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8 Introduction

This is the second part of a two-part study on the input-output stable (I/O
stable) discrete time linear system (DLS) ¢ := (4 B) and the associated
algebraic Riccati equation (DARE)

(52) Ap = D*JD + B*PB,
ApKp = —-D*JC — B*PA,

denoted, together with its solution set, by Ric(#,J). We assume that the
reader has access to and familiarity with the first part [26] of this work. How-
ever, we briefly remind the most important assumptions, notions and nota-
tions. The input, state and output spaces of the DLS ¢ are separable Hilbert
spaces, and they are possibly (but not necessarily) infinite dimensional. The
self-adjoint cost operator J is assumed to be nonnegative throughout most
of this second part — this is in contrast to [26] where many results are valid
also for an indefinite cost operator J. If the DLS ¢ is output stable and I/O
stable, then the associated DARE (52) is called an H*DARE. It appears in
[26] that certain solutions of an H*DARE are more interesting than others;
these are the H* solutions P € ric(¢, J) C Ric(¢,J) and the regular H*
solutions P € rico(p, J) C ric(o,J), see [26, Definitions 20 and 21]). In
the first part [26], the regular H* solutions P € rico(¢, J) are associated
to the stable spectral factorizations of the Popov operator D*JD, where D
denotes the I/O-map of ¢. The main theme of this latter part is to connect
rico(¢, J) to the factorizations of the I/O-map D into causal, shift-invariant
and I/O stable factors. This work, together with [26], constitutes a theory of
the regular H* solutions of a H*DARE and simultaneously, an inner-outer
type state space factorization theory for operator-valued bounded analytic
functions.

Why is the algebraic Riccati equation interesting in the first place? What
makes the special algebraic Riccati equation, namely the H*DARE of type
(52), interesting? A traditional system theoretic application of the algebraic
Riccati equation, associated to unstable systems, is to find a (nonnegative)
solution, such that the associated (semigroup of the) closed loop system is
(at least partially) (exponentially) stabilized; see e.g. [2], [4], and [55], to
mention a few possible references. The algebraic Riccati equation appears
(in an adjoint form) in the theory of the Kalman filter for the stochastic state
estimation. For further information about this, see [1, Chapter 10| which is
a nice overview of the various types and applications of the (matrix) Riccati
equations, both in continuous and discrete time. Furthermore, the algebraic
Riccati equation has an important application in the canonical and spectral
factorization of rational matrix-valued functions by the state space methods,
see [15, Chapter 19]. The state space factorization methods can be extended
to the co-analytic—analytic type factorizations for classes of nonrational un-
stable operator-valued functions, see [7], [10] and the references therein.



Our view into the Riccati equation Ric(¢, J) in (52) is of this latter kind.
Because of our standing I/O stability assumption of the DLS ¢ = (& B), the
connections to the operator-valued function theory become very important.
We remark that the theory of H*DARESs, as developed here, is richer but
less general than that of DAREs without such stability assumptions. In
the light of the present work, the feedback stabilization of (the semigroup
or the I/O-map of) an unstable DLS is seen as a separate problem, to be
discussed elsewhere. We regard our DLS ¢ as something “already output and
I/O-stabilized” by some means — not necessarily by the state feedback law,
induced by some (nonnegative, stabilizing, maximal nonnegative) solution
of the DARE. In the applications, there exists genuinely I/O stable discrete
time processes that need not be stabilized; consider, for example, a discrete
time Lax-Phillips scattering where the scattering process is usually described
by (a DLS that has) an inner H* transfer function. Our aim is to develop
a sufficiently general algebraic Riccati equation theory that is able to deal
with these situations.

8.1 Outline of the paper

We start by giving a short outline of the results presented here. To each
solution P € Ric(¢, J), two families of algebraic Riccati equations are intro-
duced in Section 9. These are associated to the spectral DLS ¢p and the
inner DLS ¢”, centered at the solution P € Ric(¢,J). For the definition
of ¢p and @, see [26, Definition 19]. The spectral DARE Ric(¢p, Ap) is
the DARE associated to the ordered pair (¢p, Ap), where the cost opera-
tor Ap := D*JD + B*PB is the indicator of the solution P. Analogously,
the inner Ric(¢”, J) is associated to the ordered pair (¢”, .J). The solution
sets of spectral and inner DAREs have natural relations to the solution set
P € Ric(¢, J) of the original DARE, see Lemmas 64 and 65. The transitions
from the original DLS ¢ to the inner DLS ¢* and the spectral DLS ¢p are
basic operations that we use in Section 13 to obtain order-theoretic descrip-
tions of the solution (sub)set rico(¢, J) C Ric(¢, J). The results of Section
9 are proved by algebraic manipulations, and do not require DARE (52) to
be a H*DARE.

We remark that if the spectral DLS ¢p, (the inner DLS ¢*) is I/O stable
and output stable, then the DARE Ric(¢p, J), (Ric(¢”, J)) is a H*DARE,
and it is associated to the minimax problem of DLS ¢p with the cost operator
Ap, (DLS ¢F with the cost operator J, respectively). The conditions for
this to happen appear to be quite central in our study. Recall that for
P € Ric(p,J), ¢p is I/O stable and output stable if and only if P is a
H® solution, by Definition 20. For this reason it is important that, under
technical assumptions, all “reasonable” solutions P € Ric(¢, J) are shown
to be (even regular) H* solutions, see [26, Corollary 47 and Equation 35].
We conclude that the question whether the spectral DARE Ric(¢p, Ap) is
an H*DARE has already been settled in [26]. It requires further study to
give analogous conditions for the inner DARE Ric(¢*, J) to be a H*DARE.



This study is carried out in the present paper. When this is done, we have
shown that the general class of H*DAREsS is closed under the transitions to
spectral and inner DAREs.

A fair amount of stability theory for DLSs is needed for the further results.
This is provided by the scratch of an infinite-dimensional Liapunov equation
theory that we develop in Section 10. An essential part of the Liapunov
theory is based on monotonicity techniques, requiring the nonnegativity of
the cost operator J, or some closely related assumption. By Corollary 75, we
conclude that ¢F is output stable if P € Ric(®,J) is nonnegative and the
cost operator J > 0 has a bounded inverse, under quite general assumptions.
It requires more work (and stronger assumptions) to make the inner DLS ¢*
I/O stable and Ric(¢F, J) an H*DARE.

The first main results of this paper are given in Section 11. We conclude
that each nonnegative regular H* solution P € rico(¢, J) gives a factoriza-
tion of the I/O-map

(53) JiDy = JDyr - Dy,

The causal, shift-invariant factor J>Dype : €2(Z;U) — (2(Z;Y) is densely de-
fined, not necessarily I/O stable, but always strongly H? stable. This means
that the I/O-map J %D(;,p has a bounded impulse response, and the mapping
J2Dyp : € (Z;U) — €2(Z;Y) is bounded. If the input operator B of the DLS
¢ = (4 B) is a compact Hilbert—Schmidt operator, then this factorization
becomes a partial inner-outer factorization where all factors are I/O stable,
see Lemma 79 and Theorem 81. In particular, the (properly normalized) in-
ner DARE Ric(J3¢?, I) (which is equivalent to the inner DARE Ric(¢F, J))
becomes now a H*DARE, provided P € ricy(¢, J).

A generalized H? factorization is considered in Lemma 82. Furthermore,
finite increasing chains of solution in ricy (@, J) give factorizations of the I/O-
map of Blaschke—Potapov product type, as stated in Theorem 83. However,
neither the zeroes nor the singular inner factor of the transfer function Dy(z)
(whatever these would mean in our generality) play any explicit role in this
construction.

In Section 12, we consider converse results to those given in the previous
Section 11. In Lemma 89 we show that for P € ricg(¢, J), the I/O stability of
J %qﬁp implies that P > 0. Here, an approximate controllability assumption
range(B;) = H is made. Theorem 90 is a combination of results given
in Sections 11 and 12. It states, under restrictive technical assumptions,
that among the state feedbacks associated to solutions P € ricy(¢, J), it is
exactly the nonnegative solutions which output stabilize and I/O-stabilize the
(normalized closed loop) inner DLS J2¢P. In other words, among the H*
solutions of the DARE ric(¢, J), it is exactly the nonnegative P € ricy(o, J)
which give the factorization (53) of the I/O-map Dy so that all the factors
are I/O stable.

In Section 13, we study the partial ordering of the elements of ricy(¢, J),
as self-adjoint operators. The maximal nonnegative solution in the set ricy(¢, J)



is considered in Corollary 94, and seen to be the unique regular critical solu-
tion Pg™ := (C§™)*JCG™, if the approximate controllability range(By) = H
is assumed. An order-preserving correspondence between the set ricy(¢, J)
and a set of certain closed shift-invariant subspaces of £*(Z;U) is given in
Theorem 95, in the spirit of the classical Beurling—Lax—Halmos Theorem.
An order-theoretic characterization of the nonnegative elements of ricy(¢, J)
is given in Theorem 96.

In Section 14 we consider the conditions when the spectral DARE
Ric(¢p,Ap) and the inner DARE Ric(¢F, J) are H*DAREs. The reason
why this in interesting is discussed in Subsection 8.2.3 of this Introduction.
Also the regular H* solutions and the regular critical solutions of both the
spectral and inner DARESs are described. Our technical assumptions include
approximate controllability range(B,) = H and the Hilbert-Schmidt com-
pactness of the input operator B of the DLS ¢. The case of the spectral
DARE is dealt in Lemma 97 and Corollary 98. As a byproduct, we see
that the set ricy(¢, J) is an order-convex subset of Ric(¢, J) in the following
sense: if P, Py € ricy(¢,J) with P, < P;, then all P € Ric(¢, J) such that
P, < P < P satisfy P € rico(¢, J). In Lemma 100 it is shown that the inner
DARE Ric(¢”,J) is an H®DARE if P € ricy(¢, J) is nonnegative and the
cost operator J > 0 has a bounded inverse — in this case the same P is also
the regular critical solution of DARE ric(¢%, J). The full description of the
regular H* solutions ricy(¢”, J) of the inner DARE is given in Lemma 101.

In the final section, it is shown that the structure of the H*°DARE
ric(¢,J) and its inner DARE ric(¢™5 ", J) is similar, where Pt :=
(C5P4)* JCG™ € rico(¢, J) is the regular critical solution. This means that the
outer factor of the I/O-map D, is nonessential, from the H*DARE point
of view. The treatment is similar to that given in Lemmas 100 and 101 for
general nonnegative P € ricy(¢, J) but now the cost operator J > 0 is not
required to be boundedly invertible. This result has an application in [25,
Section 7|.

8.2 Connections to existing DARE theories

We proceed to discuss the similarities and differences of the present work to
previous works by other authors.

8.2.1 Different DARESs appearing in literature

It is quite necessary to comment why we use the more general DARE (2)
instead of the conventional LQDARE

(54 { A*PA—P+C*JC = A*PB-A,'- B*PA

Ap=D*JD + B*PB,

that appears in Least Quadratic type of problems, and is traditionally dis-
cussed (together with its continuous time analogue) in the literature.



As the reader can see, the difference between DAREs (52) and (54) is the
absense of a cross term of form D*JC in (54). It is well known that by the
preliminary static state feedback

(55) U; = —(D*JD)ilD*JCQJ]',

(if it makes sense) equation (52) can always be cast in the form of (54)
without changing the structure of the full solution set, see [15, Proposition
12.1.1]. We remark that the feedback in (55) can be “formally” associated
to an artificial zero solution of DARE (52), and this feedback can be given
a optimization theoretic interpretation: it minimizes the cost of the first
step. However, the cost for the future steps (in the closed loop) can be very
expensive for some initial states xg € H. The range of the observability map
of the closed loop system is orthogonal to the feed-through operator.

In particular, if the feed-through operator D of the original DLS ¢ =
(4 B) has a bounded inverse, then 0 solves Ric(®, J), and the (well defined)
inner DARE Ric(¢°, J) is of form (54). In fact, now the closed loop I/O-map
Dyo is a static constant operator D, and the inner DARE Ric(¢°, J) “lives”
in the undetectable subspace, equalling all of the state space H. Because
DAREs Ric(¢°, J) and Ric(¢, J) have the same solution sets, this can be used
to check that the Riccati equation theory presented here is in harmony with
the (usually finite dimensional) LQDARE and LQ-CARE theories presented
in the literature.

Now, if the modified LQDARE Ric(¢°, J) describes completely the solu-
tion set Ric(¢,J), why do not we always normalize the cross term to zero
by the preliminary feedback (55)7 We first remark that as a H*DARE,
ric(4°, J) is trivial because it has no nontrivial nonnegative H* solutions,
by Lemma 101. This is, of course, to be expected, because a nontrivial H*>
solution would have to factorize the static I/O-map D, see Lemma 79. We
further remark that the modified LQDARE Ric(¢°, J) is no longer directly
connected to a factorization of an I/O-map — this is somewhat unfortunate
if our interest in DARE comes from such factorizations. If the semigroup
generator A of the original DLS ¢ = (4 B) is e.g. strongly stable, the same
is not true for the semigroup A9 = A — B(D*JD)™'D*JC of ¢°, unless Dy
is outer. Then the DLS ¢° would have “undetectable unstable modes” which
could be inconvenient.

Because these comments alone do not seem to be a sufficient motivation
not to use the preliminary feedback (55), we try to discuss this question from
several other directions, too.

8.2.2 Application oriented reasons

Riccati equations are associated to cost minimization problems, and even
to minimax problems and game theoretic problems, if the cost operator J
is allowed to be indefinite. The information structure of such a problem is
reflected by the form of the associated DARE. The information structure
of DARE (52) is more general that that of (54), and the theory can be



directly applied to several minimax game problems with different information
structures, without making the preliminary feedback (55) which changes (one
might even say: confuses) the information structure.  Clearly, we get he
information structure of LQDARE (54) in the special case when a direct cost
is applied on the input of the system.

In particular, if we want to factorize a transfer function Dy (2) such that
D := Dy(0) has dense range in the output space Y, then the cross term
vanishes if and only if Dy /(z) = D identically. We remark that the transfer
functions of the spectral DLSs have always identity operator as their feed-
through part, and thus the theory of LQDARE is not directly applicable,
except in a trivial case. The more general matrix DARE (52) is considered
in [15, Chapter 12 and 13|. Furthermore, in the continuous time works [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45] (O. J. Staffans) and [29] (K.
Mikkola), the presented CAREs for the regular well-posed system always have
nontrivial cross terms. We conclude that if we want to make a discrete time
Riccati equation theory that can be easily compared to the above mentioned
works, we must retain the cross terms.

8.2.3 Internal self-similarity of the DARE theory

In claim (iv) of Lemma 79 we introduce the factorization of the I/O-map as
a composition of two I/O stable I/O-maps

JiDy = J:Dys - Dy,

for any P € ricy(p,J), P > 0. The left (I, Ap)-inner factor J%D(;,p is related
to the inner DLS ¢, and this inner factor can be further factorized by
nonnegative solutions of the inner H*DARE P € rico(¢”, J), at least if J is
boundedly invertible. We remark that even if the whole solution set satisfies
Ric(¢®,J) = Ric(¢, J), the set of regular H* solutions rico(¢”, J) is smaller
than the original rico(¢, J) by Lemma 101. This is roughly related to the
fact that the transfer function J%D¢,s has less “zeroes” than J%D¢(z) because
some of them belong to the factor Dy, .

A similar consideration can be given for the right factor Dy, which is
a spectral factor of the Popov operator Dj.JD;: nonnegative solutions of
the spectral DARE P € rico(¢p, Ap) factorize Dy, into stable factors. We
remark that the “cardinality” of nonnegative solutions in ricy(édp, Ap) is di-
minished from that of the original rice(¢,J) because a “shift” by P > 0
appears, as described in Lemma 97. We further remark that each inner and
spectral DARE ricy(¢”, J), rico(¢p, Ap) is associated to a cost minimization
problem in a natural way. This gives a system theoretic interpretation to
each of the various DAREs.

We conclude that our DARE theory and factorization theory are fully
recursive in the sense explained above. It is clear that the multiplicative
factorization in any associative algebra (or factorial monoid) is recursive in
the following sense: One would like to go on factoring the previous factors,



until an irreducible element has been reached. Because the Riccati equation is
related to such multiplicative factorization, we feel that the Riccati equation
theory should be presented in a way that does not hide the recursive nature of
things. For this to be possible, we need to have a class of DARES that is large
enough to be closed under passage to inner and spectral DAREs at solutions
of interest. In fact, many of our proofs rely on a recursive application of
the same DARE theory to inner or spectral DLSs and DAREs. It is very
exceptional that an inner or spectral DARE has a vanishing cross term, and
the cross term free class of equations (54) is not large enough. Introducing
the preliminary feedback would destroy this overall image, and confuse the
meaning of the various Riccati equations.

8.3 Parameterizations of nonnegative solutions

Assume that ¢ is I/O stable, output stable, and J > 0. Let us return to the
preliminary feedback (55) for a moment, and assume that we have both the
zero solution and the regular critical solution P, Clearly, both are in the
set rico(¢, J) of the regular H* solutions. We compare now the H*DARESs
ric(¢?,.J) and ric(¢Fs"", J) whose full solution sets equal that of the original
Ric(¢, J).

As already has been pointed out, the factorization of the I/O-map Dyo as
a product of nontrivial causal, shift-invariant and I/O stable operators is not
a sensible task, because the I/O-map of the inner DLS ¢° = (A—Bg’flc g)
is a static constant D. It is in the nature of Ric(¢°, J) that the DARE
“operates” in the unobservable part of the state space, and there are not
connections to the I/O-map. When the nonnegative solutions of such DARE
are to be considered, we would have to consider the Ay := A — BD~1C-
invariant, unobservable unstable subspaces of the state space, as has been
done in the matrix DARE works [16] and [55]. When the state space is
finite dimensional, such an approach is very succesful because the structure
of generalized eigenspaces of the semigroup Ay is available. For obvious
reasons, no “fully general” infinite-dimensional Riccati equation theory can
follow these lines, even though such an approach can be quite pleasing and
even satisfactory from the applications point of view. For references, see the
continuous time results [2] and [4], the latter of which contains a nice example
of infinite-dimensional, exponentially stabilizable system, built around the
heat equation. As already stated, it is quite instructive to compare our
results to the existing matrix results with the aid of the preliminary state
feedback (55). .

