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Abstract

Let H and Y be separable Hilbert spaces, and U finite
dimensional. Let A ∈ L(H), B ∈ L(U, H), C ∈ L(H, Y ),
D ∈ L(U, Y ), and suppose that the open loop transfer
function D(z) := D+zC(I−zA)−1B ∈ H∞(D;L(U, Y )),
where D is the open unit disk.

We consider a subset of self adjoint solutions P of
the discrete time algebraic operator Riccati equation
(DARE)





A∗PA − P + C∗JC = K∗
P ΛP KP ,

ΛP = D∗JD + B∗PB,

ΛP KP = −D∗JC − B∗PA,

where J = J∗ ∈ L(Y ) is a cost operator, and Λ−1
P ∈

L(U).

Under further assumptions, we obtain the following
results. To solutions of the DARE, we associate a
coanalytic-analytic factorization of the Popov function
D(z)∗JD(z). To each nonnegative solution of the DARE,
we associate a (partial) inner-outer factorization of the
transfer function D(z) (if J ≥ 0). We conclude that the
natural partial ordering of the (adjoints of the) inner fac-
tors of DP (z) is consistent with the partial ordering of
the solutions P , as self adjoint operators. We obtain a
characterization of the critical solution as the maximal
nonnegative solution (if J ≥ 0). Finally, generalizations
of these results are indicated.

1 Introduction

In this paper, we consider factorization and partial or-
derings of operator-valued H∞ transfer functions, via so-
lutions of an associated discrete time algebraic Riccati

equation. This work is a presentation of results given in
[9] and [10], where full proofs are given.

Let us first introduce some notions and definitions. The
basic object of this work is an operator-valued H∞ trans-
fer function. A state space realization of this transfer
function is a discrete time linear system (DLS) φ. It is
given by the system of difference equations

{
xj+1 = Axj + Buj ,

yj = Cxj + Duj, j ≥ 0,

where uj ∈ U , xj ∈ H , yj ∈ Y , and A, B, C, D

are bounded linear operators between appropriate (sep-
arable) Hilbert spaces. We call the ordered quadruple
φ = ( A B

C D ) a DLS in difference equation form. The three
Hilbert spaces are as follows: U is the input space, H is
the state space and Y is the output space of φ.

There is also another equivalent I/O form for a DLS. It
consists of four linear operators in the ordered quadruple

Φ :=

[
Aj Bτ∗j

C D

]
.

The operator A ∈ L(H) is the semi-group generator
of Φ, and it is the same operator as in equation (1).
B : ℓ2(Z−; U) ⊃ dom(B) → H is the controllability
map that maps the past input into the present state.
C : H ⊃ dom(C) → ℓ2(Z+; Y ) is the observability map
that maps the present state into the future outputs. The
last operator D : ℓ2(Z; U) → ℓ2(Z; Y ) is the I/O map
that maps the input into output in a causal and shift in-
variant way. The operator τ is the bilateral forward shift
in ℓ2(Z; U), and π̄+, π− are the orthogonal projections
to the future and past, respectively. We denote the same
DLS in I/O-form by the capital letter Φ, and in difference
equation form by φ.

If B or C is bounded, then we say that Φ is input
stable or output stable, respectively. If D is bounded
then Φ is I/O-stable and the transfer function D(z) ∈
H∞(L(U ; Y )). If limj→∞ Ajx0 = 0 for all x0 ∈ H , then
the semi-group generator A is strongly stable.



Let Φ =
[

Aj
Bτ∗j

C D

]
= ( A B

C D ) be a DLS, and let J =
J∗ ∈ L(Y ) be a cost operator. The symbol Ric(Φ, J) de-
notes the associated discrete time Riccati equation, given
by






A∗PA − P + C∗JC = K∗
P ΛP KP ,

ΛP = D∗JD + B∗PB,

ΛP KP = −D∗JC − B∗PA,

(1)

where Λ−1
P is required to be bounded. If P = P ∗ solves

Ric(Φ, J), then we write P ∈ Ric(Φ, J). Several subsets
of the solution set Ric(Φ, J) are defined and studied in
[9]. The operator ΛP is the indicator, and KP is the
feedback operator of P .

