0 + c1x + · · · + cmx
m

evaluated at the matrix A ∈ Cn×n is the matrix c0 + c1A+ · · ·+ cmA
m.
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so that the image of A is two dimensional, dim (Im (A− λI)) = 2. By rank-nullity theorem,

dim (Im (A− λI)) + dim (Ker (A− λI)) = dim
(
C3
)

= 3,

so the eigenspace pertaining to λ must be one-dimensional. Thus the maximal number of
linearly independent eigenvectors of A we can have is one — in particular, there doesn’t
exist a basis of C3 consisting of eigenvectors of A.

We still take a look at the action of A in some basis. Let

w1 =

 1
0
0

 w2 =

 0
1
0

 w3 =

 0
0
1

 .
Then the following “string” indicates how A− λI maps these vectors

w3
A−λ7→ w2

A−λ7→ w1
A−λ7→ 0.

In particular we see that (A− λI)3 = 0.

The “string” in the above example illustrates and motivates the following definition.

Definition A.13 (Generalized eigenvectors and generalized eigenspaces).
Let V be a vector space and A : V → V be a linear map. A vector v ∈ V is
said to be a generalized eigenvector of eigenvalue λ ∈ C if for some positive
integer p we have (A− λI)p v = 0. The set of these generalized eigenvectors is
called the generalized eigenspace of A pertaining to eigenvalue λ.

With p = 1 the above would correspond to the usual eigenvectors.

The Jordan canonical form

Although not every matrix has a basis of eigenvectors, we will see that every complex
square matrix has a basis of generalized eigenvectors. More precisely, if V is a
finite dimensional complex vector space and A : V → V is a linear map, then
there exists eigenvalues λ1, λ2, . . . , λk of A (not necessarily distinct) and a basis

{w(j)
m : 1 ≤ j ≤ k, 1 ≤ m ≤ nj} of V which consists of “strings” as follows

w
(1)
n1

A−λ17→ w
(1)
n1−1

A−λ17→ · · · A−λ17→ w
(1)
2

A−λ17→ w
(1)
1

A−λ17→ 0

w
(2)
n2

A−λ27→ w
(2)
n2−1

A−λ27→ · · · A−λ27→ w
(2)
2

A−λ27→ w
(2)
1

A−λ27→ 0
...

...
...

w
(k)
nk

A−λk7→ w
(k)
nk−1

A−λk7→ · · · A−λk7→ w
(k)
2

A−λk7→ w
(k)
1

A−λk7→ 0.

(A.2)

Note that in this basis the matrix of A takes the “block diagonal form”

A =


Jλ1;n1 0 0 · · · 0

0 Jλ2;n2 0 · · · 0
0 0 Jλ3;n3 0
...

...
. . .

...
0 0 0 · · · Jλk;nk

 , (A.3)
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where the blocks correspond to the subspaces spanned by w
(j)
1 , w

(j)
2 , . . . , w

(j)
nj and the

matrices of the blocks are the following “Jordan blocks”

Jλj ;nj =



λj 1 0 · · · 0 0
0 λj 1 · · · 0 0
0 0 λj 0 0
...

...
. . .

...
0 0 0 · · · λj 1
0 0 0 · · · 0 λj

 ∈ Cnj×nj .

Definition A.14 (Jordan canonical form).
A matrix of the form (A.3) is said to be in Jordan canonical form (or Jordan
normal form).

The characteristic polynomial of the a matrix A in Jordan canonical form is

pA(x) = det (xI− A) =
k∏
j=1

(x− λj)nj .

Note also that if we write a block Jλ;n = λI + N as a sum of diagonal part λI and
upper triangular part N , then the latter is nilpotent: Nn = 0. In particular the
assertion pA(A) = 0 of the Cayley-Hamilton theorem can be seen immediately for
matrices which are in Jordan canonical form.

Definition A.15 (Similarity of matrices).
Two n×n square matrices A and B are said to be similar if A = P B P−1 for
some invertible matrix P .

It is in this sense that any complex square matrix can be put to Jordan canonical
form, the matrix P implements a change of basis to a basis consisting of the strings
of the above type. Below is a short and concrete proof.

Theorem A.16 (Jordan canonical form).
Given any complex n × n matrix A, there exists an invertible matrix P such
that the conjugated matrix P AP−1 is in Jordan canonical form.

Proof. In view of the above discussion it is clear that the statement is equivalent to the following:
if V is a finite dimensional complex vector space and A : V → V a linear map, then there
exists a basis of V consisting of strings as in (A.2).

We prove the statement by induction on n = dim (V ). The case n = 1 is clear. As an
induction hypothesis, assume that the statement is true for all linear maps of vector spaces
of dimension less than n.