The inner DARE ric(¢f0™", J) is the other extreme when compared to
ric(@®, J): the I/O-map of ¢75"" is the full (J, Aperit)-inner factor A of the
original Dy, and the equation has a nonvanishing cross term (apart from
trivial cases). The following consideration could be carried out as well for
the original DLS ¢ and its I/O-map D, = N X, but we consider the inner
DLS ¢ and the factor I/O-map N instead.

The state space of DLS ¢ o is, in a sense, “critically visible” to include
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all “zeroes” of Dy to N = D¢P5rit, but not to generate any extra “zeroes”
to D¢P8”“ that are not zeroes of the original I/O-map D,. This makes it

possible to associate a Blaschke-Potapov type factorization of the I/O-map
N to each nonnegative P € ricy(¢75",J). One immediately gets the idea
that the nonnegative solutions of DARE could be parameterized up to their
order structure, by using these factorizations and not having to assume ex-
cessively from the DLS in question. To some extent this vision is right but a
disappointment appears, as will be discussed in the following.

Some of the factorizations of the I/O-map N are connected to a nonneg-
ative P € rico(¢T™, J), see [26, claim (ii) of Theorem 50]. The problem here
is that the factor in question must have a particular kind of realization, before
it can be connected to some solution P € rico(¢™0,.J) of the H*DARE.
When this has been done, we necessarily have P > 0, by Theorem 95.

In other words, we have trouble in identifying which factors of N (if not
all) are accounted by the solutions of the DARE in the first place. One ap-
proach to circumvent this is to show that certain “canonical” or “minimal”
realization ¢c of the same I/O-map (characteristically constructed around
a unilateral or bilateral shift operator) have a state space (and the DARE)
“complicated enough” so that each factor of the I/O-map is associated to
some solution of Ric(¢¢, J). Under very restrictive structural assumptions
(such as the exact (infinite time) controllability), all such canonical or mini-
mal realizations would have an isomorphic state spaces, and then the DAREs
Ric(¢c, J) and Ric(p, J) would have the same structure. This would asso-
ciate a solution of DARE Ric(¢,J) to each factor of N, at the expence of
additional restrictions on the data. We return to these considerations in our
later works. We remark that it has been well known fact for quite a long time
that general infinite dimensional state space systems do not have state space
isomorphism, see [9, Chapter 3]. For positive (two-directional) results in this
direction, see [10], and in particular the discrete time result [11, Theorem
4.1].
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8.4 Notations

We use the following notations throughout the paper: Z is the set of integers.
Z.={jeZ | j>0}yZ ={j€Z | j<O0} Tistheunitcircleand
D is the open unit disk of the complex plane C. If H is a Hilbert space, then
L(H) denotes the bounded and LC(H) the compact linear operators in H.
Elements of a Hilbert space are denoted by upper case letters; for example
u € U. Sequences in Hilbert spaces are denoted by @ = {u;};cr C U, where
I is the index set. Usually I = Z or I = Z,. Given a Hilbert space Z, we
define the sequence spaces

Seq(Z) := {{Zi}igz |zz€Z and JI€Z Vi<I:z= 0},
Seq (Z) :={{zi}icz | s € Z and  Vi<O0:z =0},
Seq (Z) := {{zi}icz € Seq(Z) | z; € Z and Vi>0:2z =0},
*(Z;Z) = {{ziticz C Z | Z ||zi]| < oo} for 1<p< oo,
icZ
P(Zy; 2) = {{zitiez, CZ| Y _ |lailly < oo} for 1<p< oo,
i€Z

(°(Z; 2) = {{zi}icz C Z | sup||zil|z < oo}
i€Z
The following linear operators are defined for Z € Seq(Z):

e the projections for j,k € Z U {+oo}

mikZ = {w;t; wy =z for j<i<k, w;=0 otherwise,
71-.7 = 71-[]1.7]’ 7T+ = ﬂ-[l,oo}, T = 7'('[_00’_1},

Ty =7y +mTy, T_ =7y +m_,

e the bilateral forward time shift 7 and its inverse, the backward time
shift 7*

78 = {w;} where w;=1u; 1,

"0 = {w;} where w;=1u;j;.

Other notations are introduced when they are needed. We also use some
notations that have already been introduced in [26].
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9 The algebraic properties of DARE

In this section, we write down a number of algebraic properties associated to
iterated transitions to inner and spectral minimax nodes, DLSs and DLSs.
The algebraic Riccati equation, together with the spectral DLS ¢p and the
inner DLS ¢, has already been introduced in [26, Section 3|. The spectral
DLS ¢p has been extensively used in [26] because its I/O-map gives spectral
factors for the Popov operator @ Dy JDy . For the inner DLS ¢f we have
not had much application until now. The results of this section are proved
by purely algebraic manipulations, and do not require input, output or I/0
stability of any of the DLSs considered. The definiteness of the cost operator
J does not play any role, either. Later, in Sections 14 and 15, the analogous
structure of the H*DARE is considered, for J > 0.

We associate two chains of DAREs to a given DARE Ric(¢, J). The
elements of these chains are called the spectral and inner DAREs. Both the
chains are indexed by the solutions P € Ric(¢, J). These new DAREs make
it easy to “move” in the solution set Ric(¢, J) of the original DARE, provided
we can solve these Riccati equations. The presented structure (in some form)
are well known to specialists in Riccati equations, but they are hard to locate
in the literature. For us, the presented chains of DAREs are invaluable tools
in sections 11 and 13.

Because DARE Ric(¢, J) does not solely depend on the DLS but also on
the cost operator .J, it is not sufficient to consider the DLS ¢ alone in this
section. Instead, we have to consider the pairs (¢, J) that we call minimax
nodes. Each minimax node defines a cost optimization problem, as defined
in [19] for I/O stable DLSs. To this cost optimization problem, a Riccati
equation is associated in a natural way. We first define two operations on the
minimax nodes, and give their basic properties. The DARE in inntroduces
in the familiar form in Definition 61.

Definition 57. Let ¢ = (4 B) be a DLS with input space U, the state space
H and output space Y. Let J = J* € L(Y) be a cost operator. Let P =
P* € L(H) be arbitrary, such that the operator Ap := D*JD + B*PB has a
bounded inverse.

(i) The ordered pair (¢,J) is called the minimaz node, associated to the
DLS ¢ and cost operator J.

(i) The spectral minimaz node of (¢, J) at P is defined by

o= ((4 ).

where Ap := D*JD + B*PB and ApKp := —D*JC — B*PA. The
operator Ap is called the indicator of P, and Kp is called the feedback
operator of P.
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(#ii) The inner minimaz node of (¢, J) at P is defined by

wor=((& 2)4)

where Ap == A+ BKp, Cp = C + DKp, and Kp is as above. The operator
Ap is called the (closed loop) semigroup generator of P, and Cp is called the
(closed loop) output operator of P.

We call two DLSs equal, if their defining ordered operator quadruples
(in difference equation form) are equal. Two minimax nodes are equal, if
their DLSs are equal, and the cost operators are equal. In this case we write
(P01, J1) = (¢2, Jo).

To each self-adjoint operator P € L(H), two additional DLSs are associ-
ated:

Definition 58. Let (¢,J), Kp, Ap and Cp be as in Definition 57. Let
P = P* € L(H) be arbitrary, such that D*JD + B*PB has a bounded

inverse.

(i) The DLS
A B
is the spectral DLS, associated to the minimaz node (¢, J), and centered
at P.

(ii) The DLS

oF = Ap B
’ Cp D
is called the inner DLS, associated to the minimaz node (¢p,J), and
centered at P.
So, we can write (by definitions)
(¢’ J)P: (QSPaAP)a (¢’ J)P: (QSP)J)’

instead of formulae appearing in parts (ii) and (iii) of Definition 57. The
iterated transitions to inner and spectral minimax nodes behave as follows.

Proposition 59. Let (¢,J) be a minimaz node. Then the following holds
fOT_Pl:Pl*GE(H), P2:P2* Gﬁ(H) andAP::P2—P1.

69 (6.)"),= 6", = <<KPIA—P1KP2 ?) ’AP2> ’
)

61 (6.0)")" = (670" = (9™),
(58) (¢a J)Pl AP = (QSPI’ API)AP = (¢P2’ APz) )

( )
59 (6.00)* = @nAn® = (5, ) An).
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Proof. As before, denote by Ap, Kp the indicator and feedback operator,
associated to the minimax node (¢, J) and P € L(H). We start with proving
equation (56). By Ap, and Kp, denote the indicator and feedback operator,
associated to the minimax node (¢f*,.J) and P, € L(H). Tt is easy to see
that Ap, = Ap,. The feedback operator of the inner DLS ¢™ at P, satisfies
Kp, = Kp, — Kp, because

(60) Kp, = Ay} (—-D*JCp, — B*PyAp,)
= Ay ((-D*JC — B*P,A) — (D*JD + B*P,B)Kp,)
= AI_Dgl (Aszpz - APzKP1) = KP2 - KPl’
where Ap, = A+ BKp, and Cp, = C' + DKp,, by part (ii) of Definition 57.

Now (56) follows.
We proceed to prove equality (57). By part (iii) of Definition 57, we have

3 P, Apz B
"= (e 7))

where the semigroup generator satisfies

Apz :Apl -|-Bf('—p2 - (A+BKP1)+B(Kp2 —Kpl) :A+BKP2 :Ap2,

and for the output operator we have

C~’p2 - Cpl +DKP2 - (C+DKP1)+D(Kp2 —Kpl) - C+DKP2 - Cp2

because Kp, = Kp, — Kp,, as already shown in the proof of claim (56). This
proves claim (57).

From now on, let ]\AP and K ap denote the indicator and feedback oper-
ator, associated to the spectral minimax node (¢p, J). Denote also AP :=
P, — P;. Then

(61) Aap=1I"-Ap -1+ B*APB
= D*JD + B*P,B + B*(P, — P;)B = Ap,,
and
(62) APg—f(AP = ApapKpp = —TI* -Ap, - (=Kp,) — B"APA

= —D*JC — B*P,A— B*(P,— P\)A = Ap,Kp,,

or f(Ap = Kp,. But this gives for the spectral minimax node

A B\ - A B
(¢p, Ap)ap = <<_KAP I) ,AAP> = <<_KP2 I) ,AP2>,
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and equality (58) follows. It remains to consider the minimax node (¢p,, Ap, )2F.
By part (iii) of Definition 57, we have

p_ ((Aap B\ i
(¢P17J) = ((C’«AI]: I> aAAP>

where Axp = Ap, as above,
App=A+ BKap=A+ BKp, = A+ BKp, = Ap,,
and
Cap=—Kp, + Kap=—Kp, + Kp,.
This proves the final claim (59). O

The following “commutation” result will be important in applications:

Corollary 60. Let (¢, J) be a minimaz node, and Py, Py € L(H) self-adjoint.
Then

((6r)™ " AR) = ((67) A0, -

Proof. This is an immediate consequence of formulae (56) and (59) of Propo-
sition 59. O

Now we have introduced the notion of a minimax node, and defined two
algebraic operations on such nodes: transition to inner and spectral minimax
nodes. In the following definition, a discrete time algebraic Riccati equation
(DARE) is associated to each minimax node in the familiar form, see [26,
Definition 18].

Definition 61. Let (¢,J) = ((A48),J) be a minimaz node. Then the fol-
lowing system of operator equations

(63) Ap = D*JD + B*PB
ApKp = —-D*JC — B*PA

is called the discrete time algebraic Riccati equation (DARE) and denoted by
Ric(¢,J). The linear operators are required to satisfy Ap, Ap' € L(U) and
Kp € L(H;U). Here P is a unknown self-adjoint operator to be solved. If
P € L(H) satisfies (63), we write P € Ric(p,J).

As before, we use the same symbol Ric(¢, J) both for the solution set of
a DARE, and the DARE itself. This should not cause confusion. When we
write expressions such as

P € Ric(¢, ), Ric(¢,J) = Ric(¢,]), Ric(¢,]) C Ric(9,]),
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the symbol Ric(¢, J) denotes the solution set. Clearly, different minimax
nodes can give the same DARE because the DARE depends on the opera-
tors C*JC, D*JC, and D*JD, but not directly on C', D, or J. When two
DAREs Ric(¢1, J1) and Ric(ps, J2) equal in this way, we write Ric(¢q, J;) =
Ric(¢s, J5). We have

(¢1, Jl) = (¢2, Jg) = Ric(d)l, Jl) = RiC((ﬁg, JQ) = Ri0(¢1, Jl) = Ri0(¢2, J2),

and none of the implications is an equivalence. In particular, the equality
Ric(¢,J) = Ric(¢,J) does not imply that the two Riccati equations were
same, and even less that the two minimax nodes were the same. If (¢1, J1) =
(¢2, J2), then we write Ric(¢p1,J1) = Ric(pz, J2).

The inner and spectral minimax nodes of an original minimax node (¢, J)
give rise to new DARESs: namely the inner and spectral DARESs, centered at
the self-adjoint operator P € L(U). In order to obtain something interesting,
we must now require that in fact P € Ric(¢, J).

Definition 62. Let (¢, J) = ((A4B), J) be a minimaz node. Let P € Ric(¢, J)
be arbitrary. Let ¢p and ¢F as given in Definition 58, and by Ap, Kp denote
the indicator and feedback operators of P, respectively.

(i) The DARE Ric(¢,J)p := Ric(¢p, Ap)
(64) Ap=Ap+ B*PB
AsKs = ApKp — B*PA

is the spectral (¢, J)-DARE, centered at P € Ric(¢,J). Here P is an
unknown self-adjoint operator to be solved.

(ii) The DARE Ric(¢, J)P := Ric(¢, J)
ApPAp — P+ CpJCp = KX\ K5
(65) Ap=D*JD + B*PB
AsKp = —D*JCp — B*PAp,
is the inner (¢,.J)-DARE, centered at P € Ric(¢,J). Here P is an

unknown self-adjoint operator to be solved, and Ap := A+ BKp, Cp :=
C + DKp.

We start with discussing the spectral Riccati equation Ric(®, J)p. The
following proposition is basic, and serves as a prerequisite for Lemma 64.

Proposition 63. Let (¢, J) be a minimaz node. Let P € Ric(¢,J). Then
Ric(¢, J)p can be written in the equivalent form
A*ﬁ)A - p + K;;APKP = {(;+}5Ap+pKP+I5
Ap,.p=D*JD+B*(P+ P)B

Ap,pKp,p = —D*JC — B*(P + P)A.
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Proof. By equation (61), 1~\15 = Ap, 5, and by equation (62), ~}5 = Kp,p.
O
Lemma 64. Let (¢,.J) be a minimaz node. Let P € Ric(¢,J) and P be a
bounded self-adjoint operator. Then the following are equivalent
(i) P+ P € Ric(¢,J),
(ii) P € Ric(¢,J)p.

Proof. Assume claim (i). Because both P, (P + P) € Ric(¢,.J), we have by
Proposition 63

A"(P+P)A— (P+P)+C*JC =K} sAp pKp p,
A*PA—- P+ C*JC = KpApKp.
Here Ag and K¢ denote the indicator and the feedback operator of the self-

adjoint operator @, relative to the original minimax node (¢, J). Subtracting
these two Riccati equations we obtain

A*PA— P+ KpApKp =K} zAp, 5 Kp p.

But now, by Proposition 63, P € Ric(¢,J)p, and claim (ii) follows.

For the converse direction, assume claim (ii). Let P € Ric(¢,J), P €
Ric(¢p, Ap) = Ric(¢,J)p be arbitrary. By adding the DAREs Ric(o, J)
and Ric(¢, J)p we obtain

A*(P+P)A— (P+ P)+C*JC =K} ;Ap pKp p

where Proposition 63 has been used again. Thus claim (i) immediately fol-
lows. O

The remaining part of this section is devoted to the study of the inner Riccati
equation Ric(¢, J)P. Given any P € Ric(¢,J), the relation between the
solution sets of Ric(¢,J)F and Ric(¢,J) appears to be very simple.

Lemma 65. Let (¢,J) be a minimaz node. Let P € Ric(¢,J) be arbitrary.
Then the following are equivalent:

(i) P € Ric(¢, J)F,
(ii) P € Ric(¢,J).

Proof. We prove the direction (i) = (ii); the proof of the other direction is
obtained by reading this proof in the reverse direction. Let P € Ric(¢, J)”.
Then the left hand side of the first equation in (65) takes the form

(66) ALPAp — P+ ChJCp
= A*'PA—P+C*"JC - KpApKp — KiApKp + KpApKp.
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Here Ag and K denote the indicator and the feedback operator of the self-
adjoint operator @, relative to the original minimax node (¢, J). By equation
(60), K = Kz — Kp and the right hand side of the first equation in (65)
becomes

R';A}a}?p = K;AISK}S — K;DA}SK}S — K;APKP + K;APKP.
This, together with equation (66) gives
A*PA—- P+ C*JC = K;;APKP.
Thus P € Ric(¢, J). This completes the proof. O

As an immediate corollary, we can put Ric(¢, J)* in a different form

Proposition 66. Let (¢, J) be a minimaz node. Let P € Ric(¢,J). Then
Ric(¢, J)¥ can be written in the equivalent form

ALPAp — P+ C5JC0p = (Kp — Kp)*Ap(Kp — Kp)
As=D*JD + B*PB
AsKz=—D*JC — B*PA, ApKp=—D*JC — B*PA.
Proof. This is because K5 = K5 — Kp, by equation (60). O
The results of Lemmas 64 and 65 can be given in a short form
(67) Ric(¢,J) = P + Ric(¢p, J)p = P + Ric(ép, Ap),
Ric(@, J) = Ric(, J)® = Ric(¢", J)

for all P € Ric(¢,J). It now follows that the iterated transitions to inner
and spectral DAREs satisfy the following rules of calculation.

Corollary 67. Let (¢,J) = ((AB),J) be a minimaz node. Let P, P €
Ric(¢, J), and AP := P, — P, € Ric(¢,J)p,. Then

(68)  Ric(¢™, J)p, = Ric( ( KPIA_lePZ ?) ,Ap,) = Ric(¢, J) — P,
(69)  Ric(¢™, )™ = Ric(¢, J),

(70) R?:C(gbpl, AP1)AP = RZC((ﬁ, J) - P2a

(71)  Ric(¢p,, Ap,) T = Ric( ( K f K» ? ) ,Ap,) = Ric(¢,J) — P,.