For fixed Φ and J , two additional DLSs are associated
to each solution P ∈ Ric(Φ, J), namely

φP :=

(
A B

−KP I

)
, φP :=

(
AP B

CP D

)
,

where AP := A + BKP , CP = C + DKP . We call the
object φP (φP ) the lower DLS (respectively upper DLS),
centered at P . The algebraic and partial ordering prop-
erties of the solutions of the DARE are conveniently de-
scribed with the aid of these DLSs, see [9]. The DLSs
φP and φP are fundamental notions in the factorization
theory, presented in this paper.

Some solutions of the DARE are more interesting that
others.

Definition 1. Let Φ is output stable and I/O-stable.

(i) If P ∈ Ric(Φ, J) is such that the lower DLS φP is
I/O-stable and output stable, then we call P an H∞-
solution, and write P ∈ ric(Φ, J).

(ii) If the residual cost operator LA,P exists and satisfies

LA,P := s − lim
j→∞

A∗jPAj = 0,

then the strong residual cost condition is satisfied,
and we write P ∈ Ric0(Φ, J).

(iii) The set of regular solutions is denoted by
ric0(Φ, J) := Ric0(Φ, J) ∩ ric(Φ, J).

A solution P crit ∈ Ric(Φ, J) is critical if the trans-
fer function Dφ

Pcrit
(z) of the lower DLS φP crit is in H∞

together with its inverse, and a certain residual cost con-
dition is satisfied. The equivalent conditions for the ex-
istence of such a P crit are discussed in [6], under quite
general assumptions. The I/O-map of the correspond-
ing φP crit is the outer factor (with a bounded inverse)
in the (J, ΛP crit)-inner-outer factorization D = NX , in-
duced by the critical P crit. The solution P crit, when
it exists, can be replaced by another, regular critical
P crit

0 ∈ ric0(Φ, J), given by P crit
0 = (Ccrit)∗JCcrit. Here

Ccrit := (I − π̄+D(π̄+D∗JDπ̄+)−1π̄+D∗J)C is the critical
closed loop observability map.

A detailed treatment of fundamental notions of DLSs
(such as the state feedback structure and various stabil-
ity notions) is given in [7]. For a less general, introduc-
tory presentation, see the introduction in [9]. For asso-
ciated cost optimization problems, spectral factorization
problems, and critical solutions of DARE under weak as-
sumptions, see [5] and [6]. See also the early discrete time
paper [3]. For factorizations of the Popov operator and
the I/O-map via nonnegative solutions of an associated
DARE, see [9] and [10]. Nonnegative solutions of CAREs
are considered in [2] which has a considerable intersection
with our work [10]; however, [2] contains deeper control
theoretic considerations. See also the references in [2],
in particular [1]. Related results for the continuous time
stable well-posed linear system are given in [11], [12], [13],
[14], [15]. For the theory of matrix CARE and DARE,
see [4].

After these preliminary considerations, we continue to
discuss this work. In Section 2, we consider the factor-
ization of the Popov operator. Non-negativity of the cost
operator J or solution P is not yet required. In Section
3, the I/O-map is inner-outer-factorized, by means of the
nonnegative solutions of the DARE. Because of the Lia-
punov equation techniques, we now assume J ≥ 0. Some
control theoretic interpretation of the inner-outer factor-
ization is given in Section 4. Moreover, this factorization
has some order theoretic implications, considered in Sec-
tion 5. In the final Section 6, we indicate various gener-
alizations of these results.

To clarify the presentation, the following simplifying
assumptions are used throughout this paper.

• The basic DLS Φ =
[

Aj
Bτ∗j

C D

]
= ( A B

C D ) is an out-
put stable and I/O-stable DLS, such that dom(C) :=
{x ∈ H | Cx ∈ ℓ2(Z+; Y )} = H . The input space
U is finite dimensional, and the output space Y is
separable.

