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38 IntroductionThis is the second part of a two-part study on the input-output stable (I/Ostable) discrete time linear system (DLS) � := ( A BC D ) and the associatedalgebraic Riccati equation (DARE)8><>: A�PA� P + C�JC = K�P�PKP ;�P = D�JD +B�PB;�PKP = �D�JC �B�PA;(52)denoted, together with its solution set, by Ric(�; J). We assume that thereader has access to and familiarity with the �rst part [26] of this work. How-ever, we brie�y remind the most important assumptions, notions and nota-tions. The input, state and output spaces of the DLS � are separable Hilbertspaces, and they are possibly (but not necessarily) in�nite dimensional. Theself-adjoint cost operator J is assumed to be nonnegative throughout mostof this second part � this is in contrast to [26] where many results are validalso for an inde�nite cost operator J . If the DLS � is output stable and I/Ostable, then the associated DARE (52) is called an H1DARE. It appears in[26] that certain solutions of an H1DARE are more interesting than others;these are the H1 solutions P 2 ric(�; J) � Ric(�; J) and the regular H1solutions P 2 ric0(�; J) � ric(�; J), see [26, De�nitions 20 and 21]). Inthe �rst part [26], the regular H1 solutions P 2 ric0(�; J) are associatedto the stable spectral factorizations of the Popov operator D�JD, where Ddenotes the I/O-map of �. The main theme of this latter part is to connectric0(�; J) to the factorizations of the I/O-map D into causal, shift-invariantand I/O stable factors. This work, together with [26], constitutes a theory ofthe regular H1 solutions of a H1DARE and simultaneously, an inner-outertype state space factorization theory for operator-valued bounded analyticfunctions.Why is the algebraic Riccati equation interesting in the �rst place? Whatmakes the special algebraic Riccati equation, namely the H1DARE of type(52), interesting? A traditional system theoretic application of the algebraicRiccati equation, associated to unstable systems, is to �nd a (nonnegative)solution, such that the associated (semigroup of the) closed loop system is(at least partially) (exponentially) stabilized; see e.g. [2], [4], and [55], tomention a few possible references. The algebraic Riccati equation appears(in an adjoint form) in the theory of the Kalman �lter for the stochastic stateestimation. For further information about this, see [1, Chapter 10] which isa nice overview of the various types and applications of the (matrix) Riccatiequations, both in continuous and discrete time. Furthermore, the algebraicRiccati equation has an important application in the canonical and spectralfactorization of rational matrix-valued functions by the state space methods,see [15, Chapter 19]. The state space factorization methods can be extendedto the co-analytic�analytic type factorizations for classes of nonrational un-stable operator-valued functions, see [7], [10] and the references therein.



4 Our view into the Riccati equation Ric(�; J) in (52) is of this latter kind.Because of our standing I/O stability assumption of the DLS � = ( A BC D ), theconnections to the operator-valued function theory become very important.We remark that the theory of H1DAREs, as developed here, is richer butless general than that of DAREs without such stability assumptions. Inthe light of the present work, the feedback stabilization of (the semigroupor the I/O-map of) an unstable DLS is seen as a separate problem, to bediscussed elsewhere. We regard our DLS � as something �already output andI/O-stabilized� by some means � not necessarily by the state feedback law,induced by some (nonnegative, stabilizing, maximal nonnegative) solutionof the DARE. In the applications, there exists genuinely I/O stable discretetime processes that need not be stabilized; consider, for example, a discretetime Lax-Phillips scattering where the scattering process is usually describedby (a DLS that has) an inner H1 transfer function. Our aim is to developa su�ciently general algebraic Riccati equation theory that is able to dealwith these situations.8.1 Outline of the paperWe start by giving a short outline of the results presented here. To eachsolution P 2 Ric(�; J), two families of algebraic Riccati equations are intro-duced in Section 9. These are associated to the spectral DLS �P and theinner DLS �P , centered at the solution P 2 Ric(�; J). For the de�nitionof �P and �P , see [26, De�nition 19]. The spectral DARE Ric(�P ;�P ) isthe DARE associated to the ordered pair (�P ;�P ), where the cost opera-tor �P := D�JD + B�PB is the indicator of the solution P . Analogously,the inner Ric(�P ; J) is associated to the ordered pair (�P ; J). The solutionsets of spectral and inner DAREs have natural relations to the solution setP 2 Ric(�; J) of the original DARE, see Lemmas 64 and 65. The transitionsfrom the original DLS � to the inner DLS �P and the spectral DLS �P arebasic operations that we use in Section 13 to obtain order-theoretic descrip-tions of the solution (sub)set ric0(�; J) � Ric(�; J). The results of Section9 are proved by algebraic manipulations, and do not require DARE (52) tobe a H1DARE.We remark that if the spectral DLS �P , (the inner DLS �P ) is I/O stableand output stable, then the DARE Ric(�P ; J), (Ric(�P ; J)) is a H1DARE,and it is associated to the minimax problem of DLS �P with the cost operator�P , (DLS �P with the cost operator J , respectively). The conditions forthis to happen appear to be quite central in our study. Recall that forP 2 Ric(�; J), �P is I/O stable and output stable if and only if P is aH1 solution, by De�nition 20. For this reason it is important that, undertechnical assumptions, all �reasonable� solutions P 2 Ric(�; J) are shownto be (even regular) H1 solutions, see [26, Corollary 47 and Equation 35].We conclude that the question whether the spectral DARE Ric(�P ;�P ) isan H1DARE has already been settled in [26]. It requires further study togive analogous conditions for the inner DARE Ric(�P ; J) to be a H1DARE.



5This study is carried out in the present paper. When this is done, we haveshown that the general class of H1DAREs is closed under the transitions tospectral and inner DAREs.A fair amount of stability theory for DLSs is needed for the further results.This is provided by the scratch of an in�nite-dimensional Liapunov equationtheory that we develop in Section 10. An essential part of the Liapunovtheory is based on monotonicity techniques, requiring the nonnegativity ofthe cost operator J , or some closely related assumption. By Corollary 75, weconclude that �P is output stable if P 2 Ric(�; J) is nonnegative and thecost operator J > 0 has a bounded inverse, under quite general assumptions.It requires more work (and stronger assumptions) to make the inner DLS �PI/O stable and Ric(�P ; J) an H1DARE.The �rst main results of this paper are given in Section 11. We concludethat each nonnegative regular H1 solution P 2 ric0(�; J) gives a factoriza-tion of the I/O-map J 12D� = J 12D�P � D�P :(53)The causal, shift-invariant factor J 12D�P : `2(Z;U)! `2(Z;Y ) is densely de-�ned, not necessarily I/O stable, but always strongly H2 stable. This meansthat the I/O-map J 12D�P has a bounded impulse response, and the mappingJ 12D�P : `1(Z;U)! `2(Z;Y ) is bounded. If the input operator B of the DLS� = ( A BC D ) is a compact Hilbert�Schmidt operator, then this factorizationbecomes a partial inner-outer factorization where all factors are I/O stable,see Lemma 79 and Theorem 81. In particular, the (properly normalized) in-ner DARE Ric(J 12�P ; I) (which is equivalent to the inner DARE Ric(�P ; J))becomes now a H1DARE, provided P 2 ric0(�; J).A generalized H2 factorization is considered in Lemma 82. Furthermore,�nite increasing chains of solution in ric0(�; J) give factorizations of the I/O-map of Blaschke�Potapov product type, as stated in Theorem 83. However,neither the zeroes nor the singular inner factor of the transfer function D�(z)(whatever these would mean in our generality) play any explicit role in thisconstruction.In Section 12, we consider converse results to those given in the previousSection 11. In Lemma 89 we show that for P 2 ric0(�; J), the I/O stability ofJ 12�P implies that P � 0. Here, an approximate controllability assumptionrange(B�) = H is made. Theorem 90 is a combination of results givenin Sections 11 and 12. It states, under restrictive technical assumptions,that among the state feedbacks associated to solutions P 2 ric0(�; J), it isexactly the nonnegative solutions which output stabilize and I/O-stabilize the(normalized closed loop) inner DLS J 12�P . In other words, among the H1solutions of the DARE ric(�; J), it is exactly the nonnegative P 2 ric0(�; J)which give the factorization (53) of the I/O-map D� so that all the factorsare I/O stable.In Section 13, we study the partial ordering of the elements of ric0(�; J),as self-adjoint operators. The maximal nonnegative solution in the set ric0(�; J)



6is considered in Corollary 94, and seen to be the unique regular critical solu-tion P crit0 := (Ccrit� )�JCcrit� , if the approximate controllability range(B�) = His assumed. An order-preserving correspondence between the set ric0(�; J)and a set of certain closed shift-invariant subspaces of `2(Z+;U) is given inTheorem 95, in the spirit of the classical Beurling�Lax�Halmos Theorem.An order-theoretic characterization of the nonnegative elements of ric0(�; J)is given in Theorem 96.In Section 14 we consider the conditions when the spectral DARERic(�P ;�P ) and the inner DARE Ric(�P ; J) are H1DAREs. The reasonwhy this in interesting is discussed in Subsection 8.2.3 of this Introduction.Also the regular H1 solutions and the regular critical solutions of both thespectral and inner DAREs are described. Our technical assumptions includeapproximate controllability range(B�) = H and the Hilbert�Schmidt com-pactness of the input operator B of the DLS �. The case of the spectralDARE is dealt in Lemma 97 and Corollary 98. As a byproduct, we seethat the set ric0(�; J) is an order-convex subset of Ric(�; J) in the followingsense: if P1; P2 2 ric0(�; J) with P2 � P1, then all P 2 Ric(�; J) such thatP2 � P � P1 satisfy P 2 ric0(�; J). In Lemma 100 it is shown that the innerDARE Ric(�P ; J) is an H1DARE if P 2 ric0(�; J) is nonnegative and thecost operator J > 0 has a bounded inverse � in this case the same P is alsothe regular critical solution of DARE ric(�P ; J). The full description of theregular H1 solutions ric0(�P ; J) of the inner DARE is given in Lemma 101.In the �nal section, it is shown that the structure of the H1DAREric(�; J) and its inner DARE ric(�P crit0 ; J) is similar, where P crit0 :=(Ccrit� )�JCcrit� 2 ric0(�; J) is the regular critical solution. This means that theouter factor of the I/O-map D� is nonessential, from the H1DARE pointof view. The treatment is similar to that given in Lemmas 100 and 101 forgeneral nonnegative P 2 ric0(�; J) but now the cost operator J � 0 is notrequired to be boundedly invertible. This result has an application in [25,Section 7].8.2 Connections to existing DARE theoriesWe proceed to discuss the similarities and di�erences of the present work toprevious works by other authors.8.2.1 Di�erent DAREs appearing in literatureIt is quite necessary to comment why we use the more general DARE (2)instead of the conventional LQDARE( A�PA� P + C�JC = A�PB � ��1P �B�PA�P = D�JD +B�PB;(54)that appears in Least Quadratic type of problems, and is traditionally dis-cussed (together with its continuous time analogue) in the literature.



7As the reader can see, the di�erence between DAREs (52) and (54) is theabsense of a cross term of form D�JC in (54). It is well known that by thepreliminary static state feedbackuj = �(D�JD)�1D�JCxj;(55)(if it makes sense) equation (52) can always be cast in the form of (54)without changing the structure of the full solution set, see [15, Proposition12.1.1]. We remark that the feedback in (55) can be �formally� associatedto an arti�cial zero solution of DARE (52), and this feedback can be givena optimization theoretic interpretation: it minimizes the cost of the �rststep. However, the cost for the future steps (in the closed loop) can be veryexpensive for some initial states x0 2 H. The range of the observability mapof the closed loop system is orthogonal to the feed-through operator.In particular, if the feed-through operator D of the original DLS � =( A BC D ) has a bounded inverse, then 0 solves Ric(�; J), and the (well de�ned)inner DARE Ric(�0; J) is of form (54). In fact, now the closed loop I/O-mapD�0 is a static constant operator D, and the inner DARE Ric(�0; J) �lives�in the undetectable subspace, equalling all of the state space H. BecauseDAREs Ric(�0; J) and Ric(�; J) have the same solution sets, this can be usedto check that the Riccati equation theory presented here is in harmony withthe (usually �nite dimensional) LQDARE and LQ-CARE theories presentedin the literature.Now, if the modi�ed LQDARE Ric(�0; J) describes completely the solu-tion set Ric(�; J), why do not we always normalize the cross term to zeroby the preliminary feedback (55)? We �rst remark that as a H1DARE,ric(�0; J) is trivial because it has no nontrivial nonnegative H1 solutions,by Lemma 101. This is, of course, to be expected, because a nontrivial H1solution would have to factorize the static I/O-map D, see Lemma 79. Wefurther remark that the modi�ed LQDARE Ric(�0; J) is no longer directlyconnected to a factorization of an I/O-map � this is somewhat unfortunateif our interest in DARE comes from such factorizations. If the semigroupgenerator A of the original DLS � = ( A BC D ) is e.g. strongly stable, the sameis not true for the semigroup A0 = A � B(D�JD)�1D�JC of �0, unless D�is outer. Then the DLS �0 would have �undetectable unstable modes� whichcould be inconvenient.Because these comments alone do not seem to be a su�cient motivationnot to use the preliminary feedback (55), we try to discuss this question fromseveral other directions, too.8.2.2 Application oriented reasonsRiccati equations are associated to cost minimization problems, and evento minimax problems and game theoretic problems, if the cost operator Jis allowed to be inde�nite. The information structure of such a problem isre�ected by the form of the associated DARE. The information structureof DARE (52) is more general that that of (54), and the theory can be



8directly applied to several minimax game problems with di�erent informationstructures, without making the preliminary feedback (55) which changes (onemight even say: confuses) the information structure. Clearly, we get heinformation structure of LQDARE (54) in the special case when a direct costis applied on the input of the system.In particular, if we want to factorize a transfer function D�0(z) such thatD := D�0(0) has dense range in the output space Y , then the cross termvanishes if and only if D�0(z) = D identically. We remark that the transferfunctions of the spectral DLSs have always identity operator as their feed-through part, and thus the theory of LQDARE is not directly applicable,except in a trivial case. The more general matrix DARE (52) is consideredin [15, Chapter 12 and 13]. Furthermore, in the continuous time works [36],[37], [38], [39], [40], [41], [42], [43], [44], [45] (O. J. Sta�ans) and [29] (K.Mikkola), the presented CAREs for the regular well-posed system always havenontrivial cross terms. We conclude that if we want to make a discrete timeRiccati equation theory that can be easily compared to the above mentionedworks, we must retain the cross terms.8.2.3 Internal self-similarity of the DARE theoryIn claim (iv) of Lemma 79 we introduce the factorization of the I/O-map asa composition of two I/O stable I/O-mapsJ 12D� = J 12D� ~P � D� ~P ;for any ~P 2 ric0(�; J), ~P � 0. The left (I;�P )-inner factor J 12D�P is relatedto the inner DLS �P , and this inner factor can be further factorized bynonnegative solutions of the inner H1DARE P 2 ric0(� ~P ; J), at least if J isboundedly invertible. We remark that even if the whole solution set satis�esRic(� ~P ; J) = Ric(�; J), the set of regular H1 solutions ric0(� ~P ; J) is smallerthan the original ric0(�; J) by Lemma 101. This is roughly related to thefact that the transfer function J 12D� ~P has less �zeroes� than J 12D�(z) becausesome of them belong to the factor D� ~P .A similar consideration can be given for the right factor D� ~P , which isa spectral factor of the Popov operator D��JD�: nonnegative solutions ofthe spectral DARE P 2 ric0(� ~P ;� ~P ) factorize D� ~P into stable factors. Weremark that the �cardinality� of nonnegative solutions in ric0(� ~P ;� ~P ) is di-minished from that of the original ric0(�; J) because a �shift� by ~P � 0appears, as described in Lemma 97. We further remark that each inner andspectral DARE ric0(� ~P ; J), ric0(� ~P ;� ~P ) is associated to a cost minimizationproblem in a natural way. This gives a system theoretic interpretation toeach of the various DAREs.We conclude that our DARE theory and factorization theory are fullyrecursive in the sense explained above. It is clear that the multiplicativefactorization in any associative algebra (or factorial monoid) is recursive inthe following sense: One would like to go on factoring the previous factors,



9until an irreducible element has been reached. Because the Riccati equation isrelated to such multiplicative factorization, we feel that the Riccati equationtheory should be presented in a way that does not hide the recursive nature ofthings. For this to be possible, we need to have a class of DAREs that is largeenough to be closed under passage to inner and spectral DAREs at solutionsof interest. In fact, many of our proofs rely on a recursive application ofthe same DARE theory to inner or spectral DLSs and DAREs. It is veryexceptional that an inner or spectral DARE has a vanishing cross term, andthe cross term free class of equations (54) is not large enough. Introducingthe preliminary feedback would destroy this overall image, and confuse themeaning of the various Riccati equations.8.3 Parameterizations of nonnegative solutionsAssume that � is I/O stable, output stable, and J � 0. Let us return to thepreliminary feedback (55) for a moment, and assume that we have both thezero solution and the regular critical solution P crit0 . Clearly, both are in theset ric0(�; J) of the regular H1 solutions. We compare now the H1DAREsric(�0; J) and ric(�P crit0 ; J) whose full solution sets equal that of the originalRic(�; J).As already has been pointed out, the factorization of the I/O-map D�0 asa product of nontrivial causal, shift-invariant and I/O stable operators is nota sensible task, because the I/O-map of the inner DLS �0 = � A�BD�1C B0 D �is a static constant D. It is in the nature of Ric(�0; J) that the DARE�operates� in the unobservable part of the state space, and there are notconnections to the I/O-map. When the nonnegative solutions of such DAREare to be considered, we would have to consider the A0 := A � BD�1C-invariant, unobservable unstable subspaces of the state space, as has beendone in the matrix DARE works [16] and [55]. When the state space is�nite dimensional, such an approach is very succesful because the structureof generalized eigenspaces of the semigroup A0 is available. For obviousreasons, no �fully general� in�nite-dimensional Riccati equation theory canfollow these lines, even though such an approach can be quite pleasing andeven satisfactory from the applications point of view. For references, see thecontinuous time results [2] and [4], the latter of which contains a nice exampleof in�nite-dimensional, exponentially stabilizable system, built around theheat equation. As already stated, it is quite instructive to compare ourresults to the existing matrix results with the aid of the preliminary statefeedback (55).The inner DARE ric(�P crit0 ; J) is the other extreme when compared toric(�0; J): the I/O-map of �P crit0 is the full (J;�P crit0 )-inner factor N of theoriginal D�, and the equation has a nonvanishing cross term (apart fromtrivial cases). The following consideration could be carried out as well forthe original DLS � and its I/O-map D� = NX , but we consider the innerDLS �P crit0 and the factor I/O-map N instead.The state space of DLS �P crit0 is, in a sense, �critically visible� to include



10all �zeroes� of D� to N = D�Pcrit0 , but not to generate any extra �zeroes�to D�Pcrit0 that are not zeroes of the original I/O-map D�. This makes itpossible to associate a Blaschke�Potapov type factorization of the I/O-mapN to each nonnegative P 2 ric0(�P crit0 ; J). One immediately gets the ideathat the nonnegative solutions of DARE could be parameterized up to theirorder structure, by using these factorizations and not having to assume ex-cessively from the DLS in question. To some extent this vision is right but adisappointment appears, as will be discussed in the following.Some of the factorizations of the I/O-map N are connected to a nonneg-ative P 2 ric0(�P crit0 ; J), see [26, claim (ii) of Theorem 50]. The problem hereis that the factor in question must have a particular kind of realization, beforeit can be connected to some solution P 2 ric0(�P crit0 ; J) of the H1DARE.When this has been done, we necessarily have P � 0, by Theorem 95.In other words, we have trouble in identifying which factors of N (if notall) are accounted by the solutions of the DARE in the �rst place. One ap-proach to circumvent this is to show that certain �canonical� or �minimal�realization �C of the same I/O-map (characteristically constructed arounda unilateral or bilateral shift operator) have a state space (and the DARE)�complicated enough� so that each factor of the I/O-map is associated tosome solution of Ric(�C ; J). Under very restrictive structural assumptions(such as the exact (in�nite time) controllability), all such canonical or mini-mal realizations would have an isomorphic state spaces, and then the DAREsRic(�C ; J) and Ric(�; J) would have the same structure. This would asso-ciate a solution of DARE Ric(�; J) to each factor of N , at the expence ofadditional restrictions on the data. We return to these considerations in ourlater works. We remark that it has been well known fact for quite a long timethat general in�nite dimensional state space systems do not have state spaceisomorphism, see [9, Chapter 3]. For positive (two-directional) results in thisdirection, see [10], and in particular the discrete time result [11, Theorem4.1].



