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Summary. A method is introduced for speeding up resonance computations for modelling
human speech production. In the method, a reduced order basis is constructed for treating the
exterior acoustic domain. This allows considerable reduction in the dimension of the eigenvalue
problem and leads to substantial savings in computational time.

1 Introduction

The computation of resonant frequencies of the vocal tract air volume is a central problem
in modelling human speech. The resonances are related to a quadratic eigenvalue problem1

which should be solved for several vocal tract geometries corresponding to different vowels. In
general, the exterior acoustic space is assumed not to affect the resonances, and the computa-
tional domain is limited only to the vocal tract volume. However, recent Magnetic Resonance
Imaging (MRI) measurements and simultaneous voice recordings indicate that this results in
an error of 2.1 semitones2. Motivated by this observation, we propose an efficient method for
including a realistic exterior space model into the resonance computation. The performance of
the proposed method is tested in a 2D benchmark problem.

For simplicity, we consider the following problem: Let Ω ⊂ R2. Find (λ, u) ∈ (R, H1
0 (Ω))

such that
(∇u,∇v) = λ(u, v) ∀v ∈ H1

0 (Ω), (1)

We assume that Ω = Ω1∪Ω2 where the distinct domains Ω1 and Ω2 correspond to the vocal tract
and the exterior domain of the acoustic space surrounding the head, respectively. The interface
between Ω1 and Ω2 is denoted by Γ = ∂Ω1 ∩ ∂Ω2. The physically meaningful eigenvalues lie
within a known range [λmin, λmax]. We note that when the speed of sound is set to one, the
computed eigenvalues are squares of the resonant frequencies.

In a typical simulation, Ω2 remains unchanged while Ω1 varies between different vowels and
patients. Due to the large number of degrees of freedom related to Ω2, solving the full eigenvalue
problem is too costly. Thus, we propose using a reduced basis for discretisation of the exterior
domain. We construct such a basis by solving several Helmholtz equations with different inputs
at the interface between the vocal tract and the surrounding space. This basis is computed only
once, and it remains unchanged when the vocal tract geometry Ω1 is varied. Similar domain
decomposition methods have been studied3 in the past, but due to the small size of the interface
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Γ they are not adequate for our purposes. In the context of acoustics, dimension reduction on
the exterior space has been used, e.g., for optimising loudspeaker horn design4.

We use the finite element method to discretise the eigenvalue problem and an iterative method
to solve it. In order to easily exchange different interior geometries, Nitsche’s method is used to
glue the interior and exterior finite element meshes together. This allows us to use non-matching
grids, which considerably simplifies the mesh generation for the interior domain. See Becker et
al.5 for a description of the Nitsche’s method.

2 The Method

Discretisation of problem (1) leads to the following generalised eigenvalue problem: Find
(λ,x) ∈ (R,RN ) such that

Ax = λMx, (2)

where A,M ∈ RN×N . Let N1,N2 be the set of degrees of freedom supported in Ω1 and Ω2,
respectively. This division allows us to decompose the discrete eigenvalue problem as[

A11 A12

A21 A22

] [
x1

x2

]
= λ

[
M11 M12

M21 M22

] [
x1

x2

]
, (3)

in which vector xi contains the coefficients related to degrees of freedom Ni. Since the domain
Ω2 is fixed over all computations, our aim is to eliminate the unknown x2. This elimination is
done only once, and it can be allowed to be computationally costly. From the second row in (3),
it follows that

(A22 − λM22)x2 = −(A21 − λM21)x1. (4)

Based on this expression, we could eliminate the unknown x2. However, the relation between
the two vectors x1 and x2 will be a λ-dependent linear mapping

B(λ) = −(A22 − λM22)−1(A21 − λM21). (5)

Thus, the direct elimination of x2 would lead to a non-linear eigenvalue problem which is not
desirable. Instead, we form an explicit approximation of B(λ), which is accurate in the interval
[λmin, λmax].

