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The Hilb-vs-Quot conjecture

By Oscar Kivinen at Helsinki and Minh-Tam Trinh at Washington

Abstract. Let R be the complete local ring of a complex plane curve germ and S its
normalization. We propose a “Hilb-vs-Quot” conjecture relating the virtual weight polynomials
of the Hilbert schemes of R to those of the Quot schemes that parametrize R-submodules of S.
By relating the Quot side to a type of compactified Picard scheme, we show that our conjecture
generalizes a conjecture of Cherednik’s, and that it would relate the perverse filtration on the
cohomology of the Picard side to a more elementary filtration. Next, we propose a Quot version
of the Oblomkov—Rasmussen—Shende Conjecture, relating parabolic refinements of our Quot
schemes to Khovanov—Rozansky link homology. It becomes equivalent to the original version
under (refined) Hilb-vs-Quot, but can also be strengthened to incorporate polynomial actions
and y-ification. For germs y" = x9, where n is either coprime to or divides d, we prove the
Quot version of ORS through combinatorics. Whenn = 3 and 3 } d, we deduce Hilb-vs-Quot
by an asymptotic argument, and hence establish the original ORS Conjecture for these germs.

1. Introduction

1.1. Let R be the complete local ring of a complex algebraic plane curve germ: a re-
duced, complete, local C-algebra of Krull dimension 1, embedding dimension at most 2, and
residue field C. Let S D R be its normalization. For any finitely generated R-module E,
let Quot* (E) denote the Quot scheme whose C-points parametrize submodules of £ of C-
codimension £. It is a scheme of finite type. When E = R, itis the Hilbert scheme of £ points on
Spec(R). We write #¢ = Quot* (R) and Q¢ = Quot* (S). For any C-scheme of finite type X,
let y(X,t) € Z[t] denote the virtual weight polynomial of X in the sense of mixed Hodge
theory. Let

Hilb(q.t) = Y q‘x(#*.) and Quot(q.t) = Y q‘x(@".1).
£>0 >0

We start by proposing the following conjecture.
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Conjecture 1 (Hilb-vs-Quot). For any plane curve germ,
Hilb(q, ) = Quot(q, q21).

Our first goal in this paper is to show that Conjecture 1 extends a conjecture of Chered-
nik’s to plane curve germs with multiple branches. Our second goal is to use a parabolic
refinement of Conjecture 1 to clarify the Oblomkov—Rasmussen—Shende (ORS) Conjecture,
which relates the Hilbert schemes of the germ to the Khovanov—Rozansky (KhR) homology of
its link. For germs of the form y” = x?, where n is either coprime to or divides d, we will
prove a Quot analogue of ORS. For germs y3 = x¢ with d coprime to 3, we will prove all of
the conjectures above.

Separately, we will also describe a refinement of Conjecture 1 that incorporates known
polynomial actions on the link homology and on its y-ification.

1.2. We first review Cherednik’s conjecture. Let K be the ring of fractions of S. The
compactified Picard scheme of R is a reduced ind-scheme 2 over C whose points parametrize
finitely generated R-submodules M C K such that KM = K. Let ¢ be the gap function on
P(C) given by ¢(M) = dimc((SM)/M). Tt takes values between 0 = ¢(S) and the delta
invariant § := c(R).

Let § C P be the locus parametrizing those M C K such that M N R has the same
index in both R and M. For any fixed integer c, let J(c) C ¢ be the constructible sub-
variety parametrizing M such that ¢(M) = c. In [9, Conjecture 4.5], Cherednik essentially

conjectured that, when R is unibranch,

(1.1) Hilb(q,t);l%q 3 € x(F ). a2,

0<c<§

We will show that Conjecture 1 generalizes (1.1) beyond the unibranch case. For this, fix a uni-
formization S ~ ]_[f;l C[w;]. The scaling action of K* on & restricts to a free action of
the lattice T' of elements @~ := wi! ---wg‘b for x1,...,xp € Z. The q_uotient f/F is a
projective variety. In the unibranch case where b = 1 and I" >~ Z, we have /" ~ {.

The subvariety 4 (c) C ¢ is analogous to a I'-stable subvariety 2 (c) € #. When b = 1,
the identity

1 _
(12) Hib(q.1) = ———— Y (P (c)/T.q21)
(1-qP =
specializes to (1.1). We will prove that
1 —
(1.3) Quot(a.) = 7 @ X (P O/ T,
c

thereby proving that Conjecture 1 is equivalent to (1.2).

1.3. In fact, we will propose a conjecture stronger than Conjecture 1, and prove a state-
ment stronger than (1.3).

We may assume that R = C[x][y]/(f), where f(x,y) = 0 defines a generically separa-
ble, degree-n cover of the x-axis fully ramified at (x, y) = (0, 0). For v an integer composition
of n, there is a scheme of finite type J€f, resp. (Qf, whose C-points are pairs (M, F') in which
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M is a point of J¢, resp. Qp, and F is a y-stable flag on M := M/xM of parabolic type v.
Let Hilb,, and Quot, be the analogues of Hilb and Quot for these schemes. Then Conjecture 1
is refined by the following.

Conjecture 2 (Parabolic Hilb-vs-Quot). For any R and v as above,

Hilb, (. ) = Quot, (q. g21).

Let ,,2,(c) be defined analogously to Jff, C‘Zf. There is an obvious refinement of
(1.3) using Quot, and Pic,. We can make a further motivic improvement. Let Sch?:rl be the
category of C-schemes of finite type, and for any object X of Schg“, let [X] denote its class in
the Grothendieck ring of Sch?:“. The virtual weight polynomial of X is a specialization of [X].
Let

Quoty(q) = ) a‘[@‘()] and Picj®(@) = ) _q°[Py()/T].
14 c
In Section 2, we prove the following theorem.

Theorem 3. For any R and v as above,

Quot(q) = Pic®'(q).

(1-q?

The main idea is to embed | [, @* into P, then relate £ to ¢ by way of a certain funda-
mental domain for the I"-action.

Let Ag’t be the vector space of degree-n symmetric functions in infinitely many variables
over Q(q,1). In Section 3, we explain that Conjecture 2 and the virtual weight specialization of
Theorem 3 can be rephrased in terms of elements ¥ Hilb, # Quot, ¥ Pic of Aa’,t, which recover
the corresponding g, t-series involving v via the Hall pairing with the homogeneous symmetric
function /. See (3.2) and (3.3) for the precise formulas.

1.4. Henceforth, we take f(x,y) € C[x, y]. Fix a 3-sphere in C? around (0, 0). The
intersection of the zero locus { f(x, y) = 0} with this 3-sphere is a topological link L ¢, whose
isotopy class depends only on f when the sphere is small enough. The number of branches b
is the number of connected components of L.

There is an isotopy invariant of links taking values in triply graded vector spaces, known
as HOMFLYPT or Khovanov—Rozansky (KhR) homology [10, 35]. Oblomkov—Rasmussen—
Shende [42] conjectured an identity expressing the KhR homology of L ¢ in terms of the Hilbert
schemes #*. The full statement requires nested versions J, .o © H* x H ™ parametriz-
ing pairs of ideals (/, J) such that x/ + yI € J C I.

For any link L, let ﬁL,ORS(a,q, t) be the graded dimension of the unreduced KhR
homology of L in the conventions of [42], so that our :‘lsL,ORS is their JS(L). We will use
a normalization Xy (a, q. 1) € Z[q][a™!, t*1] satisfying

(1.4) Prors(@ q.1) = (ag")?* Xy (@1, 4%, 4°17).
Then the ORS Conjecture [42, Conjecture 2] states that
(1.5) Xr(a.9.qt%) = > q“a® "Dy (Hh e D)

L,m
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Note that this conjecture would imply that the virtual weight polynomials above contain only
even powers of t.

It was essentially observed in [24] that, once we fix the presentation of f(x,y) = 0 as
a degree-n cover of the x-axis, the right-hand side of (1.5) can be written in terms of F Hilb.
Namely, let W(a, —): Ag, — Q(q, t)[a] be the map

Va-)=0+a) Y & (suk15,-),
0<k<n-—1
where 5, € Ag, is the Schur function indexed by = n and (—, —) is the Hall inner product.
In Section 3, we explain that the right-hand side of (1.5) is W(a, # Hilb(q, t)). So the ORS
Conjecture is )_(f (a,q, qt?) = W¥(a, FHilb(qg,t)). In particular, if Conjecture 2 (the Parabolic
Hilb-vs-Quot Conjecture) holds, then (1.5) is equivalent to the following.

Conjecture 4 (KhR-vs-Quot). For any f as above,
Xr(a,q,t?) = ¥(a, ¥ Quot(q, 1)).

Remark 1.1. When L is the link closure of a braid 8, the KhR homology of L can be
computed from the Rouquier complex of Soergel bimodules ’J:jg , as we explain in Appendix A.
There is a richer invariant of 7g: its (dg) horizontal trace Tryq(7g). Gorsky—Hogancamp-—
Wedrich [17] show that, when § has n strands, Trqg(73) decategorifies to an element of Ag,
and the KhR homology of L can be obtained by specializing Trqs(73) along a version of W.
It is natural to expect that Conjecture 4 has a further refinement, taking 8 to be the positive
braid in { f(x, y) = 0} that lifts a positive loop around x = 0, and comparing ¥ Quot directly
to Trag(73).

In [49], for any positive braid 8 on n strands, the second author introduced a (derived)
scheme Z () with an action of GL,, and a Springer-type action of S, on its GL,-equivariant
compactly supported cohomology. The Sj-action on the associated graded of the weight fil-
tration recovers an underived horizontal trace. But there is no direct relationship between
[Z(B)/GL,] and @F.

1.5. As we vary R in families, the Quot schemes @¢ do not deform as nicely as the
Hilbert schemes ¢ because, in any versal deformation of R, we can only deform S jointly
with R in the stratum where § is constant [48]. Nonetheless, Conjecture 4 is significantly more
tractable than the original ORS Conjecture.

We will establish Conjecture 4 for two infinite families of plane curve germs with C*-
actions. In what follows, we write ¥ Quot, 4, ¥ Pic, 4, )_(n,d in place of ¥ Quot, ¥ Pic, )_(f
when f(x,y) = y" — x4 for some n,d > 0.

Theorem 5. Suppose that either of the following holds.
(1) d is coprime to n.
(ii) d is a multiple of n.
Then Conjecture 4 holds for f(x,y) = y" — x4.

We prove Theorem 5 (i), the coprime case, in Section 4. We actually give two independent
proofs.
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(A) The first extends the combinatorial commutative algebra in the proof of [42, Corol-
lary A.5], thereby relating W (¥ Quot, 4 ) to the formula for X, ; conjectured by Gorsky—
Negut in [23] and proved by Mellit in [41].

(B) The second proof is more roundabout. We invoke Theorem 3, then relate V(¥ Pic, 4)
to >_(n,d by work of Hikita [31], Mellit [40], Hogancamp—Mellit [32], and Wilson [51].
Our new contribution is to match the gap filtration of $ /T induced by ¢ with Hikita’s
filtration on an isomorphic variety, up to a further involution.

The Gorsky—Negut formula in (A) implicitly involves certain semigroup modules and their gen-
erators, while the Hogancamp—Mellit recursion in (B) implicitly yields a formula for >_(n,d in
terms of the “cogenerators” of these semigroup modules, by work of Gorsky—Mazin—Vazirani
[22]. As we explain in Section 4, these formulas have the same lowest a-degree, but differ in
higher a-degrees.

We prove case (ii), where d = nk for some integer k, in Section 6. Here, the tools we
need were developed in settings with extra structure: y-ified link homology on the KhR side,
which we review in Section 5, and torus-equivariant homology on the Quot side. We relate
)_(n,nk and ¥(a, ¥ Quot, 4(q,1)) to the same expression W(a, Vkp(ln)), where V is Bergeron—
Garsia’s nabla operator and p(17) is a power-sum symmetric function, via work of Gorsky—
Hogancamp [15] and Carlsson—Mellit [8], respectively.

Both proof (B) of case (i) and the proof of case (ii) involve comparisons to the affine
Springer fibers of [33]. For the former, we match Js(ln) / I with the SL,, affine Springer fiber
studied in [31]. For the latter, we match [ [, @* with the positive part of the GL,, affine Springer
fiber studied in [8]. These steps are relegated to Section 7.

Remark 1.2. In [50], generalizing the GL3 case of [36], Turner computes the Borel—
Moore homologies of many unramified affine Springer fibers for GL3. Up to a certain localiza-
tion, this verifies the (a,q) — (0, 1) limit of Conjecture 4 for the associated plane curve germs.

1.6. Despite the claims in [32, §1.2] and [18, §6.2], we believe there is no proof of the
original ORS Conjecture that covers either of the two cases in Theorem 5. As we explain in
Section 4, there does exist a combinatorial formula for ¥ Hilb,, ; when n and d are coprime,
which was originally obtained in [42, Corollary A.5], but it is much harder to match with )_(n,d
than the analogous formula for ¥ Quot, 4.

Oblomkov-Rasmussen—Shende did verify their full conjecture when f(x, y) = y% — x
with d odd. As the map W loses no information for n < 3, this implies Conjecture 2 for such
f via Theorem 5 (i). Remarkably, we can use Theorem 5 (i) to prove the following.

d

Theorem 6. Conjecture 2 holds for f(x,y) = y> — x4 with d coprime to 3. Hence the
original ORS Conjecture (1.5) also holds for these cases.