We remark that the DLS ¢p, p, = (Kpff}{P2 JIB) is familiar from |26,

Proposition 56].
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10 Liapunov equation theory

The operator equation
(72) A*PA—-P+C*"JC =0,

is called the discrete time Liapunov equation or the (symmetric) Stein equa-
tion. As with the Riccati equation, the operators are as follows: the operator
A € L(H) is the semigroup generator, C € L(H,Y') is the output operator,
and the self-adjoint operator J € L(Y') is the cost operator. The solution P
is required to be self-adjoint. It is clear that the observability and controlla-
bility Gramians C*C and BB* of a DLS are solutions of Liapunov equations,
see e.g. [56, p. T1].

A fairly complete Liapunov equation theory is given e.g. in [15] and [56]
for the case when A, C' and J are matrices, and J > 0. It is well known
that the matrix Liapunov equation has a unique solution for any self-adjoint

1
matrix C*JC if and only if o(A) N ( (A)) = (), see [15, Theorem 5.2.3].
When this spectral separation holds, the solution P can be expressed as a

Cauchy integral, see [15, Theorem 5.2.4]. When we do not have the spectral
separation, the Cauchy integral cannot be defined because an integration

1
contour cannot be drawn such that o(A) and ( (A)) lie on the “opposite

sides” of the contour. The Cauchy integral solution makes perfect sense even
for some operator Liapunov equations, provided that the required spectral
separation exists. Even if we produced the dimension free variants of these
results, the spectral separation would be too restrictive a condition to be
useful for non-power stable but nevertheless strongly stable semigroup gen-
erators A. If o(A) C D, then the spectral separation forces o(A) C D, and
so A is power stable.

In the present work, our main interest is not in finding solutions for
Liapunov equations. Quite conversely, we are given a nonnegative solution
P of the Liapunov equation (72), with J > 0. Our task is to show that
the output stability of an associated observability map Cy := {J%CAJ'}J-ZO
follows, see Lemma 74. Then, an expression can be found for the minimal
nonnegative solution Py of (72), and the other solutions are parameterized
by their residual cost operators Ly p := s — lim; o, A¥ PA’ see Corollary
71. Recall that the residual cost operator is defined as a strong limit L4 p :=
s — lim; o, A¥PAJ, see [26, Definition 21].

We now briefly discuss the connection of the Liapunov equation to stabil-
ity questions. The Liapunov equation is connected to the Liapunov stability
theory of DLSs, see [17] for an exposition of the matrix case. For another
view into this, suppose @@ > 0 and P > 0 satisfies A*PA — P+ @ = 0. Then
by writing for x # 0,

(73) ||Aa:||§3 — ||:1:||?3 = <P%AZB,P%A$> — <P%a:,P%a:> = —(Qz,z) <0,

we see that such solution P defines an inner product topology such that
the operator A becomes a contraction. Because P is bounded, we have



20

llz||p < ||P]| - ||z||, which implies that the ||.||p-topology is generally weaker
that the original. Clearly the topologies coincide if P has a bounded inverse.
This gives some functional analytic meaning for the Liapunov stability theory
of linear systems.

Another instance where a Liapunov equation arises is connected to DARE
and given in the following proposition. Its proof is a straightforward calcu-
lation, and clearly connected to the inner Riccati equation Ric(¢,J)f of
Definition 62 and Lemma 65.

Proposition 68. Let ¢ = (4 B) be a DLS, and J € L(Y) a self-adjoint cost
operator. Then P € Ric(¢,J) if and only if

(74) ALPAp — P+ ChJCp =0,

where Ap .= A+ BKp and Cp := C + DKp. Furthermore, D*JCp +
B*PAp = 0.

By solving the Liapunov equation (74), the operator P € Ric(¢,J) can
be recovered from the operators Ap and Kp, provided that the solution
of the Liapunov equation is unique or we know the residual cost operator
L 4, p apriori. Unfortunately, it is difficult to check (for uniqueness of P) the

spectral separation o(Ap) N (J(Ap)) = () for solutions P € Ric(®,J) of
interest. By iteration, the following algebraic triviality is shown.

Proposition 69. Assume that A € L(H), C € L(H,Y) and J € L(Y).
Assume that a possibly unbounded linear map P : H O dom(P) — H,
Adom(P) C dom(P), satisfies the Liapunov equation A*PA—P+C*JC = 0.
Then
n—1
Pz = ZA*jC’*JC’Aja: + APA"x, for all x € dom(P),n > 1.

=0

We start to study solutions P of the Liapunov equation (72) for which the
residual cost operator L4 p exists. The fact that the mapping P +— A*PA—P
is bounded and linear, gives the background for the following proposition:

Proposition 70. Assume that the linear mappings A € L(H), C € L(H,Y)
and J € L(Y) self-adjoint. Then the following are equivalent:

(i) There is a solution Py of the Liapunov equation such that the residual
cost operator vanishes: Ly p, = 0.

(i) There is at least one solution P of the Liapunov equation such that the
residual cost operator L, p € L(H) exists.

(11i) The Liapunov equation has at least one solution, and for all solutions
P, the residual cost operator Ly p € L(H) exists.

If, in addition, J > 0, then we have a third equivalent condition
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(iv) The DLS ¢' := (Ji;c' :) is output stable.
Proof. The implication (i) = (ii) is trivial. To prove the implication (ii)
= (iii), note that by Proposition 69 Y7—J A¥C*JCAlz = Pz — A™"PA"x
for all # € H. Thus s — limy 00 j—g AYC*JCAI = P — L, 5 exists if (ii)
holds. Now, for all solutions P of the Liapunov equation the strong limit
Lap=s5s—1lim, o A*"PA" exists, because the limit on the right hand side
for the following equation exists

n—1
AP A"y = Py — Z AYC* JO Ay

§=0

forall z € H.

To prove the implication (iii) = (i), assume P is a solution such that
L,p € L(H) exists. It follows that the strong limit operator
Py = s —lim,_ .o Z;:& A*C*JC A exists and equals P — Lyp € L(H).
We show that F; is a solution of the Liapunov equation such that L4 p = 0.
Let x1, x5 € H be arbitrary. Then

n—1
(75)  (z1, (A*PoA — Py)zo)y = <A:c1, (s—lim) A*jC*JCAj)Aa:2>
Jj=0 H

n—oo

n—00 -
Jj=0

n—1
— <a:1, (s — limZA*jC*JCAj)a:2> :
H

Now the latter part on the right hand side of equation (75) takes the form

n—1 n—1
<:1:1, (s — limZA*jC’*JC’Aj)J:2> = <:1:1, lim (Z A*jC’*JC’Aj:L’g)>
H j=0 H

n—00 "
Jj=0

n—1 n—1
= lim <x1,(ZA*fc*JCAfx2)> = lim Y (21, AYC*JC A x,)
H j=0

n—00 0 n—00 <
= (21, A9C"JC A z5),,,
=0

where the second equality holds because (z1, ), is a continuous linear func-
tional for each z; € H. Similarly,

n—1 0
<A:v1, (s — limZA*jC’*JCAj)Am2> — <:1;1, ZA*(J'+1)C*JCA(J'+1)I2> _
n—o00 5=0 H =0 H

Subtracting these two limits, together with equation (75), gives
(21, (A*PyA — Py)zo) g = — (@1, C*JCxs) . Because x; and x5 are arbitrary,
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P, solves the Liapunov equation. To show that L4 p, = s — lim,_,oc A" P A" =
0, we note that for each z; € H,n € N

n—1
|A" PyA s || = || Pozy — Y | A¥C*JC Alzy ||
j=0
m n—1
— ; *J 1k oo _ *J 1k J
_||"1L15;OZ;A C*JC Az, Z;A C*JCAizy||
J= J=

=[|) AIC*JC A zy|| — 0,
j=n
as a tail of a convergent series.

We complete the proof by studying the additional part (iv). Assume
that both (ii) and (iii) hold, P is a solution of the Liapunov equation such
that L4 p exists, and J > 0. Then both the bounded operators J> and
s — lim,_s oo E;’;& A*C*JCAJ = P — L, p exist. We calculate for any z € H

1P = Lpll - |lz[I* > |z, (P — Lp)z) 4]

n—1 n—1
= <x <s—1imZA*fc*JCAf> a:> = <x,umHOOZA*fc*JCAJ'x>
j=0 H H

n—oo .
Jj=0

n—00 H

n—1 n—1
= | lim <x (A*jO*JCAja:)> = ,}LH;Z@%CM’ J%CA"a:>
j=0

Jj=0 H

= |{T2CH e} ool [z, vy = [ICo 2 2z, v,
where the third equality holds because (z, -) ;; is a continuous linear functional
for each x € H.

It follows that the observability map Cy of the DLS ¢' maps all of a
(complete) Hilbert space H into (*(Z,;Y). However, the observability map
of a DLS is a closed operator (see [26, Lemma 3]) and now the domain
dom(Cy) = H is complete. The Closed Graph Theorem implies the bound-
edness of Cy; i.e. the output stability of ¢'. So claim (i) follows. The
implication (iv) = (i) follows because the output stability of ¢’ implies the
strong convergence of the sum s — lim,,_, Z;’:—& A C*JCAJ, thus defining
the solution P, of the Liapunov equation. This completes the proof. O
Compare the above proof to the proof of [26, Proposition 43]. An immediate
consequence is the following:

Proposition 71. If there is a solution P of the Liapunov equation (72)
such that the residual cost operator Ly p € L(H) exists, then there is a
solution Py such that Lsp, = 0. Such Py is unique, and given by Pyxy =
> 020 (AC*JC Alwy) for all zg € H. All other bounded solutions P of the
Liapunov equation satisfy

P=Py+Lap, Lap=s—limAYPA.

j—oo



23

If A is strongly stable, then P, is the unique solution of the Liapunov equation.

Proof. The existence of P, is the matter of the implication (ii) = (i) of
Proposition 70. The formula for Py is found in the proof of implication (iii)
= (i) of Proposition 70. The parameterization of all the solutions is a direct
consequence of Proposition 69. Claim about the uniqueness of P, is proved
by noting that for two solutions Py, P, € L(H) we have

A*j(Pl—Pg)Aj:Pl_P2

for all j > 0. If both s — limj .o AP, A7 = 0 and s — lim;_,,, A¥ P, A7 =0,
then the left hand side converges to zero pointwise in H, as j grows. The right
hand side does not even depend on j. Thus P; = P,. The claim involving
the strongly stable semigroup is trivial. O

As discussed in the beginning of this section, a fair amount of stability re-
sults for DLSs can be given with the aid of the Liapunov equation. The
following result is [56, Lemma 21.6], stating that an unstable eigenvector of
the semigroup is undetectable.

Proposition 72. Let ¢ = (A B) be a DLS, and J > 0 a cost operator. Let
P € Ric(¢,J), P > 0 be arbitrary. Assume that Az = Az for |[A\| > 1. Then
J:Cz = 0.

Proof. If Az = Az, the Liapunov equation takes the form
(76) (AP —1) <Pa:,x>+<ﬁcx, J%Cx> —0.

Now, if [A|?> —1 > 0, then (JA]*> — 1) (Px,z) > 0 because P > 0. Because
J >0, equation (76) implies that J2Cz = 0, and the claim is proved. O

Unfortunately this is too weak to be useful for our purposes. Clearly, this
approach is restricted to the cases when the eigenvectors of the semigroup
generator A span (the interesting part of) the state space. However, the case
when A is a diagonalizable matrix or a Riesz spectral operator is covered,
see [3, p. 37]. In order to obtain a more general theory for the operator
Riccati equation, a stronger infinite-dimensional Liapunov equation theory
is required. In Lemma 74, an essential analogue of Proposition 72 is proved
for DLSs with much more complicated semigroups. We start with a result
known as the Vigier’s theorem in [30, Theorem 4.1.1].

Proposition 73. Let {T;};>0 C L(H) be a sequence of nonnegative self-
adjoint operators such that

0< <maCTJ'T> < <I,71j_1.'17>, .7 > 0.

Then there is a nonnegative self-adjoint operator T € L(H) such that 0 <
T <Tj for all 7 > 0, and

(x,Tz) = lim (z, Tjz).

j—oo
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Proof. Define a;(z,y) := (z, Tjy), for all j > 0. It is easy to see that a;(z, y)
is a bounded conjugate symmetric sesquilinear form on H x H. Now, because
{(z,T;zx)};>o is a nonincreasing sequence of nonnegative real numbers, the
limit exists for all x € H. The polarization identity

daj(z,y) =4- (z,Tjy)
=(e+y Tz +y) —(z -y, Ti(z —y) +
i(x 41y, Tj(z +iy)) —i(x — iy, Tj(x — 1y)) .

implies that the limit a(z,y) = lim;_, a;(z,y) exists, for all z,y € H. It
remains to show that a(z,y) is a bounded conjugate symmetric sesquilinear
form on H x H.

The linearity in the first argument z and the conjugate linearity in the
second argument y is a trivial consequence of the limit process, because this
is true for each a;(z,y) by the properties of the inner product. The same is
true about the conjugate symmetricity of a(x,y). To show the boundedness,
we see that

la(z,y)| = lim |a;(z,y)| = lim | (z, Tjy)| < lim [|T5]] [|z]|[|y]]-
j—o00 j—o00 j—o00

Now, the family {T}};>o is uniformly bounded by ||T;||, because the norms
||T;|| are in fact a nonincreasing sequence

||7—}|| = sup <$,7—}33> S sup <217,T‘]',133> — ||T’j,1||,
[|z]|=1 [Jz[|=1

where we have used the assumption that 0 < (z,Tjz) < (z,T;_1z), for all
r € H. As a bounded sesquilinear form, a(x,y) can be written in form
a(z,y) = (z,Ty), for a unique operator T' € L(H) (see [35, Theorem 12.8|).
T is self-adjoint because (x,Ty) = a(z,y) = a(y,z) = (y, Tz) = (T*y,x) =
(x,T*y). Because the nonnegativity of T is trivial, T satisfies the claims of
this proposition. O

By claim (ii) of Proposition 70, we saw that if the Liapunov equation has one
solution P such that the residual cost operator L4 p exists, then a number
of nice results followed. Now we use Proposition 73 to give an existence of

such Ly p for a given nonnegative solution P.

Lemma 74. Let ¢ = (A B) be DLS, and J > 0 a self-adjoint cost operator.
Assume that the Liapunov equation

A*PA-P+C*JC =0,
has a nonnegative solution P € L(H). Then

(i) The DLS ¢' := (Ji;c' :) 1s output stable, and the residual cost operator

Lap:=s—limj ., AYPAI exists.
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(i) The operator P, is the minimal nonnegative solution of the Liapunov
equation (72), where Py := C}Cy, and La,p, = 0.

The assumption J > 0 can be replaced by the assumption C*JC > 0, if ¢' is
replaced by ((C*;‘C)% :)

Proof. Let P > 0 be the nonnegative solution whose existence is assumed.
By Proposition 69, we have for all z € H and n > 1

[ary

n—

(z,Pz) — > ||[J2CAIz|]? = (x, A" PA ),

<.
Il
IS

because J > 0 by assumption. Define T,, := A" PA". It immediately
follows that (z,T,z) is a nonincreasing sequence of nonnegative real num-
bers, because P > 0. We can apply Proposition 73, and obtain the largest
lower bound operator 7', such that 0 < T < A*PA" for all n > 0. We
proceed show that 7' = s — lim,,_,o A*"PA™ =: Ly p. We have, because
(x,Tz) = lim,_, (x, A" PA"z) for all z € H:

0= lim (z, (A" PA" — T)z) = lim |[(A*PA" — T)2z|%.

n—oo n—oo

So (A*"PA™ — T)z — 0 in the strong operator topology, and {(A*PA" —
T)%}nzo is thus a uniformly bounded family, by the Banach—Steinhaus the-
orem. It follows that (A**PA™ — T)z — 0 for all # € H, and so we have
T = L4,p which, in particular, exists. We conclude that the equivalent con-
ditions of Proposition 70 hold. Furthermore, because J > 0, ¢' is output
stable.

The proof of the second claim (ii) goes as follows. Because ¢’ is output
stable, it follows from Proposition 71 that Py = CjCy is a bounded solution
of the Liapunov equation, satisfying L4 p, = 0. It is nonnegative because
J > 0. To show that P, is minimal nonnegative, let P, € £(H) is another
nonnegative solution of the Liapunov equation. Then the strong limit L4 p,
exists, by Proposition 70, and because P; > 0, it follows that Lp, > 0. By
Proposition 71, P, = Py + Lap, > Fy. So P, is a minimal nonnegative
solution of the Liapunov equation. The final comment follows by replacing
C by (C*JC)%, and J by I. The proof is now complete. O

We now consider the special case when the Liapunov equation is connected
to DARE Ric(¢, J) for J > 0, and its nonnegative solution P € Ric(¢, J), as
in Proposition 68. By applying Lemma 74 with Ap in place for A and Cp in
place for C', we get an important results that is used several times in Section
11.

Corollary 75. Let ¢ = (4 B) be a DLS, and J > 0 a cost operator. Let
P € Ric(¢,J) such that P > 0. Then the DLS ¢' := ( ryi *) 15 output

1
JQCP *
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stable, and the (closed loop) residual cost operator L, p exists. Furthermore,
Py :=C;Cy is a minimal nonnegative solution of the Liapunov equation

ApPAp — P+ CpJCp =0,

where Ap .= A+ BKp, Cp:= C+ DKp, and P is the operator to be solved.
Also Ly, p, = 0.

We conclude that not bad instabilities of Ap are seen through the operator
Cp, as a dimension independent analogy to Proposition 72. We remark that
P, does not necessarily solve the DARE Ric(¢, J). Under stronger conditions,
it is shown in Lemma 100 that L4, p = 0 and then P = P, by Proposition
71.

We complete this section by considering a case when the Liapunov equa-
tion technique is applicable to a nonnegative solution of DARE Ric(¢, J),
even if the cost operator J could be indefinite. In Corollary 75, the closed
loop residual condition of P was considered. A conclusion about the open
loop residual cost operator Ly p is considered in the following.

Corollary 76. Let ¢ = (AB) be a DLS, and J € L(Y) a self-adjoint
cost operator. Let P € Ric(¢,J) such that P > A*PA > 0. Then P €

RiCOO(QS, J) .

Proof. Because P € Ric(¢,J), we have the Liapunov equation

. . 1lJd O cCl|
A*PA—- P+ [C* Kp] [0 —Ap] [Kp] = 0.
Now P > A*PA if and only if [¢* K3][§ _%,][#£,] > 0. Now claim (i) of
Lemma 74 (in its modified form for the indefinite cost operator) shows that
the residual cost operator L4 p exists. OJ

Note that the condition P > A*PA > 0 implies that ker(P) is A-invariant,
and the orthogonal complement ker(P)' is A*-invariant but not necessarily
A-invariant. For this reason, we have to introduce the compression of the
semigroup generator.

