Existence for evolutionary problems with linear growth by stability methods

Leah Schätzler

Friedrich-Alexander-Universität Erlangen-Nürnberg

Workshop on Nonlinear Parabolic PDEs Institut Mittag-Leffler, June 11th-15th, 2018

Joint work with

- Verena Bögelein (Salzburg)
- Frank Duzaar (Erlangen-Nürnberg)
- Christoph Scheven (Duisburg-Essen)

The Cauchy-Dirichlet problem

Basic data:

- Dimensions $n, N \in \mathbb{N}$.
- $\Omega \subset \mathbb{R}^n$ bounded Lipschitz domain, $0 < T < \infty$, $\Omega_T := \Omega \times (0,T)$.
- Time dependent boundary values $g \colon \Omega_T \to \mathbb{R}^N$.
- Integrand $f: \Omega \times \mathbb{R}^{N \times n} \to \mathbb{R}$ satisfying a linear growth condition, convex with respect to the gradient variable.

Cauchy-Dirichlet problem: Find $u \colon \Omega_T \to \mathbb{R}^N$ such that

$$\left\{ \begin{array}{ll} \partial_t u - \operatorname{div}(D_\xi f(x,Du)) = 0 & \text{in } \Omega_T, \\[0.2cm] u = g & \text{on } \partial_{par}\Omega_T. \end{array} \right.$$

The integrand

Assumptions:

- Borel measurable.
- Linear growth and coercivity condition

$$\nu|\xi| \le f(x,\xi) \le L(1+|\xi|)$$

for all $x \in \Omega$, $\xi \in \mathbb{R}^{N \times n}$ with constants $0 < \nu \le L$.

- $\xi \mapsto f(x,\xi)$ convex for a.e. $x \in \Omega$.
- Continuity condition (explained later).

Functionals with linear growth - Choice of function space

Consider the elliptic functional

$$\mathbf{F}[u] := \int_{\Omega} f(x, Du) \, \mathrm{d}x.$$

- **F** is finite on $W^{1,1}(\Omega, \mathbb{R}^N)$.
- Under the conditions above or even reasonable extra assumptions, \mathbf{F} does not attain its minimum in any Dirichlet class $W^{1,1}_{u_o}(\Omega,\mathbb{R}^N)$.
- Therefore, extend \mathbf{F} to $\mathrm{BV}(\Omega,\mathbb{R}^N)$.

Functionals with linear growth – Boundary values

Solid Dirichlet boundary values:

- The trace operator is not continuous with respect to weak* convergence in $\mathrm{BV}(\Omega,\mathbb{R}^N)$.
- Therefore, dealing with boundary values is delicate.
- Consider a reference set Ω^* compactly containing Ω .
- For a reference function $u_o \in \mathrm{BV}(\Omega^*, \mathbb{R}^N)$ define $\mathrm{BV}_{u_o}(\Omega, \mathbb{R}^N)$ as the space of functions $u \in \mathrm{BV}(\Omega^*, \mathbb{R}^N)$, which satisfy $u = u_o$ a.e. on $\Omega^* \setminus \overline{\Omega}$.

Functionals with linear growth - Boundary values

Solid Dirichlet boundary values:

- The trace operator is not continuous with respect to weak* convergence in $BV(\Omega, \mathbb{R}^N)$.
- Therefore, dealing with boundary values is delicate.
- Consider a reference set Ω^* compactly containing Ω .
- For a reference function $u_o \in \mathrm{BV}(\Omega^*, \mathbb{R}^N)$ define $\mathrm{BV}_{u_o}(\Omega, \mathbb{R}^N)$ as the space of functions $u \in \mathrm{BV}(\Omega^*, \mathbb{R}^N)$, which satisfy $u = u_o$ a.e. on $\Omega^* \setminus \overline{\Omega}$.

Extended integrand: Borel measurable function $f \colon \Omega^* \times \mathbb{R}^{N \times n} \to [0, \infty)$ such that

- $\nu|\xi| \le f(x,\xi) \le L(1+|\xi|)$ for all $x \in \Omega^*$, $\xi \in \mathbb{R}^{N \times n}$,
- $\xi \mapsto f(x,\xi)$ convex for a.e. $x \in \Omega^*$.