We give the proof at the end of Section 4. First, we show that, for d coprime to n, the
functions W(a, # Hilb, 4(q,t)) and ¥(a, ¥ Quot, 4(q, q%t)) match in the limit where d — oo:
see Proposition 4.14. As the original functions agree with their limits up to order d in g, we can
use symmetry properties on both sides to recover the finite identity from the asymptotic one.
On the ¥ Quot, 4 side, the necessary symmetry arises via Theorem 5 (i) from KhR homology,
where it was conjectured in [10] and proved in [16,43].
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At the end of Section 6, we verify the lowest a-degree part of the original ORS Conjecture

for the curves y2 = x* and y3 = x3, using [36]. This proves Conjecture 1 for those curves,
via Theorem 5 (ii).

Remark 1.3. In proving Theorem 6, we also establish a closed formula for the KhR
homology of (3,d) torus knots that had been conjectured by Dunfield-Gukov—Rasmussen
[10, Conjecture 6.3]. See the discussion in [42, §4].

1.7. Our proof of Theorem 5 (ii), together with unpublished work of the first author,
suggests a refinement of Conjecture 4: one with no analogue in the Hilbert-scheme setting of
[42, Conjecture 2].

In general, if L is a link with b components, then C[X] := C|x1,. .., xp] acts on the KhR
homology of L by [18, Corollary 5.4]. The y-ified KhR homology of L, introduced by Gorsky—
Hogancamp in [15], is a monodromic deformation of its KhR homology that extends scalars
from C to C[y] := C[y1,..., yp], thereby extending the C[x]-action to a C[x, y]-action.

We conjecture that these actions match similar actions on the homology of the Quot
schemes (Qe Letting I'>¢9 € I'" be the submonoid of o~ with X € Z>0, we see that I'>.o acts
on [ [, @5 and commutes with the torus 7'(b) := G, that rescales the w;. Up to isomor-
phisms C[xX] >~ C[I'>¢] and C[y] ~ H*}(b)(pt), we get a C[X, y]-action on the sum of modified
equivariant Borel-Moore homologies

@ g HEM’TU’)(@,{), where W<, denotes weight filtrations.
L

The x; shift £ by 1 and preserve weights, and the y; preserve £ and shift weights by —2. As
v varies, these C[x y]-modules can be packaged together into a bigraded (C[X, y] x CSy)-
module Quot*Y. The map W categorifies to a functor from such bigraded modules to triply
graded C[X, y]-modules. Abusing notation, we again write W to denote this functor. We can
now state the following refinement of Conjecture 4, with more explicit details left to Section 5.

Conjecture 7 (y-ified KhR-vs- Quot) The y-ified KhR homology of Ly is isomorphic
as a triply graded C[X, y]-module to lIJ(Quotx ¥ ), after appropriate regrading.

2. Quot and Picard schemes

2.1. The main goal of this section is to prove Theorem 3. We keep the definitions of R,
S, K, b from the introduction.

2.2. First, we review the formal definition of the compactified Picard scheme [39, §3.10].
Let m g be the maximal ideal of R, and for any R-module E, let (—) ® E be the tensor product
with £ completed in the m g-adic topology on E. Let ,ﬁr be the functor from C-algebras to
sets defined by

P+(A) = {(A® R)-submodules M C A ® K |
there exists i such that A ® m’s € M C A ® w7y’ and
(A® ml_ei)/M is locally free over A of finite rank}
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for any C-algebra A. An argument in [25, §2] shows that ?T is representable by an ind-scheme.
Let # € P+ be the underlying reduced ind-scheme. Taking A = C recovers

P(C) = JFT (C) = {finitely generated R-submodules M C K | KM = K},

as in the introduction.

Remark 2.1. Even though JST,JS have the same C-points, it is only J# that forms a
scheme locally of finite type. For instance, if R = C[x], then P4 ~ xZ x J’E;‘l, where {PEFII(A)

parametrizes Laurent tails in x where each coefficient is a nilpotent element of A4; by contrast,
P ~ xZ.

2.3. For any integer c, let P (c) € P be the sub-ind-scheme defined by

P(c)(A) ={M € P(A) | (SM)/M is locally free over A of rank c¢}.

Proposition 2.2. If M € JFT (A), then (SM)/M is locally free over A of rank at most
6 :=dimc(S/R).

Proof. Observe that (S ® g M)/ M is free over A of rank § because
(SQ@RM)/M ~ (A® S) ®agr M)/M ~ (AR S)/(A® R).

Hence it suffices to show that (SM)/M is a direct summand of (S ® g M)/ M as an A-module.

Let s1,...,ss be a non-redundant (full) set of coset representatives for R in S. Then
SM =3 ;(sj + R)M =}, s; M, so we can pick some subset / C {1,...,d},andm; € M
for j € J, such that {s;m;};cs is a non-redundant set of coset representatives for M in SM.
The A-linear map (SM)/M — (S @ g M)/ M thatsendssjm; + M +— s; @ m; +1 Q@ M is
an A-linear section of the natural surjective map (S @ g M)/ M — (SM)/M, as desired. O

Corollary 2.3. P is the union of the locally closed sub-ind-schemes P(c)for0<c <.
In fact, the locally closed subsets P (c) form a stratification of P.

Proof. Tt remains to explain why the 2 (c) are locally closed: this follows from the upper
semicontinuity of rank. m|

2.4. Recall that we fix once and for all a uniformization § — ]_[f’=1 C[w;], and set
= {w’? | ¥ € ZbY}, where w* = wi!---w;?. The group I acts on P by scaling. Adapting
the proof of [33, Corollary 1], one can check that /I is a projective variety. For all ¢, we see
that P (c) is I-stable, which lets us form the locally closed subvariety 2 (c)/T" € #/T.

For any finitely generated R-submodule £ C K, let Quot* (E) be the Quot scheme
parametrizing submodules of E of codimension £. In more detail, let Q‘Zuotfi(E ) be the functor

Quott(E)(A) = {(A® R)-submodules M C AR E |
there exists i such that A ® m’s C M C A ® m%' and
(A® ml_ei) /M is locally free over A of rank £}.

It is again representable by an ind—scheme. We take Quot* (E) C G‘Zuotf; (E) to be the under-
lying reduced ind-scheme, which again gives a scheme locally of finite type. Note that these are
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not Quot schemes in the usual sense, but punctual versions. There is a tautological inclusion
Quott (E) > P

As in the 1ntroduct10n we set Q¢ = Quot* (S) and I'sg = {w* | ¥ ezb o) The free
action of I" on & by scaling restricts to a free action of I'spon]], @*. Moreover, for all £, we
have

2.1) (M, X) € @t x Zgo — w'M e (Quotﬁﬂum(’?)(S),

where sum(X) = ey + -+ + ¢p.

Lemma 2.4. The subscheme D C ||, Q" defined by
DA ={MCARS|MNARS)* #0)}

is a fundamental domain for both the T -action on P and the T >o-action on | |, at.

Proof. If u = u(wy, ..., wp) belongs to (A ® S)*, then the constant term of u must
belong to A*. We deduce that if M € D(A), then WM € D(A) occurs only when X is the
zero vector. Therefore, O is irredundant under the action of I" on P

It remains to show that every element M € P(A), resp. M € || ‘ Q@*%(A), takes the form
@XM’ for some M’ € D(A) and X € ZP, resp. X € Z’;O. Observe that KM = A ® K be-
cause, once we pick 7 > O such that M O A ® miR, we obtain KM DAR® Km"R = AR K.
Therefore, KM > 1, which means we can find some u € (A ® K)* and m € M such that

um = 1. This in turn means
b

m=u"'eMNASK*C]]A(@i)*.
i=1

In the case of | [ @*, we conclude as follows: sincem € A ® S = ]_[ —, Al@;] as well,
we get m = w*m’ for some X € Z 2o and m’ € (A ® §)* by factoring out the largest powers
of the uniformizers w; from m.

In the case of P, we conclude as follows. Write m = (mi)ll.’:1 with m; € A(w;))*.
The fact that & is the underlying reduced ind-scheme of &’ means that we can assume, by
reduction to the b = 1 case in Remark 2.1, that, for all i, the coefficient of the lowest-degree
term of m; is a unit, not a nilpotent element, of A. Now we get m = @w*m’ for some X € ZP
and m’ € (A ® S)* by factoring, as before. O

Lemma 2.5. For any C-algebra A and M € [ ], Q%(A), we have
1 ~ 2 A~
M € D(A) <(——)> SM=A® S é tka(SM)/ M) =1kg((A® S)/M).
In particular, D(C) = [ [,{M € QYC) | e(M) = £).

Proof. Equivalence (2) holds because SM C A ® S.

As for equivalence (1): SM = A ® S if and only if SM > 1, if and only if sm = 1 for
some s € S and m € M. By the explicit description of A ® S, the last condition is equivalent
to s'm’ = 1 for some s’ € (A ® S)* and m’ € M, which means M € D(A). O

2.5. Using Weierstrass preparation, we now fix an isomorphism

R = C[x,y]/(f)
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such that Spec(R) — Spec(C[x]) is a generically separable cover of degree n, fully rami-
fied at (x, y) = (0,0). In particular, we can take f(x,y) = y" + >/, a;(x)y" " for some
ai(x) € C[x] with a;(0) = 0 forall .

For any C-algebra A and M € P(A), we write M = M/xM, as in the introduction. We
define a y-stable partial flag on M to be an increasing sequence of A[y]-submodules

=0cM’c M ¢-..c MF = M)

such that ng (M) = M /M~ is locally free over A for all i. The parabolic type of F is the
integer composition v of n in which v; = rky (ng (M)). For any such composition v, let #
be the ind-scheme defined by

Po(A) ={(M,F)| M € P,(A), F is a y-stable partial flag on M of type v}.

We define & v(c) Quot® ,(E), D, analogously. Now, Corollary 2.3 and Lemmas 2.4-2.5 imply
analogues where P, P, (c), @5, D, replace P, P(c), Q¢ D

2.6. Proof of Theorem 3. Recall that we want to show

Quotl”(q) = Y " q‘[@f].
Y4

Quot'(q) = Picl'(q), where

(1-qP Pic}°'(a) = Y q°[Pu(c)/T].

Lemma 2.4 and (2.1) together imply that
o= ] =F-@na.

(c,X)€Z=0xZ,
c+sum(X)=~

hﬁn

So, in the Grothendieck group of Sch¢’, we have

1
Quotj'(q) = ——— > ‘(D Naj]
(1-qb 4

But Lemma 2.5 implies that D N Q5 = D N P, (c) for all c. So we also have
Picp(q) = Y _q°[DNPy(0)] =Y q[DNaj
c c
in the Grothendieck group, as desired.

Remark 2.6. Zhiwei Yun has pointed out to us that Theorem 3 extends beyond the
planar case to any curve germ where both sides are well-defined, i.e., where the functors 2 /T’
and @F for £ > 0 are all schemes of finite type.

However, Conjecture 1 fails for non-planar germs. If R = C[x, y, z]/(xy, xz, yz), the
union of the coordinate axes in xyz-space, then S = C[x] x C[y] x C[z]. Using [3, Proposi-
tion 6.1], we find that

1
Hilb(g, 1) = W(l —29+ Pt + 2+ 1)+ (t* —2t9).
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By contrast, [52, Examples 2.7-2.8], [30], and Theorem 3 together give

Quot(q, g2t) = 1-29+ P + 1) + ¢ (t* — 26%) + g*t*).

1
(l—q)3(

It would be interesting to understand why the difference remains small.

2.7. Cherednik’s conjecture. Below, we explain how Conjecture 1 is essentially equiv-
alent to [9, Conjecture 4.5] via Theorem 3.
For any integer e, let ¢ C 4 be the sub-ind-scheme defined by

PeA) ={M € P(A) | e = tka((A & my)/M) — tkc(mF /R) forall i > 0}.

These are precisely the connected components of . By definition, § = P°.

The discussion in the introduction explained how Conjecture 1 and Theorem 3 would
together imply (1.2). In turn, the unibranch case of (1.2) implies (1.1), because if b = 1, then
I' = wZ acts simply transitively on the set of connected components of P, giving § = P/ T.

Next, we explain how (1.1) is related to a point-counting analogue. Following Katz [30],
aclass [X] € Ko (Schfé“) is called strongly polynomial count if and only if, for some finitely
generated subring B C C, spreading out of [X] to a class [X] € Ko(Schfl‘;“), and polynomial
p(X.,1) € Z[t], we have |X§(F)| = p(X,q) for any finite field F = F; and ring morphism
B — F. Katz shows that, in this case, x(X,t) = p(X,t?). So if [#*] and [¢(c)] are strongly
polynomial count for all £ and ¢, then (1.1) is equivalent to the statement that

9

1 _
2.2) DN ®lggr = 7 D1 IF ()r ()]
14 c

for infinitely many (equivalently, all) finite fields F = F,, where we have abused notation by
conflating #* and g (c) with their spreadings out.

Lastly, we relate (2.2) to [9, Conjecture 4.5]. There, Cherednik’s R and O = C[z] are
the respective analogues of our R and S = C[w] over F. In particular, if they arise from R
and S by spreading out, then his Jg(F) is our [ [, w ¢ (c)p(F), which is also Dp(F); his
HO (g, 1) is our 3, 1| (c)r(F)|; and his Z(q,t) is our 3, te|J€§(F)|. In this case, (2.2)
coincides with [9, Conjecture 4.5].

2.8. We compute some minimal examples with n = 2 and v trivial.

Example 2.7. Take f(x,y) = y? —x2. Setting w = y +x and o = y — x lets us
write R = C[w, 0]/(wp) and S = C[w] x C[o].
For all integers i, j and A € C*, consider the R-submodules of K given by

M ={(@'.2¢")) and Ni;=((@'.0).(0.0").

