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The Hilb-vs-Quot conjecture
By Oscar Kivinen at Helsinki and Minh-Tam Trinh at Washington

Abstract. Let R be the complete local ring of a complex plane curve germ and S its
normalization. We propose a “Hilb-vs-Quot” conjecture relating the virtual weight polynomials
of the Hilbert schemes ofR to those of the Quot schemes that parametrizeR-submodules of S .
By relating the Quot side to a type of compactified Picard scheme, we show that our conjecture
generalizes a conjecture of Cherednik’s, and that it would relate the perverse filtration on the
cohomology of the Picard side to a more elementary filtration. Next, we propose a Quot version
of the Oblomkov–Rasmussen–Shende Conjecture, relating parabolic refinements of our Quot
schemes to Khovanov–Rozansky link homology. It becomes equivalent to the original version
under (refined) Hilb-vs-Quot, but can also be strengthened to incorporate polynomial actions
and y-ification. For germs yn D xd , where n is either coprime to or divides d , we prove the
Quot version of ORS through combinatorics. When n D 3 and 3 − d , we deduce Hilb-vs-Quot
by an asymptotic argument, and hence establish the original ORS Conjecture for these germs.

1. Introduction

1.1. Let R be the complete local ring of a complex algebraic plane curve germ: a re-
duced, complete, local C-algebra of Krull dimension 1, embedding dimension at most 2, and
residue field C. Let S � R be its normalization. For any finitely generated R-module E,
let Quot`.E/ denote the Quot scheme whose C-points parametrize submodules of E of C-
codimension `. It is a scheme of finite type. WhenE D R, it is the Hilbert scheme of ` points on
Spec.R/. We write H ` D Quot`.R/ and Q` D Quot`.S/. For any C-scheme of finite type X ,
let �.X; t/ 2 ZŒt� denote the virtual weight polynomial of X in the sense of mixed Hodge
theory. Let

Hilb.q; t/ D
X
`�0

q`�.H `; t/ and Quot.q; t/ D
X
`�0

q`�.Q`; t/:

We start by proposing the following conjecture.
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Conjecture 1 (Hilb-vs-Quot). For any plane curve germ,

Hilb.q; t/ D Quot.q; q
1
2 t/:

Our first goal in this paper is to show that Conjecture 1 extends a conjecture of Chered-
nik’s to plane curve germs with multiple branches. Our second goal is to use a parabolic
refinement of Conjecture 1 to clarify the Oblomkov–Rasmussen–Shende (ORS) Conjecture,
which relates the Hilbert schemes of the germ to the Khovanov–Rozansky (KhR) homology of
its link. For germs of the form yn D xd , where n is either coprime to or divides d , we will
prove a Quot analogue of ORS. For germs y3 D xd with d coprime to 3, we will prove all of
the conjectures above.

Separately, we will also describe a refinement of Conjecture 1 that incorporates known
polynomial actions on the link homology and on its y-ification.

1.2. We first review Cherednik’s conjecture. Let K be the ring of fractions of S . The
compactified Picard scheme of R is a reduced ind-scheme P over C whose points parametrize
finitely generated R-submodules M � K such that KM D K. Let c be the gap function on
P .C/ given by c.M/ D dimC..SM/=M/: It takes values between 0 D c.S/ and the delta
invariant ı´ c.R/.

Let J � P be the locus parametrizing those M � K such that M \R has the same
index in both R and M . For any fixed integer c, let J.c/ � J be the constructible sub-
variety parametrizing M such that c.M/ D c. In [9, Conjecture 4.5], Cherednik essentially
conjectured that, when R is unibranch,

(1.1) Hilb.q; t/
‹
D

1

1 � q

X
0�c�ı

qc�.J.c/; q
1
2 t/:

We will show that Conjecture 1 generalizes (1.1) beyond the unibranch case. For this, fix a uni-
formization S '

Qb
iD1 CJ$iK. The scaling action of K� on P restricts to a free action of

the lattice � of elements E$ Ex ´ $x1
1 � � �$

xb
b

for x1; : : : ; xb 2 Z. The quotient P=� is a
projective variety. In the unibranch case where b D 1 and � ' Z, we have P=� ' J.

The subvariety J.c/ � J is analogous to a �-stable subvariety P .c/ � P . When b D 1,
the identity

(1.2) Hilb.q; t/
‹
D

1

.1 � q/b
X
c

qc�.P .c/=�; q
1
2 t/

specializes to (1.1). We will prove that

(1.3) Quot.q; t/
‹
D

1

.1 � q/b
X
c

qc�.P .c/=�; t/;

thereby proving that Conjecture 1 is equivalent to (1.2).

1.3. In fact, we will propose a conjecture stronger than Conjecture 1, and prove a state-
ment stronger than (1.3).

We may assume thatR D CJxKŒy�=.f /, where f .x; y/ D 0 defines a generically separa-
ble, degree-n cover of the x-axis fully ramified at .x; y/ D .0; 0/. For � an integer composition
of n, there is a scheme of finite type H `

� , resp. Q`
� , whose C-points are pairs .M;F / in which
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M is a point of H `, resp. Q`, and F is a y-stable flag on NM ´M=xM of parabolic type �.
Let Hilb� and Quot� be the analogues of Hilb and Quot for these schemes. Then Conjecture 1
is refined by the following.

Conjecture 2 (Parabolic Hilb-vs-Quot). For any R and � as above,

Hilb�.q; t/ D Quot�.q; q
1
2 t/:

Let P � ;P �.c/ be defined analogously to H `
� ;Q

`
� . There is an obvious refinement of

(1.3) using Quot� and Pic� . We can make a further motivic improvement. Let Schfin
C be the

category of C-schemes of finite type, and for any object X of Schfin
C , let ŒX� denote its class in

the Grothendieck ring of Schfin
C . The virtual weight polynomial of X is a specialization of ŒX�.

Let
Quotmot

� .q/ D
X
`

q`ŒQ`.�/� and Picmot
� .q/ D

X
c

qcŒP �.c/=��:

In Section 2, we prove the following theorem.

Theorem 3. For any R and � as above,

Quotmot
� .q/ D

1

.1 � q/b
Picmot

� .q/:

The main idea is to embed
`
`Q` into P , then relate ` to c by way of a certain funda-

mental domain for the �-action.
Letƒnq;t be the vector space of degree-n symmetric functions in infinitely many variables

over Q.q; t/. In Section 3, we explain that Conjecture 2 and the virtual weight specialization of
Theorem 3 can be rephrased in terms of elements F Hilb, F Quot, F Pic of ƒnq;t, which recover
the corresponding q; t-series involving � via the Hall pairing with the homogeneous symmetric
function h� . See (3.2) and (3.3) for the precise formulas.

1.4. Henceforth, we take f .x; y/ 2 CŒx; y�. Fix a 3-sphere in C2 around .0; 0/. The
intersection of the zero locus ¹f .x; y/ D 0º with this 3-sphere is a topological link Lf , whose
isotopy class depends only on f when the sphere is small enough. The number of branches b
is the number of connected components of Lf .

There is an isotopy invariant of links taking values in triply graded vector spaces, known
as HOMFLYPT or Khovanov–Rozansky (KhR) homology [10, 35]. Oblomkov–Rasmussen–
Shende [42] conjectured an identity expressing the KhR homology ofLf in terms of the Hilbert
schemes H `. The full statement requires nested versions H `

m-nest � H ` �H `Cm, parametriz-
ing pairs of ideals .I; J / such that xI C yI � J � I .

For any link L, let NPL;ORS.a; q; t/ be the graded dimension of the unreduced KhR
homology of L in the conventions of [42], so that our NPL;ORS is their NP.L/. We will use
a normalization NXf .a; q; t/ 2 ZJqKŒa˙1; t˙1� satisfying

(1.4) NPLf ;ORS.a; q; t/ D .aq
�1/2ı�b NXf .a

2t; q2; q2t2/:

Then the ORS Conjecture [42, Conjecture 2] states that

(1.5) NXf .a; q; qt2/ D
X
`;m

q`a2mtm.m�1/�.H `
m-nest; t/:
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Note that this conjecture would imply that the virtual weight polynomials above contain only
even powers of t.

It was essentially observed in [24] that, once we fix the presentation of f .x; y/ D 0 as
a degree-n cover of the x-axis, the right-hand side of (1.5) can be written in terms of F Hilb.
Namely, let ‰.a;�/Wƒnq;t ! Q.q; t/Œa� be the map

‰.a;�/ D .1C a/
X

0�k�n�1

akhs.n�k;1k/;�i;

where s� 2 ƒnq;t is the Schur function indexed by � ` n and h�;�i is the Hall inner product.
In Section 3, we explain that the right-hand side of (1.5) is ‰.a;F Hilb.q; t//. So the ORS
Conjecture is NXf .a; q; qt2/ D ‰.a;F Hilb.q; t//. In particular, if Conjecture 2 (the Parabolic
Hilb-vs-Quot Conjecture) holds, then (1.5) is equivalent to the following.

Conjecture 4 (KhR-vs-Quot). For any f as above,

NXf .a; q; t
2/ D ‰.a;F Quot.q; t//:

Remark 1.1. When L is the link closure of a braid ˇ, the KhR homology of L can be
computed from the Rouquier complex of Soergel bimodules NTˇ , as we explain in Appendix A.
There is a richer invariant of NTˇ : its (dg) horizontal trace Trdg. NTˇ /. Gorsky–Hogancamp–
Wedrich [17] show that, when ˇ has n strands, Trdg. NTˇ / decategorifies to an element of ƒnq;t,
and the KhR homology of L can be obtained by specializing Trdg. NTˇ / along a version of ‰.
It is natural to expect that Conjecture 4 has a further refinement, taking ˇ to be the positive
braid in ¹f .x; y/ D 0º that lifts a positive loop around x D 0, and comparing F Quot directly
to Trdg. NTˇ /.

In [49], for any positive braid ˇ on n strands, the second author introduced a (derived)
scheme Z.ˇ/ with an action of GLn and a Springer-type action of Sn on its GLn-equivariant
compactly supported cohomology. The Sn-action on the associated graded of the weight fil-
tration recovers an underived horizontal trace. But there is no direct relationship between
ŒZ.ˇ/=GLn� and Q`.

1.5. As we vary R in families, the Quot schemes Q` do not deform as nicely as the
Hilbert schemes H ` because, in any versal deformation of R, we can only deform S jointly
with R in the stratum where ı is constant [48]. Nonetheless, Conjecture 4 is significantly more
tractable than the original ORS Conjecture.

We will establish Conjecture 4 for two infinite families of plane curve germs with C�-
actions. In what follows, we write F Quotn;d , F Picn;d , NXn;d in place of F Quot, F Pic, NXf
when f .x; y/ D yn � xd for some n; d > 0.

Theorem 5. Suppose that either of the following holds.

(i) d is coprime to n.

(ii) d is a multiple of n.

Then Conjecture 4 holds for f .x; y/ D yn � xd .

We prove Theorem 5 (i), the coprime case, in Section 4. We actually give two independent
proofs.
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(A) The first extends the combinatorial commutative algebra in the proof of [42, Corol-
lary A.5], thereby relating‰.F Quotn;d / to the formula for NXn;d conjectured by Gorsky–
Neguţ in [23] and proved by Mellit in [41].

(B) The second proof is more roundabout. We invoke Theorem 3, then relate ‰.F Picn;d /
to NXn;d by work of Hikita [31], Mellit [40], Hogancamp–Mellit [32], and Wilson [51].
Our new contribution is to match the gap filtration of P=� induced by c with Hikita’s
filtration on an isomorphic variety, up to a further involution.

The Gorsky–Neguţ formula in (A) implicitly involves certain semigroup modules and their gen-
erators, while the Hogancamp–Mellit recursion in (B) implicitly yields a formula for NXn;d in
terms of the “cogenerators” of these semigroup modules, by work of Gorsky–Mazin–Vazirani
[22]. As we explain in Section 4, these formulas have the same lowest a-degree, but differ in
higher a-degrees.

We prove case (ii), where d D nk for some integer k, in Section 6. Here, the tools we
need were developed in settings with extra structure: y-ified link homology on the KhR side,
which we review in Section 5, and torus-equivariant homology on the Quot side. We relate
NXn;nk and ‰.a;F Quotn;d .q; t// to the same expression ‰.a;rkp.1n//, where r is Bergeron–
Garsia’s nabla operator and p.1n/ is a power-sum symmetric function, via work of Gorsky–
Hogancamp [15] and Carlsson–Mellit [8], respectively.

Both proof (B) of case (i) and the proof of case (ii) involve comparisons to the affine
Springer fibers of [33]. For the former, we match P .1n/=� with the SLn affine Springer fiber
studied in [31]. For the latter, we match

`
`Q` with the positive part of the GLn affine Springer

fiber studied in [8]. These steps are relegated to Section 7.

Remark 1.2. In [50], generalizing the GL3 case of [36], Turner computes the Borel–
Moore homologies of many unramified affine Springer fibers for GL3. Up to a certain localiza-
tion, this verifies the .a;q/! .0; 1/ limit of Conjecture 4 for the associated plane curve germs.

1.6. Despite the claims in [32, §1.2] and [18, §6.2], we believe there is no proof of the
original ORS Conjecture that covers either of the two cases in Theorem 5. As we explain in
Section 4, there does exist a combinatorial formula for F Hilbn;d when n and d are coprime,
which was originally obtained in [42, Corollary A.5], but it is much harder to match with NXn;d
than the analogous formula for F Quotn;d .

Oblomkov–Rasmussen–Shende did verify their full conjecture when f .x; y/ D y2 � xd

with d odd. As the map ‰ loses no information for n � 3, this implies Conjecture 2 for such
f via Theorem 5 (i). Remarkably, we can use Theorem 5 (i) to prove the following.

Theorem 6. Conjecture 2 holds for f .x; y/ D y3 � xd with d coprime to 3. Hence the
original ORS Conjecture (1.5) also holds for these cases.

We give the proof at the end of Section 4. First, we show that, for d coprime to n, the
functions‰.a;F Hilbn;d .q; t// and‰.a;F Quotn;d .q; q

1
2 t//match in the limit where d !1:

see Proposition 4.14. As the original functions agree with their limits up to order d in q, we can
use symmetry properties on both sides to recover the finite identity from the asymptotic one.
On the F Quotn;d side, the necessary symmetry arises via Theorem 5 (i) from KhR homology,
where it was conjectured in [10] and proved in [16, 43].
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At the end of Section 6, we verify the lowest a-degree part of the original ORS Conjecture
for the curves y2 D x4 and y3 D x3, using [36]. This proves Conjecture 1 for those curves,
via Theorem 5 (ii).

Remark 1.3. In proving Theorem 6, we also establish a closed formula for the KhR
homology of .3; d/ torus knots that had been conjectured by Dunfield–Gukov–Rasmussen
[10, Conjecture 6.3]. See the discussion in [42, §4].

