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The Cauchy-Dirichlet problem

Basic data:
@ Dimensions n, N € N.
e  C R" bounded Lipschitz domain, 0 < T < oo, Qp :=Q x (0,7).
o Time dependent boundary values g: Q7 — RY.

e Integrand f: Q x RV*" — R satisfying a linear growth condition,
convex with respect to the gradient variable.

Cauchy-Dirichlet problem: Find u: Q7 — RY such that

{ Owu — div(Dg f(z, Du)) =0 in Qr,

u=gqg on Opard7.
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The integrand

Assumptions:

@ Borel measurable.

@ Linear growth and coercivity condition

vl < f(z,8) < L(1 +[¢])
for all z € Q, &€ € RNX™ with constants 0 < v < L.
@ & f(x,§) convex for a.e. z € Q.

o Continuity condition (explained later).
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Functionals with linear growth — Choice of function space

Consider the elliptic functional

Flu] ::/Qf(ﬁ,Du)das.

o F is finite on WH1(Q,RY).

@ Under the conditions above or even reasonable extra assumptions, F
does not attain its minimum in any Dirichlet class Wy (€, RN).

o Therefore, extend F to BV(Q, RY).
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Functionals with linear growth — Boundary values

Solid Dirichlet boundary values:

@ The trace operator is not continuous with respect to weak*
convergence in BV(£2, RY).

@ Therefore, dealing with boundary values is delicate.
o Consider a reference set * compactly containing €.

o For a reference function u, € BV(Q*,RY) define BV,, (2, RY) as
the space of functions u € BV(2*,R"), which satisfy u = u, a.e. on
0\ Q.
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Functionals with linear growth — Boundary values

Solid Dirichlet boundary values:

@ The trace operator is not continuous with respect to weak*
convergence in BV(£2, RY).

@ Therefore, dealing with boundary values is delicate.
o Consider a reference set * compactly containing €.

o For a reference function u, € BV(Q*,RY) define BV,, (2, RY) as
the space of functions u € BV(2*,R"), which satisfy u = u, a.e. on
Extended integrand: Borel measurable function f: Q* x RVX" — [0, 00)
such that
o v|¢| < flx, &) < L(1+ [€]) for all z € Q*, £ € RV*™,
° & f(x,£) convex for a.e. z € OQF.
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Functionals with linear growth — Recession function

Definition (Recession function)

The recession function f°: O* x RV*" — R is defined by

f(%,€) == liminf tf(%,t71€)  for (z,€) € Q% x (RV*™\ {0}),
T—x,E—E
tl0

and f*°(z,0) := 0 for x € Q.

@ Takes into account the jumps of BV functions.
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Functionals with linear growth — Recession function

Definition (Recession function)

The recession function f°: O* x RV*" — R is defined by

f(%,€) == liminf tf(%,t71€)  for (z,€) € Q% x (RV*™\ {0}),
T—x,E—E
tl0

and f*°(z,0) := 0 for x € Q.

@ Takes into account the jumps of BV functions.
e Continuity assumption: For every (z,£) € O x (RV*"\ {0}),

lim tf(i,t_lé) exists in R.
Tz, ¢
t10

This condition ensures that f is continuous on Q* x RN*",
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Functionals with linear growth — Extended functional

Notation:

@ D%y is the absolutely continuous part of the Lebesgue decomposition
of Du with respect to L.

@ D®u is the singular part of the Lebesgue decomposition of Du with
respect to L.

@ Vu denotes the Radon-Nikodym density of D®u with respect to L.
Extended functional: Define F: BV(Q,RY) — [0,00) by

Flu] = . f(z,Vu) dx—i—/m [ (x, %) d|D*ul.
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Parabolic function spaces related to BV (2, RY)

o Note that BV(Q*,RY) is not separable. Therefore, we have problems
with the Bochner measurability condition of L'(0,7; BV (Q*, RY)).

o Use L., (0,T;BV(Q2*,RY)), the space of weakly* measurable maps
u: (0,T) = BV(Q*,RY) with ¢ = [[u(t)||py(o- zr) € L0, T).
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Parabolic function spaces related to BV (2, RY)

o Note that BV(Q*, R") is not separable. Therefore, we have problems
with the Bochner measurability condition of L'(0,7; BV (Q*, RY)).