We compute that P€(C) consists of the M; ;5 such that i + j = e and the N; ; such that
i +j = e+ 1. With more work, one can check that € is an infinite chain of projective lines
intersecting transversely, where the sets {M; ; ; | A € C*} are copies of G, := A1\ {0} and
the points /; ; are the points of intersection. Embedding # ¢ and @ into P, we compute

« H°(C) = {Mo,o}.
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« H(C) for £ > 1 consists of the M; ;5 such that i + j = £ and the N; ; such that
i+j=40+1,fori,j>1.

 @Y(C) for any £ consists of the M; ;5 such that i + j = £ —1 and the N; ; such that
i+ j=4Lfori,j>0.

Finally, © = {My 0 | A} U {No,0}, Where ¢(No,0) = 0 and c(My 1) = 1. We get
Hilbfy)'(q) := Zq [#9 =1+ q' €+ - D[Gu.
=1

Quot(y)(a) = Zq (@1 =) "q'(+1+L[Gn).
>0

Pic(y(q) = Zq [#(c)/T] =14 a[Gm].

Example 2.8. Take f(x,y) = y? — x3. Setting x = w? and y = w3 lets us write
R=C[o? ©? and S =C[w].
For all integers i and A € C, consider the R-submodules of K given by
M, ; = (@' + Aw'tl) and N; = (v, w'T).

We compute that ¢ (C) consists of the M,_; A forall A € C, and N,. One can check that J Pe
is a projective line in which {M,_; ) | A € C} corresponds to A' and N, corresponds to co.
Embedding #¢ and @¢ into 2, we compute

« H°(C) = {Mp} and H'(C) = {Na2}.
. %Z(C) for £ > 2 consists of the My ;, forall A € C, and Ny ;.
* @Q%(C) = {No}.
« QY(C) for £ > 1 consists of the My_; 5, forall A € C, and Ny.
Finally, © = {My ; | A} U{No}, where ¢(Np) = 0 and c(M, ;) = 1. We get
Hilb?)'(q) := Zq [ =1+q+) q'[P'],
=2

Quoty)(a) = Zq (@ =14 q‘[P'],
£>1

Pic(y) (@) = Zq [P(c)/T]=1+q[A'].

3. Springer actions

31. In thls section, we explaln how the collection of polynomials { y (X,, )}, where X,
isone of P,/ T, P,(c)/ T, Quott ,(E), etc., can be packaged into a single symmetric function.
We also introduce variants of these schemes that we will need in Sections 4—6. Throughout,
we will use the formalism of quotient stacks (in the smooth topology), but keep our exposition
self-contained beyond the definition of a stack via its functor of points.
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3.2. Fix aninteger n > 0. Let N be the variety of nilpotent matrices in gl,,. By defini-
tion, [/ /GL,] is the algebraic stack whose A-points form the groupoid of pairs (V, 6), where
V is a locally free A-module of rank n and 6 is a nilpotent endomorphism of V', and an iso-
morphism of pairs (V, ) = (V’, ') is an isomorphism of A-modules V' = V' that transports
6 onto 6'.

Recall that the GL,-orbits on N are indexed by the integer partitions of n via Jordan
type. Let O, C N be the orbit indexed by A - n.

For each integer composition v of n, let B,, be the flag variety of parabolic type v, whose
C-points parametrize partial flags of type v on C". Let

Ny ={(0, F) € N x B, | F is O-stable}.

The A-points of [JV,,/GL,,] form the groupoid of tuples (V, 8, F), where (V, 6) € [N /GL,](A)
and F is an v-stable partial flag of type v on V' in the sense of Section 3.1. Let

7 = 7y [Ny/GLp] = [N /GLy]

be the forgetful map. If A is the underlying partition of v, and A’ is the transpose of A, then the
image of 7, is [ /GL,], the stack quotient of the orbit closure ;. In particular, Bny is
the full flag variety and m(17) is a stacky version of the Springer resolution of N .

Let X be any stack over C and p: X — [N /GL,] a morphism. For each v, let X,,
mx = mx,,and p, be defined by the cartesian square

X, —2%5 [N,/GL,]

3.1) ”Xl ln

X —2 5 [N/GLy].

In particular, taking X = Pand p(M) = (M, y) yields X, = £ . Analogous statements hold
for P(c), Quot* (E), and Dy, as well as the quotients &/ T", P(c)/I" once we observe that the
map p for X = & is invariant under I".

3.3. Now suppose that X is a scheme of finite type. In this case, we write H (X) to
denote the compactly supported cohomology of X with complex coefficients, and W< to
denote its weight filtration. The virtual weight polynomial of X is

(X0 =" (=Dt dimgr} HL(X)
i,
by definition. For any finite group G, we write Ko(G) to denote its representation ring. When
there is a weight-preserving action of G on H}(X), we may regard y(X,t) as an element of
Z[t] ® Ko(G).

Let K be a field. As in the introduction, let Ag = Aﬁ[?] be the vector space of degree-n
symmetric functions in a family of variables ¥ = (¥;){2, over K. Let {s3 } sr-n, resp. {411} jur-n»
be the basis of Ak of Schur functions, resp. complete homogeneous symmetric functions [38].
Let (—, —) be the K-linear Hall inner product on Af defined by orthonormality of the Schur
functions. When K 2 Q, there is a K-linear isomorphism #: K ® Ko (Sy) = A%, known as
the Frobenius character. It sends the irreducible character of S, indexed by A to the Schur func-
tion s, and the character of the induced representation Indgz (1) to the complete homogeneous
function h,,, where S;, € Sy, is the Young subgroup of type L.
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Proposition 3.1. If X is of finite type, then there is a weight-preserving action of S, on
Xry such that H¥ (X)) = HE (X 17))SY for all v. In particular;, x(Xy,t) = (h,, F x(Xamy,1)),
where | is the integer partition obtained by sorting v. Moreover, as we run over v, these
identities uniquely determine x(X(1n).t) as an element of K ® Ko (Sp).

In what follows, we freely use functors between bounded derived categories of mixed
complexes of sheaves with constructible cohomology, where “mixed” means we either use
mixed Hodge modules, or spread out and reduce to a finite field to use mixed complexes of
¢-adic sheaves, fixing an isomorphism Q; ~ C.

Proof. Forall v, let 8, = my, «C and 8x,, = nx,, «C.

Note that §(;7) is the GL,-equivariant Springer sheaf. By [46, Lemma 5.4], the underived
endomorphism ring End(&(17)) is pure of weight 0 and isomorphic to CS,,. This defines an S, -
action on (1. Since (3.1) is a cartesian square, it follows that base change lifts this action
to 8x,(1n) >~ p*8(n). Taking hypercohomology, we get an action of S, on H} (X(i)). Since
End($8(17)) is concentrated in weight zero, the last action preserves weights.

For general v, we have &, =~ 8(51‘2) by [6, §2.7]. So, again by the cartesian square (3.1),
Sxv 8)%(1,,). Therefore,

HE (X, 8x,0) = H (X, 88 = Hi (X, 8x,am)"",

where the second step uses the fact that the inclusion 5?"(1” y S 8x (17 is split (say, via the iso-
typic decomposition of 8y, (17)). Above, the first expression is H} (X)) and the last expression

is HY (X(ln))S".
The statements about the Hall inner product and uniqueness now follow from Frobenius
reciprocity and the fact that the 4, span A%. i

Remark 3.2. We write HM(X) to denote the Borel-Moore homology of X with com-
plex coefficients, defined via the hypercohomology of the dualizing sheaf on X . Verdier duality
implies that Hi, (X) and HEIIVI(X ) are dual vector spaces for all i. Therefore, Proposition 3.1
also implies that HBM(X ) = HBM(X(y7))g, for all v, where (—)¢ denotes the coinvariants of
a G-action.

3.4. For each integer r > 0, let N;_jen € N be the union of the orbits indexed by par-
titions of length r, i.e., the subvariety of nilpotent matrices 6 such that dimker(6) = r. Let
Xrden = p_l(Nr—len) cX.

As in the introduction, let W(a, —): A — K][a] be the specialization map

Va-)=0+a) Y  a(surik).-)
0<k<n—1
This map also appears in [27, Example 4] and [51, Corollary 1]. The next statement is a refor-
mulation of [24, Lemmas 9.3-9.4].

Lemma 3.3. We have

V@ FxXam.)) = Y xXraet) [[ (1 +at?).

0<r<n 0<j<r—1
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3.5. For each integer m > 0, let Py, m S GL, be a parabolic subgroup whose Levi
quotient is isomorphic to GL,_,, x GL,;,: for instance, the appropriate subgroup of block-
upper-triangular matrices. Let Xy nest and px = px s, be defined by the cartesian square

Xm—nest [pt/ Pn—m,m]

le |

X —25 [N/GL,] —> [pt/GL,].

For instance, if X = [N /GLj], then X, ey 18 the stack whose A-points form the groupoid of
tuples (V, 0, V'), where (V, 60) € [N /GL,](A) and V' is an A-submodule of ker(#) such that
ker(0)/ V' is locally free over A of rank m.

For all r, the map p)}lm (Xr.1en) = Xren 18 a locally trivial fibration whose fiber is the
Grassmannian of codimension-m subspaces of C". The virtual weight polynomials of Grass-
mannians can be computed via their Schubert stratifications, which show them to be g-binomial
coefficients for ¢ = t2. So, generalizing [24,42], we deduce the following.

Lemma 3.4. We have

Y Ay Xpnes ) = Y x X d)  [[ (1 +at?).

O<m=n 0<r=<n 0<j<r—1
3.6. In the rest of the paper, we set
FPic(@.t) = > a°F x(Pan(c). ).
c

For any finitely generated R-module £ C K, we set

FQuotg(a.1) = Y _ q'F x(Quot(yny (E). 1).
L

The symmetric functions ¥ Hilb, ¥ Quot from the introduction are now given by

FHilb(g,t) = FQuotg(g,t) and F Quot(g,t) = F Quots(q,t).

Conjecture 2 can be rewritten as the single identity

32) FHilb(q, 1) = FQuot(q, g2 1).

The virtual weight specialization of Theorem 3 can be rewritten as

(3.3) FQuot(q,t) = —(1 iy F Pic(q, ).

Finally, for any finitely generated R-module E C K, we spell out the meaning of X; .., and
Xmnest When X, = (Quotf(E):

* X, ien 18 the locally closed subscheme of X = Quot* (E) whose A-points are the modules
M € X(A)suchthat M/(xM + yM) ~ M /yM =~ ker(y | M) is locally free over A of
rank r.
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* Ximonest 18 the scheme of finite type whose A-points parametrize pairs (M, N), where
M € Quot*(E)(A) and N € Quot* ™™ (E)(A) and xM + yM € N € M. Note that these
containments are together equivalent to requiring that N/(x N + yN) be a submodule of
M/(xM + yM).

We henceforth write Quott (E), (Quotfn_nest(E ) in place of Quot (E)r-tens Quot* (E)m-nest

r-len
respectively. Lemmas 3.3-3.4 imply the following corollary.

Corollary 3.5. For any finitely generated R-module E C K, we have
W(a, FQuotg(a, 1) = Y q‘a™™ "V x(Quoty, oy (). D).

L,m
We set J8 = Cfluotf;_nest(R) as in the introduction, and similarly,
L _ L
(Qm—nest - C(ZMOl‘m—nest(S)'

In [42,44], the J(’,fl_nest are called nested Hilbert schemes.

4. Torus knots

4.1. In this section, we give two independent proofs of Theorem 5 (i), stating in the
notation of Section 1.5 that X, 4(a, q, t2) = W(a, FQuot, 4(q,1)) for any d > 0 coprime to n.
The relationship between our proofs is summarized below:

[31] +
40 L i . o
EHA <« Hikita S<5047, #pic, 4(q.t) <% FQuot, 4(q.1)
!
4.1) : Corollary 3.5 +
[41,51] : Proposition 4.4
v

Cogen PRNLE BN )_(n,d (a.q.12) « B, Gen
The horizontal arrows indicate identities; the vertical arrows are specializations. The dotted
arrows are new bridges. Our first proof, labeled (A) in the introduction, follows the lower/right
path from ¥ Quot, 4 to >_(n,d- Our second proof, labeled (B), follows the upper/left path.

4.2. Let R = C[x,y]/(»" — x9). Setting x = w", y = w? gives R = C[w", w?],
S = C[w], and K = C((w)), generalizing Example 2.8.

Note that the delta invariant of R is § = %(n —1)(d — 1) by a classical formula of
Sylvester. The number of branches is » = 1, so the link of the singularity has one component,
i.e., it is a knot.

4.3. Let G, act on Spec(R) according to ¢ - (x,y) = (1"x,t%y), and on Spec(K)
according to t - w = tw. These actions are compatible. In particular, they induce a G, -action
on JST: if A is a C-algebra and t € A* = G,,(A) and M € A® K is an (4 ® R)-module
corresponding to an A-point of JST, then we define 7 - M to be the rescaling M. This action
restricts to P.

Let E be a finitely generated R-submodule of K fixed by C* = G, (C). The G-
action on P restricts to (,‘Zuote(E ) for all £. We use this action to skeletonize Quot* (E) into
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combinatorics. Let
[(E) = {valx(s) | s € E\ {0}},

I(E)y={ACT(E)|A+n,A+dC A},
I49E) ={A e I(E) | IT(E)\ A = ¢).
Note that I'(R) = nZso + dZ>o and I'(S) = Z>y.

Remark 4.1. In general, additive submonoids of Zx¢ are also known as numerical
semigroups. A subset of Z stable under addition with a numerical semigroup I" is also known
a I'-module. Thus I'(R) is a numerical semigroup, I'(E) is a I'(R)-module, and /(FE) is the
set of I'(R)-submodules of I'(E).