• The DARE Ric(Φ, J) has a non-negative critical reg-
ular solution P crit

0 = (Ccrit)∗JCcrit ∈ ric0(Φ, J).

These assumptions can be significantly relaxed, as men-
tioned in the final section.

2 Factorization of the Popov operator

The Popov operator refers to the Toeplitz operator
π̄+D

∗JDπ̄+ or the shift invariant operator D∗JD. We
remark that the following factorization result does not
require the cost operator J = J∗ ∈ L(Y ) to be nonnega-
tive.

Theorem 2. Let Φ =
[

Aj
Bτ∗j

C D

]
= ( A B

C D ) be an I/O-
stable and output stable DLS.

(i) For each solution P ∈ ric0(Φ, J), the Popov operator
has the factorization

D∗JD = D∗
φP

ΛPDφP
,



where φP is the lower DLS (of Φ and J), centered
at P .

(ii) Assume, in addition that range(B) = H. Assume
that the Popov operator has a factorization of form

D∗JD = D∗
φ′ΛDφ′ ,

where φ′ :=
(

A B
−K I

)
is an I/O-stable and output

stable DLS, with K ∈ L(H, U), and Λ = Λ∗, Λ−1 ∈
L(U). Then φ′ = φP and Λ = ΛP for some P ∈
ric0(Φ, J).

If J ≥ 0, we need not a priori assume that P is
a H∞-solution in claim (i) because then ric0(Φ, J) =
Ric0(Φ, J), see [9]. For an analogous but somewhat dif-
ferent discrete time result, see [3, Theorem 4.6].

3 Factorization of the I/O-map

In this section, we assume that the cost operator J is non-
negative. The operator NP denotes the (ΛP , ΛP crit)-inner
factor of DφP

. Its existence follows from the assumed ex-
istence of a critical solution of the DARE ric(Φ, J), as
shown in [9].

Theorem 3. Let Φ =
[

Aj
Bτ∗j

C D

]
be an I/O-stable and

output stable DLS. Let P ∈ Ric0(Φ, J), P ≥ 0. Then

both φP and J
1

2 φP are output stable and I/O-stable. We
have the factorization

J
1

2D = J
1

2DφP · DφP
= J

1

2DφP · NP · X ,

where all factors are I/O-stable. Here J
1

2DφP is (I, ΛP )-
inner, NP is (ΛP , ΛP crit)-inner, and X is outer with a
bounded inverse.

Realizations for all these factors can be given. Note
that P is not a priori required to be a H∞-solution; this
is a part of the conclusion. By applying this result recur-
sively, we see that the increasing chains of nonnegative
H∞-solutions (of finite length) will give corresponding
chains of inner factors, see [10]. We remark that H∞-
equations (1) generally have such nontrivial chains of so-
lutions.

Theorem 4. Let Φ =
[

Aj
Bτ∗j

C D

]
= ( A B

C D ) be an I/O-

stable and output stable DLS. Assume that range(B) =

H. Let P ∈ ric0(Φ, J). Then J
1

2DφP is I/O-stable if
and only if P ≥ 0.

The result of the previous theorem can be translated to
a number of partial ordering results, some of which are
presented Section 5. In this translation, the notions of
upper and lower DLS are used, as a convenient technical
tool.