1.7. Our proof of Theorem 5 (ii), together with unpublished work of the first author,
suggests a refinement of Conjecture 4: one with no analogue in the Hilbert-scheme setting of
[42, Conjecture 2].

In general, if L is a link with b components, then CŒEx�´ CŒx1; : : : ; xb� acts on the KhR
homology ofL by [18, Corollary 5.4]. The y-ified KhR homology ofL, introduced by Gorsky–
Hogancamp in [15], is a monodromic deformation of its KhR homology that extends scalars
from C to CŒ Ey�´ CŒy1; : : : ; yb�, thereby extending the CŒEx�-action to a CŒEx; Ey�-action.

We conjecture that these actions match similar actions on the homology of the Quot
schemes Q`

� . Letting ��0 � � be the submonoid of E$ Ex with Ex 2 Zb
�0, we see that ��0 acts

on
`
`Q`

� and commutes with the torus T .b/´ Gbm that rescales the $i . Up to isomor-
phisms CŒEx� ' CŒ��0� and CŒ Ey� ' H�

T.b/
.pt/, we get a CŒEx; Ey�-action on the sum of modified

equivariant Borel–Moore homologiesM
`

grW
� HBM;T .b/
� .Q`

�/; where W�� denotes weight filtrations:

The xi shift ` by 1 and preserve weights, and the yi preserve ` and shift weights by �2. As
� varies, these CŒEx; Ey�-modules can be packaged together into a bigraded .CŒEx; Ey� � CSn/-
module eQuotEx; Ey . The map ‰ categorifies to a functor from such bigraded modules to triply
graded CŒEx; Ey�-modules. Abusing notation, we again write ‰ to denote this functor. We can
now state the following refinement of Conjecture 4, with more explicit details left to Section 5.

Conjecture 7 (y-ified KhR-vs-Quot). The y-ified KhR homology of Lf is isomorphic
as a triply graded CŒEx; Ey�-module to ‰.eQuotEx; Ey/, after appropriate regrading.

2. Quot and Picard schemes

2.1. The main goal of this section is to prove Theorem 3. We keep the definitions of R,
S , K, b from the introduction.

2.2. First, we review the formal definition of the compactified Picard scheme [39, §3.10].
Let mR be the maximal ideal ofR, and for anyR-moduleE, let .�/ y̋ E be the tensor product
with E completed in the mR-adic topology on E. Let P � be the functor from C-algebras to
sets defined by

P �.A/ D ¹.A y̋ R/-submodules M � A y̋ K j

there exists i such that A y̋ mi
R �M � A y̋ m�iR and

.A y̋ m�iR /=M is locally free over A of finite rankº
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for any C-algebraA. An argument in [25, §2] shows that P � is representable by an ind-scheme.
Let P � P � be the underlying reduced ind-scheme. Taking A D C recovers

P .C/ D P �.C/ D ¹finitely generated R-submodules M � K j KM D Kº;

as in the introduction.

Remark 2.1. Even though P �;P have the same C-points, it is only P that forms a
scheme locally of finite type. For instance, if R D CJxK, then P � ' x

Z �P nil
�

, where P nil
�
.A/

parametrizes Laurent tails in x where each coefficient is a nilpotent element of A; by contrast,
P ' xZ.

2.3. For any integer c, let P .c/ � P be the sub-ind-scheme defined by

P .c/.A/ D ¹M 2 P .A/ j .SM/=M is locally free over A of rank cº:

Proposition 2.2. If M 2 P �.A/, then .SM/=M is locally free over A of rank at most
ı´ dimC.S=R/.

Proof. Observe that .S ˝RM/=M is free over A of rank ı because

.S ˝RM/=M ' ..A y̋ S/˝A y̋RM/=M ' .A y̋ S/=.A y̋ R/:

Hence it suffices to show that .SM/=M is a direct summand of .S ˝RM/=M as anA-module.
Let s1; : : : ; sı be a non-redundant (full) set of coset representatives for R in S . Then

SM D
P
j .sj CR/M D

P
j sjM , so we can pick some subset J � ¹1; : : : ; ıº, andmj 2M

for j 2 J , such that ¹sjmj ºj2J is a non-redundant set of coset representatives for M in SM .
TheA-linear map .SM/=M ! .S ˝RM/=M that sends sjmj CM 7! sj ˝mj C 1˝M is
an A-linear section of the natural surjective map .S ˝RM/=M ! .SM/=M , as desired.

Corollary 2.3. P is the union of the locally closed sub-ind-schemes P .c/ for 0� c � ı.
In fact, the locally closed subsets P .c/ form a stratification of P .

Proof. It remains to explain why the P .c/ are locally closed: this follows from the upper
semicontinuity of rank.

2.4. Recall that we fix once and for all a uniformization S �!
Qb
iD1 CJ$iK, and set

� D ¹$ Ex j Ex 2 Zbº, where$ Ex D $x1
1 � � �$

xb
b

. The group � acts on P by scaling. Adapting
the proof of [33, Corollary 1], one can check that P=� is a projective variety. For all c, we see
that P .c/ is �-stable, which lets us form the locally closed subvariety P .c/=� � P=� .

For any finitely generated R-submodule E � K, let Quot`.E/ be the Quot scheme
parametrizing submodules of E of codimension `. In more detail, let Quot`�.E/ be the functor

Quot`�.E/.A/ D ¹.A y̋ R/-submodules M � A y̋ E j

there exists i such that A y̋ mi
R �M � A y̋ m�iR and

.A y̋ m�iR /=M is locally free over A of rank `º:

It is again representable by an ind–scheme. We take Quot`.E/ � Quot`�.E/ to be the under-
lying reduced ind-scheme, which again gives a scheme locally of finite type. Note that these are
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not Quot schemes in the usual sense, but punctual versions. There is a tautological inclusion
Quot`.E/! P .

As in the introduction, we set Q` D Quot`.S/ and ��0 D ¹$ Ex j Ex 2 Zb
�0º. The free

action of � on P by scaling restricts to a free action of ��0 on
`
`Q`. Moreover, for all `, we

have

(2.1) .M; Ex/ 2 Q`
� Zb�0 H) $ ExM 2 Quot`Csum.Ex/.S/;

where sum.Ex/ D e1 C � � � C eb .

Lemma 2.4. The subscheme D �
`
`Q` defined by

D.A/ D ¹M � A y̋ S jM \ .A y̋ S/� ¤ ;º

is a fundamental domain for both the �-action on P and the ��0-action on
`
`Q`.

Proof. If u D u.$1; : : : ;$b/ belongs to .A y̋ S/�, then the constant term of u must
belong to A�. We deduce that if M 2 D.A/, then $ ExM 2 D.A/ occurs only when Ex is the
zero vector. Therefore, D is irredundant under the action of � on P .

It remains to show that every element M 2 P .A/, resp. M 2
`
`Q`.A/, takes the form

$ ExM 0 for some M 0 2 D.A/ and Ex 2 Zb , resp. Ex 2 Zb
�0. Observe that KM D A y̋ K be-

cause, once we pick i � 0 such that M � A y̋ mi
R, we obtain KM � A y̋ Kmi

R D A
y̋ K.

Therefore, KM 3 1, which means we can find some u 2 .A y̋ K/� and m 2M such that
um D 1. This in turn means

m D u�1 2M \ .A y̋ K/� �

bY
iD1

A..$i //
�:

In the case of
`
`Q`, we conclude as follows: sincem 2 A y̋ S D

Qb
iD1AJ$iK as well,

we get m D $ Exm0 for some Ex 2 Zb
�0 and m0 2 .A y̋ S/� by factoring out the largest powers

of the uniformizers $i from m.
In the case of P , we conclude as follows. Write m D .mi /biD1 with mi 2 A..$i //�.

The fact that P is the underlying reduced ind-scheme of P � means that we can assume, by
reduction to the b D 1 case in Remark 2.1, that, for all i , the coefficient of the lowest-degree
term of mi is a unit, not a nilpotent element, of A. Now we get m D $ Exm0 for some Ex 2 Zb

and m0 2 .A y̋ S/� by factoring, as before.

Lemma 2.5. For any C-algebra A and M 2
`
`Q`.A/, we have

M 2 D.A/
.1/
” SM D A y̋ S

.2/
” rkA..SM/=M/ D rkA..A y̋ S/=M/:

In particular, D.C/ D
`
`¹M 2 Q`.C/ j c.M/ D `º.

Proof. Equivalence (2) holds because SM � A y̋ S .
As for equivalence (1): SM D A y̋ S if and only if SM 3 1, if and only if sm D 1 for

some s 2 S and m 2M . By the explicit description of A y̋ S , the last condition is equivalent
to s0m0 D 1 for some s0 2 .A y̋ S/� and m0 2M , which means M 2 D.A/.

2.5. Using Weierstrass preparation, we now fix an isomorphism

R D CJx; yK=.f /
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such that Spec.R/! Spec.CJxK/ is a generically separable cover of degree n, fully rami-
fied at .x; y/ D .0; 0/. In particular, we can take f .x; y/ D yn C

Pn
iD1 ai .x/y

n�i for some
ai .x/ 2 CJxK with ai .0/ D 0 for all i .

For any C-algebra A and M 2 P .A/, we write NM DM=xM , as in the introduction. We
define a y-stable partial flag on NM to be an increasing sequence of AŒy�-submodules

F D .0 � NM 0 ¨ NM 1 ¨ � � � ¨ NM k
D NM/

such that grFi . NM/ D NM i= NM i�1 is locally free over A for all i . The parabolic type of F is the
integer composition � of n in which �i D rkA.grFi . NM//. For any such composition �, let P �

be the ind-scheme defined by

P �.A/ D ¹.M;F / jM 2 P �.A/; F is a y-stable partial flag on NM of type �º:

We define P �.c/;Quot`�.E/;D� analogously. Now, Corollary 2.3 and Lemmas 2.4–2.5 imply
analogues where P � , P �.c/, Q`

� , D� replace P , P .c/, Q`, D .

2.6. Proof of Theorem 3. Recall that we want to show

Quotmot
� .q/ D

1

.1 � q/b
Picmot

� .q/; where

8̂̂<̂
:̂

Quotmot
� .q/ D

X
`

q`ŒQ`
� �;

Picmot
� .q/ D

X
c

qcŒP �.c/=��:

Lemma 2.4 and (2.1) together imply that

Q`
� D

a
.c;Ex/2Z�0�Zb

�0

cCsum.Ex/D`

$ Ex � .D \Qc
�/:

So, in the Grothendieck group of Schfin
C , we have

Quotmot
� .q/ D

1

.1 � q/b
X
c

qcŒD \Qc
� �:

But Lemma 2.5 implies that D \Qc
� D D \P �.c/ for all c. So we also have

Picmot
� .q/ D

X
c

qcŒD \P �.c/� D
X
c

qcŒD \Qc
� �

in the Grothendieck group, as desired.

Remark 2.6. Zhiwei Yun has pointed out to us that Theorem 3 extends beyond the
planar case to any curve germ where both sides are well-defined, i.e., where the functors P=�

and Q` for ` � 0 are all schemes of finite type.
However, Conjecture 1 fails for non-planar germs. If R D CJx; y; zK=.xy; xz; yz/, the

union of the coordinate axes in xyz-space, then S D CJxK � CJyK � CJzK. Using [3, Proposi-
tion 6.1], we find that

Hilb.q; t/ D
1

.1 � q/3
�
1 � 2qC q2.t4 C t2 C 1/C q3.t4 � 2t2/

�
:
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By contrast, [52, Examples 2.7–2.8], [30], and Theorem 3 together give

Quot.q; q
1
2 t/ D

1

.1 � q/3
�
1 � 2qC q2.t2 C 1/C q3.t4 � 2t2/C q4t4

�
:

It would be interesting to understand why the difference remains small.

2.7. Cherednik’s conjecture. Below, we explain how Conjecture 1 is essentially equiv-
alent to [9, Conjecture 4.5] via Theorem 3.

For any integer e, let P e � P be the sub-ind-scheme defined by

P e.A/ D ¹M 2 P .A/ j e D rkA..A y̋ m�iR /=M/ � rkC.m
�i
R =R/ for all i � 0º:

These are precisely the connected components of P . By definition, J D P 0.
The discussion in the introduction explained how Conjecture 1 and Theorem 3 would

together imply (1.2). In turn, the unibranch case of (1.2) implies (1.1), because if b D 1, then
� D $Z acts simply transitively on the set of connected components of P , giving J D P=� .

Next, we explain how (1.1) is related to a point-counting analogue. Following Katz [30],
a class ŒX� 2 K0.Schfin

C / is called strongly polynomial count if and only if, for some finitely
generated subring B � C, spreading out of ŒX� to a class ŒX� 2 K0.Schfin

B /, and polynomial
p.X; t/ 2 ZŒt�, we have jXF.F/j D p.X; q/ for any finite field F D Fq and ring morphism
B ! F. Katz shows that, in this case, �.X; t/ D p.X; t2/. So if ŒH `� and ŒJ.c/� are strongly
polynomial count for all ` and c, then (1.1) is equivalent to the statement that

(2.2)
X
`

t`jH `
F.F/jjq!qt

‹
D

1

1 � t

X
c

tcj.J.c//F.F/j

for infinitely many (equivalently, all) finite fields F D Fq , where we have abused notation by
conflating H ` and J.c/ with their spreadings out.

Lastly, we relate (2.2) to [9, Conjecture 4.5]. There, Cherednik’s R and O D CJzK are
the respective analogues of our R and S D CJ$K over F. In particular, if they arise from R

and S by spreading out, then his JR.F/ is our
`
c$
�cJ.c/F.F/, which is also DF.F/; his

H0
mot.q; t/ is our

P
c t
cjJ.c/F.F/j; and his Z.q; t/ is our

P
` t
`jH `

F.F/j. In this case, (2.2)
coincides with [9, Conjecture 4.5].

2.8. We compute some minimal examples with n D 2 and � trivial.

Example 2.7. Take f .x; y/ D y2 � x2. Setting $ D y C x and % D y � x lets us
write R D CJ$;%K=.$%/ and S D CJ$K � CJ%K.

For all integers i; j and � 2 C�, consider the R-submodules of K given by

Mi;j;� D h.$
i ; �%j /i and Ni;j D h.$

i ; 0/; .0; %j /i:

We compute that P e.C/ consists of the Mi;j;� such that i C j D e and the Ni;j such that
i C j D e C 1. With more work, one can check that P e is an infinite chain of projective lines
intersecting transversely, where the sets ¹Mi;j;� j � 2 C�º are copies of Gm´ A1 n ¹0º and
the points Ni;j are the points of intersection. Embedding H ` and Q` into P , we compute

� H0.C/ D ¹M0;0º.
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� H `.C/ for ` � 1 consists of the Mi;j;� such that i C j D ` and the Ni;j such that
i C j D `C 1, for i; j � 1.