Forall A € I(E), let
Geny(A)={keAlk—n¢A},
Gen(A)=lkeAlk—nk—d¢ A}

The elements of Gen, (A), resp. Gen(A), are called the n-generators [22], resp. generators,
of A. The following lemma can be proved by arguments completely analogous to those of
[45, §3], by taking (Quote(E) in place of ¢.

Lemma 4.2. In the setup above, the Gy,-action on Quot* (E) has isolated fixed points.
We have a bijection from I Z(E ) to the set of fixed C-points, given by

I1Y(E) 5 Quot*(E)®,
A > Mp = R(tk | k € A).
Moreover, Quot* (E) is partitioned by the subschemes
Ar = {M € Quot*(E) | lim (- M) = Ma},

and each A A forms an affine space.

Although the partition above is similar to a Biatynicki—Birula decomposition, it does not
follow from said theorem when (Quote(E ) is singular.

4.4. Recall the nested Quot schemes é‘luotfn_nest(E) that we reviewed at the end of
Section 3. The diagonal G,,-action on Quot* (E) x Quot**™ (E) restricts to an action on
Quot, . (E). Let

It G(E) = {(AA) € TYE) x I™™(E) | AD A D A+ Tg =)

The following lemma is proved in [42, §3.3] for E = R, and the proof for any other £ C K is
analogous.

Lemma 4.3. The G,-action on C‘luotfn_nest(E ) has isolated fixed points. Writing
Ig >0 =T(E)\ {0},

we have a bijection
(E) S Quott, . (E)S™,

I )2
m-nest m-nest

(A, A') > (Ma, Mp)).
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Moreover, C‘Zuotfn_nest(E ) is partitioned by the subschemes
Ann = {(M. M) € Quott, . (E) | lim (M. M') = (Ma, Ma))},

and each Aa A’ forms an affine space.

4.5. Given A € I(E), let
dima = dim(An),
E.(A k) ={j € Geny(A) |k —d < j <k} forallk € Gen(A),
Hie”(a,t) — 1_[ (l + atIEn(A;kﬂ).
keGen(A)

For E = R, the following proposition is [42, Corollary A.5]. To translate into the notation of
[42, §A.1], note that our a,t correspond to their a’t,t, and hence our |£4 (A, k)| corresponds
to their B (A) — 1. In the proof below, we merely list the changes needed to extend the proof
to any E € P (C).

Proposition4.4. Let R = C[w”, w?] for coprime n,d > 0. For any finitely generated
R-submodule E C C((w)) fixed by the C*-action rescaling w, we have

W FQuotg(a.h) =Y q° Y MRt
L AelI(E)
in the notation of Section 3.

Proof. By Corollary 3.5, it suffices to show that, for all £ > 0, we have
(4.2) dooImanGna )= > a”t" " y(Quoth, ey (E).1).
A€It(E) 0<m<n

Theorems 13 and 14 of [42] give formulas for dima and dima A/ := dim(Aa A7) inthe E = R
case. For general £, analogous proofs give the formulas

43)  dima =Y (T(E)sy \ Al = |T(E)sq; \ A],

44) dimaa = D [T(E)sy \Al+ D IT(E)sy \ A=Y IT(E)sq \ A
YiéA/ y,‘éA/ !
forany A € I(E) with generators y1, . .., yy, syzygies o1, ..., oy, and subset A’ € I+ (E)
such that (A, A) € I (E), where ['(E)s; = ['(E) N Z~.
Next, [42, Lemma A.4] shows that, in the £ = R case, if kK € Gen(A), then

(4.5) En (A K)| = [0 [yi <k}l =i | oi <k},

with the same notation for generators and syzygies as before. Then [42, Lemma A.1 and Theo-
rem A.2] show that, for £ = R and any fixed A, formulas (4.3), (4.4), and (4.5) together imply

that
t2dimA Hien(a’ t2) — Z am,[m(m—l) Z t2dimA,A/.
Osm=n A|(A A EL e (E)
The proofs of these statements for general E are the same. By Lemma 4.3, summing the last
identity over all A € [ t(E) recovers (4.2). m]
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4.6. Proof (A) of Theorem 5 (i). For any integer j > 0, we observe that A € I£(S)
implies A + j € I¢1/(S), while k € Gen(A), resp. Gen,, (A), implies k + j € Gen(A + /),
resp. Gen, (A + j). Consequently,

dimA+j = dimA,
Ef(A+ jk+j)=E(Ak)+ j forallk € Gen(A),
G G
HAe—EJ - HAen.

Now consider this combinatorial version of the domain £ in Section 2,
Dy.q ={A € I(S) | min(A) = 0}.

By the observations above, the formula for W (¥ Quot(q, t), a) in Proposition 4.4 equals

1 Z q|Z20\A|t2dimA Hie”(a, tz)'

AGDn’d

It remains to match this formula with the formula for )_(n,d (a,q,t?) for coprime n,d conjec-
tured in [23] and proved in [41]. It will be convenient to replace t with t2 everywhere in what
follows.

In [19], Gorsky—-Mazin gave a bijection from D, 4 to the set of n x d rational Dyck
paths, under which |Z>o \ A| and dima correspond to the statistics on Dyck paths respec-
tively denoted area and codinv in [22]. Explicitly, form the semi-infinite grid of unit squares
in the x, y-plane whose vertices are the lattice points with 0 < x < d and y > 0. Label the
bottom left square, closest to the origin, with the integer —d ; label the other squares with inte-
gers that decrease by d as we go across rows, and increase by n as we go up columns. For
instance, the grid for (n,d) = (4,5) is shown to the right, with nonnegative labels in blue. For
any A € D, 4, the boundary of the region of squares with labels in A must contain a lattice
path w(A) from (x, y) = (0,0) to (x, y) = (d, n) that stays above the line y = %x, since A
contains 0 and every element of A is nonnegative. Gorsky—Mazin’s bijection sends A +— 7w (A).

19|14 | 9 4

15|10 | 5 0

11| 6 4.

-10 | -15 | -20

Remark 4.5. In [19], the set D, 4 is described as indexing the fixed points of a Gy,-
action on g, rather than O. However, this indexing really factors through the decomposition
D =1], w9 (c), corresponding to the fact that the elements of D,, 4 are what Gorsky—
Mazin call 0-normalized modules for I'(R). Compare to Section 2.7, where a similar remark
applies to Cherednik’s notation.
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Let # = 7w (A) in what follows. Let

ve(@) ={(x.y) e [(x = Ly).(x.y +1) en},
vi(m) ={(x.y) e[ (x+1Ly).(x.y—1) en}

Following [41], we refer to elements of v« (), resp. v*(rr), as inner vertices, resp. outer ver-
tices, of m. That is, inner vertices are the bottom right corners of squares whose bottom and
right edges are contained in s, while outer vertices are the top left corners of squares whose
top and left edges are contained in 7. (Note that outer vertices are called “internal vertices”(!)
in [23].)

The squares whose bottom edges are contained in 7 are precisely those labeled by
elements of Gen,(A). Of these, those whose right edges are also contained in 7 are those
labeled by elements of Gen(A) \ {0}. Hence there is a bijection Gen(A) \ {0} = v« (xr) send-
ing any generator of A to the bottom right corner of the square it labels.

To illustrate the previous two paragraphs following the figure in Example 4.8, v* ()
contains the bottom left vertices of the squares labeled 9, 11, 3, and 5, whereas v (;r) contains
the bottom right vertices of the squares labeled 9, 1, and 3 and the above bijection is the one
given by this labeling.

For an arbitrary lattice point p, let /4, (p) be the line of slope % through p, and let k; (p)
be the set of horizontal unit steps of 7 that intersect /4/,(p) in their interiors. The following
lemma is inspired by ideas from [19] and [42, §A].

Lemma 4.6. Ifk € Gen(A) \ {0} labels a square with bottom right corner p € vy (1),
then the map &,(A,k) — kn(p) that sends k to the bottom edge of the square labeled k is

a bijection. Thus

1

1+a v ()

Proof. We observe that if p is the bottom right corner of a square labeled k, then the
line /4/,(p) intersects the bottom edge of a square labeled j if and only if k —d < j < k.
Indeed, this is easiest to see when p = (n,d) and k = 0, and the general case follows from
translating /4, (n,d) onto 14/, (p). |

In our notation, the formula for )_(n,d for coprime n, d in [23,41] is

v 1 area(7r) ycodinv(rr) |k ()]

Ya@a) =1 ), o [T (1 +at®l),
nxd pEv*(m)

Dyck paths 7

where, by [19], area(r) = |Z>o \ A| and codinv(w) = dima whenever 7 = 7(A). See the

end of Appendix A for the precise matching of grading conventions. So, by Lemma 4.6, it

remains to show the following lemma.

Lemma 4.7. For any n x d Dyck path 7t as above,

1
1_[ a1+ atlxn(p)l) =T 1_[ (1+ at'K”(p)|).
pEV4 () + aPEU*(T[)
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Proof. Since d and n are coprime, no two elements of vy () U v*(r) have the same
perpendicular distance to the line / :=[4/,(n,d). The one farthest from / must belong to
v* (). Let po be this element, and let pi, p2,..., pm be the remaining elements ordered by
decreasing distance from /. For 1 <i < m, let

=1, (pi-1.pi) € v&() X v (7),
€ =19 0, (pi—1,pi) € (vx(7r) x v*(71)) U (v*(7r) X v (7)),
1, (pi—1, pi) € v* () x v*(7).
Lett; = sti €;. Then, for all i, we have t; = |k, (p;)| > 0.
If m = 0, then we are done; else, we must have t; = 15, = 1. It follows that every value

attained by the sequence 7y, ..., T must occur as many times for indices i with p; € v« ()
as for indices i with p; € v*(r) \ {po}. m]

Example 4.8. The figure below shows a 7 x 5 Dyck path & for which |v4 ()| = 3 and
|[v* ()| = 4. The corresponding A € D75 yields

Gens(A) = {0,5,3,1,6,11,9} and Gen(A) = {0,3,1,9}.

In the notation of Lemma 4.7, (¢;); = (1,1,0,0,0,—1) and (7;); = (1,2,2,2,2,1).

Remark 4.9. Lemma 4.7 refines the last display on [41, p.60], which merely asserts
that 3 ey, () 1K (P = X per(m) 1kx (P)]-

4.7. Proof (B) of Theorem 5 (i). We will explain each arrow in the left-hand portion of
diagram (4.1).

First, we invoke Theorem 3 to pass from ¥ Quot, 4 to ¥ Pic, 4.

Next, we explain the arrow labeled [31]. In Proposition 7.4, we recall the explicit iso-
morphism between 2, and a parabolic affine Springer fiber for GL,, studied by Hikita [31], to
be denoted i)’,‘,/’ @) We refer to Section 7 for the notation. Note that Hikita worked with SL,,
not GL,,, but we account for this difference by passing to £° ~ £ /TI': see part (iii) of the
proposition.
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Both 2, and f)’f,/’ @) admit affine pavings analogous to those in Lemmas 4.2—4.3. Hikita
introduced an increasing filtration of 33’:}” @ by unions of paving strata, which we review in Sec-
tion 8.4. Let F<x be the induced filtration on the Borel-Moore homology. Theorem 4.17 of [31]
matches the bigraded Frobenius characteristic of grf, H2M (o@g ;(ff)) with a g, t-symmetric func-
tion defined combinatorially using labeled n x d rational Dyck paths. This symmetric func-
tion is now known as the Hikita polynomial for (n,d). It was independently introduced by
Armstrong at the 2012 AMS Joint Mathematics Meetings [2].

At the same time, there is a filtration of the variety #((1"))/T" by unions of the sub-
varieties P (c)((1%))/ ", which we review in Section 8.2. Theorem 8.3 says that it corresponds
to Hikita’s filtration on f)’f,p , after postcomposing with an involution ¢. Lemma 8.2 (ii) says
that, on Borel-Moore homology, ¢ is Springer-equivariant and preserves weights. Due to the
affine paving, the weight filtration matches the homological one. We deduce that the Hikita
polynomial for (n,d) is unchanged by ¢, and matches ¥ Pic, 4 once we invoke the duality
between Borel-Moore homology and compactly supported cohomology. Hikita’s variables z, g
correspond to our variables q, t2.

To explain the arrow to “EHA” in the top left of (4.1): the rational shuffle theorem for
coprime n and d, formulated by Gorsky—Negut in [23] and proved by Mellit in [40], matches
the Hikita polynomial with an expression denoted Qg ,, - (—1)" in [4]. Here, Qg , is an element
of the elliptic Hall algebra (EHA), and (—1)" is a vector in the Fock-space representation of
the EHA on symmetric functions.

To explain the last two arrows needed to arrive at )_(,,,d (a, g, t?): Mellit’s proof implic-
itly yields a recursive formula for Qg4 5, - (—1)", and hence ¥ Pic, 4, in terms of the Dyck-
path operators from his prior work with Carlsson [7]. This recursion is stated explicitly in
[51, Theorems 2-3]. At the same time, in [32], Hogancamp—Mellit establish a recursive for-
mula for the KhR homology of the positive (2, d) torus link, for arbitrary n, d. As explained in
Remark 4.10, below, this yields a closed form for >_(n,d (a,q,t?) that we denote by “Cogen”
in (4.1). In [51, Corollary 1], Wilson shows that, for n,d coprime, Mellit’s recursion for
Qg . - (—1)" specializes under ¥ to Hogancamp—Mellit’s recursion for )_(n,d (a,q,t?). We note
that essentially the same result appears in [41, Corollary 3.4]. This completes proof (B).