Functionals with linear growth - Recession function

Definition (Recession function)

The recession function $f^{\infty} \colon \overline{\Omega^*} \times \mathbb{R}^{N \times n} \to \mathbb{R}$ is defined by

$$f^{\infty}(x,\xi) := \lim_{\substack{\tilde{x} \to x, \tilde{\xi} \to \xi \\ t \downarrow 0}} \inf tf\left(\tilde{x},t^{-1}\tilde{\xi}\right) \qquad \text{for } (x,\xi) \in \overline{\Omega^*} \times \left(\mathbb{R}^{N \times n} \setminus \{0\}\right),$$

and
$$f^{\infty}(x,0) := 0$$
 for $x \in \overline{\Omega^*}$.

• Takes into account the jumps of BV functions.

Functionals with linear growth - Recession function

Definition (Recession function)

The recession function $f^\infty\colon \overline{\Omega^*} \times \mathbb{R}^{N \times n} \to \mathbb{R}$ is defined by

$$f^{\infty}(x,\xi) := \lim_{\substack{\tilde{x} \to x, \tilde{\xi} \to \xi \\ t \downarrow 0}} \inf tf\left(\tilde{x},t^{-1}\tilde{\xi}\right) \qquad \text{for } (x,\xi) \in \overline{\Omega^*} \times \left(\mathbb{R}^{N \times n} \setminus \{0\}\right),$$

and
$$f^{\infty}(x,0) := 0$$
 for $x \in \overline{\Omega^*}$.

- Takes into account the jumps of BV functions.
- Continuity assumption: For every $(x,\xi) \in \overline{\Omega^*} \times (\mathbb{R}^{N \times n} \setminus \{0\})$,

$$\lim_{\substack{\tilde{x}\to x, \tilde{\xi}\to \xi\\t\downarrow 0}} tf\big(\tilde{x},t^{-1}\tilde{\xi}\big) \text{ exists in } \mathbb{R}.$$

This condition ensures that f^{∞} is continuous on $\overline{\Omega^*} \times \mathbb{R}^{N \times n}$.

Functionals with linear growth – Extended functional

Notation:

- $D^a u$ is the absolutely continuous part of the Lebesgue decomposition of Du with respect to \mathcal{L}^n .
- $D^s u$ is the singular part of the Lebesgue decomposition of Du with respect to \mathcal{L}^n .
- ∇u denotes the Radon-Nikodym density of $D^a u$ with respect to \mathcal{L}^n .

Extended functional: Define $\mathcal{F} \colon \mathrm{BV}(\Omega,\mathbb{R}^N) \to [0,\infty)$ by

$$\mathcal{F}[u] := \int_{\Omega^*} f(x, \nabla u) \, \mathrm{d}x + \int_{\Omega^*} f^{\infty} \left(x, \frac{D^s u}{|D^s u|} \right) \, \mathrm{d}|D^s u|.$$

Parabolic function spaces related to $BV(\Omega, \mathbb{R}^N)$

- Note that $\mathrm{BV}(\Omega^*,\mathbb{R}^N)$ is not separable. Therefore, we have problems with the Bochner measurability condition of $L^1(0,T;\mathrm{BV}(\Omega^*,\mathbb{R}^N))$.
- Use $L^1_{w*}(0,T;\mathrm{BV}(\Omega^*,\mathbb{R}^N))$, the space of weakly* measurable maps $u\colon (0,T)\to \mathrm{BV}(\Omega^*,\mathbb{R}^N)$ with $t\mapsto \|u(t)\|_{\mathrm{BV}(\Omega^*,\mathbb{R}^N)}\in L^1(0,T)$.