� Q`.C/ for any ` consists of the Mi;j;� such that i C j D ` � 1 and the Ni;j such that
i C j D `, for i; j � 0.

Finally, D D ¹M0;0;� j �º t ¹N0;0º, where c.N0;0/ D 0 and c.M0;0;�/ D 1. We get

Hilbmot
.2/ .q/´

X
`

q`ŒH `� D 1C
X
`�1

q`.`C .` � 1/ŒGm�/;

Quotmot
.2/ .q/ D

X
`

q`ŒQ`� D
X
`�0

q`.`C 1C `ŒGm�/;

Picmot
.2/ .q/ D

X
c

qcŒP .c/=�� D 1C qŒGm�:

Example 2.8. Take f .x; y/ D y2 � x3. Setting x D $2 and y D $3 lets us write

R D CJ$2;$3K and S D CJ$K:

For all integers i and � 2 C, consider the R-submodules of K given by

Mi;� D h$
i
C �$ iC1

i and Ni D h$
i ;$ iC1

i:

We compute that P e.C/ consists of theMe�1;�, for all � 2 C, and Ne. One can check that P e

is a projective line in which ¹Me�1;� j � 2 Cº corresponds to A1 and Ne corresponds to1.
Embedding H ` and Q` into P , we compute

� H0.C/ D ¹M0º and H1.C/ D ¹N2º.
� H `.C/ for ` � 2 consists of the M`;�, for all � 2 C, and N`C1.

� Q0.C/ D ¹N0º.
� Q`.C/ for ` � 1 consists of the M`�1;�, for all � 2 C, and N`.

Finally, D D ¹M0;� j �º t ¹N0º, where c.N0/ D 0 and c.M0;�/ D 1. We get

Hilbmot
.2/ .q/´

X
`

q`ŒH `� D 1C qC
X
`�2

q`ŒP1�;

Quotmot
.2/ .q/ D

X
`

q`ŒQ`� D 1C
X
`�1

q`ŒP1�;

Picmot
.2/ .q/ D

X
c

qcŒP .c/=�� D 1C qŒA1�:

3. Springer actions

3.1. In this section, we explain how the collection of polynomials ¹�.X� ; t/º� , whereX�
is one of P �=� , P �.c/=� , Quot`�.E/, etc., can be packaged into a single symmetric function.
We also introduce variants of these schemes that we will need in Sections 4–6. Throughout,
we will use the formalism of quotient stacks (in the smooth topology), but keep our exposition
self-contained beyond the definition of a stack via its functor of points.
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3.2. Fix an integer n > 0. Let N be the variety of nilpotent matrices in gln. By defini-
tion, ŒN =GLn� is the algebraic stack whose A-points form the groupoid of pairs .V; �/, where
V is a locally free A-module of rank n and � is a nilpotent endomorphism of V , and an iso-
morphism of pairs .V; �/ �! .V 0; � 0/ is an isomorphism of A-modules V �

! V 0 that transports
� onto � 0.

Recall that the GLn-orbits on N are indexed by the integer partitions of n via Jordan
type. Let O� � N be the orbit indexed by � ` n.

For each integer composition � of n, let B� be the flag variety of parabolic type �, whose
C-points parametrize partial flags of type � on Cn. Let

zN� D ¹.�; F / 2 N �B� j F is � -stableº:

TheA-points of Œ zN�=GLn� form the groupoid of tuples .V; �; F /, where .V; �/ 2 ŒN =GLn�.A/
and F is an �-stable partial flag of type � on V in the sense of Section 3.1. Let

� D �� W Œ zN�=GLn�! ŒN =GLn�

be the forgetful map. If � is the underlying partition of �, and �t is the transpose of �, then the
image of �� is ŒO�t=GLn�, the stack quotient of the orbit closure O�t . In particular, B.1n/ is
the full flag variety and �.1n/ is a stacky version of the Springer resolution of N .

Let X be any stack over C and pWX ! ŒN =GLn� a morphism. For each �, let X� ,
�X D �X;� , and p� be defined by the cartesian square

(3.1)
X� Œ zN�=GLn�

X ŒN =GLn�:
 

!
p�

 !�X  ! �

 

!
p

In particular, takingX D P and p.M/ D . NM;y/ yieldsX� D P � . Analogous statements hold
for P .c/, Quot`.E/, and D� , as well as the quotients P=� , P .c/=� once we observe that the
map p for X D P is invariant under � .

3.3. Now suppose that X is a scheme of finite type. In this case, we write H�c .X/ to
denote the compactly supported cohomology of X with complex coefficients, and W�� to
denote its weight filtration. The virtual weight polynomial of X is

�.X; t/ D
X
i;j

.�1/i tj dim grW
j Hic.X/

by definition. For any finite group G, we write K0.G/ to denote its representation ring. When
there is a weight-preserving action of G on H�c .X/, we may regard �.X; t/ as an element of
ZŒt�˝K0.G/.

Let K be a field. As in the introduction, letƒnK D ƒ
n
KŒ
EY � be the vector space of degree-n

symmetric functions in a family of variables EY D .Yi /1iD1 over K. Let ¹s�º�`n, resp. ¹h�º�`n,
be the basis of ƒnK of Schur functions, resp. complete homogeneous symmetric functions [38].
Let h�;�i be the K-linear Hall inner product on ƒnK defined by orthonormality of the Schur
functions. When K � Q, there is a K-linear isomorphism F WK˝K0.Sn/

�
! ƒnK, known as

the Frobenius character. It sends the irreducible character of Sn indexed by � to the Schur func-
tion s�, and the character of the induced representation IndSnS� .1/ to the complete homogeneous
function h�, where S� � Sn is the Young subgroup of type �.
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Proposition 3.1. If X is of finite type, then there is a weight-preserving action of Sn on
X.1n/ such that H�c .X�/DH�c .X.1n//

S� for all �. In particular, �.X� ; t/D hh�;F �.X.1n/; t/i,
where � is the integer partition obtained by sorting �. Moreover, as we run over �, these
identities uniquely determine �.X.1n/; t/ as an element of K˝K0.Sn/.

In what follows, we freely use functors between bounded derived categories of mixed
complexes of sheaves with constructible cohomology, where “mixed” means we either use
mixed Hodge modules, or spread out and reduce to a finite field to use mixed complexes of
`-adic sheaves, fixing an isomorphism NQ` ' C.

Proof. For all �, let S� D ��;�C and SX;� D �X;�;�C.
Note that S.1n/ is the GLn-equivariant Springer sheaf. By [46, Lemma 5.4], the underived

endomorphism ring End.S.1n// is pure of weight 0 and isomorphic to CSn. This defines an Sn-
action on S.1n/. Since (3.1) is a cartesian square, it follows that base change lifts this action
to SX;.1n/ ' p

�S.1n/. Taking hypercohomology, we get an action of Sn on H�c .X.1n//. Since
End.S.1n// is concentrated in weight zero, the last action preserves weights.

For general �, we have S� ' S
S�
.1n/ by [6, §2.7]. So, again by the cartesian square (3.1),

SX;� ' SS�X;.1n/. Therefore,

H�c .X;SX;�/ ' H�c .X;S
S�
X;.1n// ' H�c .X;SX;.1n//

S� ;

where the second step uses the fact that the inclusion SS�X;.1n/ � SX;.1n/ is split (say, via the iso-
typic decomposition of SX;.1n/). Above, the first expression is H�c .X�/ and the last expression
is H�c .X.1n//

S� .
The statements about the Hall inner product and uniqueness now follow from Frobenius

reciprocity and the fact that the h� span ƒnK.

Remark 3.2. We write HBM
� .X/ to denote the Borel–Moore homology of X with com-

plex coefficients, defined via the hypercohomology of the dualizing sheaf onX . Verdier duality
implies that Hic.X/ and HBM

�i .X/ are dual vector spaces for all i . Therefore, Proposition 3.1
also implies that HBM

� .X�/ D HBM
� .X.1n//S� for all �, where .�/G denotes the coinvariants of

a G-action.

3.4. For each integer r � 0, let Nr-len � N be the union of the orbits indexed by par-
titions of length r , i.e., the subvariety of nilpotent matrices � such that dim ker.�/ D r . Let
Xr-len D p

�1.Nr-len/ � X .
As in the introduction, let ‰.a;�/WƒnK ! KŒa� be the specialization map

‰.a;�/ D .1C a/
X

0�k�n�1

akhs.n�k;1k/;�i:

This map also appears in [27, Example 4] and [51, Corollary 1]. The next statement is a refor-
mulation of [24, Lemmas 9.3–9.4].

Lemma 3.3. We have

‰.a;F �.X.1n/; t// D
X
0�r�n

�.Xr-len; t/
Y

0�j�r�1

.1C at2j /:
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3.5. For each integer m � 0, let Pn�m;m � GLn be a parabolic subgroup whose Levi
quotient is isomorphic to GLn�m � GLm: for instance, the appropriate subgroup of block-
upper-triangular matrices. Let Xm-nest and �X D �X;m be defined by the cartesian square

Xm-nest Œpt=Pn�m;m�

X ŒN =GLn� Œpt=GLn�:

 

!

 !�X  !

 

!
p  

!

For instance, if X D ŒN =GLn�, then Xm-nest is the stack whose A-points form the groupoid of
tuples .V; �; V 0/, where .V; �/ 2 ŒN =GLn�.A/ and V 0 is an A-submodule of ker.�/ such that
ker.�/=V 0 is locally free over A of rank m.

For all r , the map ��1X;m.Xr-len/! Xr-len is a locally trivial fibration whose fiber is the
Grassmannian of codimension-m subspaces of Cr . The virtual weight polynomials of Grass-
mannians can be computed via their Schubert stratifications, which show them to be q-binomial
coefficients for q D t2. So, generalizing [24, 42], we deduce the following.

Lemma 3.4. We haveX
0�m�n

amtm.m�1/�.Xm-nest; t/ D
X
0�r�n

�.Xr-len; t/
Y

0�j�r�1

.1C at2j /:

3.6. In the rest of the paper, we set

F Pic.q; t/ D
X
c

qcF �.P .1n/.c/; t/:

For any finitely generated R-module E � K, we set

F QuotE .q; t/ D
X
`

q`F �.Quot`.1n/.E/; t/:

The symmetric functions F Hilb;F Quot from the introduction are now given by

F Hilb.q; t/ D F QuotR.q; t/ and F Quot.q; t/ D F QuotS .q; t/:

Conjecture 2 can be rewritten as the single identity

(3.2) F Hilb.q; t/
‹
D F Quot.q; q

1
2 t/:

The virtual weight specialization of Theorem 3 can be rewritten as

(3.3) F Quot.q; t/ D
1

.1 � q/b
F Pic.q; t/:

Finally, for any finitely generated R-module E � K, we spell out the meaning of Xr-len and
Xm-nest when X� D Quot`�.E/:

� Xr-len is the locally closed subscheme ofX D Quot`.E/whoseA-points are the modules
M 2 X.A/ such thatM=.xM C yM/ ' NM=y NM ' ker.y j NM/ is locally free overA of
rank r .
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� Xm-nest is the scheme of finite type whose A-points parametrize pairs .M;N /, where
M 2Quot`.E/.A/ andN 2Quot`Cm.E/.A/ and xM C yM �N �M . Note that these
containments are together equivalent to requiring that N=.xN C yN/ be a submodule of
M=.xM C yM/.

We henceforth write Quot`r-len.E/, Quot`m-nest.E/ in place of Quot`.E/r-len, Quot`.E/m-nest,
respectively. Lemmas 3.3–3.4 imply the following corollary.

Corollary 3.5. For any finitely generated R-module E � K, we have

‰.a;F QuotE .q; t// D
X
`;m

q`amtm.m�1/�.Quot`m-nest.E/; t/:

We set H `
m-nest D Quot`m-nest.R/ as in the introduction, and similarly,

Q`
m-nest D Quot`m-nest.S/:

In [42, 44], the H `
m-nest are called nested Hilbert schemes.

4. Torus knots

4.1. In this section, we give two independent proofs of Theorem 5 (i), stating in the
notation of Section 1.5 that NXn;d .a; q; t2/ D ‰.a;F Quotn;d .q; t// for any d > 0 coprime to n.
The relationship between our proofs is summarized below:

(4.1)

EHA Hikita F Picn;d .q; t/ F Quotn;d .q; t/

Cogen NXn;d .a; q; t2/ Gen:

 

!
[41, 51]

!

!
[40] !

!

[31] +
Section 4.7 !

!
Theorem 3

 

!

Corollary 3.5 +
Proposition 4.4

!

!
[32] !

!
[41]

The horizontal arrows indicate identities; the vertical arrows are specializations. The dotted
arrows are new bridges. Our first proof, labeled (A) in the introduction, follows the lower/right
path from F Quotn;d to NXn;d . Our second proof, labeled (B), follows the upper/left path.

4.2. Let R D CJx; yK=.yn � xd /. Setting x D $n, y D $d gives R D CJ$n;$d K,
S D CJ$K, and K D C..$//, generalizing Example 2.8.

Note that the delta invariant of R is ı D 1
2
.n � 1/.d � 1/ by a classical formula of

Sylvester. The number of branches is b D 1, so the link of the singularity has one component,
i.e., it is a knot.

4.3. Let Gm act on Spec.R/ according to t � .x; y/ D .tnx; tdy/, and on Spec.K/
according to t �$ D t$ . These actions are compatible. In particular, they induce a Gm-action
on P �: if A is a C-algebra and t 2 A� D Gm.A/ and M � A y̋ K is an .A y̋ R/-module
corresponding to an A-point of P �, then we define t �M to be the rescaling tM . This action
restricts to P .

Let E be a finitely generated R-submodule of K fixed by C� D Gm.C/. The Gm-
action on P restricts to Quot`.E/ for all `. We use this action to skeletonize Quot`.E/ into
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combinatorics. Let
�.E/ D ¹val$ .s/ j s 2 E n ¹0ºº;

I.E/ D ¹� � �.E/ j �C n;�C d � �º;

I `.E/ D ¹� 2 I.E/ j j�.E/ n�j D `º:

Note that �.R/ D nZ�0 C dZ�0 and �.S/ D Z�0.

Remark 4.1. In general, additive submonoids of Z�0 are also known as numerical
semigroups. A subset of Z stable under addition with a numerical semigroup � is also known
a �-module. Thus �.R/ is a numerical semigroup, �.E/ is a �.R/-module, and I.E/ is the
set of �.R/-submodules of �.E/.

For all � 2 I.E/, let

Genn.�/ D ¹k 2 � j k � n … �º;

Gen.�/ D ¹k 2 � j k � n; k � d … �º:

The elements of Genn.�/, resp. Gen.�/, are called the n-generators [22], resp. generators,
of �. The following lemma can be proved by arguments completely analogous to those of
[45, §3], by taking Quot`.E/ in place of J.