Remark 4.10. The closed form for )_(n,d (a,q, t?) resulting from [32] is due to Gorsky—
Mazin—Vazirani [22]. It is labeled “Cogen” in diagram (4.1) because it uses the same set of
semigroup modules D, 4 as in proof (A), but replaces Hie“ (a,t) with H2°ge” (agq~!,t), where

H(iogen(b’t) _ 1_[ (1+ thA’k)),
keCogen(A)

where the product runs over the set of (nonnegative) cogenerators
Cogen(A) ={k € Z>o \ A |k +n,k +d € A},
and for any k € Cogen(A), we set
AAk)=|{j €Geny(A) |k+n+1<j<k+n+d}
=|{jeGen,(A) |k+n<j<k+n+d}.

Remark 4.11. Itis natural to ask how much of diagram (4.1) generalizes to integers 2, d
that are not coprime. We will address this question in a sequel paper. In Section 6, where we
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address the d = nk case, our proof does not involve generalizing (4.1). For now, we mention
that

* the rational shuffle conjecture was generalized to arbitrary n,d > 0 in [4]. This is the
actual result proved by Mellit in [40].

e Theorem 3 and the Cogen formula for )_(n,d extend to arbitrary n, d.

* In [51], Wilson introduces generalizations of Q4 , - (—1)" and the Hikita polynomial to
arbitrary n, d, which differ from those in [4]. He has nonetheless shown that his Hikita
polynomial specializes to the Cogen formula in (ii), and hence to )_<n,d-

4.8. Gen versus Cogen. This subsection is a digression on Remark 4.10. As men-
tioned, the identity matching the Gen and Cogen formulas is

1 ) .
(4.6) 0 Z qlzzo\AltdlmA Hien (a, t) — Z q|Z20\A|td'mA HCA)ogen (aq—l , t).
AED,Ld AeDn.d

It is remarkable because Gen and Cogen behave very differently. Note that, ata — 0, the terms
[18en 1509 disappear above, and both sides specialize to

4.7) Z q|Z20\A|tdimA'
AGDn’d

Similarly, our proofs of Theorem 5 (i) simplify drastically in the a — 0 limit; almost all of their
combinatorial complexity lies in the higher a-degrees.

Remark 4.12. Let C, 4(q,t) = C, 4(t,q) be the g, t-rational Catalan number intro-
duced in [26]. Via their bijection from D, 4 to the set of n x d Dyck paths, Gorsky—Mazin
showed that (4.7) is ! C,, 4 (q,t™") (see [19]).

Below, we illustrate the contrast between Gen and Cogen in an example where d =n + 1.
Throughout, we label the elements of D,, 4 in the form Ag, .. 4,, Where Gen, = {a1,...,an}
anda; + 8 —|Z>o \ A| =i — 1 (mod n) for all i, to streamline comparison to Example 8.8.

Example 4.13. Take (n,d) = (3,4). Then § = 3 and

D34 ={A0,4,8, As5,0,4,A1,5,0,. Aa2,0,No,1,2}

with the following statistics.

A qZ=o\Aldma  Gen \ {0} - TIS" Cogen  TTQo%en

A0,4,8 q3t3 ) 1 {5} 1+b

Aso4 Q*t2 {5} 1 + at {1,2} (1 +b)(1+bt)
Aiso at? {1 1+ at {2} 1+b

A4’2,0 gt {2} 1+ at {1} 1+b

Ao, 1 {1,2} (1+at)(l +at?>) @ 1
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Here, (4.6) becomes
343 2,2 2 2
>t + (%1% + qt> + qt)(1 + at) + 1(1 + at)(1 + at?)
=@ +qt® + a1 +ag” ") + **(1 +aq~)(1 +aq™'t) + L.

In general, one can check that there is a permutation Row: D, 4 — D, 4 defined by
Cogen(Row(A)) = Gen(A) \ {0}. Nathan Williams has pointed out to us that Row ought to
be an example of rowmotion, a certain operation on the order ideals of a finite poset [47]. To see
how, regard Z>¢ \ I'(R) as a poset in which j < k if and only if kK — j € I'(R), and the sets
Zo \ A for A € D, 4 as its order ideals. We would be curious to know whether rowmotion
sheds any light on the relationship between the Gen and Cogen formulas.

4.9. Proof of Theorem 6. We claim that ¥ Hilbs 4(q,t) = ¥ Quot; 4(q. q%t) ford >0
coprime to 3. The first step is the asymptotic statement.

Proposition 4.14. For any integer n > 0, we have

lim W FHib, g(@.0) = [] ——

d 1 — gk2k—2
d cop;)moeom n 1<k<n q
1 + at?F—2
lim W(a, ¥ Quot A = —
Jim na@0) =[] = s
d coprime to n 1<k<n

where the limits are taken in Q[q, t][a].

Proof. Throughout, Corollary 3.5 allows us to replace the expressions W(F Hilb, 4)
and W(¥ Quot, 4) with corresponding generating functions for nested pairs of R-modules,
and Lemma 4.3 allows us to compute the latter using the combinatorics of the monomial
R-modules.

The identity for # Hilb, ; was shown in [42]: see [42, Proposition 6]. (Recall that our
variables a, g, t correspond to their variables a®t, g2, t.) To prepare for the proof of the second
identity, we briefly review their argument.

Using “staircase diagrams” [42, §3.2] to index monomial ideals, or equivalently elements
A € I(R), then invoking Lemma 4.2, it is not hard to show that the identity for ¥ Hilb, ; holds
when a = 0. Indeed, as d — oo, the defining condition that staircase width be bounded by d
disappears.

The formula that incorporates a can be bootstrapped from the a = 0 formula by system-
atically replacing single elements A with collections of pairs (A”, A"). Namely, if A is fixed,
then we consider all 2" ways of choosing a subset of {1, ...,n}, and add a column of height /
to the staircase of A for each 4 in the subset. This determines some new A’ € I(R). We get
alarger A” D A by replacing each new column with a column that is one box shorter in height.
We can then check that each A gives rise to 2” pairs (A”, A’), that every possible pair arises
this way, and that the total contribution of the pairs (A”, A’) to the series in a, g, t is the contri-
bution of A to the a = 0 series multiplied by some binomial factor. This factor is precisely the
numerator [ [z—; (1 + aqk—112k=2),

Now we turn to the identity for ¥ Quot, 4. In place of staircases, we index elements
A € I(S) by vectors

g = (gl"--’gn) EZQO?
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where g; is the number of elements of I'(S) = Zx¢ that are greater than exactly i — 1 of the
elements of Gen, (A). Again, as d — oo, any constraints on the vector g disappear. If A is
indexed by g, then its contribution to the a = 0 series is qu gi2 i (=g by Lemma 4.2.

To bootstrap the a variable, we send A to the collection of all pairs (A, A’) where
A is the same and A’ C A is obtained as follows: pick a subset of {1,...,n}; then form
Geny (A’) from Gen, (A) by shifting up by 1 those elements of Gen(A) whose residue mod-
ulo 7 belongs to the subset. By Lemma 4.3, the total contribution of these pairs to the series in
a, q,tis the contribution of the original A to the a = 0 series multiplied by the binomial factor
[Tizi (1 + at?*=2). D

Observe that W(a, ¥ Hilb, 4(q,t)) and W(a, ¥ Quot, 4(q,t)) agree with their d — oo
limits up to degree d in g. At the same time, we have the following proposition.

Proposition 4.15. For any plane curve germ with complete local ring R, the series
U(a, FHilb(q,t)) is determined by its expansion up to degree § in q. If R ~ C[w", wd]] for
coprime n,d > 0, then the same holds for V(a, ¥ Quot(q, t)).

Proof.  Observe that the expansion of a formal series
N7, c Z[[q]] [azl:l , q—l’ t:tl]

up to a given g-degree determines the expansion of (1 — Q)b w up to that g-degree, for any
integer b > 0.

Proposition 3 of [42] shows that if W = W(a, ¥ Hilb(q, t)) and b is the number of branches
of R, then g% (1 — q)?W is a Laurent polynomial in g-degrees —§ through §, invariant under
g~ ! — qt?. (Again, our q is their g2.) So, in this case, the expansion of ¥ up to g-degree §
determines the entire series.

Now take W = W(a, ¥ Hilb(q.1)), supposing that R ~ C[w", w?] for coprime n,d > 0.
By Theorem 5 (i), ¥ matches the graded dimension of the unreduced KhR homology of the
(n, d)-torus knot, up to certain grading shifts and substitutions. Hence (1 — q)¥ matches the
corresponding series from reduced KhR homology, as defined in Appendix A. Corollary 1.0.2
of [43]8 or [16, Theorem 1.2] show that the latter, normalized with our conventions anld shift?d
by q~ 2, is a Laurent polynomial in gq2-degrees —¢§ through §, invariant under q~2 +— qZ2t.
So again, the expansion of W up to g-degree § determines the entire series. O

Together, Proposition 4.14 and Proposition 4.15 imply that if § < d, then
W(a, FHilb(g, 1)) = ¥(a, FQuot(q, q21)).

But§ = %(n — 1)(d — 1). So the hypothesis can be simplified to n < 3. Finally, when n < 3,
the map W loses no information, so we can omit it from both sides. This proves Theorem 6.

5. Polynomial actions and y-ification
5.1. In this section, we review the precise definition of y-ified Khovanov—Rozansky

homology, then give a precise statement of Conjecture 7, spelling out all of the gradings
involved. This also serves as preparation for Section 6.
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5.2. We freely assume the notation of Appendix A. Thus 7" = G/, and SBim is the
category of Soergel bimodules over S = H7, (pt). We explain in Appendix A that, for any braid
B on n strands, the Khovanov—Rozansky homology of the link closure of 8 can be computed
from Hochschild cohomology of the Rouquier complex 77 3, an object of KP (SBim).

In [18, §5.1], the authors explain that the term-by-term action of S ® S°P on T; g factors
through that of a smaller quotient. Fix matching coordinates

S=C[t1,....ty] and S =C[}P,....;7].

Let w € Sy, be the underlying permutation of f. Then the actions of #; and 7;f;) on 7 p are
homotopic for all i . So, up to homotopy, the (S ® S°P)-action on 7 p factors through the quotient
of S ® S°F by the ideal ((z; — 1,}(;))i)-

At the same time, the actions of 7; and 7P on S coincide for all i. So, under the Hochschild
cohomology functor HH = P, J Ext’ oso (Ss (—)(/)), the (S ® S°)-action on Jg is trans-
ported to an action that also factors through the quotient of S ® S°P by the ideal ((7; —);).

Thus HH(7g) inherits an action of the ring of w-coinvariants Sy, := S/((t; — tw())i)-
This is a polynomial ring on b variables, where b is the number of components of the link
closure of . It will be convenient to fix coordinates S, = C[X] := C[x1, ..., xp] so that each
x; is the image of some #;. Recalling that Soergel bimodules are graded so that deg(#;) = 2,
we see that X acts on m('f};) with bidegree (0, 2). Hence X acts on

HH(T3) = D HXHRD (7))
1,J,K
with tridegree (0, 2, 0).

5.3. In [15], Gorsky and Hogancamp introduced a deformation of HHH called y-ified
Khovanov—Rozansky homology, which we will denote HY and review below.

We write d for the differential on ‘J_",g Let h; be a homotopy from the 7;-action on Tg
to the 7,f;y-action, so that [d, h;] = t; — 1yf(;) as operators. We may choose the h; so that
they square to zero and anticommute. Let " = Cluq, ..., u,] be another copy of S, and let

d'"=d ®id+ ) ; h; ® u; as an operator on ’J_'/; ® S’. We compute that
(d)? ="t —t3) ®uj.
i

We deduce that the induced action of (d’)? on m(‘f'ﬂ) ® S., vanishes, where
S = 8"/ {(ui —uw@i))i),
like before. By definition, W((J:jg) = @I,J,K WI’J’K(’J::B), where
WI’J’K(U:}-}) — HK(WI,J((J:B) ® S:U,d/)

We again fix coordinates S;,, = C[y] := C[y1...., yp], so that each y; is the image of some u;.
The definition of d’ implies that § acts on the complex (HH(73) ® S,,d’) with bidegree
(0, —2) on the first factor and cohomological degree 2. Hence y acts on W('J:;g) with tridegree
(0,-2,2).

Altogether, the y-ified homology of 8 is a triply graded vector space W("J:'ﬁ) equipped
with a bigraded C[X, y]-module structure, which recovers HHH(T3) upon passing from C[X, y]
to C[X, y]/{¥) = C[x].
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5.4. Writing e for the writhe of f, as in Appendix A, let
V= B v
i,j,k€Z

be the (Z x %Z x 27)-graded C[?c, y]-module defined by

i\)\k

From the formula

we see that - o
- oL K L K -
Xg(a,q,t) = Z a'qzt2 d1m(Yfé2’2 Q®yzrz.5] ZIxX])
i,j,keZ

in the notation of Appendix A. Moreover, we see that X and y respectively act on each summand

with bidegrees (1, 0) and (0, —1).

We return to our setup where f(x,y) = 0 is a generically separable degree-n cover of
the x-axis, embedded in the x, y-plane. The preimage in the cover of a positively oriented loop
around x = 0 is a braid 8¢ on n strands such that the number b of branches of f is also the
number of components of the link closure of 8, and such that Xf = X/g . We similarly set
Yf = Yﬂ

Let T(b) = G,l;1. As explained in the introduction, once we fix identifications

C[x] = C['>o] and C[y] =~ H;"(b)(Pt),

the commuting actions of I'>g and 7'(h) on [ [, (Qf together produce a C[X, y]-module structure
on P, HEM’T(b)((flf) for all compositions v of n. The variables x; and y; respectively act by
1 and O on the length £, by 0 and —2 on the cohomological degree, and by 0 and —2 on the
weight ﬁltration Wox.