o Use L., (0,T;BV(Q2*,RY)), the space of weakly* measurable maps
u: (0,T) = BV(Q*,RY) with ¢ = [[u(t)||py(o- zr) € L0, T).

e Forge L (0,T;BV(Q*,RY)), g+ LL.(0,T;BVo (2, RY)) denotes
the affine subspace of functions u € L}, (0,T;BV(Q*,RY)) that
satisfy u(t) € g(t) + BVo(Q,RY) for a.e. t € (0,7T).
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Assumptions on the boundary values

o g e L'(0, T Whi(Q, RY));
o Oig € LY(0,T; L?(2*,RN));
° go:=g(0) € L*(2*,RY).
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Variational solutions

Definition (Variational solutions)

Assume that the integrand f, the functional F and the boundary values g
are as above. A function

u € L=(0,T; L*(Q*,RM)) N (g + Li,, (0, T; BVo (2, RM)))

is a variational solution associated with f and g if and only if the
variational inequality

/ .’F[u]dtﬁ/ 8tv-(v—u)d:cdt+/ Flv]dt
0 Qx 0

— 3l = w1720 gy + 5110(0) = GollZ2 (e vy
holds true for a.e. 7 € [0,7] and any comparison map

v € g+ LL.(0,T;BVo(Q,RN)) with 0,0 € L(0,T; L?(2*,RY)) and
v(0) € L2(Q*,RM).

v
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Approximation of the Cauchy-Dirichlet problem

Approximation of the integrand:
@ For p > 1, consider fP.
@ Standard p- growth and coercivity condition

vPIEP < fP(x,§) < 2PLP(1+ [€)7)

for all z € Q*, € € RNVX™,
e £+ fP(x,&) convex for a.e. x € Q.
Assumptions on the boundary values:
e g, € LP(0,T; WhP(Q*, RN));
o digp € LY(0,T; L2(2*,RV));
o gpo = g(0) € L2, RY).
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Variational solutions for p > 1

Definition (Variational solutions, p > 1)

Assume that p > 1 and that the integrand f and boundary values g, are
as above. A function

u € CO([0, T L (2, R™)) 1 (gp + L7 (0, T; Wy " (2, R™)))

is a variational solution associated with f? and g, if and only if the
variational inequality

//QT f*(z, Du) dzdt < //m 3tv'(v—u)d€6dt+//m fP(z, Dv) dzdt

= 3ll(v = )Mz @ rny + 3[10(0) = gpoll2 (@ r)

holds true for any 7 € [0,7] and any comparison map
v € g, + LP(0, T; Wy P (0, RN)) with v € L*(0,T; L2(Q,RY)) and
v(0) € L2(9,RN).

v
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Existence of variational solutions for p > 1

o Existence result for 9;g € L?*(Qr, RY) has already been established.

o Refined existence result for d;g € L*(0,T; L2(Q,RY)) by
approximation.
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Further assumptions

Exponents:
e p;,>1forieN,
o p;llasi— .
Convergence assumptions on g; 1= gp,:
e gi — g in L' (0, T; WhH1(Q* RY));
e g; = g weakly* in L>(0,T; L*(Q*,RY));
o Oigi — Org in L*(0,T; LA, RY));

e lim // | Dg; [P dxdtz// |Dg| dzdt.
71— 00 Q} Q}
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Further assumptions

Exponents:
e p;,>1forieN,
@ p;Jl1asi— oo

Convergence assumptions on g; 1= gp,:
e gi — g in L' (0, T; WhH1(Q* RY));
e g; = g weakly* in L>(0,T; L*(Q*,RY));
o Oigi — Org in L*(0,T; LA, RY));

e lim // | Dg; [P dxdtz// |Dg| dzdt.
71— 00 Q} Q}

Variational solution associated with fPi and g;:

u; € C°([0,T); LAH(Q,RY)) N (g + LP (0, T; W,y P (Q, RY))).
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The main result

Theorem (Existence and stability result)

Assume that the sequence (p;);en, the integrand f, the functional F, the
boundary values g and g; and the variational solutions u; are as above.
Then, there exists a subsequence (u;, )ken and

u e L®(0,T; L*(Q*,RY)) N (g + Ly- (0, T; BV (2, RY)))
such that

Wi, = u in LY(Qp,RM),
i, % u weakly* in L= (0, T; L2(Q, RY))

as k — oo. The limit function w is a variational solution associated with f
and g.
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Known existence results for the total variation flow

@ Andreu, Ballester, Caselles & Mazén (2001):

» Notion of entropy solutions.