118.4 NotationsWe use the following notations throughout the paper: Z is the set of integers.Z+ := fj 2 Z j j � 0g. Z� := fj 2 Z j j < 0g. T is the unit circle andD is the open unit disk of the complex plane C. If H is a Hilbert space, thenL(H) denotes the bounded and LC(H) the compact linear operators in H.Elements of a Hilbert space are denoted by upper case letters; for exampleu 2 U . Sequences in Hilbert spaces are denoted by ~u = fuigi2I � U , whereI is the index set. Usually I = Z or I = Z+. Given a Hilbert space Z, wede�ne the sequence spacesSeq(Z) := �fzigi2Z j zi 2 Z and 9I 2 Z 8i � I : zi = 0	;Seq+(Z) := �fzigi2Z j zi 2 Z and 8i < 0 : zi = 0	;Seq�(Z) := �fzigi2Z 2 Seq(Z) j zi 2 Z and 8i � 0 : zi = 0	;`p(Z;Z) := �fzigi2Z � Z j Xi2Z jjzijjpZ <1	 for 1 � p <1;`p(Z+;Z) := �fzigi2Z+ � Z j Xi2Z+ jjzijjpZ <1	 for 1 � p <1;`1(Z;Z) := �fzigi2Z � Z j supi2Z jjzijjZ <1	:The following linear operators are de�ned for ~z 2 Seq(Z):� the projections for j; k 2 Z [ f�1g�[j;k]~z := fwjg; wi = zi for j � i � k; wi = 0 otherwise;�j := �[j;j]; �+ := �[1;1]; �� := �[�1;�1];��+ := �0 + �+; ��� := �0 + ��;� the bilateral forward time shift � and its inverse, the backward timeshift � � � ~u := fwjg where wj = uj�1;� �~u := fwjg where wj = uj+1:Other notations are introduced when they are needed. We also use somenotations that have already been introduced in [26].



129 The algebraic properties of DAREIn this section, we write down a number of algebraic properties associated toiterated transitions to inner and spectral minimax nodes, DLSs and DLSs.The algebraic Riccati equation, together with the spectral DLS �P and theinner DLS �P , has already been introduced in [26, Section 3]. The spectralDLS �P has been extensively used in [26] because its I/O-map gives spectralfactors for the Popov operator ��+D��JD���+. For the inner DLS �P we havenot had much application until now. The results of this section are provedby purely algebraic manipulations, and do not require input, output or I/Ostability of any of the DLSs considered. The de�niteness of the cost operatorJ does not play any role, either. Later, in Sections 14 and 15, the analogousstructure of the H1DARE is considered, for J � 0.We associate two chains of DAREs to a given DARE Ric(�; J). Theelements of these chains are called the spectral and inner DAREs. Both thechains are indexed by the solutions P 2 Ric(�; J). These new DAREs makeit easy to �move� in the solution set Ric(�; J) of the original DARE, providedwe can solve these Riccati equations. The presented structure (in some form)are well known to specialists in Riccati equations, but they are hard to locatein the literature. For us, the presented chains of DAREs are invaluable toolsin sections 11 and 13.Because DARE Ric(�; J) does not solely depend on the DLS but also onthe cost operator J , it is not su�cient to consider the DLS � alone in thissection. Instead, we have to consider the pairs (�; J) that we call minimaxnodes. Each minimax node de�nes a cost optimization problem, as de�nedin [19] for I/O stable DLSs. To this cost optimization problem, a Riccatiequation is associated in a natural way. We �rst de�ne two operations on theminimax nodes, and give their basic properties. The DARE in inntroducesin the familiar form in De�nition 61.De�nition 57. Let � = ( A BC D ) be a DLS with input space U , the state spaceH and output space Y . Let J = J� 2 L(Y ) be a cost operator. Let P =P � 2 L(H) be arbitrary, such that the operator �P := D�JD +B�PB has abounded inverse.(i) The ordered pair (�; J) is called the minimax node, associated to theDLS � and cost operator J .(ii) The spectral minimax node of (�; J) at P is de�ned by(�; J)P := �� A B�KP I � ;�P� ;where �P := D�JD + B�PB and �PKP := �D�JC � B�PA. Theoperator �P is called the indicator of P , and KP is called the feedbackoperator of P .



13(iii) The inner minimax node of (�; J) at P is de�ned by(�; J)P := ��AP BCP D� ; J� ;where AP := A +BKP , CP = C +DKP , and KP is as above. The operatorAP is called the (closed loop) semigroup generator of P , and CP is called the(closed loop) output operator of P .We call two DLSs equal, if their de�ning ordered operator quadruples(in di�erence equation form) are equal. Two minimax nodes are equal, iftheir DLSs are equal, and the cost operators are equal. In this case we write(�1; J1) � (�2; J2).To each self-adjoint operator P 2 L(H), two additional DLSs are associ-ated:De�nition 58. Let (�; J), KP , AP and CP be as in De�nition 57. LetP = P � 2 L(H) be arbitrary, such that D�JD + B�PB has a boundedinverse.(i) The DLS �P := � A B�KP I �is the spectral DLS, associated to the minimax node (�; J), and centeredat P .(ii) The DLS �P := �AP BCP D�is called the inner DLS, associated to the minimax node (�; J), andcentered at P .So, we can write (by de�nitions)(�; J)P = (�P ;�P ); (�; J)P = (�P ; J);instead of formulae appearing in parts (ii) and (iii) of De�nition 57. Theiterated transitions to inner and spectral minimax nodes behave as follows.Proposition 59. Let (�; J) be a minimax node. Then the following holdsfor P1 = P �1 2 L(H), P2 = P �2 2 L(H) and �P := P2 � P1.�(�; J)P1�P2 � ��P1; J�P2 � �� AP1 BKP1 �KP2 I � ;�P2� ;(56) �(�; J)P1�P2 � ��P1; J�P2 � ��P2; J� ;(57) �(�; J)P1��P � (�P1;�P1)�P � (�P2 ;�P2) ;(58) �(�; J)P1��P � (�P1;�P1)�P � �� AP2 BKP2 �KP1 I � ;�P2� :(59)



14Proof. As before, denote by �P , KP the indicator and feedback operator,associated to the minimax node (�; J) and P 2 L(H). We start with provingequation (56). By ~�P2 and ~KP2 denote the indicator and feedback operator,associated to the minimax node (�P1 ; J) and P2 2 L(H). It is easy to seethat ~�P2 = �P2. The feedback operator of the inner DLS �P1 at P2 satis�es~KP2 = KP2 �KP1 because~KP2 = ��1P2 (�D�JCP1 �B�P2AP1)(60) = ��1P2 ((�D�JC �B�P2A)� (D�JD +B�P2B)KP1)= ��1P2 (�P2KP2 � �P2KP1) = KP2 �KP1 ;where AP1 = A + BKP1 and CP1 = C +DKP1 , by part (ii) of De�nition 57.Now (56) follows.We proceed to prove equality (57). By part (iii) of De�nition 57, we have��P1; J�P2 � �� ~AP2 B~CP2 I � ; J� ;where the semigroup generator satis�es~AP2 = AP1 +B ~KP2 = (A+BKP1) +B(KP2 �KP1) = A+BKP2 = AP2 ;and for the output operator we have~CP2 = CP1 +D ~KP2 = (C +DKP1) +D(KP2 �KP1) = C +DKP2 = CP2because ~KP2 = KP2 �KP1, as already shown in the proof of claim (56). Thisproves claim (57).From now on, let ~��P and ~K�P denote the indicator and feedback oper-ator, associated to the spectral minimax node (�P1; J). Denote also �P :=P2 � P1. Then ~��P = I� � �P1 � I +B��PB(61) = D�JD +B�P1B +B�(P2 � P1)B = �P2;and �P2 ~K�P = ~��P ~K�P = �I� � �P1 � (�KP1)� B��PA(62) = �D�JC �B�P1A�B�(P2 � P1)A = �P2KP2;or ~K�P = KP2. But this gives for the spectral minimax node(�P1;�P1)�P � �� A B� ~K�P I � ; ~��P� � �� A B�KP2 I � ;�P2� ;



15and equality (58) follows. It remains to consider the minimax node (�P1 ;�P1)�P .By part (iii) of De�nition 57, we have(�P1; J)P2 � �� ~A�P B~C�P I � ; ~��P�where ~��P = �P2 as above,~A�P = A+B ~K�P = A+BKP2 = A+BKP2 = AP2 ;and ~C�P = �KP1 + ~K�P = �KP1 +KP2 :This proves the �nal claim (59).The following �commutation� result will be important in applications:Corollary 60. Let (�; J) be a minimax node, and P1; P2 2 L(H) self-adjoint.Then �(�P1)P2�P1 ;�P1� � ���P2�P1 ;�P1� :Proof. This is an immediate consequence of formulae (56) and (59) of Propo-sition 59.Now we have introduced the notion of a minimax node, and de�ned twoalgebraic operations on such nodes: transition to inner and spectral minimaxnodes. In the following de�nition, a discrete time algebraic Riccati equation(DARE) is associated to each minimax node in the familiar form, see [26,De�nition 18].De�nition 61. Let (�; J) � (( A BC D ) ; J) be a minimax node. Then the fol-lowing system of operator equations8><>: A�PA� P + C�JC = K�P�PKP�P = D�JD +B�PB�PKP = �D�JC � B�PA(63)is called the discrete time algebraic Riccati equation (DARE) and denoted byRic(�; J). The linear operators are required to satisfy �P ;��1P 2 L(U) andKP 2 L(H;U). Here P is a unknown self-adjoint operator to be solved. IfP 2 L(H) satis�es (63), we write P 2 Ric(�; J).As before, we use the same symbol Ric(�; J) both for the solution set ofa DARE, and the DARE itself. This should not cause confusion. When wewrite expressions such asP 2 Ric(�; J); Ric(�; J) = Ric(�; J); Ric(�; J) � Ric(�; J);



16the symbol Ric(�; J) denotes the solution set. Clearly, di�erent minimaxnodes can give the same DARE because the DARE depends on the opera-tors C�JC, D�JC, and D�JD, but not directly on C, D, or J . When twoDAREs Ric(�1; J1) and Ric(�2; J2) equal in this way, we write Ric(�1; J1) :=Ric(�2; J2). We have(�1; J1) � (�2; J2)) Ric(�1; J1) := Ric(�2; J2)) Ric(�1; J1) = Ric(�2; J2);and none of the implications is an equivalence. In particular, the equalityRic(�; J) = Ric(�; J) does not imply that the two Riccati equations weresame, and even less that the two minimax nodes were the same. If (�1; J1) �(�2; J2), then we write Ric(�1; J1) � Ric(�2; J2).The inner and spectral minimax nodes of an original minimax node (�; J)give rise to new DAREs: namely the inner and spectral DAREs, centered atthe self-adjoint operator P 2 L(U). In order to obtain something interesting,we must now require that in fact P 2 Ric(�; J).De�nition 62. Let (�; J) � (( A BC D ) ; J) be a minimax node. Let P 2 Ric(�; J)be arbitrary. Let �P and �P as given in De�nition 58, and by �P , KP denotethe indicator and feedback operators of P , respectively.(i) The DARE Ric(�; J)P :� Ric(�P ;�P )8><>: A� ~PA� ~P +K�P�PKP = ~K�~P ~� ~P ~K ~P~� ~P = �P +B� ~PB~� ~P ~K ~P = �PKP �B� ~PA(64)is the spectral (�; J)-DARE, centered at P 2 Ric(�; J). Here ~P is anunknown self-adjoint operator to be solved.(ii) The DARE Ric(�; J)P :� Ric(�P ; J)8><>: A�P ~PAP � ~P + C�PJCP = ~K�~P� ~P ~K ~P� ~P = D�JD +B� ~PB� ~P ~K ~P = �D�JCP �B� ~PAP ;(65)is the inner (�; J)-DARE, centered at P 2 Ric(�; J). Here ~P is anunknown self-adjoint operator to be solved, and AP := A+BKP , CP :=C +DKP .We start with discussing the spectral Riccati equation Ric(�; J)P . Thefollowing proposition is basic, and serves as a prerequisite for Lemma 64.Proposition 63. Let (�; J) be a minimax node. Let P 2 Ric(�; J). ThenRic(�; J)P can be written in the equivalent form8><>: A� ~PA� ~P +K�P�PKP = K�P+ ~P�P+PKP+ ~P�P+ ~P = D�JD +B�(P + ~P )B�P+ ~PKP+ ~P = �D�JC � B�(P + ~P )A:



17Proof. By equation (61), ~� ~P = �P+ ~P , and by equation (62), ~K ~P = KP+ ~P .Lemma 64. Let (�; J) be a minimax node. Let P 2 Ric(�; J) and ~P be abounded self-adjoint operator. Then the following are equivalent(i) P + ~P 2 Ric(�; J),(ii) ~P 2 Ric(�; J)P .Proof. Assume claim (i). Because both P; (P + ~P ) 2 Ric(�; J), we have byProposition 63A�(P + ~P )A� (P + ~P ) + C�JC = K�P+ ~P�P+ ~PKP+ ~P ;A�PA� P + C�JC = K�P�PKP :Here �Q and KQ denote the indicator and the feedback operator of the self-adjoint operator Q, relative to the original minimax node (�; J). Subtractingthese two Riccati equations we obtainA� ~PA� ~P +K�P�PKP = K�P+ ~P�P+ ~PKP+ ~P :But now, by Proposition 63, ~P 2 Ric(�; J)P , and claim (ii) follows.For the converse direction, assume claim (ii). Let P 2 Ric(�; J), P 2Ric(�P ;�P ) = Ric(�; J)P be arbitrary. By adding the DAREs Ric(�; J)and Ric(�; J)P we obtainA�(P + ~P )A� (P + ~P ) + C�JC = K�P+ ~P�P+PKP+ ~Pwhere Proposition 63 has been used again. Thus claim (i) immediately fol-lows.The remaining part of this section is devoted to the study of the inner Riccatiequation Ric(�; J)P . Given any P 2 Ric(�; J), the relation between thesolution sets of Ric(�; J)P and Ric(�; J) appears to be very simple.Lemma 65. Let (�; J) be a minimax node. Let P 2 Ric(�; J) be arbitrary.Then the following are equivalent:(i) ~P 2 Ric(�; J)P ,(ii) ~P 2 Ric(�; J).Proof. We prove the direction (i) ) (ii); the proof of the other direction isobtained by reading this proof in the reverse direction. Let ~P 2 Ric(�; J)P .Then the left hand side of the �rst equation in (65) takes the formA�P ~PAP � ~P + C�PJCP(66) = A� ~PA� ~P + C�JC �K�P� ~PK ~P �K�~P� ~PKP +K�P� ~PKP :



18Here �Q and KQ denote the indicator and the feedback operator of the self-adjoint operator Q, relative to the original minimax node (�; J). By equation(60), ~K ~P = K ~P � KP and the right hand side of the �rst equation in (65)becomes ~K�~P� ~P ~K ~P = K�~P� ~PK ~P �K�P� ~PK ~P �K�~P� ~PKP +K�P� ~PKP :This, together with equation (66) givesA� ~PA� ~P + C�JC = K�~P� ~PK ~P :Thus ~P 2 Ric(�; J). This completes the proof.As an immediate corollary, we can put Ric(�; J)P in a di�erent formProposition 66. Let (�; J) be a minimax node. Let P 2 Ric(�; J). ThenRic(�; J)P can be written in the equivalent form8><>: A�P ~PAP � ~P + C�PJCP = (K ~P �KP )�� ~P (K ~P �KP )� ~P = D�JD +B� ~PB� ~PK ~P = �D�JC �B� ~PA; �PKP = �D�JC � B�PA:Proof. This is because ~K ~P = K ~P �KP , by equation (60).The results of Lemmas 64 and 65 can be given in a short formRic(�; J) = P +Ric(�; J)P = P +Ric(�P ;�P );(67) Ric(�; J) = Ric(�; J)P = Ric(�P ; J)for all P 2 Ric(�; J). It now follows that the iterated transitions to innerand spectral DAREs satisfy the following rules of calculation.Corollary 67. Let (�; J) � (( A BC D ) ; J) be a minimax node. Let P1; P2 2Ric(�; J), and �P := P2 � P1 2 Ric(�; J)P1. ThenRic(�P1; J)P2 � Ric(� AP1 BKP1 �KP2 I � ;�P2) = Ric(�; J)� P2;(68) Ric(�P1; J)P2 = Ric(�; J);(69) Ric(�P1;�P1)�P = Ric(�; J)� P2;(70) Ric(�P1;�P1)�P � Ric(� A BKP2 �KP1 I � ;�P2) = Ric(�; J)� P1:(71)We remark that the DLS �P2;P1 := � AP1 BKP1�KP2 I � is familiar from [26,Proposition 56].