Let Qg” =Dk Qx y £k be the Z2-graded C[X, ¥]-module defined by

Qg * = erf HIWT® (@),

We abbreviate by wrltlng Qx’y = QS 1) The Springer action of S, on the Borel-Moore
homology of [ [, (Q(ln) lifts to its equivariant Borel-Moore homology and commutes with the
C[X, y]-action above. So, by Proposition 3.1, we can use the bigraded (C[x, y] x CSy)-module
formed by Ox Y to recover the bigraded C[X, y]-modules Qx y for all v.

Abusmg notation, let W be the functor from blgraded CS),-modules to triply graded
vector spaces given by

\IJ(M)i’j’k = @ Homsn (V(n—i-}—l,li_l) P V(n—i,li)’ Mj’k),
J.k
where in general, V) is the irreducible representation of S, indexed by A F n. Altogether, the
most precise version of Conjecture 7 is the following.
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Conjecture 5.1. In the setup above,
(1) ?f is supported in integral tridegrees.

(ii) There is an isomorphism of C[X, y]-modules Yf = \IJ(Qx ¥ ) that sends degree (i, j, k)
onto degree (i, j,2k). In particular, \IJ(Qx ¥ ) is supported in even cohomological degrees.

Remark 5.2. In the definition of Qx ¥ we did not collapse the cohomological degree
to an Euler characteristic, as in the deﬁmtlon of Quot(q, t). Thus the statement that \P(Qx Y )
is supported in even cohomological degrees is needed to ensure that Conjecture 5.1 special-
izes to Conjecture 4 upon base change from C[X, y] to C[X]. An analogous statement about
the cohomology of #/T" was shown in [21] for certain unibranch plane curve germs, called
“generic” germs in [21].

6. (n,nk) torus links

6.1. In this section, we prove Theorem 5 (ii), stating in the notation of Section 1.5 that
Xn.nk(a,q,12) = W(a, FQuot, ,x(q,1)) for any integer k > 0.

Throughout, f(x, y) = y" — x"¥_ For such f, our argument will implicitly prove Con-
jecture 5.1 (i), as well as the matching of trigradings in Conjecture 5.1 (ii). The strategy is to
relate both sides to V¥ pamy € Ag,, where in general, p; is the power-sum symmetric function
indexed by A - n, and V is the Bergeron—Garsia operator on Ag’t (see [28]). We will use the
theory of symmetric functions freely. For more background on our tools, see [29,38].

6.2. In [8], Carlsson—Mellit computed a version of the underlying bigraded CS,,-mod-
ule of QY for the chosen f. To make this precise, let

QRMTM (q.1) = Y g HEMT ™ (@F1)) € Q(a.H) ® Ko(Sn).
L,k

Recall the Frobenius character ¥:Q(q,t) ® Ko(Sn) — Ag, from Section 3.
Proposition 6.1. For all integers n,k > 0, we have

1
j’ BM ,T(n) t) = Vk .
Sk (@0 = gy
Proof.  Just as the ind-schemes #, are isomorphic to parabolic affine Springer fibers for
GL,, so the ind-schemes | [, (flf are isomorphic to the positive parts of certain affine Springer
fibers, in the terminology of [8, 12]. This can be shown by adapting the proof of [12, Theo-
rem 1.1]. In Proposition 7.2, we give the explicit isomorphisms for the case where

fx,y)=y"—

and show that, for v = (1), they match the Springer actions on the two sides. In particular, we
match [ [, C‘lfln) for this choice of f* with the ind-scheme denoted Zj, in [8].

There is an extra S,-action on the 7'(n)-equivariant Borel-Moore homology of Zj, called
the dot action, induced by the Sj-action on the homotopy type of the curve y" = xk7 that
permutes its branches. The dot action commutes with the Springer action. In this way, we can
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upgrade ?621’\:[1”51({”) (q’ t) to an element
Ty ;AP0 (@.1) € ALY, Z],

where Aq,t[?, Z] = Aq,t[?] ®Q(a,1) Aq,t[Z]. Above, ¥ and Z respectively record the Springer
and dot actions. The actual statement of [8, Theorem A] is

YZ ]
(1—g-tF

. _A/BM,T 1 k
7 7 QT (@, 83) = VEe,|
in plethystic notation.
We want to recover the Frobenius character in Y alone. To this end, it suffices to pair
the right-hand side with p(17)[Z] under the Hall inner product: indeed, under ¥, pairing with
p@ny corresponds to evaluating a character of S, at the identity element. Note that

en (el g )

is a version of Macdonald’s g, t-inner product [29, §3.5], with respect to which the power-sum
symmetric functions form an orthogonal basis of Ag,t. Therefore,

N

<Vken[L], P(l”)[2]> = Vkp(ﬂ)[;]

I-a-1 (I-a)(1 -1
1 -
= Vk n Y B
o _pr " 70 )[Y]
where the second equality used p(17) = p{. Finally, substituting t? for t everywhere gives the
statement in the proposition. m]

Remark 6.2. Interestingly, the fundamental domain D(;») from Lemma 2.4 and its
ensuing discussion appears implicitly in [8]: its complement is an open sub-ind-scheme of Zj,
that features heavily in the proof of [8, Theorem A].

Corollary 6.3. For all integers n,k > 0, we have
FQuot, ,x(q.1) = L g
nnk(Q,1) = (1—qn pary.

Proof. Since the homology of Zj is pure [13, 14], it is T (n)-equivariantly formal [13,
Lemma 2.2]. We deduce thatif Qg , is the analogue of Qgﬁ’;](c”) for non-equivariant Borel—
Moore homology, then

~ 1
 ~BM 2\n ¢~ ~BM,T Vk
‘ﬁQS,n,nk(q’t) (I-t )n‘ﬁQS,n,nl(cn)(q’t) (1—-q)" pam:

Next, recall that Borel-Moore homology and compactly supported cohomology with complex
coefficients are dual to each other. Finally, since both are supported in even degrees [8, 38], and
in degree i, pure of weight i (see [14, Corollary 1.3]), we know that

>t dimHL(Zy) = 1(Z.b). O

1
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6.3. Turning to the KhR side, observe that Gorsky—Hogancamp computed the y-ified
KhR homology of the (n, nk) torus link in [15], obtaining its usual KhR homology as a corol-
lary. After including the correct denominators, [15, Theorem 7.13] says
k 1
2) = U(VKpn ,a).

Vunk(@a,0 = 3" a'qhts dim(Vy >
i,j.k

Similarly, after correction, [15, Theorem 7.14] says

Xpnk(@,a,t) = (1 =", ik (a,9,1) = U (VF pany, a).

(I-a”
Again, we refer to Section 5 and Appendix A to match our grading conventions with those
in [15]. This concludes the proof of Theorem 5 (ii).

6.4. To conclude this section, we verify the a = 0 limit of [42, Conjecture 2] for two
plane curve germs of the form y” = Xk By way of Theorem 5 (ii), this also verifies Conjec-
ture 1 in these cases.

Example 6.4. Take n = 2 and k = 2. By [36, Example 6.18],

) 1
Hl|b(q, t) = W(l —q+ q2t2 — q3t2 + q4t4).

At the same time, the recursion of [22,32] gives

X2.4(a,q,t) = #(1 +at—1) + *(* —1)).

(1

These series agree under (q,t) — (q, gt?).
Example 6.5. Take n = 3 and k = 1. By [36, Example 6.17],

1
Hilb(g, t) = W(l —2q+q*( + 1) + g (t* = 2t%) + q*(t* + %) — 20°t* + q°1%).
At the same time, by [22, Example 32],
14+qt ot + 2%t q’t3
l-q (-9? (I1-9?*
Again, these agree under (q,t) — (q, gt?).

)_(3’3(3, a, t) =

7. Affine Springer fibers

7.1. In this section, we establish the comparisons to affine Springer fibers needed in
Sections 4—-6. For the general relationship between local compactified Jacobians and affine
Springer fibers, see [37].

7.2. Suppose that G is a complex reductive algebraic group. Its loop group G (resp.
arc group K) is defined by G (A4) = G(A((x))) (resp. K(A) = G(A[x])) for all C-algebras A.
Thus there is a projection map K — G that sends g(x) + g(0).
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Henceforth, let G = GL;, and g = gl,,. Each integer composition v of n defines a block-
upper-triangular parabolic subgroup P, € G. Its preimage K, C K is called the corresponding
parahorlc subgroup The partial affine flag variety of G of parabolic type v is the fpqc quotient
B,=6 / K., which turns out to be an ind-scheme. For any y € g(C[x]), let

B, = {gKy € B, | Ad(g™Y)y € Lie(Ky)).

The underlying reduced ind-scheme SBV C 58]’,’ + 1s called the affine Springer ﬁber over y of
parabolic type v. As G / K is also known as the affine Grassmannian, we set =G / K = 58(,,)
and gy Q(B( )

7.3. The functor £, and y” = x"k. There is a well-known lattice description of the
above spaces. Namely, let &£ be the functor from C-algebras to sets defined by

£(A) = {A[x]-submodules L € A((x))" |
there exists  such that x’ A[x]" € L € x~* A[x]" and
(x 7" A[x]™)/L is locally free over A of finite rank}

for any C-algebra A. For any v, let £,, be the functor defined by
£,(A) ={(L,F)| L € £(A), F is apartial flag on L := L/xL of type v}.

Let F*! be the unique partial flag on C" of type v that has stabilizer P, under right multipli-
cation (of row vectors) by GL, (C).

Lemma 7.1. For each integer composition v of n, there is an isomorphism of fpqc
sheaves B, = £, that sends

(7.1) gRy > (Lg. Fg) = (C[x]" - g7 F* g1
for all glev € B, (C). In particular, L is representable by an ind-scheme.

Let £4 C £ be the sub-ind-scheme defined by £4(A4) = {L € £(A) | L € A[x]"}.
We define the positive part of By to be the correspondmg sub-ind-scheme ﬁv + C B Simi-
larly, we define the positive part of By to be 581, + = £ N 581, +. We set ;9+ = !B(n) + and

Gl =Bl
Fix a primitive nth root of unity ¢ € C*. For any integer k > 0, let

y(k) = diag(x*, exk, ... "7 xF) e g(C[x]).

We see that the centralizer of y(k) in G is precisely T < G, where T C G is the maximal
torus of dlagonal matrices. The 7- actlon on By(k) by left multiplication restricts to a 7"-action
on i)’,’,/ (+ We note that the ind-scheme !8(1" Y+ is denoted Zj, in [8].

Proposition 7.2. Suppose that R = C[[x, y]/(y" — x*k) for some integer k > 0. Fix
an identification S = C[x]", hence an identification T (n) = T. Then

(1) the map (7.1) restricts to isomorphisms f(\?l},/ k) ~ P, and féf,/(f) 5 11, (Qf
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Let !E’fo)’e C i)’,’,/(f) correspond to C‘Zf cll (Qﬁ under the isomorphism in (i). Then the iso-
morphism matches

(ii) the T-actions on j)’y(k) * and (Qe

(iii) the Springer actions of Sy on the T -equivariant Borel-Moore homologies of [8(1;1) | and
(Q(ln)for all L.

Proof. Parts (i) and (ii) follow from the definitions: compare to [12, Theorem 1.1].

To prove part (iii), observe that the usual Springer action on the Borel-Moore homology

of £(1n))_f_ arises from Proposition 3.1 and Remark 3.2 via the outer rectangle in the following
diagram, where every square is cartesian:

-~ e ~
[BLRL/T) — [@n)/T] —> [N7)/GLa]

1 | |

g7 ®t )1 —— [@Y/T] ——— [N/GLy).
(Above, 878 .= BI(L) 0

Remark 7.3. In [5], Boixeda Alvarez—Losev construct commuting actions of two trigo-
nometric double affine Hecke algebras (DAHAS) on the T -equivariant Borel-Moore homology
of certain equivalued affine Springer fibers, for a certain torus 7'.

In the GL, case, their affine Springer fibers are precisely our i)’(ln), and their T is
our 7. Via Proposition 7.2, the monodromic action of the cocharacter lattice and the action
of equivariant cohomology in [5] respectively correspond to the I'>o- and H7.(pt)-actions on
the 7'-equivariant Borel-Moore homology of é‘l(ln) in Section 5. The monodromlc action of
the finite Weyl group corresponds to the dot action in Section 6.

7.4. The functor M, and y” = x4. Let (v; _, be the standard ordered basis of C".
Writing x = @”, we have an isomorphism of C((x))-vector spaces

ab: C((x))" = C(x))  C* 5 C((w)) defined by ab(v;) = w' .
Let M be the functor from C-algebras to sets defined by

M(A) = {A]@"]-submodules M € A(w)) |
there exists j such that w/ A[w] € M € w ™~/ A[w] and
(w ™/ A[w])/M is locally free over A of finite rank}.

Thus M is the analogue of JST with C[w] in place of R. For any v, let M, be the functor
defined by

My (A) = {(M,F) | M € M(A), F is a partial flag on M := M/w" M of type v}.
Then ab induces an isomorphism

(7.2) Ab: £, > M,.
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We now define the element of g(C[[x]) studied in [31]. Let (X*, @, X, ®") be the root datum
of G with respect to the maximal torus of diagonal matrices. Let oy, ...,a,—1 € ® be the
simple roots with respect to the upper-triangular Borel subgroup P17y € G, and let

1
= EZO{I\/ ECDV,
i

where o’ is the coroot corresponding to ;. For any d > 0 coprime to n, let m,b be the
integers such that d = mn + b and 0 < b < n, as in [31]. For each root «, let ¢4 € g(C)
be the zero-one matrix that generates the root subspace gq C g, and for each integer j, let

¢ = Zal(a,pv)=j eq. Finally, let
(7.3) V(d) = x"ep +x" ey,
In what follows, we will need the composition of isomorphisms

Lemma 7.1 Ab w?