Lemma 4.2. In the setup above, the Gm-action on Quot`.E/ has isolated fixed points.
We have a bijection from I `.E/ to the set of fixed C-points, given by

I `.E/
�
! Quot`.E/Gm ;

� 7!M�´ Rhtk j k 2 �i:

Moreover, Quot`.E/ is partitioned by the subschemes

A� D
®
M 2 Quot`.E/

ˇ̌
lim
t!0

.t �M/ DM�

¯
;

and each A� forms an affine space.

Although the partition above is similar to a Białynicki–Birula decomposition, it does not
follow from said theorem when Quot`.E/ is singular.

4.4. Recall the nested Quot schemes Quot`m-nest.E/ that we reviewed at the end of
Section 3. The diagonal Gm-action on Quot`.E/ �Quot`Cm.E/ restricts to an action on
Quot`m-nest.E/. Let

I `m-nest.E/ D ¹.�;�
0/ 2 I `.E/ � I `Cm.E/ j � � �0 � �C �E;>0º:

The following lemma is proved in [42, §3.3] for E D R, and the proof for any other E � K is
analogous.

Lemma 4.3. The Gm-action on Quot`m-nest.E/ has isolated fixed points. Writing

�E;>0 D �.E/ n ¹0º;

we have a bijection
I `m-nest.E/

�
! Quot`m-nest.E/

Gm ;

.�;�0/ 7! .M�;M�0/:
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Moreover, Quot`m-nest.E/ is partitioned by the subschemes

A�;�0 D
®
.M;M 0/ 2 Quot`m-nest.E/

ˇ̌
lim
t!0

.M;M 0/ D .M�;M�0/
¯
;

and each A�;�0 forms an affine space.

4.5. Given � 2 I.E/, let

dim� D dim.A�/;
�n.�; k/ D ¹j 2 Genn.�/ j k � d < j < kº for all k 2 Gen.�/;

…Gen
� .a; t/ D

Y
k2Gen.�/

.1C atj�n.�;k/j/:

For E D R, the following proposition is [42, Corollary A.5]. To translate into the notation of
[42, §A.1], note that our a; t correspond to their a2t; t , and hence our j�n.�; k/j corresponds
to their ˇk.�/ � 1. In the proof below, we merely list the changes needed to extend the proof
to any E 2 P .C/.

Proposition 4.4. LetR D CJ$n;$d K for coprime n; d > 0. For any finitely generated
R-submodule E � C..$// fixed by the C�-action rescaling $ , we have

‰.a;F QuotE .q; t// D
X
`

q`
X

�2I`.E/

t2dim�…Gen
� .a; t2/

in the notation of Section 3.

Proof. By Corollary 3.5, it suffices to show that, for all ` � 0, we have

(4.2)
X

�2I`.E/

t2dim�…Gen
� .a; t2/ D

X
0�m�n

amtm.m�1/�.Quot`m-nest.E/; t/:

Theorems 13 and 14 of [42] give formulas for dim� and dim�;�0 ´ dim.A�;�0/ in theE D R
case. For general E, analogous proofs give the formulas

dim� D
X
i

.j�.E/>
i n�j � j�.E/>�i n�j/;(4.3)

dim�;�0 D
X
i


i…�
0

j�.E/>
i n�j C
X
i


i2�
0

j�.E/>
i n�
0
j �

X
i

j�.E/>�i n�
0
j(4.4)

for any� 2 I `.E/ with generators 
1; : : : ; 
r , syzygies �1; : : : ; �r , and subset�0 2 I `Cm.E/
such that .�;�0/ 2 I `m-nest.E/, where �.E/>k D �.E/ \ Z>k .

Next, [42, Lemma A.4] shows that, in the E D R case, if k 2 Gen.�/, then

(4.5) j�n.�; k/j D j¹i j 
i < kºj � j¹i j �i < kºj;

with the same notation for generators and syzygies as before. Then [42, Lemma A.1 and Theo-
rem A.2] show that, forE D R and any fixed�, formulas (4.3), (4.4), and (4.5) together imply
that

t2dim�…Gen
� .a; t2/ D

X
0�m�n

amtm.m�1/
X

�0j.�;�0/2I`m-nest.E/

t2 dim�;�0 :

The proofs of these statements for general E are the same. By Lemma 4.3, summing the last
identity over all � 2 I `.E/ recovers (4.2).
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4.6. Proof (A) of Theorem 5 (i). For any integer j � 0, we observe that � 2 I `.S/
implies�C j 2 I `Cj .S/, while k 2 Gen.�/, resp. Genn.�/, implies k C j 2 Gen.�C j /,
resp. Genn.�C j /. Consequently,

dim�Cj D dim�;

�n.�C j; k C j / D �n.�; k/C j for all k 2 Gen.�/;

…Gen
�Cj D …

Gen
� :

Now consider this combinatorial version of the domain D in Section 2,

Dn;d D ¹� 2 I.S/ j min.�/ D 0º:

By the observations above, the formula for ‰.F Quot.q; t/; a/ in Proposition 4.4 equals

1

1 � q

X
�2Dn;d

qjZ�0n�jt2dim�…Gen
� .a; t2/:

It remains to match this formula with the formula for NXn;d .a; q; t2/ for coprime n; d conjec-
tured in [23] and proved in [41]. It will be convenient to replace t with t

1
2 everywhere in what

follows.
In [19], Gorsky–Mazin gave a bijection from Dn;d to the set of n � d rational Dyck

paths, under which jZ�0 n�j and dim� correspond to the statistics on Dyck paths respec-
tively denoted area and codinv in [22]. Explicitly, form the semi-infinite grid of unit squares
in the x; y-plane whose vertices are the lattice points with 0 � x � d and y � 0. Label the
bottom left square, closest to the origin, with the integer �d ; label the other squares with inte-
gers that decrease by d as we go across rows, and increase by n as we go up columns. For
instance, the grid for .n; d/ D .4; 5/ is shown to the right, with nonnegative labels in blue. For
any � 2 Dn;d , the boundary of the region of squares with labels in � must contain a lattice
path �.�/ from .x; y/ D .0; 0/ to .x; y/ D .d; n/ that stays above the line y D d

n
x, since �

contains 0 and every element of� is nonnegative. Gorsky–Mazin’s bijection sends� 7! �.�/.

Remark 4.5. In [19], the set Dn;d is described as indexing the fixed points of a Gm-
action on J, rather than D . However, this indexing really factors through the decomposition
D D

`
c$
�cJ.c/, corresponding to the fact that the elements of Dn;d are what Gorsky–

Mazin call 0-normalized modules for �.R/. Compare to Section 2.7, where a similar remark
applies to Cherednik’s notation.
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Let � D �.�/ in what follows. Let

v�.�/ D ¹.x; y/ 2 � j .x � 1; y/; .x; y C 1/ 2 �º;

v�.�/ D ¹.x; y/ 2 � j .x C 1; y/; .x; y � 1/ 2 �º:

Following [41], we refer to elements of v�.�/, resp. v�.�/, as inner vertices, resp. outer ver-
tices, of � . That is, inner vertices are the bottom right corners of squares whose bottom and
right edges are contained in � , while outer vertices are the top left corners of squares whose
top and left edges are contained in � . (Note that outer vertices are called “internal vertices”(!)
in [23].)

The squares whose bottom edges are contained in � are precisely those labeled by
elements of Genn.�/. Of these, those whose right edges are also contained in � are those
labeled by elements of Gen.�/ n ¹0º. Hence there is a bijection Gen.�/ n ¹0º

�
! v�.�/ send-

ing any generator of � to the bottom right corner of the square it labels.
To illustrate the previous two paragraphs following the figure in Example 4.8, v�.�/

contains the bottom left vertices of the squares labeled 9; 11; 3; and 5, whereas v�.�/ contains
the bottom right vertices of the squares labeled 9; 1; and 3 and the above bijection is the one
given by this labeling.

For an arbitrary lattice point p, let ld=n.p/ be the line of slope d
n

through p, and let ��.p/
be the set of horizontal unit steps of � that intersect ld=n.p/ in their interiors. The following
lemma is inspired by ideas from [19] and [42, §A].

Lemma 4.6. If k 2 Gen.�/ n ¹0º labels a square with bottom right corner p 2 v�.�/,
then the map �n.�; k/! ��.p/ that sends k to the bottom edge of the square labeled k is
a bijection. Thus

1

1C a
…Gen
� .a; t/ D

Y
p2v�.�/

.1C atj�� .p/j/:

Proof. We observe that if p is the bottom right corner of a square labeled k, then the
line ld=n.p/ intersects the bottom edge of a square labeled j if and only if k � d < j < k.
Indeed, this is easiest to see when p D .n; d/ and k D 0, and the general case follows from
translating ld=n.n; d/ onto ld=n.p/.

In our notation, the formula for NXn;d for coprime n; d in [23, 41] is

NXn;d .a; q; t/ D
1

1 � q

X
n�d

Dyck paths �

qarea.�/tcodinv.�/
Y

p2v�.�/

.1C atj�� .p/j/;

where, by [19], area.�/ D jZ�0 n�j and codinv.�/ D dim� whenever � D �.�/. See the
end of Appendix A for the precise matching of grading conventions. So, by Lemma 4.6, it
remains to show the following lemma.

Lemma 4.7. For any n � d Dyck path � as above,Y
p2v�.�/

.1C atj�� .p/j/ D
1

1C a

Y
p2v�.�/

.1C atj�� .p/j/:



20 Kivinen and Trinh, The Hilb-vs-Quot conjecture

Proof. Since d and n are coprime, no two elements of v�.�/ [ v�.�/ have the same
perpendicular distance to the line l ´ ld=n.n; d/. The one farthest from l must belong to
v�.�/. Let p0 be this element, and let p1; p2; : : : ; pm be the remaining elements ordered by
decreasing distance from l . For 1 � i � m, let

�i D

8̂<̂
:
�1; .pi�1; pi / 2 v�.�/ � v�.�/;

0; .pi�1; pi / 2 .v�.�/ � v
�.�// [ .v�.�/ � v�.�//;

1; .pi�1; pi / 2 v
�.�/ � v�.�/:

Let �i D
P
j�i �i . Then, for all i , we have �i D j��.pi /j � 0.

If m D 0, then we are done; else, we must have �1 D �m D 1. It follows that every value
attained by the sequence �1; : : : ; �m must occur as many times for indices i with pi 2 v�.�/
as for indices i with pi 2 v�.�/ n ¹p0º.

Example 4.8. The figure below shows a 7 � 5 Dyck path � for which jv�.�/j D 3 and
jv�.�/j D 4. The corresponding � 2 D7;5 yields

Gen7.�/ D ¹0; 5; 3; 1; 6; 11; 9º and Gen.�/ D ¹0; 3; 1; 9º:

In the notation of Lemma 4.7, .�i /i D .1; 1; 0; 0; 0;�1/ and .�i /i D .1; 2; 2; 2; 2; 1/.

Remark 4.9. Lemma 4.7 refines the last display on [41, p. 60], which merely asserts
that

P
p2v�.�/

j��.p/j D
P
p2v�.�/ j��.p/j.

4.7. Proof (B) of Theorem 5 (i). We will explain each arrow in the left-hand portion of
diagram (4.1).

First, we invoke Theorem 3 to pass from F Quotn;d to F Picn;d .
Next, we explain the arrow labeled [31]. In Proposition 7.4, we recall the explicit iso-

morphism between P � and a parabolic affine Springer fiber for GLn studied by Hikita [31], to
be denoted yB .d/

� . We refer to Section 7 for the notation. Note that Hikita worked with SLn,
not GLn, but we account for this difference by passing to P 0 ' P=�: see part (iii) of the
proposition.
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Both P � and yB .d/
� admit affine pavings analogous to those in Lemmas 4.2–4.3. Hikita

introduced an increasing filtration of yB .d/
� by unions of paving strata, which we review in Sec-

tion 8.4. Let F�� be the induced filtration on the Borel–Moore homology. Theorem 4.17 of [31]
matches the bigraded Frobenius characteristic of grF

�HBM
� . yB

 .d/
.1n/ / with a q; t -symmetric func-

tion defined combinatorially using labeled n � d rational Dyck paths. This symmetric func-
tion is now known as the Hikita polynomial for .n; d/. It was independently introduced by
Armstrong at the 2012 AMS Joint Mathematics Meetings [2].

At the same time, there is a filtration of the variety P ..1n//=� by unions of the sub-
varieties P .c/..1n//=� , which we review in Section 8.2. Theorem 8.3 says that it corresponds
to Hikita’s filtration on yB .d/

� , after postcomposing with an involution �. Lemma 8.2 (ii) says
that, on Borel–Moore homology, � is Springer-equivariant and preserves weights. Due to the
affine paving, the weight filtration matches the homological one. We deduce that the Hikita
polynomial for .n; d/ is unchanged by �, and matches F Picn;d once we invoke the duality
between Borel–Moore homology and compactly supported cohomology. Hikita’s variables t; q
correspond to our variables q; t2.

To explain the arrow to “EHA” in the top left of (4.1): the rational shuffle theorem for
coprime n and d , formulated by Gorsky–Neguţ in [23] and proved by Mellit in [40], matches
the Hikita polynomial with an expression denoted Qd;n � .�1/n in [4]. Here, Qd;n is an element
of the elliptic Hall algebra (EHA), and .�1/n is a vector in the Fock-space representation of
the EHA on symmetric functions.

To explain the last two arrows needed to arrive at NXn;d .a; q; t2/: Mellit’s proof implic-
itly yields a recursive formula for Qd;n � .�1/n, and hence F Picn;d , in terms of the Dyck-
path operators from his prior work with Carlsson [7]. This recursion is stated explicitly in
[51, Theorems 2–3]. At the same time, in [32], Hogancamp–Mellit establish a recursive for-
mula for the KhR homology of the positive .n; d/ torus link, for arbitrary n; d . As explained in
Remark 4.10, below, this yields a closed form for NXn;d .a; q; t2/ that we denote by “Cogen”
in (4.1). In [51, Corollary 1], Wilson shows that, for n; d coprime, Mellit’s recursion for
Qd;n � .�1/n specializes under ‰ to Hogancamp–Mellit’s recursion for NXn;d .a; q; t2/. We note
that essentially the same result appears in [41, Corollary 3.4]. This completes proof (B).

Remark 4.10. The closed form for NXn;d .a; q; t2/ resulting from [32] is due to Gorsky–
Mazin–Vazirani [22]. It is labeled “Cogen” in diagram (4.1) because it uses the same set of
semigroup modules Dn;d as in proof (A), but replaces …Gen

� .a; t/ with …Cogen
� .aq�1; t/, where

…Cogen
� .b; t/ D

Y
k2Cogen.�/

.1C bt�.�;k//;

where the product runs over the set of (nonnegative) cogenerators

Cogen.�/ D ¹k 2 Z�0 n� j k C n; k C d 2 �º;

and for any k 2 Cogen.�/, we set

�.�; k/ D j¹j 2 Genn.�/ j k C nC 1 � j � k C nC dºj

D j¹j 2 Genn.�/ j k C n < j < k C nC dºj:

Remark 4.11. It is natural to ask how much of diagram (4.1) generalizes to integers n; d
that are not coprime. We will address this question in a sequel paper. In Section 6, where we
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address the d D nk case, our proof does not involve generalizing (4.1). For now, we mention
that

� the rational shuffle conjecture was generalized to arbitrary n; d > 0 in [4]. This is the
actual result proved by Mellit in [40].