Parabolic function spaces related to $BV(\Omega, \mathbb{R}^N)$

- Note that $\mathrm{BV}(\Omega^*,\mathbb{R}^N)$ is not separable. Therefore, we have problems with the Bochner measurability condition of $L^1(0,T;\mathrm{BV}(\Omega^*,\mathbb{R}^N))$.
- Use $L^1_{w*}(0,T;\mathrm{BV}(\Omega^*,\mathbb{R}^N))$, the space of weakly* measurable maps $u\colon (0,T)\to \mathrm{BV}(\Omega^*,\mathbb{R}^N)$ with $t\mapsto \|u(t)\|_{\mathrm{BV}(\Omega^*,\mathbb{R}^N)}\in L^1(0,T)$.
- For $g \in L^1_{w*}(0,T;\mathrm{BV}(\Omega^*,\mathbb{R}^N)), \ g + L^1_{w*}(0,T;\mathrm{BV}_0(\Omega,\mathbb{R}^N))$ denotes the affine subspace of functions $u \in L^1_{w*}(0,T;\mathrm{BV}(\Omega^*,\mathbb{R}^N))$ that satisfy $u(t) \in g(t) + \mathrm{BV}_0(\Omega,\mathbb{R}^N)$ for a.e. $t \in (0,T)$.

Assumptions on the boundary values

- $g \in L^1(0,T;W^{1,1}(\Omega^*,\mathbb{R}^N));$
- $\partial_t g \in L^1(0,T;L^2(\Omega^*,\mathbb{R}^N));$
- $g_o := g(0) \in L^2(\Omega^*, \mathbb{R}^N).$

Variational solutions

Definition (Variational solutions)

Assume that the integrand f, the functional ${\cal F}$ and the boundary values g are as above. A function

$$u \in L^{\infty}(0,T; L^{2}(\Omega^{*},\mathbb{R}^{N})) \cap (g + L^{1}_{w*}(0,T; \mathrm{BV}_{0}(\Omega,\mathbb{R}^{N})))$$

is a variational solution associated with f and g if and only if the variational inequality

$$\int_{0}^{\tau} \mathcal{F}[u] dt \leq \iint_{\Omega_{\tau}^{*}} \partial_{t} v \cdot (v - u) dx dt + \int_{0}^{\tau} \mathcal{F}[v] dt$$
$$- \frac{1}{2} \| (v - u)(\tau) \|_{L^{2}(\Omega^{*}, \mathbb{R}^{N})}^{2} + \frac{1}{2} \| v(0) - g_{o} \|_{L^{2}(\Omega^{*}, \mathbb{R}^{N})}^{2}$$

holds true for a.e. $\tau \in [0,T]$ and any comparison map $v \in g + L^1_{w*}(0,T;\mathrm{BV}_0(\Omega,\mathbb{R}^N))$ with $\partial_t v \in L^1(0,T;L^2(\Omega^*,\mathbb{R}^N))$ and $v(0) \in L^2(\Omega^*,\mathbb{R}^N)$.

Approximation of the Cauchy-Dirichlet problem

Approximation of the integrand:

- For p > 1, consider f^p .
- Standard *p* growth and coercivity condition

$$\nu^p |\xi|^p \le f^p(x,\xi) \le 2^p L^p (1+|\xi|^p)$$

for all $x \in \Omega^*$, $\xi \in \mathbb{R}^{N \times n}$.

 $\bullet \ \xi \mapsto f^p(x,\xi) \ \text{convex for a.e.} \ x \in \Omega^*.$

Assumptions on the boundary values:

- $g_p \in L^p(0,T;W^{1,p}(\Omega^*,\mathbb{R}^N));$
- $\partial_t g_p \in L^1(0,T;L^2(\Omega^*,\mathbb{R}^N));$
- $g_{p,o} := g_p(0) \in L^2(\Omega^*, \mathbb{R}^N)$.

Variational solutions for p > 1

Definition (Variational solutions, p > 1)

Assume that p>1 and that the integrand f and boundary values g_p are as above. A function

$$u \in C^0([0,T]; L^2(\Omega,\mathbb{R}^N)) \cap (g_p + L^p(0,T; W_0^{1,p}(\Omega,\mathbb{R}^N)))$$

is a variational solution associated with f^p and g_p if and only if the variational inequality

$$\iint_{\Omega_{\tau}} f^{p}(x, Du) \, dx dt \leq \iint_{\Omega_{\tau}} \partial_{t} v \cdot (v - u) \, dx dt + \iint_{\Omega_{\tau}} f^{p}(x, Dv) \, dx dt \\
- \frac{1}{2} \|(v - u)(\tau)\|_{L^{2}(\Omega, \mathbb{R}^{N})}^{2} + \frac{1}{2} \|v(0) - g_{p,o}\|_{L^{2}(\Omega, \mathbb{R}^{N})}^{2}$$

holds true for any $\tau \in [0,T]$ and any comparison map $v \in g_p + L^p(0,T;W_0^{1,p}(\Omega,\mathbb{R}^N))$ with $\partial_t v \in L^1(0,T;L^2(\Omega,\mathbb{R}^N))$ and $v(0) \in L^2(\Omega,\mathbb{R}^N)$.