(7.4) B, £y My My,

where the last map is multiplication by w8, and § = 5 L(n — 1)(d — 1), as in Section 4. We write
the map on C-points as gK,, — (Mg, Fg).

Proposition 7.4.  Suppose that R = C[w", w?] for some d > 0 coprime to n. Then
(1) the map (7 4) restricts to an isomorphism 33' v(d) iy
Let Oe C P, be the preimage of ¢ C P, and let £1ﬁ(d) ¢ c !Bw( ) correspond to P ¢ C P

under the isomorphism in (1). Then

(1) the isomorphism in (i) matches the Springer action of Sy, on the Borel-Moore homologies
(?”!(S’Epl;(q) “ and § (ln)fOI" all e.
(iii) !8:,” (@0 i the affine Springer fiber studied by Hikita in [31].

Proof. Part (i): It suffices to work on C-points. By checking on the basis (v;);, we find
that ab transports the action of ¥ (d) on C((x))" by right multiplication onto the action of w?
on C((=)) by multiplication. Therefore,

gK, € i)’:}/’(d)(C) — (C[x]"-g~ ', F*9. g7 1) is p-stable
<= (Mg, Fg)is R-stable

for all gl?u € B, (C) and fixed e € Z.
Part (ii): Similar to the proof of Proposition 7.2 (iii), but replacing the diagram there with

-~ d s ~ JE— ~
BHSC s Py — [Nam/GLu]

(7.5) l i ln

gvde >, pe [V /GL,].

(Above, gV (@D .= Bl )

Part (iii): The mu1t1p11cat1on by @? in the last arrow of (7 4) ensures that con-
tains the 1dent1ty coset K, € O‘Bv As a consequence, BW( belongs to the connected com-
ponent of i)’v that corresponds to the partial affine flag variety of SL,, of parabolic type v. The
latter is defined analogously to the partial affine flag variety of G = GL,,, which means that
O@f,p (@0 4 precisely the affine Springer fiber over ¥ (d) with structure group SL,,. O

£w(d) 0
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8. Filtrations on H*(#/T)

8.1. In this section, we discuss the following filtrations on the variety #/T" or its
cohomology:

(i) the gap filtration on the variety, defined in terms of the function ¢(M) = dimc(SM/M)
from the introduction,

(ii) the Hikita filtration [31], defined on the variety for R = C[w", wd]] with n, d coprime,
by intersecting the affine Springer fiber from Section 7.4 with increasing unions of affine
Schubert cells,

(iii) the perverse filtration on cohomology, defined in terms of a versal deformation of a global
curve C into which Spec(R) embeds.

In Theorem 8.3, we relate (i) and (ii) by way of an involution ¢, as needed in Section 4.7. The
involution ¢ is related to a duality studied in [20], but to our knowledge, our work is the first
time it has been used to relate the filtrations above.

8.2. The gap filtration. Let R = C[x][y]/(f) be any generically separable degree-n
cover of the x-axis, fully ramified at (x, y) = (0, 0). For any integer composition v of n, we
define the gap filtration on &, to be its increasing filtration by the subvarieties

Jﬁv,sc = U JBv(C,)-
c’'<c
It descends to a filtration of 2,/ I" by subvarieties Jﬁvéc / T'. We define Q< to be the increas-
ing filtration on the Borel-Moore homology of &,/ I" where

Q< HM(P,/T) = im(HM(Py,<c/T) - HM(P,/T)).
We define Q=* to be the decreasing filtration on the cohomology of &,/ " where
Q=“H*(P,/T) = ker(H*(P,/T) — H*(P,,<c/T)).

Since compactly supported cohomology is dual to Borel-Moore homology, and P,/T is
proper, Q=€ is orthogonal to Q<. for all c. We note in passing that these definitions still make
sense for non-planar R.
Let Jsf;,< ¢ S sz, C P, be the respective preimages of Jsi ¢ S Pe C P, like in the nota-
tion of Propos?tion 7.4. Any isomorphism P = £¢ induced b§ multiplication by uniformizer
will preserve c, hence restrict to an isomorphism P2, = £< .. This reduces the study of the
gap filtration to the study of Jﬁgc. Recall that, in the unibranch case, 0 ~ P/T, and we
prefer to write ¢ in place of PO

8.3. The gap filtration for y” = x¢. Suppose that R = C[@”, w?] with n,d co-
prime. Recall that, in this case, there is a G,,-action on & induced by scaling @, which
necessarily stabilizes the connected component g. As in Section 4, let

15(8) :={A CZso | A+n,A+d C Aand |Zso \ A| = §}.
By [45, §3], the setup of Lemma 4.2 restricts to a bijection
15(8) 5 9%, A Ma

that partitions ¢ into the affine spaces A for A € I%(S).
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Lemma8.1. IfR = C[w", wd]] with n,d coprime, then
c(M)=686—min(A) forall A € IS(S) and M € AA(C).
In particular; §(¢) = U Ajmin(a)=5—c Aa @1d F<c = U Ajmin(a)25—c AA-

Proof. In the notation of Section 2, we have @ ™2 Af ¢ D for all A € I%(S) and
M € Aa. Now observe that ¢(M) = ¢(w ™A M) = —min(A) + £(M) = —min(A) + 6,
where the second equality holds by Lemma 2.5. O

8.4. The Hikita filtration. Next, we (re)turn to Hikita’s work in [31]. We follow the
same setup as in the previous subsection. In the notation of Section 7.4, recall that Proposi-
tion 7.4 gives us an isomorphism

V()0 5(
gK = Mg,
where §¥@)-0 ig the affine Springer fiber over w(d ) with structure group SL,. Hikita first
defines a filtration of §¥ (@0 then lifts it to £1p( )-0 along the projection Bv — i)’(,,) g.
Thus, as with the gap ﬁltratlon, we can largely reduce to studying the v = (n) case.
Recall that the partition of & into [-orbits, where I = K (1) acts on £ by left multipli-
cation, forms a stratification into affine Schubert cells, which are affine spaces,
g = ]_[ ?M, Where%L = Ix"K/K.
neXe
Above, X, is the same cocharacter lattice as in Section 7.4, and for any u € Xo, we write x*
to mean the image of x under u: ém — G. The affine Grassmannian of SL,, is the sub-ind-
scheme 951_" - g given by

?SL" = ]_[ ?M, whereX? ={n e Xe| 1+ + pun =0}
nex?d

The proof of [31, Proposition 4.1] shows that there is a bijection a: X0 = Z2 ' defined as
follows: a; (0, ...,0) = 0 forall i, and if u # (0,...,0), then

8.1) (@i, ....an—k,ap—k41+---,an-1)
= (Mk+1— Mk — Lo pbn — e — L0 — g oo oy -1 — k),
where k is the largest index in {1,...,n} such that y; = min; u;. Note that we must have

Mi < Osince g + -+ puy =0. Foralla € Z>0 ,let|a| =ay + -+ an—1. For any integer c,
let R R
i<e= | %
nexd
la(w)|=<c

Following [31, Corollary 4.7], we define the Hikita filtration on GV (@).0 (6 be its increasing
filtration by the subvarieties

ZUDO _ gu@o gy

For each integer composition v of n, we define 333[/ (S[Q "” to be the prelmage of ﬁwd)’o

along the projection 8B, — 9. We define the Hikita filtration on i)’w(d to be its increasing
filtration by these subvarieties. This recovers the definition for v = (1") in the proof of [31,
Theorem 4.17].
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8.5. The involution (. For any g € G, let g* be the “anti-transpose” given by
T _ ng J,

where g’ is the usual transpose and J € G the matrix with 1’s along the anti-diagonal and 0’s
elsewhere. The map 1: G — G given by ((g) := (g’)_1 = (g~ )7 is an involutory automor-
phism with differential (: g — g given by ((y) = —y*. We extend these automorphisms to G
and its Lie algebra by linearity and completion. We see that L(K ) = K and L(E(lﬂ)) =K 1y,
from which we deduce that  descends to involutions of & and i)’(ln)

From definition (7.3), we also see that ((y(d)) = —y(d). We deduce that the affine
Springer fibers gy i)’g;(z ) are stable under 1, as are their SL, variants ¥ (-0 !81//(‘1) 0

Lemma 8.2. The involutions above have the following properties.

(1) Forall u € Xo, we have L(ﬁu) t(u)’ where t(iL1, ... ) = (—fn, ..., — 1)

(ii) For any integer e, the involution on the Borel-Moore homology of :T\)’E/i;g”)l)’e induced

by t is equivariant with respect to the Springer action of S;. Moreover, it preserves the
homological degree and weight filtration.

In preparation for the proof of part (ii), we set up some notation. Recall that

gv(@).0 gSLn’

and hence
(8.2) GV@O0 = T[] Ay, where A, =5V D0ng,
nex?
Let X :p (@).0 C X2 be the subset of cocharacters y for which A, is nonempty. It is explained

in [31, §2.3], following [14], that these A are affine spaces. Moreover, [31, Theorem 2.7] is
an explicit combinatorial formula for their dimensions, which shows that

(8.3) dim(A,) = dim(A,,))

for all u € X:/j(d)’o.

Proof of Lemma 8.2.  Part (i) follows from computing ¢ (x*) = x*®*), To show part (ii),
first recall that the Springer action in question is defined via Proposition 3.1 and Remark 3.2
via the outer rectangle of (7.5). The bottom arrow of this outer rectangle sends

gK — [Ad(g™ )y (d) mod x].

So we must show that the residues of Ad(g~!)¥(d) and Ad(:(g)~!)¥(d) mod x have the
same Jordan types as nilpotent elements of g. This follows from computing

Ad((g) Y (d) = —Ad(l(g) DY (d)) = —(Adg™ )Y (d)),

then observing that ¢ commutes with reduction mod x and preserves the Jordan types of nilpo-
tent elements.

The fact that the involution on HEM(ngzd) ¢) preserves the homological degree and
weight filtration follows from 332”151‘)1)’@ being paved by the affine spaces A, together with

identity (8.3). O
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In the notation from the end of Section 8.2, set ¢, = P% and gy <. = v <c- Together
with Lemma 8.2 (ii), the following result completes a necessary step in proof (B) of Theo-
rem 5 (i).

Theorem 8.3. Suppose that R = C[w”, w?] for some d > 0 coprime to n. Then the
composition of isomorphisms

d),0 [ d),0 Proposition14 —
(8.4) BUOo L, g0 et I o

restricts to an isomorphism L(o@g%’)’soc) 549 Jam),<c forall c.

The proof will occupy the rest of thls subsection. Since J (17),<c¢ and ![)’2/{51));6 are respec-

tively the preimages of § <¢ and 5 O the (- -equivariance of the projection

H¥(d),0 2v(d),0
ﬁ(ln) — 8

and the commutativity of the left square of (7.5) allow us to replace v = (1") with v = (n).

We will match the strata A, C V@0 from (8.2) with the strata Ap C g from Lem-
ma 8.1; this implies the statement by the definition of the filtrations in question. Let — -1/, —
denote the G,,-action on G defined by

to1yn g(x) =12 gt )2

forallt € G and g € G. It descends to a G,,-action on g that we again denote by — -1/, —
As explained in [14,31], we have

— - e¥(d),0| y; ) — < 0
A, ={gK e gV | lim (17 gK) = x"*K} forall u e X2.
So, to match the strata, it suffices to match — -1, — with the Gy, -action on g in Section 8.3.

Proposition 8.4. The map (8.4) transports the Gy, -action — -1/, — on g onto the G-
action on M(y) induced by t - w := t*w

Proof. It suffices to work on C-points. First, ¢ is equivariant under — -1, — because
1(c2P”) = ¢2P” | so we can replace (8.4) with (7.4). Observe that if g = g(x) € G(C((x))),
and g'(x) =1 -1/, g(x) for some ¢ € C*, then gx)" =1t “1/n g~ !(x). Thus the entries of
the matrix g’(x)~! are given by

(€' ) iy =2V (@ @) i
We deduce that
@ab(vi - (170 ()T = @° Y (¢ (@M i@
J

=20y (g (@) (P a) !

= 72720=D ., wlab(v; - g(x)™1)).

The outer monomials in the first and last expressions are just nonzero scalars. So the vector
subspaces of C((w)) formed by M;.,,,¢ and ¢ -2 M coincide. m)
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In the notation of Section 8.3, let A: Xl/’(d)’o — I%(S) be defined by
(8.5) Gen, (A(w)) ={nw; +n—i+56|1=<i <nj}.

Then the map x* > Mx(,,) is precisely the effect of (8.4) on the (— -, —)-fixed points of
gV (@0 a5 we can check from the definition of ¢ and (7.1)—(7.2). Now (8.3) and Proposition 8.4
imply the following corollary.