Take any eigenvalue λ of A (any root of the characteristic polynomial). Note that

dim (Ker (A− λI)) > 0,

and since n = dim (Ker (A− λI)) + dim (Im (A− λI)), the dimension of the image of A−λI
is strictly less than n. Denote

R = Im (A− λI) and r = dim (R) < n.
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Note that R is an invariant subspace for A, that is AR ⊂ R (indeed, A (A − λI) v =
(A − λI)Av). We can use the induction hypothesis to the restriction of A to R, to find a
basis

{w(j)
m : 1 ≤ j ≤ k, 1 ≤ m ≤ nj}

of R in which the action of A is described by the strings as in (A.2).

Let q = dim (R ∩ Ker (A− λI)). This means that in R there are q linearly independent
eigenvectors of A with eigenvalue λ. The vectors at the right end of the strings span the
eigenspaces of A in R, so we assume without loss of generality that the last q strings
correspond to eigenvalue λ and others to different eigenvalues: λ1, λ2, . . . , λk−q 6= λ and

λk−q+1 = λk−q+2 = · · · = λk = λ. For all j such that k − q < j ≤ k the vector w
(j)
nj is in R,

so we can choose

y(j) ∈ V such that (A− λI) y(j) = w(j)
nj .

The vectors y(j) extend the last q strings from the left.

Find vectors

z(1), z(2), . . . , z(n−r−q)

which complete the linearly independent collection

w
(k−q+1)
1 , . . . , w

(k−1)
1 , w

(k)
1

to a basis of Ker (A− λI). We have now found n vectors in V , which form strings as follows

z(1) A−λ7→ 0
...

...

z(n−r−q) A−λ7→ 0

w
(1)
n1

A−λ17→ · · · A−λ17→ w
(1)
1

A−λ17→ 0
...

...
...

w
(k−q)
nk−q

A−λk−q7→ · · · A−λk−q7→ w
(k−q)
1

A−λk−q7→ 0

y(k−q+1) A−λ7→ w
(k−q+1)
nk−q+1

A−λ7→ · · · A−λ7→ w
(k−q+1)
1

A−λ7→ 0
...

...
...

...

y(k) A−λ7→ w
(k)
nk−1

A−λ7→ · · · A−λ7→ w
(k)
1

A−λ7→ 0.

It suffices to show that these vectors are linearly independent. Suppose that a linear com-
bination of them vanishes

k∑
j=k−q+1

αj y
(j) +

∑
j,m

βj,m w
(j)
m +

n−r−q∑
l=1

γl z
(l) = 0.

From the string diagram we see that the image of this linear combination under A − λI
is a linear combination of the vectors w

(j)
m , which are linearly independent, and since the

coefficient of w
(j)
nj is αj , we get αj = 0 for all j. Now recalling that {w(j)

m } is a basis of R,

and {w(j)
1 : k − q < j ≤ k} ∪ {z(l)} is a basis of Ker (A− λI), and {w(j)

1 : k − q < j ≤ k} is
a basis of R ∩ Ker (A− λI), we see that all the coefficients in the linear combination must
vanish. This finishes the proof. �

Exercise A.17 (Around the Jordan normal form).

(a) Find two matrices A,B ∈ Cn×n, which have the same minimal polynomial and the same
characteristic polynomial, but which are not similar.

(b) Show that the Jordan normal form of a matrix A ∈ Cn×n is unique up to permutation
of the Jordan blocks. In other words, if C1 = P1AP

−1
1 and C2 = P2AP

−1
2 are both in

Jordan normal form, C1 with blocks Jλ1,n1
, . . . Jλk;nk and C2 with blocks Jλ′1,n′1 , . . . Jλ′l;n′l ,

then k = l and there is a permutation σ ∈ Sk such that λj = λ′σ(j) and nj = n′σ(j) for

all j = 1, 2, . . . , k.
(c) Show that any two matrices with the same Jordan normal form up to permutation of

blocks are similar.
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In view of Theorem A.16 and the remark after Definition A.14, the Cayley-Hamilton
theorem follows for complex matrices (and for real matrices, as a particular case —
although the Jordan canonical form can not be used directly).

Theorem A.18 (Cayley-Hamilton theorem).
Let A ∈ Cn×n be a complex square matrix, and denote by pA(x) := det

(
xI−A

)
its characteristic polynomial. Then we have

pA(A) = 0.

In other words, the minimal polynomial qA(x) of A divides the characteristic
polynomial, qA(x) | pA(x).

Another very useful consequence is the following sufficient condition for diagonaliz-
ability.

Proposition A.19 (Simple roots guarantee diagonalizability).
Suppose that the characteristic polynomial pA(x) := det

(
xI − A

)
of a com-

plex square matrix A ∈ Cn×n has no multiple roots. Then the matrix A is
diagonalizable.
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path, 39
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permutation representation, 10, 24
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regular representation, 11
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root space decomposition, 101
root vector, 102
roots, 101
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representations, 15
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special unitary group, 38
subrepresentation, 12, 65
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symplectic group, 38

tensor product, 110
tensor product of representations, 14
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