1910 Liapunov equation theoryThe operator equation A�PA� P + C�JC = 0;(72)is called the discrete time Liapunov equation or the (symmetric) Stein equa-tion. As with the Riccati equation, the operators are as follows: the operatorA 2 L(H) is the semigroup generator, C 2 L(H; Y ) is the output operator,and the self-adjoint operator J 2 L(Y ) is the cost operator. The solution Pis required to be self-adjoint. It is clear that the observability and controlla-bility Gramians C�C and BB� of a DLS are solutions of Liapunov equations,see e.g. [56, p. 71].A fairly complete Liapunov equation theory is given e.g. in [15] and [56]for the case when A, C and J are matrices, and J > 0. It is well knownthat the matrix Liapunov equation has a unique solution for any self-adjointmatrix C�JC if and only if �(A) \ ��(A)��1 = ;, see [15, Theorem 5.2.3].When this spectral separation holds, the solution P can be expressed as aCauchy integral, see [15, Theorem 5.2.4]. When we do not have the spectralseparation, the Cauchy integral cannot be de�ned because an integrationcontour cannot be drawn such that �(A) and ��(A)��1 lie on the �oppositesides� of the contour. The Cauchy integral solution makes perfect sense evenfor some operator Liapunov equations, provided that the required spectralseparation exists. Even if we produced the dimension free variants of theseresults, the spectral separation would be too restrictive a condition to beuseful for non-power stable but nevertheless strongly stable semigroup gen-erators A. If �(A) � D, then the spectral separation forces �(A) � D, andso A is power stable.In the present work, our main interest is not in �nding solutions forLiapunov equations. Quite conversely, we are given a nonnegative solutionP of the Liapunov equation (72), with J � 0. Our task is to show thatthe output stability of an associated observability map C�0 := fJ 12CAjgj�0follows, see Lemma 74. Then, an expression can be found for the minimalnonnegative solution P0 of (72), and the other solutions are parameterizedby their residual cost operators LA;P := s� limj!1A�jPAj, see Corollary71. Recall that the residual cost operator is de�ned as a strong limit LA;P :=s� limj!1A�jPAj, see [26, De�nition 21].We now brie�y discuss the connection of the Liapunov equation to stabil-ity questions. The Liapunov equation is connected to the Liapunov stabilitytheory of DLSs, see [17] for an exposition of the matrix case. For anotherview into this, suppose Q � 0 and P > 0 satis�es A�PA� P +Q = 0. Thenby writing for x 6= 0,jjAxjj2P � jjxjj2P := DP 12Ax; P 12AxE� DP 12x; P 12xE = �hQx; xi � 0;(73)we see that such solution P de�nes an inner product topology such thatthe operator A becomes a contraction. Because P is bounded, we have



20jjxjjP � jjP jj � jjxjj, which implies that the jj:jjP -topology is generally weakerthat the original. Clearly the topologies coincide if P has a bounded inverse.This gives some functional analytic meaning for the Liapunov stability theoryof linear systems.Another instance where a Liapunov equation arises is connected to DAREand given in the following proposition. Its proof is a straightforward calcu-lation, and clearly connected to the inner Riccati equation Ric(�; J)P ofDe�nition 62 and Lemma 65.Proposition 68. Let � = ( A BC D ) be a DLS, and J 2 L(Y ) a self-adjoint costoperator. Then P 2 Ric(�; J) if and only ifA�PPAP � P + C�PJCP = 0;(74)where AP := A + BKP and CP := C + DKP . Furthermore, D�JCP +B�PAP = 0.By solving the Liapunov equation (74), the operator P 2 Ric(�; J) canbe recovered from the operators �P and KP , provided that the solutionof the Liapunov equation is unique or we know the residual cost operatorLAP ;P apriori. Unfortunately, it is di�cult to check (for uniqueness of P ) thespectral separation �(AP ) \ ��(AP )��1 = ; for solutions P 2 Ric(�; J) ofinterest. By iteration, the following algebraic triviality is shown.Proposition 69. Assume that A 2 L(H), C 2 L(H; Y ) and J 2 L(Y ).Assume that a possibly unbounded linear map P : H � dom(P ) ! H,A dom(P ) � dom(P ), satis�es the Liapunov equation A�PA�P+C�JC = 0.Then Px = n�1Xj=0 A�jC�JCAjx + A�nPAnx; for all x 2 dom(P ); n � 1:We start to study solutions P of the Liapunov equation (72) for which theresidual cost operator LA;P exists. The fact that the mapping P 7! A�PA�Pis bounded and linear, gives the background for the following proposition:Proposition 70. Assume that the linear mappings A 2 L(H), C 2 L(H; Y )and J 2 L(Y ) self-adjoint. Then the following are equivalent:(i) There is a solution P0 of the Liapunov equation such that the residualcost operator vanishes: LA;P0 = 0.(ii) There is at least one solution ~P of the Liapunov equation such that theresidual cost operator LA; ~P 2 L(H) exists.(iii) The Liapunov equation has at least one solution, and for all solutionsP , the residual cost operator LA;P 2 L(H) exists.If, in addition, J � 0, then we have a third equivalent condition



21(iv) The DLS �0 := � A �J 12C �� is output stable.Proof. The implication (i) ) (ii) is trivial. To prove the implication (ii)) (iii), note that by Proposition 69 Pn�1j=0 A�jC�JCAjx = ~Px � A�n ~PAnxfor all x 2 H. Thus s� limn!1Pn�1j=0 A�jC�JCAj = ~P � LA; ~P exists if (ii)holds. Now, for all solutions P of the Liapunov equation the strong limitLA;P = s� limn!1A�nPAn exists, because the limit on the right hand sidefor the following equation existsA�nPAnx = Px� n�1Xj=0 A�jC�JCAjxfor all x 2 H.To prove the implication (iii) ) (i), assume ~P is a solution such thatLA; ~P 2 L(H) exists. It follows that the strong limit operatorP0 := s� limn!1Pn�1j=0 A�jC�JCAj exists and equals ~P � LA; ~P 2 L(H).We show that P0 is a solution of the Liapunov equation such that LA;P0 = 0.Let x1; x2 2 H be arbitrary. Thenhx1; (A�P0A� P0)x2iH = *Ax1; (s� limn!1 n�1Xj=0 A�jC�JCAj)Ax2+H(75) �*x1; (s� limn!1 n�1Xj=0 A�jC�JCAj)x2+H :Now the latter part on the right hand side of equation (75) takes the form*x1; (s� limn!1 n�1Xj=0 A�jC�JCAj)x2+H = *x1; limn!1 (n�1Xj=0 A�jC�JCAjx2)+H= limn!1*x1; (n�1Xj=0 A�jC�JCAjx2)+H = limn!1 n�1Xj=0 
x1; A�jC�JCAjx2�H= 1Xj=0 
x1; A�jC�JCAjx2�H ;where the second equality holds because hx1; �iH is a continuous linear func-tional for each x1 2 H. Similarly,*Ax1; (s� limn!1 n�1Xj=0 A�jC�JCAj)Ax2+H = *x1; 1Xj=0 A�(j+1)C�JCA(j+1)x2+H :Subtracting these two limits, together with equation (75), giveshx1; (A�P0A� P0)x2iH = �hx1; C�JCx2iH . Because x1 and x2 are arbitrary,



22P0 solves the Liapunov equation. To show that LA;P0 = s� limn!1A�nP0An =0, we note that for each x1 2 H, n 2 NjjA�nP0Anx1jj = jjP0x1 � n�1Xj=0 A�jC�JCAjx1jj= jj limm!1 mXj=0 A�jC�JCAjx1 � n�1Xj=0 A�jC�JCAjx1jj= jj 1Xj=n A�jC�JCAjx2jj ! 0;as a tail of a convergent series.We complete the proof by studying the additional part (iv). Assumethat both (ii) and (iii) hold, P is a solution of the Liapunov equation suchthat LA;P exists, and J � 0. Then both the bounded operators J 12 ands� limn!1Pn�1j=0 A�jC�JCAj = P �LA;P exist. We calculate for any x 2 HjjP � LP jj � jjxjj2 � jhx; (P � LP )xiH j= ������*x; s� limn!1 n�1Xj=0 A�jC�JCAj! x+H ������ = ������*x; limn!1n�1Xj=0 A�jC�JCAjx+H������= ������ limn!1*x; n�1Xj=0 (A�jC�JCAjx)+H������ = limn!1 n�1Xj=0 DJ 12CAjx; J 12CAjxEH= jjfJ 12CAjxgj�0jj2̀2(Z+;Y ) = jjC�0xjj2̀2(Z+;Y );where the third equality holds because hx; �iH is a continuous linear functionalfor each x 2 H.It follows that the observability map C�0 of the DLS �0 maps all of a(complete) Hilbert space H into `2(Z+;Y ). However, the observability mapof a DLS is a closed operator (see [26, Lemma 3]) and now the domaindom(C�0) = H is complete. The Closed Graph Theorem implies the bound-edness of C�0 ; i.e. the output stability of �0. So claim (iv) follows. Theimplication (iv) ) (i) follows because the output stability of �0 implies thestrong convergence of the sum s� limn!1Pn�1j=0 A�jC�JCAj, thus de�ningthe solution P0 of the Liapunov equation. This completes the proof.Compare the above proof to the proof of [26, Proposition 43]. An immediateconsequence is the following:Proposition 71. If there is a solution P of the Liapunov equation (72)such that the residual cost operator LA;P 2 L(H) exists, then there is asolution P0 such that LA;P0 = 0. Such P0 is unique, and given by P0x0 =P1j=0 (A�jC�JCAjx0) for all x0 2 H. All other bounded solutions P of theLiapunov equation satisfyP = P0 + LA;P ; LA;P = s� limj!1 A�jPAj:



23If A is strongly stable, then P0 is the unique solution of the Liapunov equation.Proof. The existence of P0 is the matter of the implication (ii) ) (i) ofProposition 70. The formula for P0 is found in the proof of implication (iii)) (i) of Proposition 70. The parameterization of all the solutions is a directconsequence of Proposition 69. Claim about the uniqueness of P0 is provedby noting that for two solutions P1; P2 2 L(H) we haveA�j(P1 � P2)Aj = P1 � P2for all j > 0. If both s� limj!1A�jP1Aj = 0 and s� limj!1A�jP2Aj = 0,then the left hand side converges to zero pointwise inH, as j grows. The righthand side does not even depend on j. Thus P1 = P2. The claim involvingthe strongly stable semigroup is trivial.As discussed in the beginning of this section, a fair amount of stability re-sults for DLSs can be given with the aid of the Liapunov equation. Thefollowing result is [56, Lemma 21.6], stating that an unstable eigenvector ofthe semigroup is undetectable.Proposition 72. Let � = ( A BC D ) be a DLS, and J � 0 a cost operator. LetP 2 Ric(�; J), P � 0 be arbitrary. Assume that Ax = �x for j�j � 1. ThenJ 12Cx = 0.Proof. If Ax = �x, the Liapunov equation takes the form(j�j2 � 1) hPx; xi+ DJ 12Cx; J 12CxE = 0:(76)Now, if j�j2 � 1 � 0, then (j�j2 � 1) hPx; xi � 0 because P � 0. BecauseJ � 0, equation (76) implies that J 12Cx = 0, and the claim is proved.Unfortunately this is too weak to be useful for our purposes. Clearly, thisapproach is restricted to the cases when the eigenvectors of the semigroupgenerator A span (the interesting part of) the state space. However, the casewhen A is a diagonalizable matrix or a Riesz spectral operator is covered,see [3, p. 37]. In order to obtain a more general theory for the operatorRiccati equation, a stronger in�nite-dimensional Liapunov equation theoryis required. In Lemma 74, an essential analogue of Proposition 72 is provedfor DLSs with much more complicated semigroups. We start with a resultknown as the Vigier's theorem in [30, Theorem 4.1.1].Proposition 73. Let fTjgj�0 � L(H) be a sequence of nonnegative self-adjoint operators such that0 � hx; Tjxi � hx; Tj�1xi ; j > 0:Then there is a nonnegative self-adjoint operator T 2 L(H) such that 0 �T � Tj for all j � 0, and hx; Txi = limj!1 hx; Tjxi:



24Proof. De�ne aj(x; y) := hx; TjyiH , for all j � 0. It is easy to see that aj(x; y)is a bounded conjugate symmetric sesquilinear form on H�H. Now, becausefhx; Tjxigj�0 is a nonincreasing sequence of nonnegative real numbers, thelimit exists for all x 2 H. The polarization identity4aj(x; y) = 4 � hx; Tjyi= hx+ y; Tj(x+ y)i � hx� y; Tj(x� y)i+i hx + iy; Tj(x+ iy)i � i hx� iy; Tj(x� iy)i :implies that the limit a(x; y) := limj!1 aj(x; y) exists, for all x; y 2 H. Itremains to show that a(x; y) is a bounded conjugate symmetric sesquilinearform on H �H.The linearity in the �rst argument x and the conjugate linearity in thesecond argument y is a trivial consequence of the limit process, because thisis true for each aj(x; y) by the properties of the inner product. The same istrue about the conjugate symmetricity of a(x; y). To show the boundedness,we see thatja(x; y)j = limj!1 jaj(x; y)j = limj!1 j hx; Tjyi j � limj!1 jjTjjj jjxjj jjyjj:Now, the family fTjgj�0 is uniformly bounded by jjT0jj, because the normsjjTjjj are in fact a nonincreasing sequencejjTjjj = supjjxjj=1 hx; Tjxi � supjjxjj=1 hx; Tj�1xi = jjTj�1jj;where we have used the assumption that 0 � hx; Tjxi � hx; Tj�1xi, for allx 2 H. As a bounded sesquilinear form, a(x; y) can be written in forma(x; y) = hx; Tyi, for a unique operator T 2 L(H) (see [35, Theorem 12.8]).T is self-adjoint because hx; Tyi = a(x; y) = a(y; x) = hy; Txi = hT �y; xi =hx; T �yi. Because the nonnegativity of T is trivial, T satis�es the claims ofthis proposition.By claim (ii) of Proposition 70, we saw that if the Liapunov equation has onesolution ~P such that the residual cost operator LA;P exists, then a numberof nice results followed. Now we use Proposition 73 to give an existence ofsuch LA;P for a given nonnegative solution P .Lemma 74. Let � = ( A BC D ) be DLS, and J � 0 a self-adjoint cost operator.Assume that the Liapunov equationA�PA� P + C�JC = 0;has a nonnegative solution P 2 L(H). Then(i) The DLS �0 := � A �J 12C �� is output stable, and the residual cost operatorLA;P := s� limj!1A�jPAj exists.



25(ii) The operator P0 is the minimal nonnegative solution of the Liapunovequation (72), where P0 := C��0C�0, and LA;P0 = 0.The assumption J � 0 can be replaced by the assumption C�JC � 0, if �0 isreplaced by � A �(C�JC) 12 ��.Proof. Let P � 0 be the nonnegative solution whose existence is assumed.By Proposition 69, we have for all x 2 H and n � 1hx; Pxi � n�1Xj=0 jjJ 12CAjxjj2 = hx;A�nPAnxi ;because J � 0 by assumption. De�ne Tn := A�nPAn. It immediatelyfollows that hx; Tnxi is a nonincreasing sequence of nonnegative real num-bers, because P � 0. We can apply Proposition 73, and obtain the largestlower bound operator T , such that 0 � T � A�nPAn for all n � 0. Weproceed show that T = s� limn!1A�nPAn =: LA;P . We have, becausehx; Txi = limn!1 hx;A�nPAnxi for all x 2 H:0 = limn!1 hx; (A�nPAn � T )xi = limn!1 jj(A�nPAn � T ) 12xjj2:So (A�nPAn � T ) 12 ! 0 in the strong operator topology, and f(A�nPAn �T ) 12gn�0 is thus a uniformly bounded family, by the Banach�Steinhaus the-orem. It follows that (A�nPAn � T )x ! 0 for all x 2 H, and so we haveT = LA;P which, in particular, exists. We conclude that the equivalent con-ditions of Proposition 70 hold. Furthermore, because J � 0, �0 is outputstable.The proof of the second claim (ii) goes as follows. Because �0 is outputstable, it follows from Proposition 71 that P0 = C��0C�0 is a bounded solutionof the Liapunov equation, satisfying LA;P0 = 0. It is nonnegative becauseJ � 0. To show that P0 is minimal nonnegative, let P1 2 L(H) is anothernonnegative solution of the Liapunov equation. Then the strong limit LA;P1exists, by Proposition 70, and because P1 � 0, it follows that LP1 � 0. ByProposition 71, P1 = P0 + LA;P1 � P0. So P0 is a minimal nonnegativesolution of the Liapunov equation. The �nal comment follows by replacingC by (C�JC) 12 , and J by I. The proof is now complete.We now consider the special case when the Liapunov equation is connectedto DARE Ric(�; J) for J � 0, and its nonnegative solution P 2 Ric(�; J), asin Proposition 68. By applying Lemma 74 with AP in place for A and CP inplace for C, we get an important results that is used several times in Section11.Corollary 75. Let � = ( A BC D ) be a DLS, and J � 0 a cost operator. LetP 2 Ric(�; J) such that P � 0. Then the DLS �0 := � AP �J 12CP �� is output



26stable, and the (closed loop) residual cost operator LAP ;P exists. Furthermore,P0 := C��0C�0 is a minimal nonnegative solution of the Liapunov equationA�P ~PAP � ~P + C�PJCP = 0;where AP := A+BKP , CP := C +DKP , and ~P is the operator to be solved.Also LAP ;P0 = 0.We conclude that not bad instabilities of AP are seen through the operatorCP , as a dimension independent analogy to Proposition 72. We remark thatP0 does not necessarily solve the DARE Ric(�; J). Under stronger conditions,it is shown in Lemma 100 that LAP ;P = 0 and then P = P0, by Proposition71. We complete this section by considering a case when the Liapunov equa-tion technique is applicable to a nonnegative solution of DARE Ric(�; J),even if the cost operator J could be inde�nite. In Corollary 75, the closedloop residual condition of P was considered. A conclusion about the openloop residual cost operator LA;P is considered in the following.Corollary 76. Let � = ( A BC D ) be a DLS, and J 2 L(Y ) a self-adjointcost operator. Let P 2 Ric(�; J) such that P � A�PA � 0. Then P 2Ric00(�; J).Proof. Because P 2 Ric(�; J), we have the Liapunov equationA�PA� P + �C� K�P ��J 00 ��P�� CKP� = 0:Now P � A�PA if and only if [ C� K�P ]� J 00 ��P �� CKP � � 0. Now claim (i) ofLemma 74 (in its modi�ed form for the inde�nite cost operator) shows thatthe residual cost operator LA;P exists.Note that the condition P � A�PA � 0 implies that ker(P ) is A-invariant,and the orthogonal complement ker(P )? is A�-invariant but not necessarilyA-invariant. For this reason, we have to introduce the compression of thesemigroup generator.De�nition 77. Let � = ( A BC D ) be a DLS and J self-adjoint. Let P 2Ric(�; J). De�ne the closed subspace HP := ker(P )? � H, the orthogo-nal projection �P onto HP , and the compression of the semigroup AP :=�PAjHP 2 L(HP ).A nonnegative solution P 2 Ric(�; J) induces an inner product spacestructure into HP := ker(P )?. Everything goes in the same way as discussedin connection with equation (73) for the Liapunov equations, with the ex-ception that now the (generally nontrivial) null space of P must be dividedaway. It is easy to see that P � A�PA � 0 is equivalent tojjAPxjjP := jjP 12Axjj � jjP 12xjj =: jjxjjP for all x 2 HP :(77)