� Theorem 3 and the Cogen formula for NXn;d extend to arbitrary n; d .

� In [51], Wilson introduces generalizations of Qd;n � .�1/n and the Hikita polynomial to
arbitrary n; d , which differ from those in [4]. He has nonetheless shown that his Hikita
polynomial specializes to the Cogen formula in (ii), and hence to NXn;d .

4.8. Gen versus Cogen. This subsection is a digression on Remark 4.10. As men-
tioned, the identity matching the Gen and Cogen formulas is

(4.6)
1

1C a

X
�2Dn;d

qjZ�0n�jtdim�…Gen
� .a; t/ D

X
�2Dn;d

qjZ�0n�jtdim�…Cogen
� .aq�1; t/:

It is remarkable because Gen and Cogen behave very differently. Note that, at a! 0, the terms
…Gen
n ;…Cogen

n disappear above, and both sides specialize to

(4.7)
X

�2Dn;d

qjZ�0n�jtdim� :

Similarly, our proofs of Theorem 5 (i) simplify drastically in the a! 0 limit; almost all of their
combinatorial complexity lies in the higher a-degrees.

Remark 4.12. Let Cn;d .q; t/ D Cn;d .t; q/ be the q; t -rational Catalan number intro-
duced in [26]. Via their bijection from Dn;d to the set of n � d Dyck paths, Gorsky–Mazin
showed that (4.7) is tıCn;d .q; t�1/ (see [19]).

Below, we illustrate the contrast between Gen and Cogen in an example where d DnC 1.
Throughout, we label the elements ofDn;d in the form�a1;:::;an , where Genn D ¹a1; : : : ; anº
and ai C ı � jZ�0 n�j � i � 1 .mod n/ for all i , to streamline comparison to Example 8.8.

Example 4.13. Take .n; d/ D .3; 4/. Then ı D 3 and

D3;4 D ¹�0;4;8; �5;0;4; �1;5;0; �4;2;0; �0;1;2º

with the following statistics.

� qjZ�0n�jtdim� Gen n ¹0º 1
1Ca…

Gen
� Cogen …Cogen

�

�0;4;8 q3t3 ; 1 ¹5º 1C b

�5;0;4 q2t2 ¹5º 1C at ¹1; 2º .1C b/.1C bt/

�1;5;0 qt2 ¹1º 1C at ¹2º 1C b

�4;2;0 qt ¹2º 1C at ¹1º 1C b

�0;1;2 1 ¹1; 2º .1C at/.1C at2/ ; 1
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Here, (4.6) becomes

q3t3 C .q2t2 C qt2 C qt/.1C at/C 1.1C at/.1C at2/

D .q3t3 C qt2 C qt/.1C aq�1/C q2t2.1C aq�1/.1C aq�1t/C 1:

In general, one can check that there is a permutation RowWDn;d ! Dn;d defined by
Cogen.Row.�// D Gen.�/ n ¹0º. Nathan Williams has pointed out to us that Row ought to
be an example of rowmotion, a certain operation on the order ideals of a finite poset [47]. To see
how, regard Z�0 n �.R/ as a poset in which j � k if and only if k � j 2 �.R/, and the sets
Z�0 n� for � 2 Dn;d as its order ideals. We would be curious to know whether rowmotion
sheds any light on the relationship between the Gen and Cogen formulas.

4.9. Proof of Theorem 6. We claim that F Hilb3;d .q; t/ D F Quot3;d .q; q
1
2 t/ for d > 0

coprime to 3. The first step is the asymptotic statement.

Proposition 4.14. For any integer n > 0, we have

lim
d!1

d coprime to n

‰.a;F Hilbn;d .q; t// D
Y

1�k�n

1C aqk�1t2k�2

1 � qk t2k�2
;

lim
d!1

d coprime to n

‰.a;F Quotn;d .q; t// D
Y

1�k�n

1C at2k�2

1 � qt2k�2
;

where the limits are taken in QJq; tKŒa�.

Proof. Throughout, Corollary 3.5 allows us to replace the expressions ‰.F Hilbn;d /
and ‰.F Quotn;d / with corresponding generating functions for nested pairs of R-modules,
and Lemma 4.3 allows us to compute the latter using the combinatorics of the monomial
R-modules.

The identity for F Hilbn;d was shown in [42]: see [42, Proposition 6]. (Recall that our
variables a; q; t correspond to their variables a2t; q2; t .) To prepare for the proof of the second
identity, we briefly review their argument.

Using “staircase diagrams” [42, §3.2] to index monomial ideals, or equivalently elements
� 2 I.R/, then invoking Lemma 4.2, it is not hard to show that the identity for F Hilbn;d holds
when a D 0. Indeed, as d !1, the defining condition that staircase width be bounded by d
disappears.

The formula that incorporates a can be bootstrapped from the a D 0 formula by system-
atically replacing single elements � with collections of pairs .�00; �0/. Namely, if � is fixed,
then we consider all 2n ways of choosing a subset of ¹1; : : : ; nº, and add a column of height h
to the staircase of � for each h in the subset. This determines some new �0 2 I.R/. We get
a larger�00 � � by replacing each new column with a column that is one box shorter in height.
We can then check that each � gives rise to 2n pairs .�00; �0/, that every possible pair arises
this way, and that the total contribution of the pairs .�00; �0/ to the series in a; q; t is the contri-
bution of � to the a D 0 series multiplied by some binomial factor. This factor is precisely the
numerator

Qn
kD1 .1C aqk�1t2k�2/.

Now we turn to the identity for F Quotn;d . In place of staircases, we index elements
� 2 I.S/ by vectors

Eg D .g1; : : : ; gn/ 2 Zn�0;
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where gi is the number of elements of �.S/ D Z�0 that are greater than exactly i � 1 of the
elements of Genn.�/. Again, as d !1, any constraints on the vector Eg disappear. If � is
indexed by Eg, then its contribution to the a D 0 series is q

P
i gi t2

P
i .i�1/gi by Lemma 4.2.

To bootstrap the a variable, we send � to the collection of all pairs .�;�0/ where
� is the same and �0 � � is obtained as follows: pick a subset of ¹1; : : : ; nº; then form
Genn.�0/ from Genn.�/ by shifting up by 1 those elements of Gen.�/ whose residue mod-
ulo n belongs to the subset. By Lemma 4.3, the total contribution of these pairs to the series in
a; q; t is the contribution of the original � to the a D 0 series multiplied by the binomial factorQn
kD1 .1C at2k�2/.

Observe that ‰.a;F Hilbn;d .q; t// and ‰.a;F Quotn;d .q; t// agree with their d !1
limits up to degree d in q. At the same time, we have the following proposition.

Proposition 4.15. For any plane curve germ with complete local ring R, the series
‰.a;F Hilb.q; t// is determined by its expansion up to degree ı in q. If R ' CJ$n;$d K for
coprime n; d > 0, then the same holds for ‰.a;F Quot.q; t//.

Proof. Observe that the expansion of a formal series

‰ 2 ZJqKŒa˙1; q�1; t˙1�

up to a given q-degree determines the expansion of .1 � q/b‰ up to that q-degree, for any
integer b > 0.

Proposition 3 of [42] shows that if‰ D ‰.a;F Hilb.q; t// and b is the number of branches
of R, then q�ı.1 � q/b‰ is a Laurent polynomial in q-degrees �ı through ı, invariant under
q�1 7! qt2. (Again, our q is their q2.) So, in this case, the expansion of ‰ up to q-degree ı
determines the entire series.

Now take‰ D‰.a;F Hilb.q; t//, supposing thatR' CJ$n;$d K for coprime n;d > 0.
By Theorem 5 (i), ‰ matches the graded dimension of the unreduced KhR homology of the
.n; d/-torus knot, up to certain grading shifts and substitutions. Hence .1 � q/‰ matches the
corresponding series from reduced KhR homology, as defined in Appendix A. Corollary 1.0.2
of [43] or [16, Theorem 1.2] show that the latter, normalized with our conventions and shifted
by q�

ı
2 , is a Laurent polynomial in q

1
2 -degrees �ı through ı, invariant under q�

1
2 7! q

1
2 t.

So again, the expansion of ‰ up to q-degree ı determines the entire series.

Together, Proposition 4.14 and Proposition 4.15 imply that if ı � d , then

‰.a;F Hilb.q; t// D ‰.a;F Quot.q; q
1
2 t//:

But ı D 1
2
.n � 1/.d � 1/. So the hypothesis can be simplified to n � 3. Finally, when n � 3,

the map ‰ loses no information, so we can omit it from both sides. This proves Theorem 6.

5. Polynomial actions and y-ification

5.1. In this section, we review the precise definition of y-ified Khovanov–Rozansky
homology, then give a precise statement of Conjecture 7, spelling out all of the gradings
involved. This also serves as preparation for Section 6.
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5.2. We freely assume the notation of Appendix A. Thus T D Gnm and SBim is the
category of Soergel bimodules over S D H�T .pt/. We explain in Appendix A that, for any braid
ˇ on n strands, the Khovanov–Rozansky homology of the link closure of ˇ can be computed
from Hochschild cohomology of the Rouquier complex NTˇ , an object of Kb.SBim/.

In [18, §5.1], the authors explain that the term-by-term action of S˝ Sop on NTˇ factors
through that of a smaller quotient. Fix matching coordinates

S D CŒt1; : : : ; tn� and Sop
D CŒtop

1 ; : : : ; t
op
n �:

Let w 2 Sn be the underlying permutation of ˇ. Then the actions of ti and top
w.i/ on NTˇ are

homotopic for all i . So, up to homotopy, the .S˝ Sop/-action on NTˇ factors through the quotient
of S˝ Sop by the ideal h.ti � top

w.i//i i.
At the same time, the actions of ti and top

i on S coincide for all i . So, under the Hochschild
cohomology functor HH D

L
i;j ExtiS˝Sop.S; .�/.j //, the .S˝ Sop/-action on NTˇ is trans-

ported to an action that also factors through the quotient of S˝ Sop by the ideal h.ti � top
i /i i.

Thus HH. NTˇ / inherits an action of the ring of w-coinvariants Sw ´ S=h.ti � tw.i//i i.
This is a polynomial ring on b variables, where b is the number of components of the link
closure of ˇ. It will be convenient to fix coordinates Sw D CŒEx�´ CŒx1; : : : ; xb� so that each
xj is the image of some ti . Recalling that Soergel bimodules are graded so that deg.ti / D 2,
we see that Ex acts on HH. NTˇ / with bidegree .0; 2/. Hence Ex acts on

HHH. NTˇ / D
M
I;J;K

HK.HHI;J . NTˇ //

with tridegree .0; 2; 0/.

5.3. In [15], Gorsky and Hogancamp introduced a deformation of HHH called y-ified
Khovanov–Rozansky homology, which we will denote HY and review below.

We write d for the differential on NTˇ . Let hi be a homotopy from the ti -action on Tˇ
to the top

w.i/-action, so that Œd; hi � D ti � top
w.i/ as operators. We may choose the hi so that

they square to zero and anticommute. Let S0 D CŒu1; : : : ; un� be another copy of S, and let
d 0 D d ˝ idC

P
i hi ˝ ui as an operator on NTˇ ˝ S0. We compute that

.d 0/2 D
X
i

.ti � t
op
w.i//˝ ui :

We deduce that the induced action of .d 0/2 on HH. NTˇ /˝ S0w vanishes, where

S0w ´ S0=h.ui � uw.i//i i;

like before. By definition, HY. NTˇ / D
L
I;J;K HYI;J;K. NTˇ /, where

HYI;J;K. NTˇ / D HK.HHI;J . NTˇ /˝ S0w ; d
0/:

We again fix coordinates S0w D CŒ Ey�´ CŒy1; : : : ; yb�, so that each yj is the image of some ui .
The definition of d 0 implies that Ey acts on the complex .HH. NTˇ /˝ S0w ; d 0/ with bidegree
.0;�2/ on the first factor and cohomological degree 2. Hence Ey acts on HY. NTˇ / with tridegree
.0;�2; 2/.

Altogether, the y-ified homology of ˇ is a triply graded vector space HY. NTˇ / equipped
with a bigraded CŒEx; Ey�-module structure, which recovers HHH. NTˇ / upon passing from CŒEx; Ey�
to CŒEx; Ey�=h Eyi D CŒEx�.
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5.4. Writing e for the writhe of ˇ, as in Appendix A, let

NYˇ ´
M
i;j;k2Z

NYi;
j
2
;k
2

ˇ

be the .Z � 1
2

Z � 1
2

Z/-graded CŒEx; Ey�-module defined by

NYi;
j
2
;k
2

ˇ
D HYi;e�2iCj�k;e�k. NTˇ /:

From the formula
HYI;J;K. NTˇ / D NY

I;ICJ
2
�K
2
;e�K

2
ˇ

;

we see that
NXˇ .a; q; t/ D

X
i;j;k2Z

aiq
j
2 t
k
2 dim. NYi;

j
2
;k
2

ˇ
˝ZŒEx; Ey� ZŒEx�/

in the notation of Appendix A. Moreover, we see that Ex and Ey respectively act on each summand

NYiˇ ´
M
j;k2Z

NYi;
j
2
;k
2

ˇ

with bidegrees .1; 0/ and .0;�1/.
We return to our setup where f .x; y/ D 0 is a generically separable degree-n cover of

the x-axis, embedded in the x; y-plane. The preimage in the cover of a positively oriented loop
around x D 0 is a braid f̌ on n strands such that the number b of branches of f is also the
number of components of the link closure of ˇ, and such that NXf D NX f̌

. We similarly set
NYf D NY f̌

.
Let T .b/ D Gbm. As explained in the introduction, once we fix identifications

CŒEx� ' CŒ��0� and CŒ Ey� ' H�T.b/.pt/;

the commuting actions of ��0 and T .b/ on
`
`Q`

� together produce a CŒEx; Ey�-module structure
on
L
` HBM;T .b/
� .Q`

�/ for all compositions � of n. The variables xj and yj respectively act by
1 and 0 on the length `, by 0 and �2 on the cohomological degree, and by 0 and �2 on the
weight filtration W��.