Existence of variational solutions for p > 1

- Existence result for $\partial_t g \in L^2(\Omega_T, \mathbb{R}^N)$ has already been established.
- Refined existence result for $\partial_t g \in L^1(0,T;L^2(\Omega,\mathbb{R}^N))$ by approximation.

Further assumptions

Exponents:

- $p_i > 1$ for $i \in \mathbb{N}$,
- $p_i \downarrow 1$ as $i \to \infty$.

Convergence assumptions on $g_i := g_{p_i}$:

- $g_i \to g$ in $L^1(0,T;W^{1,1}(\Omega^*,\mathbb{R}^N))$;
- $g_i \stackrel{*}{\rightharpoondown} g$ weakly* in $L^{\infty} \big(0,T;L^2(\Omega^*,\mathbb{R}^N)\big);$
- ullet $\partial_t g_i o \partial_t g$ in $L^1 ig(0, T; L^2 (\Omega^*, \mathbb{R}^N) ig);$
- $\lim_{i \to \infty} \iint_{\Omega_T^*} |Dg_i|^{p_i} dxdt = \iint_{\Omega_T^*} |Dg| dxdt.$

Further assumptions

Exponents:

- $p_i > 1$ for $i \in \mathbb{N}$,
- $p_i \downarrow 1$ as $i \to \infty$.

Convergence assumptions on $g_i := g_{p_i}$:

- $g_i \to g$ in $L^1(0,T;W^{1,1}(\Omega^*,\mathbb{R}^N))$;
- $g_i \stackrel{*}{\rightharpoondown} g$ weakly* in $L^{\infty}(0,T;L^2(\Omega^*,\mathbb{R}^N))$;
- $\partial_t g_i \to \partial_t g$ in $L^1(0,T;L^2(\Omega^*,\mathbb{R}^N))$;
- $\lim_{i \to \infty} \iint_{\Omega_T^*} |Dg_i|^{p_i} dxdt = \iint_{\Omega_T^*} |Dg| dxdt.$

Variational solution associated with f^{p_i} and g_i :

$$u_i \in C^0\left([0,T]; L^2(\Omega,\mathbb{R}^N)\right) \cap \left(g_i + L^{p_i}\left(0,T; W_0^{1,p_i}(\Omega,\mathbb{R}^N)\right)\right).$$

The main result

Theorem (Existence and stability result)

Assume that the sequence $(p_i)_{i\in\mathbb{N}}$, the integrand f, the functional \mathcal{F} , the boundary values g and g_i and the variational solutions u_i are as above. Then, there exists a subsequence $(u_{i_k})_{k\in\mathbb{N}}$ and

$$u \in L^{\infty}(0,T; L^{2}(\Omega^{*},\mathbb{R}^{N})) \cap (g + L^{1}_{w^{*}}(0,T; \mathrm{BV}_{0}(\Omega,\mathbb{R}^{N})))$$

such that

$$\left\{ \begin{array}{ll} u_{i_k} \to u & \text{in } L^1(\Omega_T, \mathbb{R}^N), \\ u_{i_k} \stackrel{*}{\to} u & \text{weakly* in } L^\infty \left(0, T; L^2(\Omega, \mathbb{R}^N)\right) \end{array} \right.$$

as $k \to \infty$. The limit function u is a variational solution associated with f and g.