4 Control theoretic interpretation
of the factorization

We first extend the original DLS Φ by the state feedback
operators, associated to P ∈ Ric(Φ, J), J ≥ 0. By closing
the feedback loop we obtain the closed loop DLS

A
j
P BD−1

φP
τ∗j

(
C − DφP CφP

−D−1
φP

CφP

) (
DφP

D−1
φP

− I

)
?

x0

�xj(x0, ũ)

�ỹ(x0, ũ)

�ṽ(x0, ũ)

6
ũext

where ũext denotes an external disturbance signal into
the feedback loop, ũ is the internal input signal to the
open loop system, and x0 ∈ H is the initial state. We
remark that the above system makes sense even if Φ
is unstable. In this case any solution P ≥ 0 makes
the DLS J

1

2 φP output stable, and the transfer func-
tion J

1

2DφP (z) ∈ H2(D;L(U ; Y )) because dim U < ∞.
Under stronger structural conditions on the semi-group,
we would have J

1

2DφP (z) ∈ H∞(D;L(U ; Y )); i.e. I/O-

stability of J
1

2DφP .

However, even if Φ were I/O-stable, the closed loop
control signal I/O-map D−1

φP
− I would generally be un-

stable, for P ≥ 0. If P ≥ 0 is power stabilizing such that
σ(AP ) ⊂ D, then the closed loop DLS is exponentially
stable. For non-power stabilizing P ≥ 0, a partial sta-
bilization of the closed loop system (and the semi-group
generator AP ) would be achieved. Partial stabilization
by nonnegative solutions of CARE is considered in [2],
where the Riccati equation is different.

If Φ is I/O-stable (and output stable), P ∈ ric0(Φ, J),
and P ≥ 0, then the open loop control signal I/O-map
DφP

is I/O-stable (and output stable), by definition. It
then follows, under the standing hypotheses of this paper,
that J

1

2DφP is I/O-stable, by Theorem 3. However, D−1
φP

is I/O-stable if (and only if) P is a critical solution.

5 Correspondence of the partial order-
ing

The operator ÑP is the adjoint I/O-map of N , and it is

defined via transfer functions by ÑP (z) := NP (z̄)∗.

Theorem 5. Let J ≥ 0 be a cost operator. Let Φ =[
Aj

Bτ∗j

C D

]
= ( A B

C D ) be an I/O-stable and output stable

DLS, such that range(B) = H.

For P1, P2 ∈ ric0(Φ, J), the following are equivalent

(i) P1 ≤ P2.

(ii) range(ÑP1
π̄+) ⊂ range(ÑP2

π̄+).



In other words, the mapping P 7→ range(ÑPπ̄+)
is order preserving from the POSET ric0(Φ, J) (par-
tially ordered set, ordered by the natural partial or-
dering of self adjoint operators) into the sub-POSET

{range(ÑPπ̄+)}P∈ric0(Φ,J) of the forward shift invariant
subspaces of ℓ2(Z+; U) (ordered by the inclusion of sub-
spaces). This order preserving mapping is the starting
point of [8].

Corollary 6. Make the same assumptions as in Theo-
rem 5. Denote the regular critical solution by P crit

0 :=
(Ccrit)∗JCcrit ∈ ric0(Φ, J).

If P0 ∈ ric0(Φ, J) is such that P crit
0 ≤ P0, then P0 is

critical. If, in addition, range(B) = H, then P crit = P0.

The regular critical solution is extremal in the set of
regular H∞-solutions ric0(Φ, J). We remark that if Φ =[

Aj
Bτ∗j

C D

]
is an I/O-stable and output stable DLS, the

solution set Ric(Φ, J) can contain nonnegative solutions
that are not H∞-solutions (provided that the semi-group
generator A is “sufficiently unstable”).

6 Generalizations

Several assumptions of this paper can be significantly
relaxed, see [9] and [10]. The input space U can al-
ways be a separable Hilbert space, if the input opera-
tor B ∈ L(U ; H) is on some occasions assumed to be
a (compact) Hilbert-Schmidt operator. The solutions
P ∈ Ric(Φ, J) need not always be regular, and weaker
residual cost conditions can be introduced. The positiv-
ity of the cost operator J can be replaced by the pos-
itivity of the indicator ΛP , for solutions P of interest.
This is connected to the positivity of the Popov oper-
ator π̄+D∗JDπ̄+. Also an inertia result can be given,
guaranteeing that all interesting solutions have positive
indicators whenever one has.
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