Definition 77. Let ¢ = (4B) be a DLS and J self-adjoint. Let P €
Ric(¢,J). Define the closed subspace HY := ker(P)* C H, the orthogo-
nal projection Ilp onto HY, and the compression of the semigroup AP :=

pA|HY € L(HT).

A nonnegative solution P € Ric(¢,J) induces an inner product space
structure into H” := ker(P)!. Everything goes in the same way as discussed
in connection with equation (73) for the Liapunov equations, with the ex-
ception that now the (generally nontrivial) null space of P must be divided
away. It is easy to see that P > A*PA > 0 is equivalent to

(77)  ||APz||p := ||P2 Az|| < ||P2z|| = ||z]|[p forall ze HT.
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In this case, we say that the compression A" is a || - ||p-contraction. If
P™* ¢ Ric(¢,J) was nonnegative and injective, then H"™™ = H but the
norm || - || pmax could give weaker topology that the original norm of H. More
generally, HY need not be complete, when equipped with the norm || - ||p.

Proposition 78. Let ¢ = (A 5) be a DLS and J self-adjoint. Let P €
Ric(¢,J), P > 0 such that the compression AY = TIpA|HF is a || ||p-
contraction, where the objects are given in Definition 77. Then the following

holds

(i) P € Ricoo(o,J). If, in addition, ¢ is output stable and Ap > 0, then
op is output stable.

(1i) Assume, in addition, that ¢ is output stable and I/0 stable, the input
operator B is Hilbert—Schmaidt, and the input space U is separable.

If P € Ricyy,(p,J) and Ap > 0, then P € ricoy(¢, J) N ricy (o, J). If
range(By) = H, then

(78) {P € Ricyw(d,J) | P> 0,Ap > 0} C rico(o, J).

Proof. The first part of claim (i) is Corollary 76. The rest follows from [26,
claim (i) of Proposition 43]. Claim (ii) follows from [26, Corollary 47 and
equation (35)]. O

The reader is instructed to compare [26, equations (34) and (35)], and equa-
tion (78). They all characterize subsets rico(¢, J), where J can be indefinite
but the indicators Ap must be positive.

The P-contractivity condition P > A*PA > 0 can be given a game
theoretic interpretation. Let ¢ = (4 B) be output stable and I/O stable,
and let P{Mt € ricy(¢,J) be a regular critical solution which is assumed
nonnegative. If the cost operator J is indefinite, the special case of the
minimax cost optimization problem, associated to (¢, .J), can be seen as a
(full information, state feedback) minimax game, where the minimizing and
maximizing players are given an initial state xy and their task to do the best
they can. Some additional information structure of the game itself must be
imposed; e.g. the input space U must be divided into two parts, and one
player must not have access to the other players input space, but we now
disregard all the details. Now, each noncritical solution P € ricy(¢, J) is
associated to a strategy where both players have, in a rough sense, made
an agreement that the game is played (i.e. the cost is measured by P) only
inside the restricted state space H”.

Let now P € ricy(p, J) be such that P > A*PA > 0. Now the open loop
trajectories z; = Alzy (with zero input from both players) are nonnegative
and nonincreasing, in the sense of the cost functional (z;, Px;). Thus, the
maximizing player “loses money” if he does not do anything, but the future
game always has a nonnegative cost if the feedback loop is closed (by the
maximizing player) at some later moment. In fact, the maximizing player
wins the game also in the open loop, and the final cost at infinite future is
lim; o (A PAizg, 29) = (La pTo, o) > 0, because P > 0 is assumed.
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11 Factorization of the I/O-map

In this section we study the natural partial ordering of the solution set of the
H*>*DARE, induced by the cone of nonnegative self-adjoint operators. We
work under the assumption that the cost operator J > 0, and the equivalent
conditions of [26, Theorem 27] hold. In this case, we have a nonnegative
regular critical solution Pt = (C%)* JCit € ricy(P, J).

In [26, Theorem 27|, we have indicated that the critical solution P €
rico(®, J) gives a (J, Apen)-inner-outer factorization of the I/O-map. The
(generally noncritical) solutions P € ricy,(®, J) induce other factorizations
of the Popov operator D*JD = D} ApDy, with I/O stable Dy, see [26,
Theorem 50]. However, these do not necessarily lead to a factorization of the
I/O-map D as a composition of two I/O stable operators, in the same way as
the spectral factorization leads to the (J, Apent) inner-outer factorization of
D. The task of this section is to describe which solutions P actually do give
a factorization of the I/O-map D into compositions of I/O stable I/O-maps.

Consider the following. Let P € ric(®, .J), where ® is output stable and
I/O stable. The operator pair (Kp,0) is a perfectly valid state feedback
pair for ® in the sense of [19, Definition 13]. However, if P is not a critical
solution, this feedback pair is not I/O stable in the sense of [19, Definition
47]. This means that even if the open loop DLS, extended with the feedback
pair (Kp,0) = [_C¢P’I - D¢P]

) B Ad Br*i
oG] B L] (2]

is output stable and I/O stable, the closed loop extended system

(79) (&, (Kp,0))o
Ap B |'Aj—BD¢j;T*3C¢P BD, 7% ]

= {C’p} [D] = { C—DD, Cy, ] [ DD,) ]
&) [o]) [ -pd, o5 1] |

need not be, where Ap = A+ BKp and Cp = C + DKp. This is the bad
news. However, if P > 0, together with proper technical assumptions, it
follows that the upper two rows of the closed loops DLS (79) give an I/0O
stable DLS. Furthermore, this partial DLS is exactly ¢* = (’é}’j [B,); the inner
DLS (of ® and J) of Definition 58, centered at P. Note that Dyr := DD;; for
the I/O-map of ¢*, and this algebraic fact does not depend on the stability
properties of the systems, apart from the boundedness of the static operators
A, B, C, D, and Kp.

Let us review some analogous results of the matrix theory when all the
spaces U, H and Y of the DLS ¢ = (4 B) are finite dimensional. If the pair
(A, B) is stabilizable, J > 0 and D*JD coercive, there is a unique maximal

positive solution P™** of the Riccati equation such that the closed loop spec-
trum o(Apmax) C D, see [15, Corollary 12.1.2|. If J =1, D*D =1, D*C =0
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and (C, A) detectable, then the power stability o(Apmax) C D follows, see
[15, Corollary 13.5.3]. Such P™2* is called the (power) stabilizing solution of
Ric(®, J). If the open loop semigroup generator A is power stable and (A, B)
is controllable, then P™** clearly equals the unique critical solution (which is
defined only for DAREs associated to I/O stable DLSs) in the sense of [26,
Theorem 27]. Indeed, the semigroup generators of both ¢pmax and ¢pmax are
power stable, by the formulae given in claim (ii) of Proposition 55.

To obtain a matrix H*DARE example, let ¢ = (4 B) be a DLS whose
spaces U, H and Y are finite dimensional, and the semigroup generator A is
power stable; 0(A) C D. We take J = I to be the cost operator, and assume
that the transfer function Dy(z) has no zeroes on the unit circle T. By the
assumed finite dimensionality of all the spaces, the last condition can always
be achieved, if necessary, by a small perturbation of the DLS ¢. Then the
Popov operator D*D is coercive, and the nonnegative regular critical solution
Pgrit = (C™)"CSt € rico(¢, J) exists, by [26, Corollary 32]. It follows
that Aperit is power stable, by [21, claim (i) of Theorem 50] and the finite
dimensionality of the state space H. If there was another power stabilizing
solution PS*3P it would also be a critical solution in ricy(#, J). Thus, if ¢,
in addition, is controllable range(B;) = H, then P§ is the unique power
stabilizing solution of H*DARE ric(¢, J), see |26, claim (i) of Corollary 30].
In fact, P§" is the maximal nonnegative solution in Ric(¢,.J), by Corollary
94 and the fact that the power stability of A implies the equality of solution
sets Ric(¢p, J) = rico(¢, J). It is easy to see by a numerical example, using
the matrix DARE theory given in [15, Corollary 12.1.2], that it is possible
(and even a generic case) that DARE Ric(¢, J) has long increasing chains
of self-adjoint solutions. By using Lemma 64, we can, if necessary, replace
Ric(¢,J) by its spectral DARE Ric(¢p, Ap) for P “small”. So there exists
a H*DARE ric(¢,J) (with a power stable semigroup generator) that has
an arbitrarity long increasing chain of nonnegative solutions, if dim H is
increased sufficiently. We conclude that the power stabilizing solution P
need not be the only nonnegative H* solution of a (matrix) H*DARE. For
the other nonmaximal P € Ric(¢, J), Pt > P > 0, the inner DLS

oF = <Ap B) _ [ Al — BD;;T*]'C(;;P BD;;T*j

(80) Cp D C—DyCyp  Dyr !

is nevertheless I/O stable by the following Lemma 79 and the assumption that
J = I has a bounded inverse. However, the closed loop semigroup generators
Ap are not power stable. In this sense, all the nonnegative solutions of
the Riccati equation are I/O-stabilizing, but only the maximal nonnegative
P§mit gives a power stable semigroup generator in the closed loop, under the
indicated additional assumptions.

This phenomenon can be viewed from two directions. The first “state
space” view is that the DLS ¢f is I/O stable because the unstable part of
Ap is not “seen” through the output operator Cp of ¢¥. The second view
is the input/output view; that a kind of zero-pole-cancellation process is
involved when the feedback loop is closed. In the language of the transfer
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functions Dyr(2) = D(2)Dy,(2)", some of the zeroes of D(z) get canceled
by the poles of Dy, (z) !, at least in the cases when the transfer functions are
complex-valued (U =Y = C). We remark that the condition dim H < oo
amounts to the fact that the inner factors of both D(z) and Dy, (z) are finite
Blaschke products, and the zero—pole cancellation idea makes perfect sense.
We remark that using a nonnegative but nonmaximal solution P € Ric(®, J)
for feedback control leads to a partial stabilization of the (unstable) open loop
DLS, see [4] and the references therein.

In the following lemma we show that if P > 0, then J%Dd,p is an I/O-
map from ('(Zy;U) into ¢*(Z,;Y); i.e. the transfer function Dyr(z) €
sH?(D; L(U;Y)). Step by step, we finally conclude that J%D(;,p is I/O stable
under stronger assumptions. If J has a bounded inverse, the same conclusions
clearly hold for the I/O-map Dyr, too.

Lemma 79. Let J > 0 be a cost operator. Let ® = [4) B/ | be an I/0 stable
and output stable DLS. Assume that the reqular critical solution Pt :=
(C“it)* JCit € ricy(®,J) exists. Let P € ric(®,J), such that P > 0. By ¢p
and ¢ denote the spectral and inner DLS of Definition 58, both centered at
P.

Then the following holds:

(i) We have
(81) D = DyrDy,,
where ¢p is I/0 stable and output stable. The DLS J%¢P 15 output
stable, and the impulse response operator J %Dd,Pﬁ'g 18 bounded. The
Toeplitz operator J%D¢p7?+ : (NZy;U) — (3(Z,;U) is bounded, and
J%D¢p7_r+ (2 U) — 2(Z4;U) is a densely defined closed operator.

(ii) The transfer function J %D(j,p(z) is analytic in the whole unit disk D.
For each uy € U, the analytic function J%D(j,p(z)uo € H*(D;Y). We

can write

(82) J1D(2) = JiDyr(2)Dyyp(2) for all z € D.
If, in addition, P € ricy,(®,J), then

(83) JiN(2) = J2Dyr(2)Np(2) forall zeD,

where N, (Np) are the (J, Apese)- inner, ((Ap, Apes)-inner) factors of
D, (Dy,, respectively).

Assume, in addition, that the input operator B of ® is Hilbert—Schmidt, and
both the spaces U and Y are separable. Then:
(iii) Then J%Dd,p (2) € H3(D; L(U;Y)). The boundary trace function
1 B\ . o1 1
J2Dyr(e”) := szﬂlagn J2Dyr(2)

exists as a nontangential strong limit, a.e. (modulo Lebesque measure
of T) on e € T.
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1 o1

(iv) For P € ricy,(®,J), the boundary trace Ap* Np(e?)A2.., is unitary
. . 0 .

a.e. € € T. In particular, Np(e?) has a bounded inverse a.e. € € T,

and the nontangential strong limit J %D(i,p(ew) satisfies
(84) J%D¢p(ei9) = TN (€®)Np(e®)™ ae on e? €T,

) _1
Furthermore, J2Dyr(2)Ap> € H®(D; L(U;Y)), and is inner from the
left. The I/O-map J%D(;,p is (I, Ap)-inner (but Dyr need not be I/0
stable if J is not coercive).

We remark that the function J%D¢p(ei9) means the boundary trace of

(J%D¢p)(z). As an analytic transfer function Dyr(z), P > 0 makes perfect
sense for z € D, but it need not be of bounded type.

Proof. Claim (i) is proved as follows. The equality (81) of the I/O-maps is
given by formula (79), in form Dyr = DD;;. We see that the J%Dd,p is the

I/O-map of DLS
o' = Ar B
J:Cp J2D ’

which is output stable, by Corollary 75 and the assumption P > 0. Also
the (closed loop) residual cost operator Ly, p exists, but this is not needed
here.

But then, if H > = = Bug, with vy € U, we have J%D¢p7r0u0 =
J3 Drgug + 7Cyn Bug = Dmoug + 7Cynx € (*(Z;Y') because dom(Cyr) = H,
by the output stability of ¢".

Dyrmy = U = range(mo) — (*(Z4;U), ie. dom(Dyrmy) = U is com-
plete, see [21, Definition 24]). Because the impulse response operator D r
is closed by [21, Lemma 27|, it follows from the Closed Graph Theorem
that Dyrmy is bounded. It immediately follows that J %D(j,p €
L(Y(Z;U),*(Z,;U)) by the triangle inequality, and the shift invariance
of Dyr. The Toeplitz operator Dyr is thus densely defined on (*(Z,;U)
and closed, by [21, Lemma 27|. This completes the proof of claim (i).

Consider now claim (ii). J%D(;,p (z) is analytic in the whole of D by [26,
Proposition 11] because it is a transfer function of an output stable system
¢". Also J%D¢P (2) € sH*(D;Y), by [26, Definition 10 and Proposition 11].

Because Dyr = DD;;, then also DyrDy, = D on Seq(U). For the
transfer functions, we have Dyr(2)Dy,(2) = (DyrDy,)(2) = D(z) for all
z € Ny, by [26, Corollary 8|. Here Nj is a nonempty open neighborhood
of the origin. In fact, D(z), Dy,(2) € H*(D; L(U;Y)), by [26, Proposition
9] and the assumed I/O stability of ® and ¢p. As indicated above, also
J%D¢p (z) is analytic in D. By using a basic analytic continuation technique
we conclude that Dyr (2)Dy, (2) = D(z) for all z € D, which is equation (82).

To prove equation (83), proceed as follows. Because the existence of
the regular critical solution Pt € ricy(®,.J) is assumed, the equivalent
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conditions of [26, Theorem 27| hold, we can write D = N X, where X is
outer with a bounded inverse, and N is (/J, Apocrit)—inner. Furthermore, be-
cause P € ricy,(®, J) we can also write (Ap, A e )-inner-outer factorization
Dy, = NpX, by [26, Proposition 55]. By Corollary 8, D(z) = N (2)X(z)
and Dy, (2) = Np(2)X(z), for all z € D. Because X is outer with a bounded
inverse, i.e. X~' € L((*(Z;U)), both X and X! are [/O-maps of I/O stable
systems. It follows from Corollary 8 that the transfer function X (z) € L(U)
has a bounded inverse for all z € D. Now equation (83) follows.

We proceed to prove claim (iii). The Hilbert—Schmidt property of the
input operator B admits us to apply [26, Corollary 42] to the output stable
DLS ¢", defined above. It follows that J2Dyr(2) € H(D; L(U;Y)), and
this is a function of bounded type. The existence of the nontangential strong
limit J%D¢p(ei9) is from [33, Theorem 4.6A], as discussed in [26, Section 2.5].

It remains to prove the final claim (iv). We first note that because J > 0,
then Ap > 0 for all P > 0 This makes i is poss1ble to define the normalized

operators N° := J2./\/'Apmt and Np := A2 Np Pmt Then both A° and Np
are inner from the left (i.e. (I, I)-inner). We have

N = 2 Dd)PNP Pcrlt = J%D(bp A;’ A NP Pcrlt MCIJD'N’}C;7

_1
where M% = J%D¢p Ap*. For the corresponding transfer functions and their
nontangential limits, we can write

(85) N°(e") = Mp(e”)NE(e?),

a.e. e € T. This is legal because all the transfer functions are of bounded

type in the sense of [26, Definition 12| and the discussion associated to it.
The inner from the left transfer function N3(z) € H*®(D; L(U)) is in

fact inner from both sides, see [26, Definition 33]. To see th1s we use [26

Proposmon 34] in a trivial way, with 2o = 0. Now A3(0) = A2 Np( AL perit =

AZ Apfm by the realization given for Np in [26, Proposition 55]. But A/3(0)

is now boundedly invertible, and A/} is inner, by [26, Proposition 34]. So
N3(e?) € L(U) is a unitary operator for a.e. e € T. Applying this on
equation (85) gives

No(eie)/\/}g(eie)* _ M%(ezo)

a.e. e € T. Because Np(e)* is unitary and N°(e?) is an isometry, it
follows that M$%(e?) is an isometry a.e. e € T. But now M%(ef) €
L®(L(U;Y)) N H*T;L(U;Y)), and by [26, Lemma 36], MS%(e?) €
H*(T; L(U;Y)) is inner from the left. This completes the proof. O

The following normalization, presented in the proof of Lemma 79, will be
used throughout the rest of this paper. By [26, Corollary 54], it makes sense
even for indefinite solutions P.
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Corollary 80. Make the same assumptions as in claim (iii) of Lemma 79.
By P§t € ricy(®, J) denote the regular critical solution. Let P € ricy,(®,J),
P > 0 be arbitrary. Denote

1 o %
D°:=J:D, 7Dp:=ApDy,,
_1 1
M= JiDyrALE,  No:= ALNpA

_1
2

Pocrit ) Pcrit .

1

X°=A2 X
0

Then

(86) D° = M3Dp = MENRXR,

where M$% : (*(Z;U) — (*(Z;Y) is inner from the left, Np : (*(Z;U) —
(%(Z;U) is two-sided inner, and X° : (*(Z;U) — (*(Z;U) 1is outer with a
bounded inverse.