Corollary 8.5. The map A: x¥@o_, 15(S) is bijective, and for all p € x¥@0
(8.4) restricts to an isomorphism A, > LYNOY

To finish the proof of Theorem 8.3, it remains to show that, for all u € X :p (d),o’ we have

la(p)| = c(Ma(y))- By Lemma 8.1 and (8.5), this is equivalent to the following lemma.
Lemma 8.6. Forall p € X:p(d),o’ we have
la(n)| = —min{nu; +n—i |1 <i <nj}.
Proof. If u = (0,...,0), then both sides equal 0. If i # (0, ..., 0), then (8.1) gives

la(uw)| = (m1 + -+ wn) — (g +n—k),

where k is the largest index in {1,...,n} such that y; = min; ;. Since u € X2, the right-
hand side above simplifies to —(npg +n — k). ]

Remark 8.7. It is natural to ask what the involution « on €Y (-9 Jooks like after being
transported through (7.4), to an involution on g. From (8.5), we can check that it is precisely
the duality that Gorsky—Mazin denote by A +— A in [20]. Explicitly, for any A € I%(S), we
have

Genn(A) = {d(n — 1) —k | k € Gen,(A)}.

Example 8.8. Take (n,d) = (3,4). We compute

X @0 = (0,0,0), (1,0, 1), (—1,1,0), (0, —1, 1), (1,0, — 1)},
15(8) = {A34,5, 0642, 0372,06,1,5,No0a8)

Above, we labeled the elements of 7%(S) in the form Ap, by ,by» Where Gen, = {by, b2, b3}
and b; = (i — 1) (mod n) for all i. Compare the statistics below to Example 4.13.

2 a(p) la(w)| (ui +n—i) A(w) min(A(ur))
(0,0,00  (0,0) 0 (2,1,0) Asas 3
(-1,0,1) (0,1) 1 (-1,1,3) Neap 2
(=1,1,0) (1,0) 1 (—1,4,0) Azz72 2
0,—1,1) (1,1) 2 (2,-2.3) Ne1s |
(1,0,—1) (2,1) 3 (5,1,-3) Aoag O
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8.6. The perverse filtration. We return to the setup of Section 8.2, where f(x,y) is
arbitrary. For simplicity, we ignore the map to the x-axis in what follows. Besides Q=*, there
is another filtration on the cohomology of &/ T, defined as follows by Maulik—Yun.

Fix a complex, integral, projective curve C, whose normalization has genus zero, and
which is smooth away from a unique planar singularity given by f(x, y) = 0 in local coordi-
nates. We emphasize that, while C is integral, the germ f can still have multiple branches. Fix
an embedding of C into a family of curves €, whose base is irreducible, and which satisfies
[39, §2.1, conditions (A1)—(A4)].

Let J(C) be the compactified Jacobian of (C,s) (see [1]). In this setting, [39, Sec-
tion 2.14] defines an increasing perverse filtration P<4 on H*(¢(C)), in terms of the perverse
truncation of the pushforward of the constant sheaf along the structure map of g (€). Proposi-
tion 2.15 of [39] shows that P<y is invariant under base change of the family of curves, so it
is canonical. It is strictly compatible with the weight filtration W <. Finally, the proof of [39,
Theorem 3.11] shows that there is a weight-preserving isomorphism H* (4 (C)) ~ H*(»/TI),
canonical up to the choice of uniformization that defines the I'-action on . Following Maulik—
Yun, we normalize P so that it sits in degrees 0 through 26.

For any filtration F<4« on the cohomology of P /T, strictly compatible with the weight
filtration, we may form the virtual Poincaré polynomial

PP = > (-D'g/t* dimg” g} H (P/T).
i’j’k
Explicitly, [39, Theorem 3.11] and Theorem 3 imply that
1 .
Hilb(qg,t) = WPV”’P(q, t) and Quot(q,t) =
—q

We deduce the following corollary.

1 vir,Q

Corollary 8.9. Conjecture 1 is equivalent to P*'P(q,t) = P¥"9(q, q%t).

It is natural to make the following stronger conjecture, which also extends a conjecture
in unpublished notes of Yun beyond the unibranch case.

Conjecture 8.10. The weight grading on gtV H*(P/T) is supported in even degrees.
Moreover, gifl . gryy H*(P/T) ~ grf gryy H*(P/T) for all j. k.

The motivation behind Conjecture 8.10 is that it would strictly imply the statement above,
and hence Conjecture 1. We emphasize again that, while P<, is defined via auxiliary global
methods, Q=* is intrinsic and purely local. For this reason, Corollary 8.9 seems remarkable
to us.

A. Gradings on link homology

A.1. In this appendix, we specify our grading conventions for Khovanov—Rozansky
homology, compare them to those of other published works, and illustrate on the smallest
examples (unknot, Hopf link, trefoil, (3, 4) torus knot) to aid the reader’s sanity. Our exposition
closely follows [15, §1.6], but we correct some mistakes: see Remarks A.1-A.2.
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A.2. Soergel bimodules. Let 7 = G}, and S := H}.(pt) = C[t1, ..., ). We regard S
as a graded ring, with deg(#;) = 2 for all i. Thus the S, -action on 7" that permutes coordinates
also preserves the grading on S. Let s; € S, be the transposition that swaps #; and #; 1.

In the category of graded S-bimodules, we write (1) for the grading shift B(m)’ = B!,
Let SBim be the full subcategory generated by the identity bimodule S and the bimodules
S ®gsi S(1) for all i under isomorphisms, direct sums, tensor products ® = ®g, direct sum-
mands, and grading shifts. Objects of SBim are called Soergel bimodules. We write K? (SBim)
for the bounded homotopy category, a monoidal additive category under ®.

Let Br,, be the group of braids on n strands up to isotopy. Any braid 8 € Br, defines an
object 'f}; € Kb (SBim) called the Rouquier complex of B. See, e.g., [15, §2.1] for the precise
definition.

Let Vect, be the category of Z?-graded vector spaces that are finite-dimensional in each
bidegree, such that the first grading is bounded below and the second is bounded. Let

HH = HH™*: SBim — Vect,
be the Hochschild cohomology functor
HH"/ (B) = Ext§g g0 (S. B(})).

These Ext’s can be computed using a Koszul resolution of S over S ® ¢ S°P, which shows that
the Ext grading sits in degrees 0 through (at most) n.

Let Vects be the category of Z3-graded vector spaces that are finite-dimensional in each
tridegree, such that the first grading is bounded below and the other two gradings are bounded.
Let HHH = HHH*** be the composition of functors

HH H*
Kb (SBim) —> K®(Vecty) —> Vects.
Explicitly, the gradings are ordered so that
HHA/K = gk (HHLY).

The story above can be redone with the quotient torus T := T/ TS" in place of T'. Note
that T is just the image of T along the quotient map GL,, — PGL,. Replacing 7" with T
entails replacing S with itisu@g So = H"T‘O (pt). We write 7g, HH, HHH for the objects that
respectively replace 7g, HH, HHH.

Let L be the link closure of 8. In [34], Khovanov proved that HHH(7g) matches the
reduced version of the triply graded homology of L proposed in [10] and constructed in [35],
up to an affine transformation of the trigrading. One can show that

(A.1) HHH(73) ~ HHH(T4) ® HHH(T73),
and that, in consequence, HHH(fI_',g) matches the unreduced version of the homology con-

structed in [35], up to similar regradings.

A.3. The main dictionary. For any 8 € Bry, let
hhhg(4.Q0.T) = > ATQ7TX dimHHH""X (7p),
1,J,K

hhhg(4,0.T) = Y A7 Q77X dimHHH!/-K (7).
1,J,K
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That is,

(1) mﬂ(A, 0, T) is the series denoted ?ﬁ(Q, A,T)in [11, §A] and [15, §1.6], and hhhg
is the analogue of hhh for reduced homology.

We write
(i1) j’g"rm(A, Q. T) for the series denoted /°™(Q, A, T) in [15],
(iii) Pr,ors(a,q,t) for the series denoted & (L) in [42] (it is denoted (L ™) in [10], where
L™ is the chiral mirror of L),

(iv) ﬂsL,ORS (a,q,t) for the series denoted JS(L) in [42], which satisfies

(A.2) Pr.ors(@, q,t) = Pu.ors(@, q,t)PL.ors(@, g, 1).

Remark A.1. Contrary to statements suggested by [42, p. 651] and [15, §1.6], the series
JISL,ORS does not match the series called the unreduced superpolynomial of L™ and denoted
P(L7) in [10], even after further regrading. Indeed, the series denoted # (L~) and P(L7)
in [10] are not proportional to each other by any constant factor, as can be checked from
[10, Propositions 6.1 and 6.2].

Let e be the writhe of B, meaning its net number of crossings counted with sign, and let
b be the number of components of L. After correction, [15, §1.6] states

gsiorm(A’ Q’ T) — (A%)e—n—i—b Q—e+2n—2b(T%)—e—n+bm‘B (A, Q, T),
(A3)  Prors(a.q.t) =a"g"Pr™@q?t.q.t7")
= ae_"q”temﬂ (a%q>t,q.t7Y).
By combining the last identity above with (A.1)—(A.2), we get a reduced version
Prors(a,q.t) = a® " t1g"1thhhg (a*q?t, ¢t 7).

In general, we will not work with f/5]r:°“n. Moreover, we will not discuss at all the normalizations
used in the series P (U), P (T(2,3)) in [15, Remark 1.27].

Remark A.2. Above, (A.3) fixes a few more typos in [15, §1.6].

First, the discussion on [15, p. 599] relates their series J/°™ to the series we call ij,ORS’
not to the superpolynomial in [10]. As explained in Remark A.1, the latter two are differ-
ent. Next, the identity relating #/°™ and J_)L,ORS in [10] has the wrong prefactor. There, the
authors express J_DL,ORS in terms of variables 7, «, Q, T, which correspond to our b,a,q,t~ ',
respectively. Their prefactor Q%" ™" should be Q" a™".

By way of comparison, the variables o, O, T in [11, §A] also correspond to our a, ¢q, L.

Hence their series 1 (Q, «, T) is our series L, ors(a. ¢, t). The identity relating g and &,
in [11, §A] is correct.

Example A.3. The unknot U is the knot closure of the identity in Bry, for which
(n,e,b) = (1,0, 1). The Hochschild cohomology of the identity Soergel bimodule is
S, j =0,
HHIY(S) = 18@). j =1,
0, Jj #0,1.
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Thus

Snorm Rk 1 + A 2
P4, Q. T) = hhhig(4. Q. T) = 1_—32

from which .
_ a ~ +at
Puorsla.q.t) = ——.
q " —dq

A4, “Our” series. For any braid § € Br, with writhe e whose link closure L has b
components, let
Xp(a,q,1) := t5hhhg(ag, g2, g2t 2),
Xg(a,q,t)
Xia(a,q,1)
Above, note that Xjg(a, q,t) = }—f;‘. We can check that

Xg(a.q.t) := = t5hhhg(ag.q?. q2t 7).

fy:)L,ORS(a’q’t) = (aq_l)e_n)_(ﬁ (a2t’q2’q2[2)’
PrLors(a.q.1) = (ag~ )" Xg(@*1.4%. 7).

It turns out that, in the rest of this paper, )_(ﬁ and Xg are the most convenient series for us to
use.

In particular, suppose that f(x, y) € C[x][y] such that f(x, y) = 0 defines a generically
separable, degree-n cover of the x-axis, fully ramified at (x, y) = (0, 0). Then the preimage in
the cover of a positively oriented loop around x = 0 is a braid B¢ € Bry, whose link closure
is the link L ¢ introduced in Section 1.4. We see that X, is precisely the series Xy introduced
in (1.4).

A.5. Torus links. For integers n,d > 0, let T,, 4 be the positive (n, d) torus link, con-
sidered negative in [10]. Its number of components is b = ged(n, d ). Taking f(x,y) = y" — x4
in the construction above shows that 7}, ; is the link closure of a braid 8, 4 € Br, for which

e =(mn—1)d.Let
1 1
§= E(e—n +b) = E(nd —n—d +ged(n,d)).
Let )_(n,d = >_(ﬂn,d’ as in the rest of this paper, and X;, 4 = Xg,, .

Example A.4. For the Hopf link 75 >, we have

qt at
X a, ,t=1 P )
2.2(a,q,1) +1—q+1—q

aqt?  a3qt3
L
l1—gq 1 —¢q?

Pr,,0rs(@,q,t) =aq” ' +

Example A.5. For the trefoil 7, 3, we have
X2,3(a,q,t) = 1 +qt + at,
Pr, 5.0r8(a,q,1) = a*(q % + ¢*1%) + a*t>.

The latter series is [10, Example 3.3].
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Example A.6. For the (3, 4) torus knot 73 4, we have

X3.4(a,q.t) = 1 4+ qt + qt? + g*t> + ¢°t> + a(t + 2 + qt? + gt + ¢*t%) + a3,
Pryaors(@.q.1) =a®(q ® +q72> + 1 + ¢%1* + ¢%°)
+a8(q* P+ g2 00 + % + ¢ty + a0,

The latter series is [10, Example 3.4].

In Section 4, we implicitly need the following identities that match )_(n,d» X4 with other
series in the literature.

(1) Let ﬁnm (u, q,t) be the series in [23]. For coprime n, d, we have

_ . _
Xp,d(a,q.1) = T—q n.d(—2,0,t71).

(ii) Let Pm.n = Pm,n(a,q.t) be the series in [41]. For coprime n, d, we have

3 -1,4.5\8 —1
Xn,d(@.q.t) = (—a~ q2t2)° P, g(-a,q.t7).
Note that the substitution sends ¢ — q and ¢ — t~!, not vice versa.

(iii) Let 1301\4 on(g.t,a), QQM o~ (g.t,a), Rom g~ (g, 1, a) be the series in [22]. Forany n, d,
we have

1 _ 1
—X aa 7t = _X a, ,t_l
1+a n,d( q ) 1— q n,d( q )

= RO”,Od (q, t_l, aq_l)
= Qgnoa(a.t aq™") by [22, Corollary 5.10]
=q 9" Py ga(a,t,ag™) by [22, (11)].
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