27In this case, we say that the compression AP is a jj � jjP -contraction. IfPmax 2 Ric(�; J) was nonnegative and injective, then HPmax = H but thenorm jj � jjPmax could give weaker topology that the original norm of H. Moregenerally, HP need not be complete, when equipped with the norm jj � jjP .Proposition 78. Let � = ( A BC D ) be a DLS and J self-adjoint. Let P 2Ric(�; J), P � 0 such that the compression AP = �PAjHP is a jj � jjP -contraction, where the objects are given in De�nition 77. Then the followingholds(i) P 2 Ric00(�; J). If, in addition, � is output stable and �P > 0, then�P is output stable.(ii) Assume, in addition, that � is output stable and I/O stable, the inputoperator B is Hilbert�Schmidt, and the input space U is separable.If P 2 Ricuw(�; J) and �P > 0, then P 2 ric00(�; J) \ ricuw(�; J). Ifrange(B�) = H, thenfP 2 Ricuw(�; J) j P � 0;�P > 0g � ric0(�; J):(78)Proof. The �rst part of claim (i) is Corollary 76. The rest follows from [26,claim (i) of Proposition 43]. Claim (ii) follows from [26, Corollary 47 andequation (35)].The reader is instructed to compare [26, equations (34) and (35)], and equa-tion (78). They all characterize subsets ric0(�; J), where J can be inde�nitebut the indicators �P must be positive.The P -contractivity condition P � A�PA � 0 can be given a gametheoretic interpretation. Let � = ( A BC D ) be output stable and I/O stable,and let P crit0 2 ric0(�; J) be a regular critical solution which is assumednonnegative. If the cost operator J is inde�nite, the special case of theminimax cost optimization problem, associated to (�; J), can be seen as a(full information, state feedback) minimax game, where the minimizing andmaximizing players are given an initial state x0 and their task to do the bestthey can. Some additional information structure of the game itself must beimposed; e.g. the input space U must be divided into two parts, and oneplayer must not have access to the other players input space, but we nowdisregard all the details. Now, each noncritical solution P 2 ric0(�; J) isassociated to a strategy where both players have, in a rough sense, madean agreement that the game is played (i.e. the cost is measured by P ) onlyinside the restricted state space HP .Let now P 2 ric0(�; J) be such that P � A�PA � 0. Now the open looptrajectories xj = Ajx0 (with zero input from both players) are nonnegativeand nonincreasing, in the sense of the cost functional hxj; Pxji. Thus, themaximizing player �loses money� if he does not do anything, but the futuregame always has a nonnegative cost if the feedback loop is closed (by themaximizing player) at some later moment. In fact, the maximizing playerwins the game also in the open loop, and the �nal cost at in�nite future islimj!1 hA�jPAjx0; x0i = hLA;Px0; x0i � 0, because P � 0 is assumed.



2811 Factorization of the I/O-mapIn this section we study the natural partial ordering of the solution set of theH1DARE, induced by the cone of nonnegative self-adjoint operators. Wework under the assumption that the cost operator J � 0, and the equivalentconditions of [26, Theorem 27] hold. In this case, we have a nonnegativeregular critical solution P crit0 = (Ccrit)�JCcrit 2 ric0(�; J).In [26, Theorem 27], we have indicated that the critical solution P crit0 2ric0(�; J) gives a (J;�P crit0 )-inner-outer factorization of the I/O-map. The(generally noncritical) solutions P 2 ricuw(�; J) induce other factorizationsof the Popov operator D�JD = D��P�PD�P with I/O stable D�P , see [26,Theorem 50]. However, these do not necessarily lead to a factorization of theI/O-map D as a composition of two I/O stable operators, in the same way asthe spectral factorization leads to the (J;�P crit0 ) inner-outer factorization ofD. The task of this section is to describe which solutions P actually do givea factorization of the I/O-map D into compositions of I/O stable I/O-maps.Consider the following. Let P 2 ric(�; J), where � is output stable andI/O stable. The operator pair (KP ; 0) is a perfectly valid state feedbackpair for � in the sense of [19, De�nition 13]. However, if P is not a criticalsolution, this feedback pair is not I/O stable in the sense of [19, De�nition47]. This means that even if the open loop DLS, extended with the feedbackpair (KP ; 0) = [�C�P ; I � D�P ](�; (KP ; 0)) = 0@ A B� CKP� �D0 �1A = 24 Aj B� �j� C�C�P � � DI �D�P � 35 ;is output stable and I/O stable, the closed loop extended system(�; (KP ; 0))�(79) = 0@ AP B�CPKP� �D0 �1A = 24 Aj � BD�1�P � �jC�P BD�1�P � �j� C � DD�1�P C�P�D�1�P C�P � � DD�1�PD�1�P � I � 35need not be, where AP = A + BKP and CP = C + DKP . This is the badnews. However, if P � 0, together with proper technical assumptions, itfollows that the upper two rows of the closed loops DLS (79) give an I/Ostable DLS. Furthermore, this partial DLS is exactly �P = � AP BCP D �; the innerDLS (of � and J) of De�nition 58, centered at P . Note thatD�P := DD�1�P forthe I/O-map of �P , and this algebraic fact does not depend on the stabilityproperties of the systems, apart from the boundedness of the static operatorsA, B, C, D, and KP .Let us review some analogous results of the matrix theory when all thespaces U , H and Y of the DLS � = ( A BC D ) are �nite dimensional. If the pair(A;B) is stabilizable, J � 0 and D�JD coercive, there is a unique maximalpositive solution Pmax of the Riccati equation such that the closed loop spec-trum �(APmax) � D, see [15, Corollary 12.1.2]. If J = I, D�D = I, D�C = 0



29and (C;A) detectable, then the power stability �(APmax) � D follows, see[15, Corollary 13.5.3]. Such Pmax is called the (power) stabilizing solution ofRic(�; J). If the open loop semigroup generator A is power stable and (A;B)is controllable, then Pmax clearly equals the unique critical solution (which isde�ned only for DAREs associated to I/O stable DLSs) in the sense of [26,Theorem 27]. Indeed, the semigroup generators of both �Pmax and ��1Pmax arepower stable, by the formulae given in claim (ii) of Proposition 55.To obtain a matrix H1DARE example, let � = ( A BC D ) be a DLS whosespaces U , H and Y are �nite dimensional, and the semigroup generator A ispower stable; �(A) � D. We take J = I to be the cost operator, and assumethat the transfer function D�(z) has no zeroes on the unit circle T. By theassumed �nite dimensionality of all the spaces, the last condition can alwaysbe achieved, if necessary, by a small perturbation of the DLS �. Then thePopov operator D�D is coercive, and the nonnegative regular critical solutionP crit0 = �Ccrit� �� Ccrit� 2 ric0(�; J) exists, by [26, Corollary 32]. It followsthat AP crit0 is power stable, by [21, claim (i) of Theorem 50] and the �nitedimensionality of the state space H. If there was another power stabilizingsolution P stab, it would also be a critical solution in ric0(�; J). Thus, if �,in addition, is controllable range(B�) = H, then P crit0 is the unique powerstabilizing solution of H1DARE ric(�; J), see [26, claim (i) of Corollary 30].In fact, P crit0 is the maximal nonnegative solution in Ric(�; J), by Corollary94 and the fact that the power stability of A implies the equality of solutionsets Ric(�; J) = ric0(�; J). It is easy to see by a numerical example, usingthe matrix DARE theory given in [15, Corollary 12.1.2], that it is possible(and even a generic case) that DARE Ric(�; J) has long increasing chainsof self-adjoint solutions. By using Lemma 64, we can, if necessary, replaceRic(�; J) by its spectral DARE Ric(� ~P ;� ~P ) for ~P �small�. So there existsa H1DARE ric(�; J) (with a power stable semigroup generator) that hasan arbitrarity long increasing chain of nonnegative solutions, if dimH isincreased su�ciently. We conclude that the power stabilizing solution P crit0need not be the only nonnegative H1 solution of a (matrix) H1DARE. Forthe other nonmaximal P 2 Ric(�; J), P crit0 � P � 0, the inner DLS�P := �AP BCP D� = � Aj � BD�1�P � �jC�P BD�1�P � �jC � D�P C�P D�P � ;(80)is nevertheless I/O stable by the following Lemma 79 and the assumption thatJ = I has a bounded inverse. However, the closed loop semigroup generatorsAP are not power stable. In this sense, all the nonnegative solutions ofthe Riccati equation are I/O-stabilizing, but only the maximal nonnegativeP crit0 gives a power stable semigroup generator in the closed loop, under theindicated additional assumptions.This phenomenon can be viewed from two directions. The �rst �statespace� view is that the DLS �P is I/O stable because the unstable part ofAP is not �seen� through the output operator CP of �P . The second viewis the input/output view; that a kind of zero-pole-cancellation process isinvolved when the feedback loop is closed. In the language of the transfer



30functions D�P (z) = D(z)D�P (z)�1, some of the zeroes of D(z) get canceledby the poles of D�P (z)�1, at least in the cases when the transfer functions arecomplex-valued (U = Y = C). We remark that the condition dimH < 1amounts to the fact that the inner factors of both D(z) and D�P (z) are �niteBlaschke products, and the zero�pole cancellation idea makes perfect sense.We remark that using a nonnegative but nonmaximal solution P 2 Ric(�; J)for feedback control leads to a partial stabilization of the (unstable) open loopDLS, see [4] and the references therein.In the following lemma we show that if P � 0, then J 12D�P is an I/O-map from `1(Z+;U) into `2(Z+;Y ); i.e. the transfer function D�P (z) 2sH2(D;L(U ;Y )). Step by step, we �nally conclude that J 12D�P is I/O stableunder stronger assumptions. If J has a bounded inverse, the same conclusionsclearly hold for the I/O-map D�P , too.Lemma 79. Let J � 0 be a cost operator. Let � = � Aj B��jC D � be an I/O stableand output stable DLS. Assume that the regular critical solution P crit0 :=�Ccrit�� JCcrit 2 ric0(�; J) exists. Let P 2 ric(�; J), such that P � 0. By �Pand �P denote the spectral and inner DLS of De�nition 58, both centered atP . Then the following holds:(i) We have D = D�PD�P ;(81)where �P is I/O stable and output stable. The DLS J 12�P is outputstable, and the impulse response operator J 12D�P ��0 is bounded. TheToeplitz operator J 12D�P ��+ : `1(Z+;U) ! `2(Z+;U) is bounded, andJ 12D�P ��+ : `2(Z+;U)! `2(Z+;U) is a densely de�ned closed operator.(ii) The transfer function J 12D�P (z) is analytic in the whole unit disk D.For each u0 2 U , the analytic function J 12D�P (z)u0 2 H2(D;Y ). Wecan write J 12D(z) = J 12D�P (z)D�P (z) for all z 2 D:(82)If, in addition, P 2 ricuw(�; J), thenJ 12N (z) = J 12D�P (z)NP (z) for all z 2 D;(83)where N , (NP ) are the (J;�P crit0 )- inner, ((�P ;�P crit0 )-inner) factors ofD, (D�P , respectively).Assume, in addition, that the input operator B of � is Hilbert�Schmidt, andboth the spaces U and Y are separable. Then:(iii) Then J 12D�P (z) 2 H2(D;L(U ;Y )). The boundary trace functionJ 12D�P (ei�) := s� limz!ei� J 12D�P (z)exists as a nontangential strong limit, a.e. (modulo Lebesque measureof T) on ei� 2 T.



31(iv) For P 2 ricuw(�; J), the boundary trace �� 12P NP (ei�)� 12P crit0 is unitarya.e. ei� 2 T. In particular, NP (ei�) has a bounded inverse a.e. ei� 2 T,and the nontangential strong limit J 12D�P (ei�) satis�esJ 12D�P (ei�) = J 12N (ei�)NP (ei�)�1 a.e. on ei� 2 T;(84)Furthermore, J 12D�P (z)�� 12P 2 H1(D;L(U ;Y )), and is inner from theleft. The I/O-map J 12D�P is (I;�P )-inner (but D�P need not be I/Ostable if J is not coercive).We remark that the function J 12D�P (ei�) means the boundary trace of(J 12D�P )(z). As an analytic transfer function D�P (z), P � 0 makes perfectsense for z 2 D, but it need not be of bounded type.Proof. Claim (i) is proved as follows. The equality (81) of the I/O-maps isgiven by formula (79), in form D�P = DD�1�P . We see that the J 12D�P is theI/O-map of DLS �00 = � AP BJ 12CP J 12D� ;which is output stable, by Corollary 75 and the assumption P � 0. Alsothe (closed loop) residual cost operator LAP ;P exists, but this is not neededhere.But then, if H 3 x = Bu0, with u0 2 U , we have J 12D�P�0u0 =J 12D�0u0 + �C�00Bu0 = D�0u0 + �C�00x 2 `2(Z+;Y ) because dom(C�00) = H,by the output stability of �00.D�P�0 : U = range(�0) ! `2(Z+;U), i.e. dom(D�P�0) = U is com-plete, see [21, De�nition 24]). Because the impulse response operator D�P�0is closed by [21, Lemma 27], it follows from the Closed Graph Theoremthat D�P�0 is bounded. It immediately follows that J 12D�P 2L(`1(Z+;U); `2(Z+;U)) by the triangle inequality, and the shift invarianceof D�P . The Toeplitz operator D�P ��+ is thus densely de�ned on `2(Z+;U)and closed, by [21, Lemma 27]. This completes the proof of claim (i).Consider now claim (ii). J 12D�P (z) is analytic in the whole of D by [26,Proposition 11] because it is a transfer function of an output stable system�00. Also J 12D�P (z) 2 sH2(D;Y ), by [26, De�nition 10 and Proposition 11].Because D�P = DD�1�P , then also D�PD�P = D on Seq(U). For thetransfer functions, we have D�P (z)D�P (z) = (D�PD�P )(z) = D(z) for allz 2 N0, by [26, Corollary 8]. Here N0 is a nonempty open neighborhoodof the origin. In fact, D(z);D�P (z) 2 H1(D;L(U ;Y )), by [26, Proposition9] and the assumed I/O stability of � and �P . As indicated above, alsoJ 12D�P (z) is analytic in D. By using a basic analytic continuation techniquewe conclude that D�P (z)D�P (z) = D(z) for all z 2 D, which is equation (82).To prove equation (83), proceed as follows. Because the existence ofthe regular critical solution P crit0 2 ric0(�; J) is assumed, the equivalent



32conditions of [26, Theorem 27] hold, we can write D = NX , where X isouter with a bounded inverse, and N is (J;�P crit0 )-inner. Furthermore, be-cause P 2 ricuw(�; J) we can also write (�P ;�P crit0 )-inner-outer factorizationD�P = NPX , by [26, Proposition 55]. By Corollary 8, D(z) = N (z)X (z)and D�P (z) = NP (z)X (z), for all z 2 D. Because X is outer with a boundedinverse, i.e. X�1 2 L(`2(Z;U)), both X and X�1 are I/O-maps of I/O stablesystems. It follows from Corollary 8 that the transfer function X (z) 2 L(U)has a bounded inverse for all z 2 D. Now equation (83) follows.We proceed to prove claim (iii). The Hilbert�Schmidt property of theinput operator B admits us to apply [26, Corollary 42] to the output stableDLS �00, de�ned above. It follows that J 12D�P (z) 2 H2(D;L(U ;Y )), andthis is a function of bounded type. The existence of the nontangential stronglimit J 12D�P (ei�) is from [33, Theorem 4.6A], as discussed in [26, Section 2.5].It remains to prove the �nal claim (iv). We �rst note that because J � 0,then �P > 0 for all P � 0. This makes is possible to de�ne the normalizedoperators N � := J 12N�� 12P crit0 and N �P := � 12PNP�� 12P crit0 . Then both N � and N �Pare inner from the left (i.e. (I; I)-inner). We haveN � = J 12D�PNP�� 12P crit0 = J 12D�P�� 12P � � 12PNP�� 12P crit0 =M�PN �P ;whereM�P := J 12D�P�� 12P . For the corresponding transfer functions and theirnontangential limits, we can writeN �(ei�) =M�P (ei�)N �P (ei�);(85)a.e. ei� 2 T. This is legal because all the transfer functions are of boundedtype in the sense of [26, De�nition 12] and the discussion associated to it.The inner from the left transfer function N �P (z) 2 H1(D;L(U)) is infact inner from both sides, see [26, De�nition 33]. To see this, we use [26,Proposition 34] in a trivial way, with z0 = 0. Now N �P (0) = � 12PNP (0)�� 12P crit0 =� 12P�� 12P crit0 by the realization given for NP in [26, Proposition 55]. But N �P (0)is now boundedly invertible, and N �P is inner, by [26, Proposition 34]. SoN �P (ei�) 2 L(U) is a unitary operator for a.e. ei� 2 T. Applying this onequation (85) gives N �(ei�)N �P (ei�)� =M�P (ei�)a.e. ei� 2 T. Because N �P (ei�)� is unitary and N �(ei�) is an isometry, itfollows that M�P (ei�) is an isometry a.e. ei� 2 T. But now M�P (ei�) 2L1(L(U ;Y )) \ H2(T;L(U ;Y )), and by [26, Lemma 36], M�P (ei�) 2H1(T;L(U ;Y )) is inner from the left. This completes the proof.The following normalization, presented in the proof of Lemma 79, will beused throughout the rest of this paper. By [26, Corollary 54], it makes senseeven for inde�nite solutions P .