Let QEx; EyS;� ´
L
`;k QEx; Ey;`;kS;� be the Z2-graded CŒEx; Ey�-module defined by

QEx; Ey;`;kS;� D grW
k HBM;T .b/
� .Q`

�/:

We abbreviate by writing zQEx; EyS D QEx; EyS;.1n/. The Springer action of Sn on the Borel–Moore
homology of

`
`Q`

.1n/ lifts to its equivariant Borel–Moore homology and commutes with the
CŒEx; Ey�-action above. So, by Proposition 3.1, we can use the bigraded .CŒEx; Ey� � CSn/-module
formed by zQEx; EyS to recover the bigraded CŒEx; Ey�-modules QEx; EyS;� for all �.

Abusing notation, let ‰ be the functor from bigraded CSn-modules to triply graded
vector spaces given by

‰.M/i;j;k D
M
j;k

HomSn.V.n�iC1;1i�1/ ˚ V.n�i;1i /;M
j;k/;

where in general, V� is the irreducible representation of Sn indexed by � ` n. Altogether, the
most precise version of Conjecture 7 is the following.
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Conjecture 5.1. In the setup above,

(i) NYf is supported in integral tridegrees.

(ii) There is an isomorphism of CŒEx; Ey�-modules NYf
�
! ‰.zQEx; EyS / that sends degree .i; j; k/

onto degree .i; j; 2k/. In particular,‰.zQEx; EyS / is supported in even cohomological degrees.

Remark 5.2. In the definition of zQEx; EyS , we did not collapse the cohomological degree
to an Euler characteristic, as in the definition of Quot.q; t/. Thus the statement that ‰.zQEx; EyS /

is supported in even cohomological degrees is needed to ensure that Conjecture 5.1 special-
izes to Conjecture 4 upon base change from CŒEx; Ey� to CŒEx�. An analogous statement about
the cohomology of P=� was shown in [21] for certain unibranch plane curve germs, called
“generic” germs in [21].

6. .n; nk/ torus links

6.1. In this section, we prove Theorem 5 (ii), stating in the notation of Section 1.5 that
NXn;nk.a; q; t2/ D ‰.a;F Quotn;nk.q; t// for any integer k > 0.

Throughout, f .x; y/ D yn � xnk . For such f , our argument will implicitly prove Con-
jecture 5.1 (i), as well as the matching of trigradings in Conjecture 5.1 (ii). The strategy is to
relate both sides to rkp.1n/ 2 ƒnq;t, where in general, p� is the power-sum symmetric function
indexed by � ` n, and r is the Bergeron–Garsia operator on ƒnq;t (see [28]). We will use the
theory of symmetric functions freely. For more background on our tools, see [29, 38].

6.2. In [8], Carlsson–Mellit computed a version of the underlying bigraded CSn-mod-
ule of zQEx; EyS for the chosen f . To make this precise, let

zQBM;T .n/
S;n;nk .q; t/ D

X
`;k

q`tkHBM;T .n/
k .Q`

.1n// 2 Q.q; t/˝K0.Sn/:

Recall the Frobenius character F WQ.q; t/˝K0.Sn/! ƒnq;t from Section 3.

Proposition 6.1. For all integers n; k > 0, we have

F zQBM;T .n/
S;n;nk .q; t/ D

1

.1 � q/.1 � t2/
r
kpn:

Proof. Just as the ind-schemes P � are isomorphic to parabolic affine Springer fibers for
GLn, so the ind-schemes

`
`Q`

� are isomorphic to the positive parts of certain affine Springer
fibers, in the terminology of [8, 12]. This can be shown by adapting the proof of [12, Theo-
rem 1.1]. In Proposition 7.2, we give the explicit isomorphisms for the case where

f .x; y/ D yn � xnk;

and show that, for � D .1n/, they match the Springer actions on the two sides. In particular, we
match

`
`Q`

.1n/ for this choice of f with the ind-scheme denoted Zk in [8].
There is an extra Sn-action on the T .n/-equivariant Borel–Moore homology ofZk called

the dot action, induced by the Sn-action on the homotopy type of the curve yn D xkn that
permutes its branches. The dot action commutes with the Springer action. In this way, we can
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upgrade F zQBM;T .n/
S;n;nk

.q; t/ to an element

F EY ; EZ
zQBM;T .n/
S;n;nk .q; t/ 2 ƒnq;tŒ EY ; EZ�;

whereƒq;tŒ EY ; EZ� D ƒq;tŒ EY �˝Q.q;t/ ƒq;tŒ EZ�. Above, EY and EZ respectively record the Springer
and dot actions. The actual statement of [8, Theorem A] is

F EY ; EZ
zQBM;T .n/
S;n;nk .q; t

1
2 / D rken

h EY EZ

.1 � q/.1 � t/

i
;

in plethystic notation.
We want to recover the Frobenius character in EY alone. To this end, it suffices to pair

the right-hand side with p.1n/Œ EZ� under the Hall inner product: indeed, under F , pairing with
p.1n/ corresponds to evaluating a character of Sn at the identity element. Note that

.g; h/ 7!
D
g
h EY EZ

.1 � q/.1 � t/

i
; h
E

is a version of Macdonald’s q; t-inner product [29, §3.5], with respect to which the power-sum
symmetric functions form an orthogonal basis of ƒnq;t. Therefore,D

r
ken

h EY EZ

.1 � q/.1 � t/

i
; p.1n/Œ EZ�

E
D r

kp.1n/

h EY

.1 � q/.1 � t/

i
D

1

.1 � q/n.1 � t/n
r
kp.1n/Œ EY �;

where the second equality used p.1n/ D pn1 . Finally, substituting t2 for t everywhere gives the
statement in the proposition.

Remark 6.2. Interestingly, the fundamental domain D.1n/ from Lemma 2.4 and its
ensuing discussion appears implicitly in [8]: its complement is an open sub-ind-scheme of Zk
that features heavily in the proof of [8, Theorem A].

Corollary 6.3. For all integers n; k > 0, we have

F Quotn;nk.q; t/ D
1

.1 � q/n
r
kp.1n/:

Proof. Since the homology of Zk is pure [13, 14], it is T .n/-equivariantly formal [13,
Lemma 2.2]. We deduce that if QBM

S;n;nk
is the analogue of zQBM;T .n/

S;n;nk
for non-equivariant Borel–

Moore homology, then

F QBM
S;n;nk.q; t/ D .1 � t2/nF zQBM;T .n/

S;n;nk .q; t/ D
1

.1 � q/n
r
kp.1n/:

Next, recall that Borel–Moore homology and compactly supported cohomology with complex
coefficients are dual to each other. Finally, since both are supported in even degrees [8, 38], and
in degree i , pure of weight i (see [14, Corollary 1.3]), we know thatX

i

ti dim Hic.Zk/ D �.Zk; t/:
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6.3. Turning to the KhR side, observe that Gorsky–Hogancamp computed the y-ified
KhR homology of the .n; nk/ torus link in [15], obtaining its usual KhR homology as a corol-
lary. After including the correct denominators, [15, Theorem 7.13] says

NYn;nk.a; q; t/´
X
i;j;k

aiq
j
2 t
k
2 dim. NYi;

j
2
;k
2

f
/ D

1

.1 � q/n.1 � t/n
‰.rkp.1n/; a/:

Similarly, after correction, [15, Theorem 7.14] says

NXn;nk.a; q; t/ D .1 � t/n NYn;nk.a; q; t/ D
1

.1 � q/n
‰.rkp.1n/; a/:

Again, we refer to Section 5 and Appendix A to match our grading conventions with those
in [15]. This concludes the proof of Theorem 5 (ii).

6.4. To conclude this section, we verify the a D 0 limit of [42, Conjecture 2] for two
plane curve germs of the form yn D xnk . By way of Theorem 5 (ii), this also verifies Conjec-
ture 1 in these cases.

Example 6.4. Take n D 2 and k D 2. By [36, Example 6.18],

Hilb.q; t/ D
1

.1 � q/2
.1 � qC q2t2 � q3t2 C q4t4/:

At the same time, the recursion of [22, 32] gives

NX2;4.a; q; t/ D
1

.1 � q/2
�
1C q.t � 1/C q2.t2 � t/

�
:

These series agree under .q; t/ 7! .q; qt2/.

Example 6.5. Take n D 3 and k D 1. By [36, Example 6.17],

Hilb.q; t/ D
1

.1 � q/3
�
1 � 2qC q2.t2 C 1/C q3.t4 � 2t2/C q4.t4 C t2/ � 2q5t4 C q6t6

�
:

At the same time, by [22, Example 32],

NX3;3.a; q; t/ D
1C qt
1 � q

C
qt2 C 2q2t2

.1 � q/2
C

q3t3

.1 � q/3
:

Again, these agree under .q; t/ 7! .q; qt2/.

7. Affine Springer fibers

7.1. In this section, we establish the comparisons to affine Springer fibers needed in
Sections 4–6. For the general relationship between local compactified Jacobians and affine
Springer fibers, see [37].

7.2. Suppose that G is a complex reductive algebraic group. Its loop group yG (resp.
arc group yK) is defined by yG.A/ D G.A..x/// (resp. yK.A/ D G.AJxK/) for all C-algebras A.
Thus there is a projection map yK ! G that sends g.x/ 7! g.0/.
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Henceforth, let G D GLn and g D gln. Each integer composition � of n defines a block-
upper-triangular parabolic subgroupP� � G. Its preimage yK� � yK is called the corresponding
parahoric subgroup. The partial affine flag variety ofG of parabolic type � is the fpqc quotient
yB� D yG= yK� , which turns out to be an ind-scheme. For any 
 2 g.CJxK/, let

yB

�;� D ¹g

yK� 2 yB� j Ad.g�1/
 2 Lie. yK�/º:

The underlying reduced ind-scheme yB

� �

yB


�;� is called the affine Springer fiber over 
 of

parabolic type �. As yG= yK is also known as the affine Grassmannian, we set yG D yG= yK D yB.n/

and yG 
 D yB

.n/.

7.3. The functor L, and yn D xnk. There is a well-known lattice description of the
above spaces. Namely, let L be the functor from C-algebras to sets defined by

L.A/ D ¹AJxK-submodules L � A..x//n j

there exists i such that xiAJxKn � L � x�iAJxKn and

.x�iAJxKn/=L is locally free over A of finite rankº

for any C-algebra A. For any �, let L� be the functor defined by

L�.A/ D ¹.L; F / j L 2 L.A/; F is a partial flag on NL´ L=xL of type �º:

Let F std be the unique partial flag on Cn of type � that has stabilizer P� under right multipli-
cation (of row vectors) by GLn.C/.

Lemma 7.1. For each integer composition � of n, there is an isomorphism of fpqc
sheaves yB�

�
! L� that sends

(7.1) g yK� 7! .Lg ; Fg/´ .CJxKn � g�1; F std
� g�1/

for all g yK� 2 yB�.C/. In particular, L is representable by an ind-scheme.

Let LC � L be the sub-ind-scheme defined by LC.A/ D ¹L 2 L.A/ j L � AJxKnº.
We define the positive part of yB� to be the corresponding sub-ind-scheme yB�;C �

yB� . Simi-
larly, we define the positive part of yB


� to be yB

�;C D

yB


� \
yB�;C. We set yGC D yB.n/;C and

yG


C
D yB



.n/;C.

Fix a primitive nth root of unity � 2 C�. For any integer k > 0, let


.k/ D diag.xk; �xk; : : : ; �n�1xk/ 2 g.CJxK/:

We see that the centralizer of 
.k/ in yG is precisely yT � yG, where T � G is the maximal
torus of diagonal matrices. The yT -action on yB
.k/

� by left multiplication restricts to a T -action
on yB
.k/

�;C . We note that the ind-scheme yB
.k/
.1n/;C is denoted Zk in [8].

Proposition 7.2. Suppose that R D CJx; yK=.yn � xnk/ for some integer k > 0. Fix
an identification S D CJxKn, hence an identification T .n/ D T . Then

(i) the map (7.1) restricts to isomorphisms yB
.k/
�

�
! P � and yB
.k/

�;C
�
!
`
`Q`

� .
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Let yB
.k/;`
�;C � yB


.k/
�;C correspond to Q`

� �
`
`Q`

� under the isomorphism in (i). Then the iso-
morphism matches

(ii) the T -actions on yB
.k/;`
�;C and Q`

� ,

(iii) the Springer actions of Sn on the T -equivariant Borel–Moore homologies of B

.k/;`
.1n/;C and

Q`
.1n/ for all `.

Proof. Parts (i) and (ii) follow from the definitions: compare to [12, Theorem 1.1].
To prove part (iii), observe that the usual Springer action on the Borel–Moore homology
of yB
.k/;`

.1n/;C arises from Proposition 3.1 and Remark 3.2 via the outer rectangle in the following
diagram, where every square is cartesian:

Œ yB

.k/;`
.1n/;C=T � ŒQ`

.1n/=T � Œ zN .1n/=GLn�

ŒyG

.k/;`
C

=T � ŒQ`=T � ŒN =GLn�:

 

!
�

 !

 

!

 !  ! �

 

!
�  

!

(Above, yG 
.k/;`
C

´ yB

.k/;`
.n/;C .)

Remark 7.3. In [5], Boixeda Alvarez–Losev construct commuting actions of two trigo-
nometric double affine Hecke algebras (DAHAs) on the T -equivariant Borel–Moore homology
of certain equivalued affine Springer fibers, for a certain torus T .

In the GLn case, their affine Springer fibers are precisely our yB
.k/
.1n/ , and their T is

our T . Via Proposition 7.2, the monodromic action of the cocharacter lattice and the action
of equivariant cohomology in [5] respectively correspond to the ��0- and H�T .pt/-actions on
the T -equivariant Borel–Moore homology of Q`

.1n/ in Section 5. The monodromic action of
the finite Weyl group corresponds to the dot action in Section 6.

7.4. The functor M, and yn D xd . Let .vi /niD1 be the standard ordered basis of Cn.
Writing x D $n, we have an isomorphism of C..x//-vector spaces

abWC..x//n D C..x//˝ Cn �! C..$// defined by ab.vi / D $ i�1:

Let M be the functor from C-algebras to sets defined by

M.A/ D ¹AJ$nK-submodules M � A..$// j

there exists j such that $jAJ$K �M � $�jAJ$K and

.$�jAJ$K/=M is locally free over A of finite rankº:

Thus M is the analogue of P � with CJ$K in place of R. For any �, let M� be the functor
defined by

M�.A/ D ¹.M;F / jM 2M.A/; F is a partial flag on NM ´M=$nM of type �º:

Then ab induces an isomorphism

(7.2) AbWL�
�
!M� :



32 Kivinen and Trinh, The Hilb-vs-Quot conjecture

We now define the element of g.CJxK/ studied in [31]. Let .X�; ˆ;X�; ˆ_/ be the root datum
of G with respect to the maximal torus of diagonal matrices. Let ˛1; : : : ; ˛n�1 2 ˆ be the
simple roots with respect to the upper-triangular Borel subgroup P.1n/ � G, and let

�_ D
1

2

X
i

˛_i 2 ˆ
_;

where ˛_i is the coroot corresponding to ˛i . For any d > 0 coprime to n, let m; b be the
integers such that d D mnC b and 0 < b < n, as in [31]. For each root ˛, let e˛ 2 g.C/
be the zero-one matrix that generates the root subspace g˛ � g, and for each integer j , let
ej D

P
˛jh˛;�_iDj e˛. Finally, let

(7.3)  .d/ D xmeb C x
mC1eb�n:

In what follows, we will need the composition of isomorphisms

(7.4) yB�
Lemma 7.1
������! L�

Ab
������!M�

$ı

������!M� ;

where the last map is multiplication by$ı , and ı D 1
2
.n� 1/.d � 1/, as in Section 4. We write

the map on C-points as g yK� 7! .Mg ; Fg/.