The following Theorem is a variation of Lemma 79. Now, a solution
P € Ric(®,J), P > 0 gives a factorization of a H*-transfer function, such
that both the factors are in H*°. However, the solution is not in ricy,(¢, P)
by an explicit assumption, and ¢p is not a prior: required to be output stable
or I/O stable as has been required in Lemma 79.

Theorem 81. Let J > 0 be a cost operator. Let ® = [4/ Br’ ] be an I/0
stable and output stable DLS, such that both the spaces U and Y are separa-
ble. Assume that the input operator B € L(U; H) of ® is Hilbert—Schmidt.
Assume that the reqular critical solution P{™t = (CTi*)* JCTt € ricy(®, J)
exists. Let P € Ricgo(®, J) N Ricyy(®,J), P > 0.

Then both the DLSs ¢p and J%¢P are output stable and I/0 stable. Fur-
thermore, we have the factorization J:D = J%D¢p *Dyp = J%D¢p -Np -
X where all factors are I/O stable. Here J%D(j,p is (I, Ap)-inner, Np is
(Ap, Apgic)-inner, and X is outer with a bounded inverse.

Proof. Because J > 0 and P > 0, it follows that D*JD + B*PB = Ap > 0,
and then Ap > 0 because the indicator has a bounded inverse, by definition.
Because P € Ricoo(®,J), the residual cost operator L4 p exists and [26,
Proposition 43] implies that ¢p is output stable. Because P € Ricy,(®, J),
[26, Corollary 47| implies that ¢p is I/O stable. Now P € ricy,(®,J) as in
[26, equation (35)], and we can apply all claims of Lemma 79. In particular,
this gives the output stability and I/O stability of the normalized inner DLS
J2@F. The proof is now complete. O

If A is strongly stable, then Ric(®,J) = Ricy(®,J) = Rice(®,J) =
Ricyy(®, J). But now Ric(®,J) = Riceo(®P, J) N Ricyy(®P, J), and all non-
negative solutions P € Ric(®,J) give a factorization of Theorem 81. The
following lemma is more general than Lemma 79, and it refers to something
we might call “generalized factorizations” of an unstable D. Now the spectral

DLS ¢p need not be I/O stable.
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Lemma 82. Let & = [fg BTD”j] be output stable and J > 0. Let P €
Ricoo(®,J), P > 0. Then the following holds:

1) The I/O-maps satisfy D = DyrD,,, on Seq(U), and both ¢p and Jéép
of Hop

are output stable.

(ii) Assume, in addition, that the input operator B is Hilbert-Schmidt, and
both U and Y are separable. Then we have the factorization

(87) J3D = JiDyrDy,,
where J2D(z), JaDyr(2) € HX(D; L(U;Y)) and Dy, (z) € H(D; L(U)).

Proof. As before, Ap > 0 for any nonnegative solution. [26, Proposition 43]
implies that ¢p is output stable. Corollary 75 implies that .J 2 ¢t is output
stable. This proves claim (i) because the (algebraic) factorization of the well-
posed I/O-maps of DLSs does not require any kind of stability. Claim (ii) is
a consequence of [26, Corollary 42]. O

In particular, Lemma 82 gives H? factorizations to H* transfer functions.
Note that the existence of a critical regular solution Pt € ricy(¢, J) is
not required. Under stronger asssumptions, such generalized factorizations
easily become ordinary H* factorizations, by Theorem 81. We complete
this section by showing that the finite increasing chains of solutions P; €
Ticuw(®, J) behave expectedly.

Theorem 83. Let J € L(Y) be a self-adjoint cost operator. Let & =
[*‘g ng] be an I/0O stable and output stable DLS. Assume that the input
operator B € L(U; H) is Hilbert-Schmidt, and both the spaces U and Y are
separable. Assume that the reqular critical solution P = (C“it)* JCot ¢
rico(®, J) exists.

Let P; € 1icy,(®,J), i =1,... ,n+1 be a sequence of solutions such that
P, < Py and Ap, > 0 for alli = 1,... ,n. Denote by Dy, = NpX the
(Ap, Apgit) -inner-outer factorization of Dy, where X = Dpoclrit and Np, =
D¢PZ_X*1 Then the following holds:

(i) Then there is a sequence of causal shift-invariant operators Np, p,,, :=
Dy D;}i _on Seq(U) such that
i+

P;
(88) NPZ- :Npi,pi+1Npi+1 fO’I’ all 1= 1, e, n.

The operator Np, p,,, is the I/O-map of the 1/0O stable DLS

Ap. B
(89) PP, Py = <KP- Pilel I> :

i+1 [3

Furthermore, each Np, p,,, is (Ap, Ap,,,)-inner.
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(ii) We have the factorization

(90) (H Np, P,+1) Pt

where the elements with increasing i enter the product from the left. If,
in addition, J > 0 and P,,, = P, then

i=1

(91) J%D = J%D¢P1 (HNPivPi+1> X?

where J%D(z,pl is 1/O stable and (I,Ap,) -inner, and X = Dy_ ,, is
0

outer with a bounded inverse.

Proof. In order to prove claim (i), note that (Ap, Apeit)-inner-outer factor-
ization Dy, = Np X exists for all 4, by [26, Propos1t10n 55]. Because the
feed- through operator of all spectral DLSs is identity, we can speak about the
inverse D op, 35 2 causal shift-invariant operator on Seq(U), see [26, Propo-

sition 2]. Because the outer factor (with a bounded inverse) is common for
all Dy, , we see that equation (88) holds.

Fix the arbitrary two consecutive elements P; < P;,; in the sequence
{P;}, define AP, := P;,; — P; > 0. Then AP; € Ric(¢p,, Ap,), by Lemma 64.
Now, Ric(¢p,, Ap,) is a H*DARE with a nonnegative cost operator Ap,, but
we do not know whether AP; is a its H* solution. To see that this is the
case, we must consider the spectral DLS (ép,)ap,, centered at the solution
AP; and relative to the cost operator Ap, > 0 of the spectral DARE. We
have for the minimax nodes

(92) (¢Pw APi)APi = (¢Pi+APi’ APi+APi) = (¢Pi+1v AP1+1) )

see equation (58) of Proposition 59. So, the spectral DLS (¢p,)ap, of AP,
equals ¢p,,, which is an I/O stable and output stable DLS because P;i; €
ric(®, J), by assumption. We conclude that AP € ric(¢p, Ap,). The indi-
cator Aap of AP € ric(ép, Ap) equals Ap,,, by equation (92).

Trivially range(B) = range(By,, ) because B = By, . Because both P; and
P; 1 satisfy the ultra weak residual cost condition with the same semigroup
generator A, so does AP; = P;;; — P;, and we have AP; € ricy,(¢p,, Ap,).

Now we have reached the situation described in Lemma 79. We see that
the operator Np, p,,, := Dy D’ = Dy, D(;l )ar, actually plays the part

Pit1 i P;)AP;

of the operator D¢p in Lemma 79 when the DLS & is replaced by ¢p,, the
cost operator J is replaced by Ap,, the solution P is replaced by AP;, the
spectral DLS ¢p is replaced by (¢p,)ap, = ép,,, and the indicator Ap is
replaced by Ap,_,

Because the input operator B of ¢p, is Hilbert-Schmidt, we conclude
that Np, p,,, is I/O stable and (Ap,, Ap,,,)-inner, by claim (iv) of Lemma
79, and the fact that Ap, (used as the cost operator) has a bounded inverse.
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Realization (89) is valid because N, p,,, = NpNp_ , by equation (89) and
[26, claim (iii) of Proposition 56]. This completes the proof of claim (i).
The factorization in (90) is clearly obtained by applying the first part
of this theorem n times. The second factorization (91) is obtained by first
factorizing JiD = J3Dyr Dy, , where JiDyr, is I/O stable and (I, Ap,)
-inner, by claim (iv) of Lemma 79. This is the only place where we have
used the nonnegativity of J. Then the (Ap,, Apeie)-inner factor Np, of Dy,
is factorized as in (90), noting that the last factor Np,,, = Z because P, =
Pt by claim (ii) of [26, Proposition 55]. After multiplying from the right
by the common outer factor X of D and Dy, , the claim follows. O

By [26, Lemma 53], it is sufficient to require Ap > 0 only for one solution P €
Picyw (P, J) that need not be an element of the chain {P;}. Clearly, the order
of the operator products in claim (ii) is significant, if dim U > 1. The transfer

1 1
function Np, p,,,(2) can be normalized to N3, 5. (2) = Ay Np, k., (2)Ap?

11
which is inner from both sides. The zero evaluation Np, p  (0) = ApAp?

satisfies the spectral condition a(AiA;il) C (0,1), as an immediate conse-
quence of the fact that Ap_ , > Ap,. However, AiA;il is generally not nor-
mal and, in particular, self-adjoint. In Theorem 83, we have considered only
finite increasing chains of solutions. To cover the case of the (countably) infi-
nite chains, one would be lead to consider a limit process, not totally different
from the one involved in the study of the Blaschke-Potapov representations
for the (matrix-valued) bounded analytic functions. Several applications,
references and historical remarks about the Blaschke—Potapov factorizations
can be found in the survey article [12, p. 28| by Yu. P. Ginzburg and L. V.

Shevchuk.
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12 I/0 stability of the inner DLS

In this section, we consider converse results to those given in Section 11.
Roughly, we show that for P € ric,,(®, J), the I/O stability of ¢* implies
P > 0. The nonnegativity of the cost operator J > 0 is assumed in the main
results.

We start by considering solutions P € ric(¢,J) such that ¢© is I/O
stable. Out of such solutions, those that have (J, Ap)-inner I/O-maps satisfy
the minimax condition of Definition 84, by Proposition 86. In particular, all
solutions in 7icyy, (4, J) with an I/O stable inner DLS ¢* are of this kind, by
Proposition 85. In Propositions 87 and 88, the minimax condition of P is
connected to an associated Liapunov equation and the DARE ric(®, J). The
main result of this section is Lemma 89, which is a partial converse Lemma
79. An equivalence result is finally given in Theorem 90, under stronger
assumptions.

Definition 84. Let ® = [4 877 | be an I/0 stable and output stable DLS,
and J € L(Y) a cost operator. Let P € ric(®,J) such that the inner DLS

@ is I/0O stable. We say that P satisfies the minimaz condition if
(93) 7_T+D2p JC¢P — 0,
where Cyp = C — DyrCy, it the observability map of inner DLS ¢

The regular critical solution P§tt := (Cit)* JCi* (as discussed in con-
nection with [26, Theorem 27]) always satisfies the minimax condition. This
is because in this case D = NX (where N = D rgri and X = Dy_..)

0

is the (J, Apeit)-inner-outer factorization, and C S = C™t is the crit-
ical (closed loop) observability map. By [19, Lemma 4], 7,D*JC* =
7 X N*JC = 0, and the minimax condition holds.

In fact, the orthogonality of range(D7w,) = range(N7,) and the range
of the desired closed loop observability map C¢P8““ = C* can be used to

find the critical P{"® without explicitly solving the DARE, see [19, Section
3]. For a noncritical P, however, one should a priori know the (range of the)
partial inner factor Dyr7, of D7 associated to the yet unknown P, before
the correct minimax formulation could be written in the first place.

We proceed to show that quite many interesting solutions P € ric(®, J)
(such that Dyr is I/O stable) satisfy the minimax condition. This will be
used as a technical tool to obtain Lemma 89, a rough converse of Lemma 79.

Proposition 85. Let & = [*‘g ng} be an I/0 stable and output stable DLS,
such that the spaces U and Y are separable. Let J > 0 be a cost operator.
Assume that the regular critical solution P§Ht = (Ct)" JCO € ricy(®, J)
exists. Let P € ricy,(®,J) such that the inner DLS ¢* is I/O stable. Then

DypJDgr = Ap; i.e. the I/O-map Dyr is (J, Ap)-inner.
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Proof. We have the familiar factorization of the I/O-maps D = DyrDy,,. Be-
cause P§Mt exists, the conditions of [26, Theorem 27] hold, and we can factor-
ize D = NX, Dy, = Np&, where N, (Np) is (J, Apes)-inner, ((Ap, Apest )-
inner, respectively). Here we have used the residual cost assumption P €
ricyw(®, J) and [26, claim (i) of Theorem 50]. The operator X is a common
outer factor with a bounded inverse; for details, see [26, Proposition 55]. This
gives us the factorization

where all the factors I/O stable, the I/O-map Dyp by our explicit assumption.

Consider the factor Np more carefully. By [26, Corollary 54], Ap > 0
for all P € ric,,(®,J), because the conditions of [26, Theorem 27| hold
and J > 0 implies that P"* > 0 and Apgm > 0. So we can normalize

Np = Alég./\/pA;Oc%rit which is (I, I)-inner, and its transfer function N3 (z) is
inner from the left. Because N3(0) = A;%A;;lm
Proposition 34] implies that A/p(2) is inner from both sides, and its boundary
trace Np(e?) takes unitary values a.e. e € T. We remark that here the
separability of U is used.

Because also Y is separable, equation (94) implies for the boundary traces

Dyr () = N(e®)Np(e?)™

has a bounded inverse, |26,

a.e. € € T, as in the proof of claim (iv) of Lemma 79. But now for almost
all e € T

JiDyr(e?)Ap? = N°(e®) NG (),
where N°(e'?) := J%/\/'(eie)A;c%ﬁt is isometric a.e. e € T. It follows that
0

1 .
J%Dd,p (e®)Ap? is isometric a.e. e € T, and thus Dyr is (J, Ap)-inner. This
completes the proof of the proposition. O

Proposition 86. Let & = [*‘g Bg’j] be an I/0 stable and output stable DLS.
Assume that the regular critical solution PgHt = (Cit)" JC™ € ricy(®, J)
exists. Let P € ric(®,J) such that the inner DLS ¢* is I/0 stable and its
I/O-map is (J,Ap)-inner. If range(B) = H, then P satisfies the minimax
condition; i.e. 7_T+D;‘,P JCyr = 0.

Proof. Let & € Seq (U) be arbitrary. Because DypJDyr = Ap and
T Dypm_ =0, we have
ﬁ'_l_D:;p J(ﬁ+D¢P7T_a) = 7Tr+D:;p JD¢P7T_?2 = ﬁ'_l_Apﬂ'_’lTL = 0

because Dyp is (J, Ap)-inner. Define v = Byrm_ii. Now Cypx = Cyr Bypm_ii =
T Dyrm_u, it follows that 7, D}p JCyrx = 0. Because u € Seq_(U) is arbi-
trary, we have 7, D}»JCsrz = 0 for all z € range(Byr ).
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It remains to show that range(B,r) = H. Because B,r = BD;;, we show
that
range(BD;;) = range(B). To see this, let z € range(B) be arbitrary.
Then © = Br_4 for some @ € Seq_(U). Define @ = Dy, € Seq(U).
Then 7 @ € Seq (U) has only finitely many nonzero components, and
BD;;WJD = BW,D;;WJD = BW,D(;ID = BW,D;;D(bPT(,’& = Brn_u, where
we have used the causality of D;; This proves the inclusion range(B) C
range(BD;Fl,). The other inclusion follows similarly by interchanging the
causal shift-invariant operators D;;, Dy, on Seq(U), and noting that noth-
ing in the proof depends upon the boundedness of neither of these operators.
We have now proved that a feedback does not change the reachable subspace.

Because range(B,r) = range(B) and range(B) = H, it follows that
7‘r+D;P JCp = 0, provided 7‘r+D;P JCp is bounded. Now D;P is bounded be-
cause Dyp is assumed to be. Also Cyr = C—DyrCy, is bounded because both
® and ¢p are assumed to be output stable. The proof is now complete. [

Proposition 87. Let ® = [/g BTD*j} be an I/0 stable and output stable DLS,
and J be a cost operator. Let P € ric(®, J) such that the inner DLS ¢F is I/0
stable, and its I/O-map is (J, Ap)-inner. Then the following are equivalent:

(i) P satisfies the minimaz condition; i.e. 7. DjpJCyr = 0.
(ii) Cyp = Ap' - 7. D*pJC

(i5) —Kp = Ap! - moDyp JC, with the identification of spaces range(mo) and
U.

Proof. Proof of the equivalence (i) < (ii) is the following equivalence:
7_1'+sz ch,P — 7?+D;p J(C — D¢PC¢P) — O
= 7_1'+sz JC — (7?+D;p JD¢Pﬁ+)C¢P — AP . Cd’P

Because Cy, = {—KpA’};j5o by Definition 58, the implication (ii) = (iii) is
immediate. For the converse direction, we have to show that Ap' T4 DypJCis
an observability map of a DLS whose semigroup generator is A — we already
know that the first component —Kp is correct if (iii) holds. It remains to
prove

(Al_pl . ﬁ'_l_D:;p JC) A = ﬁ'_l_T* (AP . ﬁ'_l_D:;p JC) .
But this is the case:
(Ap' -7 DypJC) A= Ap' -7, Dypr 7" JC
= ﬁ+T* (A.;;l . D2p7r+JC) = ﬁ+T* (AP . D;pﬁ'+¢]C) R

where the last equality follows because 7r+D;P7r0 = 0, by the anti-causality
of D;P. This completes the proof. O
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In claim (ii) of the following proposition, the minimax condition is con-
nected to a Liapunov equation that is almost the Riccati equation.

Proposition 88. Let ® = [fg 3%”] be an I/0 stable and output stable DLS,

and J be a cost operator. Let P € ric(®,J) such that Dyr is 1/0 stable and
(J, Ap)-inner. Define Py :=C;pJCyr € L(H). Then

(i) Py satisfies the Liapunov equation

(95) A*"PyA— Py +C*JC
= —K;APKP + KI*JAP (—Al_pl : 7TOD:;PJC)
+ (—Ap" - mDr JC) ApKp,

and the residual cost operator satisfies L4 p, = 0.

(it) Assume, in addition, P satisfies the minimaz condition 7, D}pJCyr =
0. Then Py satisfies the Liapunov equation

Furthermore, A*(P — Py))A = P — By, and if P € rico(®, J), then
P — Py=Lyp. If P € rice(®,J) then P = R,.