The matrix (A21 − λM21) connects the degrees of freedom in Ω1 and Ω2 that are joined
at the interface Γ. As such, it has a relatively low rank k. Let { q1, . . . , qk } be a set of
linearly independent vectors such that span{ q1, . . . , qk } = range(A21 − λM21), and define
Vλ := span{ (A22 − λM22)−1q1, . . . , (A22 − λM22)−1qk }. It follows from equation (4) that
x2 ∈ Vλ. Our method relies on finding x̃2 ∈ Vλi that approximates x2 well when λi ≈ λ.
Motivated by this, we construct a solution space W for the exterior domain Ω2 as

W = span(Vλ1 , . . . , Vλn), (6)

in which {λi }ni=1 ⊂ (λmin, λmax) is a pre-selected set of samples. In practice, we need to
construct a basis for this space. This is done by solving a series of problems

(A22 − λiM22)yij = qj . (7)
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Figure 1: The collection of interior domains used in our computations. From left to right: a midsection of
a vocal tract, a (0, 3)× (0, 1) rectangle, and union of the aforementioned rectangle and a circle of radius
2, centrepoint (4, 0.5). The interface Γ is drawn in a dotted line.

The sample vectors yij , will be linearly dependent. We form a matrix Y that has the sample
vectors yij as it’s columns. An orthormal basis for the space W can be obtained from the
columns of U where UΣV = Y is the SVD of Y . We truncate the basis by choosing the columns
of U that correspond to singular values σk satisfying σk > σ for some truncation lower bound
σ > 0. The corresponding truncated matrix is denoted by Ũ , and any vector in this basis can be
written as Ũα where α ∈ RNr . The original problem (3) can be reduced to the following lower
order eigenvalue problem[

A11 A12Ũ

Ũ∗A21 Ũ∗A22Ũ

] [
x1

α

]
= λ

[
M11 M12Ũ

Ũ∗M21 Ũ∗M22Ũ

][
x1

α

]
. (8)

The trick is to keep Nr as small as possible while maintaining accuracy, i.e., without excessively
increasing σ.

3 Numerical Experiments

We consider the fixed exterior domain Ω2 = (0, 30) × (0, 35) and three interior domains Ω1

that are pairwise connected at the same interface Γ = [0, 1]. The interior domains are shown in
Figure 1. The interface is placed on the domain Ω2 so that it lies in the middle of the longer
side. A basis for Ω2 is computed by using the method presented in Section 2. The sampling
points were linearly chosen from the interval [2, 5].

To measure the quality of the eigenvalues computed from the reduced problem, we use the
measure

dist(λ,Λh) := min
λh∈Λh

|λ− λh|, (9)

in which λ is a given eigenvalue of the full problem (2) and Λh is the set of eigenvalues for
the reduced problem. The measure dist(λ,Λh) is shown in Figure 2 as a function of λ for two
different numbers of sample points. We reach excellent accuracy when a sufficienly large number
of samples is used. The number of degrees of freedom in Ω2 is 3084, and the dimension of the
reduced basis is 278 with 301 sample points {λj } and σ = 10−6. The number of eigenvalues
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of the full problem on the interval [2, 5] is 200. In our implementation, the computational time
for the full eigenvalue problem was 19.4 seconds, whereas the reduced problem only took 6.6
seconds after the basis was formed.

To quantify the effect of the sample points to the accuracy of the method on the interval
[λmin, λmax], we use the measure

s2 =
∑

λmin<λi<λmax

dist(λi,Λh)2. (10)

The measure s is plotted in Figure 2 as a function of the dimension of the reduced basis.
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Figure 2: Left: The error measure defined in (9) using the 2D vocal tract geometry as Ω1. The distance
between two adjacent sample points was 0.05 and 0.01. Right: The measure s defined in (10) using the
three different geometries for Ω1.

We observe that the method converges rapidly regardless of the interior geometry used. The
method was found to be promising but proper mathematical analysis of eigenvalue convergence
for the reduced problem is needed. In addition, a better sampling strategy is likely to be required
to handle real world geometries.

REFERENCES

[1] Hannukainen, A., Lukkari, T., Malinen, J. & Palo, P. Vowel formants from the wave equation.
Journal of the Acoustical Society of America Express Letters 122, EL1–EL7 (2007).

[2] Aalto, D. et al. Large scale data acquisition of simultaneous MRI and speech. Applied
Acoustics 83, 64–75 (2014).

[3] Bourquin, F. Application of domain decomposition techniques to modal synthesis for eigen-
value problems. In Fifth International Symposium on Domain Decomposition Methods for
Partial Differential Equations, 214–222 (1992).

[4] Udawalpola, R., Wadbro, E. & Berggren, M. Optimization of a variable mouth acoustic
horn. International Journal for Numerical Methods in Engineering 85, 591–606 (2011).

[5] Becker, R., Hansbo, P. & Stenberg, R. A finite element method for domain decomposition
with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis 37,
209–225 (2003).

4


	Introduction
	The Method
	Numerical Experiments