33Corollary 80. Make the same assumptions as in claim (iii) of Lemma 79.By P crit0 2 ric0(�; J) denote the regular critical solution. Let P 2 ricuw(�; J),P � 0 be arbitrary. DenoteD� := J 12D; D�P := � 12PD�P ;M�P := J 12D�P�� 12P ; N �P := � 12PNP�� 12P crit0 ; X � = � 12P crit0 X :Then D� =M�PD�P =M�PN �PX �P ;(86)where M�P : `2(Z;U) ! `2(Z;Y ) is inner from the left, N �P : `2(Z;U) !`2(Z;U) is two-sided inner, and X � : `2(Z;U) ! `2(Z;U) is outer with abounded inverse.The following Theorem is a variation of Lemma 79. Now, a solutionP 2 Ric(�; J), P � 0 gives a factorization of a H1-transfer function, suchthat both the factors are in H1. However, the solution is not in ricuw(�; P )by an explicit assumption, and �P is not a priori required to be output stableor I/O stable as has been required in Lemma 79.Theorem 81. Let J � 0 be a cost operator. Let � = � Aj B��jC D � be an I/Ostable and output stable DLS, such that both the spaces U and Y are separa-ble. Assume that the input operator B 2 L(U ;H) of � is Hilbert�Schmidt.Assume that the regular critical solution P crit0 := (Ccrit)�JCcrit 2 ric0(�; J)exists. Let P 2 Ric00(�; J) \ Ricuw(�; J), P � 0.Then both the DLSs �P and J 12�P are output stable and I/O stable. Fur-thermore, we have the factorization J 12D = J 12D�P � D�P = J 12D�P � NP �X where all factors are I/O stable. Here J 12D�P is (I;�P )-inner, NP is(�P ;�P crit0 )-inner, and X is outer with a bounded inverse.Proof. Because J � 0 and P � 0, it follows that D�JD + B�PB = �P � 0,and then �P > 0 because the indicator has a bounded inverse, by de�nition.Because P 2 Ric00(�; J), the residual cost operator LA;P exists and [26,Proposition 43] implies that �P is output stable. Because P 2 Ricuw(�; J),[26, Corollary 47] implies that �P is I/O stable. Now P 2 ricuw(�; J) as in[26, equation (35)], and we can apply all claims of Lemma 79. In particular,this gives the output stability and I/O stability of the normalized inner DLSJ 12�P . The proof is now complete.If A is strongly stable, then Ric(�; J) = Ric0(�; J) = Ric00(�; J) =Ricuw(�; J). But now Ric(�; J) = Ric00(�; J) \ Ricuw(�; J), and all non-negative solutions P 2 Ric(�; J) give a factorization of Theorem 81. Thefollowing lemma is more general than Lemma 79, and it refers to somethingwe might call �generalized factorizations� of an unstable D. Now the spectralDLS �P need not be I/O stable.



34Lemma 82. Let � = � Aj B��jC D � be output stable and J � 0. Let P 2Ric00(�; J), P � 0. Then the following holds:(i) The I/O-maps satisfy D = D�PD�P on Seq(U), and both �P and J 12�Pare output stable.(ii) Assume, in addition, that the input operator B is Hilbert�Schmidt, andboth U and Y are separable. Then we have the factorizationJ 12D = J 12D�PD�P ;(87)where J 12D(z); J 12D�P (z) 2 H2(D;L(U ;Y )) and D�P (z) 2 H2(D;L(U)).Proof. As before, �P > 0 for any nonnegative solution. [26, Proposition 43]implies that �P is output stable. Corollary 75 implies that J 12�P is outputstable. This proves claim (i) because the (algebraic) factorization of the well-posed I/O-maps of DLSs does not require any kind of stability. Claim (ii) isa consequence of [26, Corollary 42].In particular, Lemma 82 gives H2 factorizations to H1 transfer functions.Note that the existence of a critical regular solution P crit0 2 ric0(�; J) isnot required. Under stronger asssumptions, such generalized factorizationseasily become ordinary H1 factorizations, by Theorem 81. We completethis section by showing that the �nite increasing chains of solutions Pi 2ricuw(�; J) behave expectedly.Theorem 83. Let J 2 L(Y ) be a self-adjoint cost operator. Let � =� Aj B��jC D � be an I/O stable and output stable DLS. Assume that the inputoperator B 2 L(U ;H) is Hilbert�Schmidt, and both the spaces U and Y areseparable. Assume that the regular critical solution P crit0 = �Ccrit�� JCcrit 2ric0(�; J) exists.Let Pi 2 ricuw(�; J), i = 1; : : : ; n+1 be a sequence of solutions such thatPi � Pi+1 and �Pi > 0 for all i = 1; : : : ; n. Denote by D�Pi = NPiX the(�P ;�P crit0 ) -inner-outer factorization of D�Pi where X = DP crit0 and NPi :=D�PiX�1 Then the following holds:(i) Then there is a sequence of causal shift-invariant operators NPi;Pi+1 :=D�PiD�1�Pi+1 on Seq(U) such thatNPi = NPi;Pi+1NPi+1 for all i = 1; : : : ; n:(88)The operator NPi;Pi+1 is the I/O-map of the I/O stable DLS�Pi;Pi+1 = � APi+1 BKPi+1 �KPi I � :(89)Furthermore, each NPi;Pi+1 is (�Pi;�Pi+1)-inner.



35(ii) We have the factorizationNP1 =  nYi=1NPi;Pi+1! NPn+1;(90)where the elements with increasing i enter the product from the left. If,in addition, J � 0 and Pn+1 = P crit0 , thenJ 12D = J 12D�P1  nYi=1NPi;Pi+1!X ;(91)where J 12D�P1 is I/O stable and (I;�P1) -inner, and X = D�Pcrit0 isouter with a bounded inverse.Proof. In order to prove claim (i), note that (�P ;�P crit0 )-inner-outer factor-ization D�Pi = NPiX exists for all i, by [26, Proposition 55]. Because thefeed-through operator of all spectral DLSs is identity, we can speak about theinverse D�1�Pi as a causal shift-invariant operator on Seq(U), see [26, Propo-sition 2]. Because the outer factor (with a bounded inverse) is common forall D�Pi , we see that equation (88) holds.Fix the arbitrary two consecutive elements Pi � Pi+1 in the sequencefPig, de�ne �Pi := Pi+1�Pi � 0. Then �Pi 2 Ric(�Pi;�Pi), by Lemma 64.Now, Ric(�Pi;�Pi) is a H1DARE with a nonnegative cost operator �Pi, butwe do not know whether �Pi is a its H1 solution. To see that this is thecase, we must consider the spectral DLS (�Pi)�Pi, centered at the solution�Pi and relative to the cost operator �Pi > 0 of the spectral DARE. Wehave for the minimax nodes(�Pi;�Pi)�Pi � (�Pi+�Pi;�Pi+�Pi) � ��Pi+1;�Pi+1� ;(92)see equation (58) of Proposition 59. So, the spectral DLS (�Pi)�Pi of �Piequals �Pi+1 which is an I/O stable and output stable DLS because Pi+1 2ric(�; J), by assumption. We conclude that �P 2 ric(�Pi;�Pi). The indi-cator ~��P of �P 2 ric(�Pi;�Pi) equals �Pi+1, by equation (92).Trivially range(B) = range(B�Pi ) because B = B�Pi . Because both Pi andPi+1 satisfy the ultra weak residual cost condition with the same semigroupgenerator A, so does �Pi = Pi+1 � Pi, and we have �Pi 2 ricuw(�Pi;�Pi).Now we have reached the situation described in Lemma 79. We see thatthe operator NPi;Pi+1 := D�PiD�1�Pi+1 = D�PiD�1(�Pi )�Pi actually plays the partof the operator D�P in Lemma 79, when the DLS � is replaced by �Pi, thecost operator J is replaced by �Pi, the solution P is replaced by �Pi, thespectral DLS �P is replaced by (�Pi)�Pi = �Pi+1 and the indicator �P isreplaced by �Pi+1.Because the input operator B of �Pi is Hilbert�Schmidt, we concludethat NPi;Pi+1 is I/O stable and (�Pi;�Pi+1)-inner, by claim (iv) of Lemma79, and the fact that �Pi (used as the cost operator) has a bounded inverse.



36Realization (89) is valid because NPi;Pi+1 = NPiN�1Pi+1, by equation (89) and[26, claim (iii) of Proposition 56]. This completes the proof of claim (i).The factorization in (90) is clearly obtained by applying the �rst partof this theorem n times. The second factorization (91) is obtained by �rstfactorizing J 12D = J 12D�P1D�P1 , where J 12D�P1 is I/O stable and (I;�P1)-inner, by claim (iv) of Lemma 79. This is the only place where we haveused the nonnegativity of J . Then the (�P1;�P crit0 )-inner factor NP1 of D�P1is factorized as in (90), noting that the last factor NPn+1 = I because Pn+1 =P crit0 , by claim (ii) of [26, Proposition 55]. After multiplying from the rightby the common outer factor X of D and D�P1 , the claim follows.By [26, Lemma 53], it is su�cient to require �P > 0 only for one solution P 2ricuw(�; J) that need not be an element of the chain fPig. Clearly, the orderof the operator products in claim (ii) is signi�cant, if dimU > 1. The transferfunction NPi;Pi+1(z) can be normalized to N �Pi;Pi+1(z) := � 12PiNPi;Pi+1(z)�� 12Pi+1which is inner from both sides. The zero evaluation N �Pi;Pi+1(0) = � 12Pi�� 12Pi+1satis�es the spectral condition �(� 12Pi�� 12Pi+1) � (0; 1), as an immediate conse-quence of the fact that �Pi+1 � �Pi. However, � 12Pi�� 12Pi+1 is generally not nor-mal and, in particular, self-adjoint. In Theorem 83, we have considered only�nite increasing chains of solutions. To cover the case of the (countably) in�-nite chains, one would be lead to consider a limit process, not totally di�erentfrom the one involved in the study of the Blaschke�Potapov representationsfor the (matrix-valued) bounded analytic functions. Several applications,references and historical remarks about the Blaschke�Potapov factorizationscan be found in the survey article [12, p. 28] by Yu. P. Ginzburg and L. V.Shevchuk.



3712 I/O stability of the inner DLSIn this section, we consider converse results to those given in Section 11.Roughly, we show that for P 2 ricuw(�; J), the I/O stability of �P impliesP � 0. The nonnegativity of the cost operator J � 0 is assumed in the mainresults.We start by considering solutions P 2 ric(�; J) such that �P is I/Ostable. Out of such solutions, those that have (J;�P )-inner I/O-maps satisfythe minimax condition of De�nition 84, by Proposition 86. In particular, allsolutions in ricuw(�; J) with an I/O stable inner DLS �P are of this kind, byProposition 85. In Propositions 87 and 88, the minimax condition of P isconnected to an associated Liapunov equation and the DARE ric(�; J). Themain result of this section is Lemma 89, which is a partial converse Lemma79. An equivalence result is �nally given in Theorem 90, under strongerassumptions.De�nition 84. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,and J 2 L(Y ) a cost operator. Let P 2 ric(�; J) such that the inner DLS�P is I/O stable. We say that P satis�es the minimax condition if��+D��PJC�P = 0;(93)where C�P = C � D�P C�P it the observability map of inner DLS �P .The regular critical solution P crit0 := (Ccrit)�JCcrit (as discussed in con-nection with [26, Theorem 27]) always satis�es the minimax condition. Thisis because in this case D = NX (where N = D�Pcrit0 and X = D�Pcrit0 )is the (J;�P crit0 )-inner-outer factorization, and C�Pcrit0 = Ccrit is the crit-ical (closed loop) observability map. By [19, Lemma 4], ��+D�JCcrit =��+X ���+N �JCcrit = 0, and the minimax condition holds.In fact, the orthogonality of range(D��+) = range(N ��+) and the rangeof the desired closed loop observability map C�Pcrit0 = Ccrit can be used to�nd the critical P crit0 without explicitly solving the DARE, see [19, Section3]. For a noncritical P , however, one should a priori know the (range of the)partial inner factor D�P ��+ of D��+ associated to the yet unknown P , beforethe correct minimax formulation could be written in the �rst place.We proceed to show that quite many interesting solutions P 2 ric(�; J)(such that D�P is I/O stable) satisfy the minimax condition. This will beused as a technical tool to obtain Lemma 89, a rough converse of Lemma 79.Proposition 85. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,such that the spaces U and Y are separable. Let J � 0 be a cost operator.Assume that the regular critical solution P crit0 = �Ccrit�� JCcrit 2 ric0(�; J)exists. Let P 2 ricuw(�; J) such that the inner DLS �P is I/O stable. ThenD��PJD�P = �P ; i.e. the I/O-map D�P is (J;�P )-inner.



38Proof. We have the familiar factorization of the I/O-maps D = D�PD�P . Be-cause P crit0 exists, the conditions of [26, Theorem 27] hold, and we can factor-ize D = NX , D�P = NPX , where N , (NP ) is (J;�P crit0 )-inner, ((�P ;�P crit0 )-inner, respectively). Here we have used the residual cost assumption P 2ricuw(�; J) and [26, claim (i) of Theorem 50]. The operator X is a commonouter factor with a bounded inverse; for details, see [26, Proposition 55]. Thisgives us the factorization N = D�PNP(94)where all the factors I/O stable, the I/O-mapD�P by our explicit assumption.Consider the factor NP more carefully. By [26, Corollary 54], �P > 0for all P 2 ricuw(�; J), because the conditions of [26, Theorem 27] holdand J � 0 implies that P crit0 � 0 and �P crit0 > 0. So we can normalizeN �P := � 12PNP�� 12P crit0 which is (I; I)-inner, and its transfer function N �P (z) isinner from the left. Because N �P (0) = � 12P�� 12P crit0 has a bounded inverse, [26,Proposition 34] implies that N �P (z) is inner from both sides, and its boundarytrace N �P (ei�) takes unitary values a.e. ei� 2 T. We remark that here theseparability of U is used.Because also Y is separable, equation (94) implies for the boundary tracesD�P (ei�) = N (ei�)NP (ei�)�1a.e. ei� 2 T, as in the proof of claim (iv) of Lemma 79. But now for almostall ei� 2 T J 12D�P (ei�)�� 12P = N �(ei�)N �P (ei�)�;where N �(ei�) := J 12N (ei�)�� 12P crit0 is isometric a.e. ei� 2 T. It follows thatJ 12D�P (ei�)�� 12P is isometric a.e. ei� 2 T, and thus D�P is (J;�P )-inner. Thiscompletes the proof of the proposition.Proposition 86. Let � = � Aj B��jC D � be an I/O stable and output stable DLS.Assume that the regular critical solution P crit0 = �Ccrit�� JCcrit 2 ric0(�; J)exists. Let P 2 ric(�; J) such that the inner DLS �P is I/O stable and itsI/O-map is (J;�P )-inner. If range(B) = H, then P satis�es the minimaxcondition; i.e. ��+D��PJC�P = 0.Proof. Let ~u 2 Seq�(U) be arbitrary. Because D��PJD�P = �P and��+D��P�� = 0, we have��+D��PJ(��+D�P��~u) = ��+D��PJD�P��~u = ��+�P��~u = 0:becauseD�P is (J;�P )-inner. De�ne x = B�P��~u. Now C�P x = C�PB�P ��~u =��+D�P��~u, it follows that ��+D��PJC�P x = 0. Because ~u 2 Seq�(U) is arbi-trary, we have ��+D��PJC�P x = 0 for all x 2 range(B�P ).



39It remains to show that range(B�P ) = H. Because B�P = BD�1�P , we showthatrange(BD�1�P ) = range(B). To see this, let x 2 range(B) be arbitrary.Then x = B��~u for some ~u 2 Seq�(U). De�ne ~w = D�P ~u 2 Seq(U).Then �� ~w 2 Seq�(U) has only �nitely many nonzero components, andBD�1�P �� ~w = B��D�1�P�� ~w = B��D�1�P ~w = B��D�1�PD�P��~u = B��~u, wherewe have used the causality of D�1�P . This proves the inclusion range(B) �range(BD�1�P ). The other inclusion follows similarly by interchanging thecausal shift-invariant operators D�1�P , D�P on Seq(U), and noting that noth-ing in the proof depends upon the boundedness of neither of these operators.We have now proved that a feedback does not change the reachable subspace.Because range(B�P ) = range(B) and range(B) = H, it follows that��+D��PJCP = 0, provided ��+D��PJCP is bounded. Now D��P is bounded be-cause D�P is assumed to be. Also C�P = C�D�P C�P is bounded because both� and �P are assumed to be output stable. The proof is now complete.Proposition 87. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,and J be a cost operator. Let P 2 ric(�; J) such that the inner DLS �P is I/Ostable, and its I/O-map is (J;�P )-inner. Then the following are equivalent:(i) P satis�es the minimax condition; i.e. ��+D��PJC�P = 0.(ii) C�P = ��1P � ��+D��PJC(iii) �KP = ��1P � �0D��PJC, with the identi�cation of spaces range(�0) andU .Proof. Proof of the equivalence (i) , (ii) is the following equivalence:��+D��PJC�P = ��+D��PJ(C � D�P C�P ) = 0, ��+D��PJC = (��+D��P JD�P ��+)C�P = �P � C�P :Because C�P = f�KPAjgj�0 by De�nition 58, the implication (ii) ) (iii) isimmediate. For the converse direction, we have to show that ��1P ���+D��PJC isan observability map of a DLS whose semigroup generator is A� we alreadyknow that the �rst component �KP is correct if (iii) holds. It remains toprove ���1P � ��+D��PJC�A = ��+� � ��P � ��+D��PJC� :But this is the case:���1P � ��+D��PJC�A = ��1P � ��+D��P ��+� �JC= ��+� � ���1P � D��P�+JC� = ��+� � ��P � D��P ��+JC� ;where the last equality follows because �+D��P�0 = 0, by the anti-causalityof D��P . This completes the proof.