Proposition 7.4. Suppose that R D CJ$n;$d K for some d > 0 coprime to n. Then

(i) the map (7.4) restricts to an isomorphism yB .d/
�

�
! P � .

Let P e
� � P � be the preimage of P e � P , and let yB .d/;e

� � yB
 .d/
� correspond to P e

� � P �

under the isomorphism in (i). Then

(ii) the isomorphism in (i) matches the Springer action of Sn on the Borel–Moore homologies
of B

 .d/;e
.1n/ and P e

.1n/ for all e.

(iii) yB .d/;0
� is the affine Springer fiber studied by Hikita in [31].

Proof. Part (i): It suffices to work on C-points. By checking on the basis .vi /i , we find
that ab transports the action of  .d/ on C..x//n by right multiplication onto the action of $d

on C..$// by multiplication. Therefore,

g yK� 2 B .d/
� .C/ ” .CJxKn � g�1; F std

� g�1/ is 
 -stable

” .Mg ; Fg/ is R-stable

for all g yK� 2 yB�.C/ and fixed e 2 Z.
Part (ii): Similar to the proof of Proposition 7.2 (iii), but replacing the diagram there with

(7.5)

yB
 .d/;e
.1n/ P e

.1n/ Œ zN .1n/=GLn�

yG .d/;e P e ŒN =GLn�:

 

!
�

 !

 

!

 !  ! �

 

!
�  

!

(Above, yG .d/;e ´ yB
 .d/;e
.n/ .)

Part (iii): The multiplication by $ı in the last arrow of (7.4) ensures that yB .d/;0
� con-

tains the identity coset yK� 2 yB� . As a consequence, yB .d/;0
� belongs to the connected com-

ponent of yB� that corresponds to the partial affine flag variety of SLn of parabolic type �. The
latter is defined analogously to the partial affine flag variety of G D GLn, which means that
yB
 .d/;0
� is precisely the affine Springer fiber over  .d/ with structure group SLn.
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8. Filtrations on H�.P =�/

8.1. In this section, we discuss the following filtrations on the variety P=� or its
cohomology:

(i) the gap filtration on the variety, defined in terms of the function c.M/ D dimC.SM=M/

from the introduction,

(ii) the Hikita filtration [31], defined on the variety for R D CJ$n;$d K with n; d coprime,
by intersecting the affine Springer fiber from Section 7.4 with increasing unions of affine
Schubert cells,

(iii) the perverse filtration on cohomology, defined in terms of a versal deformation of a global
curve C into which Spec.R/ embeds.

In Theorem 8.3, we relate (i) and (ii) by way of an involution �, as needed in Section 4.7. The
involution � is related to a duality studied in [20], but to our knowledge, our work is the first
time it has been used to relate the filtrations above.

8.2. The gap filtration. Let R D CJxKŒy�=.f / be any generically separable degree-n
cover of the x-axis, fully ramified at .x; y/ D .0; 0/. For any integer composition � of n, we
define the gap filtration on P � to be its increasing filtration by the subvarieties

P �;�c D

[
c0�c

P �.c
0/:

It descends to a filtration of P �=� by subvarieties P �;�c=� . We define Q�� to be the increas-
ing filtration on the Borel–Moore homology of P �=� where

Q�cHBM
� .P �=�/ D im

�
HBM
� .P �;�c=�/! HBM

� .P �=�/
�
:

We define Q�� to be the decreasing filtration on the cohomology of P �=� where

Q�cH�.P �=�/ D ker
�
H�.P �=�/! H�.P �;�c=�/

�
:

Since compactly supported cohomology is dual to Borel–Moore homology, and P �=� is
proper, Q�c is orthogonal to Q�c for all c. We note in passing that these definitions still make
sense for non-planar R.

Let P e
�;�c � P e

� � P � be the respective preimages of P e
�c � P e � P , like in the nota-

tion of Proposition 7.4. Any isomorphism P 0 �! P e induced by multiplication by uniformizer
will preserve c, hence restrict to an isomorphism P 0

�c
�
! P e

�c . This reduces the study of the
gap filtration to the study of P 0

�c . Recall that, in the unibranch case, P 0 ' P=� , and we
prefer to write J in place of P 0.

8.3. The gap filtration for yn D xd . Suppose that R D CJ$n;$d K with n; d co-
prime. Recall that, in this case, there is a Gm-action on P induced by scaling $ , which
necessarily stabilizes the connected component J. As in Section 4, let

I ı.S/´ ¹� � Z�0 j �C n;�C d � � and jZ�0 n�j D ıº:

By [45, §3], the setup of Lemma 4.2 restricts to a bijection

I ı.S/
�
! JGm ; � 7!M�

that partitions J into the affine spaces A� for � 2 I ı.S/.
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Lemma 8.1. If R D CJ$n;$d K with n; d coprime, then

c.M/ D ı �min.�/ for all � 2 I ı.S/ and M 2 A�.C/:

In particular, J.c/ D
S
�jmin.�/Dı�c A� and J�c D

S
�jmin.�/�ı�c A�.

Proof. In the notation of Section 2, we have $�min.�/M 2 D for all � 2 I ı.S/ and
M 2 A�. Now observe that c.M/ D c.$�min.�/M/ D �min.�/C `.M/ D �min.�/C ı,
where the second equality holds by Lemma 2.5.

8.4. The Hikita filtration. Next, we (re)turn to Hikita’s work in [31]. We follow the
same setup as in the previous subsection. In the notation of Section 7.4, recall that Proposi-
tion 7.4 gives us an isomorphism

yG .d/;0
�
! J;

g yK 7!Mg ;

where yG .d/;0 is the affine Springer fiber over  .d/ with structure group SLn. Hikita first
defines a filtration of yG .d/;0, then lifts it to yB .d/;0

� along the projection yB� !
yB.n/ D

yG .
Thus, as with the gap filtration, we can largely reduce to studying the � D .n/ case.

Recall that the partition of yG into yI -orbits, where yI D yK.1n/ acts on yG by left multipli-
cation, forms a stratification into affine Schubert cells, which are affine spaces,

yG D
a
�2X�

yG�; where yG�´ yIx� yK= yK:

Above, X� is the same cocharacter lattice as in Section 7.4, and for any � 2 X�, we write x�

to mean the image of x under �W yGm ! yG. The affine Grassmannian of SLn is the sub-ind-
scheme yGSLn �

yG given by

yGSLn D
a
�2X0�

yG�; where X0� ´ ¹� 2 X� j �1 C � � � C �n D 0º:

The proof of [31, Proposition 4.1] shows that there is a bijection aWX0�
�
! Zn�1

�0 defined as
follows: ai .0; : : : ; 0/ D 0 for all i , and if � ¤ .0; : : : ; 0/, then

.a1; : : : ; an�k; an�kC1; : : : ; an�1/

D .�kC1 � �k � 1; : : : ; �n � �k � 1; �1 � �k; : : : ; �k�1 � �k/;

(8.1)

where k is the largest index in ¹1; : : : ; nº such that �k D mini �i . Note that we must have
�k < 0 since�1C � � � C�nD 0. For all a 2Zn�1

�0 , let jaj D a1C � � � C an�1. For any integer c,
let

yGSLn;�c D
[
�2X0�
ja.�/j�c

yG�:

Following [31, Corollary 4.7], we define the Hikita filtration on yG .d/;0 to be its increasing
filtration by the subvarieties

yG .d/;0�c D yG .d/;0 \ yGSLn;�c :

For each integer composition � of n, we define yB .d/;0
�;�c to be the preimage of yG .d/;0�c

along the projection yB� !
yG . We define the Hikita filtration on yB .d/;0

� to be its increasing
filtration by these subvarieties. This recovers the definition for � D .1n/ in the proof of [31,
Theorem 4.17].
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8.5. The involution �. For any g 2 G, let g� be the “anti-transpose” given by

g� D JgtJ;

where gt is the usual transpose and J 2 G the matrix with 1’s along the anti-diagonal and 0’s
elsewhere. The map �WG ! G given by �.g/´ .g� /�1 D .g�1/� is an involutory automor-
phism with differential �Wg! g given by �.
/ D �
� . We extend these automorphisms to yG
and its Lie algebra by linearity and completion. We see that �. yK/ D yK and �. yK.1n// D yK.1n/,
from which we deduce that � descends to involutions of yG and yB.1n/.

From definition (7.3), we also see that �. .d// D � .d/. We deduce that the affine
Springer fibers yG .d/; yB .d/

.1n/ are stable under �, as are their SLn variants yG .d/;0; yB .d/;0
.1n/ .

Lemma 8.2. The involutions above have the following properties.

(i) For all � 2 X�, we have �.yG�/ D yG�.�/, where �.�1; : : : ; �n/ D .��n; : : : ;��1/.

(ii) For any integer e, the involution on the Borel–Moore homology of yB .d/;e
.1n/ induced

by � is equivariant with respect to the Springer action of Sn. Moreover, it preserves the
homological degree and weight filtration.

In preparation for the proof of part (ii), we set up some notation. Recall that

yG .d/;0 � yGSLn ;

and hence

(8.2) yG .d/;0 D
a
�2X0�

A�; where A�´ yG .d/;0 \ yG�:

Let X .d/;0� � X0� be the subset of cocharacters � for which A� is nonempty. It is explained
in [31, §2.3], following [14], that these A� are affine spaces. Moreover, [31, Theorem 2.7] is
an explicit combinatorial formula for their dimensions, which shows that

(8.3) dim.A�/ D dim.A�.�//

for all � 2 X .d/;0� .

Proof of Lemma 8.2. Part (i) follows from computing �.x�/ D x�.�/. To show part (ii),
first recall that the Springer action in question is defined via Proposition 3.1 and Remark 3.2
via the outer rectangle of (7.5). The bottom arrow of this outer rectangle sends

g yK 7! ŒAd.g�1/ .d/ mod x�:

So we must show that the residues of Ad.g�1/ .d/ and Ad.�.g/�1/ .d/ mod x have the
same Jordan types as nilpotent elements of g. This follows from computing

Ad.�.g/�1/ .d/ D �Ad.�.g/�1/�. .d// D ��.Ad.g�1/ .d//;

then observing that � commutes with reduction mod x and preserves the Jordan types of nilpo-
tent elements.

The fact that the involution on HBM
� . yB

 .d/;e
.1n/ / preserves the homological degree and

weight filtration follows from yB .d/;e
.1n/ being paved by the affine spaces A�, together with

identity (8.3).
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In the notation from the end of Section 8.2, set J� D P 0
� and J�;�c D P 0

�;�c . Together
with Lemma 8.2 (ii), the following result completes a necessary step in proof (B) of Theo-
rem 5 (i).

Theorem 8.3. Suppose that R D CJ$n;$d K for some d > 0 coprime to n. Then the
composition of isomorphisms

(8.4) yB
 .d/;0
.1n/

�
��������! yB

 .d/;0
.1n/

Proposition 7.4
���������! J.1n/

restricts to an isomorphism �. yB
 .d/;0
.1n/;�c/

�
! J.1n/;�c for all c.

The proof will occupy the rest of this subsection. Since J.1n/;�c and yB .d/;0
.1n/;�c are respec-

tively the preimages of J�c and yG .d/;0�c , the �-equivariance of the projection

yB
 .d/;0
.1n/ ! yG .d/;0

and the commutativity of the left square of (7.5) allow us to replace � D .1n/ with � D .n/.
We will match the strata A� � yG .d/;0 from (8.2) with the strata A� � J from Lem-

ma 8.1; this implies the statement by the definition of the filtrations in question. Let � �1=n �
denote the Gm-action on yG defined by

t �1=n g.x/´ t2�
_

g.t2n$/t�2�
_

for all t 2 Gm and g 2 yG. It descends to a Gm-action on yG that we again denote by � �1=n �.
As explained in [14, 31], we have

A� D
®
g yK 2 yG .d/;0

ˇ̌
lim
t!0

.t �1=n g yK/ D x
� yK

¯
for all � 2 X0� :

So, to match the strata, it suffices to match � �1=n � with the Gm-action on J in Section 8.3.

Proposition 8.4. The map (8.4) transports the Gm-action � �1=n � on yG onto the Gm-
action on M.n/ induced by t �2 $ ´ t2$ .

Proof. It suffices to work on C-points. First, � is equivariant under � �1=n � because
�.c2�

_

/ D c2�
_

, so we can replace (8.4) with (7.4). Observe that if g D g.x/ 2 G.C..x///,
and g0.x/ D t �1=n g.x/ for some t 2 C�, then g0.x/�1 D t �1=n g�1.x/. Thus the entries of
the matrix g0.x/�1 are given by

.g0.x/�1/i;j D t
2.j�i/.g.t2n$/�1/i;j :

We deduce that

$ıab.vi � .t �1=n g.x//
�1/ D $ı

X
j

.g0.$n/�1/i;j$
j

D t�2.i�1/$ı
X
j

.g..t2$/n/�1/i;j .t
2$/j�1

D t�2ı�2.i�1/.t �2 $
ıab.vi � g.x/�1//:

The outer monomials in the first and last expressions are just nonzero scalars. So the vector
subspaces of C..$// formed by Mt �1=ng and t �2Mg coincide.
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In the notation of Section 8.3, let �WX .d/;0� ! I ı.S/ be defined by

(8.5) Genn.�.�// D ¹n�i C n � i C ı j 1 � i � nº:

Then the map x� 7!M�.�/ is precisely the effect of (8.4) on the .� �1=n �/-fixed points of
yG .d/;0, as we can check from the definition of � and (7.1)–(7.2). Now (8.3) and Proposition 8.4
imply the following corollary.

Corollary 8.5. The map �WX .d/;0� ! I ı.S/ is bijective, and for all � 2 X .d/;0� ,
(8.4) restricts to an isomorphism A�

�
! A�.�/.

To finish the proof of Theorem 8.3, it remains to show that, for all � 2 X .d/;0� , we have
ja.�/j D c.M�.�//. By Lemma 8.1 and (8.5), this is equivalent to the following lemma.