Known existence results for the total variation flow

- Andreu, Ballester, Caselles & Mazón (2001):
 - Notion of entropy solutions.
 - Cauchy-Dirichlet problem with initial datum in L¹ and time independent boundary values.
 - Proof by nonlinear semigroup theory.
- Andreu, Mazón & Moll (2005):
 - Nonlinear boundary condition.
 - ▶ For initial data in L^2 , entropy solutions are strong solutions.
 - Proof of the existence result by nonlinear semigroup theory.
- Bögelein, Duzaar & Scheven (2016):
 - Notion of variational solutions.
 - ightharpoonup Cauchy-Dirichlet problem with initial datum in L^2 and time dependent boundary values.
 - Proof via method of minimizing movements.

Known existence results for other equations

- Lichnewsky & Temam (1978):
 - ► Time dependent minimal surface problem.
 - Notion of variational solutions.
 - Cauchy-Dirichlet problem with time independent boundary values.
 - ▶ Proof by parabolic regularization.
- Andreu, Caselles & Mazón (2002):
 - ▶ Equations of the type $\partial_t u \operatorname{div}(D_\xi f(x,Du)) = 0$, where f satisfies a linear growth condition, $\xi \mapsto f(x,\xi)$ is convex and in $C^1(\mathbb{R}^n)$ and f^∞ is continuous.
 - ▶ This excludes the total variation flow.
 - Notion of entropy solutions.
 - Cauchy-Dirichlet problem with time independent boundary values.

Known stability results

- Tölle (2011):
 - Total variation flow.
 - Cauchy-Dirichlet problem with zero boundary values and Cauchy-Neumann problem.
 - ▶ Convergence of solutions strongly in $L^{\infty}(0,T;L^2(\Omega))$.
 - Proof by Mosco convergence of the associated functionals.
- Gianazza & Klaus (2017):
 - Total variation flow.
 - Notion of variational solutions.
 - Cauchy-Dirichlet problem with time independent boundary values.
 - ▶ Proof relies on a density result.

Possible extensions

- Free boundary values.
- Equations including a lower order term, i.e.

$$\partial_t u - \operatorname{div}(D_{\xi} f(x, Du)) = -D_u g(x, u).$$

• Strong convergence in $L^{\infty}(0,T;L^2(\Omega,\mathbb{R}^N)).$

Proof sketch - Convergence of variational solutions I

- Without loss of generality, assume that $p_i \leq 2$ for all $i \in \mathbb{N}$.
- By suitable energy bounds, $(u_i)_{i\in\mathbb{N}}$ is bounded in $L^{\infty}(0,T;L^2(\Omega,\mathbb{R}^N))\cap L^1(0,T;W^{1,1}(\Omega,\mathbb{R}^N)).$
- $u_i \stackrel{*}{\to} u$ weakly* in $L^{\infty}(0,T;L^2(\Omega^*,\mathbb{R}^N))$ for a (not relabelled) subsequence.

Proof sketch - Convergence of variational solutions I

- Without loss of generality, assume that $p_i \leq 2$ for all $i \in \mathbb{N}$.
- By suitable energy bounds, $(u_i)_{i\in\mathbb{N}}$ is bounded in $L^{\infty}(0,T;L^2(\Omega,\mathbb{R}^N))\cap L^1(0,T;W^{1,1}(\Omega,\mathbb{R}^N)).$
- $u_i \stackrel{*}{\to} u$ weakly* in $L^{\infty}(0,T;L^2(\Omega^*,\mathbb{R}^N))$ for a (not relabelled) subsequence.
- \tilde{u}_i denotes the extension of u_i to Ω^* by g_i .
- By a lemma concerning the regularity of the limit map and since $g_i \stackrel{*}{\rightharpoonup} g$ in $L^{\infty}(0,T;L^2(\Omega^*,\mathbb{R}^N))$ as $i \to \infty$, conclude that

$$\tilde{u}_i \overset{*}{\rightharpoondown} u$$
 weakly* in $L^\infty(0,T;L^2(\Omega^*,\mathbb{R}^N))$

for a limit map

$$u \in L^{\infty}(0,T;L^2(\Omega^*,\mathbb{R}^N)) \cap (g + L^1_{w*}(0,T;\mathrm{BV}_0(\Omega,\mathbb{R}^N))).$$

Proof sketch - Convergence of variational solutions II

Show that

$$\int_0^{T-h} \|u_i(t+h) - u_i(t)\|_{W^{-\ell,2}(\Omega,\mathbb{R}^N)} dt \le c \|Du_i\|_{L^{p_i}(\Omega_T,\mathbb{R}^N)}^{p_i-1} h^{\frac{1}{2}}$$

for all $p_i \leq 2$, $\ell \geq 1$ with a constant $c = c(Nn, \ell, L, |\Omega|, T)$.