40 In claim (ii) of the following proposition, the minimax condition is con-nected to a Liapunov equation that is almost the Riccati equation.Proposition 88. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,and J be a cost operator. Let P 2 ric(�; J) such that D�P is I/O stable and(J;�P )-inner. De�ne P0 := C��P JC�P 2 L(H). Then(i) P0 satis�es the Liapunov equationA�P0A� P0 + C�JC(95) = �K�P�PKP +K�P�P ����1P � �0D��PJC�+ ����1P � �0D��PJC�� �PKP ;and the residual cost operator satis�es LA;P0 = 0.(ii) Assume, in addition, P satis�es the minimax condition ��+D��PJC�P =0. Then P0 satis�es the Liapunov equationA�P0A� P0 + C�JC = K�P�PKP :(96)Furthermore, A�(P � P0)A = P � P0, and if P 2 ric00(�; J), thenP � P0 = LA;P . If P 2 ric0(�; J) then P = P0.Proof. We �rst remark that is �P is output stable because C�P = C�D�P C�P ,and all the operators C, D�P , C�P are assumed to be bounded. So C��P makessense, and P0 is well de�ned. The proof of claim (i) is the following technicalcalculation. Because C�P = C � D�P C�P , we obtainP0 := C�JC � C�JD�P C�P � C��PD��PJC + C��PD��PJD�P C�P= C�JC � C�JD�P C�P � C��PD��PJC + C�P�PC�P ;where the latter equality is because D�P is assumed to be (J;�P )-inner. ButthenA�P0A� P0 + C�JC= (i)z }| {(A�C�JCA� C�JC + C�JC)+ (ii)z }| {��A�C�JD�P C�PA+ C�JD�P C�P �+ (iii)z }| {��A�C��PD��PJCA+ C��PD��PJC�+ (iv)z }| {(A�C�P�PC�PA� C�P�PC�P ) :Part (i) vanishes trivially. Parts (ii) and (iii) are adjoints of each other, andbecause A is the semigroup generator of both � and �P , we have� A�C�JD�P C�PA+ C�JD�P C�P = �C�J�+(�D�P � �)�+C�P + C�JD�P C�P= �C�J�+D�P�+C�P + C�JD�P C�P = C�J(��+D�P ��+ � �+D�P�+)C�P= C�JD�P�0 � �0C�P ;



41where the last equality is by the causality of D�P . But �0C�P = �KP withthe natural identi�cation of the spaces U and range(�0). So part (ii) equals�C�JD�P�0 �KP , and part (iii) equals �KP ���0D��PJC. A similar calculationas required for part (i) shows that part (iv) equals �K�P�PKP . Collectingout results together, we have (95).Because both C and C�P are bounded by assumptions, and A is the semi-group generator of both � and �P , trivially CAj = ��+� jC ! 0 and C�PAj =��+� jC�P ! 0 in the strong operator topology. Because C�P = C � D�P C�PwhereD�P is bounded, it follows that C�PAj ! 0 in the strong operator topol-ogy. By the Banach�Steinhaus Theorem, the family of operators fC�PAjgj�0is uniformly bounded, and so is the family of their adjoints. It now followsthat for all x 2 HjjA�jP0Ajxjj � supj�0 jjA�jC��P J jj � jjC�PAjxjj ! 0as j !1. This completes the proof of claim (i).In order to prove claim (ii), we use the equivalence of (i) and (iii) inProposition 87; now P is, in addition, assumed to satisfy the minimax con-dition. Replacing ���1P � �0D��PJC by KP in (95) gives (96). Note that theRiccati equation solution P , by de�nition, satis�es the Liapunov equation(96) with P in place of P0, and then A�(P �P0)A = P �P0. This completesthe proof.In the following Lemma, the main result of this section, we give a partialconverse result to Lemma 79.Lemma 89. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,such that the spaces U and Y are separable. Assume that range(B) = H. LetJ 2 L(Y ) be a self-adjoint cost operator, J � 0. Assume that the regularcritical solution P crit0 = �Ccrit�� JCcrit 2 ric0(�; J) exists.If P 2 ric0(�; J) such that the inner DLS �P is I/O stable, then P � 0.Proof. Let P 2 ric0(�; J) such that the inner DLS �P is I/O stable. ByProposition 85, D�P is (J;�P )-inner because P 2 ricuw(�; J) � ric0(�; J).By Proposition 86, P satis�es the minimax condition ��+D��PJC�P = 0. De�neP0 := C��PJC�P as in Proposition 88. Because J � 0, then P0 � 0. BecauseP 2 ric0(�; J), it follows that P = P0 by claim (ii) of Proposition 88. ThusP � 0, and the proof is complete.The following theorem states that the exactly those state feedback laws thatassociated to nonnegative solutions of DARE, are I/O-stabilizing. We couldalso say that such solutions partially stabilize the closed loop semigroupgenerator AP , and hide the unstable part of AP to the unobservable (unde-tectable) subspace.Theorem 90. Let � = � Aj B��jC D � = ( A BC D ) be an I/O stable and output stableDLS, such that the spaces U and Y are separable. Assume that range(B) =



42H, and the input operator B 2 L(U ;Y ) is Hilbert�Schmidt. Let J 2 L(Y ) bea self-adjoint cost operator, J � 0. Assume that the regular critical solutionP crit0 = �Ccrit�� JCcrit 2 ric0(�; J) exists. Let P 2 ric0(�; J) be arbitrary.Then J 12D�P is I/O stable if and only if P � 0.Proof. If P � 0, then claim (iv) of Lemma 79 implies that J 12D�P is I/Ostable. The converse direction is an application of Lemma 89. However, we�rst have to �absorb� the cost operator J into the DLS � by replacing thefeed-through operator D by J 12D, and the output operator C by J 12C. Callthis modi�ed DLS �0. Finally replace the cost operator J by I. Clearly theassumptions of � and �0 correspond to each other one-to-one, the DAREremains unchanged, and Lemma 89 implies that P � 0.



4313 Partial ordering and factorizationAssume that � is an output stable and I/O stable DLS, and the cost op-erator J is nonnegative. Furthermore, assume that the regular critical so-lution P crit0 2 ric0(�; J) exists. In this section, we consider the partial or-dering of the solution set ric0(�; J) as self-adjoint operators. Recall thatfor P 2 ric0(�; J), the closed ranges range( eD�P ��+) � `2(Z+;U) of theToeplitz operators eD�P ��+ are shift-invariant, see Lemma 91 and Corollary92. Here eD�P denotes the adjoint of the I/O-map D�P of the spectral DLS�P . Inclusions of the subspaces range( eD�P ��+) are considered in Lemma93. In Corollary 94, the maximality property of the regular critical solutionP crit0 = �Ccrit�� JCcrit 2 ric0(�; J) is proved. The order-preserving equiva-lence ric0(�; J) 3 P 7! range( eNP ��+) � `2(Z+;U)is considered in Theorem 95. Here eNP denotes the adjoint I/O-map of NP ,the (�P ;�P crit0 )-inner factor of D�P = NPX .We start with reminding some classical results. The Beurling�Lax�HalmosTheorem on the shift-invariant subspaces is the following:Lemma 91. Let U be a separable Hilbert space. The following are equivalent(i) H1 be a shift-invariant subspace of `2(Z+;U),(ii) H1 = range(���+) = �`2(Z+;U 0), where U 0 � U is a Hilbert subspace,and� : `2(Z;U 0)! `2(Z;U) is a causal, shift-invariant and bounded oper-ator, which is inner from the left.Furthermore, if range(�1��+) = range(�2��+) then there is a unitary (static)operator V 2 L(U) such that �1 = �2V .For proofs, see e.g. [32, Lecture 9, Corollary 9] or [8, Chapter IX, Theorem2.1]. We can get rid of indexing over the subspaces U 0 � U if we modify thede�nition of the inner (from the left) operator. This convention is taken in[33], where the inner operators are de�ned to be such that �(ei�) is a partialisometry, a.e. ei� 2 T. Actually this indexing is only over all the cardinalitiesof the subspaces U , because two Hilbert subspaces of the same dimension canbe unitarily identi�ed. For the following corollary, see e.g. [32, Lecture I,Corollary 8]:Corollary 92. Let �1, �2 be inner from both sides. Then range(�2��+) �range(�1��+) if and only if there is an inner operator �3 such that �2 =�1�3.



44 We now consider the inclusions of the shift-invariant subspacesrange( ~D�P ��+). Under the J-coercivity assumption ��+D�JD��+ � ���+ forsome � > 0, these subspaces are closed, see [26, Proposition 38].Lemma 93. Let J 2 L(Y ) be a cost operator, and � = � Aj B��jC D � = ( A BC D )be an I/O stable and output stable DLS. Assume that the input space U andthe output space Y are separable, and the input operator B 2 L(U ;H) isHilbert�Schmidt. Assume that ��+D�JD��+ � ���+ for some � > 0.Let P1; P2 2 ricuw(�; J) such that P1 � P2. Then range( eD�P1 ��+) �range( eD�P2 ��+).Proof. We begin the proof by centering the problem at the smaller of thesolutions P1. De�ne �P := P2�P1 � 0. Then we have P2 = P1+�P where�P 2 Ric(�P1 ;�P1), by Lemma 64. The spectral DARE Ric(�P1;�P1) is aH1DARE because P1 2 ric(�; J), by assumption. Also 0 2 ric0(�P1;�P1)is a trivial solution, corresponding to the solution of the original DARE P1itself. By [26, Corollary 54], both the indicators satisfy �P1 > 0 and �P2 > 0.Note that we have not written �P 2 ric(�P1;�P1) because we do notknow a priori the output stability and I/O stability of the spectral DLS(�P1)�P . However, a computation with the minimax nodes reveals that thespectral DLS (�P1)�P is a spectral DLS associated to the original � and J�(�P1)�P ; ~��P� � (�P1;�P1)�P � (�P1+�P ;�P1+�P ) � (�P2;�P2) ;(97)see equation (58) of Proposition 59. Because P2 2 ric(�; J) by assumption,it follows that the spectral DLS (�P1)�P is output stable and I/O stable.Thus �P 2 ric(�P1;�P1). For all x0 2 range(B), we have
�PAjx0; Ajx0� = 
P2Ajx0; Ajx0�� 
P1Ajx0; Ajx0�! 0(98)as j ! 1, because both P1 and P2 are assumed to satisfy the ultra weakresidual cost condition of De�nition 21. Because the DLSs � and �P1 havethe common controllability map, we have range(B) = range(B�P ), and thenequation (98) implies that �P 2 ricuw(�P1;�P1). From equation (97) we alsosee that �P 2 ricuw(�P1;�P1) has a positive indicator ~��P = �P2 > 0.Now we want to apply claim (iii) of Lemma 79 with (�P1;�P1) in placefor (�; J), and �P 2 ricuw(�P1;�P1) in place of P 2 ricuw(�; J). We haveto check that the DLS �P1, cost operator �P1 and solution �P satisfy theadditional conditions. Firstly, the equivalent conditions of [26, Theorem 27]hold for the pair (�P1;�P1) because they hold for (�; J), by the coercivityassumption ��+D�JD��+ � ���+ and [26, Corollary 54]. For details see [26,Proposition 55] and the discussion following it. We conclude that there is aregular critical solution ~P crit0 2 ric0(�P1;�P1).The input operator B is common for both � and �P1, and so the Hilbert�Schmidt assumption holds for �P1. The same is true for the separability ofthe Hilbert space U , which is the input and the output space of �P1. Nowclaim (iii) of Lemma 79 givesD�P1 = D(�P1 )�PD(�P1 )�P ;(99)



45where (�P1)�P is the inner DLS, and (�P1)�P is the spectral DLS of �P1,centered at �P . Both (�P1)�P and (�P1)�P are output stable and I/O sta-ble; the former by claim (iii) of Lemma 79, and the latter because �P 2ricuw(�P ;�P ). It also follows from Lemma 79 that the I/O-map D(�P1)�Pis in fact (�P1;�P2)-inner, because ~��P = �P2 is the indicator of �P 2ric(�P1;�P1), as discussed above. Note that because the nonnegative costoperator �P1 has a bounded inverse, we do not need to include the squareroot of it into equation (99), as has been done in Lemma 79 for possiblynoncoercive cost operator J .It follows from equation (97) that D(�P1)�P = D�P2 . By [26, Corollary 32],the regular critical solution P crit0 := �Ccrit�� JCcrit 2 ric0(�; J) exists because��+D�JD��+ � ���+ is assumed for some � > 0. We now obtain from equation(99) NP1X = D�P1 = D(�P1 )�PD�P2 = D(�P1 )�PNP2X ;(100)where D�P1 = NP1X (D�P2 = NP2X ) are (�P1;�P crit0 ) ((�P2;�P crit0 ) )-inner-outer factorizations, respectively. The outer factor X (having a boundedinverse) is common for both the I/O-mapsD�P1 andD�P2 , see [26, Proposition55]. As noted earlier, D(�P1 )�P is bounded and (�P1;�P2)-inner.Divide the outer factor away from (100), to obtain NP1 = D(�P1)�P �NP2. Normalize, as in Corollary 80 N �P1 = M�P1;�PN �P2, where N �P1 :=� 12P1NP1�� 12P crit0 , N �P2 := � 12P2NP2�� 12P crit0 are two-sided inner mappings `2(Z;U)!`2(Z;U), and M�P1;�P := � 12P1 � D(�P1)�P � �� 12P2 : `2(Z;U) ! `2(Z;U) is in-ner from the left. Note that the static part of D(�P1)�P equals the identityI 2 L(U). Because both � 12P1 and � 12P2 are boundedly invertible, it followsthat M�P1;�P is inner from both sides, by [26, Proposition 34]. By using theadjoint I/O-maps, we change the order of factorseN �P1 = eN �P2 fM�P1;�P ;where all the factors are inner from the both sides. Now Corollary 92 impliesthatrange(�� 12P crit0 eNP1��+) = range( eN �P1��+) � range( eN �P2��+) = range(�� 12P crit0 eNP2��+):(101)By considering the outer transfer functions as in [26, claim (ii) of Proposition37], it is easy to see that eX is outer with a bounded inverse if and only ifX is outer with a bounded inverse. In particular, eX� 12P crit0 is outer with abounded inverse, and the Toeplitz operator ~X� 12P crit0 ��+ is a bounded bijectionon `2(Z+;U). Thus the inclusion of ranges in (101) remains valid if wemultiply the operators from the left by ~X� 12P crit0 ��+. Now the claim follows.



46 The following corollary is somewhat analogous to [15, Theorem 13.5.2].Corollary 94. Let J � 0 be a cost operator. Let � = � Aj B��jC D � be an I/Ostable and output stable DLS. Assume that the input space U and the outputspace Y are separable Hilbert spaces, and the input operator B 2 L(U ;H)of � is Hilbert�Schmidt. Assume that the regular critical solution P crit0 :=�Ccrit�� JCcrit 2 ric0(�; J) exists.(i) Let P0 2 ric0(�; J) be such that P crit1 � P0 where P crit1 2 ric0(�; J) isany regular critical solution. Then P0 is a regular critical solution.(ii) If, in addition, range(B) = H, then the unique critical solution P crit0 :=(Ccrit)�JCcrit is maximal in the set ric0(�; J).Proof. By Lemma 93, equation (101) gives for the ranges of the adjoinedoperators, because P0 � P crit1`2(Z+;U) = range( ~D�Pcrit1 ��+) � range( ~D�P0 ��+) � `2(Z+;U);and immediately range( ~D�P0 ��+) = `2(Z+;U). By D�P0 = NP0X denote the(�P0;�P crit0 )-inner-outer factorization, and normalize the inner part as before:eN �P0 = � 12P0 eNP0�� 12P crit0 . Then range( eNP0��+) = `2(Z+;U), as in the last partof the proof of Lemma 93. Now the uniqueness part of Lemma 91 showsthat ~N �P0 is a static unitary constant operator V 2 L(U). By cancellingthe normalization, we obtain D�P0 = �� 12P0 V �� 12P crit0 X . Because the staticpart of both D�P0 and X is the identity operator I 2 L(U), it follows that�� 12P0 V �� 12P crit0 = I and hence D�P0 = X . Because P0 2 ric0(�; J), it is a regularcritical solution, and the �rst claim (i) is veri�ed. Under the approximatecontrollability range(B) = H, an application of [26, claim (i) of Corollary 30]proves the remaining claim.We remark that the solution P crit0 := (Ccrit)�JCcrit is not generally maximal inthe full solution set Ric(�; J). A plenty of examples about this are providedby Lemma 101 in Section 14. Even if range(B) = H is assumed, we do notyet know whether P crit0 is the largest element of ric0(�; J) � there could bea solution P 2 ric0(�; J) that is not comparable to P crit0 . However, this isnot the case, as shown in Theorem 96. This result is based on the followingequivalence of the two order relations.Theorem 95. Let J � 0 be a cost operator. Let � = � Aj B��jC D � = ( A BC D )be an I/O stable and output stable DLS, such that range(B) = H. Assumethat the input space U and the output space Y are separable, and the inputoperator B 2 L(U ;H) is Hilbert�Schmidt. Assume that the regular criticalsolution P crit0 := �Ccrit�� JCcrit 2 ric0(�; J) exists.For P1; P2 2 ric0(�; J), the following are equivalent(i) P1 � P2.



47(ii) range( eNP1��+) � range( eNP2��+), where NP is the (�P ;�P crit0 )-inner fac-tor of D�P .In other words, the mappingric0(�; J) 3 P 7! range( eNP ��+) � `2(Z+;U)is order-preserving from the POSET ric0(�; J) (ordered by the naturalpartial ordering of self-adjoint operators) into the sub-POSETfrange( eNP ��+)gP2ric0(�;J) of the shift-invariant subspaces of `2(Z+;U) (or-dered by the inclusion of subspaces).Proof. The implication (i) ) (ii) is Lemma 93. We just remark that ifJ � 0, the existence of the regular critical solution P crit0 is equivalent to��+D�JD��+ � ���+ for � > 0, see [26, Theorem 27 and Corollary 31]. Forthe converse direction (ii)) (i), note that range( eNP1��+) � range( eNP2��+) isequivalent to range( eN �P1��+) � range( eN �P2��+), where the normalization is asin Corollary 80. This normalization is possible because both the indicators�P1, �P2 and �P crit0 are positive, by [26, Corollary 54]. By Corollary 92,there is an inner (from both sides) operator � such that eN �P2� = eN �P1, orequivalently D�P1 = �� 12P1 e�� 12P2 � D�P2 ;(102)because we can factorizeD�P = NPX for P 2 ricuw(�; J), by [26, Proposition55].Now we continue as in proof of Lemma 93, and center the problem aroundthe smaller solution P1. As in the proof of Lemma 93, we have the solution�P := P2�P1 2 ric(�P1;�P1) whose nonnegativity is to be shown. We have(�P1)�P = �P2 andD�P1 = D(�P1)�PD(�P1 )�P = D(�P1 )�PD�P2 ;(103)as in the proof of Lemma 93.We have to check that �P1, �P1 and�P satisfy the assumptions of Lemma89. Firstly, the separable U is the input space and the output space of theoutput stable and I/O stable DLS �P1. Also range(B�P1 ) = H, becauseB�P1 = B. The indicator �P1, serving as the cost operator, is nonnegative asalready has been discussed. The H1DARE ric(�P1;�P1) has a regular criti-cal solution because the original H1DARE ric(�; J) has, see [26, Theorem27 and claim (i) of Proposition 55]. Because �P = P2 � P1 and P1; P2 2ric0(�; J) by assumption, the residual cost operator LA;�P exists. Further-more, LA;�P = LA;P2 � LA;P1 = 0, and it follows that �P 2 ric0(�P1;�P1)because A is the common semigroup generator of all the DLSs �, �P1 and(�P1)�P . Now we see that the assumptions of Lemma 89 are satis�ed.By comparing (102) and (103), we see that the inner DLS (�P1)�P is I/Ostable. Compare, for example, the transfer functions in a small neighbour-hood of the origin, to convince yourself that �� 12P1 ~�� 12P2 = D(�P1 )�P . Also [26,



48claim (ii) of Proposition 38] can be used, to see that the I/O-map D�P2 hasa bounded, shift-invariant but generally noncausal inverse in `2(Z;U). ByLemma 89, �P � 0 and the proof is completed.We proceced to give an order-theoretic characterization of the set of nonneg-ative regular H1 solutions of the H1DARE ric(�; J). Under approximatecontrollability, these are exactly those that give H1 factorizations in Lemma79, see [26, Corollary 44].Theorem 96. Let J � 0 be a cost operator. Let � = � Aj B��jC D � = ( A BC D )be an I/O stable and output stable DLS, such that range(B) = H. Assumethat the input space U and the output space Y are separable, and the inputoperator B 2 L(U ;H) is Hilbert�Schmidt. Assume that there is a (unique)regular critical solution P crit0 := (Ccrit)�JCcrit 2 ric0(�; J). ThenfP 2 ric0(�; J) j P � 0g = fP 2 Ric(�; J) j 0 � P � P crit0 g:Proof. The inclusion � has already been established in [26, claim (ii) ofCorollary 48]. For the converse inclusion, let a nonnegative P 2 ric0(�; J) bearbitrary. Because eNP crit0 = I, it follows that the range of the Toeplitz opera-tor eNP crit0 ��+ is all of `2(Z+;U). In particular, range( eNP ��+) � range( eNP crit0 ��+),and it follows that P � P crit0 , by Theorem 95. The proof is complete.