Lemma 8.6. For all � 2 X .d/;0� , we have

ja.�/j D �min¹n�i C n � i j 1 � i � nº:

Proof. If � D .0; : : : ; 0/, then both sides equal 0. If � ¤ .0; : : : ; 0/, then (8.1) gives

ja.�/j D .�1 C � � � C �n/ � .n�k C n � k/;

where k is the largest index in ¹1; : : : ; nº such that �k D mini �i . Since � 2 X0� , the right-
hand side above simplifies to �.n�k C n � k/.

Remark 8.7. It is natural to ask what the involution � on yG .d/;0 looks like after being
transported through (7.4), to an involution on J. From (8.5), we can check that it is precisely
the duality that Gorsky–Mazin denote by � 7! y� in [20]. Explicitly, for any � 2 I ı.S/, we
have

Genn.y�/ D ¹d.n � 1/ � k j k 2 Genn.�/º:

Example 8.8. Take .n; d/ D .3; 4/. We compute

X
 .d/;0
� D ¹.0; 0; 0/; .�1; 0; 1/; .�1; 1; 0/; .0;�1; 1/; .1; 0;�1/º;

I ı.S/ D ¹�3;4;5; �6;4;2; �3;7;2; �6;1;5; �0;4;8º:

Above, we labeled the elements of I ı.S/ in the form �b1;b2;b3 , where Genn D ¹b1; b2; b3º
and bi � .i � 1/ .mod n/ for all i . Compare the statistics below to Example 4.13.

� a.�/ ja.�/j .n�i C n � i/i �.�/ min.�.�//

.0; 0; 0/ .0; 0/ 0 .2; 1; 0/ �3;4;5 3

.�1; 0; 1/ .0; 1/ 1 .�1; 1; 3/ �6;4;2 2

.�1; 1; 0/ .1; 0/ 1 .�1; 4; 0/ �3;7;2 2

.0;�1; 1/ .1; 1/ 2 .2;�2; 3/ �6;1;5 1

.1; 0;�1/ .2; 1/ 3 .5; 1;�3/ �0;4;8 0
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8.6. The perverse filtration. We return to the setup of Section 8.2, where f .x; y/ is
arbitrary. For simplicity, we ignore the map to the x-axis in what follows. Besides Q��, there
is another filtration on the cohomology of P=� , defined as follows by Maulik–Yun.

Fix a complex, integral, projective curve C , whose normalization has genus zero, and
which is smooth away from a unique planar singularity given by f .x; y/ D 0 in local coordi-
nates. We emphasize that, while C is integral, the germ f can still have multiple branches. Fix
an embedding of C into a family of curves C , whose base is irreducible, and which satisfies
[39, §2.1, conditions (A1)–(A4)].

Let J.C / be the compactified Jacobian of .C; s/ (see [1]). In this setting, [39, Sec-
tion 2.14] defines an increasing perverse filtration P�� on H�.J.C //, in terms of the perverse
truncation of the pushforward of the constant sheaf along the structure map of J.C/. Proposi-
tion 2.15 of [39] shows that P�� is invariant under base change of the family of curves, so it
is canonical. It is strictly compatible with the weight filtration W��. Finally, the proof of [39,
Theorem 3.11] shows that there is a weight-preserving isomorphism H�.J.C // ' H�.P=�/,
canonical up to the choice of uniformization that defines the �-action on P . Following Maulik–
Yun, we normalize P�� so that it sits in degrees 0 through 2ı.

For any filtration F�� on the cohomology of P=� , strictly compatible with the weight
filtration, we may form the virtual Poincaré polynomial

Pvir;F.q; t/ D
X
i;j;k

.�1/iqj tk dim grF
j grW

k Hi .P=�/:

Explicitly, [39, Theorem 3.11] and Theorem 3 imply that

Hilb.q; t/ D
1

.1 � q/b
Pvir;P.q; t/ and Quot.q; t/ D

1

.1 � q/b
Pvir;Q.q; t/:

We deduce the following corollary.

Corollary 8.9. Conjecture 1 is equivalent to Pvir;P.q; t/ D Pvir;Q.q; q
1
2 t/.

It is natural to make the following stronger conjecture, which also extends a conjecture
in unpublished notes of Yun beyond the unibranch case.

Conjecture 8.10. The weight grading on grW
� H�.P=�/ is supported in even degrees.

Moreover, grP
jCk grW

2k
H�.P=�/ ' grjQ grW

2k
H�.P=�/ for all j; k.

The motivation behind Conjecture 8.10 is that it would strictly imply the statement above,
and hence Conjecture 1. We emphasize again that, while P�� is defined via auxiliary global
methods, Q�� is intrinsic and purely local. For this reason, Corollary 8.9 seems remarkable
to us.

A. Gradings on link homology

A.1. In this appendix, we specify our grading conventions for Khovanov–Rozansky
homology, compare them to those of other published works, and illustrate on the smallest
examples (unknot, Hopf link, trefoil, .3; 4/ torus knot) to aid the reader’s sanity. Our exposition
closely follows [15, §1.6], but we correct some mistakes: see Remarks A.1–A.2.
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A.2. Soergel bimodules. Let T D Gnm and S´ H�T .pt/ D CŒt1; : : : ; tn�. We regard S
as a graded ring, with deg.ti / D 2 for all i . Thus the Sn-action on T that permutes coordinates
also preserves the grading on S. Let si 2 Sn be the transposition that swaps ti and tiC1.

In the category of graded S-bimodules, we write .m/ for the grading shift B.m/i DBiCm.
Let SBim be the full subcategory generated by the identity bimodule S and the bimodules
S˝Ssi S.1/ for all i under isomorphisms, direct sums, tensor products ˝ D ˝S, direct sum-
mands, and grading shifts. Objects of SBim are called Soergel bimodules. We write Kb.SBim/
for the bounded homotopy category, a monoidal additive category under˝.

Let Brn be the group of braids on n strands up to isotopy. Any braid ˇ 2 Brn defines an
object NTˇ 2 Kb.SBim/ called the Rouquier complex of ˇ. See, e.g., [15, §2.1] for the precise
definition.

Let Vect2 be the category of Z2-graded vector spaces that are finite-dimensional in each
bidegree, such that the first grading is bounded below and the second is bounded. Let

HH D HH�;�W SBim! Vect2

be the Hochschild cohomology functor

HHi;j .B/ D ExtiS˝CSop.S;B.j //:

These Ext’s can be computed using a Koszul resolution of S over S˝C Sop, which shows that
the Ext grading sits in degrees 0 through (at most) n.

Let Vect3 be the category of Z3-graded vector spaces that are finite-dimensional in each
tridegree, such that the first grading is bounded below and the other two gradings are bounded.
Let HHH D HHH�;�;� be the composition of functors

Kb.SBim/
HH
��! Kb.Vect2/

H�
��! Vect3:

Explicitly, the gradings are ordered so that

HHHI;J;K D Hk.HHI;Jn /:

The story above can be redone with the quotient torus T0´ T=T Sn in place of T . Note
that T0 is just the image of T along the quotient map GLn ! PGLn. Replacing T with T0
entails replacing S with its subring S0´ H�T0.pt/. We write Tˇ , HH, HHH for the objects that
respectively replace NTˇ , HH, HHH.

Let L be the link closure of ˇ. In [34], Khovanov proved that HHH.Tˇ / matches the
reduced version of the triply graded homology of L proposed in [10] and constructed in [35],
up to an affine transformation of the trigrading. One can show that

(A.1) HHH. NTˇ / ' HHH. NTid/˝ HHH.Tˇ /;

and that, in consequence, HHH. NTˇ / matches the unreduced version of the homology con-
structed in [35], up to similar regradings.

A.3. The main dictionary. For any ˇ 2 Brn, let

hhhˇ .A;Q; T / D
X
I;J;K

AIQJTK dim HHHI;J;K. NTˇ /;

hhhˇ .A;Q; T / D
X
I;J;K

AIQJTK dim HHHI;J;K.Tˇ /:
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That is,

(i) hhhˇ .A;Q; T / is the series denoted Pˇ .Q;A; T / in [11, §A] and [15, §1.6], and hhhˇ
is the analogue of hhh for reduced homology.

We write

(ii) NPnorm
L .A;Q; T / for the series denoted P norm

L .Q;A; T / in [15],

(iii) PL;ORS.a; q; t/ for the series denoted P .L/ in [42] (it is denoted P .L�/ in [10], where
L� is the chiral mirror of L),

(iv) NPL;ORS.a; q; t/ for the series denoted NP.L/ in [42], which satisfies

(A.2) NPL;ORS.a; q; t/ D NPU;ORS.a; q; t/PL;ORS.a; q; t/:

Remark A.1. Contrary to statements suggested by [42, p. 651] and [15, §1.6], the series
NPL;ORS does not match the series called the unreduced superpolynomial of L� and denoted
NP.L�/ in [10], even after further regrading. Indeed, the series denoted P .L�/ and NP.L�/

in [10] are not proportional to each other by any constant factor, as can be checked from
[10, Propositions 6.1 and 6.2].

Let e be the writhe of ˇ, meaning its net number of crossings counted with sign, and let
b be the number of components of L. After correction, [15, §1.6] states

NPnorm
L .A;Q; T / D .A

1
2 /e�nCbQ�eC2n�2b.T

1
2 /�e�nCbhhhˇ .A;Q; T /;

NPL;ORS.a; q; t/ D a
�bqb NPnorm

L .a2q2t; q; t�1/

D ae�nqntehhhˇ .a
2q2t; q; t�1/:

(A.3)

By combining the last identity above with (A.1)–(A.2), we get a reduced version

PL;ORS.a; q; t/ D a
e�nC1qn�1tehhhˇ .a

2q2t; q; t�1/:

In general, we will not work with NPnorm
L . Moreover, we will not discuss at all the normalizations

used in the series P .U /;P .T .2; 3// in [15, Remark 1.27].

Remark A.2. Above, (A.3) fixes a few more typos in [15, §1.6].
First, the discussion on [15, p. 599] relates their series P norm

L to the series we call NPL;ORS,
not to the superpolynomial in [10]. As explained in Remark A.1, the latter two are differ-
ent. Next, the identity relating P norm

L and NPL;ORS in [10] has the wrong prefactor. There, the
authors express NPL;ORS in terms of variables r; ˛;Q; T , which correspond to our b; a; q; t�1,
respectively. Their prefactor Q2r˛�r should be Qr˛�r .

By way of comparison, the variables ˛;Q; T in [11, §A] also correspond to our a; q; t�1.
Hence their series PL.Q; ˛; T / is our series NPL;ORS.a; q; t/. The identity relating Pˇ and PL
in [11, §A] is correct.

Example A.3. The unknot U is the knot closure of the identity in Br1, for which
.n; e; b/ D .1; 0; 1/. The Hochschild cohomology of the identity Soergel bimodule is

HH�;j1 .S/ D

8̂<̂
:

S; j D 0;

S.2/; j D 1;

0; j ¤ 0; 1:
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Thus
NPnorm
U .A;Q; T / D hhhid.A;Q; T / D

1C AQ�2

1 �Q2
;

from which
NPU;ORS.a; q; t/ D

a�1 C at

q�1 � q
:

A.4. “Our” series. For any braid ˇ 2 Brn with writhe e whose link closure L has b
components, let

NXˇ .a; q; t/´ t
e
2 hhhˇ .aq; q

1
2 ; q

1
2 t�

1
2 /;

Xˇ .a; q; t/´
NXˇ .a; q; t/
NXid.a; q; t/

D t
e
2 hhhˇ .aq; q

1
2 ; q

1
2 t�

1
2 /:

Above, note that Xid.a; q; t/ D 1Ca
1�q . We can check that

NPL;ORS.a; q; t/ D .aq
�1/e�n NXˇ .a

2t; q2; q2t2/;

PL;ORS.a; q; t/ D .aq
�1/e�nC1Xˇ .a

2t; q2; q2t2/:

It turns out that, in the rest of this paper, NXˇ and Xˇ are the most convenient series for us to
use.

In particular, suppose that f .x; y/ 2 CJxKŒy� such that f .x; y/ D 0 defines a generically
separable, degree-n cover of the x-axis, fully ramified at .x; y/ D .0; 0/. Then the preimage in
the cover of a positively oriented loop around x D 0 is a braid f̌ 2 Brn, whose link closure
is the link Lf introduced in Section 1.4. We see that NX

f̌
is precisely the series NXf introduced

in (1.4).

A.5. Torus links. For integers n; d > 0, let Tn;d be the positive .n; d/ torus link, con-
sidered negative in [10]. Its number of components is bD gcd.n;d/. Taking f .x;y/D yn � xd

in the construction above shows that Tn;d is the link closure of a braid ˇn;d 2 Brn for which
e D .n � 1/d . Let

ı D
1

2
.e � nC b/ D

1

2

�
nd � n � d C gcd.n; d/

�
:

Let NXn;d D NXˇn;d , as in the rest of this paper, and Xn;d D Xˇn;d .

Example A.4. For the Hopf link T2;2, we have

X2;2.a; q; t/ D 1C
qt

1 � q
C

at
1 � q

;

PT2;2;ORS.a; q; t/ D aq
�1
C
aq3t2

1 � q2
C
a3qt3

1 � q2
:

Example A.5. For the trefoil T2;3, we have

X2;3.a; q; t/ D 1C qtC at;

PT2;3;ORS.a; q; t/ D a
2.q�2 C q2t2/C a4t3:

The latter series is [10, Example 3.3].
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Example A.6. For the .3; 4/ torus knot T3;4, we have

X3;4.a; q; t/ D 1C qtC qt2 C q2t2 C q3t3 C a.tC t2 C qt2 C qt3 C q2t3/C a2t3;

PT3;4;ORS.a; q; t/ D a
6.q�6 C q�2t2 C t4 C q2t4 C q6t6/

C a8.q�4t3 C q�2t5 C t5 C q2t7 C q4t7/C a10t8:

The latter series is [10, Example 3.4].

In Section 4, we implicitly need the following identities that match NXn;d ;Xn;d with other
series in the literature.

(i) Let zPn;m.u; q; t/ be the series in [23]. For coprime n; d , we have

NXn;d .a; q; t/ D
tı

1 � q
zPn;d .�a; q; t�1/:

(ii) Let Pm;n D Pm;n.a; q; t/ be the series in [41]. For coprime n; d , we have

NXn;d .a; q; t/ D .�a�1q
1
2 t
1
2 /ıPn;d .�a; q; t�1/:

Note that the substitution sends t 7! q and q 7! t�1, not vice versa.

(iii) Let yP0M ;0N .q; t; a/; yQ0M ;0N .q; t; a/; R0M ;0N .q; t; a/ be the series in [22]. For any n; d ,
we have

1

1C a
NXn;d .a; q; t/ D

1

1 � q
Xn;d .a; q; t

�1/

D R0n;0d .q; t
�1; aq�1/

D yQ0n;0d .q; t
�1; aq�1/ by [22, Corollary 5.10]

D q�d�n yP0n;0d .q; t; aq�1/ by [22, (11)]:
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