 \bullet For $\ell \geq \frac{n}{2}$ apply the Jacques Simon lemma with p=1 and the spaces

$$W^{1,1}(\Omega, \mathbb{R}^N) \subset L^1(\Omega, \mathbb{R}^N) \subset W^{-\ell,2}(\Omega, \mathbb{R}^N).$$

This yields $u_i \to u$ in $L^1(\Omega_T, \mathbb{R}^N)$.

ullet Since $g_i o g$ in $L^1(\Omega^*_T,\mathbb{R}^N)$, conclude that

$$\tilde{u}_i \to u \text{ in } L^1(\Omega_T^*, \mathbb{R}^N).$$

Proof sketch - Preliminary variational inequality I

• Choose $g_i + w$ for some $w \in L^2(0,T;W_0^{1,2}(\Omega,\mathbb{R}^N))$ with $\partial_t w \in L^1(0,T;L^2(\Omega,\mathbb{R}^N))$ and $w(0) \in L^2(\Omega,\mathbb{R}^N)$. as comparison map in the variational inequality associated with f^{p_i} and g_i , i.e.

$$\iint_{\Omega_{\tau}^{*}} f^{p_{i}}(x, D\tilde{u}_{i}) \, dx dt \leq \iint_{\Omega_{\tau}^{*}} \partial_{t}(g_{i} + w) \cdot (g_{i} + w - \tilde{u}_{i}) \, dx dt
+ \iint_{\Omega_{\tau}^{*}} f^{p_{i}}(x, D(g_{i} + w)) \, dx dt
- \frac{1}{2} \|(g_{i} + w - \tilde{u}_{i})(\tau)\|_{L^{2}(\Omega^{*}, \mathbb{R}^{N})}^{2}
+ \frac{1}{2} \|w(0)\|_{L^{2}(\Omega^{*}, \mathbb{R}^{N})}^{2}.$$

• Aim: let $i \to \infty$.

Proof sketch - Preliminary variational inequality II

- To treat the boundary term $\frac{1}{2} \|(g_i + w \tilde{u}_i)(\tau)\|_{L^2(\Omega^*,\mathbb{R}^N)}^2$, take the mean integral of the previous inequality over $(t_o, t_o + \delta)$ for $t_o \in (0,T)$ and $\delta < T t_o$.
- Deduce from $\tilde{u}_i \to u$ in $L^1(\Omega_T^*, \mathbb{R}^N)$ by Reshetnyak's lower semicontinuity theorem, Fatou's lemma and Hölder's inequality that

$$\int_0^{t_o} \mathcal{F}[u] dt \le \left[\iint_{\Omega_{t_o}^*} f^{p_i}(x, D\tilde{u}_i) dx dt \right]^{\frac{1}{p_i}}.$$

Proof sketch - Preliminary variational inequality III

ullet By the convergence assumptions on g_i and the properties of f, infer

$$\begin{split} \int_0^{t_o} \boldsymbol{\mathcal{F}}[u] \, \mathrm{d}t & \leq \int_{t_o}^{t_o + \delta} \iint_{\Omega_\tau^*} \partial_t (g + w) \cdot (g + w - u) \, \mathrm{d}x \mathrm{d}t \mathrm{d}\tau \\ & + \iint_{\Omega_{t_o + \delta}^*} f(x, D(g + w)) \, \mathrm{d}x \mathrm{d}t \\ & - \int_{t_o}^{t_o + \delta} \frac{1}{2} \|(g + w - u)(\tau)\|_{L^2(\Omega^*, \mathbb{R}^N)}^2 \mathrm{d}\tau \\ & + \frac{1}{2} \|w(0)\|_{L^2(\Omega^*, \mathbb{R}^N)}^2 \end{split}$$

for any $w \in L^2(0,T;W^{1,2}_0(\Omega,\mathbb{R}^N)).$

- Next, replace w by a function $v \in L^1_{w*}(0,T;\mathrm{BV}_0(\Omega,\mathbb{R}^N))$ with $\partial_t v \in L^1(0,T;L^2(\Omega^*,\mathbb{R}^N))$ and $v(0) \in L^2(\Omega^*,\mathbb{R}^N)$.
- To this end, consider suitable mollifications $w:=M_{\varepsilon}[v].$