4914 H1 solutions of the inner and spectral DAREsWe start with a motivation of the contents of this section. For simplicity,assume for a while that the nonnegative cost operator J is boundedly invert-ible. In claim (iv) Lemma 79, we introduce the factorization of the I/O-mapas a composition of two I/O stable I/O-mapsD� = D� ~P � D� ~P ;(104)for any nonnegative ~P 2 ric0(�; J). As a conclusion of the same lemma,it follows that the inner DLS � ~P is output stable and I/O stable. Thetechnical assumptions of Lemma 79, such as the separability of the Hilbertspaces and the Hilbert�Schmidt compactness of the common input operatorB 2 L(U ;H), are inherited from � by � ~P . This makes it possible to applyclaim (iv) of Lemma 79 to inner DLS �P and the associated inner H1DAREric(�P ; J). In this way, the (J;� ~P )-inner factor D� ~P can be further factorizedby the nonnegative solutions P 2 ric0(� ~P ; J). A similar consideration canbe given for the right factor D� ~P , which is the I/O-map of the spectral DLS�P , and a stable spectral factor of the Popov operator D��JD�, too. Thenonnegative solutions P 2 ric0(� ~P ;� ~P ) of the spectral DARE factorize D� ~Pinto I/O stable factors.Because of the possibility of a recursive factorization of factors in equation(104), we conclude that both the solutions setsric0(� ~P ;� ~P ); for all ~P 2 ric0(�; J);nP 2 ric0(� ~P ; J) j P � 0o ; for all ~P 2 ric0(�; J); ~P � 0are quite interesting. So it is desirable to characterize them in terms ofthe original data, namely the DLS � = ( A BC D ), the cost operator J , andthe solution sets Ric(�; J) and ric0(�; J) of the original DARE. This is thesubject of the present section.We start with considering the spectral DARE, as it is quite easy. Infact, the result on the spectral DLSs has already been used in the proof ofTheorem 95.Lemma 97. Let J � 0 a cost operator. Let � = ( A BC D ) be an output stableand I/O stable DLS. Assume that the input operator B 2 L(U ;H) is Hilbert�Schmidt and the input space U is separable. Let ~P 2 ric0(�; J) be arbitrary.Then the following are equivalent:(i) �P 2 ric0(� ~P ;� ~P ),(ii) ~P +�P 2 ric0(�; J).Proof. To prove the implication (i) ) (ii), let �P 2 ric0(� ~P ;� ~P ) be ar-bitrary. Then, because A is the semigroup generator of both � and � ~P , itfollows that the residual cost operator LA; ~P+�P exists and satis�es LA; ~P+�P =LA; ~P + LA;;�P = 0. By Lemma 64, ~P +�P 2 Ric0(�; J).



50 Because J � 0, it follows that P crit0 = �Ccrit� �� JCcrit� � 0 and also �P crit0 >0. By [26, Theorem 27 and Lemma 53], it follows that � ~P > 0 because~P 2 ric0(�; J). The spectral H1DARE ric(� ~P ;� ~P ) has a regular criticalsolution ~P crit0 2 ric0(� ~P ;� ~P ) because P crit0 2 ric0(�; J) is assumed to exist,see [26, Proposition 55]. Because the cost operator of DARE ric(� ~P ;� ~P ) isnonnegative, the indicator ~� ~P crit0 is nonnegative and the same is true for theindicator ~��P , by [26, Lemma 53] and the assumption �P 2 ric0(� ~P ;� ~P ).Now, by equation (58) of Proposition 59, � ~P+�P = ~��P > 0.Now we have concluded that ~P + �P 2 Ric0(�; J), and its indicator ispositive. It follows that ~P + �P 2 ric0(�; J), by [26, Corollary 47]. Thiscompletes the proof of the �rst implication.To prove the other direction (ii) ) (i), assume that P2 := ~P + �P 2ric0(�; J). Then �P = P2 � ~P 2 Ric(� ~P ;� ~P ) by Lemma 64, and alsoLA;�P = 0. Thus �P 2 Ric0(� ~P ;� ~P ) because the same A is the semigroupgenerator of all spectral DLSs. The indicator ~�� of �P 2 Ric(� ~P ;� ~P )satis�es ~�� = �P2, by equation (58) of Proposition 59. But the latter ispositive because P2 2 ric0(�; J), by the same argument that is presented inthe �rst part of the proof for � ~P .We have proved that �P 2 Ric0(� ~P ;� ~P ), and its indicator ~��P is pos-itive. Now, because the Hilbert�Schmidt class input operator B and theseparable input space U is common for all spectral DLSs, an application of[26, Corollary 47] completes the proof.A similar results can be given for other residual cost conditions introducedin De�nition 21. The case of the ultra weak residual cost condition has beenconsidered in the proof of Lemma 93. We proceed to characterize a regularcritical solution of the spectral DARE.Corollary 98. Make the same assumption as in Lemma 97. By P crit0 :=(Ccrit� )�JCcrit� 2 ric0(�; J) denote the regular critical solution.Then P crit0 � ~P 2 ric0(� ~P ;� ~P ) is a regular critical solution. If, in addition,range(B�) = H, then it is the unique regular critical solution.Proof. By Lemma 97, we see that �P := P crit0 � ~P 2 ric0(� ~P ;� ~P ). Byequation (58) of Proposition 59, we have for (� ~P )P crit0 � ~P = �P crit0 , whoseI/O-map is the outer factor X of D�, by the de�nition of the critical so-lution P crit0 . It follows that P crit0 � ~P 2 ric(� ~P ;� ~P ) is a regular criticalsolution of the spectral H1DARE ric(� ~P ;� ~P ). If range(B�) = H, thenalso range(B� ~P ) = H because the controllability maps of � and � ~P coincide.The uniqueness of the regular critical solution of ric(� ~P ;� ~P ) follows from[26, Corollary 30].



51The spectral DLS and DARE can be used to show that the solution setric0(�; J) is order-convex:Lemma 99. Let J � 0 be a cost operator. Let � = ( A BC D ) be an output stableand I/O stable DLS. Assume that the input space U is separable, and theinput operator B 2 L(U ;H) is Hilbert�Schmidt. By P crit0 := (Ccrit� )�JCcrit� 2ric0(�; J) denote the regular critical solution.Then ric0(�; J) is order-convex in the following sense: if ~P 2 ric0(�; J)is such that ~P � P crit0 , then all P 2 Ric(�; J) such that ~P � P � P crit0 satisfyP 2 ric0(�; J).Proof. Because ~P � P � P crit0 , then 0 � P � ~P � P crit0 � ~P . By Lemma 64,P � ~P 2 Ric(� ~P ;� ~P ). By Corollary 98, P crit0 � ~P 2 ric0(� ~P ;� ~P ) is a regularcritical solution. By [26, claim (ii) of Corollary 48], P � ~P 2 ric0(� ~P ;� ~P ).The proof is now complete.Now we have dealt with the spectral DLSs and DAREs. We proceed tostudy the regular H1 solutions for the inner H1DARE ric(� ~P ; J), centeredat ~P � 0. We need to assume that the nonnegative cost operator J has abounded inverse. By Lemma 79, this quarantees that � ~P is output stableand I/O stable, when questions about H1 solutions become meaningful.Lemma 100. Let J > 0 a boundedly invertible cost operator. Let � = ( A BC D )be an output stable and I/O stable DLS, such that range(B�) = H. Assumethat the input operator B 2 L(U ;H) is Hilbert�Schmidt, and the input spaceU and the output space Y of � are separable. Assume that the regular criticalsolution P crit0 := (Ccrit� )�JCcrit� 2 ric0(�; J) exists. Let ~P 2 ric0(�; J), ~P � 0,be arbitrary.Then the inner DLS � ~P is output stable and I/O stable. The inner DARERic(� ~P ; J) is a H1DARE. Furthermore, ~P is the unique regular critical so-lution of its own inner DARE ric0(� ~P ; J). In particular, LA ~P ; ~P = 0.Proof. Let ~P 2 ric0(�; J), ~P � 0, be arbitrary. By claim (iv) of Lemma 79,� ~P is output stable and I/O stable, because J > 0 has a bounded inverse.Thus Ric(� ~P ; J) is a H1DARE, and it makes sense to ask about the regularH1 solutions P 2 ric0(� ~P ; J).By claim (iv) of Lemma 79, D� ~P is (J;� ~P )-inner. Because ~P � 0 andJ � 0, it follows that � ~P > �I for some � > 0. Thus the Popov operatorsatis�es D�� ~PJD� ~P = �P � I � �I, and by [26, Corollary 54], there is aregular critical solution ~P crit0 2 ric0(� ~P ; J). It follows from the approximatecontrollability assumption range(B) = H of � that the inner DLS � ~P isapproximately controllable, too, because range(B� ~P ) = range(B�) as in theproof of Proposition 86. Now [26, claim (i) of Corollary 30] implies that ~P crit0is the unique regular critical solution of H1DARE ric(� ~P ; J). Furthermore,~P crit0 is nonnegative, because J > 0. Expectedly, the outer factor of D� ~Pis the static identity operator I, which equals the I/O-map (� ~P ) ~P crit0 of thecorresponding spectral DLS (associated to pair (� ~P ; J)).



52 Let P 2 Ric(� ~P ; J) = Ric(�; J), P � 0, be arbitrary. Then the spectralDLS (� ~P )P can be put into form�(� ~P )P ; ~�P� :� �� ~P ; J�P � �� A ~P BK ~P �KP I � ;�P� ;(105)see equation (56) of Proposition 59. Here A ~P := A + BK ~P , �Q = D�JD +B�QB, and �QKQ = �D�JC � B�QA for Q = ~P ; P are the closed loopsemigroup generator, indicator and feedback operator, relative to the originalDLS � and the cost operator J .By setting P = ~P in equation (105), we get(� ~P ) ~P = � A ~P B� ~K ~P I � = �A ~P B0 I � ;and the feedback operator ~K ~P , associated to pair (� ~P ; J), satis�es ~K ~P = 0.However, the same is true for the unique regular critical solution ~P crit0 2ric0(� ~P ; J) if range(B�) = H. It follows that range(B� ~P ) = range(B�) asin the proof of Proposition 86. But now assumption range(B�) = H im-plies range(B� ~P ) = H. Furthermore, because the controllability maps of aDLS and any of its spectral DLSs are equal, the approximate controllabilityrange(B(� ~P )P ) = H follows for all P 2 Ric(�; J). Now, for P = ~P crit0 equation(105) gives (� ~P ) ~P crit0 = � A ~P B� ~K ~P crit0 I � = � A ~P BK ~P �K ~P crit0 I � :By the de�nition of the critical solution, the I/O-map of the spectral DLS(� ~P ) ~P crit0 is the outer factor of D� ~P . But this is the static identity operator I,as discussed above. Thus ~K ~P crit0 jrange(B(� ~P )P ) = 0, and by the approximatecontrollability assumption, it follows that ~K ~P crit0 = 0.By the de�nition of the inner DARE ric(� ~P ; J), the following Liapunovequations are satis�edA�~P ~PA ~P � ~P + C�~PJC ~P = ~K�~P ~� ~P ~K ~P = 0;A�~P ~P crit0 A ~P � ~P crit0 + C�~PJC ~P = ~K�~P crit0 ~� ~P crit0 ~K ~P crit0 = 0:But now ~P crit0 � ~P = A�~P ( ~P crit0 � ~P )A ~P and by iterating~P crit0 � ~P � A�j~P ~P crit0 Aj~P = �A�j~P ~PAj~P :Because ~P crit0 is the regular critical solution of ric(� ~P ; J), it follows thatA�j~P ~P crit0 Aj~P converges strongly to zero as j ! 1. But then LA ~P ; ~P :=s� limj!1A�j~P ~PAj~P exists, and~P crit0 � ~P = �LA ~P ; ~P :(106)



53A similar kind of calculation can be carried out with the open loopoperators. Because ~K ~P crit0 = 0 as shown above, and by formula (105),~K ~P crit0 = K ~P � K ~P crit0 , it follows that K ~P = K ~P crit0 . For the indicatorswe have � ~P = � ~P crit0 , too. To see this equality, consider �rst the solution~P 2 ric0(�; J). The I/O-map of its inner DLS � ~P is (J;� ~P )-inner, as hasalready been mentioned. The critical solution ~P crit0 2 ric0(� ~P ; J) gives the(J; ~� ~P crit0 )-inner-outer factorizationD� ~P = D(� ~P ) ~Pcrit0 � D(� ~P ) ~Pcrit0 = D(� ~P ) ~Pcrit0 � I = D(� ~P ) ~Pcrit0by claim (iv) of Lemma 79, and the uniqueness of the (J; S)-inner-outerfactorizations of an I/O-map if the feed-through part of the outer factor isnormalized to identity, see [19, Proposition 21]. We conclude that D� ~P is(J; ~� ~P crit0 )-inner. So, D� ~P is simultaneously both (J;� ~P )-inner and (J; ~� ~P crit0 )-inner. This implies that � ~P crit0 = ~� ~P crit0 = � ~P because the indicator of asolution is not changed under transition to any inner DARE.Because K ~P = K ~P crit0 and � ~P crit0 = � ~P holds, the open loop DARERic(�; J) gives us the equalityA� ~P crit0 A� ~P crit0 = A� ~PA� ~P;because both the operator ~P crit0 and ~P are solutions of the original DARERic(�; J), and the right hand sides of the DARE at these solutions coincide.Thus ~P crit0 � ~P = A�( ~P crit0 � ~P )A and in the same way as proving equation(106) we obtain ~P crit0 � ~P = LA; ~P crit0 � LA; ~P = LA; ~P crit0 :(107)Here the strong limit exists and equality holds because LA; ~P = 0, by assump-tion P 2 ric0(�; J).Comparing equations (106) and (107), we see that �LA ~P ; ~P = LA; ~P crit0 .Both the residual cost operators are nonnegative, as strong limits of sequencesof nonnegative operators. It immediately follows that LA ~P ; ~P = LA; ~P crit0 = 0.Thus ~P 2 ric0(� ~P ; J) is the critical regular solution of its own inner DARE.This completes the proof.In the following Lemma 101 we characterize the regular H1 solutions ofthe inner DARE Ric(� ~P ; J) for nonnegative ~P 2 ric0(�; J). As in Lemma100, we have to be a little careful to see that Ric(� ~P ; J) is a H1DARE. Forthis reason, we assume again that the cost operator J > 0 has a bounded in-verse. It is important that the particular case when ~P = P crit0 = (Ccrit� )�JCcrit�can be solved for general J � 0, see Theorem 105.Lemma 101. Let J > 0 a boundedly invertible cost operator. Let � = ( A BC D )be an output stable and I/O stable DLS, such that range(B�) = H. Assumethat the input operator B 2 L(U ;H) is Hilbert�Schmidt, and the input space



54U and the output space Y of � are separable. Assume that the regular criticalsolution P crit0 := (Ccrit� )�JCcrit� 2 ric0(�; J) exists.Then for all ~P 2 ric0(�; J), ~P � 0, the DLS � ~P is output stable and I/Ostable. Furthermore, we have the following equality of the solution sets ofH1DAREs nP 2 ric0(�; J) j P � ~Po = ric0(� ~P ; J):Proof. The output stability and I/O stability of � ~P follow from Lemma 79and the assumption that J has a bounded nonnegative inverse. We concludethat the inner DARE Ric(� ~P ; J) is a H1DARE, and the claim about thesolution sets ric0(�; J) and ric0(� ~P ; J) is meaningful. We proceed to provethe equality of the solution sets. Fix ~P 2 ric0(�; J) such that ~P � 0.To prove inclusion ���, let P 2 ric0(�; J) be arbitrary, such that P � ~P .By Lemma 97, �P := ~P � P 2 ric0(�P ;�P ) and we can consider the innerDARE of ric(�P ;�P ), centered at �P � 0. Because the input operator Bof �P is Hilbert�Schmidt, the input space U is separable, the cost operator�P > 0 is boundedly invertible, and the H1 solution �P 2 ric0(�P ;�P )is nonnegative, Lemma 100 implies that �P is the unique regular criticalsolution of its own inner DARE ric((�P )�P ;�P ).By Corollary 60, the minimax nodes have the �commutation� relation�(�P )�P ;�P� � �(� ~P )P ;�P� :(108)Because the semigroup generator of (�P )�P = (� ~P )P , equalling that of � ~P ,is A ~P , it follows0 = LA ~P ;�P = LA ~P ;( ~P�P ) = LA ~P ; ~P � LA ~P ;P = �LA ~P ;P ;where the �rst equality is because �P 2 ric0((�P )�P ;�P ) as the uniqueregular critical solution, and the last follows from the last claim of Lemma100. This implies the existence of LA ~P ;P as a strong limit and also LA ~P ;P = 0.Because A ~P is also the semigroup generator of � ~P , it remains to prove thatP 2 ric(� ~P ; J).By identity (108), we conclude that (� ~P )P is output stable and I/O stable,because this DLS equals (�P )�P , which is I/O stable and output stable byclaim (iv) of Lemma 79 and the fact that �P 2 ric0(�P ;�P ) is nonnegative,as discussed earlier.Here we have used the fact that the cost operator �P of DARE ric(�P ;�P )is nonnegative with a bounded inverse, by Lemma 53, because P 2 ric0(�; J)and the regular critical solution P crit0 := (Ccrit� )�JCcrit� � 0 surely has a positiveindicator, by the nonnegativity of J . This completes the �rst part of theproof.For the converse inclusion ���, let P 2 ric0(� ~P ; J) be arbitrary, andde�ne �P = ~P � P . Now our task is to show that �P is output stable andI/O stable, and ~P � P . To clarify things, we �rst write the observability



55map of � ~P in I/O-form, by using formula (79), with �P in place of �, �P inplace of P , and so on. Recall that this formula does not require any stabilityproperties of any of the DLSs involved (apart from the boundedness of thegenerating operators), because is solely based on the equivalence of DLSs(and their feedbacks) in I/O-form and di�erence equation form, presented inthe sense of [21, Lemma 19 and Lemma 20]. We obtainC(� ~P )P = C(�P )�P = C�P �D�PD�1(�P )�P C(�P )�P ;where the �rst equality is because (�P )�P = (� ~P )P , by equation (108). Fur-thermore, D�PD�1(�P )�P = D(�P )�P , as causal, shift invariant operators in thesequence space Seq(U), by formulae (79) and (80). But now (�P )�P = (� ~P )Pimplies that D(�P )�P = D(� ~P )P in Seq(U). Because (�P )�P = � ~P by equation(58) of Proposition 59, we getC�P = C(� ~P )P + �D(� ~P )P� � C� ~P :(109)Because P 2 ric0(� ~P ; J) by assumption, both C(� ~P )P : H ! `2(Z+;U)and D(� ~P )P : `2(Z;U) ! `2(Z;U) are bounded. Similarly C� ~P : H !`2(Z+;U) is bounded because ~P 2 ric0(�; J), by assumption. We now con-clude that �P is output stable, because all the operators in equation (109) arebounded between the corresponding (dense subspaces of the) Hilbert spacesH, `2(Z+;U), and `2(Z;U).We proceed to show the I/O stability of �P . As above, D�PD�1(�P )�P =D(�P )�P = D(� ~P )P in Seq(U). Also, D(�P )�P = D� ~P because (�P )�P = � ~P .Because the feed-through operator of the spectral DLS � ~P is always theinvertible identity operator, it follows from Proposition 1 that D� ~P is a causalbijection in Seq(U). It follows that D�P = D(� ~P )PD� ~P in Seq(U). Fromassumptions ~P 2 ric0(�; J) and P 2 ric0(� ~P ; J) it follows that both D� ~Pand D(� ~P )P are bounded in `2(Z;U), and so is D�P . We have now provedthat P 2 ric(�; J), and thus Ric(�P ;�P ) is a H1DARE.Because P 2 ric0(� ~P ; J), it follows from claim (iii) of Lemma 79 thatthe I/O-map of the inner DLS �� ~P�P is I/O stable and (J; ~�P )-inner. Theindicator ~�P of P , as a solution of the inner DARE Ric(� ~P ; J), equals theindicator �P of P , as a solution of the original DARE Ric(�; J). Because�� ~P�P = �P by equation (57) of Proposition 59, it follows that D�P is(J;�P )-inner.Thus D� = D�PD�P where both the factors are bounded. For the Popovoperator we getD��JD� = �D�PD�P �� JD�PD�P = D��P � D��PJD�P � D�P = D��P�PD�P :



56Because we already know that P 2 ric(�; J) , it follows that the residualcost operator in I/O-form satis�es L�;P = 0, by [26, claim (ii) of Lemma 52].Because range(B�) = H is assumed, it follows that LA;P = 0, by [26, claim(iii) of Lemma 52]. We have now shown that P 2 ric0(�; J).Because ~P ; P 2 ric0(�; J), Lemma 97 implies that that �P := ~P � P 2ric0(�P ;�P ). Because (�P )�P = (� ~P )P and P 2 ric0(� ~P ; J), it follows thatthe inner DLS (�P )�P at solution�P is I/O stable. Because the DLS �P , thecost operator �P , and the solution �P 2 ric0(�P ;�P ) satisfy the conditionsof Theorem 96, it follows that �P � 0 and thus ~P � P . This completes theproof.