Proof. We first remark that is ¢* is output stable because Cyor = C—DyrCy,,
and all the operators C, Dyr, Cy, are assumed to be bounded. So C}, makes
sense, and Py is well defined. The proof of claim (i) is the following technical
calculation. Because Cyr = C — DyrCy,,, we obtain

Py := C*JC — C*JDyrCyy, — Cj Dy JC + Cj Do JDyrCyy
= C*JC — C*JDyrCyp — Cy Diyp JC + CopApCyp,

where the latter equality is because Dyp is assumed to be (J, Ap)-inner. But
then

A*PyA — Py+C*JC
() (i)
—(A*C*JCA —C*JC + C*JC) + (—A*C* JDyrCyyp A+ C*JDyrCy),)
(i) (iv)

+ (~ACy, Dip JCA +C D JC) + (A*Csp ApCop A — CopApCoy) -

Part (i) vanishes trivially. Parts (i) and (i) are adjoints of each other, and
because A is the semigroup generator of both ¢ and ¢p, we have

- A*C*JD¢PC¢PA + C*JD¢PC¢P = —C*J7T+(TD¢PT*)7T+C¢P + C*JD¢PC¢P

= —C*JW+D¢P7T+C¢P + C*JD¢PC¢P = C*J(ﬁ+D¢P7Tr+ — 7T+D¢P7T+)C¢P
= C*JD¢P7T0 . 7TOC¢p,
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where the last equality is by the causality of Dyr. But myCy, = —Kp with
the natural identification of the spaces U and range(mp). So part (ii) equals
—C*JDyrmo-Kp, and part (441) equals —Kp *moDyp JC. A similar calculation
as required for part (i) shows that part (iv) equals —KpApKp. Collecting
out results together, we have (95).

Because both C and C4, are bounded by assumptions, and A is the semi-
group generator of both ® and ¢p, trivially CA? = 7,77C — 0 and Cy, A7 =
T47Cy, — 0 in the strong operator topology. Because Cyr = C — DyrCy,
where Dyp is bounded, it follows that C,r A’ — 0 in the strong operator topol-
ogy. By the Banach-Steinhaus Theorem, the family of operators {C4r A7} ;59
is uniformly bounded, and so is the family of their adjoints. It now follows
that for all x € H

| A PyAlz|| < sup |[A*C5p J| - ||Cyr Az|| — O
Jj=0

as j — oo. This completes the proof of claim (i).

In order to prove claim (ii), we use the equivalence of (i) and (iii) in
Proposition 87; now P is, in addition, assumed to satisfy the minimax con-
dition. Replacing —A 5 +moD}pJC by Kp in (95) gives (96). Note that the
Riccati equation solution P, by definition, satisfies the Liapunov equation
(96) with P in place of Py, and then A*(P — Py)A = P — P,. This completes
the proof. O

In the following Lemma, the main result of this section, we give a partial
converse result to Lemma 79.

Lemma 89. Let & = [/g Bg‘j} be an I/0 stable and output stable DLS,

such that the spaces U andY are separable. Assume that range(B) = H. Let
J € L(Y) be a self-adjoint cost operator, J > 0. Assume that the regular
critical solution P§™t = (Cit)" JC € ricy(®, J) ezists.

If P € ricy(®,J) such that the inner DLS ¢* is I/O stable, then P > 0.

Proof. Let P € ricy(®,J) such that the inner DLS ¢f is I/O stable. By
Proposition 85, Dyr is (J, Ap)-inner because P € ricy,(®,J) C rico(®, J).
By Proposition 86, P satisfies the minimax condition 7‘T+D2P JCyp = 0. Define
I = C;P JCyp as in Proposition 88. Because J > 0, then P, > 0. Because
P € ricy(®, J), it follows that P = Py by claim (ii) of Proposition 83. Thus
P > 0, and the proof is complete. O

The following theorem states that the exactly those state feedback laws that
associated to nonnegative solutions of DARE, are I/O-stabilizing. We could
also say that such solutions partially stabilize the closed loop semigroup
generator Ap, and hide the unstable part of Ap to the unobservable (unde-
tectable) subspace.

Theorem 90. Let ® = [4' B0/ | = (4 B) be an I/0 stable and output stable
DLS, such that the spaces U and Y are separable. Assume that range(B) =
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H, and the input operator B € L(U;Y') is Hilbert-Schmidt. Let J € L(Y) be

a self-adjoint cost operator, J > 0. Assume that the reqular critical solution

Pt = (i) " JCrt € ricy(®,J) ewists. Let P € ricy(®, J) be arbitrary.
Then J%D(;,p is 1/0 stable if and only if P > 0.

Proof. If P > 0, then claim (iv) of Lemma 79 implies that J%D¢p is I/O
stable. The converse direction is an application of Lemma 89. However, we
first have to “absorb” the cost operator J into the DLS & by replacing the
feed-through operator D by J%D, and the output operator C' by J:C. Call
this modified DLS ¢'. Finally replace the cost operator J by I. Clearly the
assumptions of ® and ¢' correspond to each other one-to-one, the DARE
remains unchanged, and Lemma 89 implies that P > 0. O
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13  Partial ordering and factorization

Assume that ® is an output stable and I/O stable DLS, and the cost op-
erator J is nonnegative. Furthermore, assume that the regular critical so-
lution P§"t € rico(®,.J) exists. In this section, we consider the partial or-
dering of the solution set rico(®, J) as self-adjoint operators. Recall that
for P € rico(®,J), the closed ranges range(5¢P7‘r+) C (*(Z;U) of the
Toeplitz operators ﬁd,}ju are shift-invariant, see Lemma 91 and Corollary
92. Here 5¢P denotes the adjoint of the I/O-map Dy, of the spectral DLS
¢p. Inclusions of the subspaces range(23¢Pﬁ+) are considered in Lemma
93. In Corollary 94, the maximality property of the regular critical solution
Pt = (C“it)* JC € ricy(®,J) is proved. The order-preserving equiva-
lence

rico(®, J) > P s range(Npry) C 2(Z;U)

is considered in Theorem 95. Here Ap denotes the adjoint I/O-map of Np,
the (Ap, Apene)-inner factor of Dy, = NpX.

We start with reminding some classical results. The Beurling-Lax-Halmos
Theorem on the shift-invariant subspaces is the following:

Lemma 91. Let U be a separable Hilbert space. The following are equivalent
(1) Hy be a shift-invariant subspace of (*(Z;U),

(ii) H; = range(O7,) = O*(Z,;U"), where U' C U is a Hilbert subspace,
and
O : (3(Z;U') — (*(Z;U) 1is a causal, shift-invariant and bounded oper-
ator, which is inner from the left.

Furthermore, if range(©17, ) = range(©27T ) then there is a unitary (static)
operator V€ L(U) such that ©; = O,V

For proofs, see e.g. [32, Lecture 9, Corollary 9] or [8, Chapter IX, Theorem
2.1]. We can get rid of indexing over the subspaces U’ C U if we modify the
definition of the inner (from the left) operator. This convention is taken in
[33], where the inner operators are defined to be such that ©(e?) is a partial
isometry, a.e. e € T. Actually this indexing is only over all the cardinalities
of the subspaces U, because two Hilbert subspaces of the same dimension can
be unitarily identified. For the following corollary, see e.g. [32, Lecture I,
Corollary 8]:

Corollary 92. Let ©,, O, be inner from both sides. Then range(O,T) C
range(©17, ) if and only if there is an inner operator ©3 such that Oy =

©,03.
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We now consider the inclusions of the shift-invariant subspaces
range(Dy, 7). Under the J-coercivity assumption 7,D*JD7, > e, for
some € > 0, these subspaces are closed, see [26, Proposition 38|.

Lemma 93. Let J € L(Y) be a cost operator, and ® = [4/ B/ ] = (A 5)
be an I/0 stable and output stable DLS. Assume that the input space U and
the output space Y are separable, and the input operator B € L(U; H) is
Hilbert-Schmidt. Assume that T, D*JD7 > €T, for some € > 0.

Let Py, Py € 7Ticy,(®,J) such that P, < P,. Then range(5¢Pl7_r+) C
range(Dy, T+.).

Proof. We begin the proof by centering the problem at the smaller of the
solutions P;. Define AP := P, — P; > 0. Then we have P, = P; + AP where
AP € Ric(¢p,,Ap,), by Lemma 64. The spectral DARE Ric(¢p,,Ap,) is a
H>*DARE because P, € ric(®, J), by assumption. Also 0 € rico(¢p,, Ap,)
is a trivial solution, corresponding to the solution of the original DARE P;
itself. By [26, Corollary 54|, both the indicators satisfy Ap, > 0 and Ap, > 0.
Note that we have not written AP € ric(¢p,, Ap,) because we do not
know a priori the output stability and I/O stability of the spectral DLS
(¢p,)ap. However, a computation with the minimax nodes reveals that the
spectral DLS (ép,)ap is a spectral DLS associated to the original ® and .J

(97) ((¢P1)AP, AAP) = (¢p,, Ap,)ap = (Opr4ar, Ap1ap) = (¢p,, Ap,)

see equation (58) of Proposition 59. Because Py € ric(®, J) by assumption,
it follows that the spectral DLS (¢p,)ap is output stable and I/O stable.
Thus AP € ric(¢p,, Ap,). For all zy € range(B), we have

(98) <APAj.'170, Aj.'170> = <P2Aj$0, AjI0> — <P1Aj.'170, Aj.'170> — 0

as j — 00, because both P; and P, are assumed to satisfy the ultra weak
residual cost condition of Definition 21. Because the DLSs ® and ¢p, have
the common controllability map, we have range(B) = range(By, ), and then
equation (98) implies that AP € ricyy,(¢p,, Ap,). From equation (97) we also
see that AP € Ticy,(dp,, Ap,) has a positive indicator Axp = Ap, > 0.

Now we want to apply claim (iii) of Lemma 79 with (¢p,, Ap,) in place
for (®,.J), and AP € ricyw(dp,, Ap,) in place of P € ricy,(®, J). We have
to check that the DLS ¢p,, cost operator Ap, and solution AP satisfy the
additional conditions. Firstly, the equivalent conditions of [26, Theorem 27|
hold for the pair (¢p,, Ap,) because they hold for (®,.J), by the coercivity
assumption 7, D*JD7, > er, and [26, Corollary 54]. For details see |26,
Proposition 55| and the discussion following it. We conclude that there is a
regular critical solution B¢ € rico(dp,, Ap, ).

The input operator B is common for both ® and ¢p,, and so the Hilbert—
Schmidt assumption holds for ¢p,. The same is true for the separability of
the Hilbert space U, which is the input and the output space of ¢p,. Now
claim (iii) of Lemma 79 gives

(99) D¢P1 = D(¢P1)APD(¢P1)AP’
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where (¢p,)2F is the inner DLS, and (ép,)ap is the spectral DLS of ¢p,,
centered at AP. Both (¢p,)2F and (¢p,)ap are output stable and I/O sta-
ble; the former by claim (iii) of Lemma 79, and the latter because AP €
Ticuw(Pp, Ap). It also follows from Lemma 79 that the I/O-map Digp,)AP
is in fact (Ap,, Ap,)-inner, because Arp = Ap, is the indicator of AP €
ric(¢p,, Ap,), as discussed above. Note that because the nonnegative cost
operator Ap, has a bounded inverse, we do not need to include the square
root of it into equation (99), as has been done in Lemma 79 for possibly
noncoercive cost operator J.

It follows from equation (97) that D(yp, )ap = Dgp, - By [26, Corollary 32],
the regular critical solution P§tit := (C*)* JCit € ricy(®, J) exists because

7. D*JD7, > em, is assumed for some € > 0. We now obtain from equation
(99)

(100) Np, X =Dy, =D )ar Dy, = Dy yar Np, X

where Dy, = Np X (Dy,, = Np,X) are (Ap,, Aperit) ((Ap,, Aperit) )-inner-
outer factorizations, respectively. The outer factor X (having a bounded
inverse) is common for both the I/O-maps Dy, and Dy, , see [26, Proposition
55]. As noted earlier, D(,,, jar is bounded and (Ap,, Ap2) inner.

Divide the outer factor away from (100) to obtain Np, = Dy, )ar
Np2. Normalize as in Corollary 80 Np = Mg ApNp,, where ./\/'13 =

1
Afpl./\/' plAPmt, = A PZN Py Pmt are two- 31ded inner mappings (*(Z;U) —

1
(*(Z;U), and MPI’AP i= Ap, - Digp )ar -AP2 : (2(Z;U) — 3(Z;U) is in-
ner from the left. Note that the static part of D(¢P1)AP equals the identity

I € L(U). Because both A} and A} are boundedly invertible, it follows
that Mjp, Ap is inner from both sides, by [26, Proposition 34]. By using the
adjoint I/O-maps, we change the order of factors

ngl = N}C;QM;Dl,AP’
where all the factors are inner from the both sides. Now Corollary 92 implies
that

(101)

range(A 2 Np17r+) = range(Np 7, ) C range(Np, 7, ) = range(A” Np27r+)

Pcrlt Pcrnt

By considering the outer transfer functions as in [26, claim (ii) of Proposition
37, it is easy to see that X is outer with a bounded inverse if and only if

X is outer with a bounded inverse. In partlcular X A peri is outer with a

bounded inverse, and the Toeplitz operator X APcmmr is a bounded bijection
on (*(Z.;U). Thus the inclusion of ranges in (101) remains valid if we

multiply the operators from the left by X A Pmm+ Now the claim follows. [
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The following corollary is somewhat analogous to [15, Theorem 13.5.2].

Corollary 94. Let J > 0 be a cost operator. Let ® = [4/ B/ ] be an I/0
stable and output stable DLS. Assume that the input space U and the output
space Y are separable Hilbert spaces, and the input operator B € L(U; H)

of ® is Hilbert—Schmidt. Assume that the reqular critical solution P§Mt :=
(Ceit)™ JCerit € ricy(®, J) exists.

(i) Let Py € rico(®, J) be such that Pt < Py where P{™t € ricy(®, J) is
any reqular critical solution. Then Py is a reqular critical solution.

(ii) If, in addition, range(B) = H, then the unique critical solution P :=
(CH8)* JC™i s mazimal in the set rico(®, J).

Proof. By Lemma 93, equation (101) gives for the ranges of the adjoined
operators, because Py > Pfrit

P(Z,;U) = range(f)(ﬁpcriﬂh) C range(ﬁ¢P07_r+) c *(Z;U),

and immediately range(25¢P07T+) = (*(Z;U). By Dy, = Np,X denote the
(Ap,, A Pgm)—inner—outer factorization, and normalize the inner part as before:

- 1~ 1 ~

Np, = AI%ONPOAPOSM. Then range(Np,7.) = (*(Z,;U), as in the last part
of the proof of Lemma 93. Now the uniqueness part of Lemma 91 shows
that Np is a static unitary constant operator V' € L(U). By cancelling

1 1
the normalization, we obtain D¢>p0 = APO2 V*A;mt/’l’. Because the static
0

part of both Dy, and X is the identity operator I € L(U), it follows that
Ap?V*A}.e = I and hence Dy, = X. Because Py € ricy(¢, J), it is a regular

Pcrit
critical soolution, and the first claim (i) is verified. Under the approximate
controllability range(B) = H, an application of [26, claim (i) of Corollary 30|

proves the remaining claim. O

We remark that the solution Pt := (Cit)* JCMit is not generally maximal in
the full solution set Ric(®, J). A plenty of examples about this are provided
by Lemma 101 in Section 14. Even if range(B) = H is assumed, we do not
yet know whether P{™ is the largest element of ricy(®,.J) — there could be
a solution P € rico(®, J) that is not comparable to P{*. However, this is
not the case, as shown in Theorem 96. This result is based on the following
equivalence of the two order relations.

Theorem 95. Let J > 0 be a cost operator. Let ® = [4/Br/] = (A 5)

be an I/O stable and output stable DLS, such that range(B) = H. Assume
that the input space U and the output space Y are separable, and the input
operator B € L(U; H) is Hilbert-Schmidt. Assume that the reqular critical
solution Pt := (C1)" JCtit € ricy(®, J) emists.

For Py, Py € rico(®, J), the following are equivalent

(i) P, < P.
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(ii) range(Np, 7y ) C range(Np, 7, ), where Np is the (Ap, Apgrit)-inner fac-
tor of Dy,

In other words, the mapping
rico(®,J) 3 P s range(Npi,) C (2(Zy;U)

is order-preserving from the POSET rico(®,J) (ordered by the natural
partial ordering of self-adjoint operators) into the sub-POSET
{range(ﬁpﬁ+)}Pe1«iC0(¢,J) of the shift-invariant subspaces of (*(Z,;U) (or-
dered by the inclusion of subspaces).

Proof. The implication (i) = (ii) is Lemma 93. We just remark that if
J > 0, the existence of the regular critical solution P§™ is equivalent to
7, D*JD7, > e, for € > 0, see [26, Theorem 27 and Corollary 31]. For
the converse direction (ii) = (i), note that range(Np, 7, ) C range(Np, 7. ) is
equivalent to range(N' pTy) C range(N p,T+), Where the normalization is as
in Corollary 80. This normalization is possible because both the indicators
Ap,, Ap, and Apei are positive, by [26, Corollary 54|. By Corollary 92,

there is an inner (from both sides) operator © such that /Tfj;z@ = /\7;,1, or
equivalently

1~ 1
(]‘02) D¢P1 = AP12 ®A1232 : D¢P2)

because we can factorize Dy, = NpX for P € ricy,(¢, J), by [26, Proposition
55].

Now we continue as in proof of Lemma 93, and center the problem around
the smaller solution P;. As in the proof of Lemma 93, we have the solution
AP := P, — P, € ric(¢p,, Ap,) whose nonnegativity is to be shown. We have

(¢P1)AP = ¢P2 and
(103) D¢P1 = D(¢P1)APD(¢P1)AP = D(¢P1)APD¢P2’

as in the proof of Lemma 93.

We have to check that ¢p,, Ap, and AP satisfy the assumptions of Lemma
89. Firstly, the separable U is the input space and the output space of the
output stable and I/O stable DLS ¢p,. Also range(Bs, ) = H, because
By, = B. The indicator Ap,, serving as the cost operator, is nonnegative as
already has been discussed. The H*DARE ric(¢p,, Ap,) has a regular criti-
cal solution because the original H*DARE ric(®, J) has, see [26, Theorem
27 and claim (i) of Proposition 55|. Because AP = P, — P, and P, P, €
rico(®, J) by assumption, the residual cost operator Ly ap exists. Further-
more, Lyap = Lap, — Lap, = 0, and it follows that AP € rico(¢p,, Ap,)
because A is the common semigroup generator of all the DLSs ®, ¢p, and
(¢p,)ap. Now we see that the assumptions of Lemma 89 are satisfied.