Proof sketch – Definition of regularizations

- Inner parallel set $\Omega_{\varepsilon} := \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \varepsilon\}.$
- Cut-off function η_{ε} with $\eta_{\varepsilon} \equiv 0$ on $\mathbb{R}^n \setminus \Omega_{\varepsilon}$, $\eta_{\varepsilon} \equiv 1$ on $\Omega_{\varepsilon + \sqrt{\varepsilon}}$ and

$$\eta_\varepsilon(x) := \frac{\operatorname{dist}(x,\partial\Omega) - \varepsilon}{\sqrt{\varepsilon}} \quad \text{on } \Omega_\varepsilon \setminus \Omega_{\varepsilon + \sqrt{\varepsilon}}.$$

- Standard mollifier ϕ_{ε} in \mathbb{R}^n .
- ullet For v as above, define $M_{arepsilon}[v]:=(\eta_{arepsilon}v)*\phi_{arepsilon}.$

Proof sketch – Some properties of the regularizations

- $M_{\varepsilon}[v] \in C^0([0,T]; W_0^{1,2}(\Omega, \mathbb{R}^N));$
- $M_{\varepsilon}[v](0) \to v(0)$ in $L^2(\mathbb{R}^n, \mathbb{R}^N)$;
- $M_{\varepsilon}[v] \to v$ in $L^2(\mathbb{R}^n \times (0,T),\mathbb{R}^N)$ as $\varepsilon \downarrow 0$;
- $||M_{\varepsilon}[v]||_{L^{\infty}(0,T;L^{2}(\mathbb{R}^{n},\mathbb{R}^{N}))} \le ||v||_{L^{\infty}(0,T;L^{2}(\mathbb{R}^{n},\mathbb{R}^{N}))};$
- $\partial_t M_{\varepsilon}[v] \to \partial_t v$ in $L^1(0,T;L^2(\Omega,\mathbb{R}^N))$ as $\varepsilon \downarrow 0$.

Proof sketch - First conclusions

These properties allow us to treat

•
$$\int_{t_o}^{t_o+\delta} \iint_{\Omega_{\tau}^*} \partial_t (g + M_{\varepsilon}[v]) \cdot (g + M_{\varepsilon}[v] - u) \, dx dt d\tau$$
;

$$\oint_{t_o}^{t_o+\delta} \frac{1}{2} \|(g+M_{\varepsilon}[v]-u)(\tau)\|_{L^2(\Omega^*,\mathbb{R}^N)}^2 d\tau;$$

• $\frac{1}{2} \| M_{\varepsilon}[v](0) \|_{L^{2}(\Omega^{*}, \mathbb{R}^{N})}^{2}$.

Remaining term:

$$\iint_{\Omega_{t_o+\delta}^*} f(x, D(g+M_{\varepsilon}[v])) \, \mathrm{d}x \, \mathrm{d}t.$$

Proof sketch – Further properties of the regularizations

• For any function $g \in L^1(0,T;W^{1,1}(\mathbb{R}^n,\mathbb{R}^N))$ and a.e. $t \in [0,T]$

$$\begin{cases} DM_{\varepsilon}[v](t) \xrightarrow{*} Dv(t) \text{ weakly* in } \mathrm{RM}(\mathbb{R}^n; \mathbb{R}^{N \times n}), \\ \big| (\mathcal{L}^n, Dg(t) + DM_{\varepsilon}[v](t)) \big| (\overline{\Omega^*}) \to \big| (\mathcal{L}^n, Dg(t) + Dv(t)) \big| (\overline{\Omega^*}) \end{cases}$$
 in the limit $\varepsilon \downarrow 0$.