5715 Reduction of H1DARE to an inner DAREIn this section, we consider the H1DARE ric(�; J) that has a regular criticalsolution P crit0 := (Ccrit� )�JCcrit� 2 ric0(�; J), whereCcrit� := (I � ��+D�(��+D��JD���+)�1��+D��J)C�:(110)In essence, we show under technical assumptions that ric(�; J) andric(�P crit0 ; J) are practically equivalent, as H1DAREs. Many of these re-sults hold for general cost operator J ; the nonnegativity assumption J � 0is required only when the sets ric0(�; J) and ric0(�P crit0 ; J) of regular H1solutions are related to each other.Suppose we are interested in the H1 solutions of H1DARE ric(�; J). Ifwe know some solution ~P 2 ric(�; J), we can study the (possibly non-H1)inner DARE Ric(� ~P ; J) in place of the original ric(�; J). Furthermore, underthe conditions of claim (iv) Lemma 79, if we can �nd a nonnegative solution~P 2 ricuw(�; J) for J � 0, then the inner DARE Ric(� ~P ; J) is essentially theH1DARE ric(J 12� ~P ; I), with an (I;� ~P )-inner I/O-map J 12D� ~P . If, in addi-tion, the nonnegative cost operator J has a bounded inverse, then Ric(� ~P ; J)itself is a H1DARE. We remark that an inner DLS � ~P is generally not ob-servable (i.e. ker(C� ~P ) 6= f0g), and the semigroup generator AP is generallynot even power bounded.In Lemmas 100 and 101 we have considered the solution set ric0(� ~P ; J)for ~P � 0 and boundedly invertible J > 0. In this section, we give strongerresults in the particular case ~P = P crit0 , where P crit0 is given by (110). TheI/O-map D�Pcrit0 is now the (J;�P crit0 )-inner factor N of the I/O-map D� =NX , and there is no need to assume a bounded inverse for J to make �P crit0output stable and I/O stable. The outer factor X of the I/O-map D� isnot very important from the Riccati equation point of view, as implied byTheorem 105, the main result of this section. An important application ofthese results is in the last section of [25].We start by answering the uniqueness questions associated to variouscritical operators.Proposition 102. Let � = ( A BC D ) be an output stable and I/O stable DLS,and J 2 L(Y ) a self-adjoint cost operator. Assume that the regular criticalsolution P crit0 := (Ccrit� )�JCcrit� 2 ric0(�; J) exists.Then(i) the critical indicators satisfy �P crit = �P crit0 for all critical P crit 2Ricuw(�; J),(ii) If range(B�) = H, then the critical feedback operators satisfy KP crit =KP crit0 for all critical P crit 2 Ricuw(�; J). Furthermore, the closed loopoperators AP crit = AP crit0 and CP crit = CP crit0 , where critical P crit 2Ricuw(�; J) is arbitrary. P crit0 is the unique critical solution in the setric00(�; J).



58(iii) If range(B�) = H, and the open loop semigroup A is strongly stable,then there is only one critical solution P crit 2 Ricuw(�; J), and it equalsP crit0 .We conclude that if range(B) = H, it makes sense to speak about thecritical (closed loop) feedback operator Kcrit, the critical semigroup Acritand critical output operator Ccrit, because these are now independent of thechoice of the critical solution. In our earlier work [20, De�nitions 7 and 10],we de�ned the objects Kcrit, Acrit and Ccrit di�erently. We proceed to showthat under approximate controllability range(B�) = H, both these de�nitionscoincide. This makes it possible to write the inner DLS �P crit0 = � APcrit0 BCPcrit0 D�in I/O-form, without explicit reference to the solution P crit0 .Proposition 103. Let J 2 L(Y ) be a self-adjoint cost operator. Let � =( A BC D ) be an output stable and I/O stable DLS, such that range(B�) = H.Assume that there exists a regular critical solution P crit0 2 ric0(�; J).De�ne the critical (closed loop) feedback operatorKcrit := �(��+D��JD���+)�1��+D��JC�and the critical (closed loop) observability map Ccrit� := C� + D�Kcrit. By Xand N denote the (J;�P crit0 )-inner and outer factors in the (J;�P crit0 )-inner-outer factorization D� = NX .Then(i) KP crit0 = Kcrit, where Kcrit := �0Kcrit with the natural identi�cation ofspaces range(�0) and U ,(ii) the observability map of the spectral DLS satis�es C�Pcrit0 = XKcrit,(iii) AP crit0 := A+BKP crit0 = Acrit, where Acrit := A + B�� �Kcrit,(iv) CP crit0 := C + DKP crit0 = Ccrit, where Ccrit := �0Ccrit� with the naturalidenti�cation of spaces range(�0) and Y .(v) In particular, the inner DLS �P crit0 is given in I/O-form by the critical(closed loop) DLS �P crit0 = � (Acrit)j B�X�1� �jCcrit� N � :(111)Proof. Let D� = NX be the (J;�P crit0 )-inner-outer factorization, where theouter part X has a bounded inverse, and the feed-through operator is nor-malized �0X�0 = I. The existence of such factorization follows from theassumption that the critical solution P crit0 exists, by [26, Theorem 27]. Italso follows that the Popov operator ��+D��JD���+ has a bounded inverse,and it follows that all the operators Kcrit, Kcrit, Acrit, Ccrit� and Ccrit are wellde�ned.



59Then, as in the proof of [19, Lemma 25], it follows that the outer factorX has the realization, written in I/O-form�X = � Aj B�� �j�K X � ;(112)where K := ���1P crit0 N �JC�. On the other hand, the critical (closed loop)feedback operator Kcrit := �(��+D��JD���+)�1��+D��JC� can be written inform Kcrit = X�1 � K, by [19, Lemma 22]. We have now enough informationto translate the DLS �X in formula (112) into di�erence equation form; wehave �X = � A B�Kcrit I � ; Kcrit := �0Kcrit;(113)because �0X�0 = I implies that �0X�1�0 = I, and then �0K = �0Kcrit. Notethat we have identi�ed the spaces range(�0) and U in the natural way.Now, because P crit0 2 ric0(�; J) is a critical solution, the outer fac-tor X can be expressed also as the I/O-map of the spectral DLS �P crit0 =� A B�KPcrit0 I �. Because the controllability maps of �P crit0 and �X coincide withB�, we conclude that Kcritjrange(B�) = KP crit0 jrange(B�). By approximatecontrollability, Kcrit = KP crit0 , because both the operators are bounded. Thisproves now claim (i), and claim (ii) immediately follows because K = C�Pcrit0and Kcrit = X�1 � K, as discussed above.Claims (iii), (iv) and (v) are consequences of [21, Lemma 20], where itis shown that the state feedback structures of DLSs in I/O-form and di�er-ence equation form are equivalent. More precisely, the pairs [K; I � X ] and(Kcrit; 0) are corresponding state feedback pairs for the (open loop) DLS �in I/O-form and di�erence equation form, respectively. It follows that theclosed loop DLSs [�; [K; I � X ]]� in I/O-form and ��; �Kcrit; 0��� in di�er-ence equation form are equal, by [21, Lemma 20]. But these equal �P crit0 and�P crit0 , extended by the equal feedback pairs.Now we have tools to �nd out how the continuity properties of � are inheritedby the inner DLS �P crit0 .Proposition 104. J 2 L(Y ) a self-adjoint cost operator. Let � = ( A BC D ) bean output stable and I/O stable DLS. Assume that range(B�) = H, and the(unique) regular critical solution P crit0 2 ric0(�; J) exists. Then(i) �P crit0 is output stable and I/O stable. The I/O-map of �P crit0 is the(J;�P crit0 )-inner factor N of D� = NX . Furthermore, � is input stableif and only if �P crit0 is.(ii) We have range(B�Pcrit0 ) = H. If � is input stable, then B� `2(Z�;U) =H if and only if B�Pcrit0 `2(Z�;U) = H.



60Proof. In claim (i), the output stability and I/O stability of �P crit0 followsdirectly from equation (111) in Proposition 103. More precisely, the observ-ability map Ccrit� is bounded because all operators in (110) are bounded byour explicit assumptions; in particular, the inverse of the Popov operator��+D��JD���+ is bounded because P crit0 exists, see [26, Theorem 27]. Also theI/O-map of �P crit0 is (J;�P crit0 )-inner factor N of D�, by equation (111).To complete the proof, we �rst show that show that the bounded, anti-causal Toeplitz operator ��X�1�� : `2(Z�;U) ! `2(Z�;U) with a causalsymbol X�1 is a bijection in this space. Let us start with the surjectivity.Let ��~u 2 `2(Z�;U) be arbitrary. Because X is outer with a bounded inverse,it follows that X�1 : `2(Z;U) ! `2(Z;U) is a bounded, shift-invariant andcausal bijection. Thus there is a ~v 2 `2(Z;U) such that ��~u = X�1~v. Butnow ��~u = X�1��~v + X�1��+~v = ��X�1��~v + ��X�1��+~v:The causality of X�1 implies that ��X�1��+~v = 0 and so ��~u = ��X�1�� ���~v. The surjectivity of ��X�1�� follows because ��~v 2 `2(Z�;U).We show the injectivity of ��X�1��. Assume ��~v 2 `2(Z�;U) is suchthat ��X�1��~v = 0. Then0 = X��X�1��~v = XX�1��~v � X ��+X�1��~v = ��~v �X ��+X�1��~v;or equivalently ��~v = X ��+X�1��~v = ��X ��+X�1��~v. The causality of Ximplies that ��X ��+ = 0, and so ��~v = 0. We conclude that the Toeplitzoperator ��X�1�� in injective, and thus a bounded bijection. It then followsfrom the Open Mapping Theorem, that ��X�1�� has a bounded inverse in`2(Z�;U). Because B�Pcrit0 = B�X�1 = B� � ��X�1�� by equation (111) inProposition 103, the equivalence of the input stabilities of � and �P crit0 follows.It remains to consider claims (ii) about the range of B�Pcrit0 . Again, wehave B�Pcrit0 = B��� � ��X�1��. As a causal operator, ��X�1 maps thedomain of any controllability map (consisting of the sequences Seq�(U) �`2(Z�;U) that have only �nitely many nonzero components) onto itself. Thisimplies that range(B�) = range(B�Pcrit0 ), and the approximate controllabilityclaim follows. The (in�nite time) exact controllability claim follows becausethe Toeplitz operator ��X�1�� is boundedly invertible. The proof is nowcomplete.Now that we have related the DLSs � and �P crit0 , we proceed to considerthe inner DARE ric(�P crit0 ; J) and give the main result of this section. Thesigni�cance of the following theorem is that the structure of a H1DAREdoes not essentially depend on the outer factor of D� if the cost operator Jis nonnegative. It is then possible, under proper technical assumptions, toreplace an original H1DARE ric(�; J) by the inner H1DARE ric(�P crit0 ; J)that has a (J;�P crit0 )-inner I/O-map. This result has an application in the�nal section of [25].



61Theorem 105. Let J 2 L(Y ) be a self-adjoint cost operator. Let � = ( A BC D )be an output stable and I/O stable DLS, such that range(B�) = H. Assumethat the regular critical solution P crit0 2 ric0(�; J) exists. Then the followingholds:(i) The inner DARE Ric(�P crit0 ; J) is a H1DARE. The full solution setssatisfy Ric(�; J) = Ric(�P crit0 ; J). The I/O-mapD�Pcrit0 is the (J;�P crit0 )-inner factor N of D� = NX .(ii) The unique regular critical solution ~P crit0 := �Ccrit�Pcrit0 �� JCcrit�Pcrit0 2ric0(�P crit0 ; J) satis�es ~P crit0 = P crit0 .(iii) Assume, in addition, the input space U and output space Y are sepa-rable, the input operator B is Hilbert�Schmidt, and J � 0. Thenric0(�; J) = ric0(�P crit0 ; J):(114)Proof. By claim (i) of Proposition 104, �P crit0 is output stable and I/O stable.It follows that Ric(�P crit0 ; J) is a H1DARE. By claim (v) of Proposition103, the I/O-map of �P crit0 is (J;�P crit0 )-inner. The full solution sets satisfyRic(�; J) = Ric(�P crit0 ; J), by Lemma 65.We prove claim (ii) by calculating an expression for the critical (closedloop) observability map Ccrit�Pcrit0 for the inner DLS �P crit0 and the cost operatorJ . Clearly, D�Pcrit0 = N = NI is the unique (J;�P crit0 )-inner-outer factoriza-tion, where I is the unique outer factor whose feed-through operator is theidentity of U . By [19, claim (iii) of Lemma 22], we obtainCcrit�Pcrit0 = C�Pcrit0 �N��1P crit0 ��+N �JC�Pcrit0 :(115)By claim (v) of Proposition 103, C�Pcrit0 = Ccrit� , and again, by [19, claim (iii)of Lemma 22] Ccrit� = C� �N��1P crit0 ��+N �JC�;(116)because D� = NX is the unique (J;�P crit0 )-inner-outer factorization, whereX is the unique outer factor whose feed-through operator is the identity ofU . By combining equations (115) and (116), we obtainCcrit�Pcrit0 = �C� �N��1P crit0 ��+N �JC���N��1P crit0 ��+N �J �C� �N��1P crit0 ��+N �JC��= C� �N��1P crit0 ��+N �JC� �N��1P crit0 ��+N �JC�+N��1P crit0 ��+ � �N �JN��1P crit0 � � ��+N �JC�:



62Because N �JN = �P crit0 , the last two terms on the right hand side canceleach other, and it followsCcrit�Pcrit0 = C� �N��1P crit0 ��+N �JC� = Ccrit� ;where the last equality is by [19, claim (iii) of Lemma 22]. Now claim (ii) isveri�ed.We prove now the inclusion ��� of claim (iii). In fact, the inclusion ���of Lemma 101 is almost what we need, if we set ~P = P crit0 2 ric0(�; J). Inthe proof of this lemma, the bounded inverse of the cost operator J > 0 wasonly needed to show that � ~P is output stable and I/O stable. In the specialcase when ~P = P crit0 , we know by Proposition 104 that � ~P is output stableand I/O stable, even if J � 0 is not boundedly invertible. We now concludethat �P 2 ric0(�; J); j P � P crit0 	 � ric0(�P crit0 ; J):as in the proof of Lemma 101. By Theorem 96, P crit0 is the largest element ofthe set ric0(�; J), and P � P crit0 need not be explicitly written. The claimedinclusion now follows.The proof of the converse inclusion ��� is identical to that given in Lemma101 for ~P = P crit0 . We remark that the invertibility of the cost operator Jis never used in the proof of this converse inclusion ���. The proof is nowcomplete.The statement on Theorem 105 is in a perfect harmony with the followingintuitive observation of this paper: �nding solutions for the H1 Riccatiequation ric(�; J) is related to moving in the lattice of the inner factors ofD�. We remark that the input operator B 2 L(U : H) is required to beHilbert�Schmidt and the cost operator J nonnegative only in claim (iii) ofTheorem 105. All the other results in this section hold for arbitrary B andself-adjoint J .Under the assumptions of claim (iii) of Theorem 105, it is enough to beable to solve (numerically) H1DAREs with an inner I/O-map. To transform� into �P crit0 , we need not directly solve the original DARE ric(�; J); theregular critical solution P crit0 can be computed from Ccrit� by using formula(110). We remark that in this process, the most requiring thing is to calculatethe inverse of the (Toeplitz) Popov operator ��+D��JD���+. At least when Uis �nite dimensional, and there is some smoothness in the Popov functionei� 7! D�(ei�)�JD�(ei�), we can e�ciently solve the required Toeplitz systemsof equations iteratively, see [23], [18], and [28]. We conclude that we havesome hope in this direction, even from the numerical analysis point of view.So as to the numerical solution of the resulting H1DARE with an innerI/O-map, things seem to be wide open. It is not even clear what a nice solverwould have to do, in order to be nice. Particularly interesting would be al-gorithms that would not require the dimensionality of the state space, andwould not reduce the computation into some type of generalized eigenvalue



63problem. Such a solver could possibly be an iterative process, formulatedfor in�nite dimensional objects and without any discretization. State spaceisomorphism techniques could be helpful, so that convenient (minimal) re-alizations of D�Pcrit0 could be used instead. Some additional functionalitywould have to be required, to enable such solver to move in the solution setof DARE and to �nd a particular solution of interest. It is not clear, how thenatural lattice operations of the set ric0(�P crit0 ; J) can be realized, withoutreplacing them by intersections and spans of subspaces. These problems weleave open for the future research.
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