By comparing (102) and (103), we see that the inner DLS (¢p,)2F is I/O
stable. Compare, for example, the transfer functions in a small neighbour-

1. 1
hood of the origin, to convince yourself that Ap*©OAp = D(¢P1)AP. Also [26,
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claim (ii) of Proposition 38| can be used, to see that the I/O-map Dy, has
a bounded, shift-invariant but generally noncausal inverse in (*(Z;U). By
Lemma 89, AP > 0 and the proof is completed. O

We proceced to give an order-theoretic characterization of the set of nonneg-
ative regular H* solutions of the H*DARE ric(¢, J). Under approximate
controllability, these are exactly those that give H* factorizations in Lemma
79, see [26, Corollary 44].

Theorem 96. Let J > 0 be a cost operator. Let ® = [4/Br/] = (A 5)

be an I/0 stable and output stable DLS, such that range(B) = H. Assume
that the input space U and the output space Y are separable, and the input
operator B € L(U; H) is Hilbert-Schmidt. Assume that there is a (unique)
regular critical solution P§t := (C)* JC € ricy(®, J). Then

{P € ricg(®,J) | P>0}={P€Ric(®,J) | 0<P< P&t}

Proof. The inclusion D has already been established in [26, claim (ii) of
Corollary 48]. For the converse inclusion, let a nonnegative P € rico(®, J) be
arbitrary. Because N, peric = Z, it follows that the range of the Toeplitz opera-
tor ./\7P6:rit7‘r+ is all of (2(Z_; U). In particular, range(Np7,) C range(ﬁpgritﬁ+),
and it follows that P < P by Theorem 95. The proof is complete. O
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14 H® solutions of the inner and spectral DAREs

We start with a motivation of the contents of this section. For simplicity,
assume for a while that the nonnegative cost operator J is boundedly invert-
ible. In claim (iv) Lemma 79, we introduce the factorization of the I/O-map
as a composition of two I/O stable I/O-maps

(104) Dy = Dys Dy,

for any nonnegative P € ricy(¢,J). As a conclusion of the same lemma,
it follows that the inner DLS ¢ is output stable and I/O stable. The
technical assumptions of Lemma 79, such as the separability of the Hilbert
spaces and the Hilbert—-Schmidt compactness of the common input operator
B € L(U; H), are inherited from ¢ by ¢¥. This makes it possible to apply
claim (iv) of Lemma 79 to inner DLS ¢ and the associated inner H*DARE
ric(¢f, J). In this way, the (J, A5)-inner factor D,p can be further factorized

by the nonnegative solutions P € rico(gbp ,J). A similar consideration can
be given for the right factor Dy, which is the I/O-map of the spectral DLS
¢p, and a stable spectral factor of the Popov operator DjJDy, too. The
nonnegative solutions P € rico(¢p, Ap) of the spectral DARE factorize Dy,
into I/O stable factors.

Because of the possibility of a recursive factorization of factors in equation
(104), we conclude that both the solutions sets

rico(¢p, Ap), for all P € ricy(o, ),
{P e rico(¢f,J) | P> 0} , forall Perico(e,J), P>0

are quite interesting. So it is desirable to characterize them in terms of
the original data, namely the DLS ¢ = (4 B), the cost operator J, and
the solution sets Ric(¢, J) and ricy(¢, J) of the original DARE. This is the
subject of the present section.

We start with considering the spectral DARE, as it is quite easy. In
fact, the result on the spectral DLSs has already been used in the proof of
Theorem 95.

Lemma 97. Let J > 0 a cost operator. Let $ = (4 B) be an output stable

and I/0 stable DLS. Assume that the input operator B € L(U; H) is Hilbert—

Schmidt and the input space U is separable. Let P € rico(p, J) be arbitrary.
Then the following are equivalent:

(i) AP € rico(¢p, Ap),
(i) P+ AP € rico(¢, J).

Proof. To prove the implication (i) = (ii), let AP € rico(¢pp, Ap) be ar-
bitrary. Then, because A is the semigroup generator of both ¢ and ¢35, it
follows that the residual cost operator L, 5, A p exists and satisfies L4 5, rp =

Lyp+ Laap=0. By Lemma 64, P + AP € Ricy(¢, J).
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Because J > 0, it follows that P§™t = (C;rit)* JC(‘;’;'it > 0 and also Apgm >
0. By [26, Theorem 27 and Lemma 53], it follows that A > 0 because
P € rico(¢,J). The spectral H*DARE ric(¢s, As) has a regular critical
solution P§ € rico(dp, Ap) because P&t € ricy(¢, J) is assumed to exist,
see |26, Proposition 55]. Because the cost operator of DARE ric(¢p, Ap) is

nonnegative, the indicator Apgm is nonnegative and the same is true for the

indicator Aap, by [26, Lemma 53] and the assumption AP € rico(¢p, Ap).
Now, by equation (58) of Proposition 59, Ap Ap = Aap > 0.

Now we have concluded that P + AP € Ricy(¢,.J), and its indicator is
positive. It follows that P + AP € rico(¢, J), by [26, Corollary 47]. This
completes the proof of the first implication.

To prove the other direction (ii) = (i), assume that P, := P + AP €
rico(¢,J). Then AP = P, — P € Ric(¢p,Ap) by Lemma 64, and also
Laap =0. Thus AP € Ricy(dp, Ap) because the same A is the semigroup
generator of all spectral DLSs. The indicator Ay of AP € Ric(¢p, Ap)
satisfies Ax = Ap,, by equation (58) of Proposition 59. But the latter is
positive because Py € ricg(¢, J), by the same argument that is presented in
the first part of the proof for Az.

We have proved that AP € Rico(¢p, Ap), and its indicator Aap is pos-
itive. Now, because the Hilbert—Schmidt class input operator B and the
separable input space U is common for all spectral DLSs, an application of
[26, Corollary 47| completes the proof. O

A similar results can be given for other residual cost conditions introduced
in Definition 21. The case of the ultra weak residual cost condition has been
considered in the proof of Lemma 93. We proceed to characterize a regular
critical solution of the spectral DARE.

Corollary 98. Make the same assumption as in Lemma 97. By P&t =
(€57 )*JCG™ € rico(¢p, J) denote the regular critical solution.

Then Pocrit—ﬁ € rico(pp, Ap) is a regular critical solution. If, in addition,
range(B,) = H, then it is the unique regular critical solution.

Proof. By Lemma 97, we see that AP := P — P € ricy(¢p, Ap). By
equation (58) of Proposition 59, we have for (¢15)pgrit_15 = ¢peit, whose
I/O-map is the outer factor & of Dy, by the definition of the critical so-
lution P¢tit. It follows that P{™* — P € ric(¢p,Ap) is a regular critical
solution of the spectral H*DARE ric(¢p,Ap). If range(B,) = H, then
also range(B(;,ﬁ) = H because the controllability maps of ¢ and ¢z coincide.

The uniqueness of the regular critical solution of ric(¢s,Ap) follows from
[26, Corollary 30]. O
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The spectral DLS and DARE can be used to show that the solution set
rico(¢, J) is order-convex:

Lemma 99. Let J > 0 be a cost operator. Let ¢ = (4 B) be an output stable
and I/O stable DLS. Assume that the input space U is separable, and the
input operator B € L(U; H) is Hilbert-Schmidt. By Pg™ := (Cg™)*JCI™ €
rico(¢, J) denote the reqular critical solution.

Then ricy(d, J) is order-convez in the following sense: if Pe rico(p, J)
is such that P < P§"®, then all P € Ric(¢, J) such that P < P < P satisfy
P € rico(g, J).

Proof. Because P < P < Pt then 0 < P — P < P¢™ — P. By Lemma 64,
P-Pe Ric(¢p,Ap). By Corollary 98, P§mit — Pe rico(¢p, Ap) is a regular
critical solution. By [26, claim (ii) of Corollary 48], P — P € rico(¢p, Ap).
The proof is now complete. O

Now we have dealt with the spectral DLSs and DAREs. We proceed to
study the regular H* solutions for the inner H*DARE ric(¢”, J), centered
at P > 0. We need to assume that the nonnegative cost operator J has a
bounded inverse. By Lemma 79, this quarantees that ¢% is output stable
and I/0 stable, when questions about H* solutions become meaningful.

Lemma 100. Let J > 0 a boundedly invertible cost operator. Let ¢ = (4 B)
be an output stable and I/0 stable DLS, such that range(By) = H. Assume
that the input operator B € L(U; H) is Hilbert-Schmidt, and the input space
U and the output space Y of ¢ are separable. Assume that the regular critical
solution Pg™ := (Cg™)* JCG™ € rico(¢, J) emists. Let P € ricy(9, J), P >0,
be arbitrary. i

Then the inner DLS ¢ is output stable and I/0 stable. The inner DARE
Ric(d)}s, J) is a H°DARE. Furthermore, P is the unique reqular critical so-
lution of its own inner DARE ricy(¢%, J). In particular, LAﬁ’}a =0.

Proof. Let P € ricy(¢,J), P > 0, be arbitrary. By claim (iv) of Lemma 79,
¢15 is output stable and I/O stable, because J > 0 has a bounded inverse.
Thus Rz’c(qﬁp, J) is a H*DARE, and it makes sense to ask about the regular
H* solutions P € ricy(¢”, J). )

By claim (iv) of Lemma 79, D5 is (J, Ap)-inner. Because P > 0 and
J >0, it follows that Ap > el for some ¢ > 0. Thus the Popov operator
satisfies D;ﬁJD¢p = Ap-Z > €Z, and by [26, Corollary 54|, there is a

regular critical solution 150““ € rico(gb’5 ,J). It follows from the approximate
controllability assumption range(B) = H of ¢ that the inner DLS of is
approximately controllable, too, because range(8¢p) = range(B,) as in the
proof of Proposition 86. Now [26, claim (i) of Corollary 30] implies that Pgtit
is the unique regular critical solution of H*DARE ric(gbls ,J). Furthermore,
P§mt is nonnegative, because J > 0. Expectedly, the outer factor of D¢15
is the static identity operator Z, which equals the I/O-map (QSIB)ISOcrit of the

corresponding spectral DLS (associated to pair (gb}s, J)).
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Let P € Rz’c(qﬁp, J) = Ric(¢p,J), P > 0, be arbitrary. Then the spectral
DLS (¢F)p can be put into form

(105)  ((6")p Rp) = (asﬁ,J)Pz((KﬁApr ?>,AP>,

see equation (56) of Proposition 59. Here Ap := A+ BKp, Ag = D*JD +
B*@QB, and AgKg = —D*JC — B*QA for Q = P, P are the closed loop
semigroup generator, indicator and feedback operator, relative to the original
DLS ¢ and the cost operator J.

By setting P = P in equation (105), we get

re( -4 2

and the feedback operator R’p, associated to pair (gbls, J), satisfies R'R: 0.

However, the same is true for the unique regular critical solution P§™t €
rico(¢f, J) if range(By) = H. It follows that range(B,s) = range(By) as
in the proof of Proposition 86. But now assumption range(By) = H im-
plies range(8¢p) = H. Furthermore, because the controllability maps of a

DLS and any of its spectral DLSs are equal, the approximate controllability
range(B, 4z, ) = H follows for all P € Ric(¢, J). Now, for P = P§tit equation

(105) gives
& ( As B\ _ Az B
(¢ )POCTit o _Kﬁézrit I o KF") - Kﬁ)é:rit I )

By the definition of the critical solution, the I/O-map of the spectral DLS
(#7) e is the outer factor of D 5. But this is the static identity operator Z,

as discussed above. Thus Klsgm range(8(¢}s)P) = 0, and by the approximate
controllability assumption, it follows that K porie = 0.
By the definition of the inner DARE ric(¢f, J), the following Liapunov
equations are satisfied
A3PAs — P+ C3JCs = KA K5 =0,
AP Ap — B+ C3JCp = KA pone K ppen = 0.

But now Pt — P = A}g(ﬁg“it — P)Ap and by iterating
Pyt — P — AY Py AL = — A PAL.

Because Pgrit is the regular critical solution of ric(gb’s ,J), it follows that
AgPOCTitAzs converges strongly to zero as j — oo. But then L, ; :=
s — lim;_,o0 A}‘:,,jlf’Aj5 exists, and

(106) Pt —P=_L, 5

P
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A similar kind of calculation can be carried out with the open loop
operators. Because Kpaiw = 0 as shown above, and by formula (105),

K; poit = Kp — Kpeu, it follows that Kp = Kpew. For the indicators
we have Ap = Apcm, too. To see this equality, consider first the solution

P € rico(¢,J). The I/O-map of its inner DLS ¢ is (J, Ap)-inner, as has
already been mentioned. The critical solution Pt ¢ rico(@”, J) gives the
(J, A pgrie )-inner-outer factorization

D D Pcmt * D

¢}S — (¢P) — D Pcrlt I D Pcrit

(6P)perie —  (9)76 (¢7)76

by claim (iv) of Lemma 79, and the uniqueness of the (J,S)-inner-outer
factorizations of an I/O-map if the feed-through part of the outer factor is
normalized to identity, see [19, Proposition 21]. We conclude that D b 18

(J, Apgm)—inner. So, Dp is simultan?ously both (J, Ag)-inner and (.J, f\pgm)—
inner. This implies that A}SOcrit = Apocrit = Az because the indicator of a
solution is not changed under transition to any inner DARE.

Because Kp = Kpeww and Apew = Ap holds, the open loop DARE
Ric(¢, J) gives us the equality

A*P§tA — Pyt = A*PA - P,

because both the operator P¢™ and P are solutions of the original DARE
Ric(¢,J), and the right hand sides of the DARE at these solutions coincide.

Thus P¢ — P = A*(Pgt — P)A and in the same way as proving equation
(106) we obtain

(107) Pt — P =Ly pese — Ly p = Ly peric.

Here the strong limit exists and equality holds because L, 5 = 0, by assump-
tion P € ricy(o, J).

Comparing equations (106) and (107), we see that —L, 5 = Ly pori.
Both the residual cost operators are nonnegative, as strong limits of sequences
of nonnegative operators. It immediately follows that L, 5 = L4 peic = 0.

Thus P € rico(¢F, J) is the critical regular solution of its own inner DARE.
This completes the proof. O

In the following Lemma 101 we characterize the regular H* solutions of
the inner DARE Ric(¢”,J) for nonnegative P € rico(¢, J). As in Lemma
100, we have to be a little careful to see that Ric(¢”, J) is a H*DARE. For
this reason, we assume again that the cost operator J > 0 has a bounded in-
verse. It is important that the particular case when P = Pt = (cgreygeg
can be solved for general J > 0, see Theorem 105.

Lemma 101. Let J > 0 a boundedly invertible cost operator. Let ¢ = (4 B)
be an output stable and I/0 stable DLS, such that range(By) = H. Assume
that the input operator B € L(U; H) is Hilbert-Schmidt, and the input space
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U and the output spaceY of ¢ are separable. Assume that the reqular critical
solution Pg™ := (Cg™*)*JCG™ € rico(¢, J) eists.

Then for all P € ricy(¢, J), P >0, the DLS ¢15 is output stable and I/0
stable. Furthermore, we have the following equality of the solution sets of
H*DAREs

{P e rico(¢,J) | P < 13} — rico(6”, J).

Proof. The output stability and I/O stability of ¢13 follow from Lemma 79
and the assumption that J has a bounded nonnegative inverse. We conclude
that the inner DARE Ric(¢”,J) is a H*DARE, and the claim about the
solution sets ricy(¢, J) and rico(¢,J) is meaningful. We proceed to prove
the equality of the solution sets. Fix P € ricy(¢, J) such that P > 0.

To prove inclusion “C”, let P € rico(¢, J) be arbitrary, such that P < P.
By Lemma 97, AP :=P —P € rico(dp, Ap) and we can consider the inner
DARE of ric(¢p, Ap), centered at AP > 0. Because the input operator B
of ¢p is Hilbert—Schmidt, the input space U is separable, the cost operator
Ap > 0 is boundedly invertible, and the H* solution AP € ricy(pp, Ap)
is nonnegative, Lemma 100 implies that AP is the unique regular critical
solution of its own inner DARE ric((¢p)>F, Ap).

By Corollary 60, the minimax nodes have the “commutation” relation

(108) ((6p)27,Ap) = ((07)p, )

Because the semigroup generator of (¢p)*f = (¢P)p, equalling that of ¢”,
is Ap, it follows

O=Lasap=Lys, p_py=1La, p—Lasp=—Lagp,

=3 =3
where the first equality is because AP € ricy((¢pp)2F, Ap) as the unique
regular critical solution, and the last follows from the last claim of Lemma
100. This implies the existence of LA#p as a strong limit and also LA}S’p =0.

Because Ajp is also the semigroup generator of ¢*, it remains to prove that
P € ric(¢®, J).

By identity (108), we conclude that (¢”)p is output stable and I/O stable,
because this DLS equals (¢p)2F, which is I/O stable and output stable by
claim (iv) of Lemma 79 and the fact that AP € ricy(¢p, Ap) is nonnegative,
as discussed earlier.

Here we have used the fact that the cost operator Ap of DARE ric(¢p, Ap)
is nonnegative with a bounded inverse, by Lemma 53, because P € ricy(¢, J)
and the regular critical solution P§™ := (C§™)*JCS™ > 0 surely has a positive
indicator, by the nonnegativity of J. This completes the first part of the
proof. i

For the converse inclusion “D”, let P € ricy(¢”,J) be arbitrary, and
define AP = P — P. Now our task is to show that ¢p is output stable and
I/O stable, and P > P. To clarify things, we first write the observability
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map of ¢* in I/O-form, by using formula (79), with ¢p in place of ¢, AP in
place of P, and so on. Recall that this formula does not require any stability
properties of any of the DLSs involved (apart from the boundedness of the
generating operators), because is solely based on the equivalence of DLSs
(and their feedbacks) in I/O-form and difference equation form, presented in
the sense of [21, Lemma 19 and Lemma 20]. We obtain

_ _ —1
Cio%)p = Clorma? = Cor = Dop Dy, Clor)ars

where the first equality is because (QSP)AP = (gbls)p, by equation (108). Fur-

1 o . . . .
thermore, D¢PD(¢p)Ap = D(¢P)AP, as causal, shift invariant operators in the

sequence space Seq(U), by formulae (79) and (80). But now (¢p)" = (¢7)p
implies that D, ar = D(¢15) in Seq(U). Because (¢p),p = ¢ by equation
P

(58) of Proposition 59, we get
(109) C¢P = C(¢}5)P + (D(d’ﬁ)},) . C¢ﬁ'

Because P € ricy(¢”,J) by assumption, both Cppyp + H — (X(Z;U)
and D(¢}3)P : (*(Z;U) — (*(Z;U) are bounded. Similarly Cy, : H —
(?(Z,;U) is bounded because P € ricy(¢,.J), by assumption. We now con-
clude that ¢p is output stable, because all the operators in equation (109) are
bounded between the corresponding (dense subspaces of the) Hilbert spaces
H, (*(Z,;U), and (*(Z;U).