» Cauchy-Dirichlet problem with initial datum in L! and time
independent boundary values.

» Proof by nonlinear semigroup theory.

e Andreu, Mazén & Moll (2005):
» Nonlinear boundary condition.
» For initial data in L?, entropy solutions are strong solutions.
> Proof of the existence result by nonlinear semigroup theory.

o Bogelein, Duzaar & Scheven (2016):
» Notion of variational solutions.
» Cauchy-Dirichlet problem with initial datum in L? and time dependent
boundary values.
» Proof via method of minimizing movements.
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Known existence results for other equations

o Lichnewsky & Temam (1978):

» Time dependent minimal surface problem.

» Notion of variational solutions.

» Cauchy-Dirichlet problem with time independent boundary values.
» Proof by parabolic regularization.

@ Andreu, Caselles & Mazén (2002):

» Equations of the type dyu — div(D¢ f(x, Du)) = 0, where f satisfies a
linear growth condition, & — f(x,&) is convex and in C1(R") and f°
is continuous.

» This excludes the total variation flow.

» Notion of entropy solutions.

» Cauchy-Dirichlet problem with time independent boundary values.
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Known stability results

o Télle (2011):

» Total variation flow.

» Cauchy-Dirichlet problem with zero boundary values and
Cauchy-Neumann problem.

» Convergence of solutions strongly in L>°(0, T’; L?(12)).

» Proof by Mosco convergence of the associated functionals.

e Gianazza & Klaus (2017):

» Total variation flow.
Notion of variational solutions.

>
» Cauchy-Dirichlet problem with time independent boundary values.
>

Proof relies on a density result.
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Possible extensions

@ Free boundary values.

@ Equations including a lower order term, i.e.

Opu — div(Dg f(z, Du)) = —Dyg(x,u).

e Strong convergence in L>(0,T; L?(Q,RY)).
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Proof sketch — Convergence of variational solutions |

@ Without loss of generality, assume that p; < 2 for all ¢ € N.

@ By suitable energy bounds, (u;);cn is bounded in
L>(0,T; L2(,RY)) N LY(0, T; WH(Q,RY)).

o u; - u weakly® in L>°(0,T; L?(Q2*,RY)) for a (not relabelled)
subsequence.
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Proof sketch — Convergence of variational solutions |

@ Without loss of generality, assume that p; < 2 for all i € N.

@ By suitable energy bounds, (u;);cn is bounded in
L>(0,T; L2(,RY)) N LY(0, T; WH(Q,RY)).

o u; - u weakly® in L>°(0,T; L?(Q2*,RY)) for a (not relabelled)
subsequence.

@ u; denotes the extension of u; to Q* by g;.

@ By a lemma concerning the regularity of the limit map and since
gi = g in L>®(0,T; L?(Q*,RN)) as i — oo, conclude that

i; = u weakly* in L>(0,T; L2(Q*,RN))
for a limit map

w € L=(0,T; L2, RY)) N (g + Ly (0, T BV (2, RY))).
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Proof sketch — Convergence of variational solutions |l

@ Show that

/ T e+ 1) — ) ey 6 < € DulZky b
for all p; <2, £ > 1 with a constant ¢ = ¢(Nn, ¥, L, |Q|,T).
e For £ > % apply the Jacques Simon lemma with p = 1 and the spaces
wh(Q,RY) ¢ LYQ,RY) ¢ W42, RY).
This yields u; — u in L' (Qp,RY).
e Since g; — g in L1(Q5,RY), conclude that

@ — win LY(Q5, RY).
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Proof sketch — Preliminary variational inequality |

o Choose g; + w for some w € L2(0,T; Wy (€2, RY)) with
opw € LY0,T; L2(,RY)) and w(0) € L2(2,RY). as comparison
map in the variational inequality associated with fP: and g;, i.e.