• This is called area-strict convergence, because

$$|(\mathcal{L}^n, \mu)|(\overline{\Omega^*}) = \int_{\Omega^*} \sqrt{1 + \mu^a} \, \mathrm{d}x + |\mu^s|(\overline{\Omega^*}).$$

Proof sketch – Further properties of the regularizations

• For any function $g \in L^1(0,T;W^{1,1}(\mathbb{R}^n,\mathbb{R}^N))$ and a.e. $t \in [0,T]$

$$\begin{cases} DM_{\varepsilon}[v](t) \xrightarrow{*} Dv(t) \text{ weakly* in } \mathrm{RM}(\mathbb{R}^n; \mathbb{R}^{N \times n}), \\ \big| (\mathcal{L}^n, Dg(t) + DM_{\varepsilon}[v](t)) \big| (\overline{\Omega^*}) \to \big| (\mathcal{L}^n, Dg(t) + Dv(t)) \big| (\overline{\Omega^*}) \end{cases}$$
 in the limit $\varepsilon \downarrow 0$.

• This is called area-strict convergence, because

$$|(\mathcal{L}^n, \mu)|(\overline{\Omega^*}) = \int_{\Omega^*} \sqrt{1 + \mu^a} \, \mathrm{d}x + |\mu^s|(\overline{\Omega^*}).$$

Proof sketch - Further properties of the regularizations

• For any function $g \in L^1(0,T;W^{1,1}(\mathbb{R}^n,\mathbb{R}^N))$ and a.e. $t \in [0,T]$

$$\begin{cases} DM_{\varepsilon}[v](t) \stackrel{*}{\rightharpoondown} Dv(t) \text{ weakly* in } \mathrm{RM}(\mathbb{R}^n; \mathbb{R}^{N \times n}), \\ \big| (\mathcal{L}^n, Dg(t) + DM_{\varepsilon}[v](t)) \big| (\overline{\Omega^*}) \rightarrow \big| (\mathcal{L}^n, Dg(t) + Dv(t)) \big| (\overline{\Omega^*}) \end{cases}$$
 in the limit $\varepsilon \downarrow 0$.

• This is called area-strict convergence, because

$$|(\mathcal{L}^n, \mu)|(\overline{\Omega^*}) = \int_{\Omega^*} \sqrt{1 + \mu^a} \, \mathrm{d}x + |\mu^s|(\overline{\Omega^*}).$$

 $\bullet \sup_{\varepsilon \in (0,1)} \big| DM_{\varepsilon}[v](t) \big| (\mathbb{R}^n) \le c(\partial \Omega) |Dv(t)| (\overline{\Omega}).$

Proof sketch - The remaining term

 By Reshetnyak's continuity theorem, deduce from the area-strict convergence property that

$$\int_{\Omega^*} f(x, D(g(t) + M_{\varepsilon}[v](t))) dx \to \mathcal{F}[g(t) + M_{\varepsilon}[v](t)]$$

for a.e. $t \in [0, T]$ as $\varepsilon \downarrow 0$.

• Apply the dominated convergence theorem.

Proof sketch - Conclusion

Conclude that

$$\int_{0}^{t_{o}} \mathcal{F}[u] dt \leq \int_{t_{o}}^{t_{o}+\delta} \iint_{\Omega_{\tau}^{*}} \partial_{t}(g+v) \cdot (g+v-u) dx dt d\tau
+ \int_{0}^{t_{o}} \mathcal{F}[g+v] dt
- \int_{t_{o}}^{t_{o}+\delta} \frac{1}{2} \|(g+v-u)(\tau)\|_{L^{2}(\Omega^{*},\mathbb{R}^{N})}^{2} d\tau
+ \frac{1}{2} \|g(0) + v(0) - g_{o}\|_{L^{2}(\Omega^{*},\mathbb{R}^{N})}^{2}$$

holds true for any $v \in L^1_{w*}(0,T;\mathrm{BV}_0(\Omega,\mathbb{R}^N))$ with $\partial_t v \in L^1(0,T;L^2(\Omega^*,\mathbb{R}^N))$ and $v(0) \in L^2(\Omega^*,\mathbb{R}^N)$.

• Let $\delta \downarrow 0$ to prove that u is a variational solution associated with f and g.

Thank you!