We proceed to show the I/O stability of ¢p. As above, D¢PD(7¢];3)AP =
Dgpyar = D(¢;,)P in Seq(U). Also, Dyp),, = Dy, because (¢p)rp = ¢5.
Because the feed-through operator of the spectral DLS ¢5 is always the
invertible identity operator, it follows from Proposition 1 that Dy is a causal
bijection in Seq(U). It follows that Dy, = D(¢’5)PD¢15 in Seq(U). From

assumptions P € ricy(¢,.J) and P € ricg(gb}s, J) it follows that both Dy
and D(d’ﬁ) are bounded in ¢*(Z;U), and so is Dy,. We have now proved
P
that P € ric(¢, J), and thus Ric(¢p, Ap) is a H*DARE.
Because P € ricy(¢F, J), it follows from claim (iii) of Lemma 79 that

.\ P -
the I/O-map of the inner DLS ((Z)P) is I/O stable and (J, Ap)-inner. The

indicator Ap of P, as a solution of the inner DARE Ric(gbls, J), equals the
indicator Ap of P, as a solution of the original DARE Ric(¢, J). Because
.\ P
(¢P ) = ¢* by equation (57) of Proposition 59, it follows that Dyr is
(J, Ap)-inner.
Thus Dy = DyrDy, where both the factors are bounded. For the Popov
operator we get

D;JDy = (DyrDy,)  JDyrDy, = D;, - DypJDyr - Dy, = D ApDy,..
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Because we already know that P € ric(¢,J) , it follows that the residual
cost operator in I/O-form satisfies £, p = 0, by [26, claim (ii) of Lemma 52].
Because range(By) = H is assumed, it follows that Ly p = 0, by [26, claim
(iii) of Lemma 52|. We have now shown that P € ricy(®, J).

Because P, P € rico(¢, J), Lemma 97 implies that that AP := P — P ¢
rico(¢p, Ap). Because (¢p)2F = (¢F)p and P € rico(¢F, J), it follows that
the inner DLS (¢p)2F at solution AP is I/O stable. Because the DLS ¢p, the
cost operator Ap, and the solution AP € rico(pp, Ap) satisfy the conditions
of Theorem 96, it follows that AP > 0 and thus P > P. This completes the
proof. O
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15 Reduction of H*DARE to an inner DARE

In this section, we consider the H*DARE ric(¢, J) that has a regular critical
solution P§™ := (C§™)*JCS™ € rico(¢, J), where

(110) Co" := (I — 7 Dy(74 D, J Dyt ) ' 7. D5 J)Cy.

In essence, we show under technical assumptions that ric(¢,J) and
ric(¢F6™, J) are practically equivalent, as H*DAREs. Many of these re-
sults hold for general cost operator .J; the nonnegativity assumption J > 0
is required only when the sets rico(¢, J) and rico(¢™s",.J) of regular H™
solutions are related to each other.

Suppose we are interested in the H* solutions of H*DARE ric(¢, J). If
we know some solution P € ric(¢,J), we can study the (possibly non-H>)
inner DARE Ric(¢F, J) in place of the original ric(¢, J). Furthermore, under
the conditions of claim (iv) Lemma 79, if we can find a nonnegative solution
P € ricyy(¢, J) for J > 0, then the inner DARE Ric(qﬁﬁ, J) is essentially the
H®DARE ric(J¢",I), with an (I, A)-inner I/O-map J2D,5. If, in addi-
tion, the nonnegative cost operator J has a bounded inverse, then Ric(qﬁp, J)
itself is a H*DARE. We remark that an inner DLS ¢15 is generally not ob-
servable (i.e. ker(Cys) # {0}), and the semigroup generator Ap is generally
not even power bounded. i

In Lemmas 100 and 101 we have considered the solution set ricy(¢*, J)
for P > 0 and boundedly invertible J > 0. In this section, we give stronger
results in the particular case P = Pt where P is given by (110). The
I/O-map D¢P6:rit is now the (J, Apene)-inner factor N of the I/O-map Dy =

N X, and there is no need to assume a bounded inverse for J to make gbpocrit
output stable and I/O stable. The outer factor X of the I/O-map D, is
not very important from the Riccati equation point of view, as implied by
Theorem 105, the main result of this section. An important application of
these results is in the last section of [25].

We start by answering the uniqueness questions associated to various
critical operators.

Proposition 102. Let ¢ = (4 B) be an output stable and I/O stable DLS,
and J € L(Y) a self-adjoint cost operator. Assume that the reqular critical
solution Pg"* := (C§™*)*JC§™ € rico(, J) exists.

Then

(i) the critical indicators satisfy Apei = Apes for all critical petit ¢
Ricuw(¢a J);

(11) If range(By) = H, then the critical feedback operators satisfy Kpeie =
Kpgrie for all critical P € Ricyw(p,J). Furthermore, the closed loop
operators Apeie = Apocrit and Cpeie = CPgrit; where critical Pt ¢
Ricyw (9, J) is arbitrary. P{™t is the unique critical solution in the set
ricoo (@, J).
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(i11) If range(B,) = H, and the open loop semigroup A is strongly stable,
then there is only one critical solution P € Ricy, (¢, J), and it equals
Pocrit‘

We conclude that if range(B) = H, it makes sense to speak about the
critical (closed loop) feedback operator K the critical semigroup A
and critical output operator C°"*, because these are now independent of the
choice of the critical solution. In our earlier work [20, Definitions 7 and 10,
we defined the objects K<t Actt and Ot differently. We proceed to show
that under approximate controllability range(B4) = H, both these definitions
coincide. This makes it possible to write the inner DLS ¢F6"™ = (2;’(5: ﬁ)

0

in I/O-form, without explicit reference to the solution Pgit.

Proposition 103. Let J € L(Y) be a self-adjoint cost operator. Let ¢ =
(& B) be an output stable and I/O stable DLS, such that range(B;) = H.
Assume that there exists a regular critical solution P{ € ricy(¢, J).

Define the critical (closed loop) feedback operator

Kot = —(7, D JDyr;) ‘7. D} JC,

and the critical (closed loop) observability map Cg™ := Cy + DgK™™. By X
and N denote the (J, Ape)-inner and outer factors in the (J, Apen)-inner-
outer factorization Dy = N X.

Then

(i) Kpew = K, where K™ := moKC™™ with the natural identification of
spaces range(mg) and U,

(ii) the observability map of the spectral DLS satisfies Coppers = X jcerit,

0

(ZZZ) Apgrit = A + BKPOcrit = Acrit) where Acrit = A + B¢T*K0rit,

(iv) Cpesiv := C + DK pee = C, where O := mCy™ with the natural
identification of spaces range(my) and Y.

(v) In particular, the inner DLS ¢F5™ is given in I/O-form by the critical
(closed loop) DLS

111 (I)pézrit _ (Acrl.t)] B¢X71T*]

( ) C((;)rlt N

Proof. Let Dy = N'X be the (J, Apgm)—inner—outer factorization, where the
outer part X has a bounded inverse, and the feed-through operator is nor-
malized mo X7y = I. The existence of such factorization follows from the
assumption that the critical solution P exists, by [26, Theorem 27]. It
also follows that the Popov operator @D JDy7, has a bounded inverse,
and it follows that all the operators K%, K, A C&* and C°* are well
defined.
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Then, as in the proof of [19, Lemma 25|, it follows that the outer factor
X has the realization, written in I/O-form

. Aj B¢T*j
(112) dy = [_K gy ] ,

where K = —A;ﬂt./\/*JC(;,. On the other hand, the critical (closed loop)
0 .

feedback operator K := —(7,D}JDy7ty) "7, DjJCys can be written in

form Ko = X~ 1. K, by [19, Lemma 22]. We have now enough information

to translate the DLS @4 in formula (112) into difference equation form; we

have

(]‘13) QSX - (_;crit ?) ) Kcrit = 7TOICCI’ita

because Ty X'y = I implies that 1o X ~1my = I, and then moK = K. Note
that we have identified the spaces range(my) and U in the natural way.

Now, because P € ricy(¢, J) is a critical solution, the outer fac-
tor X can be expressed also as the I/O-map of the spectral DLS QSPOcrit =

(—Kigrit ? ) Because the controllability maps of ¢Pgm and ¢y coincide with

B4, we conclude that K|range(B,;) = K pgris|range(B,). By approximate

controllability, K = K Pt because both the operators are bounded. This

proves now claim (i), and claim (ii) immediately follows because K =Cy_;,
0

and Kt = X¥~1. K, as discussed above.

Claims (iii), (iv) and (v) are consequences of [21, Lemma 20|, where it
is shown that the state feedback structures of DLSs in I/O-form and differ-
ence equation form are equivalent. More precisely, the pairs [K,Z — X] and
(K¢t 0) are corresponding state feedback pairs for the (open loop) DLS ¢
in I/O-form and difference equation form, respectively. It follows that the
closed loop DLSs [, [K,Z — X]], in I/O-form and (¢, (K™, 0)), in differ-
ence equation form are equal, by [21, Lemma 20]. But these equal ®F™ and
T, extended by the equal feedback pairs. O

Now we have tools to find out how the continuity properties of ¢ are inherited
by the inner DLS ¢F5™".

Proposition 104. J € L(Y) a self-adjoint cost operator. Let ¢ = (& B) be
an output stable and I/0 stable DLS. Assume that range(By) = H, and the
(unique) reqular critical solution P{Tt € ricy(d, J) erists. Then

(i) ¢7" is output stable and I/O stable. The I/O-map of ¢*5" is the
(J, Apgrit)-inner factor N' of Dy = N'X'. Furthermore, ¢ is input stable

if and only of ¢P5m 18.
(ii) We have range(Bd)Pgrit) = H. If ¢ is input stable, then By (*(Z_;U) =
H if and only if B¢P8rit *(Z_;U)=H.
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Proof. In claim (i), the output stability and I/O stability of ¢75" follows
directly from equation (111) in Proposition 103. More precisely, the observ-
ability map C§™ is bounded because all operators in (110) are bounded by
our explicit assumptions; in particular, the inverse of the Popov operator
7. D} JDy, is bounded because Pg™ exists, see [26, Theorem 27]. Also the
1/O-map of ¢F™ is (J, Apere)-inner factor N of Dy, by equation (111).

To complete the proof, we first show that show that the bounded, anti-
causal Toeplitz operator m_ X 'm_ : (*(Z_;U) — ¢*(Z_;U) with a causal
symbol X! is a bijection in this space. Let us start with the surjectivity.
Let @ € (*(Z_;U) be arbitrary. Because X is outer with a bounded inverse,
it follows that X~ : (*(Z;U) — (*(Z;U) is a bounded, shift-invariant and
causal bijection. Thus there is a @ € ¢*(Z;U) such that 7_@ = X~'4. But
now

Ti=X'r o+ X T o=n X 0+ X 7.0

The causality of X~! implies that 7 X7, =0 and so m_& = m_X " 1m_ -
7_0. The surjectivity of m_ X ~'r_ follows because 7 o € (*(Z_;U).

We show the injectivity of =_X~'n_. Assume m_% € ¢*(Z_;U) is such
that 7~ X '7_o = 0. Then

0=XT_X 'm0 =XX"'r_o - X2, X 'n_o=nm_0 — X7, X '7_3,

or equivalently 7_9 = X7, X 'r_¢ = m_ X7, X~'7r_7. The causality of X
implies that 7 X7, = 0, and so 7o = 0. We conclude that the Toeplitz
operator 7_X 'm_ in injective, and thus a bounded bijection. It then follows
from the Open Mapping Theorem, that 7_X '7_ has a bounded inverse in
(*(Z_;U). Because B pgee = BsX ' = By 7w X 'm_ by equation (111) in

Proposition 103, the equivalence of the input stabilities of ¢ and ¢F5"" follows.
It remains to consider claims (ii) about the range of B¢P5rit. Again, we

have B¢P5rit = Byr_ - n_X 'm_. As a causal operator, 7_X ! maps the

domain of any controllability map (consisting of the sequences Seq_(U) C
¢*(Z_;U) that have only finitely many nonzero components) onto itself. This
implies that range(B;) = range(B¢PSrit), and the approximate controllability

claim follows. The (infinite time) exact controllability claim follows because
the Toeplitz operator 7_X~!'7_ is boundedly invertible. The proof is now
complete. O

Now that we have related the DLSs ¢ and gbpgm, we proceed to consider
the inner DARE ric(¢%"", J) and give the main result of this section. The
significance of the following theorem is that the structure of a H*DARE
does not essentially depend on the outer factor of D, if the cost operator J
is nonnegative. It is then possible, under proper technical assumptions, to
replace an original H*DARE ric(¢, J) by the inner H*DARE ric(¢5™", J)
that has a (J, Apgrit)—inner I/O-map. This result has an application in the
final section of [25].
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Theorem 105. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (4 B)

be an output stable and I/0 stable DLS, such that range(By) = H. Assume
that the regular critical solution P{™ € ricy(p, J) exists. Then the following
holds:

(i) The inner DARE Ric(¢75™,J) is a H°DARE. The full solution sets
satisfy Ric(¢, J) = Ric(¢To", J). The I/O-map D¢P5rit is the (J, Apgrc)-
inner factor N of Dy = N X.

(ii) The unique regular critical solution P&t .= (C;I;;cm> JC;I;Erit €
rico(¢F5™, J) satisfies Pt = perit

(1ii) Assume, in addition, the input space U and output space Y are sepa-
rable, the input operator B is Hilbert—Schmidt, and J > 0. Then

(114) rico(¢, J) = rice(¢F5, J).

Proof. By claim (i) of Proposition 104, ¢F5™ is output stable and I/O stable.
It follows that Ric(¢™5™,J) is a H*DARE. By claim (v) of Proposition
103, the I/O-map of ¢>P5“ is (J, Apgre)-inner. The full solution sets satisfy

Ric(¢,J) = Ric(¢™5™,J), by Lemma 65.
We prove claim (ii) by calculating an expression for the critical (closed
loop) observability map Ccﬁiﬁm for the inner DLS ¢ and the cost operator
¢ 0

J. Clearly, D SPE = = N = NT is the unique (J, Apesit)-inner-outer factoriza-

tion, where I is the unique outer factor whose feed-through operator is the
identity of U. By [19, claim (iii) of Lemma 22|, we obtain

(]_]_5) CCI;,Ent = ¢Pcr1t NA t7T+N* JC¢P0crit .

Pcrl

By claim (v) of Proposition 103, C¢P8‘“ = C¥t ) and again, by [19, claim (iii)
of Lemma 22]

(116) Cot =Cyp— N A;,Slmhf\/ *JCy,

because Dy = N X is the unique (J, Apocrit)—inner—outer factorization, where
X is the unique outer factor whose feed-through operator is the identity of
U. By combining equations (115) and (116), we obtain

Cczgm — <C¢ — NA;lriJT+N*JC¢>

— NALRNT (Co = NALF N IC, )

= C¢ - NAPmtTDFN JC¢ - NAPcntﬂJrN*ch,
+NA;,5rit7‘r+- (N*JNA . ) Ty N*ICy.

Pcrlt
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Because N*JN = Apocrit, the last two terms on the right hand side cancel
each other, and it follows

C;I;E:rit = C¢ — ./\/’A;glmﬁ'_,_,/\/’*JC(j, = C;rlt,
where the last equality is by [19, claim (iii) of Lemma 22|. Now claim (ii) is
verified.

We prove now the inclusion “C” of claim (iii). In fact, the inclusion “C”
of Lemma 101 is almost what we need, if we set P = P& € rico(¢, J). In
the proof of this lemma, the bounded inverse of the cost operator J > 0 was
only needed to show that ¢¥ is output stable and I/O stable. In the special
case when P = Pttt we know by Proposition 104 that ¢* is output stable
and I/O stable, even if J > 0 is not boundedly invertible. We now conclude
that

crit

{P € rico(d,]), | P <B}Cricy(¢™, ).

as in the proof of Lemma 101. By Theorem 96, Pt is the largest element of
the set rico(d, J), and P < Pt need not be explicitly written. The claimed
inclusion now follows.

The proof of the converse inclusion “2” is identical to that given in Lemma
101 for P = Pgrit. We remark that the invertibility of the cost operator J
is never used in the proof of this converse inclusion “D”. The proof is now
complete. O

The statement on Theorem 105 is in a perfect harmony with the following
intuitive observation of this paper: finding solutions for the H* Riccati
equation ric(¢, J) is related to moving in the lattice of the inner factors of
Dy. We remark that the input operator B € L(U : H) is required to be
Hilbert—-Schmidt and the cost operator J nonnegative only in claim (iii) of
Theorem 105. All the other results in this section hold for arbitrary B and
self-adjoint J.

Under the assumptions of claim (iii) of Theorem 105, it is enough to be
able to solve (numerically) H*DAREs with an inner I/O-map. To transform
¢ into ¢T3, we need not directly solve the original DARE ric(¢, J); the
regular critical solution P{™ can be computed from C;"it by using formula
(110). We remark that in this process, the most requiring thing is to calculate
the inverse of the (Toeplitz) Popov operator 7, D;JDy7 . At least when U
is finite dimensional, and there is some smoothness in the Popov function
e s Dy(e?)*JDy(e?), we can efficiently solve the required Toeplitz systems
of equations iteratively, see [23], [18], and [28]. We conclude that we have
some hope in this direction, even from the numerical analysis point of view.

So as to the numerical solution of the resulting H*DARE with an inner
I/O-map, things seem to be wide open. It is not even clear what a nice solver
would have to do, in order to be nice. Particularly interesting would be al-
gorithms that would not require the dimensionality of the state space, and
would not reduce the computation into some type of generalized eigenvalue
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problem. Such a solver could possibly be an iterative process, formulated
for infinite dimensional objects and without any discretization. State space
isomorphism techniques could be helpful, so that convenient (minimal) re-
alizations of D peic could be used instead. Some additional functionality

would have to be required, to enable such solver to move in the solution set
of DARE and to find a particular solution of interest. It is not clear, how the
natural lattice operations of the set rico(¢™",J) can be realized, without
replacing them by intersections and spans of subspaces. These problems we
leave open for the future research.
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