// fPi(x, Du;) daedt < / O(gi +w) - (¢i +w — 1;) dedt
. Qs

//*fpz 2, D(gi + w)) dadt

“ gi +w — ;) (T )HL?(Q* RN)
E“w( )HLQ(Q*JRN)'

@ Aim: let i — o0.
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Proof sketch — Preliminary variational inequality Il

o To treat the boundary term 3 ||(g; + w — 110(7')”%2(9* gy take the

mean integral of the previous inequality over (t,,t, + ¢) for
to € (0,7) and 6 < T —t,.

o Deduce from @; — u in L1(Q4, RY) by Reshetnyak's lower
semicontinuity theorem, Fatou's lemma and Holder's inequality that

to L
Flu]dt < { / / FPi(z, Dii) dadt |
0 ;‘0
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Proof sketch — Preliminary variational inequality Il

@ By the convergence assumptions on g; and the properties of f, infer

to to+0
Flu]dt g][ / (g +w) - (g +w—u)dedtdr
to Qx

// f(xz,D(g+ w)) dedt

*
to+6

botd | 2
—]{ Ll(g + 0 — 0)(7) g vy 0

0

+ %Hw(o)H%?(Q*,RN)

for any w € L?(0,T; Wol’z(Q,]RN)).
o Next, replace w by a function v € LL,(0,T;BVo(Q,RY)) with
Ow € LY(0,T; L2(Q*,RY)) and v(0) € L*(Q*, RY).

@ To this end, consider suitable mollifications w := M_[v].
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Proof sketch — Definition of regularizations

Inner parallel set Q. := {x € Q: dist(z, ) > e}.

Cut-off function 7. with n. =0 on R"\ Q,, n. =1 on Q€+ﬁ and

dist(x,0) — e
7’]5(1') = % on Qs \ QE+\/E'

@ Standard mollifier ¢, in R™.

For v as above, define M_[v] := (n:v) * ¢-.
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Proof sketch — Some properties of the regularizations

M.[v] € CO([0, T); Wy * (2, RN));

M_[v](0) — v(0) in L2(R™,RYN);

M.[v] = vin L2(R" x (0,T),RY) as € | 0;

[ Me ]l Loo (0,12 e mVY) < V] oo 0,122 (7 RV

O M_[v] = O in LY(0,T; L?(,RY)) as € | 0.
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Proof sketch — First conclusions

These properties allow us to treat

to+0
° ]{ / | Oulg + Melol) - (g + Melo] - w) dadtdr;

to+d
A T A

o YIML[0)(0) 22 qe v,

Remaining term:

// F(w, D(g + M.[0])) dadt.

*
to+9d
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Proof sketch — Further properties of the regularizations

e For any function g € L*(0, T; WH1(R®,RY)) and a.e. t € [0, T]

{ DM.[o](t) % Du(t) weakly in RM(R"; RNXm),
(L7, Dg(t) + DM.[o](1))| (%) = | (L™, Dg(t) + Do(t))] (%)

in the limit € | 0.

@ This is called area-strict convergence, because

1 wl( / VI da 4 || ().
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Proof sketch — Further properties of the regularizations

e For any function g € L*(0, T; WH1(R®,RY)) and a.e. t € [0, T]

{ DM.[o](t) % Du(t) weakly in RM(R"; RNXm),
(L7, Dg(t) + DM.[o](1))| (%) = | (L™, Dg(t) + Do(t))] (%)

in the limit € | 0.

@ This is called area-strict convergence, because

(" I(@) = [ VT e+ 7| ).

° | DM_[v](t)|(R") < c(02)|Dv(t)|().
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Proof sketch — The remaining term

@ By Reshetnyak’s continuity theorem, deduce from the area-strict
convergence property that

. [z, D(g(t) + Mc[v] (1)) dz — Flg(t) + Mc[v](t)]

forae. t€[0,7] ase | 0.

@ Apply the dominated convergence theorem.
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Proof sketch — Conclusion

@ Conclude that

to to+0
Flu]dt g][ / (g +v) - (9 +v—u)dedtdr
to Qx
to

+ Flg+v]dt
0

totd | 2
47 Hlg o= e e

+3ll9(0) +v(0) = goll72(q- )

0

holds true for any v € LL,(0,T;BVo(Q, RY)) with
O € LY(0,T; L2(2*,RY)) and v(0) € L*(Q*, RY).

@ Let § | 0 to prove that u is a variational solution associated with f

and g.
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Thank you!
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